ggml.c 409 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  567. return vcombine_s8(vget_low_s8(a), vget_low_s8(b));
  568. }
  569. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  570. return vcombine_s8(vget_high_s8(a), vget_high_s8(b));
  571. }
  572. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  573. return vcombine_u8(vget_low_u8(a), vget_low_u8(b));
  574. }
  575. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  576. return vcombine_u8(vget_high_u8(a), vget_high_u8(b));
  577. }
  578. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  579. int32x4_t res;
  580. res[0] = roundf(vgetq_lane_f32(v, 0));
  581. res[1] = roundf(vgetq_lane_f32(v, 1));
  582. res[2] = roundf(vgetq_lane_f32(v, 2));
  583. res[3] = roundf(vgetq_lane_f32(v, 3));
  584. return res;
  585. }
  586. #endif
  587. #endif
  588. #define QK4_0 32
  589. typedef struct {
  590. float d; // delta
  591. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  592. } block_q4_0;
  593. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  594. #define QK4_1 32
  595. typedef struct {
  596. float d; // delta
  597. float m; // min
  598. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  599. } block_q4_1;
  600. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  601. #define QK4_2 16
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  605. } block_q4_2;
  606. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  607. #define QK5_0 32
  608. typedef struct {
  609. ggml_fp16_t d; // delta
  610. uint8_t qh[4]; // 5-th bit of quants
  611. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  612. } block_q5_0;
  613. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  614. #define QK5_1 32
  615. typedef struct {
  616. ggml_fp16_t d; // delta
  617. ggml_fp16_t m; // min
  618. uint8_t qh[4]; // 5-th bit of quants
  619. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  620. } block_q5_1;
  621. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  622. #define QK8_0 32
  623. typedef struct {
  624. float d; // delta
  625. int8_t qs[QK8_0]; // quants
  626. } block_q8_0;
  627. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  628. #define QK8_1 32
  629. typedef struct {
  630. float d; // delta
  631. float s0; // d * sum(qs[i]) low
  632. float s1; // d * sum(qs[i]) high
  633. int8_t qs[QK8_1]; // quants
  634. } block_q8_1;
  635. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  636. // reference implementation for deterministic creation of model files
  637. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  638. assert(k % QK4_0 == 0);
  639. const int nb = k / QK4_0;
  640. uint8_t pp[QK4_0/2];
  641. for (int i = 0; i < nb; i++) {
  642. float amax = 0.0f; // absolute max
  643. float max = 0.0f;
  644. for (int l = 0; l < QK4_0; l++) {
  645. const float v = x[i*QK4_0 + l];
  646. if (amax < fabsf(v)) {
  647. amax = fabsf(v);
  648. max = v;
  649. }
  650. }
  651. const float d = max / -8;
  652. const float id = d ? 1.0f/d : 0.0f;
  653. y[i].d = d;
  654. for (int l = 0; l < QK4_0; l += 2) {
  655. const float v0 = x[i*QK4_0 + l + 0]*id;
  656. const float v1 = x[i*QK4_0 + l + 1]*id;
  657. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  658. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  659. assert(vi0 < 16);
  660. assert(vi1 < 16);
  661. pp[l/2] = vi0 | (vi1 << 4);
  662. }
  663. memcpy(y[i].qs, pp, sizeof(pp));
  664. }
  665. }
  666. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  667. assert(k % QK4_0 == 0);
  668. const int nb = k / QK4_0;
  669. block_q4_0 * restrict y = vy;
  670. #if defined(__POWER9_VECTOR__)
  671. const vector float v85 = vec_splats(8.5f);
  672. const vector signed int v15 = vec_splats(15);
  673. for (int i = 0; i < nb; i++) {
  674. float max = 0.0f;
  675. float min = 0.0f;
  676. vector float srcv [8];
  677. vector float maxv[8];
  678. vector float minv[8];
  679. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  680. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  681. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  682. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  683. maxv[0] = vec_max(maxv[0], maxv[2]);
  684. maxv[4] = vec_max(maxv[4], maxv[6]);
  685. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  686. maxv[0] = vec_max(maxv[0], maxv[4]);
  687. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  688. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  689. minv[0] = vec_min(minv[0], minv[2]);
  690. minv[4] = vec_min(minv[4], minv[6]);
  691. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  692. minv[0] = vec_min(minv[0], minv[4]);
  693. max = MAX(
  694. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  695. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  696. min = MIN(
  697. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  698. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  699. const float magnitude = max >= fabsf(min) ? max : min;
  700. const float d = magnitude / -8;
  701. const float id = d ? 1.0/d : 0.0;
  702. y[i].d = d;
  703. const vector float vid = vec_splats(id);
  704. uint8_t * restrict pb = y[i].qs;
  705. for (int l = 0; l < 8; l++) {
  706. const vector float vf = vec_madd(srcv[l], vid, v85);
  707. const vector signed int vi = vec_signed(vf);
  708. const vector signed int vc = vec_min(vi, v15);
  709. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  710. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  711. }
  712. }
  713. #elif __ARM_NEON
  714. for (int i = 0; i < nb; i++) {
  715. float32x4_t srcv [8];
  716. float32x4_t maxv[8];
  717. float32x4_t minv[8];
  718. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  719. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  720. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  721. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  722. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  723. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  724. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  725. const float max = vmaxvq_f32(maxv[0]);
  726. const float min = vminvq_f32(minv[0]);
  727. const float magnitude = max >= fabsf(min) ? max : min;
  728. const float d = magnitude / -8;
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = d;
  731. for (int l = 0; l < 8; l++) {
  732. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  733. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  734. const int32x4_t vi = vcvtq_s32_f32(vf);
  735. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  736. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  737. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  738. }
  739. }
  740. #elif defined(__AVX2__)
  741. for (int i = 0; i < nb; i++) {
  742. // Load elements into 4 AVX vectors
  743. __m256 v0 = _mm256_loadu_ps( x );
  744. __m256 v1 = _mm256_loadu_ps( x + 8 );
  745. __m256 v2 = _mm256_loadu_ps( x + 16 );
  746. __m256 v3 = _mm256_loadu_ps( x + 24 );
  747. x += 32;
  748. // Compute max for the block
  749. __m256 max = _mm256_max_ps( v0, v1 );
  750. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  751. max = _mm256_max_ps( max, maxTmp );
  752. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  753. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  754. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  755. const float maxScalar = _mm_cvtss_f32( max4 );
  756. // Compute min for the block
  757. __m256 min = _mm256_min_ps( v0, v1 );
  758. __m256 minTmp = _mm256_min_ps( v2, v3 );
  759. min = _mm256_min_ps( min, minTmp );
  760. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  761. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  762. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  763. const float minScalar = _mm_cvtss_f32( min4 );
  764. // Quantize these floats
  765. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  766. const float d = magnitude / -8.0f;
  767. y[i].d = d;
  768. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  769. const __m256 mul = _mm256_set1_ps( id );
  770. // Apply the multiplier
  771. v0 = _mm256_mul_ps( v0, mul );
  772. v1 = _mm256_mul_ps( v1, mul );
  773. v2 = _mm256_mul_ps( v2, mul );
  774. v3 = _mm256_mul_ps( v3, mul );
  775. // Round to nearest integer
  776. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  777. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  778. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  779. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  780. // Convert floats to integers
  781. __m256i i0 = _mm256_cvtps_epi32( v0 );
  782. __m256i i1 = _mm256_cvtps_epi32( v1 );
  783. __m256i i2 = _mm256_cvtps_epi32( v2 );
  784. __m256i i3 = _mm256_cvtps_epi32( v3 );
  785. // Convert int32 to int16
  786. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  787. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  788. // Convert int16 to int8
  789. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  790. // We got our precious signed bytes, but the order is now wrong
  791. // These AVX2 pack instructions process 16-byte pieces independently
  792. // The following instruction is fixing the order
  793. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  794. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  795. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  796. const __m256i off = _mm256_set1_epi8( 8 );
  797. i0 = _mm256_add_epi8( i0, off );
  798. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  799. i0 = _mm256_min_epi8( i0, maxNibble );
  800. // Compress the vector into 4 bit/value, and store
  801. __m128i res = packNibbles( i0 );
  802. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  803. }
  804. #elif defined(__AVX__)
  805. for (int i = 0; i < nb; i++) {
  806. // Load elements into 4 AVX vectors
  807. __m256 v0 = _mm256_loadu_ps( x );
  808. __m256 v1 = _mm256_loadu_ps( x + 8 );
  809. __m256 v2 = _mm256_loadu_ps( x + 16 );
  810. __m256 v3 = _mm256_loadu_ps( x + 24 );
  811. x += 32;
  812. // Compute max for the block
  813. __m256 max = _mm256_max_ps( v0, v1 );
  814. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  815. max = _mm256_max_ps( max, maxTmp );
  816. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  817. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  818. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  819. const float maxScalar = _mm_cvtss_f32( max4 );
  820. // Compute min for the block
  821. __m256 min = _mm256_min_ps( v0, v1 );
  822. __m256 minTmp = _mm256_min_ps( v2, v3 );
  823. min = _mm256_min_ps( min, minTmp );
  824. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  825. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  826. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  827. const float minScalar = _mm_cvtss_f32( min4 );
  828. // Quantize these floats
  829. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  830. const float d = magnitude / -8.0f;
  831. y[i].d = d;
  832. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  833. const __m256 mul = _mm256_set1_ps( id );
  834. // Apply the multiplier
  835. v0 = _mm256_mul_ps( v0, mul );
  836. v1 = _mm256_mul_ps( v1, mul );
  837. v2 = _mm256_mul_ps( v2, mul );
  838. v3 = _mm256_mul_ps( v3, mul );
  839. // Round to nearest integer
  840. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  841. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  842. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  843. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  844. // Convert floats to integers
  845. __m256i i0 = _mm256_cvtps_epi32( v0 );
  846. __m256i i1 = _mm256_cvtps_epi32( v1 );
  847. __m256i i2 = _mm256_cvtps_epi32( v2 );
  848. __m256i i3 = _mm256_cvtps_epi32( v3 );
  849. // Since we don't have in AVX some necessary functions,
  850. // we split the registers in half and call AVX2 analogs from SSE
  851. __m128i ni0 = _mm256_castsi256_si128( i0 );
  852. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  853. __m128i ni2 = _mm256_castsi256_si128( i1 );
  854. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  855. __m128i ni4 = _mm256_castsi256_si128( i2 );
  856. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  857. __m128i ni6 = _mm256_castsi256_si128( i3 );
  858. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  859. // Convert int32 to int16
  860. ni0 = _mm_packs_epi32( ni0, ni1 );
  861. ni2 = _mm_packs_epi32( ni2, ni3 );
  862. ni4 = _mm_packs_epi32( ni4, ni5 );
  863. ni6 = _mm_packs_epi32( ni6, ni7 );
  864. // Convert int16 to int8
  865. ni0 = _mm_packs_epi16( ni0, ni2 );
  866. ni4 = _mm_packs_epi16( ni4, ni6 );
  867. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  868. const __m128i off = _mm_set1_epi8( 8 );
  869. ni0 = _mm_add_epi8( ni0, off );
  870. ni4 = _mm_add_epi8( ni4, off );
  871. const __m128i maxNibble = _mm_set1_epi8( 15 );
  872. ni0 = _mm_min_epi8( ni0, maxNibble );
  873. ni4 = _mm_min_epi8( ni4, maxNibble );
  874. // Compress the vector into 4 bit/value, and store
  875. __m128i res = packNibbles( ni0, ni4 );
  876. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  877. }
  878. #elif defined(__wasm_simd128__)
  879. for (int i = 0; i < nb; i++) {
  880. float max = 0.0f;
  881. float min = 0.0f;
  882. v128_t srcv [8];
  883. v128_t maxv[8];
  884. v128_t minv[8];
  885. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  886. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  887. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  888. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  889. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  890. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  891. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  892. max = MAX(
  893. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  894. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  895. min = MIN(
  896. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  897. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  898. const float magnitude = max >= fabsf(min) ? max : min;
  899. const float d = magnitude / -8;
  900. const float id = d ? 1.0/d : 0.0;
  901. y[i].d = d;
  902. for (int l = 0; l < 8; l++) {
  903. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  904. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  905. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  906. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  907. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  908. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  909. }
  910. }
  911. #else
  912. // scalar
  913. quantize_row_q4_0_reference(x, y, k);
  914. #endif
  915. }
  916. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  917. assert(k % QK4_1 == 0);
  918. const int nb = k / QK4_1;
  919. block_q4_1 * restrict y = vy;
  920. uint8_t pp[QK4_1/2];
  921. for (int i = 0; i < nb; i++) {
  922. float min = FLT_MAX;
  923. float max = -FLT_MAX;
  924. for (int l = 0; l < QK4_1; l++) {
  925. const float v = x[i*QK4_1 + l];
  926. if (v < min) min = v;
  927. if (v > max) max = v;
  928. }
  929. const float d = (max - min) / ((1 << 4) - 1);
  930. const float id = d ? 1.0f/d : 0.0f;
  931. y[i].d = d;
  932. y[i].m = min;
  933. for (int l = 0; l < QK4_1; l += 2) {
  934. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  935. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  936. const uint8_t vi0 = roundf(v0);
  937. const uint8_t vi1 = roundf(v1);
  938. assert(vi0 < 16);
  939. assert(vi1 < 16);
  940. pp[l/2] = vi0 | (vi1 << 4);
  941. }
  942. memcpy(y[i].qs, pp, sizeof(pp));
  943. }
  944. }
  945. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  946. assert(k % QK4_1 == 0);
  947. const int nb = k / QK4_1;
  948. block_q4_1 * restrict y = vy;
  949. #if defined(__AVX2__)
  950. for (int i = 0; i < nb; i++) {
  951. // Load elements into 4 AVX vectors
  952. __m256 v0 = _mm256_loadu_ps( x );
  953. __m256 v1 = _mm256_loadu_ps( x + 8 );
  954. __m256 v2 = _mm256_loadu_ps( x + 16 );
  955. __m256 v3 = _mm256_loadu_ps( x + 24 );
  956. x += 32;
  957. // Compute max for the block
  958. __m256 vmax;
  959. vmax = _mm256_max_ps( v0, v1 );
  960. vmax = _mm256_max_ps( vmax, v2 );
  961. vmax = _mm256_max_ps( vmax, v3 );
  962. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  963. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  964. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  965. const float maxScalar = _mm_cvtss_f32( max4 );
  966. // Compute min for the block
  967. __m256 vmin;
  968. vmin = _mm256_min_ps( v0, v1 );
  969. vmin = _mm256_min_ps( vmin, v2 );
  970. vmin = _mm256_min_ps( vmin, v3 );
  971. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  972. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  973. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  974. const float minScalar = _mm_cvtss_f32( min4 );
  975. // Quantize these floats
  976. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  977. const float id = d ? 1.0f/d : 0.0f;
  978. y[i].m = minScalar;
  979. y[i].d = d;
  980. // x = (x-min)*id
  981. const __m256 mul = _mm256_set1_ps( id );
  982. const __m256 off = _mm256_set1_ps( minScalar );
  983. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  984. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  985. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  986. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  987. // Round to nearest integer
  988. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  989. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  990. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  991. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  992. // Convert floats to integers
  993. __m256i i0 = _mm256_cvtps_epi32( v0 );
  994. __m256i i1 = _mm256_cvtps_epi32( v1 );
  995. __m256i i2 = _mm256_cvtps_epi32( v2 );
  996. __m256i i3 = _mm256_cvtps_epi32( v3 );
  997. // Convert int32 to int16
  998. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  999. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1000. // Convert int16 to int8
  1001. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1002. // We got our precious signed bytes, but the order is now wrong
  1003. // These AVX2 pack instructions process 16-byte pieces independently
  1004. // The following instruction is fixing the order
  1005. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1006. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1007. // Compress the vector into 4 bit/value, and store
  1008. __m128i res = packNibbles( i0 );
  1009. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1010. }
  1011. #elif __ARM_NEON
  1012. for (int i = 0; i < nb; i++) {
  1013. float32x4_t srcv[8];
  1014. float32x4_t minv[8];
  1015. float32x4_t maxv[8];
  1016. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1017. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1018. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1019. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1020. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1021. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1022. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1023. const float min = vminvq_f32(minv[0]);
  1024. const float max = vmaxvq_f32(maxv[0]);
  1025. const float d = (max - min) / ((1 << 4) - 1);
  1026. const float id = d ? 1.0f/d : 0.0f;
  1027. y[i].d = d;
  1028. y[i].m = min;
  1029. const float32x4_t minv0 = vdupq_n_f32(min);
  1030. for (int l = 0; l < 8; l++) {
  1031. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1032. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1033. const int32x4_t vi = vcvtq_s32_f32(vf);
  1034. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1035. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1036. }
  1037. }
  1038. #else
  1039. // scalar
  1040. quantize_row_q4_1_reference(x, vy, k);
  1041. #endif
  1042. }
  1043. // reference implementation for deterministic creation of model files
  1044. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1045. assert(k % QK4_2 == 0);
  1046. const int nb = k / QK4_2;
  1047. for (int i = 0; i < nb; i++) {
  1048. float amax = 0.0f; // absolute max
  1049. float max = 0.0f;
  1050. for (int l = 0; l < QK4_2; l++) {
  1051. const float v = x[i*QK4_2 + l];
  1052. if (amax < fabsf(v)) {
  1053. amax = fabsf(v);
  1054. max = v;
  1055. }
  1056. }
  1057. const float d = max / -8;
  1058. const float id = d ? 1.0f/d : 0.0f;
  1059. y[i].d = GGML_FP32_TO_FP16(d);
  1060. for (int l = 0; l < QK4_2; l += 2) {
  1061. const float v0 = x[i*QK4_2 + l + 0]*id;
  1062. const float v1 = x[i*QK4_2 + l + 1]*id;
  1063. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1064. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1065. assert(vi0 < 16);
  1066. assert(vi1 < 16);
  1067. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1068. }
  1069. }
  1070. }
  1071. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1072. assert(k % QK4_2 == 0);
  1073. block_q4_2 * restrict y = vy;
  1074. quantize_row_q4_2_reference(x, y, k);
  1075. }
  1076. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1077. assert(k % QK5_0 == 0);
  1078. const int nb = k / QK5_0;
  1079. for (int i = 0; i < nb; i++) {
  1080. float amax = 0.0f; // absolute max
  1081. float max = 0.0f;
  1082. for (int l = 0; l < QK5_0; l++) {
  1083. const float v = x[i*QK5_0 + l];
  1084. if (amax < fabsf(v)) {
  1085. amax = fabsf(v);
  1086. max = v;
  1087. }
  1088. }
  1089. const float d = max / -16;
  1090. const float id = d ? 1.0f/d : 0.0f;
  1091. y[i].d = GGML_FP32_TO_FP16(d);
  1092. uint32_t qh = 0;
  1093. for (int l = 0; l < QK5_0; l += 2) {
  1094. const float v0 = x[i*QK5_0 + l + 0]*id;
  1095. const float v1 = x[i*QK5_0 + l + 1]*id;
  1096. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1097. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1098. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1099. // get the 5-th bit and store it in qh at the right position
  1100. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1101. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1102. }
  1103. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1104. }
  1105. }
  1106. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1107. assert(k % QK5_0 == 0);
  1108. block_q5_0 * restrict y = vy;
  1109. quantize_row_q5_0_reference(x, y, k);
  1110. }
  1111. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1112. assert(k % QK5_1 == 0);
  1113. const int nb = k / QK5_1;
  1114. for (int i = 0; i < nb; i++) {
  1115. float min = FLT_MAX;
  1116. float max = -FLT_MAX;
  1117. for (int l = 0; l < QK5_1; l++) {
  1118. const float v = x[i*QK5_1 + l];
  1119. if (v < min) min = v;
  1120. if (v > max) max = v;
  1121. }
  1122. const float d = (max - min) / ((1 << 5) - 1);
  1123. const float id = d ? 1.0f/d : 0.0f;
  1124. y[i].d = GGML_FP32_TO_FP16(d);
  1125. y[i].m = GGML_FP32_TO_FP16(min);
  1126. uint32_t qh = 0;
  1127. for (int l = 0; l < QK5_1; l += 2) {
  1128. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1129. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1130. const uint32_t vi0 = (int) (v0 + 0.5f);
  1131. const uint32_t vi1 = (int) (v1 + 0.5f);
  1132. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1133. // get the 5-th bit and store it in qh at the right position
  1134. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1135. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1136. }
  1137. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1138. }
  1139. }
  1140. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1141. assert(k % QK5_1 == 0);
  1142. block_q5_1 * restrict y = vy;
  1143. quantize_row_q5_1_reference(x, y, k);
  1144. }
  1145. // reference implementation for deterministic creation of model files
  1146. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1147. assert(k % QK8_0 == 0);
  1148. const int nb = k / QK8_0;
  1149. for (int i = 0; i < nb; i++) {
  1150. float amax = 0.0f; // absolute max
  1151. for (int l = 0; l < QK8_0; l++) {
  1152. const float v = x[i*QK8_0 + l];
  1153. amax = MAX(amax, fabsf(v));
  1154. }
  1155. const float d = amax / ((1 << 7) - 1);
  1156. const float id = d ? 1.0f/d : 0.0f;
  1157. y[i].d = d;
  1158. for (int l = 0; l < QK8_0; ++l) {
  1159. const float v0 = x[i*QK8_0 + l]*id;
  1160. y[i].qs[l] = roundf(v0);
  1161. }
  1162. }
  1163. }
  1164. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1165. assert(k % QK8_0 == 0);
  1166. block_q8_0 * restrict y = vy;
  1167. quantize_row_q8_0_reference(x, y, k);
  1168. }
  1169. // reference implementation for deterministic creation of model files
  1170. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1171. assert(k % QK8_1 == 0);
  1172. const int nb = k / QK8_1;
  1173. for (int i = 0; i < nb; i++) {
  1174. float amax = 0.0f; // absolute max
  1175. for (int l = 0; l < QK8_1; l++) {
  1176. const float v = x[i*QK8_1 + l];
  1177. amax = MAX(amax, fabsf(v));
  1178. }
  1179. const float d = amax / ((1 << 7) - 1);
  1180. const float id = d ? 1.0f/d : 0.0f;
  1181. y[i].d = d;
  1182. int sum0 = 0;
  1183. int sum1 = 0;
  1184. for (int l = 0; l < QK8_1/2; ++l) {
  1185. const float v0 = x[i*QK8_1 + l]*id;
  1186. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1187. y[i].qs[ l] = roundf(v0);
  1188. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1189. sum0 += y[i].qs[ l];
  1190. sum1 += y[i].qs[QK8_1/2 + l];
  1191. }
  1192. y[i].s0 = d * sum0;
  1193. y[i].s1 = d * sum1;
  1194. }
  1195. }
  1196. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1197. assert(k % QK8_1 == 0);
  1198. const int nb = k / QK8_1;
  1199. block_q8_1 * restrict y = vy;
  1200. #if defined(__ARM_NEON)
  1201. for (int i = 0; i < nb; i++) {
  1202. float32x4_t srcv [8];
  1203. float32x4_t asrcv[8];
  1204. float32x4_t amaxv[8];
  1205. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1206. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1207. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1208. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1209. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1210. const float amax = vmaxvq_f32(amaxv[0]);
  1211. const float d = amax / ((1 << 7) - 1);
  1212. const float id = d ? 1.0f/d : 0.0f;
  1213. y[i].d = d;
  1214. int32x4_t accv0 = vdupq_n_s32(0);
  1215. int32x4_t accv1 = vdupq_n_s32(0);
  1216. // low half
  1217. for (int l = 0; l < 4; l++) {
  1218. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1219. const int32x4_t vi = vcvtnq_s32_f32(v);
  1220. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1221. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1222. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1223. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1224. accv0 = vaddq_s32(accv0, vi);
  1225. }
  1226. // high half
  1227. for (int l = 4; l < 8; l++) {
  1228. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1229. const int32x4_t vi = vcvtnq_s32_f32(v);
  1230. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1231. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1232. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1233. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1234. accv1 = vaddq_s32(accv1, vi);
  1235. }
  1236. const int32_t sum0 = vaddvq_s32(accv0);
  1237. const int32_t sum1 = vaddvq_s32(accv1);
  1238. y[i].s0 = d * sum0;
  1239. y[i].s1 = d * sum1;
  1240. }
  1241. #elif defined(__AVX2__) || defined(__AVX__)
  1242. for (int i = 0; i < nb; i++) {
  1243. // Load elements into 4 AVX vectors
  1244. __m256 v0 = _mm256_loadu_ps( x );
  1245. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1246. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1247. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1248. x += 32;
  1249. // Compute max(abs(e)) for the block
  1250. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1251. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1252. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1253. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1254. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1255. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1256. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1257. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1258. const float maxScalar = _mm_cvtss_f32( max4 );
  1259. // Quantize these floats
  1260. const float d = maxScalar / 127.f;
  1261. y[i].d = d;
  1262. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1263. const __m256 mul = _mm256_set1_ps( id );
  1264. // Apply the multiplier
  1265. v0 = _mm256_mul_ps( v0, mul );
  1266. v1 = _mm256_mul_ps( v1, mul );
  1267. v2 = _mm256_mul_ps( v2, mul );
  1268. v3 = _mm256_mul_ps( v3, mul );
  1269. // Round to nearest integer
  1270. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1271. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1272. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1273. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1274. // Convert floats to integers
  1275. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1276. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1277. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1278. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1279. #if defined(__AVX2__)
  1280. // Compute the sum of the quants and set y[i].s
  1281. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1282. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1283. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1284. // Convert int32 to int16
  1285. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1286. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1287. // Convert int16 to int8
  1288. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1289. // We got our precious signed bytes, but the order is now wrong
  1290. // These AVX2 pack instructions process 16-byte pieces independently
  1291. // The following instruction is fixing the order
  1292. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1293. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1294. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1295. #else
  1296. // Since we don't have in AVX some necessary functions,
  1297. // we split the registers in half and call AVX2 analogs from SSE
  1298. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1299. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1300. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1301. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1302. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1303. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1304. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1305. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1306. // Compute the sum of the quants and set y[i].s
  1307. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1308. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1309. y[i].s0 = d * hsum_i32_4(s0);
  1310. y[i].s1 = d * hsum_i32_4(s1);
  1311. // Convert int32 to int16
  1312. ni0 = _mm_packs_epi32( ni0, ni1 );
  1313. ni2 = _mm_packs_epi32( ni2, ni3 );
  1314. ni4 = _mm_packs_epi32( ni4, ni5 );
  1315. ni6 = _mm_packs_epi32( ni6, ni7 );
  1316. // Convert int16 to int8
  1317. ni0 = _mm_packs_epi16( ni0, ni2 );
  1318. ni4 = _mm_packs_epi16( ni4, ni6 );
  1319. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1320. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1321. #endif
  1322. }
  1323. #else
  1324. // scalar
  1325. quantize_row_q8_1_reference(x, y, k);
  1326. #endif
  1327. }
  1328. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1329. assert(k % QK4_0 == 0);
  1330. const int nb = k / QK4_0;
  1331. const block_q4_0 * restrict x = vx;
  1332. #if defined(__AVX2__)
  1333. for (int i = 0; i < nb; i++) {
  1334. // scale factor
  1335. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1336. const uint8_t * restrict pp = x[i].qs;
  1337. for (int l = 0; l < QK4_0; l += 32) {
  1338. // Load 32x4-bit integers into 32x8-bit integers
  1339. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1340. // Subtract 8 from the integers
  1341. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1342. // Convert to 16-bit int
  1343. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1344. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1345. // Convert to 32-bit int -> float 32
  1346. const __m256 vf[4] = {
  1347. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1348. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1349. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1350. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1351. };
  1352. // Scale and store
  1353. for (int j = 0; j < 4; j++) {
  1354. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1355. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1356. }
  1357. }
  1358. }
  1359. #elif defined(__ARM_NEON)
  1360. for (int i = 0; i < nb; i++) {
  1361. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1362. const uint8_t * restrict pp = x[i].qs;
  1363. for (int l = 0; l < QK4_0; l += 16) {
  1364. // Load 16x4-bit integers into 8x8-bit integers
  1365. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1366. // Expand 4-bit qs to 8-bit bytes
  1367. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1368. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1369. // Convert to signed 8-bit integers
  1370. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1371. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1372. // Subtract 8 from each byte
  1373. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1374. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1375. // Interleave and combine
  1376. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1377. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1378. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1379. // convert to 2x int16x8_t
  1380. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1381. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1382. // convert to 4x float32x4_t
  1383. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1384. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1385. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1386. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1387. // Multiply by d
  1388. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1389. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1390. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1391. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1392. // Store
  1393. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1394. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1395. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1396. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1397. }
  1398. }
  1399. #else
  1400. // scalar
  1401. for (int i = 0; i < nb; i++) {
  1402. const float d = x[i].d;
  1403. const uint8_t * restrict pp = x[i].qs;
  1404. for (int l = 0; l < QK4_0; l += 2) {
  1405. const uint8_t vi = pp[l/2];
  1406. const int8_t vi0 = vi & 0x0F;
  1407. const int8_t vi1 = vi >> 4;
  1408. const float v0 = (vi0 - 8)*d;
  1409. const float v1 = (vi1 - 8)*d;
  1410. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1411. y[i*QK4_0 + l + 0] = v0;
  1412. y[i*QK4_0 + l + 1] = v1;
  1413. assert(!isnan(y[i*QK4_0 + l + 0]));
  1414. assert(!isnan(y[i*QK4_0 + l + 1]));
  1415. }
  1416. }
  1417. #endif
  1418. }
  1419. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1420. assert(k % QK4_1 == 0);
  1421. const int nb = k / QK4_1;
  1422. const block_q4_1 * restrict x = vx;
  1423. #if defined(__AVX2__)
  1424. for (int i = 0; i < nb; i++) {
  1425. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1426. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1427. const uint8_t * restrict pp = x[i].qs;
  1428. for (int l = 0; l < QK4_1; l += 32) {
  1429. // Load 32x4-bit integers into 32x8-bit integers
  1430. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1431. // Convert to 16-bit int
  1432. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1433. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1434. // Convert to 32-bit int -> float 32
  1435. const __m256 vf[4] = {
  1436. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1437. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1438. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1439. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1440. };
  1441. // Scale, add m and store
  1442. for (int j = 0; j < 4; j++) {
  1443. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1444. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1445. }
  1446. }
  1447. }
  1448. #elif defined(__ARM_NEON)
  1449. for (int i = 0; i < nb; i++) {
  1450. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1451. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1452. const uint8_t * restrict pp = x[i].qs;
  1453. for (int l = 0; l < QK4_1; l += 16) {
  1454. // Load 16x4-bit integers into 8x8-bit integers
  1455. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1456. // Expand 4-bit qs to 8-bit bytes
  1457. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1458. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1459. // Interleave and combine
  1460. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1461. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1462. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1463. // convert to 2x uint16x8_t
  1464. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1465. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1466. // convert to 4x float32x4_t
  1467. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1468. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1469. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1470. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1471. // multiply by d and add m
  1472. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1473. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1474. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1475. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1476. // Store
  1477. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1478. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1479. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1480. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1481. }
  1482. }
  1483. #else
  1484. for (int i = 0; i < nb; i++) {
  1485. const float d = x[i].d;
  1486. const float m = x[i].m;
  1487. const uint8_t * restrict pp = x[i].qs;
  1488. for (int l = 0; l < QK4_1; l += 2) {
  1489. const uint8_t vi = pp[l/2];
  1490. const int8_t vi0 = vi & 0x0F;
  1491. const int8_t vi1 = vi >> 4;
  1492. const float v0 = vi0*d + m;
  1493. const float v1 = vi1*d + m;
  1494. y[i*QK4_1 + l + 0] = v0;
  1495. y[i*QK4_1 + l + 1] = v1;
  1496. assert(!isnan(y[i*QK4_1 + l + 0]));
  1497. assert(!isnan(y[i*QK4_1 + l + 1]));
  1498. }
  1499. }
  1500. #endif
  1501. }
  1502. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1503. assert(k % QK4_2 == 0);
  1504. const int nb = k / QK4_2;
  1505. const block_q4_2 * restrict x = vx;
  1506. for (int i = 0; i < nb; i++) {
  1507. const float d = GGML_FP16_TO_FP32(x[i].d);
  1508. const uint8_t * restrict pp = x[i].qs;
  1509. for (int l = 0; l < QK4_2; l += 2) {
  1510. const uint8_t vi = pp[l/2];
  1511. const int8_t vi0 = vi & 0x0F;
  1512. const int8_t vi1 = vi >> 4;
  1513. const float v0 = (vi0 - 8)*d;
  1514. const float v1 = (vi1 - 8)*d;
  1515. y[i*QK4_2 + l + 0] = v0;
  1516. y[i*QK4_2 + l + 1] = v1;
  1517. assert(!isnan(y[i*QK4_2 + l + 0]));
  1518. assert(!isnan(y[i*QK4_2 + l + 1]));
  1519. }
  1520. }
  1521. }
  1522. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1523. assert(k % QK5_0 == 0);
  1524. const int nb = k / QK5_0;
  1525. const block_q5_0 * restrict x = vx;
  1526. for (int i = 0; i < nb; i++) {
  1527. const float d = GGML_FP16_TO_FP32(x[i].d);
  1528. const uint8_t * restrict pp = x[i].qs;
  1529. uint32_t qh;
  1530. memcpy(&qh, x[i].qh, sizeof(qh));
  1531. for (int l = 0; l < QK5_0; l += 2) {
  1532. const uint8_t vi = pp[l/2];
  1533. // extract the 5-th bit from qh
  1534. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1535. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1536. const int8_t vi0 = (vi & 0x0F) | vh0;
  1537. const int8_t vi1 = (vi >> 4) | vh1;
  1538. const float v0 = (vi0 - 16)*d;
  1539. const float v1 = (vi1 - 16)*d;
  1540. y[i*QK5_0 + l + 0] = v0;
  1541. y[i*QK5_0 + l + 1] = v1;
  1542. assert(!isnan(y[i*QK5_0 + l + 0]));
  1543. assert(!isnan(y[i*QK5_0 + l + 1]));
  1544. }
  1545. }
  1546. }
  1547. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1548. assert(k % QK5_1 == 0);
  1549. const int nb = k / QK5_1;
  1550. const block_q5_1 * restrict x = vx;
  1551. for (int i = 0; i < nb; i++) {
  1552. const float d = GGML_FP16_TO_FP32(x[i].d);
  1553. const float m = GGML_FP16_TO_FP32(x[i].m);
  1554. const uint8_t * restrict pp = x[i].qs;
  1555. uint32_t qh;
  1556. memcpy(&qh, x[i].qh, sizeof(qh));
  1557. for (int l = 0; l < QK5_1; l += 2) {
  1558. const uint8_t vi = pp[l/2];
  1559. // extract the 5-th bit from qh
  1560. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1561. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1562. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1563. const uint8_t vi1 = (vi >> 4) | vh1;
  1564. const float v0 = vi0*d + m;
  1565. const float v1 = vi1*d + m;
  1566. y[i*QK5_1 + l + 0] = v0;
  1567. y[i*QK5_1 + l + 1] = v1;
  1568. assert(!isnan(y[i*QK5_1 + l + 0]));
  1569. assert(!isnan(y[i*QK5_1 + l + 1]));
  1570. }
  1571. }
  1572. }
  1573. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1574. assert(k % QK8_0 == 0);
  1575. const int nb = k / QK8_0;
  1576. const block_q8_0 * restrict x = vx;
  1577. for (int i = 0; i < nb; i++) {
  1578. const float d = x[i].d;
  1579. const int8_t * restrict pp = x[i].qs;
  1580. for (int l = 0; l < QK8_0; ++l) {
  1581. y[i*QK8_0 + l] = pp[l]*d;
  1582. }
  1583. }
  1584. }
  1585. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1586. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1587. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1588. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1589. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1590. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1591. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1592. [GGML_TYPE_Q4_0] = {
  1593. .dequantize_row_q = dequantize_row_q4_0,
  1594. .quantize_row_q = quantize_row_q4_0,
  1595. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1596. .quantize_row_q_dot = quantize_row_q8_0,
  1597. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1598. .vec_dot_type = GGML_TYPE_Q8_0,
  1599. },
  1600. [GGML_TYPE_Q4_1] = {
  1601. .dequantize_row_q = dequantize_row_q4_1,
  1602. .quantize_row_q = quantize_row_q4_1,
  1603. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1604. .quantize_row_q_dot = quantize_row_q8_1,
  1605. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1606. .vec_dot_type = GGML_TYPE_Q8_1,
  1607. },
  1608. [GGML_TYPE_Q4_2] = {
  1609. .dequantize_row_q = dequantize_row_q4_2,
  1610. .quantize_row_q = quantize_row_q4_2,
  1611. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1612. .quantize_row_q_dot = quantize_row_q8_0,
  1613. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1614. .vec_dot_type = GGML_TYPE_Q8_0,
  1615. },
  1616. [GGML_TYPE_Q5_0] = {
  1617. .dequantize_row_q = dequantize_row_q5_0,
  1618. .quantize_row_q = quantize_row_q5_0,
  1619. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1620. .quantize_row_q_dot = quantize_row_q8_0,
  1621. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1622. .vec_dot_type = GGML_TYPE_Q8_0,
  1623. },
  1624. [GGML_TYPE_Q5_1] = {
  1625. .dequantize_row_q = dequantize_row_q5_1,
  1626. .quantize_row_q = quantize_row_q5_1,
  1627. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1628. .quantize_row_q_dot = quantize_row_q8_1,
  1629. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1630. .vec_dot_type = GGML_TYPE_Q8_1,
  1631. },
  1632. [GGML_TYPE_Q8_0] = {
  1633. .dequantize_row_q = dequantize_row_q8_0,
  1634. .quantize_row_q = quantize_row_q8_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q8_1] = {
  1641. .dequantize_row_q = NULL, // TODO
  1642. .quantize_row_q = quantize_row_q8_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = NULL, // TODO
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. };
  1649. // For internal test use
  1650. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1651. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1652. return quantize_fns[i];
  1653. }
  1654. //
  1655. // simd mappings
  1656. //
  1657. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1658. // we then implement the fundamental computation operations below using only these macros
  1659. // adding support for new architectures requires to define the corresponding SIMD macros
  1660. //
  1661. // GGML_F32_STEP / GGML_F16_STEP
  1662. // number of elements to process in a single step
  1663. //
  1664. // GGML_F32_EPR / GGML_F16_EPR
  1665. // number of elements to fit in a single register
  1666. //
  1667. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1668. #define GGML_SIMD
  1669. // F32 NEON
  1670. #define GGML_F32_STEP 16
  1671. #define GGML_F32_EPR 4
  1672. #define GGML_F32x4 float32x4_t
  1673. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1674. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1675. #define GGML_F32x4_LOAD vld1q_f32
  1676. #define GGML_F32x4_STORE vst1q_f32
  1677. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1678. #define GGML_F32x4_ADD vaddq_f32
  1679. #define GGML_F32x4_MUL vmulq_f32
  1680. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1681. #define GGML_F32x4_REDUCE(res, x) \
  1682. { \
  1683. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1684. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1685. } \
  1686. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1687. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1688. } \
  1689. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1690. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1691. } \
  1692. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1693. }
  1694. #define GGML_F32_VEC GGML_F32x4
  1695. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1696. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1697. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1698. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1699. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1700. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1701. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1702. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1703. // F16 NEON
  1704. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1705. #define GGML_F16_STEP 32
  1706. #define GGML_F16_EPR 8
  1707. #define GGML_F16x8 float16x8_t
  1708. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1709. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1710. #define GGML_F16x8_LOAD vld1q_f16
  1711. #define GGML_F16x8_STORE vst1q_f16
  1712. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1713. #define GGML_F16x8_ADD vaddq_f16
  1714. #define GGML_F16x8_MUL vmulq_f16
  1715. #define GGML_F16x8_REDUCE(res, x) \
  1716. { \
  1717. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1718. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1719. } \
  1720. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1721. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1722. } \
  1723. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1724. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1725. } \
  1726. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1727. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1728. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1729. }
  1730. #define GGML_F16_VEC GGML_F16x8
  1731. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1732. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1733. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1734. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1735. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1736. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1737. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1738. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1739. #else
  1740. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1741. // and take advantage of the vcvt_ functions to convert to/from FP16
  1742. #define GGML_F16_STEP 16
  1743. #define GGML_F16_EPR 4
  1744. #define GGML_F32Cx4 float32x4_t
  1745. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1746. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1747. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1748. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1749. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1750. #define GGML_F32Cx4_ADD vaddq_f32
  1751. #define GGML_F32Cx4_MUL vmulq_f32
  1752. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1753. #define GGML_F16_VEC GGML_F32Cx4
  1754. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1755. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1756. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1757. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1758. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1759. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1760. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1761. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1762. #endif
  1763. #elif defined(__AVX__)
  1764. #define GGML_SIMD
  1765. // F32 AVX
  1766. #define GGML_F32_STEP 32
  1767. #define GGML_F32_EPR 8
  1768. #define GGML_F32x8 __m256
  1769. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1770. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1771. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1772. #define GGML_F32x8_STORE _mm256_storeu_ps
  1773. #if defined(__FMA__)
  1774. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1775. #else
  1776. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1777. #endif
  1778. #define GGML_F32x8_ADD _mm256_add_ps
  1779. #define GGML_F32x8_MUL _mm256_mul_ps
  1780. #define GGML_F32x8_REDUCE(res, x) \
  1781. { \
  1782. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1783. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1784. } \
  1785. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1786. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1787. } \
  1788. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1789. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1790. } \
  1791. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1792. _mm256_extractf128_ps(x[0], 1)); \
  1793. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1794. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1795. }
  1796. // TODO: is this optimal ?
