llama.h 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  57. };
  58. // pre-tokenization types
  59. enum llama_vocab_pre_type {
  60. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  61. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  63. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  64. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  65. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  66. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  67. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  68. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  69. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  70. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  71. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  72. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  73. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  74. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  75. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  76. LLAMA_VOCAB_PRE_TYPE_VIKING = 16,
  77. LLAMA_VOCAB_PRE_TYPE_JAIS = 17,
  78. };
  79. // note: these values should be synchronized with ggml_rope
  80. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  81. enum llama_rope_type {
  82. LLAMA_ROPE_TYPE_NONE = -1,
  83. LLAMA_ROPE_TYPE_NORM = 0,
  84. LLAMA_ROPE_TYPE_NEOX = 2,
  85. LLAMA_ROPE_TYPE_GLM = 4,
  86. };
  87. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  88. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  89. LLAMA_TOKEN_TYPE_NORMAL = 1,
  90. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  91. LLAMA_TOKEN_TYPE_CONTROL = 3,
  92. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  93. LLAMA_TOKEN_TYPE_UNUSED = 5,
  94. LLAMA_TOKEN_TYPE_BYTE = 6,
  95. };
  96. enum llama_token_attr {
  97. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  98. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  99. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  100. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  101. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  102. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  103. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  104. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  105. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  106. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  107. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  108. };
  109. // model file types
  110. enum llama_ftype {
  111. LLAMA_FTYPE_ALL_F32 = 0,
  112. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  114. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  116. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  117. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  118. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  120. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  126. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  144. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  145. };
  146. enum llama_rope_scaling_type {
  147. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  148. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  149. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  150. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  151. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  152. };
  153. enum llama_pooling_type {
  154. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  155. LLAMA_POOLING_TYPE_NONE = 0,
  156. LLAMA_POOLING_TYPE_MEAN = 1,
  157. LLAMA_POOLING_TYPE_CLS = 2,
  158. LLAMA_POOLING_TYPE_LAST = 3,
  159. };
  160. enum llama_split_mode {
  161. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  162. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  163. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  164. };
  165. typedef struct llama_token_data {
  166. llama_token id; // token id
  167. float logit; // log-odds of the token
  168. float p; // probability of the token
  169. } llama_token_data;
  170. typedef struct llama_token_data_array {
  171. llama_token_data * data;
  172. size_t size;
  173. bool sorted;
  174. } llama_token_data_array;
  175. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  176. // Input data for llama_decode
  177. // A llama_batch object can contain input about one or many sequences
  178. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  179. //
  180. // - token : the token ids of the input (used when embd is NULL)
  181. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  182. // - pos : the positions of the respective token in the sequence
  183. // - seq_id : the sequence to which the respective token belongs
  184. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  185. //
  186. typedef struct llama_batch {
  187. int32_t n_tokens;
  188. llama_token * token;
  189. float * embd;
  190. llama_pos * pos;
  191. int32_t * n_seq_id;
  192. llama_seq_id ** seq_id;
  193. int8_t * logits; // TODO: rename this to "output"
  194. // NOTE: helpers for smooth API transition - can be deprecated in the future
  195. // for future-proof code, use the above fields instead and ignore everything below
  196. //
  197. // pos[i] = all_pos_0 + i*all_pos_1
  198. //
  199. llama_pos all_pos_0; // used if pos == NULL
  200. llama_pos all_pos_1; // used if pos == NULL
  201. llama_seq_id all_seq_id; // used if seq_id == NULL
  202. } llama_batch;
  203. enum llama_model_kv_override_type {
  204. LLAMA_KV_OVERRIDE_TYPE_INT,
  205. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  206. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  207. LLAMA_KV_OVERRIDE_TYPE_STR,
  208. };
  209. struct llama_model_kv_override {
  210. enum llama_model_kv_override_type tag;
  211. char key[128];
  212. union {
  213. int64_t val_i64;
  214. double val_f64;
  215. bool val_bool;
  216. char val_str[128];
  217. };
  218. };
  219. struct llama_model_params {
  220. int32_t n_gpu_layers; // number of layers to store in VRAM
  221. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  222. // main_gpu interpretation depends on split_mode:
  223. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  224. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  225. // LLAMA_SPLIT_LAYER: ignored
  226. int32_t main_gpu;
  227. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  228. const float * tensor_split;
  229. // comma separated list of RPC servers to use for offloading
  230. const char * rpc_servers;
  231. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  232. // If the provided progress_callback returns true, model loading continues.
