ggml.c 613 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. //
  198. // tensor access macros
  199. //
  200. #define GGML_TENSOR_UNARY_OP_LOCALS \
  201. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  202. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  205. #define GGML_TENSOR_BINARY_OP_LOCALS \
  206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  208. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  209. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  210. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  211. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  212. #if defined(GGML_USE_ACCELERATE)
  213. #include <Accelerate/Accelerate.h>
  214. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  215. #include "ggml-opencl.h"
  216. #endif
  217. #elif defined(GGML_USE_OPENBLAS)
  218. #if defined(GGML_BLAS_USE_MKL)
  219. #include <mkl.h>
  220. #else
  221. #include <cblas.h>
  222. #endif
  223. #elif defined(GGML_USE_CUBLAS)
  224. #include "ggml-cuda.h"
  225. #elif defined(GGML_USE_CLBLAST)
  226. #include "ggml-opencl.h"
  227. #endif
  228. // floating point type used to accumulate sums
  229. typedef double ggml_float;
  230. #undef MIN
  231. #undef MAX
  232. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  233. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  234. //
  235. // global data
  236. //
  237. // precomputed gelu table for f16 (128 KB)
  238. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  239. // precomputed quick gelu table for f16 (128 KB)
  240. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  246. float ggml_table_f32_f16[1 << 16];
  247. // note: do not use these inside ggml.c
  248. // these are meant to be used via the ggml.h API
  249. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  250. return (float) GGML_FP16_TO_FP32(x);
  251. }
  252. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  253. return GGML_FP32_TO_FP16(x);
  254. }
  255. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  256. for (int i = 0; i < n; i++) {
  257. y[i] = GGML_FP16_TO_FP32(x[i]);
  258. }
  259. }
  260. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  261. int i = 0;
  262. #if defined(__F16C__)
  263. for (; i + 7 < n; i += 8) {
  264. __m256 x_vec = _mm256_loadu_ps(x + i);
  265. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  266. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  267. }
  268. for(; i + 3 < n; i += 4) {
  269. __m128 x_vec = _mm_loadu_ps(x + i);
  270. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  271. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  272. }
  273. #endif
  274. for (; i < n; i++) {
  275. y[i] = GGML_FP32_TO_FP16(x[i]);
  276. }
  277. }
  278. //
  279. // timing
  280. //
  281. #if defined(_MSC_VER) || defined(__MINGW32__)
  282. static int64_t timer_freq, timer_start;
  283. void ggml_time_init(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceFrequency(&t);
  286. timer_freq = t.QuadPart;
  287. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  288. // and the uptime is high enough.
  289. // We subtract the program start time to reduce the likelihood of that happening.
  290. QueryPerformanceCounter(&t);
  291. timer_start = t.QuadPart;
  292. }
  293. int64_t ggml_time_ms(void) {
  294. LARGE_INTEGER t;
  295. QueryPerformanceCounter(&t);
  296. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  297. }
  298. int64_t ggml_time_us(void) {
  299. LARGE_INTEGER t;
  300. QueryPerformanceCounter(&t);
  301. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  302. }
  303. #else
  304. void ggml_time_init(void) {}
  305. int64_t ggml_time_ms(void) {
  306. struct timespec ts;
  307. clock_gettime(CLOCK_MONOTONIC, &ts);
  308. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  309. }
  310. int64_t ggml_time_us(void) {
  311. struct timespec ts;
  312. clock_gettime(CLOCK_MONOTONIC, &ts);
  313. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  314. }
  315. #endif
  316. int64_t ggml_cycles(void) {
  317. return clock();
  318. }
  319. int64_t ggml_cycles_per_ms(void) {
  320. return CLOCKS_PER_SEC/1000;
  321. }
  322. #ifdef GGML_PERF
  323. #define ggml_perf_time_ms() ggml_time_ms()
  324. #define ggml_perf_time_us() ggml_time_us()
  325. #define ggml_perf_cycles() ggml_cycles()
  326. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  327. #else
  328. #define ggml_perf_time_ms() 0
  329. #define ggml_perf_time_us() 0
  330. #define ggml_perf_cycles() 0
  331. #define ggml_perf_cycles_per_ms() 0
  332. #endif
  333. //
  334. // cache line
  335. //
  336. #if defined(__cpp_lib_hardware_interference_size)
  337. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  338. #else
  339. #if defined(__POWER9_VECTOR__)
  340. #define CACHE_LINE_SIZE 128
  341. #else
  342. #define CACHE_LINE_SIZE 64
  343. #endif
  344. #endif
  345. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  346. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  347. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  348. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  349. [GGML_TYPE_I8] = {
  350. .type_name = "i8",
  351. .blck_size = 1,
  352. .type_size = sizeof(int8_t),
  353. .is_quantized = false,
  354. },
  355. [GGML_TYPE_I16] = {
  356. .type_name = "i16",
  357. .blck_size = 1,
  358. .type_size = sizeof(int16_t),
  359. .is_quantized = false,
  360. },
  361. [GGML_TYPE_I32] = {
  362. .type_name = "i32",
  363. .blck_size = 1,
  364. .type_size = sizeof(int32_t),
  365. .is_quantized = false,
  366. },
  367. [GGML_TYPE_F32] = {
  368. .type_name = "f32",
  369. .blck_size = 1,
  370. .type_size = sizeof(float),
  371. .is_quantized = false,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  373. .vec_dot_type = GGML_TYPE_F32,
  374. },
  375. [GGML_TYPE_F16] = {
  376. .type_name = "f16",
  377. .blck_size = 1,
  378. .type_size = sizeof(ggml_fp16_t),
  379. .is_quantized = false,
  380. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  381. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  382. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  383. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  384. .vec_dot_type = GGML_TYPE_F16,
  385. },
  386. [GGML_TYPE_Q4_0] = {
  387. .type_name = "q4_0",
  388. .blck_size = QK4_0,
  389. .type_size = sizeof(block_q4_0),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  392. .from_float = quantize_row_q4_0,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  394. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  395. .vec_dot_type = GGML_TYPE_Q8_0,
  396. },
  397. [GGML_TYPE_Q4_1] = {
  398. .type_name = "q4_1",
  399. .blck_size = QK4_1,
  400. .type_size = sizeof(block_q4_1),
  401. .is_quantized = true,
  402. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  403. .from_float = quantize_row_q4_1,
  404. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  405. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  406. .vec_dot_type = GGML_TYPE_Q8_1,
  407. },
  408. [4] = { // GGML_TYPE_Q4_2
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [5] = { // GGML_TYPE_Q4_3
  420. .type_name = "DEPRECATED",
  421. .blck_size = 0,
  422. .type_size = 0,
  423. .is_quantized = false,
  424. .to_float = NULL,
  425. .from_float = NULL,
  426. .from_float_reference = NULL,
  427. .vec_dot = NULL,
  428. .vec_dot_type = GGML_TYPE_COUNT,
  429. },
  430. [GGML_TYPE_Q5_0] = {
  431. .type_name = "q5_0",
  432. .blck_size = QK5_0,
  433. .type_size = sizeof(block_q5_0),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  436. .from_float = quantize_row_q5_0,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  438. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  439. .vec_dot_type = GGML_TYPE_Q8_0,
  440. },
  441. [GGML_TYPE_Q5_1] = {
  442. .type_name = "q5_1",
  443. .blck_size = QK5_1,
  444. .type_size = sizeof(block_q5_1),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  447. .from_float = quantize_row_q5_1,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  449. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  450. .vec_dot_type = GGML_TYPE_Q8_1,
  451. },
  452. [GGML_TYPE_Q8_0] = {
  453. .type_name = "q8_0",
  454. .blck_size = QK8_0,
  455. .type_size = sizeof(block_q8_0),
  456. .is_quantized = true,
  457. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  458. .from_float = quantize_row_q8_0,
  459. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  460. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  461. .vec_dot_type = GGML_TYPE_Q8_0,
  462. },
  463. [GGML_TYPE_Q8_1] = {
  464. .type_name = "q8_1",
  465. .blck_size = QK8_1,
  466. .type_size = sizeof(block_q8_1),
  467. .is_quantized = true,
  468. .from_float = quantize_row_q8_1,
  469. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  470. .vec_dot_type = GGML_TYPE_Q8_1,
  471. },
  472. [GGML_TYPE_Q2_K] = {
  473. .type_name = "q2_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q2_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  478. .from_float = quantize_row_q2_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  480. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q3_K] = {
  484. .type_name = "q3_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q3_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  489. .from_float = quantize_row_q3_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  491. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q4_K] = {
  495. .type_name = "q4_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q4_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  500. .from_float = quantize_row_q4_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  502. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q5_K] = {
  506. .type_name = "q5_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q5_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  511. .from_float = quantize_row_q5_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  513. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_Q6_K] = {
  517. .type_name = "q6_K",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_q6_K),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  522. .from_float = quantize_row_q6_K,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  524. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_Q8_K] = {
  528. .type_name = "q8_K",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_q8_K),
  531. .is_quantized = true,
  532. .from_float = quantize_row_q8_K,
  533. }
  534. };
  535. // For internal test use
  536. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  537. GGML_ASSERT(type < GGML_TYPE_COUNT);
  538. return type_traits[type];
  539. }
  540. //
  541. // simd mappings
  542. //
  543. #if defined(__ARM_NEON)
  544. #if !defined(__aarch64__)
  545. // 64-bit compatibility
  546. inline static float vaddvq_f32(float32x4_t v) {
  547. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  548. }
  549. #endif
  550. #endif
  551. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  552. // we then implement the fundamental computation operations below using only these macros
  553. // adding support for new architectures requires to define the corresponding SIMD macros
  554. //
  555. // GGML_F32_STEP / GGML_F16_STEP
  556. // number of elements to process in a single step
  557. //
  558. // GGML_F32_EPR / GGML_F16_EPR
  559. // number of elements to fit in a single register
  560. //
  561. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  562. #define GGML_SIMD
  563. // F32 NEON
  564. #define GGML_F32_STEP 16
  565. #define GGML_F32_EPR 4
  566. #define GGML_F32x4 float32x4_t
  567. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  568. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  569. #define GGML_F32x4_LOAD vld1q_f32
  570. #define GGML_F32x4_STORE vst1q_f32
  571. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  572. #define GGML_F32x4_ADD vaddq_f32
  573. #define GGML_F32x4_MUL vmulq_f32
  574. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  575. #define GGML_F32x4_REDUCE(res, x) \
  576. { \
  577. int offset = GGML_F32_ARR >> 1; \
  578. for (int i = 0; i < offset; ++i) { \
  579. x[i] = vaddq_f32(x[i], x[offset+i]); \
  580. } \
  581. offset >>= 1; \
  582. for (int i = 0; i < offset; ++i) { \
  583. x[i] = vaddq_f32(x[i], x[offset+i]); \
  584. } \
  585. offset >>= 1; \
  586. for (int i = 0; i < offset; ++i) { \
  587. x[i] = vaddq_f32(x[i], x[offset+i]); \
  588. } \
  589. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  590. }
  591. #define GGML_F32_VEC GGML_F32x4
  592. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  593. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  594. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  595. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  596. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  597. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  598. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  599. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  600. // F16 NEON
  601. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  602. #define GGML_F16_STEP 32
  603. #define GGML_F16_EPR 8
  604. #define GGML_F16x8 float16x8_t
  605. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  606. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  607. #define GGML_F16x8_LOAD vld1q_f16
  608. #define GGML_F16x8_STORE vst1q_f16
  609. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  610. #define GGML_F16x8_ADD vaddq_f16
  611. #define GGML_F16x8_MUL vmulq_f16
  612. #define GGML_F16x8_REDUCE(res, x) \
  613. do { \
  614. int offset = GGML_F16_ARR >> 1; \
  615. for (int i = 0; i < offset; ++i) { \
  616. x[i] = vaddq_f16(x[i], x[offset+i]); \
  617. } \
  618. offset >>= 1; \
  619. for (int i = 0; i < offset; ++i) { \
  620. x[i] = vaddq_f16(x[i], x[offset+i]); \
  621. } \
  622. offset >>= 1; \
  623. for (int i = 0; i < offset; ++i) { \
  624. x[i] = vaddq_f16(x[i], x[offset+i]); \
  625. } \
  626. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  627. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  628. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  629. } while (0)
  630. #define GGML_F16_VEC GGML_F16x8
  631. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  632. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  633. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  634. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  635. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  636. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  637. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  638. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  639. #else
  640. // if FP16 vector arithmetic is not supported, we use FP32 instead
  641. // and take advantage of the vcvt_ functions to convert to/from FP16
  642. #define GGML_F16_STEP 16
  643. #define GGML_F16_EPR 4
  644. #define GGML_F32Cx4 float32x4_t
  645. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  646. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  647. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  648. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  649. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  650. #define GGML_F32Cx4_ADD vaddq_f32
  651. #define GGML_F32Cx4_MUL vmulq_f32
  652. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  653. #define GGML_F16_VEC GGML_F32Cx4
  654. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  655. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  656. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  657. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  658. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  659. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  660. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  661. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  662. #endif
  663. #elif defined(__AVX__)
  664. #define GGML_SIMD
  665. // F32 AVX
  666. #define GGML_F32_STEP 32
  667. #define GGML_F32_EPR 8
  668. #define GGML_F32x8 __m256
  669. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  670. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  671. #define GGML_F32x8_LOAD _mm256_loadu_ps
  672. #define GGML_F32x8_STORE _mm256_storeu_ps
  673. #if defined(__FMA__)
  674. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  675. #else
  676. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  677. #endif
  678. #define GGML_F32x8_ADD _mm256_add_ps
  679. #define GGML_F32x8_MUL _mm256_mul_ps
  680. #define GGML_F32x8_REDUCE(res, x) \
  681. do { \
  682. int offset = GGML_F32_ARR >> 1; \
  683. for (int i = 0; i < offset; ++i) { \
  684. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  685. } \
  686. offset >>= 1; \
  687. for (int i = 0; i < offset; ++i) { \
  688. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  689. } \
  690. offset >>= 1; \
  691. for (int i = 0; i < offset; ++i) { \
  692. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  693. } \
  694. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  695. _mm256_extractf128_ps(x[0], 1)); \
  696. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  697. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  698. } while (0)
  699. // TODO: is this optimal ?
  700. #define GGML_F32_VEC GGML_F32x8
  701. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  702. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  703. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  704. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  705. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  706. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  707. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  708. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  709. // F16 AVX
  710. #define GGML_F16_STEP 32
  711. #define GGML_F16_EPR 8
  712. // F16 arithmetic is not supported by AVX, so we use F32 instead
  713. #define GGML_F32Cx8 __m256
  714. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  715. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  716. #if defined(__F16C__)
  717. // the _mm256_cvt intrinsics require F16C
  718. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  719. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  720. #else
  721. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  722. float tmp[8];
  723. for (int i = 0; i < 8; i++) {
  724. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  725. }
  726. return _mm256_loadu_ps(tmp);
  727. }
  728. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  729. float arr[8];
  730. _mm256_storeu_ps(arr, y);
  731. for (int i = 0; i < 8; i++)
  732. x[i] = GGML_FP32_TO_FP16(arr[i]);
  733. }
  734. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  735. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  736. #endif
  737. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  738. #define GGML_F32Cx8_ADD _mm256_add_ps
  739. #define GGML_F32Cx8_MUL _mm256_mul_ps
  740. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  741. #define GGML_F16_VEC GGML_F32Cx8
  742. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  743. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  744. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  745. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  746. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  747. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  748. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  749. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  750. #elif defined(__POWER9_VECTOR__)
  751. #define GGML_SIMD
  752. // F32 POWER9
  753. #define GGML_F32_STEP 32
  754. #define GGML_F32_EPR 4
  755. #define GGML_F32x4 vector float
  756. #define GGML_F32x4_ZERO 0.0f
  757. #define GGML_F32x4_SET1 vec_splats
  758. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  759. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  760. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  761. #define GGML_F32x4_ADD vec_add
  762. #define GGML_F32x4_MUL vec_mul
  763. #define GGML_F32x4_REDUCE(res, x) \
  764. { \
  765. int offset = GGML_F32_ARR >> 1; \
  766. for (int i = 0; i < offset; ++i) { \
  767. x[i] = vec_add(x[i], x[offset+i]); \
  768. } \
  769. offset >>= 1; \
  770. for (int i = 0; i < offset; ++i) { \
  771. x[i] = vec_add(x[i], x[offset+i]); \
  772. } \
  773. offset >>= 1; \
  774. for (int i = 0; i < offset; ++i) { \
  775. x[i] = vec_add(x[i], x[offset+i]); \
  776. } \
  777. res = vec_extract(x[0], 0) + \
  778. vec_extract(x[0], 1) + \
  779. vec_extract(x[0], 2) + \
  780. vec_extract(x[0], 3); \
  781. }
  782. #define GGML_F32_VEC GGML_F32x4
  783. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  784. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  785. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  786. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  787. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  788. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  789. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  790. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  791. // F16 POWER9
  792. #define GGML_F16_STEP GGML_F32_STEP
  793. #define GGML_F16_EPR GGML_F32_EPR
  794. #define GGML_F16_VEC GGML_F32x4
  795. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  796. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  797. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  798. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  799. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  800. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  801. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  802. vec_extract_fp32_from_shortl(vec_xl(0, p))
  803. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  804. #define GGML_F16_VEC_STORE(p, r, i) \
  805. if (i & 0x1) \
  806. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  807. r[i - GGML_ENDIAN_BYTE(0)]), \
  808. 0, p - GGML_F16_EPR)
  809. #elif defined(__wasm_simd128__)
  810. #define GGML_SIMD
  811. // F32 WASM
  812. #define GGML_F32_STEP 16
  813. #define GGML_F32_EPR 4
  814. #define GGML_F32x4 v128_t
  815. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  816. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  817. #define GGML_F32x4_LOAD wasm_v128_load
  818. #define GGML_F32x4_STORE wasm_v128_store
  819. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  820. #define GGML_F32x4_ADD wasm_f32x4_add
  821. #define GGML_F32x4_MUL wasm_f32x4_mul
  822. #define GGML_F32x4_REDUCE(res, x) \
  823. { \
  824. int offset = GGML_F32_ARR >> 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  827. } \
  828. offset >>= 1; \
  829. for (int i = 0; i < offset; ++i) { \
  830. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  831. } \
  832. offset >>= 1; \
  833. for (int i = 0; i < offset; ++i) { \
  834. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  835. } \
  836. res = wasm_f32x4_extract_lane(x[0], 0) + \
  837. wasm_f32x4_extract_lane(x[0], 1) + \
  838. wasm_f32x4_extract_lane(x[0], 2) + \
  839. wasm_f32x4_extract_lane(x[0], 3); \
  840. }
  841. #define GGML_F32_VEC GGML_F32x4
  842. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  843. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  844. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  845. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  846. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  847. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  848. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  849. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  850. // F16 WASM
  851. #define GGML_F16_STEP 16
  852. #define GGML_F16_EPR 4
  853. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  854. float tmp[4];
  855. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  856. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  857. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  858. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  859. return wasm_v128_load(tmp);
  860. }
  861. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  862. float tmp[4];
  863. wasm_v128_store(tmp, x);
  864. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  865. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  866. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  867. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  868. }
  869. #define GGML_F16x4 v128_t
  870. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  871. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  872. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  873. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  874. #define GGML_F16x4_FMA GGML_F32x4_FMA
  875. #define GGML_F16x4_ADD wasm_f32x4_add
  876. #define GGML_F16x4_MUL wasm_f32x4_mul
  877. #define GGML_F16x4_REDUCE(res, x) \
  878. { \
  879. int offset = GGML_F16_ARR >> 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. offset >>= 1; \
  888. for (int i = 0; i < offset; ++i) { \
  889. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  890. } \
  891. res = wasm_f32x4_extract_lane(x[0], 0) + \
  892. wasm_f32x4_extract_lane(x[0], 1) + \
  893. wasm_f32x4_extract_lane(x[0], 2) + \
  894. wasm_f32x4_extract_lane(x[0], 3); \
  895. }
  896. #define GGML_F16_VEC GGML_F16x4
  897. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  898. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  899. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  900. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  901. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  902. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  903. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  904. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  905. #elif defined(__SSE3__)
  906. #define GGML_SIMD
  907. // F32 SSE
  908. #define GGML_F32_STEP 32
  909. #define GGML_F32_EPR 4
  910. #define GGML_F32x4 __m128
  911. #define GGML_F32x4_ZERO _mm_setzero_ps()
  912. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  913. #define GGML_F32x4_LOAD _mm_loadu_ps
  914. #define GGML_F32x4_STORE _mm_storeu_ps
  915. #if defined(__FMA__)
  916. // TODO: Does this work?
  917. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  918. #else
  919. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  920. #endif
  921. #define GGML_F32x4_ADD _mm_add_ps
  922. #define GGML_F32x4_MUL _mm_mul_ps
  923. #define GGML_F32x4_REDUCE(res, x) \
  924. { \
  925. int offset = GGML_F32_ARR >> 1; \
  926. for (int i = 0; i < offset; ++i) { \
  927. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  928. } \
  929. offset >>= 1; \
  930. for (int i = 0; i < offset; ++i) { \
  931. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  932. } \
  933. offset >>= 1; \
  934. for (int i = 0; i < offset; ++i) { \
  935. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  936. } \
  937. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  938. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  939. }
  940. // TODO: is this optimal ?