  1797. #define GGML_F32_VEC GGML_F32x8
  1798. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1799. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1800. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1801. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1802. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1803. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1804. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1805. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1806. // F16 AVX
  1807. #define GGML_F16_STEP 32
  1808. #define GGML_F16_EPR 8
  1809. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1810. #define GGML_F32Cx8 __m256
  1811. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1812. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1813. #if defined(__F16C__)
  1814. // the _mm256_cvt intrinsics require F16C
  1815. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1816. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1817. #else
  1818. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1819. float tmp[8];
  1820. for (int i = 0; i < 8; i++)
  1821. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1822. return _mm256_loadu_ps(tmp);
  1823. }
  1824. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1825. float arr[8];
  1826. _mm256_storeu_ps(arr, y);
  1827. for (int i = 0; i < 8; i++)
  1828. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1829. }
  1830. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1831. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1832. #endif
  1833. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1834. #define GGML_F32Cx8_ADD _mm256_add_ps
  1835. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1836. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1837. #define GGML_F16_VEC GGML_F32Cx8
  1838. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1839. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1840. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1841. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1842. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1843. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1844. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1845. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1846. #elif defined(__POWER9_VECTOR__)
  1847. #define GGML_SIMD
  1848. // F32 POWER9
  1849. #define GGML_F32_STEP 32
  1850. #define GGML_F32_EPR 4
  1851. #define GGML_F32x4 vector float
  1852. #define GGML_F32x4_ZERO 0.0f
  1853. #define GGML_F32x4_SET1 vec_splats
  1854. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1855. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1856. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1857. #define GGML_F32x4_ADD vec_add
  1858. #define GGML_F32x4_MUL vec_mul
  1859. #define GGML_F32x4_REDUCE(res, x) \
  1860. { \
  1861. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1862. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1863. } \
  1864. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1865. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1866. } \
  1867. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1868. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1869. } \
  1870. res = vec_extract(x[0], 0) + \
  1871. vec_extract(x[0], 1) + \
  1872. vec_extract(x[0], 2) + \
  1873. vec_extract(x[0], 3); \
  1874. }
  1875. #define GGML_F32_VEC GGML_F32x4
  1876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1884. // F16 POWER9
  1885. #define GGML_F16_STEP GGML_F32_STEP
  1886. #define GGML_F16_EPR GGML_F32_EPR
  1887. #define GGML_F16_VEC GGML_F32x4
  1888. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1889. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1890. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1891. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1892. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1893. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1894. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1895. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1896. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1897. #define GGML_F16_VEC_STORE(p, r, i) \
  1898. if (i & 0x1) \
  1899. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1900. r[i - GGML_ENDIAN_BYTE(0)]), \
  1901. 0, p - GGML_F16_EPR)
  1902. #elif defined(__wasm_simd128__)
  1903. #define GGML_SIMD
  1904. // F32 WASM
  1905. #define GGML_F32_STEP 16
  1906. #define GGML_F32_EPR 4
  1907. #define GGML_F32x4 v128_t
  1908. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1909. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1910. #define GGML_F32x4_LOAD wasm_v128_load
  1911. #define GGML_F32x4_STORE wasm_v128_store
  1912. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1913. #define GGML_F32x4_ADD wasm_f32x4_add
  1914. #define GGML_F32x4_MUL wasm_f32x4_mul
  1915. #define GGML_F32x4_REDUCE(res, x) \
  1916. { \
  1917. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1918. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1919. } \
  1920. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1921. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1922. } \
  1923. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1924. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1925. } \
  1926. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1927. wasm_f32x4_extract_lane(x[0], 1) + \
  1928. wasm_f32x4_extract_lane(x[0], 2) + \
  1929. wasm_f32x4_extract_lane(x[0], 3); \
  1930. }
  1931. #define GGML_F32_VEC GGML_F32x4
  1932. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1933. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1934. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1935. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1936. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1937. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1938. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1939. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1940. // F16 WASM
  1941. #define GGML_F16_STEP 16
  1942. #define GGML_F16_EPR 4
  1943. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1944. float tmp[4];
  1945. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1946. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1947. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1948. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1949. return wasm_v128_load(tmp);
  1950. }
  1951. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1952. float tmp[4];
  1953. wasm_v128_store(tmp, x);
  1954. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1955. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1956. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1957. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1958. }
  1959. #define GGML_F16x4 v128_t
  1960. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1961. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1962. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1963. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1964. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1965. #define GGML_F16x4_ADD wasm_f32x4_add
  1966. #define GGML_F16x4_MUL wasm_f32x4_mul
  1967. #define GGML_F16x4_REDUCE(res, x) \
  1968. { \
  1969. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1970. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1971. } \
  1972. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1973. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1974. } \
  1975. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1976. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1977. } \
  1978. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1979. wasm_f32x4_extract_lane(x[0], 1) + \
  1980. wasm_f32x4_extract_lane(x[0], 2) + \
  1981. wasm_f32x4_extract_lane(x[0], 3); \
  1982. }
  1983. #define GGML_F16_VEC GGML_F16x4
  1984. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1985. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1986. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1987. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1988. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1989. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1990. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1991. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1992. #elif defined(__SSE3__)
  1993. #define GGML_SIMD
  1994. // F32 SSE
  1995. #define GGML_F32_STEP 32
  1996. #define GGML_F32_EPR 4
  1997. #define GGML_F32x4 __m128
  1998. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1999. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2000. #define GGML_F32x4_LOAD _mm_loadu_ps
  2001. #define GGML_F32x4_STORE _mm_storeu_ps
  2002. #if defined(__FMA__)
  2003. // TODO: Does this work?
  2004. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2005. #else
  2006. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2007. #endif
  2008. #define GGML_F32x4_ADD _mm_add_ps
  2009. #define GGML_F32x4_MUL _mm_mul_ps
  2010. #define GGML_F32x4_REDUCE(res, x) \
  2011. { \
  2012. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2013. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2014. } \
  2015. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2016. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2017. } \
  2018. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2019. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2020. } \
  2021. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2022. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2023. }
  2024. // TODO: is this optimal ?
  2025. #define GGML_F32_VEC GGML_F32x4
  2026. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2027. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2028. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2029. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2030. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2031. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2032. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2033. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2034. // F16 SSE
  2035. #define GGML_F16_STEP 32
  2036. #define GGML_F16_EPR 4
  2037. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2038. float tmp[4];
  2039. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2040. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2041. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2042. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2043. return _mm_loadu_ps(tmp);
  2044. }
  2045. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2046. float arr[4];
  2047. _mm_storeu_ps(arr, y);
  2048. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2049. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2050. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2051. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2052. }
  2053. #define GGML_F32Cx4 __m128
  2054. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2055. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2056. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2057. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2058. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2059. #define GGML_F32Cx4_ADD _mm_add_ps
  2060. #define GGML_F32Cx4_MUL _mm_mul_ps
  2061. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2062. #define GGML_F16_VEC GGML_F32Cx4
  2063. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2064. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2067. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2068. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2069. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2070. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2071. #endif
  2072. // GGML_F32_ARR / GGML_F16_ARR
  2073. // number of registers to use per step
  2074. #ifdef GGML_SIMD
  2075. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2076. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2077. #endif
  2078. //
  2079. // fundamental operations
  2080. //
  2081. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2082. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2083. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2084. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2085. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2086. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2087. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2088. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2089. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2090. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2091. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2092. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2093. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2094. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2095. #ifdef GGML_SIMD
  2096. float sumf = 0.0f;
  2097. const int np = (n & ~(GGML_F32_STEP - 1));
  2098. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2099. GGML_F32_VEC ax[GGML_F32_ARR];
  2100. GGML_F32_VEC ay[GGML_F32_ARR];
  2101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2102. for (int j = 0; j < GGML_F32_ARR; j++) {
  2103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2105. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2106. }
  2107. }
  2108. // reduce sum0..sum3 to sum0
  2109. GGML_F32_VEC_REDUCE(sumf, sum);
  2110. // leftovers
  2111. for (int i = np; i < n; ++i) {
  2112. sumf += x[i]*y[i];
  2113. }
  2114. #else
  2115. // scalar
  2116. ggml_float sumf = 0.0;
  2117. for (int i = 0; i < n; ++i) {
  2118. sumf += (ggml_float)(x[i]*y[i]);
  2119. }
  2120. #endif
  2121. *s = sumf;
  2122. }
  2123. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2124. ggml_float sumf = 0.0;
  2125. #if defined(GGML_SIMD)
  2126. const int np = (n & ~(GGML_F16_STEP - 1));
  2127. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2128. GGML_F16_VEC ax[GGML_F16_ARR];
  2129. GGML_F16_VEC ay[GGML_F16_ARR];
  2130. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2131. for (int j = 0; j < GGML_F16_ARR; j++) {
  2132. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2133. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2134. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2135. }
  2136. }
  2137. // reduce sum0..sum3 to sum0
  2138. GGML_F16_VEC_REDUCE(sumf, sum);
  2139. // leftovers
  2140. for (int i = np; i < n; ++i) {
  2141. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2142. }
  2143. #else
  2144. for (int i = 0; i < n; ++i) {
  2145. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2146. }
  2147. #endif
  2148. *s = sumf;
  2149. }
  2150. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2151. const int nb = n / QK8_0;
  2152. assert(n % QK8_0 == 0);
  2153. assert(nb % 2 == 0);
  2154. const block_q4_0 * restrict x = vx;
  2155. const block_q8_0 * restrict y = vy;
  2156. #if defined(__ARM_NEON)
  2157. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2158. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2159. for (int i = 0; i < nb; i += 2) {
  2160. const block_q4_0 * restrict x0 = &x[i + 0];
  2161. const block_q4_0 * restrict x1 = &x[i + 1];
  2162. const block_q8_0 * restrict y0 = &y[i + 0];
  2163. const block_q8_0 * restrict y1 = &y[i + 1];
  2164. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2165. const int8x16_t s8b = vdupq_n_s8(0x8);
  2166. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2167. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2168. // 4-bit -> 8-bit
  2169. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2170. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2171. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2172. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2173. // sub 8
  2174. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2175. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2176. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2177. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2178. // interleave
  2179. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2180. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2181. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2182. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2183. // load y
  2184. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2185. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2186. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2187. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2188. #if defined(__ARM_FEATURE_DOTPROD)
  2189. // dot product into int32x4_t
  2190. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2191. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2192. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2193. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2194. #else
  2195. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2196. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2197. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2198. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2199. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2200. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2201. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2202. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2203. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2204. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2205. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2206. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2207. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2208. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2209. #endif
  2210. }
  2211. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2212. #elif defined(__AVX2__)
  2213. // Initialize accumulator with zeros
  2214. __m256 acc = _mm256_setzero_ps();
  2215. // Main loop
  2216. for (int i = 0; i < nb; ++i) {
  2217. /* Compute combined scale for the block */
  2218. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2219. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2220. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2221. const __m256i off = _mm256_set1_epi8( 8 );
  2222. bx = _mm256_sub_epi8( bx, off );
  2223. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2224. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2225. /* Multiply q with scale and accumulate */
  2226. acc = _mm256_fmadd_ps( d, q, acc );
  2227. }
  2228. *s = hsum_float_8(acc);
  2229. #elif defined(__AVX__)
  2230. // Initialize accumulator with zeros
  2231. __m256 acc = _mm256_setzero_ps();
  2232. // Main loop
  2233. for (int i = 0; i < nb; ++i) {
  2234. // Compute combined scale for the block
  2235. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2236. __m128i i32[2];
  2237. for (int j = 0; j < 2; ++j) {
  2238. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2239. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2240. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2241. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2242. const __m128i off = _mm_set1_epi8( 8 );
  2243. bx = _mm_sub_epi8( bx, off );
  2244. // Get absolute values of x vectors
  2245. const __m128i ax = _mm_sign_epi8(bx, bx);
  2246. // Sign the values of the y vectors
  2247. const __m128i sy = _mm_sign_epi8(by, bx);
  2248. // Perform multiplication and create 16-bit values
  2249. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2250. const __m128i ones = _mm_set1_epi16(1);
  2251. i32[j] = _mm_madd_epi16(ones, dot);
  2252. }
  2253. // Convert int32_t to float
  2254. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2255. // Apply the scale, and accumulate
  2256. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2257. }
  2258. *s = hsum_float_8(acc);
  2259. #else
  2260. // scalar
  2261. float sumf = 0.0;
  2262. for (int i = 0; i < nb; i++) {
  2263. const float d0 = x[i].d;
  2264. const float d1 = y[i].d;
  2265. const uint8_t * restrict p0 = x[i].qs;
  2266. const int8_t * restrict p1 = y[i].qs;
  2267. int sumi = 0;
  2268. for (int j = 0; j < QK8_0/2; j++) {
  2269. const uint8_t v0 = p0[j];
  2270. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2271. const int i1 = (int8_t) (v0 >> 4) - 8;
  2272. const int i2 = p1[2*j + 0];
  2273. const int i3 = p1[2*j + 1];
  2274. sumi += i0*i2 + i1*i3;
  2275. }
  2276. sumf += d0*d1*sumi;
  2277. }
  2278. *s = sumf;
  2279. #endif
  2280. }
  2281. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2282. const int nb = n / QK8_1;
  2283. assert(n % QK8_1 == 0);
  2284. assert(nb % 2 == 0);
  2285. const block_q4_1 * restrict x = vx;
  2286. const block_q8_1 * restrict y = vy;
  2287. // TODO: add AVX / WASM SIMD / etc
  2288. #if defined(__ARM_NEON)
  2289. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2290. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2291. float summs = 0;
  2292. for (int i = 0; i < nb; i += 2) {
  2293. const block_q4_1 * restrict x0 = &x[i + 0];
  2294. const block_q4_1 * restrict x1 = &x[i + 1];
  2295. const block_q8_1 * restrict y0 = &y[i + 0];
  2296. const block_q8_1 * restrict y1 = &y[i + 1];
  2297. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2298. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2299. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2300. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2301. // 4-bit -> 8-bit
  2302. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2303. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2304. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2305. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2306. // interleave
  2307. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2308. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2309. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2310. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2311. // load y
  2312. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2313. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2314. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2315. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2316. #if defined(__ARM_FEATURE_DOTPROD)
  2317. // dot product into int32x4_t
  2318. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2319. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2320. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2321. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2322. #else
  2323. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2324. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2325. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2326. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2327. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2328. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2329. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2330. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2331. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2332. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2333. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2334. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2335. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2336. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2337. #endif
  2338. }
  2339. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2340. #elif defined(__AVX2__)
  2341. // Initialize accumulator with zeros
  2342. __m256 acc = _mm256_setzero_ps();
  2343. float summs = 0;
  2344. // Main loop
  2345. for (int i = 0; i < nb; ++i) {
  2346. const float * d0 = &x[i].d;
  2347. const float * d1 = &y[i].d;
  2348. summs += x[i].m * (y[i].s0 + y[i].s1);
  2349. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2350. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2351. // Compute combined scales
  2352. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2353. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2354. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2355. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2356. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2357. // Accumulate d0*d1*x*y
  2358. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2359. }
  2360. *s = hsum_float_8(acc) + summs;
  2361. #else
  2362. // scalar
  2363. float sumf = 0.0;
  2364. for (int i = 0; i < nb; i++) {
  2365. const float d0 = x[i].d;
  2366. const float m0 = x[i].m;
  2367. const float d1 = y[i].d;
  2368. const uint8_t * restrict p0 = x[i].qs;
  2369. const int8_t * restrict p1 = y[i].qs;
  2370. // TODO: this is very slow ..
  2371. for (int j = 0; j < QK8_1/2; j++) {
  2372. const uint8_t v0 = p0[j];
  2373. const float f0 = d0*(v0 & 0x0F) + m0;
  2374. const float f1 = d0*(v0 >> 4) + m0;
  2375. const float f2 = d1*p1[2*j + 0];
  2376. const float f3 = d1*p1[2*j + 1];
  2377. sumf += f0*f2 + f1*f3;
  2378. }
  2379. }
  2380. *s = sumf;
  2381. #endif
  2382. }
  2383. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2384. const int nb = n / QK8_0;
  2385. assert(n % QK8_0 == 0);
  2386. assert(nb % 2 == 0);
  2387. assert(QK8_0 == 2*QK4_2);
  2388. const block_q4_2 * restrict x = vx;
  2389. const block_q8_0 * restrict y = vy;
  2390. #if defined(__ARM_NEON)
  2391. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2392. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2393. for (int i = 0; i < nb; i += 2) {
  2394. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2395. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2396. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2397. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2398. const block_q8_0 * restrict y0 = &y[i + 0];
  2399. const block_q8_0 * restrict y1 = &y[i + 1];
  2400. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2401. const int8x16_t s8b = vdupq_n_s8(0x8);
  2402. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2403. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2404. // 4-bit -> 8-bit
  2405. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2406. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2407. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2408. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2409. // sub 8
  2410. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2411. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2412. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2413. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2414. // interleave
  2415. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2416. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2417. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2418. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2419. // load y
  2420. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2421. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2422. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2423. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2424. #if defined(__ARM_FEATURE_DOTPROD)
  2425. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2426. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2427. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2428. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2429. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2430. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2431. #else
  2432. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2433. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2434. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2435. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2436. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2437. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2438. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2439. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2440. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2441. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2442. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2443. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2444. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2445. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2446. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2447. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2448. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2449. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2450. #endif
  2451. }
  2452. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2453. #elif defined(__AVX2__)
  2454. // Initialize accumulator with zeros
  2455. __m256 acc = _mm256_setzero_ps();
  2456. // Main loop
  2457. for (int i = 0; i < nb; i++) {
  2458. /* Compute combined scale for the block */
  2459. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2460. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2461. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2462. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2463. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2464. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2465. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2466. const __m256i off = _mm256_set1_epi8(8);
  2467. bx = _mm256_sub_epi8(bx, off);
  2468. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2469. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2470. /* Multiply q with scale and accumulate */
  2471. acc = _mm256_fmadd_ps(d, q, acc);
  2472. }
  2473. *s = hsum_float_8(acc);
  2474. #else
  2475. // scalar
  2476. float sumf = 0.0;
  2477. for (int i = 0; i < nb; i++) {
  2478. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2479. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2480. const int8_t * restrict y0 = y[i].qs;
  2481. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2482. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2483. int sumi_0 = 0;
  2484. int sumi_1 = 0;
  2485. for (int j = 0; j < QK8_0/4; j++) {
  2486. const uint8_t v0 = x0[j];
  2487. const uint8_t v1 = x1[j];
  2488. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2489. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2490. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2491. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2492. const int i2_0 = y0[2*j + 0];
  2493. const int i3_0 = y0[2*j + 1];
  2494. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2495. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2496. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2497. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2498. }
  2499. sumf += (d0 * y[i].d) * sumi_0;
  2500. sumf += (d1 * y[i].d) * sumi_1;
  2501. }
  2502. *s = sumf;
  2503. #endif
  2504. }
  2505. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2506. const int nb = n / QK8_0;
  2507. assert(n % QK8_0 == 0);
  2508. assert(nb % 2 == 0);
  2509. assert(QK8_0 == QK5_0);
  2510. const block_q5_0 * restrict x = vx;
  2511. const block_q8_0 * restrict y = vy;
  2512. #if defined(__ARM_NEON)
  2513. float32x4_t sumv = vdupq_n_f32(0.0f);
  2514. uint64_t tmp[4];
  2515. for (int i = 0; i < nb; ++i) {
  2516. const block_q5_0 * restrict x0 = &x[i];
  2517. const block_q8_0 * restrict y0 = &y[i];
  2518. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2519. const int8x16_t s16b = vdupq_n_s8(0x10);
  2520. // extract the 5th bit
  2521. uint32_t qh;
  2522. memcpy(&qh, x0->qh, sizeof(qh));
  2523. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2524. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2525. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2526. tmp[3] = table_b2b_u[(qh >> 24) ];
  2527. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2528. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2529. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2530. // 4-bit -> 8-bit
  2531. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2532. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2533. // interleave
  2534. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2535. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2536. // add high bit and sub 16
  2537. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2538. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2539. // load y
  2540. const int8x16_t v1l = vld1q_s8(y0->qs);
  2541. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2542. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2543. #if defined(__ARM_FEATURE_DOTPROD)
  2544. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2545. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2546. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2547. #else
  2548. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2549. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2550. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2551. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2552. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2553. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2554. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2555. #endif
  2556. }
  2557. *s = vaddvq_f32(sumv);
  2558. #elif defined(__AVX2__)
  2559. // Initialize accumulator with zeros
  2560. __m256 acc = _mm256_setzero_ps();
  2561. // Main loop
  2562. for (int i = 0; i < nb; i++) {
  2563. /* Compute combined scale for the block */
  2564. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2565. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2566. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2567. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2568. bx = _mm256_or_si256(bx, bxhi);
  2569. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2570. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2571. /* Multiply q with scale and accumulate */
  2572. acc = _mm256_fmadd_ps(d, q, acc);
  2573. }
  2574. *s = hsum_float_8(acc);
  2575. #else
  2576. // scalar
  2577. float sumf = 0.0;
  2578. for (int i = 0; i < nb; i++) {
  2579. const uint8_t * restrict x0 = x[i].qs;
  2580. const int8_t * restrict y0 = y[i].qs;
  2581. uint32_t qh;
  2582. memcpy(&qh, x[i].qh, sizeof(qh));
  2583. const float d = GGML_FP16_TO_FP32(x[i].d);
  2584. int sxy = 0;
  2585. for (int j = 0; j < QK8_0/2; j++) {
  2586. const uint8_t v0 = x0[j];
  2587. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2588. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2589. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2590. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2591. const int y0_0 = y0[2*j + 0];
  2592. const int y1_0 = y0[2*j + 1];
  2593. sxy += x0_0*y0_0 + x1_0*y1_0;
  2594. }
  2595. sumf += (d*sxy)*y[i].d;
  2596. }
  2597. *s = sumf;
  2598. #endif
  2599. }
  2600. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2601. const int nb = n / QK8_1;
  2602. assert(n % QK8_1 == 0);
  2603. assert(nb % 2 == 0);
  2604. assert(QK8_1 == QK5_1);
  2605. const block_q5_1 * restrict x = vx;
  2606. const block_q8_1 * restrict y = vy;
  2607. #if defined(__ARM_NEON)
  2608. float32x4_t sumv = vdupq_n_f32(0.0f);
  2609. float summs = 0.0f;
  2610. uint64_t tmp[4];
  2611. for (int i = 0; i < nb; ++i) {
  2612. const block_q5_1 * restrict x0 = &x[i];
  2613. const block_q8_1 * restrict y0 = &y[i];
  2614. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2615. // extract the 5th bit
  2616. uint32_t qh;
  2617. memcpy(&qh, x0->qh, sizeof(qh));
  2618. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2619. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2620. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2621. tmp[3] = table_b2b_u[(qh >> 24) ];
  2622. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2623. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2624. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2625. // 4-bit -> 8-bit
  2626. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2627. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2628. // interleave
  2629. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2630. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2631. // add
  2632. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2633. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2634. // load y
  2635. const int8x16_t v1l = vld1q_s8(y0->qs);
  2636. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2637. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2638. #if defined(__ARM_FEATURE_DOTPROD)
  2639. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2640. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2641. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2642. #else
  2643. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2644. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2645. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2646. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2647. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2648. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2649. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2650. #endif
  2651. }
  2652. *s = vaddvq_f32(sumv) + summs;
  2653. #elif defined(__AVX2__)
  2654. // Initialize accumulator with zeros
  2655. __m256 acc = _mm256_setzero_ps();
  2656. float summs = 0.0f;
  2657. // Main loop
  2658. for (int i = 0; i < nb; i++) {
  2659. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2660. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2661. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2662. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2663. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2664. bx = _mm256_or_si256(bx, bxhi);
  2665. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2666. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2667. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2668. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2669. }
  2670. *s = hsum_float_8(acc) + summs;
  2671. #else
  2672. float sumf = 0.0;
  2673. for (int i = 0; i < nb; i++) {
  2674. const uint8_t * restrict x0 = x[i].qs;
  2675. const int8_t * restrict y0 = y[i].qs;
  2676. uint32_t qh;
  2677. memcpy(&qh, x[i].qh, sizeof(qh));
  2678. const float d = GGML_FP16_TO_FP32(x[i].d);
  2679. const float m = GGML_FP16_TO_FP32(x[i].m);
  2680. int sxy = 0;
  2681. for (int j = 0; j < QK8_1/2; j++) {
  2682. const uint8_t v0 = x0[j];
  2683. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2684. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2685. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2686. const int x1_0 = (v0 >> 4) | x1_0h;
  2687. const int y0_0 = y0[2*j + 0];
  2688. const int y1_0 = y0[2*j + 1];
  2689. sxy += x0_0*y0_0 + x1_0*y1_0;
  2690. }
  2691. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2692. }
  2693. *s = sumf;
  2694. #endif
  2695. }
  2696. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2697. const int nb = n / QK8_0;
  2698. assert(n % QK8_0 == 0);
  2699. assert(nb % 2 == 0);
  2700. assert(QK8_0 == QK8_0);
  2701. const block_q8_0 * restrict x = vx;
  2702. const block_q8_0 * restrict y = vy;
  2703. #if defined(__ARM_NEON)
  2704. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2705. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2706. for (int i = 0; i < nb; i += 2) {
  2707. const block_q8_0 * restrict x0 = &x[i + 0];
  2708. const block_q8_0 * restrict x1 = &x[i + 1];
  2709. const block_q8_0 * restrict y0 = &y[i + 0];
  2710. const block_q8_0 * restrict y1 = &y[i + 1];
  2711. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2712. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2713. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2714. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2715. // load y
  2716. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2717. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2718. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2719. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2720. #if defined(__ARM_FEATURE_DOTPROD)
  2721. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2722. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2723. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2724. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2725. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2726. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2727. #else
  2728. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2729. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2730. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2731. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2732. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2733. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2734. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2735. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2736. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2737. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2738. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2739. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2740. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2741. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2742. #endif
  2743. }
  2744. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2745. #elif defined(__AVX2__)
  2746. // Initialize accumulator with zeros
  2747. __m256 acc = _mm256_setzero_ps();
  2748. // Main loop
  2749. for (int i = 0; i < nb; ++i) {
  2750. // Compute combined scale for the block
  2751. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2752. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2753. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2754. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2755. // Multiply q with scale and accumulate
  2756. acc = _mm256_fmadd_ps( d, q, acc );
  2757. }
  2758. *s = hsum_float_8(acc);
  2759. #else
  2760. // scalar
  2761. float sumf = 0.0;
  2762. for (int i = 0; i < nb; i++) {
  2763. const int8_t * restrict x0 = x[i].qs;
  2764. const int8_t * restrict y0 = y[i].qs;
  2765. int sumi = 0;
  2766. for (int j = 0; j < QK8_0; j++) {
  2767. const int v0 = x0[j];
  2768. const int v1 = y0[j];
  2769. sumi += v0*v1;
  2770. }
  2771. sumf += (x[i].d*y[i].d)*sumi;
  2772. }
  2773. *s = sumf;
  2774. #endif
  2775. }
  2776. // compute GGML_VEC_DOT_UNROLL dot products at once
  2777. // xs - x row stride in bytes
  2778. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2779. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2780. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2781. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2782. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2783. }
  2784. #if defined(GGML_SIMD)
  2785. const int np = (n & ~(GGML_F16_STEP - 1));
  2786. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2787. GGML_F16_VEC ax[GGML_F16_ARR];
  2788. GGML_F16_VEC ay[GGML_F16_ARR];
  2789. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2790. for (int j = 0; j < GGML_F16_ARR; j++) {
  2791. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2792. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2793. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2794. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2795. }
  2796. }
  2797. }
  2798. // reduce sum0..sum3 to sum0
  2799. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2800. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2801. }
  2802. // leftovers
  2803. for (int i = np; i < n; ++i) {
  2804. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2805. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2806. }
  2807. }
  2808. #else
  2809. for (int i = 0; i < n; ++i) {
  2810. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2811. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2812. }
  2813. }
  2814. #endif
  2815. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2816. s[i] = sumf[i];
  2817. }
  2818. }
  2819. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2820. #if defined(GGML_SIMD)
  2821. const int np = (n & ~(GGML_F32_STEP - 1));
  2822. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2823. GGML_F32_VEC ax[GGML_F32_ARR];
  2824. GGML_F32_VEC ay[GGML_F32_ARR];
  2825. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2826. for (int j = 0; j < GGML_F32_ARR; j++) {
  2827. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2828. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2829. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2830. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2831. }
  2832. }
  2833. // leftovers
  2834. for (int i = np; i < n; ++i) {
  2835. y[i] += x[i]*v;
  2836. }
  2837. #else
  2838. // scalar
  2839. for (int i = 0; i < n; ++i) {
  2840. y[i] += x[i]*v;
  2841. }
  2842. #endif
  2843. }
  2844. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2845. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2846. #if defined(GGML_SIMD)
  2847. const int np = (n & ~(GGML_F32_STEP - 1));
  2848. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2849. GGML_F32_VEC ay[GGML_F32_ARR];
  2850. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2851. for (int j = 0; j < GGML_F32_ARR; j++) {
  2852. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2853. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2854. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2855. }
  2856. }
  2857. // leftovers
  2858. for (int i = np; i < n; ++i) {
  2859. y[i] *= v;
  2860. }
  2861. #else
  2862. // scalar
  2863. for (int i = 0; i < n; ++i) {
  2864. y[i] *= v;
  2865. }
  2866. #endif
  2867. }
  2868. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2869. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2870. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2871. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2872. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2873. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2874. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2875. static const float GELU_COEF_A = 0.044715f;
  2876. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2877. inline static float ggml_gelu_f32(float x) {
  2878. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2879. }
  2880. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2881. const uint16_t * i16 = (const uint16_t *) x;
  2882. for (int i = 0; i < n; ++i) {
  2883. y[i] = table_gelu_f16[i16[i]];
  2884. }
  2885. }
  2886. #ifdef GGML_GELU_FP16
  2887. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2888. uint16_t t;
  2889. for (int i = 0; i < n; ++i) {
  2890. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2891. memcpy(&t, &fp16, sizeof(uint16_t));
  2892. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2893. }
  2894. }
  2895. #else
  2896. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2897. for (int i = 0; i < n; ++i) {
  2898. y[i] = ggml_gelu_f32(x[i]);
  2899. }
  2900. }
  2901. #endif
  2902. // Sigmoid Linear Unit (SiLU) function
  2903. inline static float ggml_silu_f32(float x) {
  2904. return x/(1.0f + expf(-x));
  2905. }
  2906. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2907. const uint16_t * i16 = (const uint16_t *) x;
  2908. for (int i = 0; i < n; ++i) {
  2909. y[i] = table_silu_f16[i16[i]];
  2910. }
  2911. }
  2912. #ifdef GGML_SILU_FP16
  2913. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2914. uint16_t t;
  2915. for (int i = 0; i < n; ++i) {
  2916. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2917. memcpy(&t, &fp16, sizeof(uint16_t));
  2918. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2919. }
  2920. }
  2921. #else
  2922. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2923. for (int i = 0; i < n; ++i) {
  2924. y[i] = ggml_silu_f32(x[i]);
  2925. }
  2926. }
  2927. #endif
  2928. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2929. #ifndef GGML_USE_ACCELERATE
  2930. ggml_float sum = 0.0;
  2931. for (int i = 0; i < n; ++i) {
  2932. sum += (ggml_float)x[i];
  2933. }
  2934. *s = sum;
  2935. #else
  2936. vDSP_sve(x, 1, s, n);
  2937. #endif
  2938. }
  2939. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2940. ggml_float sum = 0.0;
  2941. for (int i = 0; i < n; ++i) {
  2942. sum += (ggml_float)x[i];
  2943. }
  2944. *s = sum;
  2945. }
  2946. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2947. #ifndef GGML_USE_ACCELERATE
  2948. float max = -INFINITY;
  2949. for (int i = 0; i < n; ++i) {
  2950. max = MAX(max, x[i]);
  2951. }
  2952. *s = max;
  2953. #else
  2954. vDSP_maxv(x, 1, s, n);
  2955. #endif
  2956. }
  2957. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2958. ggml_vec_norm_f32(n, s, x);
  2959. *s = 1.f/(*s);
  2960. }
  2961. //
  2962. // logging
  2963. //
  2964. #if (GGML_DEBUG >= 1)
  2965. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2966. #else
  2967. #define GGML_PRINT_DEBUG(...)
  2968. #endif
  2969. #if (GGML_DEBUG >= 5)
  2970. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2971. #else
  2972. #define GGML_PRINT_DEBUG_5(...)
  2973. #endif
  2974. #if (GGML_DEBUG >= 10)
  2975. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2976. #else
  2977. #define GGML_PRINT_DEBUG_10(...)