  233. // If it returns false, model loading is immediately aborted.
  234. llama_progress_callback progress_callback;
  235. // context pointer passed to the progress callback
  236. void * progress_callback_user_data;
  237. // override key-value pairs of the model meta data
  238. const struct llama_model_kv_override * kv_overrides;
  239. // Keep the booleans together to avoid misalignment during copy-by-value.
  240. bool vocab_only; // only load the vocabulary, no weights
  241. bool use_mmap; // use mmap if possible
  242. bool use_mlock; // force system to keep model in RAM
  243. bool check_tensors; // validate model tensor data
  244. };
  245. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  246. // https://github.com/ggerganov/llama.cpp/pull/7544
  247. struct llama_context_params {
  248. uint32_t seed; // RNG seed, -1 for random
  249. uint32_t n_ctx; // text context, 0 = from model
  250. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  251. uint32_t n_ubatch; // physical maximum batch size
  252. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  253. uint32_t n_threads; // number of threads to use for generation
  254. uint32_t n_threads_batch; // number of threads to use for batch processing
  255. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  256. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  257. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  258. float rope_freq_base; // RoPE base frequency, 0 = from model
  259. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  260. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  261. float yarn_attn_factor; // YaRN magnitude scaling factor
  262. float yarn_beta_fast; // YaRN low correction dim
  263. float yarn_beta_slow; // YaRN high correction dim
  264. uint32_t yarn_orig_ctx; // YaRN original context size
  265. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  266. ggml_backend_sched_eval_callback cb_eval;
  267. void * cb_eval_user_data;
  268. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  269. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  270. // Keep the booleans together to avoid misalignment during copy-by-value.
  271. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  272. bool embeddings; // if true, extract embeddings (together with logits)
  273. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  274. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  275. // Abort callback
  276. // if it returns true, execution of llama_decode() will be aborted
  277. // currently works only with CPU execution
  278. ggml_abort_callback abort_callback;
  279. void * abort_callback_data;
  280. };
  281. // model quantization parameters
  282. typedef struct llama_model_quantize_params {
  283. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  284. enum llama_ftype ftype; // quantize to this llama_ftype
  285. enum ggml_type output_tensor_type; // output tensor type
  286. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  287. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  288. bool quantize_output_tensor; // quantize output.weight
  289. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  290. bool pure; // quantize all tensors to the default type
  291. bool keep_split; // quantize to the same number of shards
  292. void * imatrix; // pointer to importance matrix data
  293. void * kv_overrides; // pointer to vector containing overrides
  294. } llama_model_quantize_params;
  295. // grammar types
  296. struct llama_grammar;
  297. // grammar element type
  298. enum llama_gretype {
  299. // end of rule definition
  300. LLAMA_GRETYPE_END = 0,
  301. // start of alternate definition for rule
  302. LLAMA_GRETYPE_ALT = 1,
  303. // non-terminal element: reference to rule
  304. LLAMA_GRETYPE_RULE_REF = 2,
  305. // terminal element: character (code point)
  306. LLAMA_GRETYPE_CHAR = 3,
  307. // inverse char(s) ([^a], [^a-b] [^abc])
  308. LLAMA_GRETYPE_CHAR_NOT = 4,
  309. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  310. // be an inclusive range ([a-z])
  311. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  312. // modifies a preceding LLAMA_GRETYPE_CHAR or
  313. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  314. LLAMA_GRETYPE_CHAR_ALT = 6,
  315. // any character (.)