  941. #define GGML_F32_VEC GGML_F32x4
  942. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  943. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  944. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  945. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  946. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  947. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  948. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  949. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  950. // F16 SSE
  951. #define GGML_F16_STEP 32
  952. #define GGML_F16_EPR 4
  953. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  954. float tmp[4];
  955. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  956. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  957. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  958. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  959. return _mm_loadu_ps(tmp);
  960. }
  961. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  962. float arr[4];
  963. _mm_storeu_ps(arr, y);
  964. x[0] = GGML_FP32_TO_FP16(arr[0]);
  965. x[1] = GGML_FP32_TO_FP16(arr[1]);
  966. x[2] = GGML_FP32_TO_FP16(arr[2]);
  967. x[3] = GGML_FP32_TO_FP16(arr[3]);
  968. }
  969. #define GGML_F32Cx4 __m128
  970. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  971. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  972. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  973. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  974. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  975. #define GGML_F32Cx4_ADD _mm_add_ps
  976. #define GGML_F32Cx4_MUL _mm_mul_ps
  977. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  978. #define GGML_F16_VEC GGML_F32Cx4
  979. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  980. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  981. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  982. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  983. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  984. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  985. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  986. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  987. #endif
  988. // GGML_F32_ARR / GGML_F16_ARR
  989. // number of registers to use per step
  990. #ifdef GGML_SIMD
  991. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  992. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  993. #endif
  994. //
  995. // fundamental operations
  996. //
  997. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  998. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  999. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1000. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1001. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1002. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1003. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1004. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1005. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1006. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1008. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1009. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1010. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1011. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1012. #ifdef GGML_SIMD
  1013. float sumf = 0.0f;
  1014. const int np = (n & ~(GGML_F32_STEP - 1));
  1015. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1016. GGML_F32_VEC ax[GGML_F32_ARR];
  1017. GGML_F32_VEC ay[GGML_F32_ARR];
  1018. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1019. for (int j = 0; j < GGML_F32_ARR; j++) {
  1020. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1021. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1022. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1023. }
  1024. }
  1025. // reduce sum0..sum3 to sum0
  1026. GGML_F32_VEC_REDUCE(sumf, sum);
  1027. // leftovers
  1028. for (int i = np; i < n; ++i) {
  1029. sumf += x[i]*y[i];
  1030. }
  1031. #else
  1032. // scalar
  1033. ggml_float sumf = 0.0;
  1034. for (int i = 0; i < n; ++i) {
  1035. sumf += (ggml_float)(x[i]*y[i]);
  1036. }
  1037. #endif
  1038. *s = sumf;
  1039. }
  1040. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1041. ggml_float sumf = 0.0;
  1042. #if defined(GGML_SIMD)
  1043. const int np = (n & ~(GGML_F16_STEP - 1));
  1044. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1045. GGML_F16_VEC ax[GGML_F16_ARR];
  1046. GGML_F16_VEC ay[GGML_F16_ARR];
  1047. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1048. for (int j = 0; j < GGML_F16_ARR; j++) {
  1049. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1050. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1051. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1052. }
  1053. }
  1054. // reduce sum0..sum3 to sum0
  1055. GGML_F16_VEC_REDUCE(sumf, sum);
  1056. // leftovers
  1057. for (int i = np; i < n; ++i) {
  1058. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1059. }
  1060. #else
  1061. for (int i = 0; i < n; ++i) {
  1062. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1063. }
  1064. #endif
  1065. *s = sumf;
  1066. }
  1067. // compute GGML_VEC_DOT_UNROLL dot products at once
  1068. // xs - x row stride in bytes
  1069. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1070. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1071. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1072. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1073. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1074. }
  1075. #if defined(GGML_SIMD)
  1076. const int np = (n & ~(GGML_F16_STEP - 1));
  1077. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1078. GGML_F16_VEC ax[GGML_F16_ARR];
  1079. GGML_F16_VEC ay[GGML_F16_ARR];
  1080. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1081. for (int j = 0; j < GGML_F16_ARR; j++) {
  1082. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1083. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1084. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1085. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1086. }
  1087. }
  1088. }
  1089. // reduce sum0..sum3 to sum0
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1092. }
  1093. // leftovers
  1094. for (int i = np; i < n; ++i) {
  1095. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1096. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1097. }
  1098. }
  1099. #else
  1100. for (int i = 0; i < n; ++i) {
  1101. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1102. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1103. }
  1104. }
  1105. #endif
  1106. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1107. s[i] = sumf[i];
  1108. }
  1109. }
  1110. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1111. #if defined(GGML_SIMD)
  1112. const int np = (n & ~(GGML_F32_STEP - 1));
  1113. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1114. GGML_F32_VEC ax[GGML_F32_ARR];
  1115. GGML_F32_VEC ay[GGML_F32_ARR];
  1116. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1117. for (int j = 0; j < GGML_F32_ARR; j++) {
  1118. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1119. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1120. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1121. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1122. }
  1123. }
  1124. // leftovers
  1125. for (int i = np; i < n; ++i) {
  1126. y[i] += x[i]*v;
  1127. }
  1128. #else
  1129. // scalar
  1130. for (int i = 0; i < n; ++i) {
  1131. y[i] += x[i]*v;
  1132. }
  1133. #endif
  1134. }
  1135. // xs and vs are byte strides of x and v
  1136. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1137. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1138. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1139. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1140. x[i] = (const float *) ((const char *) xv + i*xs);
  1141. v[i] = (const float *) ((const char *) vv + i*vs);
  1142. }
  1143. #if defined(GGML_SIMD)
  1144. const int np = (n & ~(GGML_F32_STEP - 1));
  1145. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1146. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1147. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1148. }
  1149. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1150. GGML_F32_VEC ay[GGML_F32_ARR];
  1151. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1152. for (int j = 0; j < GGML_F32_ARR; j++) {
  1153. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1156. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1157. }
  1158. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1159. }
  1160. }
  1161. // leftovers
  1162. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1163. for (int i = np; i < n; ++i) {
  1164. y[i] += x[k][i]*v[k][0];
  1165. }
  1166. }
  1167. #else
  1168. // scalar
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = 0; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #endif
  1175. }
  1176. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1177. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1178. #if defined(GGML_USE_ACCELERATE)
  1179. vDSP_vsmul(y, 1, &v, y, 1, n);
  1180. #elif defined(GGML_SIMD)
  1181. const int np = (n & ~(GGML_F32_STEP - 1));
  1182. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1183. GGML_F32_VEC ay[GGML_F32_ARR];
  1184. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1185. for (int j = 0; j < GGML_F32_ARR; j++) {
  1186. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1187. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1188. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1189. }
  1190. }
  1191. // leftovers
  1192. for (int i = np; i < n; ++i) {
  1193. y[i] *= v;
  1194. }
  1195. #else
  1196. // scalar
  1197. for (int i = 0; i < n; ++i) {
  1198. y[i] *= v;
  1199. }
  1200. #endif
  1201. }
  1202. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1203. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1204. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1205. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1206. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1207. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1208. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1209. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1210. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1211. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1212. inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; }
  1213. static const float GELU_COEF_A = 0.044715f;
  1214. static const float GELU_QUICK_COEF = -1.702f;
  1215. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1216. inline static float ggml_gelu_f32(float x) {
  1217. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1218. }
  1219. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1220. const uint16_t * i16 = (const uint16_t *) x;
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_table_gelu_f16[i16[i]];
  1223. }
  1224. }
  1225. #ifdef GGML_GELU_FP16
  1226. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1227. uint16_t t;
  1228. for (int i = 0; i < n; ++i) {
  1229. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1230. memcpy(&t, &fp16, sizeof(uint16_t));
  1231. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1232. }
  1233. }
  1234. #else
  1235. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1236. for (int i = 0; i < n; ++i) {
  1237. y[i] = ggml_gelu_f32(x[i]);
  1238. }
  1239. }
  1240. #endif
  1241. inline static float ggml_gelu_quick_f32(float x) {
  1242. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1243. }
  1244. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1245. // const uint16_t * i16 = (const uint16_t *) x;
  1246. // for (int i = 0; i < n; ++i) {
  1247. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1248. // }
  1249. //}
  1250. #ifdef GGML_GELU_QUICK_FP16
  1251. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1252. uint16_t t;
  1253. for (int i = 0; i < n; ++i) {
  1254. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1255. memcpy(&t, &fp16, sizeof(uint16_t));
  1256. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1257. }
  1258. }
  1259. #else
  1260. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] = ggml_gelu_quick_f32(x[i]);
  1263. }
  1264. }
  1265. #endif
  1266. // Sigmoid Linear Unit (SiLU) function
  1267. inline static float ggml_silu_f32(float x) {
  1268. return x/(1.0f + expf(-x));
  1269. }
  1270. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1271. // const uint16_t * i16 = (const uint16_t *) x;
  1272. // for (int i = 0; i < n; ++i) {
  1273. // y[i] = ggml_table_silu_f16[i16[i]];
  1274. // }
  1275. //}
  1276. #ifdef GGML_SILU_FP16
  1277. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1278. uint16_t t;
  1279. for (int i = 0; i < n; ++i) {
  1280. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1281. memcpy(&t, &fp16, sizeof(uint16_t));
  1282. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1283. }
  1284. }
  1285. #else
  1286. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1287. for (int i = 0; i < n; ++i) {
  1288. y[i] = ggml_silu_f32(x[i]);
  1289. }
  1290. }
  1291. #endif
  1292. inline static float ggml_silu_backward_f32(float x, float dy) {
  1293. const float s = 1.0f/(1.0f + expf(-x));
  1294. return dy*s*(1.0f + x*(1.0f - s));
  1295. }
  1296. #ifdef GGML_SILU_FP16
  1297. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1298. for (int i = 0; i < n; ++i) {
  1299. // we did not use x[i] to compute forward silu but its f16 equivalent
  1300. // take derivative at f16 of x[i]:
  1301. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1302. float usedx = GGML_FP16_TO_FP32(fp16);
  1303. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1304. }
  1305. }
  1306. #else
  1307. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1308. for (int i = 0; i < n; ++i) {
  1309. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1310. }
  1311. }
  1312. #endif
  1313. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1314. #ifndef GGML_USE_ACCELERATE
  1315. ggml_float sum = 0.0;
  1316. for (int i = 0; i < n; ++i) {
  1317. sum += (ggml_float)x[i];
  1318. }
  1319. *s = sum;
  1320. #else
  1321. vDSP_sve(x, 1, s, n);
  1322. #endif
  1323. }
  1324. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1325. ggml_float sum = 0.0;
  1326. for (int i = 0; i < n; ++i) {
  1327. sum += (ggml_float)x[i];
  1328. }
  1329. *s = sum;
  1330. }
  1331. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1332. float sum = 0.0f;
  1333. for (int i = 0; i < n; ++i) {
  1334. sum += GGML_FP16_TO_FP32(x[i]);
  1335. }
  1336. *s = sum;
  1337. }
  1338. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1339. #ifndef GGML_USE_ACCELERATE
  1340. float max = -INFINITY;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. }
  1344. *s = max;
  1345. #else
  1346. vDSP_maxv(x, 1, s, n);
  1347. #endif
  1348. }
  1349. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1350. ggml_vec_norm_f32(n, s, x);
  1351. *s = 1.f/(*s);
  1352. }
  1353. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1354. float max = -INFINITY;
  1355. int idx = 0;
  1356. for (int i = 0; i < n; ++i) {
  1357. max = MAX(max, x[i]);
  1358. if (max == x[i]) { idx = i; }
  1359. }
  1360. *s = idx;
  1361. }
  1362. //
  1363. // data types
  1364. //
  1365. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1366. "NONE",
  1367. "DUP",
  1368. "ADD",
  1369. "ADD1",
  1370. "ACC",
  1371. "SUB",
  1372. "MUL",
  1373. "DIV",
  1374. "SQR",
  1375. "SQRT",
  1376. "LOG",
  1377. "SUM",
  1378. "SUM_ROWS",
  1379. "MEAN",
  1380. "ARGMAX",
  1381. "REPEAT",
  1382. "REPEAT_BACK",
  1383. "CONCAT",
  1384. "SILU_BACK",
  1385. "NORM",
  1386. "RMS_NORM",
  1387. "RMS_NORM_BACK",
  1388. "GROUP_NORM",
  1389. "MUL_MAT",
  1390. "OUT_PROD",
  1391. "SCALE",
  1392. "SET",
  1393. "CPY",
  1394. "CONT",
  1395. "RESHAPE",
  1396. "VIEW",
  1397. "PERMUTE",
  1398. "TRANSPOSE",
  1399. "GET_ROWS",
  1400. "GET_ROWS_BACK",
  1401. "DIAG",
  1402. "DIAG_MASK_INF",
  1403. "DIAG_MASK_ZERO",
  1404. "SOFT_MAX",
  1405. "SOFT_MAX_BACK",
  1406. "ROPE",
  1407. "ROPE_BACK",
  1408. "ALIBI",
  1409. "CLAMP",
  1410. "CONV_TRANSPOSE_1D",
  1411. "IM2COL",
  1412. "CONV_TRANSPOSE_2D",
  1413. "POOL_1D",
  1414. "POOL_2D",
  1415. "UPSCALE",
  1416. "FLASH_ATTN",
  1417. "FLASH_FF",
  1418. "FLASH_ATTN_BACK",
  1419. "WIN_PART",
  1420. "WIN_UNPART",
  1421. "GET_REL_POS",
  1422. "ADD_REL_POS",
  1423. "UNARY",
  1424. "MAP_UNARY",
  1425. "MAP_BINARY",
  1426. "MAP_CUSTOM1_F32",
  1427. "MAP_CUSTOM2_F32",
  1428. "MAP_CUSTOM3_F32",
  1429. "MAP_CUSTOM1",
  1430. "MAP_CUSTOM2",
  1431. "MAP_CUSTOM3",
  1432. "CROSS_ENTROPY_LOSS",
  1433. "CROSS_ENTROPY_LOSS_BACK",
  1434. };
  1435. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  1436. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1437. "none",
  1438. "x",
  1439. "x+y",
  1440. "x+y",
  1441. "view(x,nb,offset)+=y->x",
  1442. "x-y",
  1443. "x*y",
  1444. "x/y",
  1445. "x^2",
  1446. "√x",
  1447. "log(x)",
  1448. "Σx",
  1449. "Σx_k",
  1450. "Σx/n",
  1451. "argmax(x)",
  1452. "repeat(x)",
  1453. "repeat_back(x)",
  1454. "concat(x, y)",
  1455. "silu_back(x)",
  1456. "norm(x)",
  1457. "rms_norm(x)",
  1458. "rms_norm_back(x)",
  1459. "group_norm(x)",
  1460. "X*Y",
  1461. "X*Y",
  1462. "x*v",
  1463. "y-\\>view(x)",
  1464. "x-\\>y",
  1465. "cont(x)",
  1466. "reshape(x)",
  1467. "view(x)",
  1468. "permute(x)",
  1469. "transpose(x)",
  1470. "get_rows(x)",
  1471. "get_rows_back(x)",
  1472. "diag(x)",
  1473. "diag_mask_inf(x)",
  1474. "diag_mask_zero(x)",
  1475. "soft_max(x)",
  1476. "soft_max_back(x)",
  1477. "rope(x)",
  1478. "rope_back(x)",
  1479. "alibi(x)",
  1480. "clamp(x)",
  1481. "conv_transpose_1d(x)",
  1482. "im2col(x)",
  1483. "conv_transpose_2d(x)",
  1484. "pool_1d(x)",
  1485. "pool_2d(x)",
  1486. "upscale(x)",
  1487. "flash_attn(x)",
  1488. "flash_ff(x)",
  1489. "flash_attn_back(x)",
  1490. "win_part(x)",
  1491. "win_unpart(x)",
  1492. "get_rel_pos(x)",
  1493. "add_rel_pos(x)",
  1494. "unary(x)",
  1495. "f(x)",
  1496. "f(x,y)",
  1497. "custom_f32(x)",
  1498. "custom_f32(x,y)",
  1499. "custom_f32(x,y,z)",
  1500. "custom(x)",
  1501. "custom(x,y)",
  1502. "custom(x,y,z)",
  1503. "cross_entropy_loss(x,y)",
  1504. "cross_entropy_loss_back(x,y)",
  1505. };
  1506. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  1507. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1508. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1509. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1510. // WARN:
  1511. // Mis-confguration can lead to problem that's hard to reason about:
  1512. // * At best it crash or talks nosense.
  1513. // * At worst it talks slightly difference but hard to perceive.
  1514. //
  1515. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1516. // Take care about compile options (e.g., GGML_USE_xxx).
  1517. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1518. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1519. static void ggml_setup_op_has_task_pass(void) {
  1520. { // INIT
  1521. bool * p = GGML_OP_HAS_INIT;
  1522. p[GGML_OP_ACC ] = true;
  1523. p[GGML_OP_MUL_MAT ] = true;
  1524. p[GGML_OP_OUT_PROD ] = true;
  1525. p[GGML_OP_SET ] = true;
  1526. p[GGML_OP_GET_ROWS_BACK ] = true;
  1527. p[GGML_OP_DIAG_MASK_INF ] = true;
  1528. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1529. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1530. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1531. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1532. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1533. p[GGML_OP_ADD_REL_POS ] = true;
  1534. }
  1535. { // FINALIZE
  1536. bool * p = GGML_OP_HAS_FINALIZE;
  1537. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1538. }
  1539. }
  1540. //
  1541. // ggml context
  1542. //
  1543. struct ggml_context {
  1544. size_t mem_size;
  1545. void * mem_buffer;
  1546. bool mem_buffer_owned;
  1547. bool no_alloc;
  1548. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1549. int n_objects;
  1550. struct ggml_object * objects_begin;
  1551. struct ggml_object * objects_end;
  1552. struct ggml_scratch scratch;
  1553. struct ggml_scratch scratch_save;
  1554. };
  1555. struct ggml_context_container {
  1556. bool used;
  1557. struct ggml_context context;
  1558. };
  1559. //
  1560. // NUMA support
  1561. //
  1562. #define GGML_NUMA_MAX_NODES 8
  1563. #define GGML_NUMA_MAX_CPUS 512
  1564. struct ggml_numa_node {
  1565. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1566. uint32_t n_cpus;
  1567. };
  1568. struct ggml_numa_nodes {
  1569. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1570. uint32_t n_nodes;
  1571. uint32_t total_cpus; // hardware threads on system
  1572. };
  1573. //
  1574. // ggml state
  1575. //
  1576. struct ggml_state {
  1577. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1578. struct ggml_numa_nodes numa;
  1579. };
  1580. // global state
  1581. static struct ggml_state g_state;
  1582. static atomic_int g_state_barrier = 0;
  1583. // barrier via spin lock
  1584. inline static void ggml_critical_section_start(void) {
  1585. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1586. while (processing > 0) {
  1587. // wait for other threads to finish
  1588. atomic_fetch_sub(&g_state_barrier, 1);
  1589. sched_yield(); // TODO: reconsider this
  1590. processing = atomic_fetch_add(&g_state_barrier, 1);
  1591. }
  1592. }
  1593. // TODO: make this somehow automatically executed
  1594. // some sort of "sentry" mechanism
  1595. inline static void ggml_critical_section_end(void) {
  1596. atomic_fetch_sub(&g_state_barrier, 1);
  1597. }
  1598. void ggml_numa_init(void) {
  1599. if (g_state.numa.n_nodes > 0) {
  1600. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1601. return;
  1602. }
  1603. #ifdef __linux__
  1604. struct stat st;
  1605. char path[256];
  1606. int rv;
  1607. // enumerate nodes
  1608. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1609. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1610. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1611. if (stat(path, &st) != 0) { break; }
  1612. ++g_state.numa.n_nodes;
  1613. }
  1614. // enumerate CPUs
  1615. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.total_cpus;
  1620. }
  1621. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1622. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1623. g_state.numa.n_nodes = 0;
  1624. return;
  1625. }
  1626. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1627. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1628. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1629. node->n_cpus = 0;
  1630. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1631. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1632. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1633. if (stat(path, &st) == 0) {
  1634. node->cpus[node->n_cpus++] = c;
  1635. GGML_PRINT_DEBUG(" %u", c);
  1636. }
  1637. }
  1638. GGML_PRINT_DEBUG("\n");
  1639. }
  1640. if (ggml_is_numa()) {
  1641. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1642. if (fptr != NULL) {
  1643. char buf[42];
  1644. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1645. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1646. }
  1647. fclose(fptr);
  1648. }
  1649. }
  1650. #else
  1651. // TODO
  1652. #endif
  1653. }
  1654. bool ggml_is_numa(void) {
  1655. return g_state.numa.n_nodes > 1;
  1656. }
  1657. ////////////////////////////////////////////////////////////////////////////////
  1658. void ggml_print_object(const struct ggml_object * obj) {
  1659. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1660. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1661. }
  1662. void ggml_print_objects(const struct ggml_context * ctx) {
  1663. struct ggml_object * obj = ctx->objects_begin;
  1664. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1665. while (obj != NULL) {
  1666. ggml_print_object(obj);
  1667. obj = obj->next;
  1668. }
  1669. GGML_PRINT("%s: --- end ---\n", __func__);
  1670. }
  1671. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1672. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1673. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1674. }
  1675. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1676. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1677. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1678. }
  1679. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1680. size_t nbytes;
  1681. size_t blck_size = ggml_blck_size(tensor->type);
  1682. if (blck_size == 1) {
  1683. nbytes = ggml_type_size(tensor->type);
  1684. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1685. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1686. }
  1687. }
  1688. else {
  1689. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1690. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1691. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1692. }
  1693. }
  1694. return nbytes;
  1695. }
  1696. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1697. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1698. }
  1699. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1701. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1702. }
  1703. int ggml_blck_size(enum ggml_type type) {
  1704. return type_traits[type].blck_size;
  1705. }
  1706. size_t ggml_type_size(enum ggml_type type) {
  1707. return type_traits[type].type_size;
  1708. }
  1709. float ggml_type_sizef(enum ggml_type type) {
  1710. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1711. }
  1712. const char * ggml_type_name(enum ggml_type type) {
  1713. return type_traits[type].type_name;
  1714. }
  1715. bool ggml_is_quantized(enum ggml_type type) {
  1716. return type_traits[type].is_quantized;
  1717. }
  1718. const char * ggml_op_name(enum ggml_op op) {
  1719. return GGML_OP_NAME[op];
  1720. }
  1721. const char * ggml_op_symbol(enum ggml_op op) {
  1722. return GGML_OP_SYMBOL[op];
  1723. }
  1724. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1725. return ggml_type_size(tensor->type);
  1726. }
  1727. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1729. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1730. }
  1731. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1732. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1733. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1734. }
  1735. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1736. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1737. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1738. }
  1739. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1740. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1741. return (t0->ne[0] == t1->ne[0]) &&
  1742. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1743. (t1->ne[3]%t0->ne[3] == 0);
  1744. }
  1745. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1746. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1747. return (t0->ne[1] == t1->ne[1]) &&
  1748. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1749. (t1->ne[3]%t0->ne[3] == 0);
  1750. }
  1751. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1752. enum ggml_type wtype = GGML_TYPE_COUNT;
  1753. switch (ftype) {
  1754. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1755. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1756. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1757. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1758. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1759. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1760. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1761. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1762. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1763. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1764. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1765. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1766. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1767. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1768. }
  1769. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1770. return wtype;
  1771. }
  1772. size_t ggml_tensor_overhead(void) {
  1773. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1774. }
  1775. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1776. return tensor->nb[0] > tensor->nb[1];