  2978. #endif
  2979. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2980. //
  2981. // data types
  2982. //
  2983. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2984. [GGML_TYPE_F32] = 1,
  2985. [GGML_TYPE_F16] = 1,
  2986. [GGML_TYPE_Q4_0] = QK4_0,
  2987. [GGML_TYPE_Q4_1] = QK4_1,
  2988. [GGML_TYPE_Q4_2] = QK4_2,
  2989. [GGML_TYPE_Q5_0] = QK5_0,
  2990. [GGML_TYPE_Q5_1] = QK5_1,
  2991. [GGML_TYPE_Q8_0] = QK8_0,
  2992. [GGML_TYPE_Q8_1] = QK8_1,
  2993. [GGML_TYPE_I8] = 1,
  2994. [GGML_TYPE_I16] = 1,
  2995. [GGML_TYPE_I32] = 1,
  2996. };
  2997. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2998. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2999. [GGML_TYPE_F32] = sizeof(float),
  3000. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3001. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3002. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3003. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3004. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3005. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3006. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3007. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3008. [GGML_TYPE_I8] = sizeof(int8_t),
  3009. [GGML_TYPE_I16] = sizeof(int16_t),
  3010. [GGML_TYPE_I32] = sizeof(int32_t),
  3011. };
  3012. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3013. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3014. [GGML_TYPE_F32] = "f32",
  3015. [GGML_TYPE_F16] = "f16",
  3016. [GGML_TYPE_Q4_0] = "q4_0",
  3017. [GGML_TYPE_Q4_1] = "q4_1",
  3018. [GGML_TYPE_Q4_2] = "q4_2",
  3019. [GGML_TYPE_Q5_0] = "q5_0",
  3020. [GGML_TYPE_Q5_1] = "q5_1",
  3021. [GGML_TYPE_Q8_0] = "q8_0",
  3022. [GGML_TYPE_Q8_1] = "q8_1",
  3023. [GGML_TYPE_I8] = "i8",
  3024. [GGML_TYPE_I16] = "i16",
  3025. [GGML_TYPE_I32] = "i32",
  3026. };
  3027. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3028. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3029. [GGML_TYPE_F32] = false,
  3030. [GGML_TYPE_F16] = false,
  3031. [GGML_TYPE_Q4_0] = true,
  3032. [GGML_TYPE_Q4_1] = true,
  3033. [GGML_TYPE_Q4_2] = true,
  3034. [GGML_TYPE_Q5_0] = true,
  3035. [GGML_TYPE_Q5_1] = true,
  3036. [GGML_TYPE_Q8_0] = true,
  3037. [GGML_TYPE_Q8_1] = true,
  3038. [GGML_TYPE_I8] = false,
  3039. [GGML_TYPE_I16] = false,
  3040. [GGML_TYPE_I32] = false,
  3041. };
  3042. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3043. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3044. "NONE",
  3045. "DUP",
  3046. "ADD",
  3047. "SUB",
  3048. "MUL",
  3049. "DIV",
  3050. "SQR",
  3051. "SQRT",
  3052. "SUM",
  3053. "MEAN",
  3054. "REPEAT",
  3055. "ABS",
  3056. "SGN",
  3057. "NEG",
  3058. "STEP",
  3059. "RELU",
  3060. "GELU",
  3061. "SILU",
  3062. "NORM",
  3063. "RMS_NORM",
  3064. "MUL_MAT",
  3065. "SCALE",
  3066. "CPY",
  3067. "CONT",
  3068. "RESHAPE",
  3069. "VIEW",
  3070. "PERMUTE",
  3071. "TRANSPOSE",
  3072. "GET_ROWS",
  3073. "DIAG_MASK_INF",
  3074. "SOFT_MAX",
  3075. "ROPE",
  3076. "ALIBI",
  3077. "CONV_1D_1S",
  3078. "CONV_1D_2S",
  3079. "FLASH_ATTN",
  3080. "FLASH_FF",
  3081. "MAP_UNARY",
  3082. "MAP_BINARY",
  3083. };
  3084. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3085. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3086. "none",
  3087. "x",
  3088. "x+y",
  3089. "x-y",
  3090. "x*y",
  3091. "x/y",
  3092. "x^2",
  3093. "√x",
  3094. "Σx",
  3095. "Σx/n",
  3096. "repeat(x)",
  3097. "abs(x)",
  3098. "sgn(x)",
  3099. "-x",
  3100. "step(x)",
  3101. "relu(x)",
  3102. "gelu(x)",
  3103. "silu(x)",
  3104. "norm(x)",
  3105. "rms_norm(x)",
  3106. "X*Y",
  3107. "x*v",
  3108. "x-\\>y",
  3109. "cont(x)",
  3110. "reshape(x)",
  3111. "view(x)",
  3112. "permute(x)",
  3113. "transpose(x)",
  3114. "get_rows(x)",
  3115. "diag_mask_inf(x)",
  3116. "soft_max(x)",
  3117. "rope(x)",
  3118. "alibi(x)",
  3119. "conv_1d_1s(x)",
  3120. "conv_1d_2s(x)",
  3121. "flash_attn(x)",
  3122. "flash_ff(x)",
  3123. "f(x)",
  3124. "f(x,y)",
  3125. };
  3126. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3127. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3128. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3129. //
  3130. // ggml context
  3131. //
  3132. struct ggml_context {
  3133. size_t mem_size;
  3134. void * mem_buffer;
  3135. bool mem_buffer_owned;
  3136. bool no_alloc;
  3137. int n_objects;
  3138. struct ggml_object * objects_begin;
  3139. struct ggml_object * objects_end;
  3140. struct ggml_scratch scratch;
  3141. struct ggml_scratch scratch_save;
  3142. };
  3143. struct ggml_context_container {
  3144. bool used;
  3145. struct ggml_context context;
  3146. };
  3147. //
  3148. // compute types
  3149. //
  3150. enum ggml_task_type {
  3151. GGML_TASK_INIT = 0,
  3152. GGML_TASK_COMPUTE,
  3153. GGML_TASK_FINALIZE,
  3154. };
  3155. struct ggml_compute_params {
  3156. enum ggml_task_type type;
  3157. int ith, nth;
  3158. // work buffer for all threads
  3159. size_t wsize;
  3160. void * wdata;
  3161. };
  3162. //
  3163. // ggml state
  3164. //
  3165. struct ggml_state {
  3166. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3167. };
  3168. // global state
  3169. static struct ggml_state g_state;
  3170. static atomic_int g_state_barrier = 0;
  3171. // barrier via spin lock
  3172. inline static void ggml_critical_section_start(void) {
  3173. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3174. while (processing > 0) {
  3175. // wait for other threads to finish
  3176. atomic_fetch_sub(&g_state_barrier, 1);
  3177. sched_yield(); // TODO: reconsider this
  3178. processing = atomic_fetch_add(&g_state_barrier, 1);
  3179. }
  3180. }
  3181. // TODO: make this somehow automatically executed
  3182. // some sort of "sentry" mechanism
  3183. inline static void ggml_critical_section_end(void) {
  3184. atomic_fetch_sub(&g_state_barrier, 1);
  3185. }
  3186. ////////////////////////////////////////////////////////////////////////////////
  3187. void ggml_print_object(const struct ggml_object * obj) {
  3188. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3189. obj->offs, obj->size, (const void *) obj->next);
  3190. }
  3191. void ggml_print_objects(const struct ggml_context * ctx) {
  3192. struct ggml_object * obj = ctx->objects_begin;
  3193. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3194. while (obj != NULL) {
  3195. ggml_print_object(obj);
  3196. obj = obj->next;
  3197. }
  3198. GGML_PRINT("%s: --- end ---\n", __func__);
  3199. }
  3200. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3201. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3202. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3203. }
  3204. int ggml_nrows(const struct ggml_tensor * tensor) {
  3205. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3206. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3207. }
  3208. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3209. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3210. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3211. }
  3212. int ggml_blck_size(enum ggml_type type) {
  3213. return GGML_BLCK_SIZE[type];
  3214. }
  3215. size_t ggml_type_size(enum ggml_type type) {
  3216. return GGML_TYPE_SIZE[type];
  3217. }
  3218. float ggml_type_sizef(enum ggml_type type) {
  3219. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3220. }
  3221. const char * ggml_type_name(enum ggml_type type) {
  3222. return GGML_TYPE_NAME[type];
  3223. }
  3224. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3225. return GGML_TYPE_SIZE[tensor->type];
  3226. }
  3227. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3228. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3229. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3230. }
  3231. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3232. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3233. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3234. }
  3235. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3236. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3237. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3238. }
  3239. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3240. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3241. return
  3242. (t0->ne[0] == t1->ne[0]) &&
  3243. (t0->ne[2] == t1->ne[2]) &&
  3244. (t0->ne[3] == t1->ne[3]);
  3245. }
  3246. bool ggml_is_quantized(enum ggml_type type) {
  3247. return GGML_IS_QUANTIZED[type];
  3248. }
  3249. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3250. return tensor->nb[0] > tensor->nb[1];
  3251. }
  3252. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3253. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3254. return
  3255. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3256. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3257. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3258. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3259. }
  3260. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3261. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3262. return
  3263. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3264. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3265. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3266. }
  3267. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3268. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3269. return
  3270. (t0->ne[0] == t1->ne[0] ) &&
  3271. (t0->ne[1] == t1->ne[1] ) &&
  3272. (t0->ne[2] == t1->ne[2] ) &&
  3273. (t0->ne[3] == t1->ne[3] );
  3274. }
  3275. // check if t1 can be represented as a repeatition of t0
  3276. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3277. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3278. return
  3279. (t1->ne[0]%t0->ne[0] == 0) &&
  3280. (t1->ne[1]%t0->ne[1] == 0) &&
  3281. (t1->ne[2]%t0->ne[2] == 0) &&
  3282. (t1->ne[3]%t0->ne[3] == 0);
  3283. }
  3284. static inline int ggml_up32(int n) {
  3285. return (n + 31) & ~31;
  3286. }
  3287. static inline int ggml_up64(int n) {
  3288. return (n + 63) & ~63;
  3289. }
  3290. static inline int ggml_up(int n, int m) {
  3291. // assert m is a power of 2
  3292. GGML_ASSERT((m & (m - 1)) == 0);
  3293. return (n + m - 1) & ~(m - 1);
  3294. }
  3295. // assert that pointer is aligned to GGML_MEM_ALIGN
  3296. #define ggml_assert_aligned(ptr) \
  3297. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3298. ////////////////////////////////////////////////////////////////////////////////
  3299. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3300. // make this function thread safe
  3301. ggml_critical_section_start();
  3302. static bool is_first_call = true;
  3303. if (is_first_call) {
  3304. // initialize time system (required on Windows)
  3305. ggml_time_init();
  3306. // initialize GELU, SILU and EXP F32 tables
  3307. {
  3308. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3309. ggml_fp16_t ii;
  3310. for (int i = 0; i < (1 << 16); ++i) {
  3311. uint16_t ui = i;
  3312. memcpy(&ii, &ui, sizeof(ii));
  3313. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3314. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3315. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3316. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3317. }
  3318. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3319. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3320. }
  3321. // initialize g_state
  3322. {
  3323. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3324. g_state = (struct ggml_state) {
  3325. /*.contexts =*/ { { 0 } },
  3326. };
  3327. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3328. g_state.contexts[i].used = false;
  3329. }
  3330. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3331. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3332. }
  3333. // initialize cuBLAS
  3334. #if defined(GGML_USE_CUBLAS)
  3335. ggml_init_cublas();
  3336. #elif defined(GGML_USE_CLBLAST)
  3337. ggml_cl_init();
  3338. #endif
  3339. is_first_call = false;
  3340. }
  3341. // find non-used context in g_state
  3342. struct ggml_context * ctx = NULL;
  3343. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3344. if (!g_state.contexts[i].used) {
  3345. g_state.contexts[i].used = true;
  3346. ctx = &g_state.contexts[i].context;
  3347. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3348. break;
  3349. }
  3350. }
  3351. if (ctx == NULL) {
  3352. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3353. ggml_critical_section_end();
  3354. return NULL;
  3355. }
  3356. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3357. *ctx = (struct ggml_context) {
  3358. /*.mem_size =*/ mem_size,
  3359. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3360. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3361. /*.no_alloc =*/ params.no_alloc,
  3362. /*.n_objects =*/ 0,
  3363. /*.objects_begin =*/ NULL,
  3364. /*.objects_end =*/ NULL,
  3365. /*.scratch =*/ { 0, 0, NULL, },
  3366. /*.scratch_save =*/ { 0, 0, NULL, },
  3367. };
  3368. GGML_ASSERT(ctx->mem_buffer != NULL);
  3369. ggml_assert_aligned(ctx->mem_buffer);
  3370. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3371. ggml_critical_section_end();
  3372. return ctx;
  3373. }
  3374. void ggml_free(struct ggml_context * ctx) {
  3375. // make this function thread safe
  3376. ggml_critical_section_start();
  3377. bool found = false;
  3378. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3379. if (&g_state.contexts[i].context == ctx) {
  3380. g_state.contexts[i].used = false;
  3381. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3382. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3383. if (ctx->mem_buffer_owned) {
  3384. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3385. }
  3386. found = true;
  3387. break;
  3388. }
  3389. }
  3390. if (!found) {
  3391. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3392. }
  3393. ggml_critical_section_end();
  3394. }
  3395. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3396. return ctx->objects_end->offs + ctx->objects_end->size;
  3397. }
  3398. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3399. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3400. ctx->scratch = scratch;
  3401. return result;
  3402. }
  3403. ////////////////////////////////////////////////////////////////////////////////
  3404. struct ggml_tensor * ggml_new_tensor_impl(
  3405. struct ggml_context * ctx,
  3406. enum ggml_type type,
  3407. int n_dims,
  3408. const int64_t* ne,
  3409. void* data) {
  3410. // always insert objects at the end of the context's memory pool
  3411. struct ggml_object * obj_cur = ctx->objects_end;
  3412. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3413. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3414. const size_t cur_end = cur_offs + cur_size;
  3415. size_t size_needed = 0;
  3416. if (data == NULL && !ctx->no_alloc) {
  3417. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3418. for (int i = 1; i < n_dims; i++) {
  3419. size_needed *= ne[i];
  3420. }
  3421. // align to GGML_MEM_ALIGN
  3422. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3423. }
  3424. char * const mem_buffer = ctx->mem_buffer;
  3425. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3426. if (ctx->scratch.data == NULL || data != NULL) {
  3427. size_needed += sizeof(struct ggml_tensor);
  3428. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3429. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3430. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3431. assert(false);
  3432. return NULL;
  3433. }
  3434. *obj_new = (struct ggml_object) {
  3435. .offs = cur_end + GGML_OBJECT_SIZE,
  3436. .size = size_needed,
  3437. .next = NULL,
  3438. };
  3439. } else {
  3440. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3441. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3442. assert(false);
  3443. return NULL;
  3444. }
  3445. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3446. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3447. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3448. assert(false);
  3449. return NULL;
  3450. }
  3451. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3452. *obj_new = (struct ggml_object) {
  3453. .offs = cur_end + GGML_OBJECT_SIZE,
  3454. .size = sizeof(struct ggml_tensor),
  3455. .next = NULL,
  3456. };
  3457. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3458. ctx->scratch.offs += size_needed;
  3459. }
  3460. if (obj_cur != NULL) {
  3461. obj_cur->next = obj_new;
  3462. } else {
  3463. // this is the first object in this context
  3464. ctx->objects_begin = obj_new;
  3465. }
  3466. ctx->objects_end = obj_new;
  3467. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3468. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3469. ggml_assert_aligned(result);
  3470. *result = (struct ggml_tensor) {
  3471. /*.type =*/ type,
  3472. /*.n_dims =*/ n_dims,
  3473. /*.ne =*/ { 1, 1, 1, 1 },
  3474. /*.nb =*/ { 0, 0, 0, 0 },
  3475. /*.op =*/ GGML_OP_NONE,
  3476. /*.is_param =*/ false,
  3477. /*.grad =*/ NULL,
  3478. /*.src0 =*/ NULL,
  3479. /*.src1 =*/ NULL,
  3480. /*.opt =*/ { NULL },
  3481. /*.n_tasks =*/ 0,
  3482. /*.perf_runs =*/ 0,
  3483. /*.perf_cycles =*/ 0,
  3484. /*.perf_time_us =*/ 0,
  3485. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3486. /*.pad =*/ { 0 },
  3487. };
  3488. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3489. //ggml_assert_aligned(result->data);
  3490. for (int i = 0; i < n_dims; i++) {
  3491. result->ne[i] = ne[i];
  3492. }
  3493. result->nb[0] = GGML_TYPE_SIZE[type];
  3494. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3495. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3496. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3497. }
  3498. ctx->n_objects++;
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_new_tensor(
  3502. struct ggml_context * ctx,
  3503. enum ggml_type type,
  3504. int n_dims,
  3505. const int64_t * ne) {
  3506. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3507. }
  3508. struct ggml_tensor * ggml_new_tensor_1d(
  3509. struct ggml_context * ctx,
  3510. enum ggml_type type,
  3511. int64_t ne0) {
  3512. return ggml_new_tensor(ctx, type, 1, &ne0);
  3513. }
  3514. struct ggml_tensor * ggml_new_tensor_2d(
  3515. struct ggml_context * ctx,
  3516. enum ggml_type type,
  3517. int64_t ne0,
  3518. int64_t ne1) {
  3519. const int64_t ne[2] = { ne0, ne1 };
  3520. return ggml_new_tensor(ctx, type, 2, ne);
  3521. }
  3522. struct ggml_tensor * ggml_new_tensor_3d(
  3523. struct ggml_context * ctx,
  3524. enum ggml_type type,
  3525. int64_t ne0,
  3526. int64_t ne1,
  3527. int64_t ne2) {
  3528. const int64_t ne[3] = { ne0, ne1, ne2 };
  3529. return ggml_new_tensor(ctx, type, 3, ne);
  3530. }
  3531. struct ggml_tensor * ggml_new_tensor_4d(
  3532. struct ggml_context * ctx,
  3533. enum ggml_type type,
  3534. int64_t ne0,
  3535. int64_t ne1,
  3536. int64_t ne2,
  3537. int64_t ne3) {
  3538. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3539. return ggml_new_tensor(ctx, type, 4, ne);
  3540. }
  3541. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3542. ctx->scratch_save = ctx->scratch;
  3543. ctx->scratch.data = NULL;
  3544. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3545. ctx->scratch = ctx->scratch_save;
  3546. ggml_set_i32(result, value);
  3547. return result;
  3548. }
  3549. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3550. ctx->scratch_save = ctx->scratch;
  3551. ctx->scratch.data = NULL;
  3552. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3553. ctx->scratch = ctx->scratch_save;
  3554. ggml_set_f32(result, value);
  3555. return result;
  3556. }
  3557. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3558. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3559. }
  3560. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3561. memset(tensor->data, 0, ggml_nbytes(tensor));
  3562. return tensor;
  3563. }
  3564. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3565. const int n = ggml_nrows(tensor);
  3566. const int nc = tensor->ne[0];
  3567. const size_t n1 = tensor->nb[1];
  3568. char * const data = tensor->data;
  3569. switch (tensor->type) {
  3570. case GGML_TYPE_I8:
  3571. {
  3572. assert(tensor->nb[0] == sizeof(int8_t));
  3573. for (int i = 0; i < n; i++) {
  3574. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3575. }
  3576. } break;
  3577. case GGML_TYPE_I16:
  3578. {
  3579. assert(tensor->nb[0] == sizeof(int16_t));
  3580. for (int i = 0; i < n; i++) {
  3581. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3582. }
  3583. } break;
  3584. case GGML_TYPE_I32:
  3585. {
  3586. assert(tensor->nb[0] == sizeof(int32_t));
  3587. for (int i = 0; i < n; i++) {
  3588. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3589. }
  3590. } break;
  3591. case GGML_TYPE_F16:
  3592. {
  3593. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3594. for (int i = 0; i < n; i++) {
  3595. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3596. }
  3597. } break;
  3598. case GGML_TYPE_F32:
  3599. {
  3600. assert(tensor->nb[0] == sizeof(float));
  3601. for (int i = 0; i < n; i++) {
  3602. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3603. }
  3604. } break;
  3605. default:
  3606. {
  3607. GGML_ASSERT(false);
  3608. } break;
  3609. }
  3610. return tensor;
  3611. }
  3612. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3613. const int n = ggml_nrows(tensor);
  3614. const int nc = tensor->ne[0];
  3615. const size_t n1 = tensor->nb[1];
  3616. char * const data = tensor->data;
  3617. switch (tensor->type) {
  3618. case GGML_TYPE_I8:
  3619. {
  3620. assert(tensor->nb[0] == sizeof(int8_t));
  3621. for (int i = 0; i < n; i++) {
  3622. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3623. }
  3624. } break;
  3625. case GGML_TYPE_I16:
  3626. {
  3627. assert(tensor->nb[0] == sizeof(int16_t));
  3628. for (int i = 0; i < n; i++) {
  3629. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3630. }
  3631. } break;
  3632. case GGML_TYPE_I32:
  3633. {
  3634. assert(tensor->nb[0] == sizeof(int32_t));
  3635. for (int i = 0; i < n; i++) {
  3636. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3637. }
  3638. } break;
  3639. case GGML_TYPE_F16:
  3640. {
  3641. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3642. for (int i = 0; i < n; i++) {
  3643. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3644. }
  3645. } break;
  3646. case GGML_TYPE_F32:
  3647. {
  3648. assert(tensor->nb[0] == sizeof(float));
  3649. for (int i = 0; i < n; i++) {
  3650. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3651. }
  3652. } break;
  3653. default:
  3654. {
  3655. GGML_ASSERT(false);
  3656. } break;
  3657. }
  3658. return tensor;
  3659. }
  3660. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3661. switch (tensor->type) {
  3662. case GGML_TYPE_I8:
  3663. {
  3664. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3665. return ((int8_t *)(tensor->data))[i];
  3666. } break;
  3667. case GGML_TYPE_I16:
  3668. {
  3669. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3670. return ((int16_t *)(tensor->data))[i];
  3671. } break;
  3672. case GGML_TYPE_I32:
  3673. {
  3674. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3675. return ((int32_t *)(tensor->data))[i];
  3676. } break;
  3677. case GGML_TYPE_F16:
  3678. {
  3679. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3680. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3681. } break;
  3682. case GGML_TYPE_F32:
  3683. {
  3684. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3685. return ((float *)(tensor->data))[i];
  3686. } break;
  3687. default:
  3688. {
  3689. GGML_ASSERT(false);
  3690. } break;
  3691. }
  3692. return 0.0f;
  3693. }
  3694. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3695. switch (tensor->type) {
  3696. case GGML_TYPE_I8:
  3697. {
  3698. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3699. ((int8_t *)(tensor->data))[i] = value;
  3700. } break;
  3701. case GGML_TYPE_I16:
  3702. {
  3703. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3704. ((int16_t *)(tensor->data))[i] = value;
  3705. } break;
  3706. case GGML_TYPE_I32:
  3707. {
  3708. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3709. ((int32_t *)(tensor->data))[i] = value;
  3710. } break;
  3711. case GGML_TYPE_F16:
  3712. {
  3713. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3714. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3715. } break;
  3716. case GGML_TYPE_F32:
  3717. {
  3718. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3719. ((float *)(tensor->data))[i] = value;
  3720. } break;
  3721. default:
  3722. {
  3723. GGML_ASSERT(false);
  3724. } break;
  3725. }
  3726. }
  3727. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3728. switch (tensor->type) {
  3729. case GGML_TYPE_I8:
  3730. {
  3731. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3732. return ((int8_t *)(tensor->data))[i];
  3733. } break;
  3734. case GGML_TYPE_I16:
  3735. {
  3736. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3737. return ((int16_t *)(tensor->data))[i];
  3738. } break;
  3739. case GGML_TYPE_I32:
  3740. {
  3741. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3742. return ((int32_t *)(tensor->data))[i];
  3743. } break;
  3744. case GGML_TYPE_F16:
  3745. {
  3746. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3747. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3748. } break;
  3749. case GGML_TYPE_F32:
  3750. {
  3751. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3752. return ((float *)(tensor->data))[i];
  3753. } break;
  3754. default:
  3755. {
  3756. GGML_ASSERT(false);
  3757. } break;
  3758. }
  3759. return 0.0f;
  3760. }
  3761. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3762. switch (tensor->type) {
  3763. case GGML_TYPE_I8:
  3764. {
  3765. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3766. ((int8_t *)(tensor->data))[i] = value;
  3767. } break;
  3768. case GGML_TYPE_I16:
  3769. {
  3770. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3771. ((int16_t *)(tensor->data))[i] = value;
  3772. } break;
  3773. case GGML_TYPE_I32:
  3774. {
  3775. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3776. ((int32_t *)(tensor->data))[i] = value;
  3777. } break;
  3778. case GGML_TYPE_F16:
  3779. {
  3780. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3781. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3782. } break;
  3783. case GGML_TYPE_F32:
  3784. {
  3785. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3786. ((float *)(tensor->data))[i] = value;
  3787. } break;
  3788. default:
  3789. {
  3790. GGML_ASSERT(false);
  3791. } break;
  3792. }
  3793. }
  3794. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3795. return tensor->data;
  3796. }
  3797. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3798. assert(tensor->type == GGML_TYPE_F32);
  3799. return (float *)(tensor->data);
  3800. }
  3801. struct ggml_tensor * ggml_view_tensor(
  3802. struct ggml_context * ctx,
  3803. const struct ggml_tensor * src) {
  3804. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3805. result->nb[0] = src->nb[0];
  3806. result->nb[1] = src->nb[1];
  3807. result->nb[2] = src->nb[2];
  3808. result->nb[3] = src->nb[3];
  3809. return result;
  3810. }
  3811. ////////////////////////////////////////////////////////////////////////////////
  3812. // ggml_dup
  3813. struct ggml_tensor * ggml_dup_impl(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a,
  3816. bool inplace) {
  3817. bool is_node = false;
  3818. if (!inplace && (a->grad)) {
  3819. is_node = true;
  3820. }
  3821. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3822. result->op = GGML_OP_DUP;
  3823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3824. result->src0 = a;
  3825. result->src1 = NULL;
  3826. return result;
  3827. }
  3828. struct ggml_tensor * ggml_dup(
  3829. struct ggml_context * ctx,
  3830. struct ggml_tensor * a) {
  3831. return ggml_dup_impl(ctx, a, false);
  3832. }
  3833. struct ggml_tensor * ggml_dup_inplace(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a) {
  3836. return ggml_dup_impl(ctx, a, true);
  3837. }
  3838. // ggml_add
  3839. struct ggml_tensor * ggml_add_impl(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a,
  3842. struct ggml_tensor * b,
  3843. bool inplace) {
  3844. GGML_ASSERT(ggml_are_same_shape(a, b));
  3845. bool is_node = false;
  3846. if (!inplace && (a->grad || b->grad)) {
  3847. is_node = true;
  3848. }
  3849. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3850. result->op = GGML_OP_ADD;
  3851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3852. result->src0 = a;
  3853. result->src1 = b;
  3854. return result;
  3855. }
  3856. struct ggml_tensor * ggml_add(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b) {
  3860. return ggml_add_impl(ctx, a, b, false);
  3861. }
  3862. struct ggml_tensor * ggml_add_inplace(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. struct ggml_tensor * b) {
  3866. return ggml_add_impl(ctx, a, b, true);
  3867. }
  3868. // ggml_sub
  3869. struct ggml_tensor * ggml_sub_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b,
  3873. bool inplace) {
  3874. GGML_ASSERT(ggml_are_same_shape(a, b));
  3875. bool is_node = false;
  3876. if (!inplace && (a->grad || b->grad)) {
  3877. is_node = true;
  3878. }
  3879. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3880. result->op = GGML_OP_SUB;
  3881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3882. result->src0 = a;
  3883. result->src1 = b;
  3884. return result;
  3885. }
  3886. struct ggml_tensor * ggml_sub(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. struct ggml_tensor * b) {
  3890. return ggml_sub_impl(ctx, a, b, false);
  3891. }
  3892. struct ggml_tensor * ggml_sub_inplace(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a,
  3895. struct ggml_tensor * b) {
  3896. return ggml_sub_impl(ctx, a, b, true);
  3897. }
  3898. // ggml_mul
  3899. struct ggml_tensor * ggml_mul_impl(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a,
  3902. struct ggml_tensor * b,
  3903. bool inplace) {
  3904. GGML_ASSERT(ggml_are_same_shape(a, b));
  3905. bool is_node = false;
  3906. if (!inplace && (a->grad || b->grad)) {
  3907. is_node = true;
  3908. }
  3909. if (inplace) {
  3910. GGML_ASSERT(is_node == false);
  3911. }
  3912. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3913. result->op = GGML_OP_MUL;
  3914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3915. result->src0 = a;
  3916. result->src1 = b;
  3917. return result;
  3918. }
  3919. struct ggml_tensor * ggml_mul(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a,
  3922. struct ggml_tensor * b) {
  3923. return ggml_mul_impl(ctx, a, b, false);
  3924. }
  3925. struct ggml_tensor * ggml_mul_inplace(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. struct ggml_tensor * b) {
  3929. return ggml_mul_impl(ctx, a, b, true);
  3930. }
  3931. // ggml_div
  3932. struct ggml_tensor * ggml_div_impl(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. struct ggml_tensor * b,
  3936. bool inplace) {
  3937. GGML_ASSERT(ggml_are_same_shape(a, b));
  3938. bool is_node = false;
  3939. if (!inplace && (a->grad || b->grad)) {
  3940. is_node = true;
  3941. }
  3942. if (inplace) {
  3943. GGML_ASSERT(is_node == false);
  3944. }
  3945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3946. result->op = GGML_OP_DIV;
  3947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3948. result->src0 = a;
  3949. result->src1 = b;
  3950. return result;
  3951. }
  3952. struct ggml_tensor * ggml_div(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. struct ggml_tensor * b) {
  3956. return ggml_div_impl(ctx, a, b, false);
  3957. }
  3958. struct ggml_tensor * ggml_div_inplace(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a,
  3961. struct ggml_tensor * b) {
  3962. return ggml_div_impl(ctx, a, b, true);
  3963. }
  3964. // ggml_sqr
  3965. struct ggml_tensor * ggml_sqr_impl(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. bool inplace) {
  3969. bool is_node = false;
  3970. if (!inplace && (a->grad)) {
  3971. is_node = true;
  3972. }
  3973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3974. result->op = GGML_OP_SQR;
  3975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3976. result->src0 = a;
  3977. result->src1 = NULL;
  3978. return result;
  3979. }
  3980. struct ggml_tensor * ggml_sqr(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_sqr_impl(ctx, a, false);
  3984. }
  3985. struct ggml_tensor * ggml_sqr_inplace(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a) {
  3988. return ggml_sqr_impl(ctx, a, true);
  3989. }
  3990. // ggml_sqrt
  3991. struct ggml_tensor * ggml_sqrt_impl(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. bool inplace) {
  3995. bool is_node = false;
  3996. if (!inplace && (a->grad)) {
  3997. is_node = true;
  3998. }
  3999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4000. result->op = GGML_OP_SQRT;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src0 = a;
  4003. result->src1 = NULL;
  4004. return result;
  4005. }
  4006. struct ggml_tensor * ggml_sqrt(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a) {
  4009. return ggml_sqrt_impl(ctx, a, false);
  4010. }
  4011. struct ggml_tensor * ggml_sqrt_inplace(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. return ggml_sqrt_impl(ctx, a, true);
  4015. }
  4016. // ggml_sum
  4017. struct ggml_tensor * ggml_sum(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a) {
  4020. bool is_node = false;
  4021. if (a->grad) {
  4022. is_node = true;
  4023. }
  4024. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4025. result->op = GGML_OP_SUM;
  4026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4027. result->src0 = a;
  4028. result->src1 = NULL;
  4029. return result;
  4030. }
  4031. // ggml_mean
  4032. struct ggml_tensor * ggml_mean(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. bool is_node = false;
  4036. if (a->grad) {
  4037. GGML_ASSERT(false); // TODO: implement
  4038. is_node = true;
  4039. }
  4040. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4041. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4042. result->op = GGML_OP_MEAN;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src0 = a;
  4045. result->src1 = NULL;
  4046. return result;
  4047. }
  4048. // ggml_repeat
  4049. struct ggml_tensor * ggml_repeat(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. struct ggml_tensor * b) {
  4053. GGML_ASSERT(ggml_can_repeat(a, b));
  4054. bool is_node = false;
  4055. if (a->grad) {
  4056. is_node = true;
  4057. }
  4058. if (ggml_are_same_shape(a, b) && !is_node) {
  4059. return a;
  4060. }
  4061. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4062. result->op = GGML_OP_REPEAT;
  4063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4064. result->src0 = a;
  4065. result->src1 = b;
  4066. return result;
  4067. }
  4068. // ggml_abs
  4069. struct ggml_tensor * ggml_abs_impl(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. bool inplace) {
  4073. bool is_node = false;
  4074. if (!inplace && (a->grad)) {
  4075. is_node = true;
  4076. }
  4077. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4078. result->op = GGML_OP_ABS;
  4079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4080. result->src0 = a;
  4081. result->src1 = NULL;
  4082. return result;
  4083. }
  4084. struct ggml_tensor * ggml_abs(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a) {
  4087. return ggml_abs_impl(ctx, a, false);
  4088. }
  4089. struct ggml_tensor * ggml_abs_inplace(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. return ggml_abs_impl(ctx, a, true);
  4093. }
  4094. // ggml_sgn
  4095. struct ggml_tensor * ggml_sgn_impl(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. bool inplace) {
  4099. bool is_node = false;
  4100. if (!inplace && (a->grad)) {
  4101. is_node = true;
  4102. }
  4103. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4104. result->op = GGML_OP_SGN;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src0 = a;
  4107. result->src1 = NULL;
  4108. return result;
  4109. }
  4110. struct ggml_tensor * ggml_sgn(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a) {
  4113. return ggml_sgn_impl(ctx, a, false);
  4114. }
  4115. struct ggml_tensor * ggml_sgn_inplace(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a) {
  4118. return ggml_sgn_impl(ctx, a, true);
  4119. }
  4120. // ggml_neg
  4121. struct ggml_tensor * ggml_neg_impl(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. bool inplace) {
  4125. bool is_node = false;
  4126. if (!inplace && (a->grad)) {
  4127. is_node = true;
  4128. }
  4129. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4130. result->op = GGML_OP_NEG;
  4131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4132. result->src0 = a;
  4133. result->src1 = NULL;
  4134. return result;
  4135. }
  4136. struct ggml_tensor * ggml_neg(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a) {
  4139. return ggml_neg_impl(ctx, a, false);
  4140. }
  4141. struct ggml_tensor * ggml_neg_inplace(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a) {
  4144. return ggml_neg_impl(ctx, a, true);
  4145. }
  4146. // ggml_step
  4147. struct ggml_tensor * ggml_step_impl(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. bool inplace) {
  4151. bool is_node = false;
  4152. if (!inplace && (a->grad)) {
  4153. is_node = true;
  4154. }
  4155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4156. result->op = GGML_OP_STEP;
  4157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4158. result->src0 = a;
  4159. result->src1 = NULL;
  4160. return result;
  4161. }
  4162. struct ggml_tensor * ggml_step(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a) {
  4165. return ggml_step_impl(ctx, a, false);
  4166. }
  4167. struct ggml_tensor * ggml_step_inplace(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a) {
  4170. return ggml_step_impl(ctx, a, true);
  4171. }
  4172. // ggml_relu
  4173. struct ggml_tensor * ggml_relu_impl(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. bool inplace) {
  4177. bool is_node = false;
  4178. if (!inplace && (a->grad)) {
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. result->op = GGML_OP_RELU;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src0 = a;
  4185. result->src1 = NULL;
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_relu(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a) {
  4191. return ggml_relu_impl(ctx, a, false);
  4192. }
  4193. struct ggml_tensor * ggml_relu_inplace(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a) {
  4196. return ggml_relu_impl(ctx, a, true);
  4197. }
  4198. // ggml_gelu
  4199. struct ggml_tensor * ggml_gelu_impl(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. bool inplace) {
  4203. bool is_node = false;
  4204. if (!inplace && (a->grad)) {
  4205. is_node = true;
  4206. }
  4207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. result->op = GGML_OP_GELU;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src0 = a;
  4211. result->src1 = NULL;
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_gelu(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_gelu_impl(ctx, a, false);
  4218. }
  4219. struct ggml_tensor * ggml_gelu_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_gelu_impl(ctx, a, true);
  4223. }
  4224. // ggml_silu
  4225. struct ggml_tensor * ggml_silu_impl(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. bool inplace) {
  4229. bool is_node = false;
  4230. if (!inplace && (a->grad)) {
  4231. is_node = true;
  4232. }
  4233. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4234. result->op = GGML_OP_SILU;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src0 = a;
  4237. result->src1 = NULL;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_silu(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a) {
  4243. return ggml_silu_impl(ctx, a, false);
  4244. }
  4245. struct ggml_tensor * ggml_silu_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. return ggml_silu_impl(ctx, a, true);
  4249. }
  4250. // ggml_norm
  4251. struct ggml_tensor * ggml_norm_impl(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. bool inplace) {
  4255. bool is_node = false;
  4256. if (!inplace && (a->grad)) {
  4257. GGML_ASSERT(false); // TODO: implement backward
  4258. is_node = true;
  4259. }
  4260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4261. result->op = GGML_OP_NORM;
  4262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4263. result->src0 = a;
  4264. result->src1 = NULL; // TODO: maybe store epsilon here?
  4265. return result;
  4266. }
  4267. struct ggml_tensor * ggml_norm(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_norm_impl(ctx, a, false);
  4271. }
  4272. struct ggml_tensor * ggml_norm_inplace(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_norm_impl(ctx, a, true);
  4276. }
  4277. struct ggml_tensor * ggml_rms_norm_impl(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. bool inplace) {
  4281. bool is_node = false;
  4282. if (!inplace && (a->grad)) {
  4283. GGML_ASSERT(false); // TODO: implement backward
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_RMS_NORM;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src0 = a;
  4290. result->src1 = NULL; // TODO: maybe store epsilon here?
  4291. return result;
  4292. }
  4293. struct ggml_tensor * ggml_rms_norm(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a) {
  4296. return ggml_rms_norm_impl(ctx, a, false);
  4297. }
  4298. struct ggml_tensor * ggml_rms_norm_inplace(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_rms_norm_impl(ctx, a, true);
  4302. }
  4303. // ggml_mul_mat
  4304. struct ggml_tensor * ggml_mul_mat(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4309. GGML_ASSERT(!ggml_is_transposed(a));
  4310. bool is_node = false;
  4311. if (a->grad || b->grad) {
  4312. is_node = true;
  4313. }
  4314. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4315. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4316. result->op = GGML_OP_MUL_MAT;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = a;
  4319. result->src1 = b;
  4320. return result;
  4321. }
  4322. // ggml_scale
  4323. struct ggml_tensor * ggml_scale_impl(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b,
  4327. bool inplace) {
  4328. GGML_ASSERT(ggml_is_scalar(b));
  4329. GGML_ASSERT(ggml_is_padded_1d(a));
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad || b->grad)) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. // TODO: when implement backward, fix this:
  4336. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4338. result->op = GGML_OP_SCALE;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src0 = a;
  4341. result->src1 = b;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_scale(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. struct ggml_tensor * b) {
  4348. return ggml_scale_impl(ctx, a, b, false);
  4349. }
  4350. struct ggml_tensor * ggml_scale_inplace(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. struct ggml_tensor * b) {
  4354. return ggml_scale_impl(ctx, a, b, true);
  4355. }
  4356. // ggml_cpy
  4357. struct ggml_tensor * ggml_cpy_impl(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. bool inplace) {
  4362. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4363. bool is_node = false;
  4364. if (!inplace && (a->grad || b->grad)) {
  4365. GGML_ASSERT(false); // TODO: implement backward
  4366. is_node = true;
  4367. }
  4368. // make a view of the destination
  4369. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4370. result->op = GGML_OP_CPY;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src0 = a;
  4373. result->src1 = b;
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_cpy(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b) {
  4380. return ggml_cpy_impl(ctx, a, b, false);
  4381. }
  4382. struct ggml_tensor * ggml_cpy_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b) {
  4386. return ggml_cpy_impl(ctx, a, b, true);
  4387. }
  4388. // ggml_cont
  4389. struct ggml_tensor * ggml_cont_impl(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. bool inplace) {
  4393. bool is_node = false;
  4394. if (!inplace && a->grad) {
  4395. GGML_ASSERT(false); // TODO: implement backward
  4396. is_node = true;
  4397. }
  4398. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4399. result->op = GGML_OP_CONT;
  4400. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4401. result->src0 = a;
  4402. result->src1 = NULL;
  4403. return result;
  4404. }
  4405. struct ggml_tensor * ggml_cont(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a) {
  4408. return ggml_cont_impl(ctx, a, false);
  4409. }
  4410. struct ggml_tensor * ggml_cont_inplace(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a) {
  4413. return ggml_cont_impl(ctx, a, true);
  4414. }
  4415. // ggml_reshape
  4416. struct ggml_tensor * ggml_reshape(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. struct ggml_tensor * b) {
  4420. GGML_ASSERT(ggml_is_contiguous(a));
  4421. GGML_ASSERT(ggml_is_contiguous(b));
  4422. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4423. bool is_node = false;
  4424. if (a->grad || b->grad) {
  4425. GGML_ASSERT(false); // TODO: implement backward
  4426. is_node = true;
  4427. }
  4428. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4429. result->op = GGML_OP_RESHAPE;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src0 = a;
  4432. result->src1 = NULL;
  4433. return result;
  4434. }
  4435. struct ggml_tensor * ggml_reshape_2d(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int64_t ne0,
  4439. int64_t ne1) {
  4440. GGML_ASSERT(ggml_is_contiguous(a));
  4441. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4442. bool is_node = false;
  4443. if (a->grad) {
  4444. GGML_ASSERT(false); // TODO: implement backward
  4445. is_node = true;
  4446. }
  4447. const int64_t ne[2] = { ne0, ne1 };
  4448. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4449. result->op = GGML_OP_RESHAPE;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src0 = a;
  4452. result->src1 = NULL;
  4453. return result;
  4454. }
  4455. struct ggml_tensor * ggml_reshape_3d(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int64_t ne0,
  4459. int64_t ne1,
  4460. int64_t ne2) {
  4461. GGML_ASSERT(ggml_is_contiguous(a));
  4462. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4463. bool is_node = false;
  4464. if (a->grad) {
  4465. GGML_ASSERT(false); // TODO: implement backward
  4466. is_node = true;
  4467. }
  4468. const int64_t ne[3] = { ne0, ne1, ne2 };
  4469. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4470. result->op = GGML_OP_RESHAPE;
  4471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4472. result->src0 = a;
  4473. result->src1 = NULL;
  4474. return result;
  4475. }
  4476. // ggml_view_1d
  4477. struct ggml_tensor * ggml_view_1d(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. int64_t ne0,
  4481. size_t offset) {
  4482. if (a->grad) {
  4483. GGML_ASSERT(false); // gradient propagation is not supported
  4484. }
  4485. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4486. result->op = GGML_OP_VIEW;
  4487. result->grad = NULL;
  4488. result->src0 = a;
  4489. result->src1 = NULL; // TODO: maybe store the offset here?
  4490. return result;
  4491. }
  4492. // ggml_view_2d
  4493. struct ggml_tensor * ggml_view_2d(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. int64_t ne0,
  4497. int64_t ne1,
  4498. size_t nb1,
  4499. size_t offset) {
  4500. if (a->grad) {
  4501. GGML_ASSERT(false); // gradient propagation is not supported
  4502. }
  4503. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4504. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4505. result->nb[1] = nb1;
  4506. result->nb[2] = result->nb[1]*ne1;
  4507. result->nb[3] = result->nb[2];
  4508. result->op = GGML_OP_VIEW;
  4509. result->grad = NULL;
  4510. result->src0 = a;
  4511. result->src1 = NULL; // TODO: maybe store the offset here?
  4512. return result;
  4513. }
  4514. // ggml_view_3d
  4515. struct ggml_tensor * ggml_view_3d(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. int64_t ne0,
  4519. int64_t ne1,
  4520. int64_t ne2,
  4521. size_t nb1,
  4522. size_t nb2,
  4523. size_t offset) {
  4524. if (a->grad) {
  4525. GGML_ASSERT(false); // gradient propagation is not supported
  4526. }
  4527. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4528. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4529. result->nb[1] = nb1;
  4530. result->nb[2] = nb2;
  4531. result->nb[3] = result->nb[2]*ne2;
  4532. result->op = GGML_OP_VIEW;
  4533. result->grad = NULL;
  4534. result->src0 = a;
  4535. result->src1 = NULL; // TODO: maybe store the offset here?
  4536. return result;
  4537. }
  4538. // ggml_permute
  4539. struct ggml_tensor * ggml_permute(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a,
  4542. int axis0,
  4543. int axis1,
  4544. int axis2,
  4545. int axis3) {
  4546. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4547. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4548. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4549. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4550. GGML_ASSERT(axis0 != axis1);
  4551. GGML_ASSERT(axis0 != axis2);
  4552. GGML_ASSERT(axis0 != axis3);
  4553. GGML_ASSERT(axis1 != axis2);
  4554. GGML_ASSERT(axis1 != axis3);
  4555. GGML_ASSERT(axis2 != axis3);
  4556. bool is_node = false;
  4557. if (a->grad) {
  4558. GGML_ASSERT(false); // TODO: implement backward
  4559. is_node = true;
  4560. }
  4561. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4562. int ne[GGML_MAX_DIMS];
  4563. int nb[GGML_MAX_DIMS];
  4564. ne[axis0] = a->ne[0];
  4565. ne[axis1] = a->ne[1];
  4566. ne[axis2] = a->ne[2];
  4567. ne[axis3] = a->ne[3];
  4568. nb[axis0] = a->nb[0];
  4569. nb[axis1] = a->nb[1];
  4570. nb[axis2] = a->nb[2];
  4571. nb[axis3] = a->nb[3];
  4572. result->ne[0] = ne[0];
  4573. result->ne[1] = ne[1];
  4574. result->ne[2] = ne[2];
  4575. result->ne[3] = ne[3];
  4576. result->nb[0] = nb[0];
  4577. result->nb[1] = nb[1];
  4578. result->nb[2] = nb[2];
  4579. result->nb[3] = nb[3];
  4580. result->op = GGML_OP_PERMUTE;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src0 = a;
  4583. result->src1 = NULL; // TODO: maybe store the permutation here?