  316. LLAMA_GRETYPE_CHAR_ANY = 7,
  317. };
  318. typedef struct llama_grammar_element {
  319. enum llama_gretype type;
  320. uint32_t value; // Unicode code point or rule ID
  321. } llama_grammar_element;
  322. // performance timing information
  323. struct llama_timings {
  324. double t_start_ms;
  325. double t_end_ms;
  326. double t_load_ms;
  327. double t_sample_ms;
  328. double t_p_eval_ms;
  329. double t_eval_ms;
  330. int32_t n_sample;
  331. int32_t n_p_eval;
  332. int32_t n_eval;
  333. };
  334. // used in chat template
  335. typedef struct llama_chat_message {
  336. const char * role;
  337. const char * content;
  338. } llama_chat_message;
  339. // Helpers for getting default parameters
  340. LLAMA_API struct llama_model_params llama_model_default_params(void);
  341. LLAMA_API struct llama_context_params llama_context_default_params(void);
  342. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  343. // Initialize the llama + ggml backend
  344. // If numa is true, use NUMA optimizations
  345. // Call once at the start of the program
  346. LLAMA_API void llama_backend_init(void);
  347. //optional:
  348. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  349. // Call once at the end of the program - currently only used for MPI
  350. LLAMA_API void llama_backend_free(void);
  351. LLAMA_API struct llama_model * llama_load_model_from_file(
  352. const char * path_model,
  353. struct llama_model_params params);
  354. LLAMA_API void llama_free_model(struct llama_model * model);
  355. LLAMA_API struct llama_context * llama_new_context_with_model(
  356. struct llama_model * model,
  357. struct llama_context_params params);
  358. // Frees all allocated memory
  359. LLAMA_API void llama_free(struct llama_context * ctx);
  360. LLAMA_API int64_t llama_time_us(void);
  361. LLAMA_API size_t llama_max_devices(void);
  362. LLAMA_API bool llama_supports_mmap (void);
  363. LLAMA_API bool llama_supports_mlock (void);
  364. LLAMA_API bool llama_supports_gpu_offload(void);
  365. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  366. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  367. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  368. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  369. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  370. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  371. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  372. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  373. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  374. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  375. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  376. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  377. // Get the model's RoPE frequency scaling factor
  378. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  379. // Functions to access the model's GGUF metadata scalar values
  380. // - The functions return the length of the string on success, or -1 on failure
  381. // - The output string is always null-terminated and cleared on failure
  382. // - GGUF array values are not supported by these functions
  383. // Get metadata value as a string by key name
  384. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  385. // Get the number of metadata key/value pairs
  386. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  387. // Get metadata key name by index
  388. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  389. // Get metadata value as a string by index
  390. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  391. // Get a string describing the model type
  392. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  393. // Returns the total size of all the tensors in the model in bytes
  394. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  395. // Returns the total number of parameters in the model
  396. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  397. // Get a llama model tensor
  398. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  399. // Returns 0 on success
  400. LLAMA_API uint32_t llama_model_quantize(
  401. const char * fname_inp,
  402. const char * fname_out,
  403. const llama_model_quantize_params * params);
  404. // Apply a LoRA adapter to a loaded model
  405. // path_base_model is the path to a higher quality model to use as a base for
  406. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  407. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  408. // will be applied on top of the previous one
  409. // Returns 0 on success
  410. LLAMA_API int32_t llama_model_apply_lora_from_file(
  411. const struct llama_model * model,
  412. const char * path_lora,
  413. float scale,
  414. const char * path_base_model,
  415. int32_t n_threads);
  416. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  417. // the currently loaded vector.
  418. // n_embd should be the size of a single layer's control, and data should point
  419. // to an n_embd x n_layers buffer starting from layer 1.
  420. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  421. // See llama_control_vector_load in common to load a control vector.
  422. LLAMA_API int32_t llama_control_vector_apply(
  423. struct llama_context * lctx,
  424. const float * data,
  425. size_t len,
  426. int32_t n_embd,
  427. int32_t il_start,
  428. int32_t il_end);
  429. //
  430. // KV cache
  431. //
  432. // Information associated with an individual cell in the KV cache view.
  433. struct llama_kv_cache_view_cell {
  434. // The position for this cell. Takes KV cache shifts into account.
  435. // May be negative if the cell is not populated.
  436. llama_pos pos;
  437. };
  438. // An updateable view of the KV cache.
  439. struct llama_kv_cache_view {
  440. // Number of KV cache cells. This will be the same as the context size.
  441. int32_t n_cells;
  442. // Maximum number of sequences that can exist in a cell. It's not an error
  443. // if there are more sequences in a cell than this value, however they will
  444. // not be visible in the view cells_sequences.
  445. int32_t n_seq_max;
  446. // Number of tokens in the cache. For example, if there are two populated
  447. // cells, the first with 1 sequence id in it and the second with 2 sequence
  448. // ids then you'll have 3 tokens.
  449. int32_t token_count;
  450. // Number of populated cache cells.