  1777. }
  1778. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1779. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1780. return
  1781. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1782. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1783. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1784. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1785. }
  1786. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1787. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1788. return
  1789. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1790. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1791. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1792. }
  1793. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1795. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1796. }
  1797. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return
  1800. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1801. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1802. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1803. }
  1804. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1806. return
  1807. (t0->ne[0] == t1->ne[0] ) &&
  1808. (t0->ne[1] == t1->ne[1] ) &&
  1809. (t0->ne[2] == t1->ne[2] ) &&
  1810. (t0->ne[3] == t1->ne[3] );
  1811. }
  1812. // check if t1 can be represented as a repeatition of t0
  1813. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1815. return
  1816. (t1->ne[0]%t0->ne[0] == 0) &&
  1817. (t1->ne[1]%t0->ne[1] == 0) &&
  1818. (t1->ne[2]%t0->ne[2] == 0) &&
  1819. (t1->ne[3]%t0->ne[3] == 0);
  1820. }
  1821. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1824. }
  1825. static inline int ggml_up32(int n) {
  1826. return (n + 31) & ~31;
  1827. }
  1828. //static inline int ggml_up64(int n) {
  1829. // return (n + 63) & ~63;
  1830. //}
  1831. static inline int ggml_up(int n, int m) {
  1832. // assert m is a power of 2
  1833. GGML_ASSERT((m & (m - 1)) == 0);
  1834. return (n + m - 1) & ~(m - 1);
  1835. }
  1836. // assert that pointer is aligned to GGML_MEM_ALIGN
  1837. #define ggml_assert_aligned(ptr) \
  1838. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1839. ////////////////////////////////////////////////////////////////////////////////
  1840. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1841. // make this function thread safe
  1842. ggml_critical_section_start();
  1843. static bool is_first_call = true;
  1844. if (is_first_call) {
  1845. // initialize time system (required on Windows)
  1846. ggml_time_init();
  1847. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1848. {
  1849. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1850. ggml_fp16_t ii;
  1851. for (int i = 0; i < (1 << 16); ++i) {
  1852. uint16_t ui = i;
  1853. memcpy(&ii, &ui, sizeof(ii));
  1854. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1855. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1856. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1857. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1858. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1859. }
  1860. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1861. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1862. }
  1863. // initialize g_state
  1864. {
  1865. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1866. g_state = (struct ggml_state) {
  1867. /*.contexts =*/ { { 0 } },
  1868. /*.numa =*/ {
  1869. .n_nodes = 0,
  1870. .total_cpus = 0,
  1871. },
  1872. };
  1873. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1874. g_state.contexts[i].used = false;
  1875. }
  1876. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1877. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1878. }
  1879. #if defined(GGML_USE_CUBLAS)
  1880. ggml_init_cublas();
  1881. #elif defined(GGML_USE_CLBLAST)
  1882. ggml_cl_init();
  1883. #endif
  1884. ggml_setup_op_has_task_pass();
  1885. is_first_call = false;
  1886. }
  1887. // find non-used context in g_state
  1888. struct ggml_context * ctx = NULL;
  1889. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1890. if (!g_state.contexts[i].used) {
  1891. g_state.contexts[i].used = true;
  1892. ctx = &g_state.contexts[i].context;
  1893. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1894. break;
  1895. }
  1896. }
  1897. if (ctx == NULL) {
  1898. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1899. ggml_critical_section_end();
  1900. return NULL;
  1901. }
  1902. // allow to call ggml_init with 0 size
  1903. if (params.mem_size == 0) {
  1904. params.mem_size = GGML_MEM_ALIGN;
  1905. }
  1906. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1907. *ctx = (struct ggml_context) {
  1908. /*.mem_size =*/ mem_size,
  1909. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1910. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1911. /*.no_alloc =*/ params.no_alloc,
  1912. /*.no_alloc_save =*/ params.no_alloc,
  1913. /*.n_objects =*/ 0,
  1914. /*.objects_begin =*/ NULL,
  1915. /*.objects_end =*/ NULL,
  1916. /*.scratch =*/ { 0, 0, NULL, },
  1917. /*.scratch_save =*/ { 0, 0, NULL, },
  1918. };
  1919. GGML_ASSERT(ctx->mem_buffer != NULL);
  1920. ggml_assert_aligned(ctx->mem_buffer);
  1921. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1922. ggml_critical_section_end();
  1923. return ctx;
  1924. }
  1925. void ggml_free(struct ggml_context * ctx) {
  1926. // make this function thread safe
  1927. ggml_critical_section_start();
  1928. bool found = false;
  1929. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1930. if (&g_state.contexts[i].context == ctx) {
  1931. g_state.contexts[i].used = false;
  1932. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1933. __func__, i, ggml_used_mem(ctx));
  1934. if (ctx->mem_buffer_owned) {
  1935. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1936. }
  1937. found = true;
  1938. break;
  1939. }
  1940. }
  1941. if (!found) {
  1942. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1943. }
  1944. ggml_critical_section_end();
  1945. }
  1946. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1947. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1948. }
  1949. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1950. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1951. ctx->scratch = scratch;
  1952. return result;
  1953. }
  1954. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1955. return ctx->no_alloc;
  1956. }
  1957. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1958. ctx->no_alloc = no_alloc;
  1959. }
  1960. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1961. return ctx->mem_buffer;
  1962. }
  1963. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1964. return ctx->mem_size;
  1965. }
  1966. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1967. size_t max_size = 0;
  1968. struct ggml_object * obj = ctx->objects_begin;
  1969. while (obj != NULL) {
  1970. if (obj->type == GGML_OBJECT_TENSOR) {
  1971. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1972. const size_t size = ggml_nbytes(tensor);
  1973. if (max_size < size) {
  1974. max_size = size;
  1975. }
  1976. }
  1977. obj = obj->next;
  1978. }
  1979. return max_size;
  1980. }
  1981. // IMPORTANT:
  1982. // when creating "opt" tensors, always save and load the scratch buffer
  1983. // this is an error prone process, but it is necessary to support inplace
  1984. // operators when using scratch buffers
  1985. // TODO: implement a better way
  1986. static void ggml_scratch_save(struct ggml_context * ctx) {
  1987. // this is needed to allow opt tensors to store their data
  1988. // TODO: again, need to find a better way
  1989. ctx->no_alloc_save = ctx->no_alloc;
  1990. ctx->no_alloc = false;
  1991. ctx->scratch_save = ctx->scratch;
  1992. ctx->scratch.data = NULL;
  1993. }
  1994. static void ggml_scratch_load(struct ggml_context * ctx) {
  1995. ctx->no_alloc = ctx->no_alloc_save;
  1996. ctx->scratch = ctx->scratch_save;
  1997. }
  1998. ////////////////////////////////////////////////////////////////////////////////
  1999. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2000. // always insert objects at the end of the context's memory pool
  2001. struct ggml_object * obj_cur = ctx->objects_end;
  2002. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2003. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2004. const size_t cur_end = cur_offs + cur_size;
  2005. // align to GGML_MEM_ALIGN
  2006. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2007. char * const mem_buffer = ctx->mem_buffer;
  2008. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2009. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2010. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2011. __func__, cur_end + size_needed, ctx->mem_size);
  2012. assert(false);
  2013. return NULL;
  2014. }
  2015. *obj_new = (struct ggml_object) {
  2016. .offs = cur_end + GGML_OBJECT_SIZE,
  2017. .size = size_needed,
  2018. .next = NULL,
  2019. .type = type,
  2020. };
  2021. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2022. if (obj_cur != NULL) {
  2023. obj_cur->next = obj_new;
  2024. } else {
  2025. // this is the first object in this context
  2026. ctx->objects_begin = obj_new;
  2027. }
  2028. ctx->objects_end = obj_new;
  2029. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2030. return obj_new;
  2031. }
  2032. static struct ggml_tensor * ggml_new_tensor_impl(
  2033. struct ggml_context * ctx,
  2034. enum ggml_type type,
  2035. int n_dims,
  2036. const int64_t * ne,
  2037. struct ggml_tensor * view_src,
  2038. size_t view_offs) {
  2039. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2040. // find the base tensor and absolute offset
  2041. if (view_src != NULL && view_src->view_src != NULL) {
  2042. view_offs += view_src->view_offs;
  2043. view_src = view_src->view_src;
  2044. }
  2045. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2046. for (int i = 1; i < n_dims; i++) {
  2047. data_size *= ne[i];
  2048. }
  2049. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2050. void * data = view_src != NULL ? view_src->data : NULL;
  2051. if (data != NULL) {
  2052. data = (char *) data + view_offs;
  2053. }
  2054. size_t obj_alloc_size = 0;
  2055. if (view_src == NULL && !ctx->no_alloc) {
  2056. if (ctx->scratch.data != NULL) {
  2057. // allocate tensor data in the scratch buffer
  2058. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2059. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2060. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2061. assert(false);
  2062. return NULL;
  2063. }
  2064. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2065. ctx->scratch.offs += data_size;
  2066. } else {
  2067. // allocate tensor data in the context's memory pool
  2068. obj_alloc_size = data_size;
  2069. }
  2070. }
  2071. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2072. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2073. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2074. *result = (struct ggml_tensor) {
  2075. /*.type =*/ type,
  2076. /*.backend =*/ GGML_BACKEND_CPU,
  2077. /*.buffer =*/ NULL,
  2078. /*.n_dims =*/ n_dims,
  2079. /*.ne =*/ { 1, 1, 1, 1 },
  2080. /*.nb =*/ { 0, 0, 0, 0 },
  2081. /*.op =*/ GGML_OP_NONE,
  2082. /*.op_params =*/ { 0 },
  2083. /*.is_param =*/ false,
  2084. /*.grad =*/ NULL,
  2085. /*.src =*/ { NULL },
  2086. /*.perf_runs =*/ 0,
  2087. /*.perf_cycles =*/ 0,
  2088. /*.perf_time_us =*/ 0,
  2089. /*.view_src =*/ view_src,
  2090. /*.view_offs =*/ view_offs,
  2091. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2092. /*.name =*/ { 0 },
  2093. /*.extra =*/ NULL,
  2094. /*.padding =*/ { 0 },
  2095. };
  2096. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2097. //ggml_assert_aligned(result->data);
  2098. for (int i = 0; i < n_dims; i++) {
  2099. result->ne[i] = ne[i];
  2100. }
  2101. result->nb[0] = ggml_type_size(type);
  2102. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2103. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2104. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2105. }
  2106. ctx->n_objects++;
  2107. return result;
  2108. }
  2109. struct ggml_tensor * ggml_new_tensor(
  2110. struct ggml_context * ctx,
  2111. enum ggml_type type,
  2112. int n_dims,
  2113. const int64_t * ne) {
  2114. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2115. }
  2116. struct ggml_tensor * ggml_new_tensor_1d(
  2117. struct ggml_context * ctx,
  2118. enum ggml_type type,
  2119. int64_t ne0) {
  2120. return ggml_new_tensor(ctx, type, 1, &ne0);
  2121. }
  2122. struct ggml_tensor * ggml_new_tensor_2d(
  2123. struct ggml_context * ctx,
  2124. enum ggml_type type,
  2125. int64_t ne0,
  2126. int64_t ne1) {
  2127. const int64_t ne[2] = { ne0, ne1 };
  2128. return ggml_new_tensor(ctx, type, 2, ne);
  2129. }
  2130. struct ggml_tensor * ggml_new_tensor_3d(
  2131. struct ggml_context * ctx,
  2132. enum ggml_type type,
  2133. int64_t ne0,
  2134. int64_t ne1,
  2135. int64_t ne2) {
  2136. const int64_t ne[3] = { ne0, ne1, ne2 };
  2137. return ggml_new_tensor(ctx, type, 3, ne);
  2138. }
  2139. struct ggml_tensor * ggml_new_tensor_4d(
  2140. struct ggml_context * ctx,
  2141. enum ggml_type type,
  2142. int64_t ne0,
  2143. int64_t ne1,
  2144. int64_t ne2,
  2145. int64_t ne3) {
  2146. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2147. return ggml_new_tensor(ctx, type, 4, ne);
  2148. }
  2149. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2150. ggml_scratch_save(ctx);
  2151. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2152. ggml_scratch_load(ctx);
  2153. ggml_set_i32(result, value);
  2154. return result;
  2155. }
  2156. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2157. ggml_scratch_save(ctx);
  2158. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2159. ggml_scratch_load(ctx);
  2160. ggml_set_f32(result, value);
  2161. return result;
  2162. }
  2163. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2164. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2165. }
  2166. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2167. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2168. assert(params_size <= GGML_MAX_OP_PARAMS);
  2169. memcpy(tensor->op_params, params, params_size);
  2170. }
  2171. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2172. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2173. return ((const int32_t *)(tensor->op_params))[i];
  2174. }
  2175. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2176. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2177. ((int32_t *)(tensor->op_params))[i] = value;
  2178. }
  2179. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2180. memset(tensor->data, 0, ggml_nbytes(tensor));
  2181. return tensor;
  2182. }
  2183. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2184. const int n = ggml_nrows(tensor);
  2185. const int nc = tensor->ne[0];
  2186. const size_t n1 = tensor->nb[1];
  2187. char * const data = tensor->data;
  2188. switch (tensor->type) {
  2189. case GGML_TYPE_I8:
  2190. {
  2191. assert(tensor->nb[0] == sizeof(int8_t));
  2192. for (int i = 0; i < n; i++) {
  2193. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2194. }
  2195. } break;
  2196. case GGML_TYPE_I16:
  2197. {
  2198. assert(tensor->nb[0] == sizeof(int16_t));
  2199. for (int i = 0; i < n; i++) {
  2200. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2201. }
  2202. } break;
  2203. case GGML_TYPE_I32:
  2204. {
  2205. assert(tensor->nb[0] == sizeof(int32_t));
  2206. for (int i = 0; i < n; i++) {
  2207. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2208. }
  2209. } break;
  2210. case GGML_TYPE_F16:
  2211. {
  2212. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2213. for (int i = 0; i < n; i++) {
  2214. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2215. }
  2216. } break;
  2217. case GGML_TYPE_F32:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(float));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. default:
  2225. {
  2226. GGML_ASSERT(false);
  2227. } break;
  2228. }
  2229. return tensor;
  2230. }
  2231. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2232. const int n = ggml_nrows(tensor);
  2233. const int nc = tensor->ne[0];
  2234. const size_t n1 = tensor->nb[1];
  2235. char * const data = tensor->data;
  2236. switch (tensor->type) {
  2237. case GGML_TYPE_I8:
  2238. {
  2239. assert(tensor->nb[0] == sizeof(int8_t));
  2240. for (int i = 0; i < n; i++) {
  2241. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2242. }
  2243. } break;
  2244. case GGML_TYPE_I16:
  2245. {
  2246. assert(tensor->nb[0] == sizeof(int16_t));
  2247. for (int i = 0; i < n; i++) {
  2248. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2249. }
  2250. } break;
  2251. case GGML_TYPE_I32:
  2252. {
  2253. assert(tensor->nb[0] == sizeof(int32_t));
  2254. for (int i = 0; i < n; i++) {
  2255. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2256. }
  2257. } break;
  2258. case GGML_TYPE_F16:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2263. }
  2264. } break;
  2265. case GGML_TYPE_F32:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(float));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. default:
  2273. {
  2274. GGML_ASSERT(false);
  2275. } break;
  2276. }
  2277. return tensor;
  2278. }
  2279. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2280. const int64_t ne2 = tensor->ne[2];
  2281. const int64_t ne1 = tensor->ne[1];
  2282. const int64_t ne0 = tensor->ne[0];
  2283. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2284. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2285. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2286. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2287. if (i0) {
  2288. * i0 = i0_;
  2289. }
  2290. if (i1) {
  2291. * i1 = i1_;
  2292. }
  2293. if (i2) {
  2294. * i2 = i2_;
  2295. }
  2296. if (i3) {
  2297. * i3 = i3_;
  2298. }
  2299. }
  2300. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2301. if (!ggml_is_contiguous(tensor)) {
  2302. int64_t id[4] = { 0, 0, 0, 0 };
  2303. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2304. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2305. }
  2306. switch (tensor->type) {
  2307. case GGML_TYPE_I8:
  2308. {
  2309. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2310. return ((int8_t *)(tensor->data))[i];
  2311. }
  2312. case GGML_TYPE_I16:
  2313. {
  2314. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2315. return ((int16_t *)(tensor->data))[i];
  2316. }
  2317. case GGML_TYPE_I32:
  2318. {
  2319. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2320. return ((int32_t *)(tensor->data))[i];
  2321. }
  2322. case GGML_TYPE_F16:
  2323. {
  2324. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2325. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2326. }
  2327. case GGML_TYPE_F32:
  2328. {
  2329. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2330. return ((float *)(tensor->data))[i];
  2331. }
  2332. default:
  2333. {
  2334. GGML_ASSERT(false);
  2335. }
  2336. }
  2337. return 0.0f;
  2338. }
  2339. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2340. if (!ggml_is_contiguous(tensor)) {
  2341. int64_t id[4] = { 0, 0, 0, 0 };
  2342. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2343. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2344. return;
  2345. }
  2346. switch (tensor->type) {
  2347. case GGML_TYPE_I8:
  2348. {
  2349. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2350. ((int8_t *)(tensor->data))[i] = value;
  2351. } break;
  2352. case GGML_TYPE_I16:
  2353. {
  2354. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2355. ((int16_t *)(tensor->data))[i] = value;
  2356. } break;
  2357. case GGML_TYPE_I32:
  2358. {
  2359. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2360. ((int32_t *)(tensor->data))[i] = value;
  2361. } break;
  2362. case GGML_TYPE_F16:
  2363. {
  2364. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2365. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2366. } break;
  2367. case GGML_TYPE_F32:
  2368. {
  2369. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2370. ((float *)(tensor->data))[i] = value;
  2371. } break;
  2372. default:
  2373. {
  2374. GGML_ASSERT(false);
  2375. } break;
  2376. }
  2377. }
  2378. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2379. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2380. switch (tensor->type) {
  2381. case GGML_TYPE_I8:
  2382. return ((int8_t *) data)[0];
  2383. case GGML_TYPE_I16:
  2384. return ((int16_t *) data)[0];
  2385. case GGML_TYPE_I32:
  2386. return ((int32_t *) data)[0];
  2387. case GGML_TYPE_F16:
  2388. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2389. case GGML_TYPE_F32:
  2390. return ((float *) data)[0];
  2391. default:
  2392. GGML_ASSERT(false);
  2393. }
  2394. return 0.0f;
  2395. }
  2396. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2397. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. ((int8_t *)(data))[0] = value;
  2402. } break;
  2403. case GGML_TYPE_I16:
  2404. {
  2405. ((int16_t *)(data))[0] = value;
  2406. } break;
  2407. case GGML_TYPE_I32:
  2408. {
  2409. ((int32_t *)(data))[0] = value;
  2410. } break;
  2411. case GGML_TYPE_F16:
  2412. {
  2413. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2414. } break;
  2415. case GGML_TYPE_F32:
  2416. {
  2417. ((float *)(data))[0] = value;
  2418. } break;
  2419. default:
  2420. {
  2421. GGML_ASSERT(false);
  2422. } break;
  2423. }
  2424. }
  2425. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2426. if (!ggml_is_contiguous(tensor)) {
  2427. int64_t id[4] = { 0, 0, 0, 0 };
  2428. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2429. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2430. }
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2435. return ((int8_t *)(tensor->data))[i];
  2436. }
  2437. case GGML_TYPE_I16:
  2438. {
  2439. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2440. return ((int16_t *)(tensor->data))[i];
  2441. }
  2442. case GGML_TYPE_I32:
  2443. {
  2444. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2445. return ((int32_t *)(tensor->data))[i];
  2446. }
  2447. case GGML_TYPE_F16:
  2448. {
  2449. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2450. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2451. }
  2452. case GGML_TYPE_F32:
  2453. {
  2454. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2455. return ((float *)(tensor->data))[i];
  2456. }
  2457. default:
  2458. {
  2459. GGML_ASSERT(false);
  2460. }
  2461. }
  2462. return 0.0f;
  2463. }
  2464. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2465. if (!ggml_is_contiguous(tensor)) {
  2466. int64_t id[4] = { 0, 0, 0, 0 };
  2467. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2468. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2469. return;
  2470. }
  2471. switch (tensor->type) {
  2472. case GGML_TYPE_I8:
  2473. {
  2474. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2475. ((int8_t *)(tensor->data))[i] = value;
  2476. } break;
  2477. case GGML_TYPE_I16:
  2478. {
  2479. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2480. ((int16_t *)(tensor->data))[i] = value;
  2481. } break;
  2482. case GGML_TYPE_I32:
  2483. {
  2484. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2485. ((int32_t *)(tensor->data))[i] = value;
  2486. } break;
  2487. case GGML_TYPE_F16:
  2488. {
  2489. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2490. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2491. } break;
  2492. case GGML_TYPE_F32:
  2493. {
  2494. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2495. ((float *)(tensor->data))[i] = value;
  2496. } break;
  2497. default:
  2498. {
  2499. GGML_ASSERT(false);
  2500. } break;
  2501. }
  2502. }
  2503. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2504. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2505. switch (tensor->type) {
  2506. case GGML_TYPE_I8:
  2507. return ((int8_t *) data)[0];
  2508. case GGML_TYPE_I16:
  2509. return ((int16_t *) data)[0];
  2510. case GGML_TYPE_I32:
  2511. return ((int32_t *) data)[0];
  2512. case GGML_TYPE_F16:
  2513. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2514. case GGML_TYPE_F32:
  2515. return ((float *) data)[0];
  2516. default:
  2517. GGML_ASSERT(false);
  2518. }
  2519. return 0.0f;
  2520. }
  2521. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2522. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. {
  2526. ((int8_t *)(data))[0] = value;
  2527. } break;
  2528. case GGML_TYPE_I16:
  2529. {
  2530. ((int16_t *)(data))[0] = value;
  2531. } break;
  2532. case GGML_TYPE_I32:
  2533. {
  2534. ((int32_t *)(data))[0] = value;
  2535. } break;
  2536. case GGML_TYPE_F16:
  2537. {
  2538. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2539. } break;
  2540. case GGML_TYPE_F32:
  2541. {
  2542. ((float *)(data))[0] = value;
  2543. } break;
  2544. default:
  2545. {
  2546. GGML_ASSERT(false);
  2547. } break;
  2548. }
  2549. }
  2550. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2551. return tensor->data;
  2552. }
  2553. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2554. assert(tensor->type == GGML_TYPE_F32);
  2555. return (float *)(tensor->data);
  2556. }
  2557. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2558. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2559. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2560. }
  2561. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2562. return tensor->name;
  2563. }
  2564. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2565. strncpy(tensor->name, name, sizeof(tensor->name));
  2566. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2567. return tensor;
  2568. }
  2569. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2570. va_list args;
  2571. va_start(args, fmt);
  2572. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2573. va_end(args);
  2574. return tensor;
  2575. }
  2576. struct ggml_tensor * ggml_view_tensor(
  2577. struct ggml_context * ctx,
  2578. struct ggml_tensor * src) {
  2579. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2580. ggml_format_name(result, "%s (view)", src->name);
  2581. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2582. result->nb[i] = src->nb[i];
  2583. }
  2584. return result;
  2585. }
  2586. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2587. struct ggml_object * obj = ctx->objects_begin;
  2588. char * const mem_buffer = ctx->mem_buffer;
  2589. while (obj != NULL) {
  2590. if (obj->type == GGML_OBJECT_TENSOR) {
  2591. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2592. }
  2593. obj = obj->next;
  2594. }
  2595. return NULL;
  2596. }
  2597. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2598. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2599. obj = obj->next;
  2600. char * const mem_buffer = ctx->mem_buffer;
  2601. while (obj != NULL) {
  2602. if (obj->type == GGML_OBJECT_TENSOR) {
  2603. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2604. }
  2605. obj = obj->next;
  2606. }
  2607. return NULL;
  2608. }
  2609. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2610. struct ggml_object * obj = ctx->objects_begin;
  2611. char * const mem_buffer = ctx->mem_buffer;
  2612. while (obj != NULL) {
  2613. if (obj->type == GGML_OBJECT_TENSOR) {
  2614. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2615. if (strcmp(cur->name, name) == 0) {
  2616. return cur;
  2617. }
  2618. }
  2619. obj = obj->next;
  2620. }
  2621. return NULL;
  2622. }
  2623. ////////////////////////////////////////////////////////////////////////////////
  2624. // ggml_dup
  2625. static struct ggml_tensor * ggml_dup_impl(
  2626. struct ggml_context * ctx,
  2627. struct ggml_tensor * a,
  2628. bool inplace) {
  2629. bool is_node = false;
  2630. if (!inplace && (a->grad)) {
  2631. is_node = true;
  2632. }
  2633. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2634. result->op = GGML_OP_DUP;
  2635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2636. result->src[0] = a;
  2637. return result;
  2638. }
  2639. struct ggml_tensor * ggml_dup(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a) {
  2642. return ggml_dup_impl(ctx, a, false);
  2643. }
  2644. struct ggml_tensor * ggml_dup_inplace(
  2645. struct ggml_context * ctx,