  4584. return result;
  4585. }
  4586. // ggml_transpose
  4587. struct ggml_tensor * ggml_transpose(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a) {
  4590. bool is_node = false;
  4591. if (a->grad) {
  4592. GGML_ASSERT(false); // TODO: implement backward
  4593. is_node = true;
  4594. }
  4595. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4596. result->ne[0] = a->ne[1];
  4597. result->ne[1] = a->ne[0];
  4598. result->nb[0] = a->nb[1];
  4599. result->nb[1] = a->nb[0];
  4600. result->op = GGML_OP_TRANSPOSE;
  4601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4602. result->src0 = a;
  4603. result->src1 = NULL;
  4604. return result;
  4605. }
  4606. // ggml_get_rows
  4607. struct ggml_tensor * ggml_get_rows(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a,
  4610. struct ggml_tensor * b) {
  4611. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4612. bool is_node = false;
  4613. if (a->grad || b->grad) {
  4614. GGML_ASSERT(false); // TODO: implement backward
  4615. is_node = true;
  4616. }
  4617. // TODO: implement non F32 return
  4618. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4619. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4620. result->op = GGML_OP_GET_ROWS;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src0 = a;
  4623. result->src1 = b;
  4624. return result;
  4625. }
  4626. // ggml_diag_mask_inf
  4627. struct ggml_tensor * ggml_diag_mask_inf(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. int n_past) {
  4631. bool is_node = false;
  4632. if (a->grad) {
  4633. GGML_ASSERT(false); // TODO: implement backward
  4634. is_node = true;
  4635. }
  4636. // TODO: when implement backward, fix this:
  4637. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4638. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4639. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4640. result->op = GGML_OP_DIAG_MASK_INF;
  4641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4642. result->src0 = a;
  4643. result->src1 = b;
  4644. return result;
  4645. }
  4646. // ggml_soft_max
  4647. struct ggml_tensor * ggml_soft_max(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a) {
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. GGML_ASSERT(false); // TODO: implement backward
  4653. is_node = true;
  4654. }
  4655. // TODO: when implement backward, fix this:
  4656. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4657. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4658. result->op = GGML_OP_SOFT_MAX;
  4659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4660. result->src0 = a;
  4661. result->src1 = NULL;
  4662. return result;
  4663. }
  4664. // ggml_rope
  4665. struct ggml_tensor * ggml_rope(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. int n_past,
  4669. int n_dims,
  4670. int mode) {
  4671. GGML_ASSERT(n_past >= 0);
  4672. bool is_node = false;
  4673. if (a->grad) {
  4674. GGML_ASSERT(false); // TODO: implement backward
  4675. is_node = true;
  4676. }
  4677. // TODO: when implement backward, fix this:
  4678. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4679. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4680. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4681. ((int32_t *) b->data)[0] = n_past;
  4682. ((int32_t *) b->data)[1] = n_dims;
  4683. ((int32_t *) b->data)[2] = mode;
  4684. result->op = GGML_OP_ROPE;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src0 = a;
  4687. result->src1 = b;
  4688. return result;
  4689. }
  4690. // ggml_alibi
  4691. struct ggml_tensor * ggml_alibi(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. int n_past,
  4695. int n_head) {
  4696. GGML_ASSERT(n_past >= 0);
  4697. bool is_node = false;
  4698. if (a->grad) {
  4699. GGML_ASSERT(false); // TODO: implement backward
  4700. is_node = true;
  4701. }
  4702. // TODO: when implement backward, fix this:
  4703. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4704. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4705. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4706. ((int32_t *) b->data)[0] = n_past;
  4707. ((int32_t *) b->data)[1] = n_head;
  4708. result->op = GGML_OP_ALIBI;
  4709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4710. result->src0 = a;
  4711. result->src1 = b;
  4712. return result;
  4713. }
  4714. // ggml_conv_1d_1s
  4715. struct ggml_tensor * ggml_conv_1d_1s(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. struct ggml_tensor * b) {
  4719. GGML_ASSERT(ggml_is_matrix(b));
  4720. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4721. GGML_ASSERT(a->ne[3] == 1);
  4722. bool is_node = false;
  4723. if (a->grad || b->grad) {
  4724. GGML_ASSERT(false); // TODO: implement backward
  4725. is_node = true;
  4726. }
  4727. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4728. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4729. result->op = GGML_OP_CONV_1D_1S;
  4730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4731. result->src0 = a;
  4732. result->src1 = b;
  4733. return result;
  4734. }
  4735. // ggml_conv_1d_2s
  4736. struct ggml_tensor * ggml_conv_1d_2s(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * b) {
  4740. GGML_ASSERT(ggml_is_matrix(b));
  4741. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4742. GGML_ASSERT(a->ne[3] == 1);
  4743. bool is_node = false;
  4744. if (a->grad || b->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4749. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4750. result->op = GGML_OP_CONV_1D_2S;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src0 = a;
  4753. result->src1 = b;
  4754. return result;
  4755. }
  4756. // ggml_flash_attn
  4757. struct ggml_tensor * ggml_flash_attn(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * q,
  4760. struct ggml_tensor * k,
  4761. struct ggml_tensor * v,
  4762. bool masked) {
  4763. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4764. // TODO: check if vT can be multiplied by (k*qT)
  4765. bool is_node = false;
  4766. if (q->grad || k->grad || v->grad) {
  4767. GGML_ASSERT(false); // TODO: implement backward
  4768. is_node = true;
  4769. }
  4770. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4772. result->op = GGML_OP_FLASH_ATTN;
  4773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4774. result->src0 = q;
  4775. result->src1 = k;
  4776. result->opt[0] = v;
  4777. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4778. return result;
  4779. }
  4780. // ggml_flash_ff
  4781. struct ggml_tensor * ggml_flash_ff(
  4782. struct ggml_context * ctx,
  4783. struct ggml_tensor * a,
  4784. struct ggml_tensor * b0,
  4785. struct ggml_tensor * b1,
  4786. struct ggml_tensor * c0,
  4787. struct ggml_tensor * c1) {
  4788. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4789. // TODO: more checks
  4790. bool is_node = false;
  4791. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4792. GGML_ASSERT(false); // TODO: implement backward
  4793. is_node = true;
  4794. }
  4795. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4796. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4797. result->op = GGML_OP_FLASH_FF;
  4798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4799. result->src0 = a;
  4800. result->src1 = b0;
  4801. result->opt[0] = b1;
  4802. result->opt[1] = c0;
  4803. result->opt[2] = c1;
  4804. return result;
  4805. }
  4806. // ggml_map_unary
  4807. struct ggml_tensor * ggml_map_unary_impl_f32(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. const ggml_unary_op_f32_t fun,
  4811. bool inplace) {
  4812. bool is_node = false;
  4813. if (!inplace && a->grad) {
  4814. is_node = true;
  4815. }
  4816. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4817. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4818. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4819. result->op = GGML_OP_MAP_UNARY;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src0 = a;
  4822. result->opt[0] = addr_tensor;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_map_unary_f32(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. const ggml_unary_op_f32_t fun) {
  4829. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4830. }
  4831. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4832. struct ggml_context * ctx,
  4833. struct ggml_tensor * a,
  4834. const ggml_unary_op_f32_t fun) {
  4835. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4836. }
  4837. // ggml_map_binary
  4838. struct ggml_tensor * ggml_map_binary_impl_f32(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. struct ggml_tensor * b,
  4842. const ggml_binary_op_f32_t fun,
  4843. bool inplace) {
  4844. GGML_ASSERT(ggml_are_same_shape(a, b));
  4845. bool is_node = false;
  4846. if (!inplace && (a->grad || b->grad)) {
  4847. is_node = true;
  4848. }
  4849. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4850. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4851. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4852. result->op = GGML_OP_MAP_BINARY;
  4853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4854. result->src0 = a;
  4855. result->src1 = b;
  4856. result->opt[0] = addr_tensor;
  4857. return result;
  4858. }
  4859. struct ggml_tensor * ggml_map_binary_f32(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b,
  4863. const ggml_binary_op_f32_t fun) {
  4864. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4865. }
  4866. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. struct ggml_tensor * b,
  4870. const ggml_binary_op_f32_t fun) {
  4871. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4872. }
  4873. ////////////////////////////////////////////////////////////////////////////////
  4874. void ggml_set_param(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * tensor) {
  4877. tensor->is_param = true;
  4878. GGML_ASSERT(tensor->grad == NULL);
  4879. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4880. }
  4881. // ggml_compute_forward_dup
  4882. static void ggml_compute_forward_dup_f16(
  4883. const struct ggml_compute_params * params,
  4884. const struct ggml_tensor * src0,
  4885. struct ggml_tensor * dst) {
  4886. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4888. return;
  4889. }
  4890. const int64_t ne00 = src0->ne[0];
  4891. const int64_t ne01 = src0->ne[1];
  4892. const int64_t ne02 = src0->ne[2];
  4893. const int64_t ne03 = src0->ne[3];
  4894. const int64_t ne0 = dst->ne[0];
  4895. const int64_t ne1 = dst->ne[1];
  4896. const int64_t ne2 = dst->ne[2];
  4897. const int64_t ne3 = dst->ne[3];
  4898. const size_t nb00 = src0->nb[0];
  4899. const size_t nb01 = src0->nb[1];
  4900. const size_t nb02 = src0->nb[2];
  4901. const size_t nb03 = src0->nb[3];
  4902. const size_t nb0 = dst->nb[0];
  4903. const size_t nb1 = dst->nb[1];
  4904. const size_t nb2 = dst->nb[2];
  4905. const size_t nb3 = dst->nb[3];
  4906. const int ith = params->ith; // thread index
  4907. const int nth = params->nth; // number of threads
  4908. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4909. // parallelize by elements
  4910. const int ne = ggml_nelements(dst);
  4911. const int dr = (ne + nth - 1) / nth;
  4912. const int ie0 = dr * ith;
  4913. const int ie1 = MIN(ie0 + dr, ne);
  4914. memcpy(
  4915. ((char *) dst->data + ie0*nb0),
  4916. ((char *) src0->data + ie0*nb00),
  4917. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4918. return;
  4919. }
  4920. // parallelize by rows
  4921. const int nr = ne01;
  4922. // number of rows per thread
  4923. const int dr = (nr + nth - 1) / nth;
  4924. // row range for this thread
  4925. const int ir0 = dr * ith;
  4926. const int ir1 = MIN(ir0 + dr, nr);
  4927. if (src0->type == dst->type &&
  4928. ne00 == ne0 &&
  4929. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4930. // copy by rows
  4931. const size_t rs = ne00*nb00;
  4932. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4933. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4934. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4935. memcpy(
  4936. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4937. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4938. rs);
  4939. }
  4940. }
  4941. }
  4942. return;
  4943. }
  4944. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4945. if (ggml_is_contiguous(dst)) {
  4946. if (nb00 == sizeof(ggml_fp16_t)) {
  4947. if (dst->type == GGML_TYPE_F16) {
  4948. size_t id = 0;
  4949. const size_t rs = ne00 * nb00;
  4950. char * dst_ptr = (char *) dst->data;
  4951. for (int i03 = 0; i03 < ne03; i03++) {
  4952. for (int i02 = 0; i02 < ne02; i02++) {
  4953. id += rs * ir0;
  4954. for (int i01 = ir0; i01 < ir1; i01++) {
  4955. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4956. memcpy(dst_ptr + id, src0_ptr, rs);
  4957. id += rs;
  4958. }
  4959. id += rs * (ne01 - ir1);
  4960. }
  4961. }
  4962. } else if (dst->type == GGML_TYPE_F32) {
  4963. size_t id = 0;
  4964. float * dst_ptr = (float *) dst->data;
  4965. for (int i03 = 0; i03 < ne03; i03++) {
  4966. for (int i02 = 0; i02 < ne02; i02++) {
  4967. id += ne00 * ir0;
  4968. for (int i01 = ir0; i01 < ir1; i01++) {
  4969. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4970. for (int i00 = 0; i00 < ne00; i00++) {
  4971. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4972. id++;
  4973. }
  4974. }
  4975. id += ne00 * (ne01 - ir1);
  4976. }
  4977. }
  4978. } else if (ggml_is_quantized(dst->type)) {
  4979. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4980. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4981. size_t id = 0;
  4982. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4983. char * dst_ptr = (char *) dst->data;
  4984. for (int i03 = 0; i03 < ne03; i03++) {
  4985. for (int i02 = 0; i02 < ne02; i02++) {
  4986. id += rs * ir0;
  4987. for (int i01 = ir0; i01 < ir1; i01++) {
  4988. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4989. for (int i00 = 0; i00 < ne00; i00++) {
  4990. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4991. }
  4992. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4993. id += rs;
  4994. }
  4995. id += rs * (ne01 - ir1);
  4996. }
  4997. }
  4998. } else {
  4999. GGML_ASSERT(false); // TODO: implement
  5000. }
  5001. } else {
  5002. //printf("%s: this is not optimal - fix me\n", __func__);
  5003. if (dst->type == GGML_TYPE_F32) {
  5004. size_t id = 0;
  5005. float * dst_ptr = (float *) dst->data;
  5006. for (int i03 = 0; i03 < ne03; i03++) {
  5007. for (int i02 = 0; i02 < ne02; i02++) {
  5008. id += ne00 * ir0;
  5009. for (int i01 = ir0; i01 < ir1; i01++) {
  5010. for (int i00 = 0; i00 < ne00; i00++) {
  5011. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5012. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5013. id++;
  5014. }
  5015. }
  5016. id += ne00 * (ne01 - ir1);
  5017. }
  5018. }
  5019. } else if (dst->type == GGML_TYPE_F16) {
  5020. size_t id = 0;
  5021. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5022. for (int i03 = 0; i03 < ne03; i03++) {
  5023. for (int i02 = 0; i02 < ne02; i02++) {
  5024. id += ne00 * ir0;
  5025. for (int i01 = ir0; i01 < ir1; i01++) {
  5026. for (int i00 = 0; i00 < ne00; i00++) {
  5027. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5028. dst_ptr[id] = *src0_ptr;
  5029. id++;
  5030. }
  5031. }
  5032. id += ne00 * (ne01 - ir1);
  5033. }
  5034. }
  5035. } else {
  5036. GGML_ASSERT(false); // TODO: implement
  5037. }
  5038. }
  5039. return;
  5040. }
  5041. // dst counters
  5042. int64_t i10 = 0;
  5043. int64_t i11 = 0;
  5044. int64_t i12 = 0;
  5045. int64_t i13 = 0;
  5046. if (dst->type == GGML_TYPE_F16) {
  5047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5049. i10 += ne00 * ir0;
  5050. while (i10 >= ne0) {
  5051. i10 -= ne0;
  5052. if (++i11 == ne1) {
  5053. i11 = 0;
  5054. if (++i12 == ne2) {
  5055. i12 = 0;
  5056. if (++i13 == ne3) {
  5057. i13 = 0;
  5058. }
  5059. }
  5060. }
  5061. }
  5062. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5063. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5064. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5065. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5066. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5067. if (++i10 == ne00) {
  5068. i10 = 0;
  5069. if (++i11 == ne01) {
  5070. i11 = 0;
  5071. if (++i12 == ne02) {
  5072. i12 = 0;
  5073. if (++i13 == ne03) {
  5074. i13 = 0;
  5075. }
  5076. }
  5077. }
  5078. }
  5079. }
  5080. }
  5081. i10 += ne00 * (ne01 - ir1);
  5082. while (i10 >= ne0) {
  5083. i10 -= ne0;
  5084. if (++i11 == ne1) {
  5085. i11 = 0;
  5086. if (++i12 == ne2) {
  5087. i12 = 0;
  5088. if (++i13 == ne3) {
  5089. i13 = 0;
  5090. }
  5091. }
  5092. }
  5093. }
  5094. }
  5095. }
  5096. } else if (dst->type == GGML_TYPE_F32) {
  5097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5099. i10 += ne00 * ir0;
  5100. while (i10 >= ne0) {
  5101. i10 -= ne0;
  5102. if (++i11 == ne1) {
  5103. i11 = 0;
  5104. if (++i12 == ne2) {
  5105. i12 = 0;
  5106. if (++i13 == ne3) {
  5107. i13 = 0;
  5108. }
  5109. }
  5110. }
  5111. }
  5112. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5114. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5115. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5116. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5117. if (++i10 == ne0) {
  5118. i10 = 0;
  5119. if (++i11 == ne1) {
  5120. i11 = 0;
  5121. if (++i12 == ne2) {
  5122. i12 = 0;
  5123. if (++i13 == ne3) {
  5124. i13 = 0;
  5125. }
  5126. }
  5127. }
  5128. }
  5129. }
  5130. }
  5131. i10 += ne00 * (ne01 - ir1);
  5132. while (i10 >= ne0) {
  5133. i10 -= ne0;
  5134. if (++i11 == ne1) {
  5135. i11 = 0;
  5136. if (++i12 == ne2) {
  5137. i12 = 0;
  5138. if (++i13 == ne3) {
  5139. i13 = 0;
  5140. }
  5141. }
  5142. }
  5143. }
  5144. }
  5145. }
  5146. } else {
  5147. GGML_ASSERT(false); // TODO: implement
  5148. }
  5149. }
  5150. static void ggml_compute_forward_dup_f32(
  5151. const struct ggml_compute_params * params,
  5152. const struct ggml_tensor * src0,
  5153. struct ggml_tensor * dst) {
  5154. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5156. return;
  5157. }
  5158. const int64_t ne00 = src0->ne[0];
  5159. const int64_t ne01 = src0->ne[1];
  5160. const int64_t ne02 = src0->ne[2];
  5161. const int64_t ne03 = src0->ne[3];
  5162. const int64_t ne0 = dst->ne[0];
  5163. const int64_t ne1 = dst->ne[1];
  5164. const int64_t ne2 = dst->ne[2];
  5165. const int64_t ne3 = dst->ne[3];
  5166. const size_t nb00 = src0->nb[0];
  5167. const size_t nb01 = src0->nb[1];
  5168. const size_t nb02 = src0->nb[2];
  5169. const size_t nb03 = src0->nb[3];
  5170. const size_t nb0 = dst->nb[0];
  5171. const size_t nb1 = dst->nb[1];
  5172. const size_t nb2 = dst->nb[2];
  5173. const size_t nb3 = dst->nb[3];
  5174. const int ith = params->ith; // thread index
  5175. const int nth = params->nth; // number of threads
  5176. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5177. // parallelize by elements
  5178. const int ne = ggml_nelements(dst);
  5179. const int dr = (ne + nth - 1) / nth;
  5180. const int ie0 = dr * ith;
  5181. const int ie1 = MIN(ie0 + dr, ne);
  5182. memcpy(
  5183. ((char *) dst->data + ie0*nb0),
  5184. ((char *) src0->data + ie0*nb00),
  5185. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5186. return;
  5187. }
  5188. // parallelize by rows
  5189. const int nr = ne01;
  5190. // number of rows per thread
  5191. const int dr = (nr + nth - 1) / nth;
  5192. // row range for this thread
  5193. const int ir0 = dr * ith;
  5194. const int ir1 = MIN(ir0 + dr, nr);
  5195. if (src0->type == dst->type &&
  5196. ne00 == ne0 &&
  5197. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5198. // copy by rows
  5199. const size_t rs = ne00*nb00;
  5200. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5201. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5202. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5203. memcpy(
  5204. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5205. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5206. rs);
  5207. }
  5208. }
  5209. }
  5210. return;
  5211. }
  5212. if (ggml_is_contiguous(dst)) {
  5213. // TODO: simplify
  5214. if (nb00 == sizeof(float)) {
  5215. if (dst->type == GGML_TYPE_F32) {
  5216. size_t id = 0;
  5217. const size_t rs = ne00 * nb00;
  5218. char * dst_ptr = (char *) dst->data;
  5219. for (int i03 = 0; i03 < ne03; i03++) {
  5220. for (int i02 = 0; i02 < ne02; i02++) {
  5221. id += rs * ir0;
  5222. for (int i01 = ir0; i01 < ir1; i01++) {
  5223. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5224. memcpy(dst_ptr + id, src0_ptr, rs);
  5225. id += rs;
  5226. }
  5227. id += rs * (ne01 - ir1);
  5228. }
  5229. }
  5230. } else if (dst->type == GGML_TYPE_F16) {
  5231. size_t id = 0;
  5232. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5233. for (int i03 = 0; i03 < ne03; i03++) {
  5234. for (int i02 = 0; i02 < ne02; i02++) {
  5235. id += ne00 * ir0;
  5236. for (int i01 = ir0; i01 < ir1; i01++) {
  5237. for (int i00 = 0; i00 < ne00; i00++) {
  5238. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5239. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5240. id++;
  5241. }
  5242. }
  5243. id += ne00 * (ne01 - ir1);
  5244. }
  5245. }
  5246. } else if (ggml_is_quantized(dst->type)) {
  5247. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5248. size_t id = 0;
  5249. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5250. char * dst_ptr = (char *) dst->data;
  5251. for (int i03 = 0; i03 < ne03; i03++) {
  5252. for (int i02 = 0; i02 < ne02; i02++) {
  5253. id += rs * ir0;
  5254. for (int i01 = ir0; i01 < ir1; i01++) {
  5255. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5256. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5257. id += rs;
  5258. }
  5259. id += rs * (ne01 - ir1);
  5260. }
  5261. }
  5262. } else {
  5263. GGML_ASSERT(false); // TODO: implement
  5264. }
  5265. } else {
  5266. //printf("%s: this is not optimal - fix me\n", __func__);
  5267. if (dst->type == GGML_TYPE_F32) {
  5268. size_t id = 0;
  5269. float * dst_ptr = (float *) dst->data;
  5270. for (int i03 = 0; i03 < ne03; i03++) {
  5271. for (int i02 = 0; i02 < ne02; i02++) {
  5272. id += ne00 * ir0;
  5273. for (int i01 = ir0; i01 < ir1; i01++) {
  5274. for (int i00 = 0; i00 < ne00; i00++) {
  5275. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5276. dst_ptr[id] = *src0_ptr;
  5277. id++;
  5278. }
  5279. }
  5280. id += ne00 * (ne01 - ir1);
  5281. }
  5282. }
  5283. } else if (dst->type == GGML_TYPE_F16) {
  5284. size_t id = 0;
  5285. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5286. for (int i03 = 0; i03 < ne03; i03++) {
  5287. for (int i02 = 0; i02 < ne02; i02++) {
  5288. id += ne00 * ir0;
  5289. for (int i01 = ir0; i01 < ir1; i01++) {
  5290. for (int i00 = 0; i00 < ne00; i00++) {
  5291. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5292. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5293. id++;
  5294. }
  5295. }
  5296. id += ne00 * (ne01 - ir1);
  5297. }
  5298. }
  5299. } else {
  5300. GGML_ASSERT(false); // TODO: implement
  5301. }
  5302. }
  5303. return;
  5304. }
  5305. // dst counters
  5306. int64_t i10 = 0;
  5307. int64_t i11 = 0;
  5308. int64_t i12 = 0;
  5309. int64_t i13 = 0;
  5310. if (dst->type == GGML_TYPE_F32) {
  5311. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5312. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5313. i10 += ne00 * ir0;
  5314. while (i10 >= ne0) {
  5315. i10 -= ne0;
  5316. if (++i11 == ne1) {
  5317. i11 = 0;
  5318. if (++i12 == ne2) {
  5319. i12 = 0;
  5320. if (++i13 == ne3) {
  5321. i13 = 0;
  5322. }
  5323. }
  5324. }
  5325. }
  5326. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5327. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5328. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5329. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5330. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5331. if (++i10 == ne0) {
  5332. i10 = 0;
  5333. if (++i11 == ne1) {
  5334. i11 = 0;
  5335. if (++i12 == ne2) {
  5336. i12 = 0;
  5337. if (++i13 == ne3) {
  5338. i13 = 0;
  5339. }
  5340. }
  5341. }
  5342. }
  5343. }
  5344. }
  5345. i10 += ne00 * (ne01 - ir1);
  5346. while (i10 >= ne0) {
  5347. i10 -= ne0;
  5348. if (++i11 == ne1) {
  5349. i11 = 0;
  5350. if (++i12 == ne2) {
  5351. i12 = 0;
  5352. if (++i13 == ne3) {
  5353. i13 = 0;
  5354. }
  5355. }
  5356. }
  5357. }
  5358. }
  5359. }
  5360. } else if (dst->type == GGML_TYPE_F16) {
  5361. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5362. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5363. i10 += ne00 * ir0;
  5364. while (i10 >= ne0) {
  5365. i10 -= ne0;
  5366. if (++i11 == ne1) {
  5367. i11 = 0;
  5368. if (++i12 == ne2) {
  5369. i12 = 0;
  5370. if (++i13 == ne3) {
  5371. i13 = 0;
  5372. }
  5373. }
  5374. }
  5375. }
  5376. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5377. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5378. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5379. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5380. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5381. if (++i10 == ne0) {
  5382. i10 = 0;
  5383. if (++i11 == ne1) {
  5384. i11 = 0;
  5385. if (++i12 == ne2) {
  5386. i12 = 0;
  5387. if (++i13 == ne3) {
  5388. i13 = 0;
  5389. }
  5390. }
  5391. }
  5392. }
  5393. }
  5394. }
  5395. i10 += ne00 * (ne01 - ir1);
  5396. while (i10 >= ne0) {
  5397. i10 -= ne0;
  5398. if (++i11 == ne1) {
  5399. i11 = 0;
  5400. if (++i12 == ne2) {
  5401. i12 = 0;
  5402. if (++i13 == ne3) {
  5403. i13 = 0;
  5404. }
  5405. }
  5406. }
  5407. }
  5408. }
  5409. }
  5410. } else {
  5411. GGML_ASSERT(false); // TODO: implement
  5412. }
  5413. }
  5414. static void ggml_compute_forward_dup(
  5415. const struct ggml_compute_params * params,
  5416. const struct ggml_tensor * src0,
  5417. struct ggml_tensor * dst) {
  5418. switch (src0->type) {
  5419. case GGML_TYPE_F16:
  5420. {
  5421. ggml_compute_forward_dup_f16(params, src0, dst);
  5422. } break;
  5423. case GGML_TYPE_F32:
  5424. {
  5425. ggml_compute_forward_dup_f32(params, src0, dst);
  5426. } break;
  5427. default:
  5428. {
  5429. GGML_ASSERT(false);
  5430. } break;
  5431. }
  5432. }
  5433. // ggml_compute_forward_add
  5434. static void ggml_compute_forward_add_f32(
  5435. const struct ggml_compute_params * params,
  5436. const struct ggml_tensor * src0,
  5437. const struct ggml_tensor * src1,
  5438. struct ggml_tensor * dst) {
  5439. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5440. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5441. return;
  5442. }
  5443. const int ith = params->ith;
  5444. const int nth = params->nth;
  5445. const int n = ggml_nrows(src0);
  5446. const int nc = src0->ne[0];
  5447. const size_t nb00 = src0->nb[0];
  5448. const size_t nb01 = src0->nb[1];
  5449. const size_t nb10 = src1->nb[0];
  5450. const size_t nb11 = src1->nb[1];
  5451. const size_t nb0 = dst->nb[0];
  5452. const size_t nb1 = dst->nb[1];
  5453. GGML_ASSERT( nb0 == sizeof(float));
  5454. GGML_ASSERT(nb00 == sizeof(float));
  5455. if (nb10 == sizeof(float)) {
  5456. for (int j = ith; j < n; j += nth) {
  5457. #ifdef GGML_USE_ACCELERATE
  5458. vDSP_vadd(
  5459. (float *) ((char *) src0->data + j*nb01), 1,
  5460. (float *) ((char *) src1->data + j*nb11), 1,
  5461. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5462. #else
  5463. ggml_vec_add_f32(nc,
  5464. (float *) ((char *) dst->data + j*nb1),
  5465. (float *) ((char *) src0->data + j*nb01),
  5466. (float *) ((char *) src1->data + j*nb11));
  5467. #endif
  5468. }
  5469. } else {
  5470. // src1 is not contiguous
  5471. for (int j = ith; j < n; j += nth) {
  5472. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5473. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5474. for (int i = 0; i < nc; i++) {
  5475. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5476. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5477. }
  5478. }
  5479. }
  5480. }
  5481. static void ggml_compute_forward_add_f16_f32(
  5482. const struct ggml_compute_params * params,
  5483. const struct ggml_tensor * src0,
  5484. const struct ggml_tensor * src1,
  5485. struct ggml_tensor * dst) {
  5486. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5488. return;
  5489. }
  5490. const int ith = params->ith;
  5491. const int nth = params->nth;
  5492. const int n = ggml_nrows(src0);
  5493. const int nc = src0->ne[0];
  5494. const size_t nb00 = src0->nb[0];
  5495. const size_t nb01 = src0->nb[1];
  5496. const size_t nb10 = src1->nb[0];
  5497. const size_t nb11 = src1->nb[1];
  5498. const size_t nb0 = dst->nb[0];
  5499. const size_t nb1 = dst->nb[1];
  5500. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5501. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5502. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5503. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5504. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5505. if (nb10 == sizeof(float)) {
  5506. for (int j = ith; j < n; j += nth) {
  5507. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5508. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5509. for (int i = 0; i < nc; i++) {
  5510. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5511. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5512. }
  5513. }
  5514. }
  5515. else {
  5516. // src1 is not contiguous
  5517. GGML_ASSERT(false);
  5518. }
  5519. }
  5520. static void ggml_compute_forward_add_f16_f16(
  5521. const struct ggml_compute_params * params,
  5522. const struct ggml_tensor * src0,
  5523. const struct ggml_tensor * src1,
  5524. struct ggml_tensor * dst) {
  5525. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5527. return;
  5528. }
  5529. const int ith = params->ith;
  5530. const int nth = params->nth;
  5531. const int n = ggml_nrows(src0);
  5532. const int nc = src0->ne[0];
  5533. const size_t nb00 = src0->nb[0];
  5534. const size_t nb01 = src0->nb[1];
  5535. const size_t nb10 = src1->nb[0];
  5536. const size_t nb11 = src1->nb[1];
  5537. const size_t nb0 = dst->nb[0];
  5538. const size_t nb1 = dst->nb[1];
  5539. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5540. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5541. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5542. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5543. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5544. if (nb10 == sizeof(ggml_fp16_t)) {
  5545. for (int j = ith; j < n; j += nth) {
  5546. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5547. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5548. for (int i = 0; i < nc; i++) {
  5549. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5550. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5551. }
  5552. }
  5553. }
  5554. else {
  5555. // src1 is not contiguous
  5556. GGML_ASSERT(false);
  5557. }
  5558. }
  5559. static void ggml_compute_forward_add_q_f32(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0,
  5562. const struct ggml_tensor * src1,
  5563. struct ggml_tensor * dst) {
  5564. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5566. return;
  5567. }
  5568. const int64_t ne00 = src0->ne[0];
  5569. const int64_t ne01 = src0->ne[1];
  5570. const int64_t ne02 = src0->ne[2];
  5571. const int64_t ne03 = src0->ne[3];
  5572. //const int64_t ne10 = src1->ne[0];
  5573. //const int64_t ne11 = src1->ne[1];
  5574. const int64_t ne12 = src1->ne[2];
  5575. const int64_t ne13 = src1->ne[3];
  5576. //const int64_t ne0 = dst->ne[0];
  5577. //const int64_t ne1 = dst->ne[1];
  5578. const int64_t ne2 = dst->ne[2];
  5579. const int64_t ne3 = dst->ne[3];
  5580. const int nb00 = src0->nb[0];
  5581. const int nb01 = src0->nb[1];
  5582. const int nb02 = src0->nb[2];
  5583. const int nb03 = src0->nb[3];
  5584. const int nb10 = src1->nb[0];
  5585. const int nb11 = src1->nb[1];
  5586. const int nb12 = src1->nb[2];
  5587. const int nb13 = src1->nb[3];
  5588. const int nb0 = dst->nb[0];
  5589. const int nb1 = dst->nb[1];
  5590. const int nb2 = dst->nb[2];
  5591. const int nb3 = dst->nb[3];
  5592. const int ith = params->ith;
  5593. const int nth = params->nth;
  5594. GGML_ASSERT(ne02 == ne12);
  5595. GGML_ASSERT(ne03 == ne13);
  5596. GGML_ASSERT(ne2 == ne12);
  5597. GGML_ASSERT(ne3 == ne13);
  5598. const enum ggml_type type = src0->type;
  5599. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5600. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5601. // we don't support permuted src0 or src1
  5602. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5603. GGML_ASSERT(nb10 == sizeof(float));
  5604. // dst cannot be transposed or permuted
  5605. GGML_ASSERT(nb0 <= nb1);
  5606. GGML_ASSERT(nb1 <= nb2);
  5607. GGML_ASSERT(nb2 <= nb3);
  5608. GGML_ASSERT(ggml_is_quantized(src0->type));
  5609. GGML_ASSERT(dst->type == src0->type);
  5610. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5611. // total rows in src0
  5612. const int nr = ne01*ne02*ne03;
  5613. // rows per thread
  5614. const int dr = (nr + nth - 1)/nth;
  5615. // row range for this thread
  5616. const int ir0 = dr*ith;
  5617. const int ir1 = MIN(ir0 + dr, nr);
  5618. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5619. for (int ir = ir0; ir < ir1; ++ir) {
  5620. // src0 indices
  5621. const int i03 = ir/(ne02*ne01);
  5622. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5623. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5624. // src1 and dst are same shape as src0 => same indices
  5625. const int i13 = i03;
  5626. const int i12 = i02;
  5627. const int i11 = i01;
  5628. const int i3 = i03;
  5629. const int i2 = i02;
  5630. const int i1 = i01;
  5631. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5632. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5633. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5634. assert(ne00 % 32 == 0);
  5635. // unquantize row from src0 to temp buffer
  5636. dequantize_row_q(src0_row, wdata, ne00);
  5637. // add src1
  5638. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5639. // quantize row to dst
  5640. quantize_row_q(wdata, dst_row, ne00);
  5641. }
  5642. }
  5643. static void ggml_compute_forward_add(
  5644. const struct ggml_compute_params * params,
  5645. const struct ggml_tensor * src0,
  5646. const struct ggml_tensor * src1,
  5647. struct ggml_tensor * dst) {
  5648. switch (src0->type) {
  5649. case GGML_TYPE_F32:
  5650. {
  5651. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5652. } break;
  5653. case GGML_TYPE_F16:
  5654. {
  5655. if (src1->type == GGML_TYPE_F16) {
  5656. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5657. }
  5658. else if (src1->type == GGML_TYPE_F32) {
  5659. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5660. }
  5661. else {
  5662. GGML_ASSERT(false);
  5663. }
  5664. } break;
  5665. case GGML_TYPE_Q4_0:
  5666. case GGML_TYPE_Q4_1:
  5667. case GGML_TYPE_Q4_2:
  5668. case GGML_TYPE_Q5_0:
  5669. case GGML_TYPE_Q5_1:
  5670. case GGML_TYPE_Q8_0:
  5671. {
  5672. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5673. } break;
  5674. default:
  5675. {
  5676. GGML_ASSERT(false);
  5677. } break;
  5678. }
  5679. }
  5680. // ggml_compute_forward_sub
  5681. static void ggml_compute_forward_sub_f32(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. const struct ggml_tensor * src1,
  5685. struct ggml_tensor * dst) {
  5686. assert(params->ith == 0);
  5687. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5689. return;
  5690. }
  5691. const int n = ggml_nrows(src0);
  5692. const int nc = src0->ne[0];
  5693. assert( dst->nb[0] == sizeof(float));
  5694. assert(src0->nb[0] == sizeof(float));
  5695. assert(src1->nb[0] == sizeof(float));
  5696. for (int i = 0; i < n; i++) {
  5697. ggml_vec_sub_f32(nc,
  5698. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5699. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5700. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5701. }
  5702. }
  5703. static void ggml_compute_forward_sub(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. switch (src0->type) {
  5709. case GGML_TYPE_F32:
  5710. {
  5711. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5712. } break;
  5713. default:
  5714. {
  5715. GGML_ASSERT(false);
  5716. } break;
  5717. }
  5718. }
  5719. // ggml_compute_forward_mul
  5720. static void ggml_compute_forward_mul_f32(
  5721. const struct ggml_compute_params * params,
  5722. const struct ggml_tensor * src0,
  5723. const struct ggml_tensor * src1,
  5724. struct ggml_tensor * dst) {
  5725. assert(params->ith == 0);
  5726. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5728. return;
  5729. }
  5730. const int n = ggml_nrows(src0);
  5731. const int nc = src0->ne[0];
  5732. assert( dst->nb[0] == sizeof(float));
  5733. assert(src0->nb[0] == sizeof(float));
  5734. assert(src1->nb[0] == sizeof(float));
  5735. for (int i = 0; i < n; i++) {
  5736. ggml_vec_mul_f32(nc,
  5737. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5738. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5739. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5740. }
  5741. }
  5742. static void ggml_compute_forward_mul(
  5743. const struct ggml_compute_params * params,
  5744. const struct ggml_tensor * src0,
  5745. const struct ggml_tensor * src1,
  5746. struct ggml_tensor * dst) {
  5747. switch (src0->type) {
  5748. case GGML_TYPE_F32:
  5749. {
  5750. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5751. } break;
  5752. default:
  5753. {
  5754. GGML_ASSERT(false);
  5755. } break;
  5756. }
  5757. }
  5758. // ggml_compute_forward_div
  5759. static void ggml_compute_forward_div_f32(
  5760. const struct ggml_compute_params * params,
  5761. const struct ggml_tensor * src0,
  5762. const struct ggml_tensor * src1,
  5763. struct ggml_tensor * dst) {
  5764. assert(params->ith == 0);
  5765. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5767. return;
  5768. }
  5769. const int n = ggml_nrows(src0);
  5770. const int nc = src0->ne[0];
  5771. assert( dst->nb[0] == sizeof(float));
  5772. assert(src0->nb[0] == sizeof(float));
  5773. assert(src1->nb[0] == sizeof(float));
  5774. for (int i = 0; i < n; i++) {
  5775. ggml_vec_div_f32(nc,
  5776. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5777. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5778. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5779. }
  5780. }
  5781. static void ggml_compute_forward_div(
  5782. const struct ggml_compute_params * params,
  5783. const struct ggml_tensor * src0,
  5784. const struct ggml_tensor * src1,
  5785. struct ggml_tensor * dst) {
  5786. switch (src0->type) {
  5787. case GGML_TYPE_F32:
  5788. {
  5789. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5790. } break;
  5791. default:
  5792. {
  5793. GGML_ASSERT(false);
  5794. } break;
  5795. }
  5796. }
  5797. // ggml_compute_forward_sqr
  5798. static void ggml_compute_forward_sqr_f32(
  5799. const struct ggml_compute_params * params,
  5800. const struct ggml_tensor * src0,
  5801. struct ggml_tensor * dst) {
  5802. assert(params->ith == 0);
  5803. assert(ggml_are_same_shape(src0, dst));
  5804. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5805. return;
  5806. }
  5807. const int n = ggml_nrows(src0);
  5808. const int nc = src0->ne[0];
  5809. assert( dst->nb[0] == sizeof(float));
  5810. assert(src0->nb[0] == sizeof(float));
  5811. for (int i = 0; i < n; i++) {
  5812. ggml_vec_sqr_f32(nc,
  5813. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5814. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5815. }
  5816. }
  5817. static void ggml_compute_forward_sqr(
  5818. const struct ggml_compute_params * params,
  5819. const struct ggml_tensor * src0,
  5820. struct ggml_tensor * dst) {
  5821. switch (src0->type) {
  5822. case GGML_TYPE_F32:
  5823. {
  5824. ggml_compute_forward_sqr_f32(params, src0, dst);
  5825. } break;
  5826. default:
  5827. {
  5828. GGML_ASSERT(false);
  5829. } break;
  5830. }
  5831. }
  5832. // ggml_compute_forward_sqrt
  5833. static void ggml_compute_forward_sqrt_f32(
  5834. const struct ggml_compute_params * params,
  5835. const struct ggml_tensor * src0,
  5836. struct ggml_tensor * dst) {
  5837. assert(params->ith == 0);
  5838. assert(ggml_are_same_shape(src0, dst));
  5839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5840. return;
  5841. }
  5842. const int n = ggml_nrows(src0);
  5843. const int nc = src0->ne[0];
  5844. assert( dst->nb[0] == sizeof(float));
  5845. assert(src0->nb[0] == sizeof(float));
  5846. for (int i = 0; i < n; i++) {
  5847. ggml_vec_sqrt_f32(nc,
  5848. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5849. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5850. }
  5851. }
  5852. static void ggml_compute_forward_sqrt(
  5853. const struct ggml_compute_params * params,
  5854. const struct ggml_tensor * src0,
  5855. struct ggml_tensor * dst) {
  5856. switch (src0->type) {
  5857. case GGML_TYPE_F32:
  5858. {
  5859. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5860. } break;
  5861. default:
  5862. {
  5863. GGML_ASSERT(false);
  5864. } break;
  5865. }
  5866. }
  5867. // ggml_compute_forward_sum
  5868. static void ggml_compute_forward_sum_f32(
  5869. const struct ggml_compute_params * params,
  5870. const struct ggml_tensor * src0,
  5871. struct ggml_tensor * dst) {
  5872. assert(params->ith == 0);
  5873. assert(ggml_is_scalar(dst));
  5874. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5875. return;
  5876. }
  5877. assert(ggml_is_scalar(dst));
  5878. assert(src0->nb[0] == sizeof(float));
  5879. const int64_t ne00 = src0->ne[0];
  5880. const int64_t ne01 = src0->ne[1];
  5881. const int64_t ne02 = src0->ne[2];
  5882. const int64_t ne03 = src0->ne[3];
  5883. const size_t nb01 = src0->nb[1];
  5884. const size_t nb02 = src0->nb[2];
  5885. const size_t nb03 = src0->nb[3];
  5886. ggml_float sum = 0;
  5887. ggml_float row_sum = 0;
  5888. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5889. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5890. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5891. ggml_vec_sum_ggf(ne00,
  5892. &row_sum,
  5893. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5894. sum += row_sum;
  5895. }
  5896. }
  5897. }
  5898. ((float *) dst->data)[0] = sum;
  5899. }
  5900. static void ggml_compute_forward_sum(
  5901. const struct ggml_compute_params * params,
  5902. const struct ggml_tensor * src0,
  5903. struct ggml_tensor * dst) {
  5904. switch (src0->type) {
  5905. case GGML_TYPE_F32:
  5906. {
  5907. ggml_compute_forward_sum_f32(params, src0, dst);
  5908. } break;
  5909. default:
  5910. {
  5911. GGML_ASSERT(false);
  5912. } break;
  5913. }
  5914. }
  5915. // ggml_compute_forward_mean
  5916. static void ggml_compute_forward_mean_f32(
  5917. const struct ggml_compute_params * params,
  5918. const struct ggml_tensor * src0,
  5919. struct ggml_tensor * dst) {
  5920. assert(params->ith == 0);
  5921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5922. return;
  5923. }
  5924. assert(src0->nb[0] == sizeof(float));
  5925. const int64_t ne00 = src0->ne[0];
  5926. const int64_t ne01 = src0->ne[1];
  5927. const int64_t ne02 = src0->ne[2];
  5928. const int64_t ne03 = src0->ne[3];
  5929. const size_t nb01 = src0->nb[1];
  5930. const size_t nb02 = src0->nb[2];
  5931. const size_t nb03 = src0->nb[3];
  5932. const int64_t ne0 = dst->ne[0];
  5933. const int64_t ne1 = dst->ne[1];
  5934. const int64_t ne2 = dst->ne[2];
  5935. const int64_t ne3 = dst->ne[3];
  5936. assert(ne0 == 1);
  5937. assert(ne1 == ne01);
  5938. assert(ne2 == ne02);
  5939. assert(ne3 == ne03);
  5940. UNUSED(ne0);
  5941. UNUSED(ne1);
  5942. UNUSED(ne2);
  5943. UNUSED(ne3);
  5944. const size_t nb1 = dst->nb[1];
  5945. const size_t nb2 = dst->nb[2];
  5946. const size_t nb3 = dst->nb[3];
  5947. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5948. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5949. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5950. ggml_vec_sum_f32(ne00,
  5951. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5952. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5953. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5954. }
  5955. }
  5956. }
  5957. }
  5958. static void ggml_compute_forward_mean(
  5959. const struct ggml_compute_params * params,
  5960. const struct ggml_tensor * src0,
  5961. struct ggml_tensor * dst) {
  5962. switch (src0->type) {
  5963. case GGML_TYPE_F32:
  5964. {
  5965. ggml_compute_forward_mean_f32(params, src0, dst);
  5966. } break;
  5967. default:
  5968. {
  5969. GGML_ASSERT(false);
  5970. } break;
  5971. }
  5972. }
  5973. // ggml_compute_forward_repeat
  5974. static void ggml_compute_forward_repeat_f32(
  5975. const struct ggml_compute_params * params,
  5976. const struct ggml_tensor * src0,
  5977. struct ggml_tensor * dst) {
  5978. assert(params->ith == 0);
  5979. assert(ggml_can_repeat(src0, dst));
  5980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5981. return;
  5982. }
  5983. // TODO: implement support for rank > 2 tensors
  5984. assert(src0->ne[2] == 1);
  5985. assert(src0->ne[3] == 1);
  5986. assert( dst->ne[2] == 1);
  5987. assert( dst->ne[3] == 1);
  5988. const int nc = dst->ne[0];
  5989. const int nr = dst->ne[1];
  5990. const int nc0 = src0->ne[0];
  5991. const int nr0 = src0->ne[1];
  5992. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5993. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5994. // TODO: support for transposed / permuted tensors
  5995. assert( dst->nb[0] == sizeof(float));
  5996. assert(src0->nb[0] == sizeof(float));
  5997. // TODO: maybe this is not optimal?