  451. int32_t used_cells;
  452. // Maximum contiguous empty slots in the cache.
  453. int32_t max_contiguous;
  454. // Index to the start of the max_contiguous slot range. Can be negative
  455. // when cache is full.
  456. int32_t max_contiguous_idx;
  457. // Information for an individual cell.
  458. struct llama_kv_cache_view_cell * cells;
  459. // The sequences for each cell. There will be n_seq_max items per cell.
  460. llama_seq_id * cells_sequences;
  461. };
  462. // Create an empty KV cache view. (use only for debugging purposes)
  463. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  464. // Free a KV cache view. (use only for debugging purposes)
  465. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  466. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  467. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  468. // Returns the number of tokens in the KV cache (slow, use only for debug)
  469. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  470. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  471. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  472. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  473. // Clear the KV cache - both cell info is erased and KV data is zeroed
  474. LLAMA_API void llama_kv_cache_clear(
  475. struct llama_context * ctx);
  476. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  477. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  478. // seq_id < 0 : match any sequence
  479. // p0 < 0 : [0, p1]
  480. // p1 < 0 : [p0, inf)
  481. LLAMA_API bool llama_kv_cache_seq_rm(
  482. struct llama_context * ctx,
  483. llama_seq_id seq_id,
  484. llama_pos p0,
  485. llama_pos p1);
  486. // Copy all tokens that belong to the specified sequence to another sequence
  487. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  488. // p0 < 0 : [0, p1]
  489. // p1 < 0 : [p0, inf)
  490. LLAMA_API void llama_kv_cache_seq_cp(
  491. struct llama_context * ctx,
  492. llama_seq_id seq_id_src,
  493. llama_seq_id seq_id_dst,
  494. llama_pos p0,
  495. llama_pos p1);
  496. // Removes all tokens that do not belong to the specified sequence
  497. LLAMA_API void llama_kv_cache_seq_keep(
  498. struct llama_context * ctx,
  499. llama_seq_id seq_id);
  500. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  501. // If the KV cache is RoPEd, the KV data is updated accordingly:
  502. // - lazily on next llama_decode()
  503. // - explicitly with llama_kv_cache_update()
  504. // p0 < 0 : [0, p1]
  505. // p1 < 0 : [p0, inf)
  506. LLAMA_API void llama_kv_cache_seq_add(
  507. struct llama_context * ctx,
  508. llama_seq_id seq_id,
  509. llama_pos p0,
  510. llama_pos p1,
  511. llama_pos delta);
  512. // Integer division of the positions by factor of `d > 1`
  513. // If the KV cache is RoPEd, the KV data is updated accordingly:
  514. // - lazily on next llama_decode()
  515. // - explicitly with llama_kv_cache_update()
  516. // p0 < 0 : [0, p1]
  517. // p1 < 0 : [p0, inf)
  518. LLAMA_API void llama_kv_cache_seq_div(
  519. struct llama_context * ctx,
  520. llama_seq_id seq_id,
  521. llama_pos p0,
  522. llama_pos p1,
  523. int d);
  524. // Returns the largest position present in the KV cache for the specified sequence
  525. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  526. struct llama_context * ctx,
  527. llama_seq_id seq_id);
  528. // Defragment the KV cache
  529. // This will be applied:
  530. // - lazily on next llama_decode()
  531. // - explicitly with llama_kv_cache_update()
  532. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  533. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  534. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  535. //
  536. // State / sessions
  537. //
  538. // Returns the maximum size in bytes of the state (rng, logits, embedding
  539. // and kv_cache) - will often be smaller after compacting tokens
  540. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  541. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  542. "use llama_state_get_size instead");
  543. // Copies the state to the specified destination address.
  544. // Destination needs to have allocated enough memory.