  2646. struct ggml_tensor * a) {
  2647. return ggml_dup_impl(ctx, a, true);
  2648. }
  2649. // ggml_add
  2650. static struct ggml_tensor * ggml_add_impl(
  2651. struct ggml_context * ctx,
  2652. struct ggml_tensor * a,
  2653. struct ggml_tensor * b,
  2654. bool inplace) {
  2655. // TODO: support less-strict constraint
  2656. // GGML_ASSERT(ggml_can_repeat(b, a));
  2657. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2658. bool is_node = false;
  2659. if (!inplace && (a->grad || b->grad)) {
  2660. // TODO: support backward pass for broadcasting
  2661. GGML_ASSERT(ggml_are_same_shape(a, b));
  2662. is_node = true;
  2663. }
  2664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2665. result->op = GGML_OP_ADD;
  2666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2667. result->src[0] = a;
  2668. result->src[1] = b;
  2669. return result;
  2670. }
  2671. struct ggml_tensor * ggml_add(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b) {
  2675. return ggml_add_impl(ctx, a, b, false);
  2676. }
  2677. struct ggml_tensor * ggml_add_inplace(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a,
  2680. struct ggml_tensor * b) {
  2681. return ggml_add_impl(ctx, a, b, true);
  2682. }
  2683. // ggml_add_cast
  2684. static struct ggml_tensor * ggml_add_cast_impl(
  2685. struct ggml_context * ctx,
  2686. struct ggml_tensor * a,
  2687. struct ggml_tensor * b,
  2688. enum ggml_type type) {
  2689. // TODO: support less-strict constraint
  2690. // GGML_ASSERT(ggml_can_repeat(b, a));
  2691. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2692. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2693. bool is_node = false;
  2694. if (a->grad || b->grad) {
  2695. // TODO: support backward pass for broadcasting
  2696. GGML_ASSERT(ggml_are_same_shape(a, b));
  2697. is_node = true;
  2698. }
  2699. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2700. result->op = GGML_OP_ADD;
  2701. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2702. result->src[0] = a;
  2703. result->src[1] = b;
  2704. return result;
  2705. }
  2706. struct ggml_tensor * ggml_add_cast(
  2707. struct ggml_context * ctx,
  2708. struct ggml_tensor * a,
  2709. struct ggml_tensor * b,
  2710. enum ggml_type type) {
  2711. return ggml_add_cast_impl(ctx, a, b, type);
  2712. }
  2713. // ggml_add1
  2714. static struct ggml_tensor * ggml_add1_impl(
  2715. struct ggml_context * ctx,
  2716. struct ggml_tensor * a,
  2717. struct ggml_tensor * b,
  2718. bool inplace) {
  2719. GGML_ASSERT(ggml_is_scalar(b));
  2720. GGML_ASSERT(ggml_is_padded_1d(a));
  2721. bool is_node = false;
  2722. if (a->grad || b->grad) {
  2723. is_node = true;
  2724. }
  2725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2726. result->op = GGML_OP_ADD1;
  2727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2728. result->src[0] = a;
  2729. result->src[1] = b;
  2730. return result;
  2731. }
  2732. struct ggml_tensor * ggml_add1(
  2733. struct ggml_context * ctx,
  2734. struct ggml_tensor * a,
  2735. struct ggml_tensor * b) {
  2736. return ggml_add1_impl(ctx, a, b, false);
  2737. }
  2738. struct ggml_tensor * ggml_add1_inplace(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a,
  2741. struct ggml_tensor * b) {
  2742. return ggml_add1_impl(ctx, a, b, true);
  2743. }
  2744. // ggml_acc
  2745. static struct ggml_tensor * ggml_acc_impl(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b,
  2749. size_t nb1,
  2750. size_t nb2,
  2751. size_t nb3,
  2752. size_t offset,
  2753. bool inplace) {
  2754. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2755. GGML_ASSERT(ggml_is_contiguous(a));
  2756. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2757. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2758. bool is_node = false;
  2759. if (!inplace && (a->grad || b->grad)) {
  2760. is_node = true;
  2761. }
  2762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2763. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2764. ggml_set_op_params(result, params, sizeof(params));
  2765. result->op = GGML_OP_ACC;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src[0] = a;
  2768. result->src[1] = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_acc(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b,
  2775. size_t nb1,
  2776. size_t nb2,
  2777. size_t nb3,
  2778. size_t offset) {
  2779. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2780. }
  2781. struct ggml_tensor * ggml_acc_inplace(
  2782. struct ggml_context * ctx,
  2783. struct ggml_tensor * a,
  2784. struct ggml_tensor * b,
  2785. size_t nb1,
  2786. size_t nb2,
  2787. size_t nb3,
  2788. size_t offset) {
  2789. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2790. }
  2791. // ggml_sub
  2792. static struct ggml_tensor * ggml_sub_impl(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. struct ggml_tensor * b,
  2796. bool inplace) {
  2797. GGML_ASSERT(ggml_are_same_shape(a, b));
  2798. bool is_node = false;
  2799. if (!inplace && (a->grad || b->grad)) {
  2800. is_node = true;
  2801. }
  2802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2803. result->op = GGML_OP_SUB;
  2804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2805. result->src[0] = a;
  2806. result->src[1] = b;
  2807. return result;
  2808. }
  2809. struct ggml_tensor * ggml_sub(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a,
  2812. struct ggml_tensor * b) {
  2813. return ggml_sub_impl(ctx, a, b, false);
  2814. }
  2815. struct ggml_tensor * ggml_sub_inplace(
  2816. struct ggml_context * ctx,
  2817. struct ggml_tensor * a,
  2818. struct ggml_tensor * b) {
  2819. return ggml_sub_impl(ctx, a, b, true);
  2820. }
  2821. // ggml_mul
  2822. static struct ggml_tensor * ggml_mul_impl(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. struct ggml_tensor * b,
  2826. bool inplace) {
  2827. // TODO: support less-strict constraint
  2828. // GGML_ASSERT(ggml_can_repeat(b, a));
  2829. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2830. bool is_node = false;
  2831. if (!inplace && (a->grad || b->grad)) {
  2832. // TODO: support backward pass for broadcasting
  2833. GGML_ASSERT(ggml_are_same_shape(a, b));
  2834. is_node = true;
  2835. }
  2836. if (inplace) {
  2837. GGML_ASSERT(!is_node);
  2838. }
  2839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2840. result->op = GGML_OP_MUL;
  2841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2842. result->src[0] = a;
  2843. result->src[1] = b;
  2844. return result;
  2845. }
  2846. struct ggml_tensor * ggml_mul(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_mul_impl(ctx, a, b, false);
  2851. }
  2852. struct ggml_tensor * ggml_mul_inplace(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b) {
  2856. return ggml_mul_impl(ctx, a, b, true);
  2857. }
  2858. // ggml_div
  2859. static struct ggml_tensor * ggml_div_impl(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. struct ggml_tensor * b,
  2863. bool inplace) {
  2864. GGML_ASSERT(ggml_are_same_shape(a, b));
  2865. bool is_node = false;
  2866. if (!inplace && (a->grad || b->grad)) {
  2867. is_node = true;
  2868. }
  2869. if (inplace) {
  2870. GGML_ASSERT(!is_node);
  2871. }
  2872. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2873. result->op = GGML_OP_DIV;
  2874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2875. result->src[0] = a;
  2876. result->src[1] = b;
  2877. return result;
  2878. }
  2879. struct ggml_tensor * ggml_div(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. struct ggml_tensor * b) {
  2883. return ggml_div_impl(ctx, a, b, false);
  2884. }
  2885. struct ggml_tensor * ggml_div_inplace(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. struct ggml_tensor * b) {
  2889. return ggml_div_impl(ctx, a, b, true);
  2890. }
  2891. // ggml_sqr
  2892. static struct ggml_tensor * ggml_sqr_impl(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. bool inplace) {
  2896. bool is_node = false;
  2897. if (!inplace && (a->grad)) {
  2898. is_node = true;
  2899. }
  2900. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2901. result->op = GGML_OP_SQR;
  2902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2903. result->src[0] = a;
  2904. return result;
  2905. }
  2906. struct ggml_tensor * ggml_sqr(
  2907. struct ggml_context * ctx,
  2908. struct ggml_tensor * a) {
  2909. return ggml_sqr_impl(ctx, a, false);
  2910. }
  2911. struct ggml_tensor * ggml_sqr_inplace(
  2912. struct ggml_context * ctx,
  2913. struct ggml_tensor * a) {
  2914. return ggml_sqr_impl(ctx, a, true);
  2915. }
  2916. // ggml_sqrt
  2917. static struct ggml_tensor * ggml_sqrt_impl(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a,
  2920. bool inplace) {
  2921. bool is_node = false;
  2922. if (!inplace && (a->grad)) {
  2923. is_node = true;
  2924. }
  2925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2926. result->op = GGML_OP_SQRT;
  2927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2928. result->src[0] = a;
  2929. return result;
  2930. }
  2931. struct ggml_tensor * ggml_sqrt(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a) {
  2934. return ggml_sqrt_impl(ctx, a, false);
  2935. }
  2936. struct ggml_tensor * ggml_sqrt_inplace(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. return ggml_sqrt_impl(ctx, a, true);
  2940. }
  2941. // ggml_log
  2942. static struct ggml_tensor * ggml_log_impl(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. bool inplace) {
  2946. bool is_node = false;
  2947. if (!inplace && (a->grad)) {
  2948. is_node = true;
  2949. }
  2950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2951. result->op = GGML_OP_LOG;
  2952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2953. result->src[0] = a;
  2954. return result;
  2955. }
  2956. struct ggml_tensor * ggml_log(
  2957. struct ggml_context * ctx,
  2958. struct ggml_tensor * a) {
  2959. return ggml_log_impl(ctx, a, false);
  2960. }
  2961. struct ggml_tensor * ggml_log_inplace(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a) {
  2964. return ggml_log_impl(ctx, a, true);
  2965. }
  2966. // ggml_sum
  2967. struct ggml_tensor * ggml_sum(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. bool is_node = false;
  2971. if (a->grad) {
  2972. is_node = true;
  2973. }
  2974. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2975. result->op = GGML_OP_SUM;
  2976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2977. result->src[0] = a;
  2978. return result;
  2979. }
  2980. // ggml_sum_rows
  2981. struct ggml_tensor * ggml_sum_rows(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a) {
  2984. bool is_node = false;
  2985. if (a->grad) {
  2986. is_node = true;
  2987. }
  2988. int64_t ne[4] = {1,1,1,1};
  2989. for (int i=1; i<a->n_dims; ++i) {
  2990. ne[i] = a->ne[i];
  2991. }
  2992. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2993. result->op = GGML_OP_SUM_ROWS;
  2994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2995. result->src[0] = a;
  2996. return result;
  2997. }
  2998. // ggml_mean
  2999. struct ggml_tensor * ggml_mean(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a) {
  3002. bool is_node = false;
  3003. if (a->grad) {
  3004. GGML_ASSERT(false); // TODO: implement
  3005. is_node = true;
  3006. }
  3007. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3008. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3009. result->op = GGML_OP_MEAN;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. return result;
  3013. }
  3014. // ggml_argmax
  3015. struct ggml_tensor * ggml_argmax(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a) {
  3018. GGML_ASSERT(ggml_is_matrix(a));
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. GGML_ASSERT(false);
  3022. is_node = true;
  3023. }
  3024. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3025. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3026. result->op = GGML_OP_ARGMAX;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src[0] = a;
  3029. return result;
  3030. }
  3031. // ggml_repeat
  3032. struct ggml_tensor * ggml_repeat(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a,
  3035. struct ggml_tensor * b) {
  3036. GGML_ASSERT(ggml_can_repeat(a, b));
  3037. bool is_node = false;
  3038. if (a->grad) {
  3039. is_node = true;
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3042. result->op = GGML_OP_REPEAT;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_repeat_back
  3048. struct ggml_tensor * ggml_repeat_back(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. GGML_ASSERT(ggml_can_repeat(b, a));
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. if (ggml_are_same_shape(a, b) && !is_node) {
  3058. return a;
  3059. }
  3060. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3061. result->op = GGML_OP_REPEAT_BACK;
  3062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3063. result->src[0] = a;
  3064. return result;
  3065. }
  3066. // ggml_concat
  3067. struct ggml_tensor * ggml_concat(
  3068. struct ggml_context* ctx,
  3069. struct ggml_tensor* a,
  3070. struct ggml_tensor* b) {
  3071. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3072. bool is_node = false;
  3073. if (a->grad || b->grad) {
  3074. is_node = true;
  3075. }
  3076. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3077. result->op = GGML_OP_CONCAT;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src[0] = a;
  3080. result->src[1] = b;
  3081. return result;
  3082. }
  3083. // ggml_abs
  3084. struct ggml_tensor * ggml_abs(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a) {
  3087. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3088. }
  3089. struct ggml_tensor * ggml_abs_inplace(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3093. }
  3094. // ggml_sgn
  3095. struct ggml_tensor * ggml_sgn(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3099. }
  3100. struct ggml_tensor * ggml_sgn_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3104. }
  3105. // ggml_neg
  3106. struct ggml_tensor * ggml_neg(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3110. }
  3111. struct ggml_tensor * ggml_neg_inplace(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3115. }
  3116. // ggml_step
  3117. struct ggml_tensor * ggml_step(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3121. }
  3122. struct ggml_tensor * ggml_step_inplace(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3126. }
  3127. // ggml_tanh
  3128. struct ggml_tensor * ggml_tanh(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3132. }
  3133. struct ggml_tensor * ggml_tanh_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3137. }
  3138. // ggml_elu
  3139. struct ggml_tensor * ggml_elu(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3143. }
  3144. struct ggml_tensor * ggml_elu_inplace(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3148. }
  3149. // ggml_relu
  3150. struct ggml_tensor * ggml_relu(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3154. }
  3155. struct ggml_tensor * ggml_relu_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3159. }
  3160. // ggml_leaky
  3161. struct ggml_tensor * ggml_leaky(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY);
  3165. }
  3166. // ggml_gelu
  3167. struct ggml_tensor * ggml_gelu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3171. }
  3172. struct ggml_tensor * ggml_gelu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3176. }
  3177. // ggml_gelu_quick
  3178. struct ggml_tensor * ggml_gelu_quick(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3182. }
  3183. struct ggml_tensor * ggml_gelu_quick_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3187. }
  3188. // ggml_silu
  3189. struct ggml_tensor * ggml_silu(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3193. }
  3194. struct ggml_tensor * ggml_silu_inplace(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3198. }
  3199. // ggml_silu_back
  3200. struct ggml_tensor * ggml_silu_back(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. bool is_node = false;
  3205. if (a->grad || b->grad) {
  3206. // TODO: implement backward
  3207. is_node = true;
  3208. }
  3209. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3210. result->op = GGML_OP_SILU_BACK;
  3211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3212. result->src[0] = a;
  3213. result->src[1] = b;
  3214. return result;
  3215. }
  3216. // ggml_norm
  3217. static struct ggml_tensor * ggml_norm_impl(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a,
  3220. float eps,
  3221. bool inplace) {
  3222. bool is_node = false;
  3223. if (!inplace && (a->grad)) {
  3224. GGML_ASSERT(false); // TODO: implement backward
  3225. is_node = true;
  3226. }
  3227. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3228. ggml_set_op_params(result, &eps, sizeof(eps));
  3229. result->op = GGML_OP_NORM;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src[0] = a;
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_norm(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. float eps) {
  3238. return ggml_norm_impl(ctx, a, eps, false);
  3239. }
  3240. struct ggml_tensor * ggml_norm_inplace(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a,
  3243. float eps) {
  3244. return ggml_norm_impl(ctx, a, eps, true);
  3245. }
  3246. // ggml_rms_norm
  3247. static struct ggml_tensor * ggml_rms_norm_impl(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a,
  3250. float eps,
  3251. bool inplace) {
  3252. bool is_node = false;
  3253. if (!inplace && (a->grad)) {
  3254. is_node = true;
  3255. }
  3256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3257. ggml_set_op_params(result, &eps, sizeof(eps));
  3258. result->op = GGML_OP_RMS_NORM;
  3259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3260. result->src[0] = a;
  3261. return result;
  3262. }
  3263. struct ggml_tensor * ggml_rms_norm(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. float eps) {
  3267. return ggml_rms_norm_impl(ctx, a, eps, false);
  3268. }
  3269. struct ggml_tensor * ggml_rms_norm_inplace(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a,
  3272. float eps) {
  3273. return ggml_rms_norm_impl(ctx, a, eps, true);
  3274. }
  3275. // ggml_rms_norm_back
  3276. struct ggml_tensor * ggml_rms_norm_back(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a,
  3279. struct ggml_tensor * b,
  3280. float eps) {
  3281. bool is_node = false;
  3282. if (a->grad) {
  3283. // TODO: implement backward
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3287. ggml_set_op_params(result, &eps, sizeof(eps));
  3288. result->op = GGML_OP_RMS_NORM_BACK;
  3289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3290. result->src[0] = a;
  3291. result->src[1] = b;
  3292. return result;
  3293. }
  3294. // ggml_group_norm
  3295. static struct ggml_tensor * ggml_group_norm_impl(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a,
  3298. int n_groups,
  3299. bool inplace) {
  3300. bool is_node = false;
  3301. if (!inplace && (a->grad)) {
  3302. GGML_ASSERT(false); // TODO: implement backward
  3303. is_node = true;
  3304. }
  3305. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3306. result->op = GGML_OP_GROUP_NORM;
  3307. result->op_params[0] = n_groups;
  3308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3309. result->src[0] = a;
  3310. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3311. return result;
  3312. }
  3313. struct ggml_tensor * ggml_group_norm(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. int n_groups) {
  3317. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3318. }
  3319. struct ggml_tensor * ggml_group_norm_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. int n_groups) {
  3323. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3324. }
  3325. // ggml_mul_mat
  3326. struct ggml_tensor * ggml_mul_mat(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a,
  3329. struct ggml_tensor * b) {
  3330. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3331. GGML_ASSERT(!ggml_is_transposed(a));
  3332. bool is_node = false;
  3333. if (a->grad || b->grad) {
  3334. is_node = true;
  3335. }
  3336. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3338. result->op = GGML_OP_MUL_MAT;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. result->src[1] = b;
  3342. return result;
  3343. }
  3344. // ggml_out_prod
  3345. struct ggml_tensor * ggml_out_prod(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. struct ggml_tensor * b) {
  3349. GGML_ASSERT(ggml_can_out_prod(a, b));
  3350. GGML_ASSERT(!ggml_is_transposed(a));
  3351. bool is_node = false;
  3352. if (a->grad || b->grad) {
  3353. is_node = true;
  3354. }
  3355. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3356. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3358. result->op = GGML_OP_OUT_PROD;
  3359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3360. result->src[0] = a;
  3361. result->src[1] = b;
  3362. return result;
  3363. }
  3364. // ggml_scale
  3365. static struct ggml_tensor * ggml_scale_impl(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. struct ggml_tensor * b,
  3369. bool inplace) {
  3370. GGML_ASSERT(ggml_is_scalar(b));
  3371. GGML_ASSERT(ggml_is_padded_1d(a));
  3372. bool is_node = false;
  3373. if (a->grad || b->grad) {
  3374. is_node = true;
  3375. }
  3376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3377. result->op = GGML_OP_SCALE;
  3378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3379. result->src[0] = a;
  3380. result->src[1] = b;
  3381. return result;
  3382. }
  3383. struct ggml_tensor * ggml_scale(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. struct ggml_tensor * b) {
  3387. return ggml_scale_impl(ctx, a, b, false);
  3388. }
  3389. struct ggml_tensor * ggml_scale_inplace(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a,
  3392. struct ggml_tensor * b) {
  3393. return ggml_scale_impl(ctx, a, b, true);
  3394. }
  3395. // ggml_set
  3396. static struct ggml_tensor * ggml_set_impl(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a,
  3399. struct ggml_tensor * b,
  3400. size_t nb1,
  3401. size_t nb2,
  3402. size_t nb3,
  3403. size_t offset,
  3404. bool inplace) {
  3405. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3406. bool is_node = false;
  3407. if (a->grad || b->grad) {
  3408. is_node = true;
  3409. }
  3410. // make a view of the destination
  3411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3412. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3413. ggml_set_op_params(result, params, sizeof(params));
  3414. result->op = GGML_OP_SET;
  3415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3416. result->src[0] = a;
  3417. result->src[1] = b;
  3418. return result;
  3419. }
  3420. struct ggml_tensor * ggml_set(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a,
  3423. struct ggml_tensor * b,
  3424. size_t nb1,
  3425. size_t nb2,
  3426. size_t nb3,
  3427. size_t offset) {
  3428. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3429. }
  3430. struct ggml_tensor * ggml_set_inplace(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b,
  3434. size_t nb1,
  3435. size_t nb2,
  3436. size_t nb3,
  3437. size_t offset) {
  3438. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3439. }
  3440. struct ggml_tensor * ggml_set_1d(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b,
  3444. size_t offset) {
  3445. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3446. }
  3447. struct ggml_tensor * ggml_set_1d_inplace(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. struct ggml_tensor * b,
  3451. size_t offset) {
  3452. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3453. }
  3454. struct ggml_tensor * ggml_set_2d(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b,
  3458. size_t nb1,
  3459. size_t offset) {
  3460. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3461. }
  3462. struct ggml_tensor * ggml_set_2d_inplace(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b,
  3466. size_t nb1,
  3467. size_t offset) {
  3468. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3469. }
  3470. // ggml_cpy
  3471. static struct ggml_tensor * ggml_cpy_impl(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. struct ggml_tensor * b,
  3475. bool inplace) {
  3476. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3477. bool is_node = false;
  3478. if (!inplace && (a->grad || b->grad)) {
  3479. is_node = true;
  3480. }
  3481. // make a view of the destination
  3482. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3483. if (strlen(b->name) > 0) {
  3484. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3485. } else {
  3486. ggml_format_name(result, "%s (copy)", a->name);
  3487. }
  3488. result->op = GGML_OP_CPY;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src[0] = a;
  3491. result->src[1] = b;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_cpy(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b) {
  3498. return ggml_cpy_impl(ctx, a, b, false);
  3499. }
  3500. struct ggml_tensor * ggml_cpy_inplace(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b) {
  3504. return ggml_cpy_impl(ctx, a, b, true);
  3505. }
  3506. // ggml_cont
  3507. static struct ggml_tensor * ggml_cont_impl(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. bool inplace) {
  3511. bool is_node = false;
  3512. if (!inplace && a->grad) {
  3513. is_node = true;
  3514. }
  3515. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3516. ggml_format_name(result, "%s (cont)", a->name);
  3517. result->op = GGML_OP_CONT;
  3518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3519. result->src[0] = a;
  3520. return result;
  3521. }
  3522. struct ggml_tensor * ggml_cont(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a) {
  3525. return ggml_cont_impl(ctx, a, false);
  3526. }
  3527. struct ggml_tensor * ggml_cont_inplace(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a) {
  3530. return ggml_cont_impl(ctx, a, true);
  3531. }
  3532. // make contiguous, with new shape
  3533. GGML_API struct ggml_tensor * ggml_cont_1d(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. int64_t ne0) {
  3537. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3538. }
  3539. GGML_API struct ggml_tensor * ggml_cont_2d(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. int64_t ne0,
  3543. int64_t ne1) {
  3544. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3545. }
  3546. GGML_API struct ggml_tensor * ggml_cont_3d(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. int64_t ne0,
  3550. int64_t ne1,
  3551. int64_t ne2) {
  3552. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3553. }
  3554. struct ggml_tensor * ggml_cont_4d(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int64_t ne0,
  3558. int64_t ne1,
  3559. int64_t ne2,
  3560. int64_t ne3) {
  3561. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3562. bool is_node = false;
  3563. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3564. ggml_format_name(result, "%s (cont)", a->name);
  3565. result->op = GGML_OP_CONT;
  3566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3567. result->src[0] = a;
  3568. return result;
  3569. }
  3570. // ggml_reshape
  3571. struct ggml_tensor * ggml_reshape(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. struct ggml_tensor * b) {
  3575. GGML_ASSERT(ggml_is_contiguous(a));
  3576. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3577. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3578. bool is_node = false;
  3579. if (a->grad) {
  3580. is_node = true;
  3581. }
  3582. if (b->grad) {
  3583. // gradient propagation is not supported
  3584. //GGML_ASSERT(false);
  3585. }
  3586. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3587. ggml_format_name(result, "%s (reshaped)", a->name);
  3588. result->op = GGML_OP_RESHAPE;
  3589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3590. result->src[0] = a;
  3591. return result;
  3592. }
  3593. struct ggml_tensor * ggml_reshape_1d(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. int64_t ne0) {
  3597. GGML_ASSERT(ggml_is_contiguous(a));
  3598. GGML_ASSERT(ggml_nelements(a) == ne0);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. is_node = true;
  3602. }
  3603. const int64_t ne[1] = { ne0 };
  3604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3605. ggml_format_name(result, "%s (reshaped)", a->name);
  3606. result->op = GGML_OP_RESHAPE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_reshape_2d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. int64_t ne0,