  5998. for (int i = 0; i < nrr; i++) {
  5999. for (int j = 0; j < ncr; j++) {
  6000. for (int k = 0; k < nr0; k++) {
  6001. ggml_vec_cpy_f32(nc0,
  6002. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6003. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6004. }
  6005. }
  6006. }
  6007. }
  6008. static void ggml_compute_forward_repeat(
  6009. const struct ggml_compute_params * params,
  6010. const struct ggml_tensor * src0,
  6011. struct ggml_tensor * dst) {
  6012. switch (src0->type) {
  6013. case GGML_TYPE_F32:
  6014. {
  6015. ggml_compute_forward_repeat_f32(params, src0, dst);
  6016. } break;
  6017. default:
  6018. {
  6019. GGML_ASSERT(false);
  6020. } break;
  6021. }
  6022. }
  6023. // ggml_compute_forward_abs
  6024. static void ggml_compute_forward_abs_f32(
  6025. const struct ggml_compute_params * params,
  6026. const struct ggml_tensor * src0,
  6027. struct ggml_tensor * dst) {
  6028. assert(params->ith == 0);
  6029. assert(ggml_are_same_shape(src0, dst));
  6030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6031. return;
  6032. }
  6033. const int n = ggml_nrows(src0);
  6034. const int nc = src0->ne[0];
  6035. assert(dst->nb[0] == sizeof(float));
  6036. assert(src0->nb[0] == sizeof(float));
  6037. for (int i = 0; i < n; i++) {
  6038. ggml_vec_abs_f32(nc,
  6039. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6040. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6041. }
  6042. }
  6043. static void ggml_compute_forward_abs(
  6044. const struct ggml_compute_params * params,
  6045. const struct ggml_tensor * src0,
  6046. struct ggml_tensor * dst) {
  6047. switch (src0->type) {
  6048. case GGML_TYPE_F32:
  6049. {
  6050. ggml_compute_forward_abs_f32(params, src0, dst);
  6051. } break;
  6052. default:
  6053. {
  6054. GGML_ASSERT(false);
  6055. } break;
  6056. }
  6057. }
  6058. // ggml_compute_forward_sgn
  6059. static void ggml_compute_forward_sgn_f32(
  6060. const struct ggml_compute_params * params,
  6061. const struct ggml_tensor * src0,
  6062. struct ggml_tensor * dst) {
  6063. assert(params->ith == 0);
  6064. assert(ggml_are_same_shape(src0, dst));
  6065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6066. return;
  6067. }
  6068. const int n = ggml_nrows(src0);
  6069. const int nc = src0->ne[0];
  6070. assert(dst->nb[0] == sizeof(float));
  6071. assert(src0->nb[0] == sizeof(float));
  6072. for (int i = 0; i < n; i++) {
  6073. ggml_vec_sgn_f32(nc,
  6074. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6075. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6076. }
  6077. }
  6078. static void ggml_compute_forward_sgn(
  6079. const struct ggml_compute_params * params,
  6080. const struct ggml_tensor * src0,
  6081. struct ggml_tensor * dst) {
  6082. switch (src0->type) {
  6083. case GGML_TYPE_F32:
  6084. {
  6085. ggml_compute_forward_sgn_f32(params, src0, dst);
  6086. } break;
  6087. default:
  6088. {
  6089. GGML_ASSERT(false);
  6090. } break;
  6091. }
  6092. }
  6093. // ggml_compute_forward_neg
  6094. static void ggml_compute_forward_neg_f32(
  6095. const struct ggml_compute_params * params,
  6096. const struct ggml_tensor * src0,
  6097. struct ggml_tensor * dst) {
  6098. assert(params->ith == 0);
  6099. assert(ggml_are_same_shape(src0, dst));
  6100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6101. return;
  6102. }
  6103. const int n = ggml_nrows(src0);
  6104. const int nc = src0->ne[0];
  6105. assert(dst->nb[0] == sizeof(float));
  6106. assert(src0->nb[0] == sizeof(float));
  6107. for (int i = 0; i < n; i++) {
  6108. ggml_vec_neg_f32(nc,
  6109. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6110. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6111. }
  6112. }
  6113. static void ggml_compute_forward_neg(
  6114. const struct ggml_compute_params * params,
  6115. const struct ggml_tensor * src0,
  6116. struct ggml_tensor * dst) {
  6117. switch (src0->type) {
  6118. case GGML_TYPE_F32:
  6119. {
  6120. ggml_compute_forward_neg_f32(params, src0, dst);
  6121. } break;
  6122. default:
  6123. {
  6124. GGML_ASSERT(false);
  6125. } break;
  6126. }
  6127. }
  6128. // ggml_compute_forward_step
  6129. static void ggml_compute_forward_step_f32(
  6130. const struct ggml_compute_params * params,
  6131. const struct ggml_tensor * src0,
  6132. struct ggml_tensor * dst) {
  6133. assert(params->ith == 0);
  6134. assert(ggml_are_same_shape(src0, dst));
  6135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6136. return;
  6137. }
  6138. const int n = ggml_nrows(src0);
  6139. const int nc = src0->ne[0];
  6140. assert(dst->nb[0] == sizeof(float));
  6141. assert(src0->nb[0] == sizeof(float));
  6142. for (int i = 0; i < n; i++) {
  6143. ggml_vec_step_f32(nc,
  6144. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6145. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6146. }
  6147. }
  6148. static void ggml_compute_forward_step(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. struct ggml_tensor * dst) {
  6152. switch (src0->type) {
  6153. case GGML_TYPE_F32:
  6154. {
  6155. ggml_compute_forward_step_f32(params, src0, dst);
  6156. } break;
  6157. default:
  6158. {
  6159. GGML_ASSERT(false);
  6160. } break;
  6161. }
  6162. }
  6163. // ggml_compute_forward_relu
  6164. static void ggml_compute_forward_relu_f32(
  6165. const struct ggml_compute_params * params,
  6166. const struct ggml_tensor * src0,
  6167. struct ggml_tensor * dst) {
  6168. assert(params->ith == 0);
  6169. assert(ggml_are_same_shape(src0, dst));
  6170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6171. return;
  6172. }
  6173. const int n = ggml_nrows(src0);
  6174. const int nc = src0->ne[0];
  6175. assert(dst->nb[0] == sizeof(float));
  6176. assert(src0->nb[0] == sizeof(float));
  6177. for (int i = 0; i < n; i++) {
  6178. ggml_vec_relu_f32(nc,
  6179. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6180. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6181. }
  6182. }
  6183. static void ggml_compute_forward_relu(
  6184. const struct ggml_compute_params * params,
  6185. const struct ggml_tensor * src0,
  6186. struct ggml_tensor * dst) {
  6187. switch (src0->type) {
  6188. case GGML_TYPE_F32:
  6189. {
  6190. ggml_compute_forward_relu_f32(params, src0, dst);
  6191. } break;
  6192. default:
  6193. {
  6194. GGML_ASSERT(false);
  6195. } break;
  6196. }
  6197. }
  6198. // ggml_compute_forward_gelu
  6199. static void ggml_compute_forward_gelu_f32(
  6200. const struct ggml_compute_params * params,
  6201. const struct ggml_tensor * src0,
  6202. struct ggml_tensor * dst) {
  6203. GGML_ASSERT(ggml_is_contiguous(src0));
  6204. GGML_ASSERT(ggml_is_contiguous(dst));
  6205. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6207. return;
  6208. }
  6209. const int ith = params->ith;
  6210. const int nth = params->nth;
  6211. const int nc = src0->ne[0];
  6212. const int nr = ggml_nrows(src0);
  6213. // rows per thread
  6214. const int dr = (nr + nth - 1)/nth;
  6215. // row range for this thread
  6216. const int ir0 = dr*ith;
  6217. const int ir1 = MIN(ir0 + dr, nr);
  6218. for (int i1 = ir0; i1 < ir1; i1++) {
  6219. ggml_vec_gelu_f32(nc,
  6220. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6221. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6222. #ifndef NDEBUG
  6223. for (int k = 0; k < nc; k++) {
  6224. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6225. UNUSED(x);
  6226. assert(!isnan(x));
  6227. assert(!isinf(x));
  6228. }
  6229. #endif
  6230. }
  6231. }
  6232. static void ggml_compute_forward_gelu(
  6233. const struct ggml_compute_params * params,
  6234. const struct ggml_tensor * src0,
  6235. struct ggml_tensor * dst) {
  6236. switch (src0->type) {
  6237. case GGML_TYPE_F32:
  6238. {
  6239. ggml_compute_forward_gelu_f32(params, src0, dst);
  6240. } break;
  6241. default:
  6242. {
  6243. GGML_ASSERT(false);
  6244. } break;
  6245. }
  6246. //printf("XXXXXXXX gelu\n");
  6247. }
  6248. // ggml_compute_forward_silu
  6249. static void ggml_compute_forward_silu_f32(
  6250. const struct ggml_compute_params * params,
  6251. const struct ggml_tensor * src0,
  6252. struct ggml_tensor * dst) {
  6253. GGML_ASSERT(ggml_is_contiguous(src0));
  6254. GGML_ASSERT(ggml_is_contiguous(dst));
  6255. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6257. return;
  6258. }
  6259. const int ith = params->ith;
  6260. const int nth = params->nth;
  6261. const int nc = src0->ne[0];
  6262. const int nr = ggml_nrows(src0);
  6263. // rows per thread
  6264. const int dr = (nr + nth - 1)/nth;
  6265. // row range for this thread
  6266. const int ir0 = dr*ith;
  6267. const int ir1 = MIN(ir0 + dr, nr);
  6268. for (int i1 = ir0; i1 < ir1; i1++) {
  6269. ggml_vec_silu_f32(nc,
  6270. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6271. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6272. #ifndef NDEBUG
  6273. for (int k = 0; k < nc; k++) {
  6274. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6275. UNUSED(x);
  6276. assert(!isnan(x));
  6277. assert(!isinf(x));
  6278. }
  6279. #endif
  6280. }
  6281. }
  6282. static void ggml_compute_forward_silu(
  6283. const struct ggml_compute_params * params,
  6284. const struct ggml_tensor * src0,
  6285. struct ggml_tensor * dst) {
  6286. switch (src0->type) {
  6287. case GGML_TYPE_F32:
  6288. {
  6289. ggml_compute_forward_silu_f32(params, src0, dst);
  6290. } break;
  6291. default:
  6292. {
  6293. GGML_ASSERT(false);
  6294. } break;
  6295. }
  6296. }
  6297. // ggml_compute_forward_norm
  6298. static void ggml_compute_forward_norm_f32(
  6299. const struct ggml_compute_params * params,
  6300. const struct ggml_tensor * src0,
  6301. struct ggml_tensor * dst) {
  6302. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6304. return;
  6305. }
  6306. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6307. const int ith = params->ith;
  6308. const int nth = params->nth;
  6309. const int64_t ne00 = src0->ne[0];
  6310. const int64_t ne01 = src0->ne[1];
  6311. const int64_t ne02 = src0->ne[2];
  6312. const int64_t ne03 = src0->ne[3];
  6313. const size_t nb01 = src0->nb[1];
  6314. const size_t nb02 = src0->nb[2];
  6315. const size_t nb03 = src0->nb[3];
  6316. const size_t nb1 = dst->nb[1];
  6317. const size_t nb2 = dst->nb[2];
  6318. const size_t nb3 = dst->nb[3];
  6319. const float eps = 1e-5f; // TODO: make this a parameter
  6320. // TODO: optimize
  6321. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6322. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6323. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6324. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6325. ggml_float sum = 0.0;
  6326. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6327. sum += (ggml_float)x[i00];
  6328. }
  6329. float mean = sum/ne00;
  6330. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6331. ggml_float sum2 = 0.0;
  6332. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6333. float v = x[i00] - mean;
  6334. y[i00] = v;
  6335. sum2 += (ggml_float)(v*v);
  6336. }
  6337. float variance = sum2/ne00;
  6338. const float scale = 1.0f/sqrtf(variance + eps);
  6339. ggml_vec_scale_f32(ne00, y, scale);
  6340. }
  6341. }
  6342. }
  6343. }
  6344. static void ggml_compute_forward_norm(
  6345. const struct ggml_compute_params * params,
  6346. const struct ggml_tensor * src0,
  6347. struct ggml_tensor * dst) {
  6348. switch (src0->type) {
  6349. case GGML_TYPE_F32:
  6350. {
  6351. ggml_compute_forward_norm_f32(params, src0, dst);
  6352. } break;
  6353. default:
  6354. {
  6355. GGML_ASSERT(false);
  6356. } break;
  6357. }
  6358. }
  6359. static void ggml_compute_forward_rms_norm_f32(
  6360. const struct ggml_compute_params * params,
  6361. const struct ggml_tensor * src0,
  6362. struct ggml_tensor * dst) {
  6363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6365. return;
  6366. }
  6367. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6368. const int ith = params->ith;
  6369. const int nth = params->nth;
  6370. const int64_t ne00 = src0->ne[0];
  6371. const int64_t ne01 = src0->ne[1];
  6372. const int64_t ne02 = src0->ne[2];
  6373. const int64_t ne03 = src0->ne[3];
  6374. const size_t nb01 = src0->nb[1];
  6375. const size_t nb02 = src0->nb[2];
  6376. const size_t nb03 = src0->nb[3];
  6377. const size_t nb1 = dst->nb[1];
  6378. const size_t nb2 = dst->nb[2];
  6379. const size_t nb3 = dst->nb[3];
  6380. const float eps = 1e-6f; // TODO: make this a parameter
  6381. // TODO: optimize
  6382. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6383. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6384. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6385. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6386. ggml_float sum = 0.0;
  6387. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6388. sum += (ggml_float)(x[i00] * x[i00]);
  6389. }
  6390. float mean = sum/ne00;
  6391. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6392. memcpy(y, x, ne00 * sizeof(float));
  6393. // for (int i00 = 0; i00 < ne00; i00++) {
  6394. // y[i00] = x[i00];
  6395. // }
  6396. const float scale = 1.0f/sqrtf(mean + eps);
  6397. ggml_vec_scale_f32(ne00, y, scale);
  6398. }
  6399. }
  6400. }
  6401. }
  6402. static void ggml_compute_forward_rms_norm(
  6403. const struct ggml_compute_params * params,
  6404. const struct ggml_tensor * src0,
  6405. struct ggml_tensor * dst) {
  6406. switch (src0->type) {
  6407. case GGML_TYPE_F32:
  6408. {
  6409. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6410. } break;
  6411. default:
  6412. {
  6413. GGML_ASSERT(false);
  6414. } break;
  6415. }
  6416. }
  6417. // ggml_compute_forward_mul_mat
  6418. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6419. // helper function to determine if it is better to use BLAS or not
  6420. // for large matrices, BLAS is faster
  6421. static bool ggml_compute_forward_mul_mat_use_blas(
  6422. const struct ggml_tensor * src0,
  6423. const struct ggml_tensor * src1,
  6424. struct ggml_tensor * dst) {
  6425. //const int64_t ne00 = src0->ne[0];
  6426. //const int64_t ne01 = src0->ne[1];
  6427. const int64_t ne10 = src1->ne[0];
  6428. const int64_t ne0 = dst->ne[0];
  6429. const int64_t ne1 = dst->ne[1];
  6430. // TODO: find the optimal values for these
  6431. if (
  6432. #if !defined(GGML_USE_CUBLAS)
  6433. ggml_is_contiguous(src0) &&
  6434. ggml_is_contiguous(src1) &&
  6435. #endif
  6436. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6437. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6438. return true;
  6439. }
  6440. return false;
  6441. }
  6442. #endif
  6443. static void ggml_compute_forward_mul_mat_f32(
  6444. const struct ggml_compute_params * params,
  6445. const struct ggml_tensor * src0,
  6446. const struct ggml_tensor * src1,
  6447. struct ggml_tensor * dst) {
  6448. int64_t t0 = ggml_perf_time_us();
  6449. UNUSED(t0);
  6450. const int64_t ne00 = src0->ne[0];
  6451. const int64_t ne01 = src0->ne[1];
  6452. const int64_t ne02 = src0->ne[2];
  6453. const int64_t ne03 = src0->ne[3];
  6454. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6455. const int64_t ne10 = src1->ne[0];
  6456. #endif
  6457. const int64_t ne11 = src1->ne[1];
  6458. #ifndef NDEBUG
  6459. const int64_t ne12 = src1->ne[2];
  6460. const int64_t ne13 = src1->ne[3];
  6461. const int64_t ne0 = dst->ne[0];
  6462. const int64_t ne1 = dst->ne[1];
  6463. const int64_t ne2 = dst->ne[2];
  6464. const int64_t ne3 = dst->ne[3];
  6465. const int nb00 = src0->nb[0];
  6466. #endif
  6467. const int nb01 = src0->nb[1];
  6468. const int nb02 = src0->nb[2];
  6469. const int nb03 = src0->nb[3];
  6470. #ifndef NDEBUG
  6471. const int nb10 = src1->nb[0];
  6472. #endif
  6473. const int nb11 = src1->nb[1];
  6474. const int nb12 = src1->nb[2];
  6475. const int nb13 = src1->nb[3];
  6476. const int nb0 = dst->nb[0];
  6477. const int nb1 = dst->nb[1];
  6478. const int nb2 = dst->nb[2];
  6479. const int nb3 = dst->nb[3];
  6480. const int ith = params->ith;
  6481. const int nth = params->nth;
  6482. assert(ne02 == ne12);
  6483. assert(ne03 == ne13);
  6484. assert(ne2 == ne12);
  6485. assert(ne3 == ne13);
  6486. // we don't support permuted src0 or src1
  6487. assert(nb00 == sizeof(float));
  6488. assert(nb10 == sizeof(float));
  6489. // dst cannot be transposed or permuted
  6490. assert(nb0 == sizeof(float));
  6491. assert(nb0 <= nb1);
  6492. assert(nb1 <= nb2);
  6493. assert(nb2 <= nb3);
  6494. assert(ne0 == ne01);
  6495. assert(ne1 == ne11);
  6496. assert(ne2 == ne02);
  6497. assert(ne3 == ne03);
  6498. // nb01 >= nb00 - src0 is not transposed
  6499. // compute by src0 rows
  6500. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6501. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6502. if (params->ith != 0) {
  6503. return;
  6504. }
  6505. if (params->type == GGML_TASK_INIT) {
  6506. return;
  6507. }
  6508. if (params->type == GGML_TASK_FINALIZE) {
  6509. return;
  6510. }
  6511. #if defined(GGML_USE_CUBLAS)
  6512. const float alpha = 1.0f;
  6513. const float beta = 0.0f;
  6514. const int x_ne = ne01 * ne00;
  6515. const int y_ne = ne11 * ne10;
  6516. const int d_ne = ne11 * ne01;
  6517. size_t x_size, y_size, d_size;
  6518. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6519. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6520. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6521. #endif
  6522. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6523. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6524. #if !defined(GGML_USE_CUBLAS)
  6525. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6526. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6527. #endif
  6528. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6529. #if defined(GGML_USE_CUBLAS)
  6530. // copy data to device
  6531. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6532. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6533. // compute
  6534. CUBLAS_CHECK(
  6535. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6536. ne01, ne11, ne10,
  6537. &alpha, d_X, ne00,
  6538. d_Y, ne10,
  6539. &beta, d_D, ne01));
  6540. // copy data to host
  6541. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6542. #elif defined(GGML_USE_CLBLAST)
  6543. // zT = y * xT
  6544. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6545. ne11, ne01, ne10,
  6546. 1.0f, y, ne10,
  6547. x, ne10,
  6548. 0.0f, d, ne01,
  6549. GGML_TYPE_F32);
  6550. #else
  6551. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6552. ne11, ne01, ne10,
  6553. 1.0f, y, ne10,
  6554. x, ne00,
  6555. 0.0f, d, ne01);
  6556. #endif
  6557. }
  6558. }
  6559. #if defined(GGML_USE_CUBLAS)
  6560. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6561. ggml_cuda_pool_free(d_X, x_size);
  6562. ggml_cuda_pool_free(d_Y, y_size);
  6563. ggml_cuda_pool_free(d_D, d_size);
  6564. #endif
  6565. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6566. return;
  6567. }
  6568. #endif
  6569. if (params->type == GGML_TASK_INIT) {
  6570. return;
  6571. }
  6572. if (params->type == GGML_TASK_FINALIZE) {
  6573. return;
  6574. }
  6575. // parallelize by src0 rows using ggml_vec_dot_f32
  6576. // total rows in src0
  6577. const int nr = ne01*ne02*ne03;
  6578. // rows per thread
  6579. const int dr = (nr + nth - 1)/nth;
  6580. // row range for this thread
  6581. const int ir0 = dr*ith;
  6582. const int ir1 = MIN(ir0 + dr, nr);
  6583. for (int ir = ir0; ir < ir1; ++ir) {
  6584. // src0 indices
  6585. const int i03 = ir/(ne02*ne01);
  6586. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6587. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6588. for (int64_t ic = 0; ic < ne11; ++ic) {
  6589. // src1 indices
  6590. const int i13 = i03;
  6591. const int i12 = i02;
  6592. const int i11 = ic;
  6593. // dst indices
  6594. const int i0 = i01;
  6595. const int i1 = i11;
  6596. const int i2 = i02;
  6597. const int i3 = i03;
  6598. ggml_vec_dot_f32(ne00,
  6599. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6600. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6601. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6602. }
  6603. }
  6604. //int64_t t1 = ggml_perf_time_us();
  6605. //static int64_t acc = 0;
  6606. //acc += t1 - t0;
  6607. //if (t1 - t0 > 10) {
  6608. // printf("\n");
  6609. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6610. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6611. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6612. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6613. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6614. //}
  6615. }
  6616. static void ggml_compute_forward_mul_mat_f16_f32(
  6617. const struct ggml_compute_params * params,
  6618. const struct ggml_tensor * src0,
  6619. const struct ggml_tensor * src1,
  6620. struct ggml_tensor * dst) {
  6621. int64_t t0 = ggml_perf_time_us();
  6622. UNUSED(t0);
  6623. const int64_t ne00 = src0->ne[0];
  6624. const int64_t ne01 = src0->ne[1];
  6625. const int64_t ne02 = src0->ne[2];
  6626. const int64_t ne03 = src0->ne[3];
  6627. const int64_t ne10 = src1->ne[0];
  6628. const int64_t ne11 = src1->ne[1];
  6629. const int64_t ne12 = src1->ne[2];
  6630. const int64_t ne13 = src1->ne[3];
  6631. const int64_t ne0 = dst->ne[0];
  6632. const int64_t ne1 = dst->ne[1];
  6633. const int64_t ne2 = dst->ne[2];
  6634. const int64_t ne3 = dst->ne[3];
  6635. //const int64_t ne = ne0*ne1*ne2*ne3;
  6636. const int nb00 = src0->nb[0];
  6637. const int nb01 = src0->nb[1];
  6638. const int nb02 = src0->nb[2];
  6639. const int nb03 = src0->nb[3];
  6640. const int nb10 = src1->nb[0];
  6641. const int nb11 = src1->nb[1];
  6642. const int nb12 = src1->nb[2];
  6643. const int nb13 = src1->nb[3];
  6644. const int nb0 = dst->nb[0];
  6645. const int nb1 = dst->nb[1];
  6646. const int nb2 = dst->nb[2];
  6647. const int nb3 = dst->nb[3];
  6648. const int ith = params->ith;
  6649. const int nth = params->nth;
  6650. GGML_ASSERT(ne02 == ne12);
  6651. GGML_ASSERT(ne03 == ne13);
  6652. GGML_ASSERT(ne2 == ne12);
  6653. GGML_ASSERT(ne3 == ne13);
  6654. // TODO: we don't support permuted src0
  6655. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6656. // dst cannot be transposed or permuted
  6657. GGML_ASSERT(nb0 == sizeof(float));
  6658. GGML_ASSERT(nb0 <= nb1);
  6659. GGML_ASSERT(nb1 <= nb2);
  6660. GGML_ASSERT(nb2 <= nb3);
  6661. GGML_ASSERT(ne0 == ne01);
  6662. GGML_ASSERT(ne1 == ne11);
  6663. GGML_ASSERT(ne2 == ne02);
  6664. GGML_ASSERT(ne3 == ne03);
  6665. // nb01 >= nb00 - src0 is not transposed
  6666. // compute by src0 rows
  6667. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6668. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6669. GGML_ASSERT(nb10 == sizeof(float));
  6670. if (params->ith != 0) {
  6671. return;
  6672. }
  6673. if (params->type == GGML_TASK_INIT) {
  6674. return;
  6675. }
  6676. if (params->type == GGML_TASK_FINALIZE) {
  6677. return;
  6678. }
  6679. #if defined(GGML_USE_CUBLAS)
  6680. const float alpha = 1.0f;
  6681. const float beta = 0.0f;
  6682. const int x_ne = ne01 * ne00;
  6683. const int y_ne = ne11 * ne10;
  6684. const int d_ne = ne11 * ne01;
  6685. size_t x_size, y_size, d_size;
  6686. ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6687. ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6688. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6689. #endif
  6690. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6692. #if defined(GGML_USE_CUBLAS)
  6693. // copy src0 while converting src1
  6694. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6695. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6696. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  6697. {
  6698. size_t id = 0;
  6699. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6700. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6701. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6702. }
  6703. }
  6704. assert(id*sizeof(ggml_fp16_t) <= params->wsize);
  6705. }
  6706. #else
  6707. float * const wdata = params->wdata;
  6708. {
  6709. size_t id = 0;
  6710. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6711. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6712. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6713. }
  6714. }
  6715. assert(id*sizeof(float) <= params->wsize);
  6716. }
  6717. #endif
  6718. #if defined(GGML_USE_CUBLAS)
  6719. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6720. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6721. // copy data to device
  6722. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6723. // compute
  6724. CUBLAS_CHECK(
  6725. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6726. ne01, ne11, ne10,
  6727. &alpha, d_X, CUDA_R_16F, ne00,
  6728. d_Y, CUDA_R_16F, ne10,
  6729. &beta, d_D, CUDA_R_32F, ne01,
  6730. CUBLAS_COMPUTE_32F,
  6731. CUBLAS_GEMM_DEFAULT));
  6732. // copy data to host
  6733. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6734. #elif defined(GGML_USE_CLBLAST)
  6735. const float * x = wdata;
  6736. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6737. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6738. // zT = y * xT
  6739. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6740. ne11, ne01, ne10,
  6741. 1.0f, y, ne10,
  6742. x, ne10,
  6743. 0.0f, d, ne01,
  6744. GGML_TYPE_F32);
  6745. #else
  6746. const float * x = wdata;
  6747. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6748. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6749. // zT = y * xT
  6750. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6751. ne11, ne01, ne10,
  6752. 1.0f, y, ne10,
  6753. x, ne00,
  6754. 0.0f, d, ne01);
  6755. #endif
  6756. }
  6757. }
  6758. #if defined(GGML_USE_CUBLAS)
  6759. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6760. ggml_cuda_pool_free(d_X, x_size);
  6761. ggml_cuda_pool_free(d_Y, y_size);
  6762. ggml_cuda_pool_free(d_D, d_size);
  6763. #endif
  6764. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6765. return;
  6766. }
  6767. #endif
  6768. if (params->type == GGML_TASK_INIT) {
  6769. ggml_fp16_t * const wdata = params->wdata;
  6770. size_t id = 0;
  6771. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6772. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6773. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6774. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6775. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6776. }
  6777. }
  6778. }
  6779. }
  6780. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6781. return;
  6782. }
  6783. if (params->type == GGML_TASK_FINALIZE) {
  6784. return;
  6785. }
  6786. // fp16 -> half the size, so divide by 2
  6787. // TODO: do not support transposed src1
  6788. assert(nb10/2 == sizeof(ggml_fp16_t));
  6789. // parallelize by src0 rows using ggml_vec_dot_f16
  6790. // total rows in src0
  6791. const int nr = ne01*ne02*ne03;
  6792. // rows per thread
  6793. const int dr = (nr + nth - 1)/nth;
  6794. // row range for this thread
  6795. const int ir0 = dr*ith;
  6796. const int ir1 = MIN(ir0 + dr, nr);
  6797. ggml_fp16_t * wdata = params->wdata;
  6798. for (int ir = ir0; ir < ir1; ++ir) {
  6799. // src0 indices
  6800. const int i03 = ir/(ne02*ne01);
  6801. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6802. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6803. const int i13 = i03;
  6804. const int i12 = i02;
  6805. const int i0 = i01;
  6806. const int i2 = i02;
  6807. const int i3 = i03;
  6808. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6809. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6810. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6811. for (int64_t ic = 0; ic < ne11; ++ic) {
  6812. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6813. }
  6814. }
  6815. //int64_t t1 = ggml_time_us();
  6816. //static int64_t acc = 0;
  6817. //acc += t1 - t0;
  6818. //if (t1 - t0 > 10) {
  6819. // printf("\n");
  6820. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6821. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6822. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6823. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6824. //}
  6825. }
  6826. static void ggml_compute_forward_mul_mat_q_f32(
  6827. const struct ggml_compute_params * params,
  6828. const struct ggml_tensor * src0,
  6829. const struct ggml_tensor * src1,
  6830. struct ggml_tensor * dst) {
  6831. int64_t t0 = ggml_perf_time_us();
  6832. UNUSED(t0);
  6833. const int64_t ne00 = src0->ne[0];
  6834. const int64_t ne01 = src0->ne[1];
  6835. const int64_t ne02 = src0->ne[2];
  6836. const int64_t ne03 = src0->ne[3];
  6837. const int64_t ne10 = src1->ne[0];
  6838. const int64_t ne11 = src1->ne[1];
  6839. const int64_t ne12 = src1->ne[2];
  6840. const int64_t ne13 = src1->ne[3];
  6841. const int64_t ne0 = dst->ne[0];
  6842. const int64_t ne1 = dst->ne[1];
  6843. const int64_t ne2 = dst->ne[2];
  6844. const int64_t ne3 = dst->ne[3];
  6845. const int nb00 = src0->nb[0];
  6846. const int nb01 = src0->nb[1];
  6847. const int nb02 = src0->nb[2];
  6848. const int nb03 = src0->nb[3];
  6849. const int nb10 = src1->nb[0];
  6850. const int nb11 = src1->nb[1];
  6851. const int nb12 = src1->nb[2];
  6852. const int nb13 = src1->nb[3];
  6853. const int nb0 = dst->nb[0];
  6854. const int nb1 = dst->nb[1];
  6855. const int nb2 = dst->nb[2];
  6856. const int nb3 = dst->nb[3];
  6857. const int ith = params->ith;
  6858. const int nth = params->nth;
  6859. GGML_ASSERT(ne02 == ne12);
  6860. GGML_ASSERT(ne03 == ne13);
  6861. GGML_ASSERT(ne2 == ne12);
  6862. GGML_ASSERT(ne3 == ne13);
  6863. const enum ggml_type type = src0->type;
  6864. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6865. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6866. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6867. // we don't support permuted src0 or src1
  6868. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6869. GGML_ASSERT(nb10 == sizeof(float));
  6870. // dst cannot be transposed or permuted
  6871. GGML_ASSERT(nb0 == sizeof(float));
  6872. GGML_ASSERT(nb0 <= nb1);
  6873. GGML_ASSERT(nb1 <= nb2);
  6874. GGML_ASSERT(nb2 <= nb3);
  6875. GGML_ASSERT(ne0 == ne01);
  6876. GGML_ASSERT(ne1 == ne11);
  6877. GGML_ASSERT(ne2 == ne02);
  6878. GGML_ASSERT(ne3 == ne03);
  6879. // nb01 >= nb00 - src0 is not transposed
  6880. // compute by src0 rows
  6881. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6882. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6883. if (params->ith != 0) {
  6884. return;
  6885. }
  6886. if (params->type == GGML_TASK_INIT) {
  6887. return;
  6888. }
  6889. if (params->type == GGML_TASK_FINALIZE) {
  6890. return;
  6891. }
  6892. #if defined(GGML_USE_CUBLAS)
  6893. const float alpha = 1.0f;
  6894. const float beta = 0.0f;
  6895. const int x_ne = ne01 * ne00;
  6896. const int y_ne = ne11 * ne10;
  6897. const int d_ne = ne11 * ne01;
  6898. size_t x_size, y_size, d_size, q_size;
  6899. float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6900. float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6901. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6902. void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6903. const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
  6904. GGML_ASSERT(dequantize_row_q_cuda != NULL);
  6905. #else
  6906. float * const wdata = params->wdata;
  6907. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6908. #endif
  6909. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6910. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6911. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6912. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6913. #if defined(GGML_USE_CUBLAS)
  6914. // copy and dequantize on device
  6915. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
  6916. dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
  6917. CUDA_CHECK(cudaGetLastError());
  6918. CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
  6919. #elif defined(GGML_USE_CLBLAST)
  6920. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6921. #else
  6922. {
  6923. size_t id = 0;
  6924. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6925. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6926. id += ne00;
  6927. }
  6928. assert(id*sizeof(float) <= params->wsize);
  6929. }
  6930. const float * x = wdata;
  6931. #endif
  6932. #if defined(GGML_USE_CUBLAS)
  6933. // copy data to device
  6934. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6935. // wait for dequantization
  6936. CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
  6937. // compute
  6938. CUBLAS_CHECK(
  6939. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6940. ne01, ne11, ne10,
  6941. &alpha, d_X, ne00,
  6942. d_Y, ne10,
  6943. &beta, d_D, ne01));
  6944. // copy data to host
  6945. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6946. #elif defined(GGML_USE_CLBLAST)
  6947. // zT = y * xT
  6948. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6949. ne11, ne01, ne10,
  6950. 1.0f, y, ne10,
  6951. x, ne10,
  6952. 0.0f, d, ne01,
  6953. type);
  6954. #else
  6955. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6956. ne11, ne01, ne10,
  6957. 1.0f, y, ne10,
  6958. x, ne00,
  6959. 0.0f, d, ne01);
  6960. #endif
  6961. }
  6962. }
  6963. #if defined(GGML_USE_CUBLAS)
  6964. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6965. ggml_cuda_pool_free(d_X, x_size);
  6966. ggml_cuda_pool_free(d_Y, y_size);
  6967. ggml_cuda_pool_free(d_D, d_size);
  6968. ggml_cuda_pool_free(d_Q, q_size);
  6969. #endif
  6970. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6971. return;
  6972. }
  6973. #endif
  6974. if (params->type == GGML_TASK_INIT) {
  6975. char * wdata = params->wdata;
  6976. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6977. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6978. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6979. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6980. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6981. wdata += row_size;
  6982. }
  6983. }
  6984. }
  6985. return;
  6986. }
  6987. if (params->type == GGML_TASK_FINALIZE) {
  6988. return;
  6989. }
  6990. // parallelize by src0 rows using ggml_vec_dot_q
  6991. // total rows in src0
  6992. const int nr = ne01*ne02*ne03;
  6993. // rows per thread
  6994. const int dr = (nr + nth - 1)/nth;
  6995. // row range for this thread
  6996. const int ir0 = dr*ith;
  6997. const int ir1 = MIN(ir0 + dr, nr);
  6998. void * wdata = params->wdata;
  6999. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7000. for (int ir = ir0; ir < ir1; ++ir) {
  7001. // src0 indices
  7002. const int i03 = ir/(ne02*ne01);
  7003. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7004. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7005. const int i13 = i03;
  7006. const int i12 = i02;
  7007. const int i0 = i01;
  7008. const int i2 = i02;
  7009. const int i3 = i03;
  7010. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7011. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7012. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7013. assert(ne00 % 32 == 0);
  7014. for (int64_t ic = 0; ic < ne11; ++ic) {
  7015. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7016. }
  7017. }
  7018. //int64_t t1 = ggml_time_us();
  7019. //static int64_t acc = 0;
  7020. //acc += t1 - t0;
  7021. //if (t1 - t0 > 10) {
  7022. // printf("\n");
  7023. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7024. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7025. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7026. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7027. //}
  7028. }
  7029. static void ggml_compute_forward_mul_mat(
  7030. const struct ggml_compute_params * params,
  7031. const struct ggml_tensor * src0,
  7032. const struct ggml_tensor * src1,
  7033. struct ggml_tensor * dst) {
  7034. switch (src0->type) {
  7035. case GGML_TYPE_Q4_0:
  7036. case GGML_TYPE_Q4_1:
  7037. case GGML_TYPE_Q4_2:
  7038. case GGML_TYPE_Q5_0:
  7039. case GGML_TYPE_Q5_1:
  7040. case GGML_TYPE_Q8_0:
  7041. case GGML_TYPE_Q8_1:
  7042. {
  7043. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7044. } break;
  7045. case GGML_TYPE_F16:
  7046. {
  7047. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7048. } break;
  7049. case GGML_TYPE_F32:
  7050. {
  7051. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7052. } break;
  7053. default:
  7054. {
  7055. GGML_ASSERT(false);
  7056. } break;
  7057. }
  7058. }
  7059. // ggml_compute_forward_scale
  7060. static void ggml_compute_forward_scale_f32(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. const struct ggml_tensor * src1,
  7064. struct ggml_tensor * dst) {
  7065. GGML_ASSERT(ggml_is_contiguous(src0));
  7066. GGML_ASSERT(ggml_is_contiguous(dst));
  7067. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7068. GGML_ASSERT(ggml_is_scalar(src1));
  7069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7070. return;
  7071. }
  7072. // scale factor
  7073. const float v = *(float *) src1->data;
  7074. const int ith = params->ith;
  7075. const int nth = params->nth;
  7076. const int nc = src0->ne[0];
  7077. const int nr = ggml_nrows(src0);
  7078. // rows per thread
  7079. const int dr = (nr + nth - 1)/nth;
  7080. // row range for this thread
  7081. const int ir0 = dr*ith;
  7082. const int ir1 = MIN(ir0 + dr, nr);
  7083. for (int i1 = ir0; i1 < ir1; i1++) {
  7084. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7085. }
  7086. }
  7087. static void ggml_compute_forward_scale(
  7088. const struct ggml_compute_params * params,
  7089. const struct ggml_tensor * src0,
  7090. const struct ggml_tensor * src1,
  7091. struct ggml_tensor * dst) {
  7092. switch (src0->type) {
  7093. case GGML_TYPE_F32:
  7094. {
  7095. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7096. } break;
  7097. default:
  7098. {
  7099. GGML_ASSERT(false);
  7100. } break;
  7101. }
  7102. }
  7103. // ggml_compute_forward_cpy
  7104. static void ggml_compute_forward_cpy(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0,
  7107. struct ggml_tensor * dst) {
  7108. ggml_compute_forward_dup(params, src0, dst);
  7109. }
  7110. // ggml_compute_forward_cont
  7111. static void ggml_compute_forward_cont(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. struct ggml_tensor * dst) {
  7115. ggml_compute_forward_dup(params, src0, dst);
  7116. }
  7117. // ggml_compute_forward_reshape
  7118. static void ggml_compute_forward_reshape(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. // NOP
  7123. UNUSED(params);
  7124. UNUSED(src0);
  7125. UNUSED(dst);
  7126. }
  7127. // ggml_compute_forward_view
  7128. static void ggml_compute_forward_view(
  7129. const struct ggml_compute_params * params,
  7130. const struct ggml_tensor * src0) {
  7131. // NOP
  7132. UNUSED(params);
  7133. UNUSED(src0);
  7134. }
  7135. // ggml_compute_forward_permute
  7136. static void ggml_compute_forward_permute(
  7137. const struct ggml_compute_params * params,
  7138. const struct ggml_tensor * src0) {
  7139. // NOP
  7140. UNUSED(params);
  7141. UNUSED(src0);
  7142. }
  7143. // ggml_compute_forward_transpose
  7144. static void ggml_compute_forward_transpose(
  7145. const struct ggml_compute_params * params,
  7146. const struct ggml_tensor * src0) {
  7147. // NOP
  7148. UNUSED(params);
  7149. UNUSED(src0);
  7150. }