  545. // Returns the number of bytes copied
  546. LLAMA_API size_t llama_state_get_data(
  547. struct llama_context * ctx,
  548. uint8_t * dst);
  549. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  550. struct llama_context * ctx,
  551. uint8_t * dst),
  552. "use llama_state_get_data instead");
  553. // Set the state reading from the specified address
  554. // Returns the number of bytes read
  555. LLAMA_API size_t llama_state_set_data(
  556. struct llama_context * ctx,
  557. const uint8_t * src);
  558. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  559. struct llama_context * ctx,
  560. const uint8_t * src),
  561. "use llama_state_set_data instead");
  562. // Save/load session file
  563. LLAMA_API bool llama_state_load_file(
  564. struct llama_context * ctx,
  565. const char * path_session,
  566. llama_token * tokens_out,
  567. size_t n_token_capacity,
  568. size_t * n_token_count_out);
  569. LLAMA_API DEPRECATED(bool llama_load_session_file(
  570. struct llama_context * ctx,
  571. const char * path_session,
  572. llama_token * tokens_out,
  573. size_t n_token_capacity,
  574. size_t * n_token_count_out),
  575. "use llama_state_load_file instead");
  576. LLAMA_API bool llama_state_save_file(
  577. struct llama_context * ctx,
  578. const char * path_session,
  579. const llama_token * tokens,
  580. size_t n_token_count);
  581. LLAMA_API DEPRECATED(bool llama_save_session_file(
  582. struct llama_context * ctx,
  583. const char * path_session,
  584. const llama_token * tokens,
  585. size_t n_token_count),
  586. "use llama_state_save_file instead");
  587. // Get the exact size needed to copy the KV cache of a single sequence
  588. LLAMA_API size_t llama_state_seq_get_size(
  589. struct llama_context * ctx,
  590. llama_seq_id seq_id);
  591. // Copy the KV cache of a single sequence into the specified buffer
  592. LLAMA_API size_t llama_state_seq_get_data(
  593. struct llama_context * ctx,
  594. uint8_t * dst,
  595. llama_seq_id seq_id);
  596. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  597. // Returns:
  598. // - Positive: Ok
  599. // - Zero: Failed to load
  600. LLAMA_API size_t llama_state_seq_set_data(
  601. struct llama_context * ctx,
  602. const uint8_t * src,
  603. llama_seq_id dest_seq_id);
  604. LLAMA_API size_t llama_state_seq_save_file(
  605. struct llama_context * ctx,
  606. const char * filepath,
  607. llama_seq_id seq_id,
  608. const llama_token * tokens,
  609. size_t n_token_count);
  610. LLAMA_API size_t llama_state_seq_load_file(
  611. struct llama_context * ctx,
  612. const char * filepath,
  613. llama_seq_id dest_seq_id,
  614. llama_token * tokens_out,
  615. size_t n_token_capacity,
  616. size_t * n_token_count_out);
  617. //
  618. // Decoding
  619. //
  620. // Return batch for single sequence of tokens starting at pos_0
  621. //
  622. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  623. //
  624. LLAMA_API struct llama_batch llama_batch_get_one(
  625. llama_token * tokens,
  626. int32_t n_tokens,
  627. llama_pos pos_0,
  628. llama_seq_id seq_id);
  629. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  630. // Each token can be assigned up to n_seq_max sequence ids
  631. // The batch has to be freed with llama_batch_free()
  632. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  633. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  634. // The rest of the llama_batch members are allocated with size n_tokens
  635. // All members are left uninitialized
  636. LLAMA_API struct llama_batch llama_batch_init(
  637. int32_t n_tokens,
  638. int32_t embd,
  639. int32_t n_seq_max);
  640. // Frees a batch of tokens allocated with llama_batch_init()
  641. LLAMA_API void llama_batch_free(struct llama_batch batch);
  642. // Positive return values does not mean a fatal error, but rather a warning.
  643. // 0 - success
  644. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  645. // < 0 - error
  646. LLAMA_API int32_t llama_decode(
  647. struct llama_context * ctx,
  648. struct llama_batch batch);
  649. // Set the number of threads used for decoding
  650. // n_threads is the number of threads used for generation (single token)
  651. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  652. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  653. // Get the number of threads used for generation of a single token.
  654. LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
  655. // Get the number of threads used for prompt and batch processing (multiple token).
  656. LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
  657. // Set whether the model is in embeddings mode or not
  658. // If true, embeddings will be returned but logits will not
  659. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  660. // Set whether to use causal attention or not
  661. // If set to true, the model will only attend to the past tokens
  662. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  663. // Set abort callback
  664. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  665. // Wait until all computations are finished
  666. // This is automatically done when using one of the functions below to obtain the computation results
  667. // and is not necessary to call it explicitly in most cases
  668. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  669. // Token logits obtained from the last call to llama_decode()
  670. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  671. // in the order they have appeared in the batch.