  3615. int64_t ne1) {
  3616. GGML_ASSERT(ggml_is_contiguous(a));
  3617. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3618. bool is_node = false;
  3619. if (a->grad) {
  3620. is_node = true;
  3621. }
  3622. const int64_t ne[2] = { ne0, ne1 };
  3623. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3624. ggml_format_name(result, "%s (reshaped)", a->name);
  3625. result->op = GGML_OP_RESHAPE;
  3626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3627. result->src[0] = a;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_reshape_3d(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. int64_t ne0,
  3634. int64_t ne1,
  3635. int64_t ne2) {
  3636. GGML_ASSERT(ggml_is_contiguous(a));
  3637. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3638. bool is_node = false;
  3639. if (a->grad) {
  3640. is_node = true;
  3641. }
  3642. const int64_t ne[3] = { ne0, ne1, ne2 };
  3643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3644. ggml_format_name(result, "%s (reshaped)", a->name);
  3645. result->op = GGML_OP_RESHAPE;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. return result;
  3649. }
  3650. struct ggml_tensor * ggml_reshape_4d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. int64_t ne2,
  3656. int64_t ne3) {
  3657. GGML_ASSERT(ggml_is_contiguous(a));
  3658. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3659. bool is_node = false;
  3660. if (a->grad) {
  3661. is_node = true;
  3662. }
  3663. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3664. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3665. ggml_format_name(result, "%s (reshaped)", a->name);
  3666. result->op = GGML_OP_RESHAPE;
  3667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3668. result->src[0] = a;
  3669. return result;
  3670. }
  3671. static struct ggml_tensor * ggml_view_impl(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a,
  3674. int n_dims,
  3675. const int64_t * ne,
  3676. size_t offset) {
  3677. bool is_node = false;
  3678. if (a->grad) {
  3679. is_node = true;
  3680. }
  3681. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3682. ggml_format_name(result, "%s (view)", a->name);
  3683. ggml_set_op_params(result, &offset, sizeof(offset));
  3684. result->op = GGML_OP_VIEW;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src[0] = a;
  3687. return result;
  3688. }
  3689. // ggml_view_1d
  3690. struct ggml_tensor * ggml_view_1d(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. int64_t ne0,
  3694. size_t offset) {
  3695. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3696. return result;
  3697. }
  3698. // ggml_view_2d
  3699. struct ggml_tensor * ggml_view_2d(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. int64_t ne0,
  3703. int64_t ne1,
  3704. size_t nb1,
  3705. size_t offset) {
  3706. const int64_t ne[2] = { ne0, ne1 };
  3707. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3708. result->nb[1] = nb1;
  3709. result->nb[2] = result->nb[1]*ne1;
  3710. result->nb[3] = result->nb[2];
  3711. return result;
  3712. }
  3713. // ggml_view_3d
  3714. struct ggml_tensor * ggml_view_3d(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. int64_t ne0,
  3718. int64_t ne1,
  3719. int64_t ne2,
  3720. size_t nb1,
  3721. size_t nb2,
  3722. size_t offset) {
  3723. const int64_t ne[3] = { ne0, ne1, ne2 };
  3724. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3725. result->nb[1] = nb1;
  3726. result->nb[2] = nb2;
  3727. result->nb[3] = result->nb[2]*ne2;
  3728. return result;
  3729. }
  3730. // ggml_view_4d
  3731. struct ggml_tensor * ggml_view_4d(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. int64_t ne0,
  3735. int64_t ne1,
  3736. int64_t ne2,
  3737. int64_t ne3,
  3738. size_t nb1,
  3739. size_t nb2,
  3740. size_t nb3,
  3741. size_t offset) {
  3742. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3743. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3744. result->nb[1] = nb1;
  3745. result->nb[2] = nb2;
  3746. result->nb[3] = nb3;
  3747. return result;
  3748. }
  3749. // ggml_permute
  3750. struct ggml_tensor * ggml_permute(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. int axis0,
  3754. int axis1,
  3755. int axis2,
  3756. int axis3) {
  3757. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3758. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3759. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3760. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3761. GGML_ASSERT(axis0 != axis1);
  3762. GGML_ASSERT(axis0 != axis2);
  3763. GGML_ASSERT(axis0 != axis3);
  3764. GGML_ASSERT(axis1 != axis2);
  3765. GGML_ASSERT(axis1 != axis3);
  3766. GGML_ASSERT(axis2 != axis3);
  3767. bool is_node = false;
  3768. if (a->grad) {
  3769. is_node = true;
  3770. }
  3771. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3772. ggml_format_name(result, "%s (permuted)", a->name);
  3773. int ne[GGML_MAX_DIMS];
  3774. int nb[GGML_MAX_DIMS];
  3775. ne[axis0] = a->ne[0];
  3776. ne[axis1] = a->ne[1];
  3777. ne[axis2] = a->ne[2];
  3778. ne[axis3] = a->ne[3];
  3779. nb[axis0] = a->nb[0];
  3780. nb[axis1] = a->nb[1];
  3781. nb[axis2] = a->nb[2];
  3782. nb[axis3] = a->nb[3];
  3783. result->ne[0] = ne[0];
  3784. result->ne[1] = ne[1];
  3785. result->ne[2] = ne[2];
  3786. result->ne[3] = ne[3];
  3787. result->nb[0] = nb[0];
  3788. result->nb[1] = nb[1];
  3789. result->nb[2] = nb[2];
  3790. result->nb[3] = nb[3];
  3791. result->op = GGML_OP_PERMUTE;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src[0] = a;
  3794. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3795. ggml_set_op_params(result, params, sizeof(params));
  3796. return result;
  3797. }
  3798. // ggml_transpose
  3799. struct ggml_tensor * ggml_transpose(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. bool is_node = false;
  3803. if (a->grad) {
  3804. is_node = true;
  3805. }
  3806. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3807. ggml_format_name(result, "%s (transposed)", a->name);
  3808. result->ne[0] = a->ne[1];
  3809. result->ne[1] = a->ne[0];
  3810. result->nb[0] = a->nb[1];
  3811. result->nb[1] = a->nb[0];
  3812. result->op = GGML_OP_TRANSPOSE;
  3813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3814. result->src[0] = a;
  3815. return result;
  3816. }
  3817. // ggml_get_rows
  3818. struct ggml_tensor * ggml_get_rows(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b) {
  3822. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3823. bool is_node = false;
  3824. if (a->grad || b->grad) {
  3825. is_node = true;
  3826. }
  3827. // TODO: implement non F32 return
  3828. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3829. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3830. result->op = GGML_OP_GET_ROWS;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. result->src[1] = b;
  3834. return result;
  3835. }
  3836. // ggml_get_rows_back
  3837. struct ggml_tensor * ggml_get_rows_back(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b,
  3841. struct ggml_tensor * c) {
  3842. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3843. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3844. bool is_node = false;
  3845. if (a->grad || b->grad) {
  3846. is_node = true;
  3847. }
  3848. // TODO: implement non F32 return
  3849. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3850. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3851. result->op = GGML_OP_GET_ROWS_BACK;
  3852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3853. result->src[0] = a;
  3854. result->src[1] = b;
  3855. return result;
  3856. }
  3857. // ggml_diag
  3858. struct ggml_tensor * ggml_diag(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. GGML_ASSERT(a->ne[1] == 1);
  3862. bool is_node = false;
  3863. if (a->grad) {
  3864. is_node = true;
  3865. }
  3866. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3867. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3868. result->op = GGML_OP_DIAG;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src[0] = a;
  3871. return result;
  3872. }
  3873. // ggml_diag_mask_inf
  3874. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a,
  3877. int n_past,
  3878. bool inplace) {
  3879. bool is_node = false;
  3880. if (a->grad) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. int32_t params[] = { n_past };
  3885. ggml_set_op_params(result, params, sizeof(params));
  3886. result->op = GGML_OP_DIAG_MASK_INF;
  3887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3888. result->src[0] = a;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_diag_mask_inf(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. int n_past) {
  3895. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3896. }
  3897. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. int n_past) {
  3901. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3902. }
  3903. // ggml_diag_mask_zero
  3904. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. int n_past,
  3908. bool inplace) {
  3909. bool is_node = false;
  3910. if (a->grad) {
  3911. is_node = true;
  3912. }
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. int32_t params[] = { n_past };
  3915. ggml_set_op_params(result, params, sizeof(params));
  3916. result->op = GGML_OP_DIAG_MASK_ZERO;
  3917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3918. result->src[0] = a;
  3919. return result;
  3920. }
  3921. struct ggml_tensor * ggml_diag_mask_zero(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. int n_past) {
  3925. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3926. }
  3927. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. int n_past) {
  3931. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3932. }
  3933. // ggml_soft_max
  3934. static struct ggml_tensor * ggml_soft_max_impl(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. bool inplace) {
  3938. bool is_node = false;
  3939. if (a->grad) {
  3940. is_node = true;
  3941. }
  3942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3943. result->op = GGML_OP_SOFT_MAX;
  3944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3945. result->src[0] = a;
  3946. return result;
  3947. }
  3948. struct ggml_tensor * ggml_soft_max(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a) {
  3951. return ggml_soft_max_impl(ctx, a, false);
  3952. }
  3953. struct ggml_tensor * ggml_soft_max_inplace(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a) {
  3956. return ggml_soft_max_impl(ctx, a, true);
  3957. }
  3958. // ggml_soft_max_back
  3959. static struct ggml_tensor * ggml_soft_max_back_impl(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b,
  3963. bool inplace) {
  3964. bool is_node = false;
  3965. if (a->grad || b->grad) {
  3966. is_node = true; // TODO : implement backward pass
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_SOFT_MAX_BACK;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. result->src[1] = b;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_soft_max_back(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_soft_max_back_impl(ctx, a, b, false);
  3980. }
  3981. struct ggml_tensor * ggml_soft_max_back_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b) {
  3985. return ggml_soft_max_back_impl(ctx, a, b, true);
  3986. }
  3987. // ggml_rope
  3988. static struct ggml_tensor * ggml_rope_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b,
  3992. int n_dims,
  3993. int mode,
  3994. int n_ctx,
  3995. int n_orig_ctx,
  3996. float freq_base,
  3997. float freq_scale,
  3998. float ext_factor,
  3999. float attn_factor,
  4000. float beta_fast,
  4001. float beta_slow,
  4002. float xpos_base,
  4003. bool xpos_down,
  4004. bool inplace) {
  4005. GGML_ASSERT(ggml_is_vector(b));
  4006. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4007. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4008. bool is_node = false;
  4009. if (a->grad) {
  4010. is_node = true;
  4011. }
  4012. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4013. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4014. memcpy(params + 5, &freq_base, sizeof(float));
  4015. memcpy(params + 6, &freq_scale, sizeof(float));
  4016. memcpy(params + 7, &ext_factor, sizeof(float));
  4017. memcpy(params + 8, &attn_factor, sizeof(float));
  4018. memcpy(params + 9, &beta_fast, sizeof(float));
  4019. memcpy(params + 10, &beta_slow, sizeof(float));
  4020. memcpy(params + 11, &xpos_base, sizeof(float));
  4021. memcpy(params + 12, &xpos_down, sizeof(bool));
  4022. ggml_set_op_params(result, params, sizeof(params));
  4023. result->op = GGML_OP_ROPE;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src[0] = a;
  4026. result->src[1] = b;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_rope(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. struct ggml_tensor * b,
  4033. int n_dims,
  4034. int mode,
  4035. int n_ctx) {
  4036. return ggml_rope_impl(
  4037. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4038. );
  4039. }
  4040. struct ggml_tensor * ggml_rope_inplace(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. struct ggml_tensor * b,
  4044. int n_dims,
  4045. int mode,
  4046. int n_ctx) {
  4047. return ggml_rope_impl(
  4048. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4049. );
  4050. }
  4051. struct ggml_tensor * ggml_rope_custom(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. int n_dims,
  4056. int mode,
  4057. int n_ctx,
  4058. int n_orig_ctx,
  4059. float freq_base,
  4060. float freq_scale,
  4061. float ext_factor,
  4062. float attn_factor,
  4063. float beta_fast,
  4064. float beta_slow) {
  4065. return ggml_rope_impl(
  4066. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4067. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4068. );
  4069. }
  4070. struct ggml_tensor * ggml_rope_custom_inplace(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. struct ggml_tensor * b,
  4074. int n_dims,
  4075. int mode,
  4076. int n_ctx,
  4077. int n_orig_ctx,
  4078. float freq_base,
  4079. float freq_scale,
  4080. float ext_factor,
  4081. float attn_factor,
  4082. float beta_fast,
  4083. float beta_slow) {
  4084. return ggml_rope_impl(
  4085. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4086. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4087. );
  4088. }
  4089. struct ggml_tensor * ggml_rope_xpos_inplace(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. struct ggml_tensor * b,
  4093. int n_dims,
  4094. float base,
  4095. bool down) {
  4096. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4097. }
  4098. // ggml_rope_back
  4099. struct ggml_tensor * ggml_rope_back(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b,
  4103. int n_dims,
  4104. int mode,
  4105. int n_ctx,
  4106. int n_orig_ctx,
  4107. float freq_base,
  4108. float freq_scale,
  4109. float ext_factor,
  4110. float attn_factor,
  4111. float beta_fast,
  4112. float beta_slow,
  4113. float xpos_base,
  4114. bool xpos_down) {
  4115. GGML_ASSERT(ggml_is_vector(b));
  4116. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4117. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4118. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4119. bool is_node = false;
  4120. if (a->grad) {
  4121. is_node = false; // TODO: implement backward
  4122. }
  4123. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4124. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4125. memcpy(params + 5, &freq_base, sizeof(float));
  4126. memcpy(params + 6, &freq_scale, sizeof(float));
  4127. memcpy(params + 7, &ext_factor, sizeof(float));
  4128. memcpy(params + 8, &attn_factor, sizeof(float));
  4129. memcpy(params + 9, &beta_fast, sizeof(float));
  4130. memcpy(params + 10, &beta_slow, sizeof(float));
  4131. memcpy(params + 11, &xpos_base, sizeof(float));
  4132. memcpy(params + 12, &xpos_down, sizeof(bool));
  4133. ggml_set_op_params(result, params, sizeof(params));
  4134. result->op = GGML_OP_ROPE_BACK;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. result->src[1] = b;
  4138. return result;
  4139. }
  4140. // ggml_alibi
  4141. struct ggml_tensor * ggml_alibi(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. int n_past,
  4145. int n_head,
  4146. float bias_max) {
  4147. GGML_ASSERT(n_past >= 0);
  4148. bool is_node = false;
  4149. if (a->grad) {
  4150. GGML_ASSERT(false); // TODO: implement backward
  4151. is_node = true;
  4152. }
  4153. // TODO: when implement backward, fix this:
  4154. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4155. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4156. int32_t op_params[3] = { n_past, n_head };
  4157. memcpy(op_params + 2, &bias_max, sizeof(float));
  4158. ggml_set_op_params(result, op_params, sizeof(op_params));
  4159. result->op = GGML_OP_ALIBI;
  4160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4161. result->src[0] = a;
  4162. return result;
  4163. }
  4164. // ggml_clamp
  4165. struct ggml_tensor * ggml_clamp(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. float min,
  4169. float max) {
  4170. bool is_node = false;
  4171. if (a->grad) {
  4172. GGML_ASSERT(false); // TODO: implement backward
  4173. is_node = true;
  4174. }
  4175. // TODO: when implement backward, fix this:
  4176. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4177. float params[] = { min, max };
  4178. ggml_set_op_params(result, params, sizeof(params));
  4179. result->op = GGML_OP_CLAMP;
  4180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4181. result->src[0] = a;
  4182. return result;
  4183. }
  4184. // ggml_conv_1d
  4185. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4186. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4187. }
  4188. GGML_API struct ggml_tensor * ggml_conv_1d(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b,
  4192. int s0,
  4193. int p0,
  4194. int d0) {
  4195. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4196. struct ggml_tensor * result =
  4197. ggml_mul_mat(ctx,
  4198. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4199. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4200. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4201. return result;
  4202. }
  4203. // ggml_conv_1d_ph
  4204. struct ggml_tensor* ggml_conv_1d_ph(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. struct ggml_tensor * b,
  4208. int s,
  4209. int d) {
  4210. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4211. }
  4212. // ggml_conv_transpose_1d
  4213. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4214. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4215. }
  4216. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. struct ggml_tensor * b,
  4220. int s0,
  4221. int p0,
  4222. int d0) {
  4223. GGML_ASSERT(ggml_is_matrix(b));
  4224. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4225. GGML_ASSERT(a->ne[3] == 1);
  4226. GGML_ASSERT(p0 == 0);
  4227. GGML_ASSERT(d0 == 1);
  4228. bool is_node = false;
  4229. if (a->grad || b->grad) {
  4230. GGML_ASSERT(false); // TODO: implement backward
  4231. is_node = true;
  4232. }
  4233. const int64_t ne[4] = {
  4234. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4235. a->ne[1], b->ne[2], 1,
  4236. };
  4237. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4238. int32_t params[] = { s0, p0, d0 };
  4239. ggml_set_op_params(result, params, sizeof(params));
  4240. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4242. result->src[0] = a;
  4243. result->src[1] = b;
  4244. return result;
  4245. }
  4246. // ggml_conv_2d
  4247. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4248. // a: [OC,IC, KH, KW]
  4249. // b: [N, IC, IH, IW]
  4250. // result: [N, OH, OW, IC*KH*KW]
  4251. struct ggml_tensor * ggml_im2col(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b,
  4255. int s0,
  4256. int s1,
  4257. int p0,
  4258. int p1,
  4259. int d0,
  4260. int d1,
  4261. bool is_2D) {
  4262. if(is_2D) {
  4263. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4264. } else {
  4265. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4266. }
  4267. bool is_node = false;
  4268. if (a->grad || b->grad) {
  4269. GGML_ASSERT(false); // TODO: implement backward
  4270. is_node = true;
  4271. }
  4272. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4273. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4274. const int64_t ne[4] = {
  4275. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4276. OW,
  4277. is_2D ? OH : b->ne[2],
  4278. is_2D ? b->ne[3] : 1,
  4279. };
  4280. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4281. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4282. ggml_set_op_params(result, params, sizeof(params));
  4283. result->op = GGML_OP_IM2COL;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. result->src[1] = b;
  4287. return result;
  4288. }
  4289. // a: [OC,IC, KH, KW]
  4290. // b: [N, IC, IH, IW]
  4291. // result: [N, OC, OH, OW]
  4292. struct ggml_tensor * ggml_conv_2d(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. int s0,
  4297. int s1,
  4298. int p0,
  4299. int p1,
  4300. int d0,
  4301. int d1) {
  4302. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4303. struct ggml_tensor * result =
  4304. ggml_mul_mat(ctx,
  4305. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4306. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4307. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4308. return result;
  4309. }
  4310. // ggml_conv_2d_sk_p0
  4311. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b) {
  4315. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4316. }
  4317. // ggml_conv_2d_s1_ph
  4318. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. struct ggml_tensor * b) {
  4322. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4323. }
  4324. // ggml_conv_transpose_2d_p0
  4325. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4326. return (ins - 1) * s - 2 * p + ks;
  4327. }
  4328. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b,
  4332. int stride) {
  4333. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4334. bool is_node = false;
  4335. if (a->grad || b->grad) {
  4336. GGML_ASSERT(false); // TODO: implement backward
  4337. is_node = true;
  4338. }
  4339. const int64_t ne[4] = {
  4340. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4341. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4342. a->ne[2], b->ne[3],
  4343. };
  4344. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4345. ggml_set_op_params_i32(result, 0, stride);
  4346. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src[0] = a;
  4349. result->src[1] = b;
  4350. return result;
  4351. }
  4352. // ggml_pool_*
  4353. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4354. return (ins + 2 * p - ks) / s + 1;
  4355. }
  4356. // ggml_pool_1d
  4357. struct ggml_tensor * ggml_pool_1d(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. enum ggml_op_pool op,
  4361. int k0,
  4362. int s0,
  4363. int p0) {
  4364. bool is_node = false;
  4365. if (a->grad) {
  4366. GGML_ASSERT(false); // TODO: implement backward
  4367. is_node = true;
  4368. }
  4369. const int64_t ne[3] = {
  4370. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4371. a->ne[1],
  4372. };
  4373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4374. int32_t params[] = { op, k0, s0, p0 };
  4375. ggml_set_op_params(result, params, sizeof(params));
  4376. result->op = GGML_OP_POOL_1D;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src[0] = a;
  4379. return result;
  4380. }
  4381. // ggml_pool_2d
  4382. struct ggml_tensor * ggml_pool_2d(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. enum ggml_op_pool op,
  4386. int k0,
  4387. int k1,
  4388. int s0,
  4389. int s1,
  4390. float p0,
  4391. float p1) {
  4392. bool is_node = false;
  4393. if (a->grad) {
  4394. GGML_ASSERT(false); // TODO: implement backward
  4395. is_node = true;
  4396. }
  4397. const int64_t ne[3] = {
  4398. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4399. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4400. a->ne[2],
  4401. };
  4402. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4403. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4404. ggml_set_op_params(result, params, sizeof(params));
  4405. result->op = GGML_OP_POOL_2D;
  4406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4407. result->src[0] = a;
  4408. return result;
  4409. }
  4410. // ggml_upscale
  4411. static struct ggml_tensor * ggml_upscale_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. int scale_factor) {
  4415. bool is_node = false;
  4416. if (a->grad) {
  4417. GGML_ASSERT(false); // TODO: implement backward
  4418. is_node = true;
  4419. }
  4420. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4421. a->ne[0] * scale_factor,
  4422. a->ne[1] * scale_factor,
  4423. a->ne[2], a->ne[3]);
  4424. result->op = GGML_OP_UPSCALE;
  4425. result->op_params[0] = scale_factor;
  4426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4427. result->src[0] = a;
  4428. result->src[1] = NULL;
  4429. return result;
  4430. }
  4431. struct ggml_tensor * ggml_upscale(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. int scale_factor) {
  4435. return ggml_upscale_impl(ctx, a, scale_factor);
  4436. }
  4437. // ggml_flash_attn
  4438. struct ggml_tensor * ggml_flash_attn(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * q,
  4441. struct ggml_tensor * k,
  4442. struct ggml_tensor * v,
  4443. bool masked) {
  4444. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4445. // TODO: check if vT can be multiplied by (k*qT)
  4446. bool is_node = false;
  4447. if (q->grad || k->grad || v->grad) {
  4448. is_node = true;
  4449. }
  4450. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4451. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4452. int32_t t = masked ? 1 : 0;
  4453. ggml_set_op_params(result, &t, sizeof(t));
  4454. result->op = GGML_OP_FLASH_ATTN;
  4455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4456. result->src[0] = q;
  4457. result->src[1] = k;
  4458. result->src[2] = v;
  4459. return result;
  4460. }
  4461. // ggml_flash_ff
  4462. struct ggml_tensor * ggml_flash_ff(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a,
  4465. struct ggml_tensor * b0,
  4466. struct ggml_tensor * b1,
  4467. struct ggml_tensor * c0,
  4468. struct ggml_tensor * c1) {
  4469. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4470. // TODO: more checks
  4471. bool is_node = false;
  4472. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4473. is_node = true;
  4474. }
  4475. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4476. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4477. result->op = GGML_OP_FLASH_FF;
  4478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4479. result->src[0] = a;
  4480. result->src[1] = b0;
  4481. result->src[2] = b1;
  4482. result->src[3] = c0;
  4483. result->src[4] = c1;
  4484. return result;
  4485. }
  4486. // ggml_flash_attn_back
  4487. struct ggml_tensor * ggml_flash_attn_back(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * q,
  4490. struct ggml_tensor * k,
  4491. struct ggml_tensor * v,
  4492. struct ggml_tensor * d,
  4493. bool masked) {
  4494. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4495. // TODO: check if vT can be multiplied by (k*qT)
  4496. // d shape [D,N,ne2,ne3]
  4497. // q shape [D,N,ne2,ne3]
  4498. // k shape [D,M,kvne2,ne3]
  4499. // v shape [M,D,kvne2,ne3]
  4500. const int64_t D = q->ne[0];
  4501. const int64_t N = q->ne[1];
  4502. const int64_t M = k->ne[1];
  4503. const int64_t ne2 = q->ne[2];
  4504. const int64_t ne3 = q->ne[3];
  4505. const int64_t kvne2 = k->ne[2];
  4506. GGML_ASSERT(k->ne[0] == D);
  4507. GGML_ASSERT(v->ne[0] == M);
  4508. GGML_ASSERT(v->ne[1] == D);
  4509. GGML_ASSERT(d->ne[0] == D);
  4510. GGML_ASSERT(d->ne[1] == N);
  4511. GGML_ASSERT(k->ne[2] == kvne2);
  4512. GGML_ASSERT(k->ne[3] == ne3);
  4513. GGML_ASSERT(v->ne[2] == kvne2);
  4514. GGML_ASSERT(v->ne[3] == ne3);
  4515. GGML_ASSERT(d->ne[2] == ne2);
  4516. GGML_ASSERT(d->ne[3] == ne3);
  4517. GGML_ASSERT(ne2 % kvne2 == 0);
  4518. bool is_node = false;
  4519. if (q->grad || k->grad || v->grad) {
  4520. // when using this operation (in backwards pass) these grads are set.
  4521. // we don't want to create (big) grad of our result, so is_node is false.
  4522. is_node = false;
  4523. }
  4524. // store gradients of q, k and v as continuous tensors concatenated in result.