  7151. // ggml_compute_forward_get_rows
  7152. static void ggml_compute_forward_get_rows_q(
  7153. const struct ggml_compute_params * params,
  7154. const struct ggml_tensor * src0,
  7155. const struct ggml_tensor * src1,
  7156. struct ggml_tensor * dst) {
  7157. assert(params->ith == 0);
  7158. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7159. return;
  7160. }
  7161. const int nc = src0->ne[0];
  7162. const int nr = ggml_nelements(src1);
  7163. const enum ggml_type type = src0->type;
  7164. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7165. assert( dst->ne[0] == nc);
  7166. assert( dst->ne[1] == nr);
  7167. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7168. for (int i = 0; i < nr; ++i) {
  7169. const int r = ((int32_t *) src1->data)[i];
  7170. dequantize_row_q(
  7171. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7172. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7173. }
  7174. }
  7175. static void ggml_compute_forward_get_rows_f16(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. const struct ggml_tensor * src1,
  7179. struct ggml_tensor * dst) {
  7180. assert(params->ith == 0);
  7181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7182. return;
  7183. }
  7184. const int nc = src0->ne[0];
  7185. const int nr = ggml_nelements(src1);
  7186. assert( dst->ne[0] == nc);
  7187. assert( dst->ne[1] == nr);
  7188. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7189. for (int i = 0; i < nr; ++i) {
  7190. const int r = ((int32_t *) src1->data)[i];
  7191. for (int j = 0; j < nc; ++j) {
  7192. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7193. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7194. }
  7195. }
  7196. }
  7197. static void ggml_compute_forward_get_rows_f32(
  7198. const struct ggml_compute_params * params,
  7199. const struct ggml_tensor * src0,
  7200. const struct ggml_tensor * src1,
  7201. struct ggml_tensor * dst) {
  7202. assert(params->ith == 0);
  7203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7204. return;
  7205. }
  7206. const int nc = src0->ne[0];
  7207. const int nr = ggml_nelements(src1);
  7208. assert( dst->ne[0] == nc);
  7209. assert( dst->ne[1] == nr);
  7210. assert(src0->nb[0] == sizeof(float));
  7211. for (int i = 0; i < nr; ++i) {
  7212. const int r = ((int32_t *) src1->data)[i];
  7213. ggml_vec_cpy_f32(nc,
  7214. (float *) ((char *) dst->data + i*dst->nb[1]),
  7215. (float *) ((char *) src0->data + r*src0->nb[1]));
  7216. }
  7217. }
  7218. static void ggml_compute_forward_get_rows(
  7219. const struct ggml_compute_params * params,
  7220. const struct ggml_tensor * src0,
  7221. const struct ggml_tensor * src1,
  7222. struct ggml_tensor * dst) {
  7223. switch (src0->type) {
  7224. case GGML_TYPE_Q4_0:
  7225. case GGML_TYPE_Q4_1:
  7226. case GGML_TYPE_Q4_2:
  7227. case GGML_TYPE_Q5_0:
  7228. case GGML_TYPE_Q5_1:
  7229. case GGML_TYPE_Q8_0:
  7230. case GGML_TYPE_Q8_1:
  7231. {
  7232. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7233. } break;
  7234. case GGML_TYPE_F16:
  7235. {
  7236. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7237. } break;
  7238. case GGML_TYPE_F32:
  7239. {
  7240. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7241. } break;
  7242. default:
  7243. {
  7244. GGML_ASSERT(false);
  7245. } break;
  7246. }
  7247. //static bool first = true;
  7248. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7249. //if (first) {
  7250. // first = false;
  7251. //} else {
  7252. // for (int k = 0; k < dst->ne[1]; ++k) {
  7253. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7254. // for (int i = 0; i < 16; ++i) {
  7255. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7256. // }
  7257. // printf("\n");
  7258. // }
  7259. // printf("\n");
  7260. // }
  7261. // printf("\n");
  7262. // exit(0);
  7263. //}
  7264. }
  7265. // ggml_compute_forward_diag_mask_inf
  7266. static void ggml_compute_forward_diag_mask_inf_f32(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. const struct ggml_tensor * src1,
  7270. struct ggml_tensor * dst) {
  7271. assert(params->ith == 0);
  7272. assert(src1->type == GGML_TYPE_I32);
  7273. assert(ggml_nelements(src1) == 1);
  7274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7275. return;
  7276. }
  7277. const int n_past = ((int32_t *) src1->data)[0];
  7278. // TODO: handle transposed/permuted matrices
  7279. const int n = ggml_nrows(src0);
  7280. const int nc = src0->ne[0];
  7281. const int nr = src0->ne[1];
  7282. const int nz = n/nr;
  7283. assert( dst->nb[0] == sizeof(float));
  7284. assert(src0->nb[0] == sizeof(float));
  7285. for (int k = 0; k < nz; k++) {
  7286. for (int j = 0; j < nr; j++) {
  7287. for (int i = n_past; i < nc; i++) {
  7288. if (i > n_past + j) {
  7289. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7290. }
  7291. }
  7292. }
  7293. }
  7294. }
  7295. static void ggml_compute_forward_diag_mask_inf(
  7296. const struct ggml_compute_params * params,
  7297. const struct ggml_tensor * src0,
  7298. const struct ggml_tensor * src1,
  7299. struct ggml_tensor * dst) {
  7300. switch (src0->type) {
  7301. case GGML_TYPE_F32:
  7302. {
  7303. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7304. } break;
  7305. default:
  7306. {
  7307. GGML_ASSERT(false);
  7308. } break;
  7309. }
  7310. }
  7311. // ggml_compute_forward_soft_max
  7312. static void ggml_compute_forward_soft_max_f32(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. GGML_ASSERT(ggml_is_contiguous(src0));
  7317. GGML_ASSERT(ggml_is_contiguous(dst));
  7318. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7319. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7320. return;
  7321. }
  7322. // TODO: handle transposed/permuted matrices
  7323. const int ith = params->ith;
  7324. const int nth = params->nth;
  7325. const int nc = src0->ne[0];
  7326. const int nr = ggml_nrows(src0);
  7327. // rows per thread
  7328. const int dr = (nr + nth - 1)/nth;
  7329. // row range for this thread
  7330. const int ir0 = dr*ith;
  7331. const int ir1 = MIN(ir0 + dr, nr);
  7332. for (int i1 = ir0; i1 < ir1; i1++) {
  7333. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7334. #ifndef NDEBUG
  7335. for (int i = 0; i < nc; ++i) {
  7336. //printf("p[%d] = %f\n", i, p[i]);
  7337. assert(!isnan(p[i]));
  7338. }
  7339. #endif
  7340. float max = -INFINITY;
  7341. ggml_vec_max_f32(nc, &max, p);
  7342. ggml_float sum = 0.0;
  7343. uint16_t scvt;
  7344. for (int i = 0; i < nc; i++) {
  7345. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7346. if (p[i] == -INFINITY) {
  7347. p[i] = 0.0f;
  7348. } else {
  7349. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7350. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7351. memcpy(&scvt, &s, sizeof(scvt));
  7352. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7353. sum += (ggml_float)val;
  7354. p[i] = val;
  7355. }
  7356. }
  7357. assert(sum > 0.0);
  7358. sum = 1.0/sum;
  7359. ggml_vec_scale_f32(nc, p, sum);
  7360. #ifndef NDEBUG
  7361. for (int i = 0; i < nc; ++i) {
  7362. assert(!isnan(p[i]));
  7363. assert(!isinf(p[i]));
  7364. }
  7365. #endif
  7366. }
  7367. }
  7368. static void ggml_compute_forward_soft_max(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. struct ggml_tensor * dst) {
  7372. switch (src0->type) {
  7373. case GGML_TYPE_F32:
  7374. {
  7375. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7376. } break;
  7377. default:
  7378. {
  7379. GGML_ASSERT(false);
  7380. } break;
  7381. }
  7382. }
  7383. // ggml_compute_forward_alibi
  7384. static void ggml_compute_forward_alibi_f32(
  7385. const struct ggml_compute_params * params,
  7386. const struct ggml_tensor * src0,
  7387. const struct ggml_tensor * src1,
  7388. struct ggml_tensor * dst) {
  7389. assert(params->ith == 0);
  7390. assert(src1->type == GGML_TYPE_I32);
  7391. assert(ggml_nelements(src1) == 2);
  7392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7393. return;
  7394. }
  7395. const int n_past = ((int32_t *) src1->data)[0];
  7396. const int n_head = ((int32_t *) src1->data)[1];
  7397. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7398. const int ne1 = src0->ne[1]; // seq_len_without_past
  7399. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7400. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7401. const int n = ggml_nrows(src0);
  7402. const int ne2_ne3 = n/ne1; // ne2*ne3
  7403. const int nb0 = src0->nb[0];
  7404. const int nb1 = src0->nb[1];
  7405. const int nb2 = src0->nb[2];
  7406. //const int nb3 = src0->nb[3];
  7407. assert(nb0 == sizeof(float));
  7408. assert(ne1 + n_past == ne0); (void) n_past;
  7409. // add alibi to src0 (KQ_scaled)
  7410. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7411. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7412. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7413. for (int i = 0; i < ne0; i++) {
  7414. for (int j = 0; j < ne1; j++) {
  7415. for (int k = 0; k < ne2_ne3; k++) {
  7416. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7417. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7418. // TODO: k*nb2 or k*nb3
  7419. float m_k;
  7420. if (k < n_heads_log2_floor) {
  7421. m_k = powf(m0, k + 1);
  7422. } else {
  7423. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7424. }
  7425. pdst[0] = (j+1) * m_k + src[0];
  7426. }
  7427. }
  7428. }
  7429. }
  7430. static void ggml_compute_forward_alibi_f16(
  7431. const struct ggml_compute_params * params,
  7432. const struct ggml_tensor * src0,
  7433. const struct ggml_tensor * src1,
  7434. struct ggml_tensor * dst) {
  7435. assert(params->ith == 0);
  7436. assert(src1->type == GGML_TYPE_I32);
  7437. assert(ggml_nelements(src1) == 2);
  7438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7439. return;
  7440. }
  7441. const int n_past = ((int32_t *) src1->data)[0];
  7442. const int n_head = ((int32_t *) src1->data)[1];
  7443. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7444. const int ne1 = src0->ne[1]; // seq_len_without_past
  7445. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7446. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7447. const int n = ggml_nrows(src0);
  7448. const int ne2_ne3 = n/ne1; // ne2*ne3
  7449. const int nb0 = src0->nb[0];
  7450. const int nb1 = src0->nb[1];
  7451. const int nb2 = src0->nb[2];
  7452. //const int nb3 = src0->nb[3];
  7453. assert(nb0 == sizeof(ggml_fp16_t));
  7454. assert(ne1 + n_past == ne0); (void) n_past;
  7455. // add alibi to src0 (KQ_scaled)
  7456. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7457. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7458. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7459. for (int i = 0; i < ne0; i++) {
  7460. for (int j = 0; j < ne1; j++) {
  7461. for (int k = 0; k < ne2_ne3; k++) {
  7462. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7463. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7464. // TODO: k*nb2 or k*nb3
  7465. float m_k;
  7466. if (k < n_heads_log2_floor) {
  7467. m_k = powf(m0, k + 1);
  7468. } else {
  7469. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7470. }
  7471. // we return F32
  7472. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7473. }
  7474. }
  7475. }
  7476. }
  7477. static void ggml_compute_forward_alibi(
  7478. const struct ggml_compute_params * params,
  7479. const struct ggml_tensor * src0,
  7480. const struct ggml_tensor * src1,
  7481. struct ggml_tensor * dst) {
  7482. switch (src0->type) {
  7483. case GGML_TYPE_F16:
  7484. {
  7485. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7486. } break;
  7487. case GGML_TYPE_F32:
  7488. {
  7489. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7490. } break;
  7491. case GGML_TYPE_Q4_0:
  7492. case GGML_TYPE_Q4_1:
  7493. case GGML_TYPE_Q4_2:
  7494. case GGML_TYPE_Q5_0:
  7495. case GGML_TYPE_Q5_1:
  7496. case GGML_TYPE_Q8_0:
  7497. case GGML_TYPE_Q8_1:
  7498. case GGML_TYPE_I8:
  7499. case GGML_TYPE_I16:
  7500. case GGML_TYPE_I32:
  7501. case GGML_TYPE_COUNT:
  7502. {
  7503. GGML_ASSERT(false);
  7504. } break;
  7505. }
  7506. }
  7507. // ggml_compute_forward_rope
  7508. static void ggml_compute_forward_rope_f32(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. const struct ggml_tensor * src1,
  7512. struct ggml_tensor * dst) {
  7513. assert(src1->type == GGML_TYPE_I32);
  7514. assert(ggml_nelements(src1) == 3);
  7515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7516. return;
  7517. }
  7518. const int n_past = ((int32_t *) src1->data)[0];
  7519. const int n_dims = ((int32_t *) src1->data)[1];
  7520. const int mode = ((int32_t *) src1->data)[2];
  7521. //const int64_t ne0 = src0->ne[0];
  7522. const int64_t ne1 = src0->ne[1];
  7523. const int64_t ne2 = src0->ne[2];
  7524. const int64_t ne3 = src0->ne[3];
  7525. const int nb0 = src0->nb[0];
  7526. const int nb1 = src0->nb[1];
  7527. const int nb2 = src0->nb[2];
  7528. const int nb3 = src0->nb[3];
  7529. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7530. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7531. assert(nb0 == sizeof(float));
  7532. const int ith = params->ith;
  7533. const int nth = params->nth;
  7534. const int nr = ggml_nrows(src0);
  7535. // rows per thread
  7536. const int dr = (nr + nth - 1)/nth;
  7537. // row range for this thread
  7538. const int ir0 = dr*ith;
  7539. const int ir1 = MIN(ir0 + dr, nr);
  7540. // row index used to determine which thread to use
  7541. int ir = 0;
  7542. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7543. const bool is_neox = mode & 2;
  7544. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7545. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7546. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7547. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7548. if (ir++ < ir0) continue;
  7549. if (ir > ir1) break;
  7550. float theta = (float)p;
  7551. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7552. const float cos_theta = cosf(theta);
  7553. const float sin_theta = sinf(theta);
  7554. theta *= theta_scale;
  7555. if (!is_neox) {
  7556. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7557. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7558. const float x0 = src[0];
  7559. const float x1 = src[1];
  7560. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7561. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7562. } else {
  7563. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7564. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7565. const float x0 = src[0];
  7566. const float x1 = src[n_dims/2];
  7567. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7568. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7569. }
  7570. }
  7571. }
  7572. }
  7573. }
  7574. }
  7575. static void ggml_compute_forward_rope_f16(
  7576. const struct ggml_compute_params * params,
  7577. const struct ggml_tensor * src0,
  7578. const struct ggml_tensor * src1,
  7579. struct ggml_tensor * dst) {
  7580. assert(src1->type == GGML_TYPE_I32);
  7581. assert(ggml_nelements(src1) == 3);
  7582. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7583. return;
  7584. }
  7585. const int n_past = ((int32_t *) src1->data)[0];
  7586. const int n_dims = ((int32_t *) src1->data)[1];
  7587. const int mode = ((int32_t *) src1->data)[2];
  7588. //const int64_t ne0 = src0->ne[0];
  7589. const int64_t ne1 = src0->ne[1];
  7590. const int64_t ne2 = src0->ne[2];
  7591. const int64_t ne3 = src0->ne[3];
  7592. const int nb0 = src0->nb[0];
  7593. const int nb1 = src0->nb[1];
  7594. const int nb2 = src0->nb[2];
  7595. const int nb3 = src0->nb[3];
  7596. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7597. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7598. assert(nb0 == sizeof(ggml_fp16_t));
  7599. const int ith = params->ith;
  7600. const int nth = params->nth;
  7601. const int nr = ggml_nrows(src0);
  7602. // rows per thread
  7603. const int dr = (nr + nth - 1)/nth;
  7604. // row range for this thread
  7605. const int ir0 = dr*ith;
  7606. const int ir1 = MIN(ir0 + dr, nr);
  7607. // row index used to determine which thread to use
  7608. int ir = 0;
  7609. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7610. const bool is_neox = mode & 2;
  7611. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7612. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7613. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7614. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7615. if (ir++ < ir0) continue;
  7616. if (ir > ir1) break;
  7617. float theta = (float)p;
  7618. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7619. const float cos_theta = cosf(theta);
  7620. const float sin_theta = sinf(theta);
  7621. theta *= theta_scale;
  7622. if (!is_neox) {
  7623. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7624. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7625. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7626. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7627. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7628. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7629. } else {
  7630. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7631. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7632. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7633. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7634. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7635. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7636. }
  7637. }
  7638. }
  7639. }
  7640. }
  7641. }
  7642. static void ggml_compute_forward_rope(
  7643. const struct ggml_compute_params * params,
  7644. const struct ggml_tensor * src0,
  7645. const struct ggml_tensor * src1,
  7646. struct ggml_tensor * dst) {
  7647. switch (src0->type) {
  7648. case GGML_TYPE_F16:
  7649. {
  7650. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7651. } break;
  7652. case GGML_TYPE_F32:
  7653. {
  7654. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7655. } break;
  7656. default:
  7657. {
  7658. GGML_ASSERT(false);
  7659. } break;
  7660. }
  7661. }
  7662. // ggml_compute_forward_conv_1d_1s
  7663. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7664. const struct ggml_compute_params * params,
  7665. const struct ggml_tensor * src0,
  7666. const struct ggml_tensor * src1,
  7667. struct ggml_tensor * dst) {
  7668. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7669. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7670. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7671. int64_t t0 = ggml_perf_time_us();
  7672. UNUSED(t0);
  7673. const int64_t ne00 = src0->ne[0];
  7674. const int64_t ne01 = src0->ne[1];
  7675. const int64_t ne02 = src0->ne[2];
  7676. //const int64_t ne03 = src0->ne[3];
  7677. const int64_t ne10 = src1->ne[0];
  7678. const int64_t ne11 = src1->ne[1];
  7679. //const int64_t ne12 = src1->ne[2];
  7680. //const int64_t ne13 = src1->ne[3];
  7681. //const int64_t ne0 = dst->ne[0];
  7682. //const int64_t ne1 = dst->ne[1];
  7683. //const int64_t ne2 = dst->ne[2];
  7684. //const int64_t ne3 = dst->ne[3];
  7685. //const int64_t ne = ne0*ne1*ne2*ne3;
  7686. const int nb00 = src0->nb[0];
  7687. const int nb01 = src0->nb[1];
  7688. const int nb02 = src0->nb[2];
  7689. //const int nb03 = src0->nb[3];
  7690. const int nb10 = src1->nb[0];
  7691. const int nb11 = src1->nb[1];
  7692. //const int nb12 = src1->nb[2];
  7693. //const int nb13 = src1->nb[3];
  7694. //const int nb0 = dst->nb[0];
  7695. const int nb1 = dst->nb[1];
  7696. //const int nb2 = dst->nb[2];
  7697. //const int nb3 = dst->nb[3];
  7698. const int ith = params->ith;
  7699. const int nth = params->nth;
  7700. const int nk = ne00;
  7701. const int nh = nk/2;
  7702. const int ew0 = ggml_up32(ne01);
  7703. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7704. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7705. GGML_ASSERT(nb10 == sizeof(float));
  7706. if (params->type == GGML_TASK_INIT) {
  7707. // TODO: fix this memset (wsize is overestimated)
  7708. memset(params->wdata, 0, params->wsize);
  7709. // prepare kernel data (src0)
  7710. {
  7711. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7712. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7713. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7714. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7715. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7716. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7717. dst_data[i00*ew0 + i01] = src[i00];
  7718. }
  7719. }
  7720. }
  7721. }
  7722. // prepare source data (src1)
  7723. {
  7724. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7725. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7726. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7727. ggml_fp16_t * dst_data = wdata;
  7728. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7729. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7730. }
  7731. }
  7732. }
  7733. return;
  7734. }
  7735. if (params->type == GGML_TASK_FINALIZE) {
  7736. return;
  7737. }
  7738. // total rows in dst
  7739. const int nr = ne02;
  7740. // rows per thread
  7741. const int dr = (nr + nth - 1)/nth;
  7742. // row range for this thread
  7743. const int ir0 = dr*ith;
  7744. const int ir1 = MIN(ir0 + dr, nr);
  7745. for (int i1 = ir0; i1 < ir1; i1++) {
  7746. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7747. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7748. dst_data[i0] = 0;
  7749. for (int k = -nh; k <= nh; k++) {
  7750. float v = 0.0f;
  7751. ggml_vec_dot_f16(ew0, &v,
  7752. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7753. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7754. dst_data[i0] += v;
  7755. }
  7756. }
  7757. }
  7758. }
  7759. static void ggml_compute_forward_conv_1d_1s_f32(
  7760. const struct ggml_compute_params * params,
  7761. const struct ggml_tensor * src0,
  7762. const struct ggml_tensor * src1,
  7763. struct ggml_tensor * dst) {
  7764. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7765. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7766. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7767. int64_t t0 = ggml_perf_time_us();
  7768. UNUSED(t0);
  7769. const int64_t ne00 = src0->ne[0];
  7770. const int64_t ne01 = src0->ne[1];
  7771. const int64_t ne02 = src0->ne[2];
  7772. //const int64_t ne03 = src0->ne[3];
  7773. const int64_t ne10 = src1->ne[0];
  7774. const int64_t ne11 = src1->ne[1];
  7775. //const int64_t ne12 = src1->ne[2];
  7776. //const int64_t ne13 = src1->ne[3];
  7777. //const int64_t ne0 = dst->ne[0];
  7778. //const int64_t ne1 = dst->ne[1];
  7779. //const int64_t ne2 = dst->ne[2];
  7780. //const int64_t ne3 = dst->ne[3];
  7781. //const int64_t ne = ne0*ne1*ne2*ne3;
  7782. const int nb00 = src0->nb[0];
  7783. const int nb01 = src0->nb[1];
  7784. const int nb02 = src0->nb[2];
  7785. //const int nb03 = src0->nb[3];
  7786. const int nb10 = src1->nb[0];
  7787. const int nb11 = src1->nb[1];
  7788. //const int nb12 = src1->nb[2];
  7789. //const int nb13 = src1->nb[3];
  7790. //const int nb0 = dst->nb[0];
  7791. const int nb1 = dst->nb[1];
  7792. //const int nb2 = dst->nb[2];
  7793. //const int nb3 = dst->nb[3];
  7794. const int ith = params->ith;
  7795. const int nth = params->nth;
  7796. const int nk = ne00;
  7797. const int nh = nk/2;
  7798. const int ew0 = ggml_up32(ne01);
  7799. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7800. GGML_ASSERT(nb00 == sizeof(float));
  7801. GGML_ASSERT(nb10 == sizeof(float));
  7802. if (params->type == GGML_TASK_INIT) {
  7803. // TODO: fix this memset (wsize is overestimated)
  7804. memset(params->wdata, 0, params->wsize);
  7805. // prepare kernel data (src0)
  7806. {
  7807. float * const wdata = (float *) params->wdata + 0;
  7808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7809. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7810. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7811. float * dst_data = wdata + i02*ew0*ne00;
  7812. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7813. dst_data[i00*ew0 + i01] = src[i00];
  7814. }
  7815. }
  7816. }
  7817. }
  7818. // prepare source data (src1)
  7819. {
  7820. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7821. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7822. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7823. float * dst_data = wdata;
  7824. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7825. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7826. }
  7827. }
  7828. }
  7829. return;
  7830. }
  7831. if (params->type == GGML_TASK_FINALIZE) {
  7832. return;
  7833. }
  7834. // total rows in dst
  7835. const int nr = ne02;
  7836. // rows per thread
  7837. const int dr = (nr + nth - 1)/nth;
  7838. // row range for this thread
  7839. const int ir0 = dr*ith;
  7840. const int ir1 = MIN(ir0 + dr, nr);
  7841. for (int i1 = ir0; i1 < ir1; i1++) {
  7842. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7843. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7844. dst_data[i0] = 0;
  7845. for (int k = -nh; k <= nh; k++) {
  7846. float v = 0.0f;
  7847. ggml_vec_dot_f32(ew0, &v,
  7848. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7849. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7850. dst_data[i0] += v;
  7851. }
  7852. }
  7853. }
  7854. }
  7855. static void ggml_compute_forward_conv_1d_1s(
  7856. const struct ggml_compute_params * params,
  7857. const struct ggml_tensor * src0,
  7858. const struct ggml_tensor * src1,
  7859. struct ggml_tensor * dst) {
  7860. switch (src0->type) {
  7861. case GGML_TYPE_F16:
  7862. {
  7863. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7864. } break;
  7865. case GGML_TYPE_F32:
  7866. {
  7867. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7868. } break;
  7869. default:
  7870. {
  7871. GGML_ASSERT(false);
  7872. } break;
  7873. }
  7874. }
  7875. // ggml_compute_forward_conv_1d_2s
  7876. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7877. const struct ggml_compute_params * params,
  7878. const struct ggml_tensor * src0,
  7879. const struct ggml_tensor * src1,
  7880. struct ggml_tensor * dst) {
  7881. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7882. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7883. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7884. int64_t t0 = ggml_perf_time_us();
  7885. UNUSED(t0);
  7886. const int64_t ne00 = src0->ne[0];
  7887. const int64_t ne01 = src0->ne[1];
  7888. const int64_t ne02 = src0->ne[2];
  7889. //const int64_t ne03 = src0->ne[3];
  7890. const int64_t ne10 = src1->ne[0];
  7891. const int64_t ne11 = src1->ne[1];
  7892. //const int64_t ne12 = src1->ne[2];
  7893. //const int64_t ne13 = src1->ne[3];
  7894. //const int64_t ne0 = dst->ne[0];
  7895. //const int64_t ne1 = dst->ne[1];
  7896. //const int64_t ne2 = dst->ne[2];
  7897. //const int64_t ne3 = dst->ne[3];
  7898. //const int64_t ne = ne0*ne1*ne2*ne3;
  7899. const int nb00 = src0->nb[0];
  7900. const int nb01 = src0->nb[1];
  7901. const int nb02 = src0->nb[2];
  7902. //const int nb03 = src0->nb[3];
  7903. const int nb10 = src1->nb[0];
  7904. const int nb11 = src1->nb[1];
  7905. //const int nb12 = src1->nb[2];
  7906. //const int nb13 = src1->nb[3];
  7907. //const int nb0 = dst->nb[0];
  7908. const int nb1 = dst->nb[1];
  7909. //const int nb2 = dst->nb[2];
  7910. //const int nb3 = dst->nb[3];
  7911. const int ith = params->ith;
  7912. const int nth = params->nth;
  7913. const int nk = ne00;
  7914. const int nh = nk/2;
  7915. const int ew0 = ggml_up32(ne01);
  7916. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7917. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7918. GGML_ASSERT(nb10 == sizeof(float));
  7919. if (params->type == GGML_TASK_INIT) {
  7920. // TODO: fix this memset (wsize is overestimated)
  7921. memset(params->wdata, 0, params->wsize);
  7922. // prepare kernel data (src0)
  7923. {
  7924. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7925. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7926. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7927. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7928. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7929. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7930. dst_data[i00*ew0 + i01] = src[i00];
  7931. }
  7932. }
  7933. }
  7934. }
  7935. // prepare source data (src1)
  7936. {
  7937. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7938. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7939. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7940. ggml_fp16_t * dst_data = wdata;
  7941. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7942. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7943. }
  7944. }
  7945. }
  7946. return;
  7947. }
  7948. if (params->type == GGML_TASK_FINALIZE) {
  7949. return;
  7950. }
  7951. // total rows in dst
  7952. const int nr = ne02;
  7953. // rows per thread
  7954. const int dr = (nr + nth - 1)/nth;
  7955. // row range for this thread
  7956. const int ir0 = dr*ith;
  7957. const int ir1 = MIN(ir0 + dr, nr);
  7958. for (int i1 = ir0; i1 < ir1; i1++) {
  7959. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7960. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7961. dst_data[i0/2] = 0;
  7962. for (int k = -nh; k <= nh; k++) {
  7963. float v = 0.0f;
  7964. ggml_vec_dot_f16(ew0, &v,
  7965. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7966. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7967. dst_data[i0/2] += v;
  7968. }
  7969. }
  7970. }
  7971. }
  7972. static void ggml_compute_forward_conv_1d_2s_f32(
  7973. const struct ggml_compute_params * params,
  7974. const struct ggml_tensor * src0,
  7975. const struct ggml_tensor * src1,
  7976. struct ggml_tensor * dst) {
  7977. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7978. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7979. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7980. int64_t t0 = ggml_perf_time_us();
  7981. UNUSED(t0);
  7982. const int64_t ne00 = src0->ne[0];
  7983. const int64_t ne01 = src0->ne[1];
  7984. const int64_t ne02 = src0->ne[2];
  7985. //const int64_t ne03 = src0->ne[3];
  7986. const int64_t ne10 = src1->ne[0];
  7987. const int64_t ne11 = src1->ne[1];
  7988. //const int64_t ne12 = src1->ne[2];
  7989. //const int64_t ne13 = src1->ne[3];
  7990. //const int64_t ne0 = dst->ne[0];
  7991. //const int64_t ne1 = dst->ne[1];
  7992. //const int64_t ne2 = dst->ne[2];
  7993. //const int64_t ne3 = dst->ne[3];
  7994. //const int64_t ne = ne0*ne1*ne2*ne3;
  7995. const int nb00 = src0->nb[0];
  7996. const int nb01 = src0->nb[1];
  7997. const int nb02 = src0->nb[2];
  7998. //const int nb03 = src0->nb[3];
  7999. const int nb10 = src1->nb[0];
  8000. const int nb11 = src1->nb[1];
  8001. //const int nb12 = src1->nb[2];
  8002. //const int nb13 = src1->nb[3];
  8003. //const int nb0 = dst->nb[0];
  8004. const int nb1 = dst->nb[1];
  8005. //const int nb2 = dst->nb[2];
  8006. //const int nb3 = dst->nb[3];
  8007. const int ith = params->ith;
  8008. const int nth = params->nth;
  8009. const int nk = ne00;
  8010. const int nh = nk/2;
  8011. const int ew0 = ggml_up32(ne01);
  8012. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8013. GGML_ASSERT(nb00 == sizeof(float));
  8014. GGML_ASSERT(nb10 == sizeof(float));
  8015. if (params->type == GGML_TASK_INIT) {
  8016. // TODO: fix this memset (wsize is overestimated)
  8017. memset(params->wdata, 0, params->wsize);
  8018. // prepare kernel data (src0)
  8019. {
  8020. float * const wdata = (float *) params->wdata + 0;
  8021. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8022. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8023. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8024. float * dst_data = wdata + i02*ew0*ne00;
  8025. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8026. dst_data[i00*ew0 + i01] = src[i00];
  8027. }
  8028. }
  8029. }
  8030. }
  8031. // prepare source data (src1)
  8032. {
  8033. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8034. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8035. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8036. float * dst_data = wdata;
  8037. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8038. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8039. }
  8040. }
  8041. }
  8042. return;
  8043. }
  8044. if (params->type == GGML_TASK_FINALIZE) {
  8045. return;
  8046. }
  8047. // total rows in dst
  8048. const int nr = ne02;
  8049. // rows per thread
  8050. const int dr = (nr + nth - 1)/nth;
  8051. // row range for this thread
  8052. const int ir0 = dr*ith;
  8053. const int ir1 = MIN(ir0 + dr, nr);
  8054. for (int i1 = ir0; i1 < ir1; i1++) {
  8055. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8056. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8057. dst_data[i0/2] = 0;
  8058. for (int k = -nh; k <= nh; k++) {
  8059. float v = 0.0f;
  8060. ggml_vec_dot_f32(ew0, &v,
  8061. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8062. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8063. dst_data[i0/2] += v;
  8064. }
  8065. }
  8066. }
  8067. }
  8068. static void ggml_compute_forward_conv_1d_2s(
  8069. const struct ggml_compute_params * params,
  8070. const struct ggml_tensor * src0,
  8071. const struct ggml_tensor * src1,
  8072. struct ggml_tensor * dst) {
  8073. switch (src0->type) {
  8074. case GGML_TYPE_F16:
  8075. {
  8076. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8077. } break;
  8078. case GGML_TYPE_F32:
  8079. {
  8080. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8081. } break;
  8082. default:
  8083. {
  8084. GGML_ASSERT(false);
  8085. } break;
  8086. }
  8087. }
  8088. // ggml_compute_forward_flash_attn
  8089. static void ggml_compute_forward_flash_attn_f32(
  8090. const struct ggml_compute_params * params,
  8091. const struct ggml_tensor * q,
  8092. const struct ggml_tensor * k,
  8093. const struct ggml_tensor * v,
  8094. const bool masked,
  8095. struct ggml_tensor * dst) {
  8096. int64_t t0 = ggml_perf_time_us();
  8097. UNUSED(t0);
  8098. const int64_t neq0 = q->ne[0];
  8099. const int64_t neq1 = q->ne[1];
  8100. const int64_t neq2 = q->ne[2];
  8101. const int64_t neq3 = q->ne[3];
  8102. const int64_t nek0 = k->ne[0];
  8103. const int64_t nek1 = k->ne[1];
  8104. //const int64_t nek2 = k->ne[2];
  8105. //const int64_t nek3 = k->ne[3];
  8106. //const int64_t nev0 = v->ne[0];
  8107. const int64_t nev1 = v->ne[1];
  8108. //const int64_t nev2 = v->ne[2];
  8109. //const int64_t nev3 = v->ne[3];
  8110. const int64_t ne0 = dst->ne[0];
  8111. const int64_t ne1 = dst->ne[1];
  8112. //const int64_t ne2 = dst->ne[2];
  8113. //const int64_t ne3 = dst->ne[3];
  8114. const int nbk0 = k->nb[0];
  8115. const int nbk1 = k->nb[1];
  8116. const int nbk2 = k->nb[2];
  8117. const int nbk3 = k->nb[3];
  8118. const int nbq0 = q->nb[0];
  8119. const int nbq1 = q->nb[1];
  8120. const int nbq2 = q->nb[2];
  8121. const int nbq3 = q->nb[3];
  8122. const int nbv0 = v->nb[0];
  8123. const int nbv1 = v->nb[1];
  8124. const int nbv2 = v->nb[2];
  8125. const int nbv3 = v->nb[3];
  8126. const int nb0 = dst->nb[0];
  8127. const int nb1 = dst->nb[1];
  8128. const int nb2 = dst->nb[2];
  8129. const int nb3 = dst->nb[3];
  8130. const int ith = params->ith;
  8131. const int nth = params->nth;
  8132. const int64_t D = neq0;
  8133. const int64_t N = neq1;
  8134. const int64_t P = nek1 - N;
  8135. const int64_t M = P + N;
  8136. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8137. GGML_ASSERT(ne0 == D);
  8138. GGML_ASSERT(ne1 == N);
  8139. GGML_ASSERT(P >= 0);
  8140. GGML_ASSERT(nbq0 == sizeof(float));
  8141. GGML_ASSERT(nbk0 == sizeof(float));
  8142. GGML_ASSERT(nbv0 == sizeof(float));
  8143. GGML_ASSERT(neq0 == D);
  8144. GGML_ASSERT(nek0 == D);
  8145. GGML_ASSERT(nev1 == D);
  8146. GGML_ASSERT(neq1 == N);
  8147. GGML_ASSERT(nek1 == N + P);
  8148. GGML_ASSERT(nev1 == D);
  8149. // dst cannot be transposed or permuted
  8150. GGML_ASSERT(nb0 == sizeof(float));
  8151. GGML_ASSERT(nb0 <= nb1);
  8152. GGML_ASSERT(nb1 <= nb2);
  8153. GGML_ASSERT(nb2 <= nb3);
  8154. if (params->type == GGML_TASK_INIT) {
  8155. return;
  8156. }
  8157. if (params->type == GGML_TASK_FINALIZE) {
  8158. return;
  8159. }
  8160. // parallelize by q rows using ggml_vec_dot_f32
  8161. // total rows in q
  8162. const int nr = neq1*neq2*neq3;
  8163. // rows per thread
  8164. const int dr = (nr + nth - 1)/nth;
  8165. // row range for this thread
  8166. const int ir0 = dr*ith;
  8167. const int ir1 = MIN(ir0 + dr, nr);
  8168. const float scale = 1.0f/sqrtf(D);
  8169. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8170. for (int ir = ir0; ir < ir1; ++ir) {
  8171. // q indices
  8172. const int iq3 = ir/(neq2*neq1);
  8173. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8174. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8175. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8176. for (int i = M; i < Mup; ++i) {
  8177. S[i] = -INFINITY;
  8178. }
  8179. for (int64_t ic = 0; ic < nek1; ++ic) {
  8180. // k indices
  8181. const int ik3 = iq3;
  8182. const int ik2 = iq2;
  8183. const int ik1 = ic;
  8184. // S indices
  8185. const int i1 = ik1;
  8186. ggml_vec_dot_f32(neq0,
  8187. S + i1,
  8188. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8189. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8190. }
  8191. // scale
  8192. ggml_vec_scale_f32(nek1, S, scale);
  8193. if (masked) {
  8194. for (int64_t i = P; i < M; i++) {
  8195. if (i > P + iq1) {
  8196. S[i] = -INFINITY;
  8197. }
  8198. }
  8199. }
  8200. // softmax
  8201. {
  8202. float max = -INFINITY;
  8203. ggml_vec_max_f32(M, &max, S);
  8204. ggml_float sum = 0.0;
  8205. {
  8206. #ifdef GGML_SOFT_MAX_ACCELERATE
  8207. max = -max;
  8208. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8209. vvexpf(S, S, &Mup);
  8210. ggml_vec_sum_f32(Mup, &sum, S);
  8211. #else
  8212. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8213. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8214. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8215. float * SS = S + i;
  8216. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8217. if (SS[j] == -INFINITY) {
  8218. SS[j] = 0.0f;
  8219. } else {
  8220. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8221. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8222. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8223. sump[j] += (ggml_float)val;
  8224. SS[j] = val;
  8225. }
  8226. }
  8227. }
  8228. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8229. sum += sump[i];
  8230. }
  8231. #endif
  8232. }
  8233. assert(sum > 0.0);
  8234. sum = 1.0/sum;
  8235. ggml_vec_scale_f32(M, S, sum);
  8236. #ifndef NDEBUG
  8237. for (int i = 0; i < M; ++i) {
  8238. assert(!isnan(S[i]));
  8239. assert(!isinf(S[i]));
  8240. }
  8241. #endif
  8242. }
  8243. for (int64_t ic = 0; ic < nev1; ++ic) {
  8244. // dst indices
  8245. const int i1 = iq1;
  8246. const int i2 = iq2;
  8247. const int i3 = iq3;
  8248. ggml_vec_dot_f32(nek1,
  8249. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8250. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8251. S);
  8252. }
  8253. }
  8254. }
  8255. static void ggml_compute_forward_flash_attn_f16(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * q,
  8258. const struct ggml_tensor * k,
  8259. const struct ggml_tensor * v,
  8260. const bool masked,
  8261. struct ggml_tensor * dst) {