  672. // Rows: number of tokens for which llama_batch.logits[i] != 0
  673. // Cols: n_vocab
  674. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  675. // Logits for the ith token. For positive indices, Equivalent to:
  676. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  677. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  678. // returns NULL for invalid ids.
  679. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  680. // Get all output token embeddings.
  681. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  682. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  683. // in the order they have appeared in the batch.
  684. // shape: [n_outputs*n_embd]
  685. // Otherwise, returns NULL.
  686. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  687. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  688. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  689. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  690. // shape: [n_embd] (1-dimensional)
  691. // returns NULL for invalid ids.
  692. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  693. // Get the embeddings for a sequence id
  694. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  695. // shape: [n_embd] (1-dimensional)
  696. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  697. //
  698. // Vocab
  699. //
  700. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  701. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  702. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  703. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  704. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  705. // Identify if Token Id is a control token or a render-able token
  706. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  707. // Special tokens
  708. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  709. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  710. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  711. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  712. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  713. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  714. // Returns -1 if unknown, 1 for true or 0 for false.
  715. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  716. // Returns -1 if unknown, 1 for true or 0 for false.
  717. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  718. // Codellama infill tokens
  719. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  720. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  721. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  722. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  723. //
  724. // Tokenization
  725. //
  726. /// @details Convert the provided text into tokens.
  727. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  728. /// @return Returns the number of tokens on success, no more than n_tokens_max
  729. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  730. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  731. /// as plaintext. Does not insert a leading space.
  732. LLAMA_API int32_t llama_tokenize(
  733. const struct llama_model * model,
  734. const char * text,
  735. int32_t text_len,
  736. llama_token * tokens,
  737. int32_t n_tokens_max,
  738. bool add_special,
  739. bool parse_special);
  740. // Token Id -> Piece.
  741. // Uses the vocabulary in the provided context.
  742. // Does not write null terminator to the buffer.
  743. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  744. // @param special If true, special tokens are rendered in the output.
  745. LLAMA_API int32_t llama_token_to_piece(
  746. const struct llama_model * model,
  747. llama_token token,
  748. char * buf,
  749. int32_t length,
  750. bool special);
  751. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  752. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  753. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  754. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  755. /// @param chat Pointer to a list of multiple llama_chat_message
  756. /// @param n_msg Number of llama_chat_message in this chat
  757. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  758. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  759. /// @param length The size of the allocated buffer
  760. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  761. LLAMA_API int32_t llama_chat_apply_template(
  762. const struct llama_model * model,
  763. const char * tmpl,
  764. const struct llama_chat_message * chat,
  765. size_t n_msg,
  766. bool add_ass,
  767. char * buf,
  768. int32_t length);
  769. //
  770. // Grammar
  771. //
  772. /// Initialize a llama_grammar.
  773. ///
  774. /// @param rules The rule elements of the grammar to initialize.
  775. /// @param n_rules The number of rules.
  776. /// @param start_rule_index The index of the root rule (the starting point of the grammar).
  777. /// @return The initialized llama_grammar or nullptr if initialization failed.
  778. LLAMA_API struct llama_grammar * llama_grammar_init(
  779. const llama_grammar_element ** rules,
  780. size_t n_rules,
  781. size_t start_rule_index);
  782. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  783. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  784. //
  785. // Sampling functions
  786. //
  787. // Sets the current rng seed.
  788. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  789. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  790. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  791. LLAMA_API void llama_sample_repetition_penalties(
  792. struct llama_context * ctx,
  793. llama_token_data_array * candidates,
  794. const llama_token * last_tokens,
  795. size_t penalty_last_n,
  796. float penalty_repeat,
  797. float penalty_freq,
  798. float penalty_present);
  799. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  800. /// @param logits Logits extracted from the original generation context.