  4525. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4526. const int64_t elem_q = ggml_nelements(q);
  4527. const int64_t elem_k = ggml_nelements(k);
  4528. const int64_t elem_v = ggml_nelements(v);
  4529. enum ggml_type result_type = GGML_TYPE_F32;
  4530. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4531. const size_t tsize = ggml_type_size(result_type);
  4532. const size_t offs_q = 0;
  4533. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4534. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4535. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4536. const size_t nelements = (end + tsize - 1)/tsize;
  4537. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4538. int32_t masked_i = masked ? 1 : 0;
  4539. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4540. result->op = GGML_OP_FLASH_ATTN_BACK;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src[0] = q;
  4543. result->src[1] = k;
  4544. result->src[2] = v;
  4545. result->src[3] = d;
  4546. return result;
  4547. }
  4548. // ggml_win_part
  4549. struct ggml_tensor * ggml_win_part(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. int w) {
  4553. GGML_ASSERT(a->ne[3] == 1);
  4554. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4555. bool is_node = false;
  4556. if (a->grad) {
  4557. GGML_ASSERT(false); // TODO: implement backward
  4558. is_node = true;
  4559. }
  4560. // padding
  4561. const int px = (w - a->ne[1]%w)%w;
  4562. const int py = (w - a->ne[2]%w)%w;
  4563. const int npx = (px + a->ne[1])/w;
  4564. const int npy = (py + a->ne[2])/w;
  4565. const int np = npx*npy;
  4566. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4567. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4568. int32_t params[] = { npx, npy, w };
  4569. ggml_set_op_params(result, params, sizeof(params));
  4570. result->op = GGML_OP_WIN_PART;
  4571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4572. result->src[0] = a;
  4573. return result;
  4574. }
  4575. // ggml_win_unpart
  4576. struct ggml_tensor * ggml_win_unpart(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. int w0,
  4580. int h0,
  4581. int w) {
  4582. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4583. bool is_node = false;
  4584. if (a->grad) {
  4585. GGML_ASSERT(false); // TODO: implement backward
  4586. is_node = true;
  4587. }
  4588. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4589. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4590. int32_t params[] = { w };
  4591. ggml_set_op_params(result, params, sizeof(params));
  4592. result->op = GGML_OP_WIN_UNPART;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src[0] = a;
  4595. return result;
  4596. }
  4597. // ggml_get_rel_pos
  4598. struct ggml_tensor * ggml_get_rel_pos(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. int qh,
  4602. int kh) {
  4603. GGML_ASSERT(qh == kh);
  4604. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4605. bool is_node = false;
  4606. if (a->grad) {
  4607. GGML_ASSERT(false); // TODO: implement backward
  4608. is_node = true;
  4609. }
  4610. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4611. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4612. result->op = GGML_OP_GET_REL_POS;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src[0] = a;
  4615. result->src[1] = NULL;
  4616. return result;
  4617. }
  4618. // ggml_add_rel_pos
  4619. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * pw,
  4623. struct ggml_tensor * ph,
  4624. bool inplace) {
  4625. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4626. GGML_ASSERT(ggml_is_contiguous(a));
  4627. GGML_ASSERT(ggml_is_contiguous(pw));
  4628. GGML_ASSERT(ggml_is_contiguous(ph));
  4629. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4630. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4631. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4632. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4633. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4634. bool is_node = false;
  4635. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4636. is_node = true;
  4637. }
  4638. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4639. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4640. result->op = GGML_OP_ADD_REL_POS;
  4641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4642. result->src[0] = a;
  4643. result->src[1] = pw;
  4644. result->src[2] = ph;
  4645. return result;
  4646. }
  4647. struct ggml_tensor * ggml_add_rel_pos(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a,
  4650. struct ggml_tensor * pw,
  4651. struct ggml_tensor * ph) {
  4652. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4653. }
  4654. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. struct ggml_tensor * pw,
  4658. struct ggml_tensor * ph) {
  4659. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4660. }
  4661. // gmml_unary
  4662. static struct ggml_tensor * ggml_unary_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. enum ggml_unary_op op,
  4666. bool inplace) {
  4667. bool is_node = false;
  4668. if (!inplace && (a->grad)) {
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4672. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4673. result->op = GGML_OP_UNARY;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = a;
  4676. return result;
  4677. }
  4678. struct ggml_tensor * ggml_unary(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. enum ggml_unary_op op) {
  4682. return ggml_unary_impl(ctx, a, op, false);
  4683. }
  4684. struct ggml_tensor * ggml_unary_inplace(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * a,
  4687. enum ggml_unary_op op) {
  4688. return ggml_unary_impl(ctx, a, op, true);
  4689. }
  4690. // ggml_map_unary
  4691. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. const ggml_unary_op_f32_t fun,
  4695. bool inplace) {
  4696. bool is_node = false;
  4697. if (!inplace && a->grad) {
  4698. is_node = true;
  4699. }
  4700. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4701. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4702. result->op = GGML_OP_MAP_UNARY;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. return result;
  4706. }
  4707. struct ggml_tensor * ggml_map_unary_f32(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. const ggml_unary_op_f32_t fun) {
  4711. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4712. }
  4713. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. const ggml_unary_op_f32_t fun) {
  4717. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4718. }
  4719. // ggml_map_binary
  4720. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b,
  4724. const ggml_binary_op_f32_t fun,
  4725. bool inplace) {
  4726. GGML_ASSERT(ggml_are_same_shape(a, b));
  4727. bool is_node = false;
  4728. if (!inplace && (a->grad || b->grad)) {
  4729. is_node = true;
  4730. }
  4731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4732. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4733. result->op = GGML_OP_MAP_BINARY;
  4734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4735. result->src[0] = a;
  4736. result->src[1] = b;
  4737. return result;
  4738. }
  4739. struct ggml_tensor * ggml_map_binary_f32(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a,
  4742. struct ggml_tensor * b,
  4743. const ggml_binary_op_f32_t fun) {
  4744. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4745. }
  4746. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a,
  4749. struct ggml_tensor * b,
  4750. const ggml_binary_op_f32_t fun) {
  4751. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4752. }
  4753. // ggml_map_custom1_f32
  4754. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. const ggml_custom1_op_f32_t fun,
  4758. bool inplace) {
  4759. bool is_node = false;
  4760. if (!inplace && a->grad) {
  4761. is_node = true;
  4762. }
  4763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4764. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4765. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src[0] = a;
  4768. return result;
  4769. }
  4770. struct ggml_tensor * ggml_map_custom1_f32(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. const ggml_custom1_op_f32_t fun) {
  4774. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4775. }
  4776. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. const ggml_custom1_op_f32_t fun) {
  4780. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4781. }
  4782. // ggml_map_custom2_f32
  4783. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b,
  4787. const ggml_custom2_op_f32_t fun,
  4788. bool inplace) {
  4789. bool is_node = false;
  4790. if (!inplace && (a->grad || b->grad)) {
  4791. is_node = true;
  4792. }
  4793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4794. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4795. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4797. result->src[0] = a;
  4798. result->src[1] = b;
  4799. return result;
  4800. }
  4801. struct ggml_tensor * ggml_map_custom2_f32(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. struct ggml_tensor * b,
  4805. const ggml_custom2_op_f32_t fun) {
  4806. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4807. }
  4808. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. struct ggml_tensor * b,
  4812. const ggml_custom2_op_f32_t fun) {
  4813. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4814. }
  4815. // ggml_map_custom3_f32
  4816. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b,
  4820. struct ggml_tensor * c,
  4821. const ggml_custom3_op_f32_t fun,
  4822. bool inplace) {
  4823. bool is_node = false;
  4824. if (!inplace && (a->grad || b->grad || c->grad)) {
  4825. is_node = true;
  4826. }
  4827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4828. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4829. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4831. result->src[0] = a;
  4832. result->src[1] = b;
  4833. result->src[2] = c;
  4834. return result;
  4835. }
  4836. struct ggml_tensor * ggml_map_custom3_f32(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. struct ggml_tensor * c,
  4841. const ggml_custom3_op_f32_t fun) {
  4842. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4843. }
  4844. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b,
  4848. struct ggml_tensor * c,
  4849. const ggml_custom3_op_f32_t fun) {
  4850. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4851. }
  4852. // ggml_map_custom1
  4853. struct ggml_map_custom1_op_params {
  4854. ggml_custom1_op_t fun;
  4855. int n_tasks;
  4856. void * userdata;
  4857. };
  4858. static struct ggml_tensor * ggml_map_custom1_impl(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. const ggml_custom1_op_t fun,
  4862. int n_tasks,
  4863. void * userdata,
  4864. bool inplace) {
  4865. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4866. bool is_node = false;
  4867. if (!inplace && a->grad) {
  4868. is_node = true;
  4869. }
  4870. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4871. struct ggml_map_custom1_op_params params = {
  4872. /*.fun =*/ fun,
  4873. /*.n_tasks =*/ n_tasks,
  4874. /*.userdata =*/ userdata
  4875. };
  4876. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4877. result->op = GGML_OP_MAP_CUSTOM1;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_map_custom1(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. const ggml_custom1_op_t fun,
  4886. int n_tasks,
  4887. void * userdata) {
  4888. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4889. }
  4890. struct ggml_tensor * ggml_map_custom1_inplace(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. const ggml_custom1_op_t fun,
  4894. int n_tasks,
  4895. void * userdata) {
  4896. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4897. }
  4898. // ggml_map_custom2
  4899. struct ggml_map_custom2_op_params {
  4900. ggml_custom2_op_t fun;
  4901. int n_tasks;
  4902. void * userdata;
  4903. };
  4904. static struct ggml_tensor * ggml_map_custom2_impl(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b,
  4908. const ggml_custom2_op_t fun,
  4909. int n_tasks,
  4910. void * userdata,
  4911. bool inplace) {
  4912. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4913. bool is_node = false;
  4914. if (!inplace && (a->grad || b->grad)) {
  4915. is_node = true;
  4916. }
  4917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4918. struct ggml_map_custom2_op_params params = {
  4919. /*.fun =*/ fun,
  4920. /*.n_tasks =*/ n_tasks,
  4921. /*.userdata =*/ userdata
  4922. };
  4923. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4924. result->op = GGML_OP_MAP_CUSTOM2;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src[0] = a;
  4927. result->src[1] = b;
  4928. return result;
  4929. }
  4930. struct ggml_tensor * ggml_map_custom2(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. const ggml_custom2_op_t fun,
  4935. int n_tasks,
  4936. void * userdata) {
  4937. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  4938. }
  4939. struct ggml_tensor * ggml_map_custom2_inplace(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. struct ggml_tensor * b,
  4943. const ggml_custom2_op_t fun,
  4944. int n_tasks,
  4945. void * userdata) {
  4946. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  4947. }
  4948. // ggml_map_custom3
  4949. struct ggml_map_custom3_op_params {
  4950. ggml_custom3_op_t fun;
  4951. int n_tasks;
  4952. void * userdata;
  4953. };
  4954. static struct ggml_tensor * ggml_map_custom3_impl(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. struct ggml_tensor * c,
  4959. const ggml_custom3_op_t fun,
  4960. int n_tasks,
  4961. void * userdata,
  4962. bool inplace) {
  4963. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4964. bool is_node = false;
  4965. if (!inplace && (a->grad || b->grad || c->grad)) {
  4966. is_node = true;
  4967. }
  4968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4969. struct ggml_map_custom3_op_params params = {
  4970. /*.fun =*/ fun,
  4971. /*.n_tasks =*/ n_tasks,
  4972. /*.userdata =*/ userdata
  4973. };
  4974. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4975. result->op = GGML_OP_MAP_CUSTOM3;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src[0] = a;
  4978. result->src[1] = b;
  4979. result->src[2] = c;
  4980. return result;
  4981. }
  4982. struct ggml_tensor * ggml_map_custom3(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. struct ggml_tensor * c,
  4987. const ggml_custom3_op_t fun,
  4988. int n_tasks,
  4989. void * userdata) {
  4990. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  4991. }
  4992. struct ggml_tensor * ggml_map_custom3_inplace(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. struct ggml_tensor * c,
  4997. const ggml_custom3_op_t fun,
  4998. int n_tasks,
  4999. void * userdata) {
  5000. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5001. }
  5002. // ggml_cross_entropy_loss
  5003. struct ggml_tensor * ggml_cross_entropy_loss(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. struct ggml_tensor * b) {
  5007. GGML_ASSERT(ggml_are_same_shape(a, b));
  5008. bool is_node = false;
  5009. if (a->grad || b->grad) {
  5010. is_node = true;
  5011. }
  5012. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5013. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src[0] = a;
  5016. result->src[1] = b;
  5017. return result;
  5018. }
  5019. // ggml_cross_entropy_loss_back
  5020. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5021. struct ggml_context * ctx,
  5022. struct ggml_tensor * a,
  5023. struct ggml_tensor * b,
  5024. struct ggml_tensor * c) {
  5025. GGML_ASSERT(ggml_are_same_shape(a, b));
  5026. GGML_ASSERT(ggml_is_scalar(c));
  5027. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5028. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5029. result->grad = NULL;
  5030. result->src[0] = a;
  5031. result->src[1] = b;
  5032. result->src[2] = c;
  5033. return result;
  5034. }
  5035. ////////////////////////////////////////////////////////////////////////////////
  5036. void ggml_set_param(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * tensor) {
  5039. tensor->is_param = true;
  5040. GGML_ASSERT(tensor->grad == NULL);
  5041. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5042. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5043. }
  5044. // ggml_compute_forward_dup
  5045. static void ggml_compute_forward_dup_same_cont(
  5046. const struct ggml_compute_params * params,
  5047. const struct ggml_tensor * src0,
  5048. struct ggml_tensor * dst) {
  5049. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5050. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5051. GGML_ASSERT(src0->type == dst->type);
  5052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5053. return;
  5054. }
  5055. const size_t nb00 = src0->nb[0];
  5056. const size_t nb0 = dst->nb[0];
  5057. const int ith = params->ith; // thread index
  5058. const int nth = params->nth; // number of threads
  5059. // parallelize by elements
  5060. const int ne = ggml_nelements(dst);
  5061. const int dr = (ne + nth - 1) / nth;
  5062. const int ie0 = dr * ith;
  5063. const int ie1 = MIN(ie0 + dr, ne);
  5064. if (ie0 < ie1) {
  5065. memcpy(
  5066. ((char *) dst->data + ie0*nb0),
  5067. ((char *) src0->data + ie0*nb00),
  5068. (ie1 - ie0) * ggml_type_size(src0->type));
  5069. }
  5070. }
  5071. static void ggml_compute_forward_dup_f16(
  5072. const struct ggml_compute_params * params,
  5073. const struct ggml_tensor * src0,
  5074. struct ggml_tensor * dst) {
  5075. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5077. return;
  5078. }
  5079. GGML_TENSOR_UNARY_OP_LOCALS
  5080. const int ith = params->ith; // thread index
  5081. const int nth = params->nth; // number of threads
  5082. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5083. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5084. return;
  5085. }
  5086. // parallelize by rows
  5087. const int nr = ne01;
  5088. // number of rows per thread
  5089. const int dr = (nr + nth - 1) / nth;
  5090. // row range for this thread
  5091. const int ir0 = dr * ith;
  5092. const int ir1 = MIN(ir0 + dr, nr);
  5093. if (src0->type == dst->type &&
  5094. ne00 == ne0 &&
  5095. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5096. // copy by rows
  5097. const size_t rs = ne00*nb00;
  5098. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5100. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5101. memcpy(
  5102. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5103. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5104. rs);
  5105. }
  5106. }
  5107. }
  5108. return;
  5109. }
  5110. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5111. if (ggml_is_contiguous(dst)) {
  5112. if (nb00 == sizeof(ggml_fp16_t)) {
  5113. if (dst->type == GGML_TYPE_F16) {
  5114. size_t id = 0;
  5115. const size_t rs = ne00 * nb00;
  5116. char * dst_ptr = (char *) dst->data;
  5117. for (int i03 = 0; i03 < ne03; i03++) {
  5118. for (int i02 = 0; i02 < ne02; i02++) {
  5119. id += rs * ir0;
  5120. for (int i01 = ir0; i01 < ir1; i01++) {
  5121. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5122. memcpy(dst_ptr + id, src0_ptr, rs);
  5123. id += rs;
  5124. }
  5125. id += rs * (ne01 - ir1);
  5126. }
  5127. }
  5128. } else if (dst->type == GGML_TYPE_F32) {
  5129. size_t id = 0;
  5130. float * dst_ptr = (float *) dst->data;
  5131. for (int i03 = 0; i03 < ne03; i03++) {
  5132. for (int i02 = 0; i02 < ne02; i02++) {
  5133. id += ne00 * ir0;
  5134. for (int i01 = ir0; i01 < ir1; i01++) {
  5135. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5136. for (int i00 = 0; i00 < ne00; i00++) {
  5137. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5138. id++;
  5139. }
  5140. }
  5141. id += ne00 * (ne01 - ir1);
  5142. }
  5143. }
  5144. } else if (type_traits[dst->type].from_float) {
  5145. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5146. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5147. size_t id = 0;
  5148. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5149. char * dst_ptr = (char *) dst->data;
  5150. for (int i03 = 0; i03 < ne03; i03++) {
  5151. for (int i02 = 0; i02 < ne02; i02++) {
  5152. id += rs * ir0;
  5153. for (int i01 = ir0; i01 < ir1; i01++) {
  5154. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5155. for (int i00 = 0; i00 < ne00; i00++) {
  5156. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5157. }
  5158. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5159. id += rs;
  5160. }
  5161. id += rs * (ne01 - ir1);
  5162. }
  5163. }
  5164. } else {
  5165. GGML_ASSERT(false); // TODO: implement
  5166. }
  5167. } else {
  5168. //printf("%s: this is not optimal - fix me\n", __func__);
  5169. if (dst->type == GGML_TYPE_F32) {
  5170. size_t id = 0;
  5171. float * dst_ptr = (float *) dst->data;
  5172. for (int i03 = 0; i03 < ne03; i03++) {
  5173. for (int i02 = 0; i02 < ne02; i02++) {
  5174. id += ne00 * ir0;
  5175. for (int i01 = ir0; i01 < ir1; i01++) {
  5176. for (int i00 = 0; i00 < ne00; i00++) {
  5177. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5178. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5179. id++;
  5180. }
  5181. }
  5182. id += ne00 * (ne01 - ir1);
  5183. }
  5184. }
  5185. } else if (dst->type == GGML_TYPE_F16) {
  5186. size_t id = 0;
  5187. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5188. for (int i03 = 0; i03 < ne03; i03++) {
  5189. for (int i02 = 0; i02 < ne02; i02++) {
  5190. id += ne00 * ir0;
  5191. for (int i01 = ir0; i01 < ir1; i01++) {
  5192. for (int i00 = 0; i00 < ne00; i00++) {
  5193. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5194. dst_ptr[id] = *src0_ptr;
  5195. id++;
  5196. }
  5197. }
  5198. id += ne00 * (ne01 - ir1);
  5199. }
  5200. }
  5201. } else {
  5202. GGML_ASSERT(false); // TODO: implement
  5203. }
  5204. }
  5205. return;
  5206. }
  5207. // dst counters
  5208. int64_t i10 = 0;
  5209. int64_t i11 = 0;
  5210. int64_t i12 = 0;
  5211. int64_t i13 = 0;
  5212. if (dst->type == GGML_TYPE_F16) {
  5213. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5214. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5215. i10 += ne00 * ir0;
  5216. while (i10 >= ne0) {
  5217. i10 -= ne0;
  5218. if (++i11 == ne1) {
  5219. i11 = 0;
  5220. if (++i12 == ne2) {
  5221. i12 = 0;
  5222. if (++i13 == ne3) {
  5223. i13 = 0;
  5224. }
  5225. }
  5226. }
  5227. }
  5228. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5229. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5230. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5231. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5232. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5233. if (++i10 == ne00) {
  5234. i10 = 0;
  5235. if (++i11 == ne01) {
  5236. i11 = 0;
  5237. if (++i12 == ne02) {
  5238. i12 = 0;
  5239. if (++i13 == ne03) {
  5240. i13 = 0;
  5241. }
  5242. }
  5243. }
  5244. }
  5245. }
  5246. }
  5247. i10 += ne00 * (ne01 - ir1);
  5248. while (i10 >= ne0) {
  5249. i10 -= ne0;
  5250. if (++i11 == ne1) {
  5251. i11 = 0;
  5252. if (++i12 == ne2) {
  5253. i12 = 0;
  5254. if (++i13 == ne3) {
  5255. i13 = 0;
  5256. }
  5257. }
  5258. }
  5259. }
  5260. }
  5261. }
  5262. } else if (dst->type == GGML_TYPE_F32) {
  5263. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5264. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5265. i10 += ne00 * ir0;
  5266. while (i10 >= ne0) {
  5267. i10 -= ne0;
  5268. if (++i11 == ne1) {
  5269. i11 = 0;
  5270. if (++i12 == ne2) {
  5271. i12 = 0;
  5272. if (++i13 == ne3) {
  5273. i13 = 0;
  5274. }
  5275. }
  5276. }
  5277. }
  5278. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5279. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5280. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5281. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5282. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5283. if (++i10 == ne0) {
  5284. i10 = 0;
  5285. if (++i11 == ne1) {
  5286. i11 = 0;
  5287. if (++i12 == ne2) {
  5288. i12 = 0;
  5289. if (++i13 == ne3) {
  5290. i13 = 0;
  5291. }
  5292. }
  5293. }
  5294. }
  5295. }
  5296. }
  5297. i10 += ne00 * (ne01 - ir1);
  5298. while (i10 >= ne0) {
  5299. i10 -= ne0;
  5300. if (++i11 == ne1) {
  5301. i11 = 0;
  5302. if (++i12 == ne2) {
  5303. i12 = 0;
  5304. if (++i13 == ne3) {
  5305. i13 = 0;
  5306. }
  5307. }
  5308. }
  5309. }
  5310. }
  5311. }
  5312. } else {
  5313. GGML_ASSERT(false); // TODO: implement
  5314. }
  5315. }
  5316. static void ggml_compute_forward_dup_f32(
  5317. const struct ggml_compute_params * params,
  5318. const struct ggml_tensor * src0,
  5319. struct ggml_tensor * dst) {
  5320. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5322. return;
  5323. }
  5324. GGML_TENSOR_UNARY_OP_LOCALS
  5325. const int ith = params->ith; // thread index
  5326. const int nth = params->nth; // number of threads
  5327. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5328. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5329. return;
  5330. }
  5331. // parallelize by rows
  5332. const int nr = ne01;
  5333. // number of rows per thread
  5334. const int dr = (nr + nth - 1) / nth;
  5335. // row range for this thread
  5336. const int ir0 = dr * ith;
  5337. const int ir1 = MIN(ir0 + dr, nr);
  5338. if (src0->type == dst->type &&
  5339. ne00 == ne0 &&
  5340. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5341. // copy by rows
  5342. const size_t rs = ne00*nb00;
  5343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5345. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5346. memcpy(
  5347. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5348. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5349. rs);
  5350. }
  5351. }
  5352. }
  5353. return;
  5354. }
  5355. if (ggml_is_contiguous(dst)) {
  5356. // TODO: simplify
  5357. if (nb00 == sizeof(float)) {
  5358. if (dst->type == GGML_TYPE_F32) {
  5359. size_t id = 0;
  5360. const size_t rs = ne00 * nb00;
  5361. char * dst_ptr = (char *) dst->data;
  5362. for (int i03 = 0; i03 < ne03; i03++) {
  5363. for (int i02 = 0; i02 < ne02; i02++) {
  5364. id += rs * ir0;
  5365. for (int i01 = ir0; i01 < ir1; i01++) {
  5366. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5367. memcpy(dst_ptr + id, src0_ptr, rs);
  5368. id += rs;
  5369. }
  5370. id += rs * (ne01 - ir1);
  5371. }
  5372. }
  5373. } else if (type_traits[dst->type].from_float) {
  5374. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5375. size_t id = 0;
  5376. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5377. char * dst_ptr = (char *) dst->data;
  5378. for (int i03 = 0; i03 < ne03; i03++) {
  5379. for (int i02 = 0; i02 < ne02; i02++) {
  5380. id += rs * ir0;
  5381. for (int i01 = ir0; i01 < ir1; i01++) {
  5382. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5383. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5384. id += rs;
  5385. }
  5386. id += rs * (ne01 - ir1);
  5387. }
  5388. }
  5389. } else {
  5390. GGML_ASSERT(false); // TODO: implement
  5391. }
  5392. } else {
  5393. //printf("%s: this is not optimal - fix me\n", __func__);
  5394. if (dst->type == GGML_TYPE_F32) {
  5395. size_t id = 0;
  5396. float * dst_ptr = (float *) dst->data;
  5397. for (int i03 = 0; i03 < ne03; i03++) {
  5398. for (int i02 = 0; i02 < ne02; i02++) {
  5399. id += ne00 * ir0;
  5400. for (int i01 = ir0; i01 < ir1; i01++) {
  5401. for (int i00 = 0; i00 < ne00; i00++) {
  5402. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5403. dst_ptr[id] = *src0_ptr;
  5404. id++;
  5405. }
  5406. }
  5407. id += ne00 * (ne01 - ir1);
  5408. }
  5409. }
  5410. } else if (dst->type == GGML_TYPE_F16) {
  5411. size_t id = 0;
  5412. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5413. for (int i03 = 0; i03 < ne03; i03++) {
  5414. for (int i02 = 0; i02 < ne02; i02++) {
  5415. id += ne00 * ir0;
  5416. for (int i01 = ir0; i01 < ir1; i01++) {
  5417. for (int i00 = 0; i00 < ne00; i00++) {
  5418. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5419. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5420. id++;
  5421. }