  8262. int64_t t0 = ggml_perf_time_us();
  8263. UNUSED(t0);
  8264. const int64_t neq0 = q->ne[0];
  8265. const int64_t neq1 = q->ne[1];
  8266. const int64_t neq2 = q->ne[2];
  8267. const int64_t neq3 = q->ne[3];
  8268. const int64_t nek0 = k->ne[0];
  8269. const int64_t nek1 = k->ne[1];
  8270. //const int64_t nek2 = k->ne[2];
  8271. //const int64_t nek3 = k->ne[3];
  8272. //const int64_t nev0 = v->ne[0];
  8273. const int64_t nev1 = v->ne[1];
  8274. //const int64_t nev2 = v->ne[2];
  8275. //const int64_t nev3 = v->ne[3];
  8276. const int64_t ne0 = dst->ne[0];
  8277. const int64_t ne1 = dst->ne[1];
  8278. //const int64_t ne2 = dst->ne[2];
  8279. //const int64_t ne3 = dst->ne[3];
  8280. const int nbk0 = k->nb[0];
  8281. const int nbk1 = k->nb[1];
  8282. const int nbk2 = k->nb[2];
  8283. const int nbk3 = k->nb[3];
  8284. const int nbq0 = q->nb[0];
  8285. const int nbq1 = q->nb[1];
  8286. const int nbq2 = q->nb[2];
  8287. const int nbq3 = q->nb[3];
  8288. const int nbv0 = v->nb[0];
  8289. const int nbv1 = v->nb[1];
  8290. const int nbv2 = v->nb[2];
  8291. const int nbv3 = v->nb[3];
  8292. const int nb0 = dst->nb[0];
  8293. const int nb1 = dst->nb[1];
  8294. const int nb2 = dst->nb[2];
  8295. const int nb3 = dst->nb[3];
  8296. const int ith = params->ith;
  8297. const int nth = params->nth;
  8298. const int64_t D = neq0;
  8299. const int64_t N = neq1;
  8300. const int64_t P = nek1 - N;
  8301. const int64_t M = P + N;
  8302. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8303. GGML_ASSERT(ne0 == D);
  8304. GGML_ASSERT(ne1 == N);
  8305. GGML_ASSERT(P >= 0);
  8306. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8307. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8308. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8309. GGML_ASSERT(neq0 == D);
  8310. GGML_ASSERT(nek0 == D);
  8311. GGML_ASSERT(nev1 == D);
  8312. GGML_ASSERT(neq1 == N);
  8313. GGML_ASSERT(nek1 == N + P);
  8314. GGML_ASSERT(nev1 == D);
  8315. // dst cannot be transposed or permuted
  8316. GGML_ASSERT(nb0 == sizeof(float));
  8317. GGML_ASSERT(nb0 <= nb1);
  8318. GGML_ASSERT(nb1 <= nb2);
  8319. GGML_ASSERT(nb2 <= nb3);
  8320. if (params->type == GGML_TASK_INIT) {
  8321. return;
  8322. }
  8323. if (params->type == GGML_TASK_FINALIZE) {
  8324. return;
  8325. }
  8326. // parallelize by q rows using ggml_vec_dot_f32
  8327. // total rows in q
  8328. const int nr = neq1*neq2*neq3;
  8329. // rows per thread
  8330. const int dr = (nr + nth - 1)/nth;
  8331. // row range for this thread
  8332. const int ir0 = dr*ith;
  8333. const int ir1 = MIN(ir0 + dr, nr);
  8334. const float scale = 1.0f/sqrtf(D);
  8335. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8336. for (int ir = ir0; ir < ir1; ++ir) {
  8337. // q indices
  8338. const int iq3 = ir/(neq2*neq1);
  8339. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8340. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8341. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8342. for (int i = M; i < Mup; ++i) {
  8343. S[i] = -INFINITY;
  8344. }
  8345. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8346. for (int64_t ic = 0; ic < nek1; ++ic) {
  8347. // k indices
  8348. const int ik3 = iq3;
  8349. const int ik2 = iq2;
  8350. const int ik1 = ic;
  8351. // S indices
  8352. const int i1 = ik1;
  8353. ggml_vec_dot_f16(neq0,
  8354. S + i1,
  8355. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8356. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8357. }
  8358. } else {
  8359. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8360. // k indices
  8361. const int ik3 = iq3;
  8362. const int ik2 = iq2;
  8363. const int ik1 = ic;
  8364. // S indices
  8365. const int i1 = ik1;
  8366. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8367. S + i1,
  8368. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8369. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8370. }
  8371. }
  8372. // scale
  8373. ggml_vec_scale_f32(nek1, S, scale);
  8374. if (masked) {
  8375. for (int64_t i = P; i < M; i++) {
  8376. if (i > P + iq1) {
  8377. S[i] = -INFINITY;
  8378. }
  8379. }
  8380. }
  8381. // softmax
  8382. {
  8383. float max = -INFINITY;
  8384. ggml_vec_max_f32(M, &max, S);
  8385. ggml_float sum = 0.0;
  8386. {
  8387. #ifdef GGML_SOFT_MAX_ACCELERATE
  8388. max = -max;
  8389. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8390. vvexpf(S, S, &Mup);
  8391. ggml_vec_sum_f32(Mup, &sum, S);
  8392. #else
  8393. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8394. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8395. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8396. float * SS = S + i;
  8397. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8398. if (SS[j] == -INFINITY) {
  8399. SS[j] = 0.0f;
  8400. } else {
  8401. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8402. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8403. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8404. sump[j] += (ggml_float)val;
  8405. SS[j] = val;
  8406. }
  8407. }
  8408. }
  8409. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8410. sum += sump[i];
  8411. }
  8412. #endif
  8413. }
  8414. assert(sum > 0.0);
  8415. sum = 1.0/sum;
  8416. ggml_vec_scale_f32(M, S, sum);
  8417. #ifndef NDEBUG
  8418. for (int i = 0; i < M; ++i) {
  8419. assert(!isnan(S[i]));
  8420. assert(!isinf(S[i]));
  8421. }
  8422. #endif
  8423. }
  8424. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8425. for (int64_t i = 0; i < M; i++) {
  8426. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8427. }
  8428. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8429. for (int64_t ic = 0; ic < nev1; ++ic) {
  8430. // dst indices
  8431. const int i1 = iq1;
  8432. const int i2 = iq2;
  8433. const int i3 = iq3;
  8434. ggml_vec_dot_f16(nek1,
  8435. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8436. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8437. S16);
  8438. }
  8439. } else {
  8440. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8441. // dst indices
  8442. const int i1 = iq1;
  8443. const int i2 = iq2;
  8444. const int i3 = iq3;
  8445. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8446. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8447. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8448. S16);
  8449. }
  8450. }
  8451. }
  8452. }
  8453. static void ggml_compute_forward_flash_attn(
  8454. const struct ggml_compute_params * params,
  8455. const struct ggml_tensor * q,
  8456. const struct ggml_tensor * k,
  8457. const struct ggml_tensor * v,
  8458. const bool masked,
  8459. struct ggml_tensor * dst) {
  8460. switch (q->type) {
  8461. case GGML_TYPE_F16:
  8462. {
  8463. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8464. } break;
  8465. case GGML_TYPE_F32:
  8466. {
  8467. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8468. } break;
  8469. default:
  8470. {
  8471. GGML_ASSERT(false);
  8472. } break;
  8473. }
  8474. }
  8475. // ggml_compute_forward_flash_ff
  8476. static void ggml_compute_forward_flash_ff_f16(
  8477. const struct ggml_compute_params * params,
  8478. const struct ggml_tensor * a, // F16
  8479. const struct ggml_tensor * b0, // F16 fc_w
  8480. const struct ggml_tensor * b1, // F32 fc_b
  8481. const struct ggml_tensor * c0, // F16 proj_w
  8482. const struct ggml_tensor * c1, // F32 proj_b
  8483. struct ggml_tensor * dst) {
  8484. int64_t t0 = ggml_perf_time_us();
  8485. UNUSED(t0);
  8486. const int64_t nea0 = a->ne[0];
  8487. const int64_t nea1 = a->ne[1];
  8488. const int64_t nea2 = a->ne[2];
  8489. const int64_t nea3 = a->ne[3];
  8490. const int64_t neb00 = b0->ne[0];
  8491. const int64_t neb01 = b0->ne[1];
  8492. //const int64_t neb02 = b0->ne[2];
  8493. //const int64_t neb03 = b0->ne[3];
  8494. const int64_t neb10 = b1->ne[0];
  8495. const int64_t neb11 = b1->ne[1];
  8496. //const int64_t neb12 = b1->ne[2];
  8497. //const int64_t neb13 = b1->ne[3];
  8498. const int64_t nec00 = c0->ne[0];
  8499. const int64_t nec01 = c0->ne[1];
  8500. //const int64_t nec02 = c0->ne[2];
  8501. //const int64_t nec03 = c0->ne[3];
  8502. const int64_t nec10 = c1->ne[0];
  8503. const int64_t nec11 = c1->ne[1];
  8504. //const int64_t nec12 = c1->ne[2];
  8505. //const int64_t nec13 = c1->ne[3];
  8506. const int64_t ne0 = dst->ne[0];
  8507. const int64_t ne1 = dst->ne[1];
  8508. const int64_t ne2 = dst->ne[2];
  8509. //const int64_t ne3 = dst->ne[3];
  8510. const int nba0 = a->nb[0];
  8511. const int nba1 = a->nb[1];
  8512. const int nba2 = a->nb[2];
  8513. const int nba3 = a->nb[3];
  8514. const int nbb00 = b0->nb[0];
  8515. const int nbb01 = b0->nb[1];
  8516. const int nbb02 = b0->nb[2];
  8517. const int nbb03 = b0->nb[3];
  8518. const int nbb10 = b1->nb[0];
  8519. //const int nbb11 = b1->nb[1];
  8520. //const int nbb12 = b1->nb[2];
  8521. //const int nbb13 = b1->nb[3];
  8522. const int nbc00 = c0->nb[0];
  8523. const int nbc01 = c0->nb[1];
  8524. const int nbc02 = c0->nb[2];
  8525. const int nbc03 = c0->nb[3];
  8526. const int nbc10 = c1->nb[0];
  8527. //const int nbc11 = c1->nb[1];
  8528. //const int nbc12 = c1->nb[2];
  8529. //const int nbc13 = c1->nb[3];
  8530. const int nb0 = dst->nb[0];
  8531. const int nb1 = dst->nb[1];
  8532. const int nb2 = dst->nb[2];
  8533. const int nb3 = dst->nb[3];
  8534. const int ith = params->ith;
  8535. const int nth = params->nth;
  8536. const int64_t D = nea0;
  8537. //const int64_t N = nea1;
  8538. const int64_t M = neb01;
  8539. GGML_ASSERT(ne0 == nea0);
  8540. GGML_ASSERT(ne1 == nea1);
  8541. GGML_ASSERT(ne2 == nea2);
  8542. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8543. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8544. GGML_ASSERT(nbb10 == sizeof(float));
  8545. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8546. GGML_ASSERT(nbc10 == sizeof(float));
  8547. GGML_ASSERT(neb00 == D);
  8548. GGML_ASSERT(neb01 == M);
  8549. GGML_ASSERT(neb10 == M);
  8550. GGML_ASSERT(neb11 == 1);
  8551. GGML_ASSERT(nec00 == M);
  8552. GGML_ASSERT(nec01 == D);
  8553. GGML_ASSERT(nec10 == D);
  8554. GGML_ASSERT(nec11 == 1);
  8555. // dst cannot be transposed or permuted
  8556. GGML_ASSERT(nb0 == sizeof(float));
  8557. GGML_ASSERT(nb0 <= nb1);
  8558. GGML_ASSERT(nb1 <= nb2);
  8559. GGML_ASSERT(nb2 <= nb3);
  8560. if (params->type == GGML_TASK_INIT) {
  8561. return;
  8562. }
  8563. if (params->type == GGML_TASK_FINALIZE) {
  8564. return;
  8565. }
  8566. // parallelize by a rows using ggml_vec_dot_f32
  8567. // total rows in a
  8568. const int nr = nea1*nea2*nea3;
  8569. // rows per thread
  8570. const int dr = (nr + nth - 1)/nth;
  8571. // row range for this thread
  8572. const int ir0 = dr*ith;
  8573. const int ir1 = MIN(ir0 + dr, nr);
  8574. for (int ir = ir0; ir < ir1; ++ir) {
  8575. // a indices
  8576. const int ia3 = ir/(nea2*nea1);
  8577. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8578. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8579. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8580. for (int64_t ic = 0; ic < neb01; ++ic) {
  8581. // b0 indices
  8582. const int ib03 = ia3;
  8583. const int ib02 = ia2;
  8584. const int ib01 = ic;
  8585. // S indices
  8586. const int i1 = ib01;
  8587. ggml_vec_dot_f16(nea0,
  8588. S + i1,
  8589. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8590. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8591. }
  8592. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8593. //ggml_vec_gelu_f32(neb01, S, S);
  8594. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8595. for (int64_t i = 0; i < M; i++) {
  8596. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8597. }
  8598. ggml_vec_gelu_f16(neb01, S16, S16);
  8599. {
  8600. // dst indices
  8601. const int i1 = ia1;
  8602. const int i2 = ia2;
  8603. const int i3 = ia3;
  8604. for (int64_t ic = 0; ic < nec01; ++ic) {
  8605. ggml_vec_dot_f16(neb01,
  8606. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8607. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8608. S16);
  8609. }
  8610. ggml_vec_add_f32(nec01,
  8611. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8612. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8613. (float *) c1->data);
  8614. }
  8615. }
  8616. }
  8617. static void ggml_compute_forward_flash_ff(
  8618. const struct ggml_compute_params * params,
  8619. const struct ggml_tensor * a,
  8620. const struct ggml_tensor * b0,
  8621. const struct ggml_tensor * b1,
  8622. const struct ggml_tensor * c0,
  8623. const struct ggml_tensor * c1,
  8624. struct ggml_tensor * dst) {
  8625. switch (b0->type) {
  8626. case GGML_TYPE_F16:
  8627. {
  8628. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8629. } break;
  8630. case GGML_TYPE_F32:
  8631. {
  8632. GGML_ASSERT(false); // TODO
  8633. } break;
  8634. default:
  8635. {
  8636. GGML_ASSERT(false);
  8637. } break;
  8638. }
  8639. }
  8640. // ggml_compute_forward_map_unary
  8641. static void ggml_compute_forward_map_unary_f32(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * src0,
  8644. struct ggml_tensor * dst,
  8645. const ggml_unary_op_f32_t fun) {
  8646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8648. return;
  8649. }
  8650. const int n = ggml_nrows(src0);
  8651. const int nc = src0->ne[0];
  8652. assert( dst->nb[0] == sizeof(float));
  8653. assert(src0->nb[0] == sizeof(float));
  8654. for (int i = 0; i < n; i++) {
  8655. fun(nc,
  8656. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8657. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8658. }
  8659. }
  8660. static void ggml_compute_forward_map_unary(
  8661. const struct ggml_compute_params * params,
  8662. const struct ggml_tensor * src0,
  8663. struct ggml_tensor * dst,
  8664. const ggml_unary_op_f32_t fun) {
  8665. switch (src0->type) {
  8666. case GGML_TYPE_F32:
  8667. {
  8668. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8669. } break;
  8670. default:
  8671. {
  8672. GGML_ASSERT(false);
  8673. } break;
  8674. }
  8675. }
  8676. // ggml_compute_forward_map_binary
  8677. static void ggml_compute_forward_map_binary_f32(
  8678. const struct ggml_compute_params * params,
  8679. const struct ggml_tensor * src0,
  8680. const struct ggml_tensor * src1,
  8681. struct ggml_tensor * dst,
  8682. const ggml_binary_op_f32_t fun) {
  8683. assert(params->ith == 0);
  8684. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8686. return;
  8687. }
  8688. const int n = ggml_nrows(src0);
  8689. const int nc = src0->ne[0];
  8690. assert( dst->nb[0] == sizeof(float));
  8691. assert(src0->nb[0] == sizeof(float));
  8692. assert(src1->nb[0] == sizeof(float));
  8693. for (int i = 0; i < n; i++) {
  8694. fun(nc,
  8695. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8696. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8697. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8698. }
  8699. }
  8700. static void ggml_compute_forward_map_binary(
  8701. const struct ggml_compute_params * params,
  8702. const struct ggml_tensor * src0,
  8703. const struct ggml_tensor * src1,
  8704. struct ggml_tensor * dst,
  8705. const ggml_binary_op_f32_t fun) {
  8706. switch (src0->type) {
  8707. case GGML_TYPE_F32:
  8708. {
  8709. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8710. } break;
  8711. default:
  8712. {
  8713. GGML_ASSERT(false);
  8714. } break;
  8715. }
  8716. }
  8717. /////////////////////////////////
  8718. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8719. GGML_ASSERT(params);
  8720. switch (tensor->op) {
  8721. case GGML_OP_DUP:
  8722. {
  8723. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8724. } break;
  8725. case GGML_OP_ADD:
  8726. {
  8727. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8728. } break;
  8729. case GGML_OP_SUB:
  8730. {
  8731. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8732. } break;
  8733. case GGML_OP_MUL:
  8734. {
  8735. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8736. } break;
  8737. case GGML_OP_DIV:
  8738. {
  8739. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8740. } break;
  8741. case GGML_OP_SQR:
  8742. {
  8743. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8744. } break;
  8745. case GGML_OP_SQRT:
  8746. {
  8747. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8748. } break;
  8749. case GGML_OP_SUM:
  8750. {
  8751. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8752. } break;
  8753. case GGML_OP_MEAN:
  8754. {
  8755. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8756. } break;
  8757. case GGML_OP_REPEAT:
  8758. {
  8759. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8760. } break;
  8761. case GGML_OP_ABS:
  8762. {
  8763. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8764. } break;
  8765. case GGML_OP_SGN:
  8766. {
  8767. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8768. } break;
  8769. case GGML_OP_NEG:
  8770. {
  8771. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8772. } break;
  8773. case GGML_OP_STEP:
  8774. {
  8775. ggml_compute_forward_step(params, tensor->src0, tensor);
  8776. } break;
  8777. case GGML_OP_RELU:
  8778. {
  8779. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8780. } break;
  8781. case GGML_OP_GELU:
  8782. {
  8783. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8784. } break;
  8785. case GGML_OP_SILU:
  8786. {
  8787. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8788. } break;
  8789. case GGML_OP_NORM:
  8790. {
  8791. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8792. } break;
  8793. case GGML_OP_RMS_NORM:
  8794. {
  8795. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8796. } break;
  8797. case GGML_OP_MUL_MAT:
  8798. {
  8799. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8800. } break;
  8801. case GGML_OP_SCALE:
  8802. {
  8803. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8804. } break;
  8805. case GGML_OP_CPY:
  8806. {
  8807. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8808. } break;
  8809. case GGML_OP_CONT:
  8810. {
  8811. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8812. } break;
  8813. case GGML_OP_RESHAPE:
  8814. {
  8815. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8816. } break;
  8817. case GGML_OP_VIEW:
  8818. {
  8819. ggml_compute_forward_view(params, tensor->src0);
  8820. } break;
  8821. case GGML_OP_PERMUTE:
  8822. {
  8823. ggml_compute_forward_permute(params, tensor->src0);
  8824. } break;
  8825. case GGML_OP_TRANSPOSE:
  8826. {
  8827. ggml_compute_forward_transpose(params, tensor->src0);
  8828. } break;
  8829. case GGML_OP_GET_ROWS:
  8830. {
  8831. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8832. } break;
  8833. case GGML_OP_DIAG_MASK_INF:
  8834. {
  8835. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8836. } break;
  8837. case GGML_OP_SOFT_MAX:
  8838. {
  8839. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8840. } break;
  8841. case GGML_OP_ROPE:
  8842. {
  8843. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8844. } break;
  8845. case GGML_OP_ALIBI:
  8846. {
  8847. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8848. } break;
  8849. case GGML_OP_CONV_1D_1S:
  8850. {
  8851. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8852. } break;
  8853. case GGML_OP_CONV_1D_2S:
  8854. {
  8855. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8856. } break;
  8857. case GGML_OP_FLASH_ATTN:
  8858. {
  8859. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8860. GGML_ASSERT(t == 0 || t == 1);
  8861. bool masked = t != 0;
  8862. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8863. } break;
  8864. case GGML_OP_FLASH_FF:
  8865. {
  8866. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8867. } break;
  8868. case GGML_OP_MAP_UNARY:
  8869. {
  8870. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8871. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8872. }
  8873. break;
  8874. case GGML_OP_MAP_BINARY:
  8875. {
  8876. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8877. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8878. }
  8879. break;
  8880. case GGML_OP_NONE:
  8881. {
  8882. // nop
  8883. } break;
  8884. case GGML_OP_COUNT:
  8885. {
  8886. GGML_ASSERT(false);
  8887. } break;
  8888. }
  8889. }
  8890. ////////////////////////////////////////////////////////////////////////////////
  8891. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8892. struct ggml_tensor * src0 = tensor->src0;
  8893. struct ggml_tensor * src1 = tensor->src1;
  8894. switch (tensor->op) {
  8895. case GGML_OP_DUP:
  8896. {
  8897. if (src0->grad) {
  8898. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8899. }
  8900. } break;
  8901. case GGML_OP_ADD:
  8902. {
  8903. if (src0->grad) {
  8904. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8905. }
  8906. if (src1->grad) {
  8907. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8908. }
  8909. } break;
  8910. case GGML_OP_SUB:
  8911. {
  8912. if (src0->grad) {
  8913. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8914. }
  8915. if (src1->grad) {
  8916. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8917. }
  8918. } break;
  8919. case GGML_OP_MUL:
  8920. {
  8921. if (src0->grad) {
  8922. src0->grad =
  8923. ggml_add_impl(ctx,
  8924. src0->grad,
  8925. ggml_mul(ctx, src1, tensor->grad),
  8926. inplace);
  8927. }
  8928. if (src1->grad) {
  8929. src1->grad =
  8930. ggml_add_impl(ctx,
  8931. src1->grad,
  8932. ggml_mul(ctx, src0, tensor->grad),
  8933. inplace);
  8934. }
  8935. } break;
  8936. case GGML_OP_DIV:
  8937. {
  8938. if (src0->grad) {
  8939. src0->grad =
  8940. ggml_add_impl(ctx,
  8941. src0->grad,
  8942. ggml_div(ctx, tensor->grad, src1),
  8943. inplace);
  8944. }
  8945. if (src1->grad) {
  8946. src1->grad =
  8947. ggml_sub_impl(ctx,
  8948. src1->grad,
  8949. ggml_mul(ctx,
  8950. tensor->grad,
  8951. ggml_div(ctx, tensor, src1)),
  8952. inplace);
  8953. }
  8954. } break;
  8955. case GGML_OP_SQR:
  8956. {
  8957. if (src0->grad) {
  8958. src0->grad =
  8959. ggml_add_impl(ctx,
  8960. src0->grad,
  8961. ggml_mul(ctx,
  8962. ggml_mul(ctx, src0, tensor->grad),
  8963. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8964. inplace);
  8965. }
  8966. } break;
  8967. case GGML_OP_SQRT:
  8968. {
  8969. if (src0->grad) {
  8970. src0->grad =
  8971. ggml_add_impl(ctx,
  8972. src0->grad,
  8973. ggml_div(ctx,
  8974. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8975. tensor),
  8976. inplace);
  8977. }
  8978. } break;
  8979. case GGML_OP_SUM:
  8980. {
  8981. if (src0->grad) {
  8982. src0->grad =
  8983. ggml_add_impl(ctx,
  8984. src0->grad,
  8985. ggml_repeat(ctx, tensor->grad, src0->grad),
  8986. inplace);
  8987. }
  8988. } break;
  8989. case GGML_OP_MEAN:
  8990. {
  8991. GGML_ASSERT(false); // TODO: implement
  8992. } break;
  8993. case GGML_OP_REPEAT:
  8994. {
  8995. if (src0->grad) {
  8996. src0->grad =
  8997. ggml_add_impl(ctx,
  8998. src0->grad,
  8999. ggml_sum(ctx, tensor->grad),
  9000. inplace);
  9001. }
  9002. } break;
  9003. case GGML_OP_ABS:
  9004. {
  9005. if (src0->grad) {
  9006. src0->grad =
  9007. ggml_add_impl(ctx,
  9008. src0->grad,
  9009. ggml_mul(ctx,
  9010. ggml_sgn(ctx, src0),
  9011. tensor->grad),
  9012. inplace);
  9013. }
  9014. } break;
  9015. case GGML_OP_SGN:
  9016. {
  9017. if (src0->grad) {
  9018. // noop
  9019. }
  9020. } break;
  9021. case GGML_OP_NEG:
  9022. {
  9023. if (src0->grad) {
  9024. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9025. }
  9026. } break;
  9027. case GGML_OP_STEP:
  9028. {
  9029. if (src0->grad) {
  9030. // noop
  9031. }
  9032. } break;
  9033. case GGML_OP_RELU:
  9034. {
  9035. if (src0->grad) {
  9036. src0->grad = ggml_sub_impl(ctx,
  9037. src0->grad,
  9038. ggml_mul(ctx,
  9039. ggml_step(ctx, src0),
  9040. tensor->grad),
  9041. inplace);
  9042. }
  9043. } break;
  9044. case GGML_OP_GELU:
  9045. {
  9046. GGML_ASSERT(false); // TODO: not implemented
  9047. } break;
  9048. case GGML_OP_ALIBI:
  9049. {
  9050. GGML_ASSERT(false); // TODO: not implemented
  9051. } break;
  9052. case GGML_OP_SILU:
  9053. {
  9054. GGML_ASSERT(false); // TODO: not implemented
  9055. } break;
  9056. case GGML_OP_NORM:
  9057. {
  9058. GGML_ASSERT(false); // TODO: not implemented
  9059. } break;
  9060. case GGML_OP_RMS_NORM:
  9061. {
  9062. GGML_ASSERT(false); // TODO: not implemented
  9063. } break;
  9064. case GGML_OP_MUL_MAT:
  9065. {
  9066. if (src0->grad) {
  9067. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9068. GGML_ASSERT(false);
  9069. }
  9070. if (src1->grad) {
  9071. src1->grad =
  9072. ggml_add_impl(ctx,
  9073. src1->grad,
  9074. ggml_mul_mat(ctx,
  9075. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9076. tensor->grad),
  9077. inplace);
  9078. }
  9079. } break;
  9080. case GGML_OP_SCALE:
  9081. {
  9082. GGML_ASSERT(false); // TODO: not implemented
  9083. } break;
  9084. case GGML_OP_CPY:
  9085. {
  9086. GGML_ASSERT(false); // TODO: not implemented
  9087. } break;
  9088. case GGML_OP_CONT:
  9089. {
  9090. GGML_ASSERT(false); // TODO: not implemented
  9091. } break;
  9092. case GGML_OP_RESHAPE:
  9093. {
  9094. GGML_ASSERT(false); // TODO: not implemented
  9095. } break;
  9096. case GGML_OP_VIEW:
  9097. {
  9098. GGML_ASSERT(false); // not supported
  9099. } break;
  9100. case GGML_OP_PERMUTE:
  9101. {
  9102. GGML_ASSERT(false); // TODO: not implemented
  9103. } break;
  9104. case GGML_OP_TRANSPOSE:
  9105. {
  9106. GGML_ASSERT(false); // TODO: not implemented
  9107. } break;
  9108. case GGML_OP_GET_ROWS:
  9109. {
  9110. GGML_ASSERT(false); // TODO: not implemented
  9111. } break;
  9112. case GGML_OP_DIAG_MASK_INF:
  9113. {
  9114. GGML_ASSERT(false); // TODO: not implemented
  9115. } break;
  9116. case GGML_OP_SOFT_MAX:
  9117. {
  9118. GGML_ASSERT(false); // TODO: not implemented
  9119. } break;
  9120. case GGML_OP_ROPE:
  9121. {
  9122. GGML_ASSERT(false); // TODO: not implemented
  9123. } break;
  9124. case GGML_OP_CONV_1D_1S:
  9125. {
  9126. GGML_ASSERT(false); // TODO: not implemented
  9127. } break;
  9128. case GGML_OP_CONV_1D_2S:
  9129. {
  9130. GGML_ASSERT(false); // TODO: not implemented
  9131. } break;
  9132. case GGML_OP_FLASH_ATTN:
  9133. {
  9134. GGML_ASSERT(false); // not supported
  9135. } break;
  9136. case GGML_OP_FLASH_FF:
  9137. {
  9138. GGML_ASSERT(false); // not supported
  9139. } break;
  9140. case GGML_OP_MAP_UNARY:
  9141. case GGML_OP_MAP_BINARY:
  9142. {
  9143. GGML_ASSERT(false); // not supported
  9144. } break;
  9145. case GGML_OP_NONE:
  9146. {
  9147. // nop
  9148. } break;
  9149. case GGML_OP_COUNT:
  9150. {
  9151. GGML_ASSERT(false);
  9152. } break;
  9153. }
  9154. }
  9155. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9156. if (node->grad == NULL) {
  9157. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9158. // it can also happen during forward pass, if the user performs computations with constants
  9159. if (node->op != GGML_OP_NONE) {
  9160. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9161. }
  9162. }
  9163. // check if already visited
  9164. for (int i = 0; i < cgraph->n_nodes; i++) {
  9165. if (cgraph->nodes[i] == node) {
  9166. return;
  9167. }
  9168. }
  9169. for (int i = 0; i < cgraph->n_leafs; i++) {
  9170. if (cgraph->leafs[i] == node) {
  9171. return;
  9172. }
  9173. }
  9174. if (node->src0) {
  9175. ggml_visit_parents(cgraph, node->src0);
  9176. }
  9177. if (node->src1) {
  9178. ggml_visit_parents(cgraph, node->src1);
  9179. }
  9180. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9181. if (node->opt[i]) {
  9182. ggml_visit_parents(cgraph, node->opt[i]);
  9183. }
  9184. }
  9185. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9186. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9187. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9188. cgraph->leafs[cgraph->n_leafs] = node;
  9189. cgraph->n_leafs++;
  9190. } else {
  9191. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9192. cgraph->nodes[cgraph->n_nodes] = node;
  9193. cgraph->grads[cgraph->n_nodes] = node->grad;
  9194. cgraph->n_nodes++;
  9195. }
  9196. }
  9197. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9198. if (!expand) {
  9199. cgraph->n_nodes = 0;
  9200. cgraph->n_leafs = 0;
  9201. }
  9202. const int n0 = cgraph->n_nodes;
  9203. UNUSED(n0);
  9204. ggml_visit_parents(cgraph, tensor);
  9205. const int n_new = cgraph->n_nodes - n0;
  9206. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9207. if (n_new > 0) {
  9208. // the last added node should always be starting point
  9209. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9210. }
  9211. }
  9212. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9213. ggml_build_forward_impl(cgraph, tensor, true);
  9214. }
  9215. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9216. struct ggml_cgraph result = {
  9217. /*.n_nodes =*/ 0,
  9218. /*.n_leafs =*/ 0,
  9219. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9220. /*.work_size =*/ 0,
  9221. /*.work =*/ NULL,
  9222. /*.nodes =*/ { NULL },
  9223. /*.grads =*/ { NULL },
  9224. /*.leafs =*/ { NULL },
  9225. /*.perf_runs =*/ 0,
  9226. /*.perf_cycles =*/ 0,
  9227. /*.perf_time_us =*/ 0,
  9228. };
  9229. ggml_build_forward_impl(&result, tensor, false);
  9230. return result;
  9231. }
  9232. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9233. struct ggml_cgraph result = *gf;
  9234. GGML_ASSERT(gf->n_nodes > 0);
  9235. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9236. if (keep) {
  9237. for (int i = 0; i < gf->n_nodes; i++) {
  9238. struct ggml_tensor * node = gf->nodes[i];
  9239. if (node->grad) {
  9240. node->grad = ggml_dup_tensor(ctx, node);
  9241. gf->grads[i] = node->grad;
  9242. }
  9243. }
  9244. }
  9245. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9246. struct ggml_tensor * node = gf->nodes[i];
  9247. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9248. if (node->grad) {
  9249. ggml_compute_backward(ctx, node, keep);
  9250. }
  9251. }
  9252. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9253. struct ggml_tensor * node = gf->nodes[i];
  9254. if (node->is_param) {
  9255. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9256. ggml_build_forward_impl(&result, node->grad, true);
  9257. }
  9258. }
  9259. return result;
  9260. }
  9261. //
  9262. // thread data
  9263. //
  9264. // synchronization is done via busy loops
  9265. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9266. //
  9267. #ifdef __APPLE__
  9268. //#include <os/lock.h>
  9269. //
  9270. //typedef os_unfair_lock ggml_lock_t;
  9271. //
  9272. //#define ggml_lock_init(x) UNUSED(x)
  9273. //#define ggml_lock_destroy(x) UNUSED(x)
  9274. //#define ggml_lock_lock os_unfair_lock_lock
  9275. //#define ggml_lock_unlock os_unfair_lock_unlock
  9276. //
  9277. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9278. typedef int ggml_lock_t;
  9279. #define ggml_lock_init(x) UNUSED(x)
  9280. #define ggml_lock_destroy(x) UNUSED(x)
  9281. #define ggml_lock_lock(x) UNUSED(x)
  9282. #define ggml_lock_unlock(x) UNUSED(x)
  9283. #define GGML_LOCK_INITIALIZER 0
  9284. typedef pthread_t ggml_thread_t;
  9285. #define ggml_thread_create pthread_create
  9286. #define ggml_thread_join pthread_join
  9287. #else
  9288. //typedef pthread_spinlock_t ggml_lock_t;
  9289. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9290. //#define ggml_lock_destroy pthread_spin_destroy
  9291. //#define ggml_lock_lock pthread_spin_lock
  9292. //#define ggml_lock_unlock pthread_spin_unlock
  9293. typedef int ggml_lock_t;
  9294. #define ggml_lock_init(x) UNUSED(x)
  9295. #define ggml_lock_destroy(x) UNUSED(x)
  9296. #define ggml_lock_lock(x) UNUSED(x)
  9297. #define ggml_lock_unlock(x) UNUSED(x)
  9298. #define GGML_LOCK_INITIALIZER 0
  9299. typedef pthread_t ggml_thread_t;
  9300. #define ggml_thread_create pthread_create
  9301. #define ggml_thread_join pthread_join
  9302. #endif
  9303. struct ggml_compute_state_shared {
  9304. ggml_lock_t spin;
  9305. int n_threads;
  9306. // synchronization primitives
  9307. atomic_int n_ready;
  9308. atomic_bool has_work;
  9309. atomic_bool stop; // stop all threads
  9310. };
  9311. struct ggml_compute_state {
  9312. ggml_thread_t thrd;
  9313. struct ggml_compute_params params;
  9314. struct ggml_tensor * node;
  9315. struct ggml_compute_state_shared * shared;
  9316. };
  9317. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9318. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9319. const int n_threads = state->shared->n_threads;
  9320. while (true) {
  9321. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9322. atomic_store(&state->shared->has_work, false);
  9323. } else {
  9324. while (atomic_load(&state->shared->has_work)) {
  9325. if (atomic_load(&state->shared->stop)) {
  9326. return 0;
  9327. }
  9328. ggml_lock_lock (&state->shared->spin);
  9329. ggml_lock_unlock(&state->shared->spin);
  9330. }
  9331. }
  9332. atomic_fetch_sub(&state->shared->n_ready, 1);
  9333. // wait for work
  9334. while (!atomic_load(&state->shared->has_work)) {
  9335. if (atomic_load(&state->shared->stop)) {
  9336. return 0;
  9337. }
  9338. ggml_lock_lock (&state->shared->spin);
  9339. ggml_lock_unlock(&state->shared->spin);
  9340. }
  9341. // check if we should stop
  9342. if (atomic_load(&state->shared->stop)) {
  9343. break;
  9344. }
  9345. if (state->node) {
  9346. if (state->params.ith < state->params.nth) {
  9347. ggml_compute_forward(&state->params, state->node);
  9348. }
  9349. state->node = NULL;
  9350. } else {
  9351. break;
  9352. }
  9353. }
  9354. return 0;
  9355. }
  9356. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9357. const int n_threads = cgraph->n_threads;
  9358. struct ggml_compute_state_shared state_shared = {
  9359. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9360. /*.n_threads =*/ n_threads,
  9361. /*.n_ready =*/ 0,
  9362. /*.has_work =*/ false,
  9363. /*.stop =*/ false,
  9364. };
  9365. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9366. // create thread pool
  9367. if (n_threads > 1) {
  9368. ggml_lock_init(&state_shared.spin);
  9369. atomic_store(&state_shared.has_work, true);
  9370. for (int j = 0; j < n_threads - 1; j++) {
  9371. workers[j] = (struct ggml_compute_state) {
  9372. .thrd = 0,
  9373. .params = {
  9374. .type = GGML_TASK_COMPUTE,
  9375. .ith = j + 1,
  9376. .nth = n_threads,
  9377. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9378. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9379. },
  9380. .node = NULL,
  9381. .shared = &state_shared,
  9382. };
  9383. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9384. GGML_ASSERT(rc == 0);
  9385. UNUSED(rc);
  9386. }
  9387. }
  9388. // initialize tasks + work buffer
  9389. {
  9390. size_t work_size = 0;
  9391. // thread scheduling for the different operations
  9392. for (int i = 0; i < cgraph->n_nodes; i++) {
  9393. struct ggml_tensor * node = cgraph->nodes[i];
  9394. switch (node->op) {
  9395. case GGML_OP_CPY:
  9396. case GGML_OP_DUP:
  9397. {
  9398. node->n_tasks = n_threads;
  9399. size_t cur = 0;
  9400. if (ggml_is_quantized(node->type)) {
  9401. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9402. }
  9403. work_size = MAX(work_size, cur);
  9404. } break;
  9405. case GGML_OP_ADD:
  9406. {
  9407. node->n_tasks = n_threads;
  9408. size_t cur = 0;
  9409. if (ggml_is_quantized(node->src0->type)) {
  9410. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9411. }
  9412. work_size = MAX(work_size, cur);
  9413. } break;
  9414. case GGML_OP_SUB:
  9415. case GGML_OP_MUL:
  9416. case GGML_OP_DIV:
  9417. case GGML_OP_SQR:
  9418. case GGML_OP_SQRT:
  9419. case GGML_OP_SUM:
  9420. case GGML_OP_MEAN:
  9421. case GGML_OP_REPEAT:
  9422. case GGML_OP_ABS:
  9423. case GGML_OP_SGN:
  9424. case GGML_OP_NEG:
  9425. case GGML_OP_STEP:
  9426. case GGML_OP_RELU:
  9427. {
  9428. node->n_tasks = 1;
  9429. } break;
  9430. case GGML_OP_GELU:
  9431. {
  9432. node->n_tasks = n_threads;
  9433. } break;
  9434. case GGML_OP_SILU:
  9435. {
  9436. node->n_tasks = n_threads;
  9437. } break;
  9438. case GGML_OP_NORM:
  9439. case GGML_OP_RMS_NORM:
  9440. {
  9441. node->n_tasks = n_threads;
  9442. } break;
  9443. case GGML_OP_MUL_MAT:
  9444. {
  9445. node->n_tasks = n_threads;
  9446. // TODO: use different scheduling for different matrix sizes
  9447. //const int nr0 = ggml_nrows(node->src0);
  9448. //const int nr1 = ggml_nrows(node->src1);
  9449. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9450. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9451. size_t cur = 0;
  9452. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9453. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9454. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9455. node->n_tasks = 1; // TODO: this actually is doing nothing
  9456. // the threads are still spinning
  9457. #if defined(GGML_USE_CUBLAS)
  9458. // with cuBLAS, we need memory for the full 3D / 4D data of src1
  9459. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9460. #else
  9461. // here we need memory just for single 2D matrix from src0
  9462. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9463. #endif
  9464. } else {
  9465. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9466. }
  9467. #else
  9468. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9469. #endif
  9470. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9471. cur = 0;
  9472. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9473. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9474. node->n_tasks = 1;
  9475. }
  9476. #endif
  9477. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9478. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9479. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9480. node->n_tasks = 1;
  9481. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9482. } else
  9483. #endif
  9484. {
  9485. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9486. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9487. }
  9488. } else {
  9489. GGML_ASSERT(false);
  9490. }
  9491. work_size = MAX(work_size, cur);
  9492. } break;
  9493. case GGML_OP_SCALE:
  9494. {
  9495. node->n_tasks = n_threads;
  9496. } break;
  9497. case GGML_OP_CONT:
  9498. case GGML_OP_RESHAPE:
  9499. case GGML_OP_VIEW:
  9500. case GGML_OP_PERMUTE:
  9501. case GGML_OP_TRANSPOSE:
  9502. case GGML_OP_GET_ROWS:
  9503. case GGML_OP_DIAG_MASK_INF:
  9504. {
  9505. node->n_tasks = 1;
  9506. } break;
  9507. case GGML_OP_SOFT_MAX:
  9508. {
  9509. node->n_tasks = n_threads;
  9510. } break;
  9511. case GGML_OP_ROPE:
  9512. {
  9513. node->n_tasks = n_threads;
  9514. } break;
  9515. case GGML_OP_ALIBI:
  9516. {
  9517. node->n_tasks = 1; //TODO
  9518. } break;
  9519. case GGML_OP_CONV_1D_1S:
  9520. case GGML_OP_CONV_1D_2S:
  9521. {
  9522. node->n_tasks = n_threads;
  9523. GGML_ASSERT(node->src0->ne[3] == 1);
  9524. GGML_ASSERT(node->src1->ne[2] == 1);
  9525. GGML_ASSERT(node->src1->ne[3] == 1);
  9526. size_t cur = 0;
  9527. const int nk = node->src0->ne[0];
  9528. if (node->src0->type == GGML_TYPE_F16 &&
  9529. node->src1->type == GGML_TYPE_F32) {
  9530. cur = sizeof(ggml_fp16_t)*(
  9531. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9532. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9533. );
  9534. } else if (node->src0->type == GGML_TYPE_F32 &&
  9535. node->src1->type == GGML_TYPE_F32) {