  801. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  802. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  803. LLAMA_API void llama_sample_apply_guidance(
  804. struct llama_context * ctx,
  805. float * logits,
  806. float * logits_guidance,
  807. float scale);
  808. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  809. LLAMA_API void llama_sample_softmax(
  810. struct llama_context * ctx,
  811. llama_token_data_array * candidates);
  812. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  813. LLAMA_API void llama_sample_top_k(
  814. struct llama_context * ctx,
  815. llama_token_data_array * candidates,
  816. int32_t k,
  817. size_t min_keep);
  818. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  819. LLAMA_API void llama_sample_top_p(
  820. struct llama_context * ctx,
  821. llama_token_data_array * candidates,
  822. float p,
  823. size_t min_keep);
  824. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  825. LLAMA_API void llama_sample_min_p(
  826. struct llama_context * ctx,
  827. llama_token_data_array * candidates,
  828. float p,
  829. size_t min_keep);
  830. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  831. LLAMA_API void llama_sample_tail_free(
  832. struct llama_context * ctx,
  833. llama_token_data_array * candidates,
  834. float z,
  835. size_t min_keep);
  836. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  837. LLAMA_API void llama_sample_typical(
  838. struct llama_context * ctx,
  839. llama_token_data_array * candidates,
  840. float p,
  841. size_t min_keep);
  842. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  843. LLAMA_API void llama_sample_entropy(
  844. struct llama_context * ctx,
  845. llama_token_data_array * candidates_p,
  846. float min_temp,
  847. float max_temp,
  848. float exponent_val);
  849. LLAMA_API void llama_sample_temp(
  850. struct llama_context * ctx,
  851. llama_token_data_array * candidates,
  852. float temp);
  853. /// @details Apply constraints from grammar
  854. LLAMA_API void llama_sample_grammar(
  855. struct llama_context * ctx,
  856. llama_token_data_array * candidates,
  857. const struct llama_grammar * grammar);
  858. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  859. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  860. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  861. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  862. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  863. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  864. LLAMA_API llama_token llama_sample_token_mirostat(
  865. struct llama_context * ctx,
  866. llama_token_data_array * candidates,
  867. float tau,
  868. float eta,
  869. int32_t m,
  870. float * mu);
  871. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  872. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  873. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  874. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  875. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  876. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  877. struct llama_context * ctx,
  878. llama_token_data_array * candidates,
  879. float tau,
  880. float eta,
  881. float * mu);
  882. /// @details Selects the token with the highest probability.
  883. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  884. LLAMA_API llama_token llama_sample_token_greedy(
  885. struct llama_context * ctx,
  886. llama_token_data_array * candidates);
  887. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  888. LLAMA_API llama_token llama_sample_token(
  889. struct llama_context * ctx,
  890. llama_token_data_array * candidates);
  891. /// @details Accepts the sampled token into the grammar
  892. LLAMA_API void llama_grammar_accept_token(
  893. struct llama_context * ctx,
  894. struct llama_grammar * grammar,
  895. llama_token token);
  896. //
  897. // Model split
  898. //
  899. /// @details Build a split GGUF final path for this chunk.
  900. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  901. // Returns the split_path length.
  902. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  903. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  904. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  905. // Returns the split_prefix length.
  906. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  907. // Performance information
  908. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  909. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  910. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  911. // Print system information
  912. LLAMA_API const char * llama_print_system_info(void);
  913. // Set callback for all future logging events.
  914. // If this is not called, or NULL is supplied, everything is output on stderr.
  915. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  916. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  917. #ifdef __cplusplus
  918. }
  919. #endif
  920. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  921. #ifdef LLAMA_API_INTERNAL
  922. #include <random>
  923. #include <string>
  924. #include <vector>
  925. struct ggml_tensor;
  926. struct llama_partial_utf8 {
  927. uint32_t value; // bit value so far (unshifted)
  928. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  929. };
  930. struct llama_grammar {
  931. const std::vector<std::vector<llama_grammar_element>> rules;
  932. std::vector<std::vector<const llama_grammar_element *>> stacks;
  933. // buffer for partially generated UTF-8 sequence from accepted tokens
  934. llama_partial_utf8 partial_utf8;
  935. };
  936. struct llama_grammar_candidate {
  937. size_t index;
  938. const uint32_t * code_points;
  939. llama_partial_utf8 partial_utf8;
  940. };
  941. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  942. struct llama_context * ctx
  943. );
  944. void llama_grammar_accept(
  945. const std::vector<std::vector<llama_grammar_element>> & rules,
  946. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  947. const uint32_t chr,
  948. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  949. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  950. const std::string & src,
  951. llama_partial_utf8 partial_start);
  952. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  953. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  954. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  955. #endif // LLAMA_API_INTERNAL
  956. #endif // LLAMA_H