  5422. }
  5423. id += ne00 * (ne01 - ir1);
  5424. }
  5425. }
  5426. } else {
  5427. GGML_ASSERT(false); // TODO: implement
  5428. }
  5429. }
  5430. return;
  5431. }
  5432. // dst counters
  5433. int64_t i10 = 0;
  5434. int64_t i11 = 0;
  5435. int64_t i12 = 0;
  5436. int64_t i13 = 0;
  5437. if (dst->type == GGML_TYPE_F32) {
  5438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5440. i10 += ne00 * ir0;
  5441. while (i10 >= ne0) {
  5442. i10 -= ne0;
  5443. if (++i11 == ne1) {
  5444. i11 = 0;
  5445. if (++i12 == ne2) {
  5446. i12 = 0;
  5447. if (++i13 == ne3) {
  5448. i13 = 0;
  5449. }
  5450. }
  5451. }
  5452. }
  5453. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5455. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5456. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5457. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5458. if (++i10 == ne0) {
  5459. i10 = 0;
  5460. if (++i11 == ne1) {
  5461. i11 = 0;
  5462. if (++i12 == ne2) {
  5463. i12 = 0;
  5464. if (++i13 == ne3) {
  5465. i13 = 0;
  5466. }
  5467. }
  5468. }
  5469. }
  5470. }
  5471. }
  5472. i10 += ne00 * (ne01 - ir1);
  5473. while (i10 >= ne0) {
  5474. i10 -= ne0;
  5475. if (++i11 == ne1) {
  5476. i11 = 0;
  5477. if (++i12 == ne2) {
  5478. i12 = 0;
  5479. if (++i13 == ne3) {
  5480. i13 = 0;
  5481. }
  5482. }
  5483. }
  5484. }
  5485. }
  5486. }
  5487. } else if (dst->type == GGML_TYPE_F16) {
  5488. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5489. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5490. i10 += ne00 * ir0;
  5491. while (i10 >= ne0) {
  5492. i10 -= ne0;
  5493. if (++i11 == ne1) {
  5494. i11 = 0;
  5495. if (++i12 == ne2) {
  5496. i12 = 0;
  5497. if (++i13 == ne3) {
  5498. i13 = 0;
  5499. }
  5500. }
  5501. }
  5502. }
  5503. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5504. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5505. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5506. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5507. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5508. if (++i10 == ne0) {
  5509. i10 = 0;
  5510. if (++i11 == ne1) {
  5511. i11 = 0;
  5512. if (++i12 == ne2) {
  5513. i12 = 0;
  5514. if (++i13 == ne3) {
  5515. i13 = 0;
  5516. }
  5517. }
  5518. }
  5519. }
  5520. }
  5521. }
  5522. i10 += ne00 * (ne01 - ir1);
  5523. while (i10 >= ne0) {
  5524. i10 -= ne0;
  5525. if (++i11 == ne1) {
  5526. i11 = 0;
  5527. if (++i12 == ne2) {
  5528. i12 = 0;
  5529. if (++i13 == ne3) {
  5530. i13 = 0;
  5531. }
  5532. }
  5533. }
  5534. }
  5535. }
  5536. }
  5537. } else {
  5538. GGML_ASSERT(false); // TODO: implement
  5539. }
  5540. }
  5541. static void ggml_compute_forward_dup(
  5542. const struct ggml_compute_params * params,
  5543. const struct ggml_tensor * src0,
  5544. struct ggml_tensor * dst) {
  5545. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5546. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5547. return;
  5548. }
  5549. switch (src0->type) {
  5550. case GGML_TYPE_F16:
  5551. {
  5552. ggml_compute_forward_dup_f16(params, src0, dst);
  5553. } break;
  5554. case GGML_TYPE_F32:
  5555. {
  5556. ggml_compute_forward_dup_f32(params, src0, dst);
  5557. } break;
  5558. default:
  5559. {
  5560. GGML_ASSERT(false);
  5561. } break;
  5562. }
  5563. }
  5564. // ggml_compute_forward_add
  5565. static void ggml_compute_forward_add_f32(
  5566. const struct ggml_compute_params * params,
  5567. const struct ggml_tensor * src0,
  5568. const struct ggml_tensor * src1,
  5569. struct ggml_tensor * dst) {
  5570. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5572. return;
  5573. }
  5574. const int ith = params->ith;
  5575. const int nth = params->nth;
  5576. const int nr = ggml_nrows(src0);
  5577. GGML_TENSOR_BINARY_OP_LOCALS
  5578. GGML_ASSERT( nb0 == sizeof(float));
  5579. GGML_ASSERT(nb00 == sizeof(float));
  5580. // rows per thread
  5581. const int dr = (nr + nth - 1)/nth;
  5582. // row range for this thread
  5583. const int ir0 = dr*ith;
  5584. const int ir1 = MIN(ir0 + dr, nr);
  5585. if (nb10 == sizeof(float)) {
  5586. for (int ir = ir0; ir < ir1; ++ir) {
  5587. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5588. const int64_t i03 = ir/(ne02*ne01);
  5589. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5590. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5591. const int64_t i13 = i03 % ne13;
  5592. const int64_t i12 = i02 % ne12;
  5593. const int64_t i11 = i01 % ne11;
  5594. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5595. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5596. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5597. #ifdef GGML_USE_ACCELERATE
  5598. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5599. #else
  5600. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5601. #endif
  5602. }
  5603. } else {
  5604. // src1 is not contiguous
  5605. for (int ir = ir0; ir < ir1; ++ir) {
  5606. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5607. const int64_t i03 = ir/(ne02*ne01);
  5608. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5609. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5610. const int64_t i13 = i03 % ne13;
  5611. const int64_t i12 = i02 % ne12;
  5612. const int64_t i11 = i01 % ne11;
  5613. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5614. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5615. for (int i0 = 0; i0 < ne0; i0++) {
  5616. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5617. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5618. }
  5619. }
  5620. }
  5621. }
  5622. static void ggml_compute_forward_add_f16_f32(
  5623. const struct ggml_compute_params * params,
  5624. const struct ggml_tensor * src0,
  5625. const struct ggml_tensor * src1,
  5626. struct ggml_tensor * dst) {
  5627. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5629. return;
  5630. }
  5631. const int ith = params->ith;
  5632. const int nth = params->nth;
  5633. const int nr = ggml_nrows(src0);
  5634. GGML_TENSOR_BINARY_OP_LOCALS
  5635. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5636. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5637. if (dst->type == GGML_TYPE_F32) {
  5638. GGML_ASSERT( nb0 == sizeof(float));
  5639. }
  5640. else {
  5641. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5642. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5643. }
  5644. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5645. // rows per thread
  5646. const int dr = (nr + nth - 1)/nth;
  5647. // row range for this thread
  5648. const int ir0 = dr*ith;
  5649. const int ir1 = MIN(ir0 + dr, nr);
  5650. if (nb10 == sizeof(float)) {
  5651. if (dst->type == GGML_TYPE_F16) {
  5652. for (int ir = ir0; ir < ir1; ++ir) {
  5653. // src0, src1 and dst are same shape => same indices
  5654. const int i3 = ir/(ne2*ne1);
  5655. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5656. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5657. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5658. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5659. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5660. for (int i = 0; i < ne0; i++) {
  5661. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5662. }
  5663. }
  5664. } else {
  5665. for (int ir = ir0; ir < ir1; ++ir) {
  5666. // src0, src1 and dst are same shape => same indices
  5667. const int i3 = ir/(ne2*ne1);
  5668. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5669. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5670. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5671. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5672. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5673. for (int i = 0; i < ne0; i++) {
  5674. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5675. }
  5676. }
  5677. }
  5678. }
  5679. else {
  5680. // src1 is not contiguous
  5681. GGML_ASSERT(false);
  5682. }
  5683. }
  5684. static void ggml_compute_forward_add_f16_f16(
  5685. const struct ggml_compute_params * params,
  5686. const struct ggml_tensor * src0,
  5687. const struct ggml_tensor * src1,
  5688. struct ggml_tensor * dst) {
  5689. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5691. return;
  5692. }
  5693. const int ith = params->ith;
  5694. const int nth = params->nth;
  5695. const int nr = ggml_nrows(src0);
  5696. GGML_TENSOR_BINARY_OP_LOCALS
  5697. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5698. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5699. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5700. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5701. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5702. // rows per thread
  5703. const int dr = (nr + nth - 1)/nth;
  5704. // row range for this thread
  5705. const int ir0 = dr*ith;
  5706. const int ir1 = MIN(ir0 + dr, nr);
  5707. if (nb10 == sizeof(ggml_fp16_t)) {
  5708. for (int ir = ir0; ir < ir1; ++ir) {
  5709. // src0, src1 and dst are same shape => same indices
  5710. const int i3 = ir/(ne2*ne1);
  5711. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5712. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5713. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5714. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5715. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5716. for (int i = 0; i < ne0; i++) {
  5717. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5718. }
  5719. }
  5720. }
  5721. else {
  5722. // src1 is not contiguous
  5723. GGML_ASSERT(false);
  5724. }
  5725. }
  5726. static void ggml_compute_forward_add_q_f32(
  5727. const struct ggml_compute_params * params,
  5728. const struct ggml_tensor * src0,
  5729. const struct ggml_tensor * src1,
  5730. struct ggml_tensor * dst) {
  5731. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5733. return;
  5734. }
  5735. const int nr = ggml_nrows(src0);
  5736. GGML_TENSOR_BINARY_OP_LOCALS
  5737. const int ith = params->ith;
  5738. const int nth = params->nth;
  5739. const enum ggml_type type = src0->type;
  5740. const enum ggml_type dtype = dst->type;
  5741. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5742. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5743. // we don't support permuted src0 or src1
  5744. GGML_ASSERT(nb00 == ggml_type_size(type));
  5745. GGML_ASSERT(nb10 == sizeof(float));
  5746. // dst cannot be transposed or permuted
  5747. GGML_ASSERT(nb0 <= nb1);
  5748. GGML_ASSERT(nb1 <= nb2);
  5749. GGML_ASSERT(nb2 <= nb3);
  5750. GGML_ASSERT(ggml_is_quantized(src0->type));
  5751. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5752. // rows per thread
  5753. const int dr = (nr + nth - 1)/nth;
  5754. // row range for this thread
  5755. const int ir0 = dr*ith;
  5756. const int ir1 = MIN(ir0 + dr, nr);
  5757. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5758. for (int ir = ir0; ir < ir1; ++ir) {
  5759. // src0 indices
  5760. const int i03 = ir/(ne02*ne01);
  5761. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5762. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5763. // src1 and dst are same shape as src0 => same indices
  5764. const int i13 = i03;
  5765. const int i12 = i02;
  5766. const int i11 = i01;
  5767. const int i3 = i03;
  5768. const int i2 = i02;
  5769. const int i1 = i01;
  5770. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5771. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5772. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5773. assert(ne00 % 32 == 0);
  5774. // unquantize row from src0 to temp buffer
  5775. dequantize_row_q(src0_row, wdata, ne00);
  5776. // add src1
  5777. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5778. // quantize row to dst
  5779. if (quantize_row_q != NULL) {
  5780. quantize_row_q(wdata, dst_row, ne00);
  5781. } else {
  5782. memcpy(dst_row, wdata, ne0*nb0);
  5783. }
  5784. }
  5785. }
  5786. static void ggml_compute_forward_add(
  5787. const struct ggml_compute_params * params,
  5788. const struct ggml_tensor * src0,
  5789. const struct ggml_tensor * src1,
  5790. struct ggml_tensor * dst) {
  5791. switch (src0->type) {
  5792. case GGML_TYPE_F32:
  5793. {
  5794. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5795. } break;
  5796. case GGML_TYPE_F16:
  5797. {
  5798. if (src1->type == GGML_TYPE_F16) {
  5799. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5800. }
  5801. else if (src1->type == GGML_TYPE_F32) {
  5802. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5803. }
  5804. else {
  5805. GGML_ASSERT(false);
  5806. }
  5807. } break;
  5808. case GGML_TYPE_Q4_0:
  5809. case GGML_TYPE_Q4_1:
  5810. case GGML_TYPE_Q5_0:
  5811. case GGML_TYPE_Q5_1:
  5812. case GGML_TYPE_Q8_0:
  5813. case GGML_TYPE_Q2_K:
  5814. case GGML_TYPE_Q3_K:
  5815. case GGML_TYPE_Q4_K:
  5816. case GGML_TYPE_Q5_K:
  5817. case GGML_TYPE_Q6_K:
  5818. {
  5819. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5820. } break;
  5821. default:
  5822. {
  5823. GGML_ASSERT(false);
  5824. } break;
  5825. }
  5826. }
  5827. // ggml_compute_forward_add1
  5828. static void ggml_compute_forward_add1_f32(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. const struct ggml_tensor * src1,
  5832. struct ggml_tensor * dst) {
  5833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5834. GGML_ASSERT(ggml_is_scalar(src1));
  5835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5836. return;
  5837. }
  5838. const int ith = params->ith;
  5839. const int nth = params->nth;
  5840. const int nr = ggml_nrows(src0);
  5841. GGML_TENSOR_UNARY_OP_LOCALS
  5842. GGML_ASSERT( nb0 == sizeof(float));
  5843. GGML_ASSERT(nb00 == sizeof(float));
  5844. // rows per thread
  5845. const int dr = (nr + nth - 1)/nth;
  5846. // row range for this thread
  5847. const int ir0 = dr*ith;
  5848. const int ir1 = MIN(ir0 + dr, nr);
  5849. for (int ir = ir0; ir < ir1; ++ir) {
  5850. // src0 and dst are same shape => same indices
  5851. const int i3 = ir/(ne2*ne1);
  5852. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5853. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5854. #ifdef GGML_USE_ACCELERATE
  5855. UNUSED(ggml_vec_add1_f32);
  5856. vDSP_vadd(
  5857. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5858. (float *) ((char *) src1->data), 0,
  5859. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5860. ne0);
  5861. #else
  5862. ggml_vec_add1_f32(ne0,
  5863. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5864. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5865. *(float *) src1->data);
  5866. #endif
  5867. }
  5868. }
  5869. static void ggml_compute_forward_add1_f16_f32(
  5870. const struct ggml_compute_params * params,
  5871. const struct ggml_tensor * src0,
  5872. const struct ggml_tensor * src1,
  5873. struct ggml_tensor * dst) {
  5874. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5875. GGML_ASSERT(ggml_is_scalar(src1));
  5876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5877. return;
  5878. }
  5879. // scalar to add
  5880. const float v = *(float *) src1->data;
  5881. const int ith = params->ith;
  5882. const int nth = params->nth;
  5883. const int nr = ggml_nrows(src0);
  5884. GGML_TENSOR_UNARY_OP_LOCALS
  5885. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5886. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5887. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5888. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5889. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5890. // rows per thread
  5891. const int dr = (nr + nth - 1)/nth;
  5892. // row range for this thread
  5893. const int ir0 = dr*ith;
  5894. const int ir1 = MIN(ir0 + dr, nr);
  5895. for (int ir = ir0; ir < ir1; ++ir) {
  5896. // src0 and dst are same shape => same indices
  5897. const int i3 = ir/(ne2*ne1);
  5898. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5899. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5900. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5901. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5902. for (int i = 0; i < ne0; i++) {
  5903. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5904. }
  5905. }
  5906. }
  5907. static void ggml_compute_forward_add1_f16_f16(
  5908. const struct ggml_compute_params * params,
  5909. const struct ggml_tensor * src0,
  5910. const struct ggml_tensor * src1,
  5911. struct ggml_tensor * dst) {
  5912. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5913. GGML_ASSERT(ggml_is_scalar(src1));
  5914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5915. return;
  5916. }
  5917. // scalar to add
  5918. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5919. const int ith = params->ith;
  5920. const int nth = params->nth;
  5921. const int nr = ggml_nrows(src0);
  5922. GGML_TENSOR_UNARY_OP_LOCALS
  5923. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5924. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5925. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5926. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5927. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5928. // rows per thread
  5929. const int dr = (nr + nth - 1)/nth;
  5930. // row range for this thread
  5931. const int ir0 = dr*ith;
  5932. const int ir1 = MIN(ir0 + dr, nr);
  5933. for (int ir = ir0; ir < ir1; ++ir) {
  5934. // src0 and dst are same shape => same indices
  5935. const int i3 = ir/(ne2*ne1);
  5936. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5937. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5938. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5939. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5940. for (int i = 0; i < ne0; i++) {
  5941. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5942. }
  5943. }
  5944. }
  5945. static void ggml_compute_forward_add1_q_f32(
  5946. const struct ggml_compute_params * params,
  5947. const struct ggml_tensor * src0,
  5948. const struct ggml_tensor * src1,
  5949. struct ggml_tensor * dst) {
  5950. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5951. GGML_ASSERT(ggml_is_scalar(src1));
  5952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5953. return;
  5954. }
  5955. // scalar to add
  5956. const float v = *(float *) src1->data;
  5957. const int ith = params->ith;
  5958. const int nth = params->nth;
  5959. const int nr = ggml_nrows(src0);
  5960. GGML_TENSOR_UNARY_OP_LOCALS
  5961. const enum ggml_type type = src0->type;
  5962. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5963. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  5964. // we don't support permuted src0
  5965. GGML_ASSERT(nb00 == ggml_type_size(type));
  5966. // dst cannot be transposed or permuted
  5967. GGML_ASSERT(nb0 <= nb1);
  5968. GGML_ASSERT(nb1 <= nb2);
  5969. GGML_ASSERT(nb2 <= nb3);
  5970. GGML_ASSERT(ggml_is_quantized(src0->type));
  5971. GGML_ASSERT(dst->type == src0->type);
  5972. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5973. // rows per thread
  5974. const int dr = (nr + nth - 1)/nth;
  5975. // row range for this thread
  5976. const int ir0 = dr*ith;
  5977. const int ir1 = MIN(ir0 + dr, nr);
  5978. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  5979. for (int ir = ir0; ir < ir1; ++ir) {
  5980. // src0 and dst are same shape => same indices
  5981. const int i3 = ir/(ne2*ne1);
  5982. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5983. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5984. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  5985. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  5986. assert(ne0 % 32 == 0);
  5987. // unquantize row from src0 to temp buffer
  5988. dequantize_row_q(src0_row, wdata, ne0);
  5989. // add src1
  5990. ggml_vec_acc1_f32(ne0, wdata, v);
  5991. // quantize row to dst
  5992. quantize_row_q(wdata, dst_row, ne0);
  5993. }
  5994. }
  5995. static void ggml_compute_forward_add1(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. const struct ggml_tensor * src1,
  5999. struct ggml_tensor * dst) {
  6000. switch (src0->type) {
  6001. case GGML_TYPE_F32:
  6002. {
  6003. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6004. } break;
  6005. case GGML_TYPE_F16:
  6006. {
  6007. if (src1->type == GGML_TYPE_F16) {
  6008. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6009. }
  6010. else if (src1->type == GGML_TYPE_F32) {
  6011. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6012. }
  6013. else {
  6014. GGML_ASSERT(false);
  6015. }
  6016. } break;
  6017. case GGML_TYPE_Q4_0:
  6018. case GGML_TYPE_Q4_1:
  6019. case GGML_TYPE_Q5_0:
  6020. case GGML_TYPE_Q5_1:
  6021. case GGML_TYPE_Q8_0:
  6022. case GGML_TYPE_Q8_1:
  6023. case GGML_TYPE_Q2_K:
  6024. case GGML_TYPE_Q3_K:
  6025. case GGML_TYPE_Q4_K:
  6026. case GGML_TYPE_Q5_K:
  6027. case GGML_TYPE_Q6_K:
  6028. {
  6029. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6030. } break;
  6031. default:
  6032. {
  6033. GGML_ASSERT(false);
  6034. } break;
  6035. }
  6036. }
  6037. // ggml_compute_forward_acc
  6038. static void ggml_compute_forward_acc_f32(
  6039. const struct ggml_compute_params * params,
  6040. const struct ggml_tensor * src0,
  6041. const struct ggml_tensor * src1,
  6042. struct ggml_tensor * dst) {
  6043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6044. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6045. // view src0 and dst with these strides and data offset inbytes during acc
  6046. // nb0 is implicitely element_size because src0 and dst are contiguous
  6047. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6048. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6049. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6050. size_t offset = ((int32_t *) dst->op_params)[3];
  6051. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6052. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6053. // memcpy needs to be synchronized across threads to avoid race conditions.
  6054. // => do it in INIT phase
  6055. memcpy(
  6056. ((char *) dst->data),
  6057. ((char *) src0->data),
  6058. ggml_nbytes(dst));
  6059. }
  6060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. const int ith = params->ith;
  6064. const int nth = params->nth;
  6065. const int nr = ggml_nrows(src1);
  6066. const int nc = src1->ne[0];
  6067. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6068. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6069. // src0 and dst as viewed during acc
  6070. const size_t nb0 = ggml_element_size(src0);
  6071. const size_t nb00 = nb0;
  6072. const size_t nb01 = nb1;
  6073. const size_t nb02 = nb2;
  6074. const size_t nb03 = nb3;
  6075. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6076. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6077. GGML_ASSERT(nb10 == sizeof(float));
  6078. // rows per thread
  6079. const int dr = (nr + nth - 1)/nth;
  6080. // row range for this thread
  6081. const int ir0 = dr*ith;
  6082. const int ir1 = MIN(ir0 + dr, nr);
  6083. for (int ir = ir0; ir < ir1; ++ir) {
  6084. // src0 and dst are viewed with shape of src1 and offset
  6085. // => same indices
  6086. const int i3 = ir/(ne12*ne11);
  6087. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6088. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6089. #ifdef GGML_USE_ACCELERATE
  6090. vDSP_vadd(
  6091. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6092. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6093. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6094. #else
  6095. ggml_vec_add_f32(nc,
  6096. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6097. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6098. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6099. #endif
  6100. }
  6101. }
  6102. static void ggml_compute_forward_acc(
  6103. const struct ggml_compute_params * params,
  6104. const struct ggml_tensor * src0,
  6105. const struct ggml_tensor * src1,
  6106. struct ggml_tensor * dst) {
  6107. switch (src0->type) {
  6108. case GGML_TYPE_F32:
  6109. {
  6110. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6111. } break;
  6112. case GGML_TYPE_F16:
  6113. case GGML_TYPE_Q4_0:
  6114. case GGML_TYPE_Q4_1:
  6115. case GGML_TYPE_Q5_0:
  6116. case GGML_TYPE_Q5_1:
  6117. case GGML_TYPE_Q8_0:
  6118. case GGML_TYPE_Q8_1:
  6119. case GGML_TYPE_Q2_K:
  6120. case GGML_TYPE_Q3_K:
  6121. case GGML_TYPE_Q4_K:
  6122. case GGML_TYPE_Q5_K:
  6123. case GGML_TYPE_Q6_K:
  6124. default:
  6125. {
  6126. GGML_ASSERT(false);
  6127. } break;
  6128. }
  6129. }
  6130. // ggml_compute_forward_sub
  6131. static void ggml_compute_forward_sub_f32(
  6132. const struct ggml_compute_params * params,
  6133. const struct ggml_tensor * src0,
  6134. const struct ggml_tensor * src1,
  6135. struct ggml_tensor * dst) {
  6136. assert(params->ith == 0);
  6137. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6138. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6139. return;
  6140. }
  6141. const int nr = ggml_nrows(src0);
  6142. GGML_TENSOR_BINARY_OP_LOCALS
  6143. GGML_ASSERT( nb0 == sizeof(float));
  6144. GGML_ASSERT(nb00 == sizeof(float));
  6145. if (nb10 == sizeof(float)) {
  6146. for (int ir = 0; ir < nr; ++ir) {
  6147. // src0, src1 and dst are same shape => same indices
  6148. const int i3 = ir/(ne2*ne1);
  6149. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6150. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6151. #ifdef GGML_USE_ACCELERATE
  6152. vDSP_vsub(
  6153. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6154. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6155. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6156. ne0);
  6157. #else
  6158. ggml_vec_sub_f32(ne0,
  6159. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6160. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6161. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6162. #endif
  6163. // }
  6164. // }
  6165. }
  6166. } else {
  6167. // src1 is not contiguous
  6168. for (int ir = 0; ir < nr; ++ir) {
  6169. // src0, src1 and dst are same shape => same indices
  6170. const int i3 = ir/(ne2*ne1);
  6171. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6172. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6173. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6174. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6175. for (int i0 = 0; i0 < ne0; i0++) {
  6176. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6177. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6178. }
  6179. }
  6180. }
  6181. }
  6182. static void ggml_compute_forward_sub(
  6183. const struct ggml_compute_params * params,
  6184. const struct ggml_tensor * src0,
  6185. const struct ggml_tensor * src1,
  6186. struct ggml_tensor * dst) {
  6187. switch (src0->type) {
  6188. case GGML_TYPE_F32:
  6189. {
  6190. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6191. } break;
  6192. default:
  6193. {
  6194. GGML_ASSERT(false);
  6195. } break;
  6196. }
  6197. }
  6198. // ggml_compute_forward_mul
  6199. static void ggml_compute_forward_mul_f32(
  6200. const struct ggml_compute_params * params,
  6201. const struct ggml_tensor * src0,
  6202. const struct ggml_tensor * src1,
  6203. struct ggml_tensor * dst) {
  6204. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6206. return;
  6207. }
  6208. const int ith = params->ith;
  6209. const int nth = params->nth;
  6210. #ifdef GGML_USE_CLBLAST
  6211. if (src1->backend == GGML_BACKEND_GPU) {
  6212. if (ith == 0) {
  6213. ggml_cl_mul(src0, src1, dst);
  6214. }
  6215. return;
  6216. }
  6217. #endif
  6218. const int64_t nr = ggml_nrows(src0);
  6219. GGML_TENSOR_BINARY_OP_LOCALS
  6220. GGML_ASSERT( nb0 == sizeof(float));
  6221. GGML_ASSERT(nb00 == sizeof(float));
  6222. GGML_ASSERT(ne00 == ne10);
  6223. if (nb10 == sizeof(float)) {
  6224. for (int64_t ir = ith; ir < nr; ir += nth) {
  6225. // src0 and dst are same shape => same indices
  6226. const int64_t i03 = ir/(ne02*ne01);
  6227. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6228. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6229. const int64_t i13 = i03 % ne13;
  6230. const int64_t i12 = i02 % ne12;
  6231. const int64_t i11 = i01 % ne11;