  9536. cur = sizeof(float)*(
  9537. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9538. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9539. );
  9540. } else {
  9541. GGML_ASSERT(false);
  9542. }
  9543. work_size = MAX(work_size, cur);
  9544. } break;
  9545. case GGML_OP_FLASH_ATTN:
  9546. {
  9547. node->n_tasks = n_threads;
  9548. size_t cur = 0;
  9549. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9550. if (node->src1->type == GGML_TYPE_F32) {
  9551. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9552. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9553. }
  9554. if (node->src1->type == GGML_TYPE_F16) {
  9555. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9556. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9557. }
  9558. work_size = MAX(work_size, cur);
  9559. } break;
  9560. case GGML_OP_FLASH_FF:
  9561. {
  9562. node->n_tasks = n_threads;
  9563. size_t cur = 0;
  9564. if (node->src1->type == GGML_TYPE_F32) {
  9565. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9566. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9567. }
  9568. if (node->src1->type == GGML_TYPE_F16) {
  9569. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9570. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9571. }
  9572. work_size = MAX(work_size, cur);
  9573. } break;
  9574. case GGML_OP_MAP_UNARY:
  9575. case GGML_OP_MAP_BINARY:
  9576. {
  9577. node->n_tasks = 1;
  9578. } break;
  9579. case GGML_OP_NONE:
  9580. {
  9581. node->n_tasks = 1;
  9582. } break;
  9583. case GGML_OP_COUNT:
  9584. {
  9585. GGML_ASSERT(false);
  9586. } break;
  9587. }
  9588. }
  9589. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9590. GGML_ASSERT(false); // TODO: better handling
  9591. }
  9592. if (work_size > 0 && cgraph->work == NULL) {
  9593. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9594. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9595. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9596. }
  9597. }
  9598. const int64_t perf_start_cycles = ggml_perf_cycles();
  9599. const int64_t perf_start_time_us = ggml_perf_time_us();
  9600. for (int i = 0; i < cgraph->n_nodes; i++) {
  9601. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9602. struct ggml_tensor * node = cgraph->nodes[i];
  9603. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9604. //if (node->grad == NULL && node->perf_runs > 0) {
  9605. // continue;
  9606. //}
  9607. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9608. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9609. // INIT
  9610. struct ggml_compute_params params = {
  9611. /*.type =*/ GGML_TASK_INIT,
  9612. /*.ith =*/ 0,
  9613. /*.nth =*/ node->n_tasks,
  9614. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9615. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9616. };
  9617. ggml_compute_forward(&params, node);
  9618. // COMPUTE
  9619. if (node->n_tasks > 1) {
  9620. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9621. atomic_store(&state_shared.has_work, false);
  9622. }
  9623. while (atomic_load(&state_shared.has_work)) {
  9624. ggml_lock_lock (&state_shared.spin);
  9625. ggml_lock_unlock(&state_shared.spin);
  9626. }
  9627. // launch thread pool
  9628. for (int j = 0; j < n_threads - 1; j++) {
  9629. workers[j].params = (struct ggml_compute_params) {
  9630. .type = GGML_TASK_COMPUTE,
  9631. .ith = j + 1,
  9632. .nth = node->n_tasks,
  9633. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9634. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9635. };
  9636. workers[j].node = node;
  9637. }
  9638. atomic_fetch_sub(&state_shared.n_ready, 1);
  9639. while (atomic_load(&state_shared.n_ready) > 0) {
  9640. ggml_lock_lock (&state_shared.spin);
  9641. ggml_lock_unlock(&state_shared.spin);
  9642. }
  9643. atomic_store(&state_shared.has_work, true);
  9644. }
  9645. params.type = GGML_TASK_COMPUTE;
  9646. ggml_compute_forward(&params, node);
  9647. // wait for thread pool
  9648. if (node->n_tasks > 1) {
  9649. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9650. atomic_store(&state_shared.has_work, false);
  9651. }
  9652. while (atomic_load(&state_shared.has_work)) {
  9653. ggml_lock_lock (&state_shared.spin);
  9654. ggml_lock_unlock(&state_shared.spin);
  9655. }
  9656. atomic_fetch_sub(&state_shared.n_ready, 1);
  9657. while (atomic_load(&state_shared.n_ready) != 0) {
  9658. ggml_lock_lock (&state_shared.spin);
  9659. ggml_lock_unlock(&state_shared.spin);
  9660. }
  9661. }
  9662. // FINALIZE
  9663. if (node->n_tasks > 1) {
  9664. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9665. atomic_store(&state_shared.has_work, false);
  9666. }
  9667. while (atomic_load(&state_shared.has_work)) {
  9668. ggml_lock_lock (&state_shared.spin);
  9669. ggml_lock_unlock(&state_shared.spin);
  9670. }
  9671. // launch thread pool
  9672. for (int j = 0; j < n_threads - 1; j++) {
  9673. workers[j].params = (struct ggml_compute_params) {
  9674. .type = GGML_TASK_FINALIZE,
  9675. .ith = j + 1,
  9676. .nth = node->n_tasks,
  9677. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9678. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9679. };
  9680. workers[j].node = node;
  9681. }
  9682. atomic_fetch_sub(&state_shared.n_ready, 1);
  9683. while (atomic_load(&state_shared.n_ready) > 0) {
  9684. ggml_lock_lock (&state_shared.spin);
  9685. ggml_lock_unlock(&state_shared.spin);
  9686. }
  9687. atomic_store(&state_shared.has_work, true);
  9688. }
  9689. params.type = GGML_TASK_FINALIZE;
  9690. ggml_compute_forward(&params, node);
  9691. // wait for thread pool
  9692. if (node->n_tasks > 1) {
  9693. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9694. atomic_store(&state_shared.has_work, false);
  9695. }
  9696. while (atomic_load(&state_shared.has_work)) {
  9697. ggml_lock_lock (&state_shared.spin);
  9698. ggml_lock_unlock(&state_shared.spin);
  9699. }
  9700. atomic_fetch_sub(&state_shared.n_ready, 1);
  9701. while (atomic_load(&state_shared.n_ready) != 0) {
  9702. ggml_lock_lock (&state_shared.spin);
  9703. ggml_lock_unlock(&state_shared.spin);
  9704. }
  9705. }
  9706. // performance stats (node)
  9707. {
  9708. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9709. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9710. node->perf_runs++;
  9711. node->perf_cycles += perf_cycles_cur;
  9712. node->perf_time_us += perf_time_us_cur;
  9713. }
  9714. }
  9715. // join thread pool
  9716. if (n_threads > 1) {
  9717. atomic_store(&state_shared.stop, true);
  9718. atomic_store(&state_shared.has_work, true);
  9719. for (int j = 0; j < n_threads - 1; j++) {
  9720. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9721. GGML_ASSERT(rc == 0);
  9722. UNUSED(rc);
  9723. }
  9724. ggml_lock_destroy(&state_shared.spin);
  9725. }
  9726. // performance stats (graph)
  9727. {
  9728. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9729. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9730. cgraph->perf_runs++;
  9731. cgraph->perf_cycles += perf_cycles_cur;
  9732. cgraph->perf_time_us += perf_time_us_cur;
  9733. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9734. __func__, cgraph->perf_runs,
  9735. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9736. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9737. (double) perf_time_us_cur / 1000.0,
  9738. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9739. }
  9740. }
  9741. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9742. for (int i = 0; i < cgraph->n_nodes; i++) {
  9743. struct ggml_tensor * grad = cgraph->grads[i];
  9744. if (grad) {
  9745. ggml_set_zero(grad);
  9746. }
  9747. }
  9748. }
  9749. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9750. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9751. GGML_PRINT("=== GRAPH ===\n");
  9752. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9753. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9754. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9755. for (int i = 0; i < cgraph->n_nodes; i++) {
  9756. struct ggml_tensor * node = cgraph->nodes[i];
  9757. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9758. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9759. i,
  9760. node->ne[0], node->ne[1], node->ne[2],
  9761. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9762. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9763. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9764. (double) node->perf_time_us / 1000.0,
  9765. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9766. }
  9767. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9768. for (int i = 0; i < cgraph->n_leafs; i++) {
  9769. struct ggml_tensor * node = cgraph->leafs[i];
  9770. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9771. i,
  9772. node->ne[0], node->ne[1],
  9773. GGML_OP_LABEL[node->op]);
  9774. }
  9775. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9776. if (perf_total_per_op_us[i] == 0) {
  9777. continue;
  9778. }
  9779. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9780. }
  9781. GGML_PRINT("========================================\n");
  9782. }
  9783. // check if node is part of the graph
  9784. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9785. if (cgraph == NULL) {
  9786. return true;
  9787. }
  9788. for (int i = 0; i < cgraph->n_nodes; i++) {
  9789. if (cgraph->nodes[i] == node) {
  9790. return true;
  9791. }
  9792. }
  9793. return false;
  9794. }
  9795. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9796. for (int i = 0; i < cgraph->n_nodes; i++) {
  9797. struct ggml_tensor * parent = cgraph->nodes[i];
  9798. if (parent->grad == node) {
  9799. return parent;
  9800. }
  9801. }
  9802. return NULL;
  9803. }
  9804. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9805. char color[16];
  9806. FILE * fp = fopen(filename, "w");
  9807. GGML_ASSERT(fp);
  9808. fprintf(fp, "digraph G {\n");
  9809. fprintf(fp, " newrank = true;\n");
  9810. fprintf(fp, " rankdir = LR;\n");
  9811. for (int i = 0; i < gb->n_nodes; i++) {
  9812. struct ggml_tensor * node = gb->nodes[i];
  9813. if (ggml_graph_get_parent(gb, node) != NULL) {
  9814. continue;
  9815. }
  9816. if (node->is_param) {
  9817. snprintf(color, sizeof(color), "yellow");
  9818. } else if (node->grad) {
  9819. if (ggml_graph_find(gf, node)) {
  9820. snprintf(color, sizeof(color), "green");
  9821. } else {
  9822. snprintf(color, sizeof(color), "lightblue");
  9823. }
  9824. } else {
  9825. snprintf(color, sizeof(color), "white");
  9826. }
  9827. fprintf(fp, " \"%p\" [ \
  9828. style = filled; fillcolor = %s; shape = record; \
  9829. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9830. (void *) node, color,
  9831. i, node->ne[0], node->ne[1],
  9832. GGML_OP_SYMBOL[node->op]);
  9833. if (node->grad) {
  9834. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9835. } else {
  9836. fprintf(fp, "\"; ]\n");
  9837. }
  9838. }
  9839. for (int i = 0; i < gb->n_leafs; i++) {
  9840. struct ggml_tensor * node = gb->leafs[i];
  9841. snprintf(color, sizeof(color), "pink");
  9842. if (ggml_nelements(node) == 1) {
  9843. fprintf(fp, " \"%p\" [ \
  9844. style = filled; fillcolor = %s; shape = record; \
  9845. label=\"<x>%.1e\"; ]\n",
  9846. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9847. } else {
  9848. fprintf(fp, " \"%p\" [ \
  9849. style = filled; fillcolor = %s; shape = record; \
  9850. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9851. (void *) node, color,
  9852. i, node->ne[0], node->ne[1]);
  9853. }
  9854. }
  9855. for (int i = 0; i < gb->n_nodes; i++) {
  9856. struct ggml_tensor * node = gb->nodes[i];
  9857. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9858. if (node->src0) {
  9859. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9860. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9861. parent0 ? (void *) parent0 : (void *) node->src0,
  9862. parent0 ? "g" : "x",
  9863. parent ? (void *) parent : (void *) node,
  9864. parent ? "g" : "x",
  9865. parent ? "empty" : "vee",
  9866. parent ? "dashed" : "solid");
  9867. }
  9868. if (node->src1) {
  9869. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9870. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9871. parent1 ? (void *) parent1 : (void *) node->src1,
  9872. parent1 ? "g" : "x",
  9873. parent ? (void *) parent : (void *) node,
  9874. parent ? "g" : "x",
  9875. parent ? "empty" : "vee",
  9876. parent ? "dashed" : "solid");
  9877. }
  9878. }
  9879. for (int i = 0; i < gb->n_leafs; i++) {
  9880. struct ggml_tensor * node = gb->leafs[i];
  9881. if (node->src0) {
  9882. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9883. (void *) node->src0, "x",
  9884. (void *) node, "x");
  9885. }
  9886. if (node->src1) {
  9887. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9888. (void *) node->src1, "x",
  9889. (void *) node, "x");
  9890. }
  9891. }
  9892. fprintf(fp, "}\n");
  9893. fclose(fp);
  9894. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9895. }
  9896. ////////////////////////////////////////////////////////////////////////////////
  9897. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9898. int i = 0;
  9899. for (int p = 0; p < np; ++p) {
  9900. const int64_t ne = ggml_nelements(ps[p]) ;
  9901. // TODO: add function to set tensor from array
  9902. for (int64_t j = 0; j < ne; ++j) {
  9903. ggml_set_f32_1d(ps[p], j, x[i++]);
  9904. }
  9905. }
  9906. }
  9907. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9908. int i = 0;
  9909. for (int p = 0; p < np; ++p) {
  9910. const int64_t ne = ggml_nelements(ps[p]) ;
  9911. // TODO: add function to get all elements at once
  9912. for (int64_t j = 0; j < ne; ++j) {
  9913. x[i++] = ggml_get_f32_1d(ps[p], j);
  9914. }
  9915. }
  9916. }
  9917. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9918. int i = 0;
  9919. for (int p = 0; p < np; ++p) {
  9920. const int64_t ne = ggml_nelements(ps[p]) ;
  9921. // TODO: add function to get all elements at once
  9922. for (int64_t j = 0; j < ne; ++j) {
  9923. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9924. }
  9925. }
  9926. }
  9927. //
  9928. // ADAM
  9929. //
  9930. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9931. //
  9932. static enum ggml_opt_result ggml_opt_adam(
  9933. struct ggml_context * ctx,
  9934. struct ggml_opt_params params,
  9935. struct ggml_tensor * f,
  9936. struct ggml_cgraph * gf,
  9937. struct ggml_cgraph * gb) {
  9938. GGML_ASSERT(ggml_is_scalar(f));
  9939. gf->n_threads = params.n_threads;
  9940. gb->n_threads = params.n_threads;
  9941. // these will store the parameters we want to optimize
  9942. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9943. int np = 0;
  9944. int nx = 0;
  9945. for (int i = 0; i < gf->n_nodes; ++i) {
  9946. if (gf->nodes[i]->is_param) {
  9947. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9948. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9949. ps[np++] = gf->nodes[i];
  9950. nx += ggml_nelements(gf->nodes[i]);
  9951. }
  9952. }
  9953. // constants
  9954. const float alpha = params.adam.alpha;
  9955. const float beta1 = params.adam.beta1;
  9956. const float beta2 = params.adam.beta2;
  9957. const float eps = params.adam.eps;
  9958. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9959. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9960. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9961. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9962. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9963. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9964. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9965. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9966. // initialize
  9967. ggml_vec_set_f32(nx, m, 0.0f);
  9968. ggml_vec_set_f32(nx, v, 0.0f);
  9969. // update view
  9970. ggml_opt_get_params(np, ps, x);
  9971. // compute the function value
  9972. ggml_graph_reset (gf);
  9973. ggml_set_f32 (f->grad, 1.0f);
  9974. ggml_graph_compute(ctx, gb);
  9975. float fx_prev = ggml_get_f32_1d(f, 0);
  9976. if (pf) {
  9977. pf[0] = fx_prev;
  9978. }
  9979. int n_no_improvement = 0;
  9980. float fx_best = fx_prev;
  9981. // run the optimizer
  9982. for (int t = 0; t < params.adam.n_iter; ++t) {
  9983. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9984. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9985. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9986. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9987. for (int i = 0; i < np; ++i) {
  9988. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9989. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9990. }
  9991. const int64_t t_start_wall = ggml_time_us();
  9992. const int64_t t_start_cpu = ggml_cycles();
  9993. UNUSED(t_start_wall);
  9994. UNUSED(t_start_cpu);
  9995. {
  9996. // update the gradient
  9997. ggml_opt_get_grad(np, ps, g1);
  9998. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9999. ggml_vec_scale_f32(nx, m, beta1);
  10000. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10001. // g2 = g1^2
  10002. ggml_vec_sqr_f32 (nx, g2, g1);
  10003. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10004. ggml_vec_scale_f32(nx, v, beta2);
  10005. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10006. // m^hat = m_t / (1 - beta1^t)
  10007. // v^hat = v_t / (1 - beta2^t)
  10008. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10009. ggml_vec_cpy_f32 (nx, mh, m);
  10010. ggml_vec_cpy_f32 (nx, vh, v);
  10011. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10012. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10013. ggml_vec_sqrt_f32 (nx, vh, vh);
  10014. ggml_vec_acc1_f32 (nx, vh, eps);
  10015. ggml_vec_div_f32 (nx, mh, mh, vh);
  10016. ggml_vec_sub_f32 (nx, x, x, mh);
  10017. // update the parameters
  10018. ggml_opt_set_params(np, ps, x);
  10019. }
  10020. ggml_graph_reset (gf);
  10021. ggml_set_f32 (f->grad, 1.0f);
  10022. ggml_graph_compute(ctx, gb);
  10023. const float fx = ggml_get_f32_1d(f, 0);
  10024. // check convergence
  10025. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10026. GGML_PRINT_DEBUG("converged\n");
  10027. return GGML_OPT_OK;
  10028. }
  10029. // delta-based convergence test
  10030. if (pf != NULL) {
  10031. // need at least params.past iterations to start checking for convergence
  10032. if (params.past <= t) {
  10033. const float rate = (pf[t%params.past] - fx)/fx;
  10034. if (fabsf(rate) < params.delta) {
  10035. return GGML_OPT_OK;
  10036. }
  10037. }
  10038. pf[t%params.past] = fx;
  10039. }
  10040. // check for improvement
  10041. if (params.max_no_improvement > 0) {
  10042. if (fx_best > fx) {
  10043. fx_best = fx;
  10044. n_no_improvement = 0;
  10045. } else {
  10046. ++n_no_improvement;
  10047. if (n_no_improvement >= params.max_no_improvement) {
  10048. return GGML_OPT_OK;
  10049. }
  10050. }
  10051. }
  10052. fx_prev = fx;
  10053. {
  10054. const int64_t t_end_cpu = ggml_cycles();
  10055. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10056. UNUSED(t_end_cpu);
  10057. const int64_t t_end_wall = ggml_time_us();
  10058. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10059. UNUSED(t_end_wall);
  10060. }
  10061. }
  10062. return GGML_OPT_DID_NOT_CONVERGE;
  10063. }
  10064. //
  10065. // L-BFGS
  10066. //
  10067. // the L-BFGS implementation below is based on the following implementation:
  10068. //
  10069. // https://github.com/chokkan/liblbfgs
  10070. //
  10071. struct ggml_lbfgs_iteration_data {
  10072. float alpha;
  10073. float ys;
  10074. float * s;
  10075. float * y;
  10076. };
  10077. static enum ggml_opt_result linesearch_backtracking(
  10078. struct ggml_context * ctx,
  10079. const struct ggml_opt_params * params,
  10080. int nx,
  10081. float * x,
  10082. float * fx,
  10083. float * g,
  10084. float * d,
  10085. float * step,
  10086. const float * xp,
  10087. struct ggml_tensor * f,
  10088. struct ggml_cgraph * gf,
  10089. struct ggml_cgraph * gb,
  10090. const int np,
  10091. struct ggml_tensor * ps[]) {
  10092. int count = 0;
  10093. float width = 0.0f;
  10094. float dg = 0.0f;
  10095. float finit = 0.0f;
  10096. float dginit = 0.0f;
  10097. float dgtest = 0.0f;
  10098. const float dec = 0.5f;
  10099. const float inc = 2.1f;
  10100. if (*step <= 0.f) {
  10101. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10102. }
  10103. // compute the initial gradient in the search direction
  10104. ggml_vec_dot_f32(nx, &dginit, g, d);
  10105. // make sure that d points to a descent direction
  10106. if (0 < dginit) {
  10107. return GGML_LINESEARCH_FAIL;
  10108. }
  10109. // initialize local variables
  10110. finit = *fx;
  10111. dgtest = params->lbfgs.ftol*dginit;
  10112. while (true) {
  10113. ggml_vec_cpy_f32(nx, x, xp);
  10114. ggml_vec_mad_f32(nx, x, d, *step);
  10115. // evaluate the function and gradient values
  10116. {
  10117. ggml_opt_set_params(np, ps, x);
  10118. ggml_graph_reset (gf);
  10119. ggml_set_f32 (f->grad, 1.0f);
  10120. ggml_graph_compute(ctx, gb);
  10121. ggml_opt_get_grad(np, ps, g);
  10122. *fx = ggml_get_f32_1d(f, 0);
  10123. }
  10124. ++count;
  10125. if (*fx > finit + (*step)*dgtest) {
  10126. width = dec;
  10127. } else {
  10128. // Armijo condition is satisfied
  10129. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10130. return count;
  10131. }
  10132. ggml_vec_dot_f32(nx, &dg, g, d);
  10133. // check the Wolfe condition
  10134. if (dg < params->lbfgs.wolfe * dginit) {
  10135. width = inc;
  10136. } else {
  10137. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10138. // regular Wolfe conditions
  10139. return count;
  10140. }
  10141. if(dg > -params->lbfgs.wolfe*dginit) {
  10142. width = dec;
  10143. } else {
  10144. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10145. return count;
  10146. }
  10147. return count;
  10148. }
  10149. }
  10150. if (*step < params->lbfgs.min_step) {
  10151. return GGML_LINESEARCH_MINIMUM_STEP;
  10152. }
  10153. if (*step > params->lbfgs.max_step) {
  10154. return GGML_LINESEARCH_MAXIMUM_STEP;
  10155. }
  10156. if (params->lbfgs.max_linesearch <= count) {
  10157. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10158. }
  10159. (*step) *= width;
  10160. }
  10161. return GGML_LINESEARCH_FAIL;
  10162. }
  10163. static enum ggml_opt_result ggml_opt_lbfgs(
  10164. struct ggml_context * ctx,
  10165. struct ggml_opt_params params,
  10166. struct ggml_tensor * f,
  10167. struct ggml_cgraph * gf,
  10168. struct ggml_cgraph * gb) {
  10169. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10170. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10171. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10172. return GGML_OPT_INVALID_WOLFE;
  10173. }
  10174. }
  10175. gf->n_threads = params.n_threads;
  10176. gb->n_threads = params.n_threads;
  10177. const int m = params.lbfgs.m;
  10178. // these will store the parameters we want to optimize
  10179. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10180. int np = 0;
  10181. int nx = 0;
  10182. for (int i = 0; i < gf->n_nodes; ++i) {
  10183. if (gf->nodes[i]->is_param) {
  10184. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10185. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10186. ps[np++] = gf->nodes[i];
  10187. nx += ggml_nelements(gf->nodes[i]);
  10188. }
  10189. }
  10190. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10191. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10192. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10193. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10194. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10195. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10196. float fx = 0.0f; // cost function value
  10197. float xnorm = 0.0f; // ||x||
  10198. float gnorm = 0.0f; // ||g||
  10199. float step = 0.0f;
  10200. // initialize x from the graph nodes
  10201. ggml_opt_get_params(np, ps, x);
  10202. // the L-BFGS memory
  10203. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10204. for (int i = 0; i < m; ++i) {
  10205. lm[i].alpha = 0.0f;
  10206. lm[i].ys = 0.0f;
  10207. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10208. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10209. }
  10210. // evaluate the function value and its gradient
  10211. {
  10212. ggml_opt_set_params(np, ps, x);
  10213. ggml_graph_reset (gf);
  10214. ggml_set_f32 (f->grad, 1.0f);
  10215. ggml_graph_compute(ctx, gb);
  10216. ggml_opt_get_grad(np, ps, g);
  10217. fx = ggml_get_f32_1d(f, 0);
  10218. }
  10219. if (pf) {
  10220. pf[0] = fx;
  10221. }
  10222. float fx_best = fx;
  10223. // search direction = -gradient
  10224. ggml_vec_neg_f32(nx, d, g);
  10225. // ||x||, ||g||
  10226. ggml_vec_norm_f32(nx, &xnorm, x);
  10227. ggml_vec_norm_f32(nx, &gnorm, g);
  10228. if (xnorm < 1.0f) {
  10229. xnorm = 1.0f;
  10230. }
  10231. // already optimized
  10232. if (gnorm/xnorm <= params.lbfgs.eps) {
  10233. return GGML_OPT_OK;
  10234. }
  10235. // initial step
  10236. ggml_vec_norm_inv_f32(nx, &step, d);
  10237. int j = 0;
  10238. int k = 1;
  10239. int ls = 0;
  10240. int end = 0;
  10241. int bound = 0;
  10242. int n_no_improvement = 0;
  10243. float ys = 0.0f;
  10244. float yy = 0.0f;
  10245. float beta = 0.0f;
  10246. while (true) {
  10247. // store the current position and gradient vectors
  10248. ggml_vec_cpy_f32(nx, xp, x);
  10249. ggml_vec_cpy_f32(nx, gp, g);
  10250. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10251. if (ls < 0) {
  10252. // linesearch failed - go back to the previous point and return
  10253. ggml_vec_cpy_f32(nx, x, xp);
  10254. ggml_vec_cpy_f32(nx, g, gp);
  10255. return ls;
  10256. }
  10257. ggml_vec_norm_f32(nx, &xnorm, x);
  10258. ggml_vec_norm_f32(nx, &gnorm, g);
  10259. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10260. if (xnorm < 1.0f) {
  10261. xnorm = 1.0f;
  10262. }
  10263. if (gnorm/xnorm <= params.lbfgs.eps) {
  10264. // converged
  10265. return GGML_OPT_OK;
  10266. }
  10267. // delta-based convergence test
  10268. if (pf != NULL) {
  10269. // need at least params.past iterations to start checking for convergence
  10270. if (params.past <= k) {
  10271. const float rate = (pf[k%params.past] - fx)/fx;
  10272. if (fabsf(rate) < params.delta) {
  10273. return GGML_OPT_OK;
  10274. }
  10275. }
  10276. pf[k%params.past] = fx;
  10277. }
  10278. // check for improvement
  10279. if (params.max_no_improvement > 0) {
  10280. if (fx < fx_best) {
  10281. fx_best = fx;
  10282. n_no_improvement = 0;
  10283. } else {
  10284. n_no_improvement++;
  10285. if (n_no_improvement >= params.max_no_improvement) {
  10286. return GGML_OPT_OK;
  10287. }
  10288. }
  10289. }
  10290. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10291. // reached the maximum number of iterations
  10292. return GGML_OPT_DID_NOT_CONVERGE;
  10293. }
  10294. // update vectors s and y:
  10295. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10296. // y_{k+1} = g_{k+1} - g_{k}.
  10297. //
  10298. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10299. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10300. // compute scalars ys and yy:
  10301. // ys = y^t \cdot s -> 1 / \rho.
  10302. // yy = y^t \cdot y.
  10303. //
  10304. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10305. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10306. lm[end].ys = ys;
  10307. // find new search direction
  10308. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10309. bound = (m <= k) ? m : k;
  10310. k++;
  10311. end = (end + 1)%m;
  10312. // initialize search direction with -g
  10313. ggml_vec_neg_f32(nx, d, g);
  10314. j = end;
  10315. for (int i = 0; i < bound; ++i) {
  10316. j = (j + m - 1) % m;
  10317. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10318. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10319. lm[j].alpha /= lm[j].ys;
  10320. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10321. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10322. }
  10323. ggml_vec_scale_f32(nx, d, ys/yy);
  10324. for (int i = 0; i < bound; ++i) {
  10325. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10326. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10327. beta /= lm[j].ys;
  10328. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10329. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10330. j = (j + 1)%m;
  10331. }
  10332. step = 1.0;
  10333. }
  10334. return GGML_OPT_DID_NOT_CONVERGE;
  10335. }
  10336. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10337. struct ggml_opt_params result;
  10338. switch (type) {
  10339. case GGML_OPT_ADAM:
  10340. {
  10341. result = (struct ggml_opt_params) {
  10342. .type = GGML_OPT_ADAM,
  10343. .n_threads = 1,
  10344. .past = 0,
  10345. .delta = 1e-5f,
  10346. .max_no_improvement = 100,
  10347. .print_forward_graph = true,
  10348. .print_backward_graph = true,
  10349. .adam = {
  10350. .n_iter = 10000,
  10351. .alpha = 0.001f,
  10352. .beta1 = 0.9f,
  10353. .beta2 = 0.999f,
  10354. .eps = 1e-8f,
  10355. .eps_f = 1e-5f,
  10356. .eps_g = 1e-3f,
  10357. },
  10358. };
  10359. } break;
  10360. case GGML_OPT_LBFGS:
  10361. {
  10362. result = (struct ggml_opt_params) {
  10363. .type = GGML_OPT_LBFGS,
  10364. .n_threads = 1,
  10365. .past = 0,
  10366. .delta = 1e-5f,
  10367. .max_no_improvement = 0,
  10368. .print_forward_graph = true,
  10369. .print_backward_graph = true,
  10370. .lbfgs = {
  10371. .m = 6,
  10372. .n_iter = 100,
  10373. .max_linesearch = 20,
  10374. .eps = 1e-5f,
  10375. .ftol = 1e-4f,
  10376. .wolfe = 0.9f,
  10377. .min_step = 1e-20f,
  10378. .max_step = 1e+20f,
  10379. .linesearch = GGML_LINESEARCH_DEFAULT,
  10380. },
  10381. };
  10382. } break;
  10383. }
  10384. return result;
  10385. }
  10386. enum ggml_opt_result ggml_opt(
  10387. struct ggml_context * ctx,
  10388. struct ggml_opt_params params,
  10389. struct ggml_tensor * f) {
  10390. bool free_ctx = false;
  10391. if (ctx == NULL) {
  10392. struct ggml_init_params params_ctx = {
  10393. .mem_size = 16*1024*1024,
  10394. .mem_buffer = NULL,
  10395. .no_alloc = false,
  10396. };
  10397. ctx = ggml_init(params_ctx);
  10398. if (ctx == NULL) {
  10399. return GGML_OPT_NO_CONTEXT;
  10400. }
  10401. free_ctx = true;
  10402. }
  10403. enum ggml_opt_result result = GGML_OPT_OK;
  10404. // build forward + backward compute graphs
  10405. struct ggml_cgraph gf = ggml_build_forward (f);
  10406. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10407. switch (params.type) {
  10408. case GGML_OPT_ADAM:
  10409. {
  10410. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10411. } break;
  10412. case GGML_OPT_LBFGS:
  10413. {
  10414. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10415. } break;
  10416. }
  10417. if (params.print_forward_graph) {
  10418. ggml_graph_print (&gf);
  10419. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10420. }
  10421. if (params.print_backward_graph) {
  10422. ggml_graph_print (&gb);
  10423. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10424. }
  10425. if (free_ctx) {
  10426. ggml_free(ctx);
  10427. }
  10428. return result;
  10429. }
  10430. ////////////////////////////////////////////////////////////////////////////////
  10431. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10432. assert(k % QK4_0 == 0);
  10433. const int nb = k / QK4_0;
  10434. for (int j = 0; j < n; j += k) {
  10435. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10436. quantize_row_q4_0_reference(src + j, y, k);
  10437. for (int i = 0; i < nb; i++) {
  10438. for (int l = 0; l < QK4_0; l += 2) {
  10439. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10440. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10441. hist[vi0]++;
  10442. hist[vi1]++;
  10443. }
  10444. }
  10445. }
  10446. return (n/QK4_0*sizeof(block_q4_0));
  10447. }
  10448. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10449. assert(k % QK4_1 == 0);
  10450. const int nb = k / QK4_1;
  10451. for (int j = 0; j < n; j += k) {
  10452. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10453. quantize_row_q4_1_reference(src + j, y, k);
  10454. for (int i = 0; i < nb; i++) {
  10455. for (int l = 0; l < QK4_1; l += 2) {
  10456. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10457. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10458. hist[vi0]++;
  10459. hist[vi1]++;
  10460. }
  10461. }
  10462. }
  10463. return (n/QK4_1*sizeof(block_q4_1));
  10464. }
  10465. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10466. assert(k % QK4_2 == 0);
  10467. const int nb = k / QK4_2;
  10468. for (int j = 0; j < n; j += k) {
  10469. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10470. quantize_row_q4_2_reference(src + j, y, k);
  10471. for (int i = 0; i < nb; i++) {
  10472. for (int l = 0; l < QK4_2; l += 2) {
  10473. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10474. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10475. hist[vi0]++;
  10476. hist[vi1]++;
  10477. }
  10478. }
  10479. }
  10480. return (n/QK4_2*sizeof(block_q4_2));
  10481. }
  10482. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10483. assert(k % QK5_0 == 0);
  10484. const int nb = k / QK5_0;
  10485. for (int j = 0; j < n; j += k) {
  10486. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10487. quantize_row_q5_0_reference(src + j, y, k);
  10488. for (int i = 0; i < nb; i++) {
  10489. uint32_t qh;
  10490. memcpy(&qh, &y[i].qh, sizeof(qh));
  10491. for (int l = 0; l < QK5_0; l += 2) {
  10492. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10493. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10494. // cast to 16 bins
  10495. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10496. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10497. hist[vi0]++;
  10498. hist[vi1]++;
  10499. }
  10500. }
  10501. }
  10502. return (n/QK5_0*sizeof(block_q5_0));
  10503. }
  10504. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10505. assert(k % QK5_1 == 0);
  10506. const int nb = k / QK5_1;
  10507. for (int j = 0; j < n; j += k) {
  10508. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10509. quantize_row_q5_1_reference(src + j, y, k);
  10510. for (int i = 0; i < nb; i++) {
  10511. uint32_t qh;
  10512. memcpy(&qh, &y[i].qh, sizeof(qh));
  10513. for (int l = 0; l < QK5_1; l += 2) {
  10514. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10515. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10516. // cast to 16 bins
  10517. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10518. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10519. hist[vi0]++;
  10520. hist[vi1]++;
  10521. }
  10522. }
  10523. }
  10524. return (n/QK5_1*sizeof(block_q5_1));
  10525. }
  10526. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10527. assert(k % QK8_0 == 0);
  10528. const int nb = k / QK8_0;
  10529. for (int j = 0; j < n; j += k) {
  10530. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10531. quantize_row_q8_0_reference(src + j, y, k);
  10532. for (int i = 0; i < nb; i++) {
  10533. for (int l = 0; l < QK8_0; ++l) {
  10534. const int8_t vi = y[i].qs[l];
  10535. hist[vi/16 + 8]++;
  10536. }
  10537. }
  10538. }
  10539. return (n/QK8_0*sizeof(block_q8_0));
  10540. }
  10541. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10542. size_t result = 0;
  10543. switch (type) {
  10544. case GGML_TYPE_Q4_0:
  10545. {
  10546. GGML_ASSERT(start % QK4_0 == 0);
  10547. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10548. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10549. } break;
  10550. case GGML_TYPE_Q4_1:
  10551. {
  10552. GGML_ASSERT(start % QK4_1 == 0);
  10553. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10554. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10555. } break;
  10556. case GGML_TYPE_Q4_2:
  10557. {
  10558. GGML_ASSERT(start % QK4_2 == 0);
  10559. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10560. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10561. } break;
  10562. case GGML_TYPE_Q5_0:
  10563. {
  10564. GGML_ASSERT(start % QK5_0 == 0);
  10565. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10566. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10567. } break;
  10568. case GGML_TYPE_Q5_1:
  10569. {
  10570. GGML_ASSERT(start % QK5_1 == 0);
  10571. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10572. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10573. } break;
  10574. case GGML_TYPE_Q8_0:
  10575. {
  10576. GGML_ASSERT(start % QK8_0 == 0);
  10577. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10578. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10579. } break;
  10580. default:
  10581. assert(false);
  10582. }
  10583. return result;
  10584. }
  10585. ////////////////////////////////////////////////////////////////////////////////
  10586. int ggml_cpu_has_avx(void) {
  10587. #if defined(__AVX__)
  10588. return 1;
  10589. #else
  10590. return 0;
  10591. #endif
  10592. }
  10593. int ggml_cpu_has_avx2(void) {
  10594. #if defined(__AVX2__)
  10595. return 1;
  10596. #else
  10597. return 0;
  10598. #endif
  10599. }
  10600. int ggml_cpu_has_avx512(void) {
  10601. #if defined(__AVX512F__)
  10602. return 1;
  10603. #else
  10604. return 0;
  10605. #endif
  10606. }
  10607. int ggml_cpu_has_avx512_vbmi(void) {
  10608. #if defined(__AVX512VBMI__)
  10609. return 1;
  10610. #else
  10611. return 0;
  10612. #endif
  10613. }
  10614. int ggml_cpu_has_avx512_vnni(void) {
  10615. #if defined(__AVX512VNNI__)
  10616. return 1;
  10617. #else
  10618. return 0;
  10619. #endif
  10620. }
  10621. int ggml_cpu_has_fma(void) {
  10622. #if defined(__FMA__)
  10623. return 1;
  10624. #else
  10625. return 0;
  10626. #endif
  10627. }
  10628. int ggml_cpu_has_neon(void) {
  10629. #if defined(__ARM_NEON)
  10630. return 1;
  10631. #else
  10632. return 0;
  10633. #endif
  10634. }
  10635. int ggml_cpu_has_arm_fma(void) {
  10636. #if defined(__ARM_FEATURE_FMA)
  10637. return 1;
  10638. #else
  10639. return 0;
  10640. #endif
  10641. }
  10642. int ggml_cpu_has_f16c(void) {
  10643. #if defined(__F16C__)
  10644. return 1;
  10645. #else
  10646. return 0;
  10647. #endif
  10648. }
  10649. int ggml_cpu_has_fp16_va(void) {
  10650. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10651. return 1;
  10652. #else
  10653. return 0;
  10654. #endif
  10655. }
  10656. int ggml_cpu_has_wasm_simd(void) {
  10657. #if defined(__wasm_simd128__)
  10658. return 1;
  10659. #else
  10660. return 0;
  10661. #endif
  10662. }
  10663. int ggml_cpu_has_blas(void) {
  10664. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10665. return 1;
  10666. #else
  10667. return 0;
  10668. #endif
  10669. }
  10670. int ggml_cpu_has_cublas(void) {
  10671. #if defined(GGML_USE_CUBLAS)
  10672. return 1;
  10673. #else
  10674. return 0;
  10675. #endif
  10676. }
  10677. int ggml_cpu_has_clblast(void) {
  10678. #if defined(GGML_USE_CLBLAST)
  10679. return 1;
  10680. #else
  10681. return 0;
  10682. #endif
  10683. }
  10684. int ggml_cpu_has_gpublas(void) {
  10685. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10686. }
  10687. int ggml_cpu_has_sse3(void) {
  10688. #if defined(__SSE3__)
  10689. return 1;
  10690. #else
  10691. return 0;
  10692. #endif
  10693. }
  10694. int ggml_cpu_has_vsx(void) {
  10695. #if defined(__POWER9_VECTOR__)
  10696. return 1;
  10697. #else
  10698. return 0;
  10699. #endif
  10700. }
  10701. ////////////////////////////////////////////////////////////////////////////////