  6232. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6233. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6234. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6235. #ifdef GGML_USE_ACCELERATE
  6236. UNUSED(ggml_vec_mul_f32);
  6237. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6238. #else
  6239. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6240. #endif
  6241. // }
  6242. // }
  6243. }
  6244. } else {
  6245. // src1 is not contiguous
  6246. for (int64_t ir = ith; ir < nr; ir += nth) {
  6247. // src0 and dst are same shape => same indices
  6248. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6249. const int64_t i03 = ir/(ne02*ne01);
  6250. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6251. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6252. const int64_t i13 = i03 % ne13;
  6253. const int64_t i12 = i02 % ne12;
  6254. const int64_t i11 = i01 % ne11;
  6255. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6256. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6257. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6258. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6259. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6260. }
  6261. }
  6262. }
  6263. }
  6264. static void ggml_compute_forward_mul(
  6265. const struct ggml_compute_params * params,
  6266. const struct ggml_tensor * src0,
  6267. const struct ggml_tensor * src1,
  6268. struct ggml_tensor * dst) {
  6269. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6270. switch (src0->type) {
  6271. case GGML_TYPE_F32:
  6272. {
  6273. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6274. } break;
  6275. default:
  6276. {
  6277. GGML_ASSERT(false);
  6278. } break;
  6279. }
  6280. }
  6281. // ggml_compute_forward_div
  6282. static void ggml_compute_forward_div_f32(
  6283. const struct ggml_compute_params * params,
  6284. const struct ggml_tensor * src0,
  6285. const struct ggml_tensor * src1,
  6286. struct ggml_tensor * dst) {
  6287. assert(params->ith == 0);
  6288. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6290. return;
  6291. }
  6292. const int nr = ggml_nrows(src0);
  6293. GGML_TENSOR_BINARY_OP_LOCALS
  6294. GGML_ASSERT( nb0 == sizeof(float));
  6295. GGML_ASSERT(nb00 == sizeof(float));
  6296. if (nb10 == sizeof(float)) {
  6297. for (int ir = 0; ir < nr; ++ir) {
  6298. // src0, src1 and dst are same shape => same indices
  6299. const int i3 = ir/(ne2*ne1);
  6300. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6301. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6302. #ifdef GGML_USE_ACCELERATE
  6303. UNUSED(ggml_vec_div_f32);
  6304. vDSP_vdiv(
  6305. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6306. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6307. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6308. ne0);
  6309. #else
  6310. ggml_vec_div_f32(ne0,
  6311. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6312. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6313. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6314. #endif
  6315. // }
  6316. // }
  6317. }
  6318. } else {
  6319. // src1 is not contiguous
  6320. for (int ir = 0; ir < nr; ++ir) {
  6321. // src0, src1 and dst are same shape => same indices
  6322. const int i3 = ir/(ne2*ne1);
  6323. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6324. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6325. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6326. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6327. for (int i0 = 0; i0 < ne0; i0++) {
  6328. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6329. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6330. }
  6331. }
  6332. }
  6333. }
  6334. static void ggml_compute_forward_div(
  6335. const struct ggml_compute_params * params,
  6336. const struct ggml_tensor * src0,
  6337. const struct ggml_tensor * src1,
  6338. struct ggml_tensor * dst) {
  6339. switch (src0->type) {
  6340. case GGML_TYPE_F32:
  6341. {
  6342. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6343. } break;
  6344. default:
  6345. {
  6346. GGML_ASSERT(false);
  6347. } break;
  6348. }
  6349. }
  6350. // ggml_compute_forward_sqr
  6351. static void ggml_compute_forward_sqr_f32(
  6352. const struct ggml_compute_params * params,
  6353. const struct ggml_tensor * src0,
  6354. struct ggml_tensor * dst) {
  6355. assert(params->ith == 0);
  6356. assert(ggml_are_same_shape(src0, dst));
  6357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6358. return;
  6359. }
  6360. const int n = ggml_nrows(src0);
  6361. const int nc = src0->ne[0];
  6362. assert( dst->nb[0] == sizeof(float));
  6363. assert(src0->nb[0] == sizeof(float));
  6364. for (int i = 0; i < n; i++) {
  6365. ggml_vec_sqr_f32(nc,
  6366. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6367. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6368. }
  6369. }
  6370. static void ggml_compute_forward_sqr(
  6371. const struct ggml_compute_params * params,
  6372. const struct ggml_tensor * src0,
  6373. struct ggml_tensor * dst) {
  6374. switch (src0->type) {
  6375. case GGML_TYPE_F32:
  6376. {
  6377. ggml_compute_forward_sqr_f32(params, src0, dst);
  6378. } break;
  6379. default:
  6380. {
  6381. GGML_ASSERT(false);
  6382. } break;
  6383. }
  6384. }
  6385. // ggml_compute_forward_sqrt
  6386. static void ggml_compute_forward_sqrt_f32(
  6387. const struct ggml_compute_params * params,
  6388. const struct ggml_tensor * src0,
  6389. struct ggml_tensor * dst) {
  6390. assert(params->ith == 0);
  6391. assert(ggml_are_same_shape(src0, dst));
  6392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6393. return;
  6394. }
  6395. const int n = ggml_nrows(src0);
  6396. const int nc = src0->ne[0];
  6397. assert( dst->nb[0] == sizeof(float));
  6398. assert(src0->nb[0] == sizeof(float));
  6399. for (int i = 0; i < n; i++) {
  6400. ggml_vec_sqrt_f32(nc,
  6401. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6402. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6403. }
  6404. }
  6405. static void ggml_compute_forward_sqrt(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. struct ggml_tensor * dst) {
  6409. switch (src0->type) {
  6410. case GGML_TYPE_F32:
  6411. {
  6412. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6413. } break;
  6414. default:
  6415. {
  6416. GGML_ASSERT(false);
  6417. } break;
  6418. }
  6419. }
  6420. // ggml_compute_forward_log
  6421. static void ggml_compute_forward_log_f32(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. struct ggml_tensor * dst) {
  6425. GGML_ASSERT(params->ith == 0);
  6426. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. const int n = ggml_nrows(src0);
  6431. const int nc = src0->ne[0];
  6432. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6433. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6434. for (int i = 0; i < n; i++) {
  6435. ggml_vec_log_f32(nc,
  6436. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6437. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6438. }
  6439. }
  6440. static void ggml_compute_forward_log(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * src0,
  6443. struct ggml_tensor * dst) {
  6444. switch (src0->type) {
  6445. case GGML_TYPE_F32:
  6446. {
  6447. ggml_compute_forward_log_f32(params, src0, dst);
  6448. } break;
  6449. default:
  6450. {
  6451. GGML_ASSERT(false);
  6452. } break;
  6453. }
  6454. }
  6455. // ggml_compute_forward_sum
  6456. static void ggml_compute_forward_sum_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. struct ggml_tensor * dst) {
  6460. assert(params->ith == 0);
  6461. assert(ggml_is_scalar(dst));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. assert(ggml_is_scalar(dst));
  6466. assert(src0->nb[0] == sizeof(float));
  6467. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6468. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6469. ggml_float sum = 0;
  6470. ggml_float row_sum = 0;
  6471. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6472. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6473. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6474. ggml_vec_sum_f32_ggf(ne00,
  6475. &row_sum,
  6476. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6477. sum += row_sum;
  6478. }
  6479. }
  6480. }
  6481. ((float *) dst->data)[0] = sum;
  6482. }
  6483. static void ggml_compute_forward_sum_f16(
  6484. const struct ggml_compute_params * params,
  6485. const struct ggml_tensor * src0,
  6486. struct ggml_tensor * dst) {
  6487. assert(params->ith == 0);
  6488. assert(ggml_is_scalar(dst));
  6489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6490. return;
  6491. }
  6492. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6493. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6494. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6495. float sum = 0;
  6496. float row_sum = 0;
  6497. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6498. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6499. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6500. ggml_vec_sum_f16_ggf(ne00,
  6501. &row_sum,
  6502. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6503. sum += row_sum;
  6504. }
  6505. }
  6506. }
  6507. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6508. }
  6509. static void ggml_compute_forward_sum(
  6510. const struct ggml_compute_params * params,
  6511. const struct ggml_tensor * src0,
  6512. struct ggml_tensor * dst) {
  6513. switch (src0->type) {
  6514. case GGML_TYPE_F32:
  6515. {
  6516. ggml_compute_forward_sum_f32(params, src0, dst);
  6517. } break;
  6518. case GGML_TYPE_F16:
  6519. {
  6520. ggml_compute_forward_sum_f16(params, src0, dst);
  6521. } break;
  6522. default:
  6523. {
  6524. GGML_ASSERT(false);
  6525. } break;
  6526. }
  6527. }
  6528. // ggml_compute_forward_sum_rows
  6529. static void ggml_compute_forward_sum_rows_f32(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. struct ggml_tensor * dst) {
  6533. GGML_ASSERT(params->ith == 0);
  6534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6535. return;
  6536. }
  6537. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6538. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6539. GGML_TENSOR_UNARY_OP_LOCALS
  6540. GGML_ASSERT(ne0 == 1);
  6541. GGML_ASSERT(ne1 == ne01);
  6542. GGML_ASSERT(ne2 == ne02);
  6543. GGML_ASSERT(ne3 == ne03);
  6544. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6545. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6546. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6547. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6548. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6549. float row_sum = 0;
  6550. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6551. dst_row[0] = row_sum;
  6552. }
  6553. }
  6554. }
  6555. }
  6556. static void ggml_compute_forward_sum_rows(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. struct ggml_tensor * dst) {
  6560. switch (src0->type) {
  6561. case GGML_TYPE_F32:
  6562. {
  6563. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6564. } break;
  6565. default:
  6566. {
  6567. GGML_ASSERT(false);
  6568. } break;
  6569. }
  6570. }
  6571. // ggml_compute_forward_mean
  6572. static void ggml_compute_forward_mean_f32(
  6573. const struct ggml_compute_params * params,
  6574. const struct ggml_tensor * src0,
  6575. struct ggml_tensor * dst) {
  6576. assert(params->ith == 0);
  6577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6578. return;
  6579. }
  6580. assert(src0->nb[0] == sizeof(float));
  6581. GGML_TENSOR_UNARY_OP_LOCALS
  6582. assert(ne0 == 1);
  6583. assert(ne1 == ne01);
  6584. assert(ne2 == ne02);
  6585. assert(ne3 == ne03);
  6586. UNUSED(ne0);
  6587. UNUSED(ne1);
  6588. UNUSED(ne2);
  6589. UNUSED(ne3);
  6590. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6591. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6592. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6593. ggml_vec_sum_f32(ne00,
  6594. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6595. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6596. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6597. }
  6598. }
  6599. }
  6600. }
  6601. static void ggml_compute_forward_mean(
  6602. const struct ggml_compute_params * params,
  6603. const struct ggml_tensor * src0,
  6604. struct ggml_tensor * dst) {
  6605. switch (src0->type) {
  6606. case GGML_TYPE_F32:
  6607. {
  6608. ggml_compute_forward_mean_f32(params, src0, dst);
  6609. } break;
  6610. default:
  6611. {
  6612. GGML_ASSERT(false);
  6613. } break;
  6614. }
  6615. }
  6616. // ggml_compute_forward_argmax
  6617. static void ggml_compute_forward_argmax_f32(
  6618. const struct ggml_compute_params * params,
  6619. const struct ggml_tensor * src0,
  6620. struct ggml_tensor * dst) {
  6621. assert(params->ith == 0);
  6622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6623. return;
  6624. }
  6625. assert(src0->nb[0] == sizeof(float));
  6626. assert(dst->nb[0] == sizeof(float));
  6627. const int64_t ne00 = src0->ne[0];
  6628. const int64_t ne01 = src0->ne[1];
  6629. const size_t nb01 = src0->nb[1];
  6630. const size_t nb0 = dst->nb[0];
  6631. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6632. float * src = (float *) ((char *) src0->data + i1*nb01);
  6633. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6634. int v = 0;
  6635. ggml_vec_argmax_f32(ne00, &v, src);
  6636. dst_[0] = v;
  6637. }
  6638. }
  6639. static void ggml_compute_forward_argmax(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. struct ggml_tensor * dst) {
  6643. switch (src0->type) {
  6644. case GGML_TYPE_F32:
  6645. {
  6646. ggml_compute_forward_argmax_f32(params, src0, dst);
  6647. } break;
  6648. default:
  6649. {
  6650. GGML_ASSERT(false);
  6651. } break;
  6652. }
  6653. }
  6654. // ggml_compute_forward_repeat
  6655. static void ggml_compute_forward_repeat_f32(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. struct ggml_tensor * dst) {
  6659. GGML_ASSERT(params->ith == 0);
  6660. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6662. return;
  6663. }
  6664. GGML_TENSOR_UNARY_OP_LOCALS
  6665. // guaranteed to be an integer due to the check in ggml_can_repeat
  6666. const int nr0 = (int)(ne0/ne00);
  6667. const int nr1 = (int)(ne1/ne01);
  6668. const int nr2 = (int)(ne2/ne02);
  6669. const int nr3 = (int)(ne3/ne03);
  6670. // TODO: support for transposed / permuted tensors
  6671. GGML_ASSERT(nb0 == sizeof(float));
  6672. GGML_ASSERT(nb00 == sizeof(float));
  6673. // TODO: maybe this is not optimal?
  6674. for (int i3 = 0; i3 < nr3; i3++) {
  6675. for (int k3 = 0; k3 < ne03; k3++) {
  6676. for (int i2 = 0; i2 < nr2; i2++) {
  6677. for (int k2 = 0; k2 < ne02; k2++) {
  6678. for (int i1 = 0; i1 < nr1; i1++) {
  6679. for (int k1 = 0; k1 < ne01; k1++) {
  6680. for (int i0 = 0; i0 < nr0; i0++) {
  6681. ggml_vec_cpy_f32(ne00,
  6682. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6683. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. }
  6690. }
  6691. }
  6692. static void ggml_compute_forward_repeat_f16(
  6693. const struct ggml_compute_params * params,
  6694. const struct ggml_tensor * src0,
  6695. struct ggml_tensor * dst) {
  6696. GGML_ASSERT(params->ith == 0);
  6697. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6699. return;
  6700. }
  6701. GGML_TENSOR_UNARY_OP_LOCALS;
  6702. // guaranteed to be an integer due to the check in ggml_can_repeat
  6703. const int nr0 = (int)(ne0/ne00);
  6704. const int nr1 = (int)(ne1/ne01);
  6705. const int nr2 = (int)(ne2/ne02);
  6706. const int nr3 = (int)(ne3/ne03);
  6707. // TODO: support for transposed / permuted tensors
  6708. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6709. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6710. // TODO: maybe this is not optimal?
  6711. for (int i3 = 0; i3 < nr3; i3++) {
  6712. for (int k3 = 0; k3 < ne03; k3++) {
  6713. for (int i2 = 0; i2 < nr2; i2++) {
  6714. for (int k2 = 0; k2 < ne02; k2++) {
  6715. for (int i1 = 0; i1 < nr1; i1++) {
  6716. for (int k1 = 0; k1 < ne01; k1++) {
  6717. for (int i0 = 0; i0 < nr0; i0++) {
  6718. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6719. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6720. // ggml_vec_cpy_f16(ne00, y, x)
  6721. for (int i = 0; i < ne00; ++i) {
  6722. y[i] = x[i];
  6723. }
  6724. }
  6725. }
  6726. }
  6727. }
  6728. }
  6729. }
  6730. }
  6731. }
  6732. static void ggml_compute_forward_repeat(
  6733. const struct ggml_compute_params * params,
  6734. const struct ggml_tensor * src0,
  6735. struct ggml_tensor * dst) {
  6736. switch (src0->type) {
  6737. case GGML_TYPE_F16:
  6738. {
  6739. ggml_compute_forward_repeat_f16(params, src0, dst);
  6740. } break;
  6741. case GGML_TYPE_F32:
  6742. {
  6743. ggml_compute_forward_repeat_f32(params, src0, dst);
  6744. } break;
  6745. default:
  6746. {
  6747. GGML_ASSERT(false);
  6748. } break;
  6749. }
  6750. }
  6751. // ggml_compute_forward_repeat_back
  6752. static void ggml_compute_forward_repeat_back_f32(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0,
  6755. struct ggml_tensor * dst) {
  6756. GGML_ASSERT(params->ith == 0);
  6757. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6759. return;
  6760. }
  6761. GGML_TENSOR_UNARY_OP_LOCALS
  6762. // guaranteed to be an integer due to the check in ggml_can_repeat
  6763. const int nr0 = (int)(ne00/ne0);
  6764. const int nr1 = (int)(ne01/ne1);
  6765. const int nr2 = (int)(ne02/ne2);
  6766. const int nr3 = (int)(ne03/ne3);
  6767. // TODO: support for transposed / permuted tensors
  6768. GGML_ASSERT(nb0 == sizeof(float));
  6769. GGML_ASSERT(nb00 == sizeof(float));
  6770. if (ggml_is_contiguous(dst)) {
  6771. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6772. } else {
  6773. for (int k3 = 0; k3 < ne3; k3++) {
  6774. for (int k2 = 0; k2 < ne2; k2++) {
  6775. for (int k1 = 0; k1 < ne1; k1++) {
  6776. ggml_vec_set_f32(ne0,
  6777. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6778. 0);
  6779. }
  6780. }
  6781. }
  6782. }
  6783. // TODO: maybe this is not optimal?
  6784. for (int i3 = 0; i3 < nr3; i3++) {
  6785. for (int k3 = 0; k3 < ne3; k3++) {
  6786. for (int i2 = 0; i2 < nr2; i2++) {
  6787. for (int k2 = 0; k2 < ne2; k2++) {
  6788. for (int i1 = 0; i1 < nr1; i1++) {
  6789. for (int k1 = 0; k1 < ne1; k1++) {
  6790. for (int i0 = 0; i0 < nr0; i0++) {
  6791. ggml_vec_acc_f32(ne0,
  6792. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6793. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6794. }
  6795. }
  6796. }
  6797. }
  6798. }
  6799. }
  6800. }
  6801. }
  6802. static void ggml_compute_forward_repeat_back(
  6803. const struct ggml_compute_params * params,
  6804. const struct ggml_tensor * src0,
  6805. struct ggml_tensor * dst) {
  6806. switch (src0->type) {
  6807. case GGML_TYPE_F32:
  6808. {
  6809. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6810. } break;
  6811. default:
  6812. {
  6813. GGML_ASSERT(false);
  6814. } break;
  6815. }
  6816. }
  6817. // ggml_compute_forward_concat
  6818. static void ggml_compute_forward_concat_f32(
  6819. const struct ggml_compute_params * params,
  6820. const struct ggml_tensor * src0,
  6821. const struct ggml_tensor * src1,
  6822. struct ggml_tensor * dst) {
  6823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6824. return;
  6825. }
  6826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6827. const int ith = params->ith;
  6828. GGML_TENSOR_BINARY_OP_LOCALS
  6829. // TODO: support for transposed / permuted tensors
  6830. GGML_ASSERT(nb0 == sizeof(float));
  6831. GGML_ASSERT(nb00 == sizeof(float));
  6832. GGML_ASSERT(nb10 == sizeof(float));
  6833. for (int i3 = 0; i3 < ne3; i3++) {
  6834. for (int i2 = ith; i2 < ne2; i2++) {
  6835. if (i2 < ne02) { // src0
  6836. for (int i1 = 0; i1 < ne1; i1++) {
  6837. for (int i0 = 0; i0 < ne0; i0++) {
  6838. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6839. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6840. *y = *x;
  6841. }
  6842. }
  6843. } // src1
  6844. else {
  6845. for (int i1 = 0; i1 < ne1; i1++) {
  6846. for (int i0 = 0; i0 < ne0; i0++) {
  6847. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6848. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6849. *y = *x;
  6850. }
  6851. }
  6852. }
  6853. }
  6854. }
  6855. }
  6856. static void ggml_compute_forward_concat(
  6857. const struct ggml_compute_params* params,
  6858. const struct ggml_tensor* src0,
  6859. const struct ggml_tensor* src1,
  6860. struct ggml_tensor* dst) {
  6861. switch (src0->type) {
  6862. case GGML_TYPE_F32:
  6863. {
  6864. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6865. } break;
  6866. default:
  6867. {
  6868. GGML_ASSERT(false);
  6869. } break;
  6870. }
  6871. }
  6872. // ggml_compute_forward_abs
  6873. static void ggml_compute_forward_abs_f32(
  6874. const struct ggml_compute_params * params,
  6875. const struct ggml_tensor * src0,
  6876. struct ggml_tensor * dst) {
  6877. assert(params->ith == 0);
  6878. assert(ggml_are_same_shape(src0, dst));
  6879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6880. return;
  6881. }
  6882. const int n = ggml_nrows(src0);
  6883. const int nc = src0->ne[0];
  6884. assert(dst->nb[0] == sizeof(float));
  6885. assert(src0->nb[0] == sizeof(float));
  6886. for (int i = 0; i < n; i++) {
  6887. ggml_vec_abs_f32(nc,
  6888. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6889. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6890. }
  6891. }
  6892. static void ggml_compute_forward_abs(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * src0,
  6895. struct ggml_tensor * dst) {
  6896. switch (src0->type) {
  6897. case GGML_TYPE_F32:
  6898. {
  6899. ggml_compute_forward_abs_f32(params, src0, dst);
  6900. } break;
  6901. default:
  6902. {
  6903. GGML_ASSERT(false);
  6904. } break;
  6905. }
  6906. }
  6907. // ggml_compute_forward_sgn
  6908. static void ggml_compute_forward_sgn_f32(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. struct ggml_tensor * dst) {
  6912. assert(params->ith == 0);
  6913. assert(ggml_are_same_shape(src0, dst));
  6914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6915. return;
  6916. }
  6917. const int n = ggml_nrows(src0);
  6918. const int nc = src0->ne[0];
  6919. assert(dst->nb[0] == sizeof(float));
  6920. assert(src0->nb[0] == sizeof(float));
  6921. for (int i = 0; i < n; i++) {
  6922. ggml_vec_sgn_f32(nc,
  6923. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6924. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6925. }
  6926. }
  6927. static void ggml_compute_forward_sgn(
  6928. const struct ggml_compute_params * params,
  6929. const struct ggml_tensor * src0,
  6930. struct ggml_tensor * dst) {
  6931. switch (src0->type) {
  6932. case GGML_TYPE_F32:
  6933. {
  6934. ggml_compute_forward_sgn_f32(params, src0, dst);
  6935. } break;
  6936. default:
  6937. {
  6938. GGML_ASSERT(false);
  6939. } break;
  6940. }
  6941. }
  6942. // ggml_compute_forward_neg
  6943. static void ggml_compute_forward_neg_f32(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. struct ggml_tensor * dst) {
  6947. assert(params->ith == 0);
  6948. assert(ggml_are_same_shape(src0, dst));
  6949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6950. return;
  6951. }
  6952. const int n = ggml_nrows(src0);
  6953. const int nc = src0->ne[0];
  6954. assert(dst->nb[0] == sizeof(float));
  6955. assert(src0->nb[0] == sizeof(float));
  6956. for (int i = 0; i < n; i++) {
  6957. ggml_vec_neg_f32(nc,
  6958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6959. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6960. }
  6961. }
  6962. static void ggml_compute_forward_neg(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * src0,
  6965. struct ggml_tensor * dst) {
  6966. switch (src0->type) {
  6967. case GGML_TYPE_F32:
  6968. {
  6969. ggml_compute_forward_neg_f32(params, src0, dst);
  6970. } break;
  6971. default:
  6972. {
  6973. GGML_ASSERT(false);
  6974. } break;
  6975. }
  6976. }
  6977. // ggml_compute_forward_step
  6978. static void ggml_compute_forward_step_f32(
  6979. const struct ggml_compute_params * params,
  6980. const struct ggml_tensor * src0,
  6981. struct ggml_tensor * dst) {
  6982. assert(params->ith == 0);
  6983. assert(ggml_are_same_shape(src0, dst));
  6984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6985. return;
  6986. }
  6987. const int n = ggml_nrows(src0);
  6988. const int nc = src0->ne[0];
  6989. assert(dst->nb[0] == sizeof(float));
  6990. assert(src0->nb[0] == sizeof(float));
  6991. for (int i = 0; i < n; i++) {
  6992. ggml_vec_step_f32(nc,
  6993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6995. }
  6996. }
  6997. static void ggml_compute_forward_step(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. struct ggml_tensor * dst) {
  7001. switch (src0->type) {
  7002. case GGML_TYPE_F32:
  7003. {
  7004. ggml_compute_forward_step_f32(params, src0, dst);
  7005. } break;
  7006. default:
  7007. {
  7008. GGML_ASSERT(false);
  7009. } break;
  7010. }
  7011. }
  7012. // ggml_compute_forward_tanh
  7013. static void ggml_compute_forward_tanh_f32(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * src0,
  7016. struct ggml_tensor * dst) {
  7017. assert(params->ith == 0);
  7018. assert(ggml_are_same_shape(src0, dst));
  7019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. const int n = ggml_nrows(src0);
  7023. const int nc = src0->ne[0];
  7024. assert(dst->nb[0] == sizeof(float));
  7025. assert(src0->nb[0] == sizeof(float));
  7026. for (int i = 0; i < n; i++) {
  7027. ggml_vec_tanh_f32(nc,
  7028. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7029. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7030. }
  7031. }
  7032. static void ggml_compute_forward_tanh(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. switch (src0->type) {
  7037. case GGML_TYPE_F32:
  7038. {
  7039. ggml_compute_forward_tanh_f32(params, src0, dst);
  7040. } break;
  7041. default:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. // ggml_compute_forward_elu
  7048. static void ggml_compute_forward_elu_f32(
  7049. const struct ggml_compute_params * params,
  7050. const struct ggml_tensor * src0,
  7051. struct ggml_tensor * dst) {
  7052. assert(params->ith == 0);
  7053. assert(ggml_are_same_shape(src0, dst));
  7054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. const int n = ggml_nrows(src0);
  7058. const int nc = src0->ne[0];
  7059. assert(dst->nb[0] == sizeof(float));
  7060. assert(src0->nb[0] == sizeof(float));
  7061. for (int i = 0; i < n; i++) {
  7062. ggml_vec_elu_f32(nc,
  7063. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7064. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7065. }
  7066. }
  7067. static void ggml_compute_forward_elu(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. switch (src0->type) {
  7072. case GGML_TYPE_F32:
  7073. {
  7074. ggml_compute_forward_elu_f32(params, src0, dst);
  7075. } break;
  7076. default:
  7077. {
  7078. GGML_ASSERT(false);
  7079. } break;
  7080. }
  7081. }
  7082. // ggml_compute_forward_relu
  7083. static void ggml_compute_forward_relu_f32(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. struct ggml_tensor * dst) {
  7087. assert(params->ith == 0);
  7088. assert(ggml_are_same_shape(src0, dst));
  7089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7090. return;
  7091. }
  7092. const int n = ggml_nrows(src0);
  7093. const int nc = src0->ne[0];
  7094. assert(dst->nb[0] == sizeof(float));
  7095. assert(src0->nb[0] == sizeof(float));
  7096. for (int i = 0; i < n; i++) {
  7097. ggml_vec_relu_f32(nc,
  7098. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7099. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7100. }
  7101. }
  7102. static void ggml_compute_forward_relu(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. switch (src0->type) {
  7107. case GGML_TYPE_F32:
  7108. {
  7109. ggml_compute_forward_relu_f32(params, src0, dst);
  7110. } break;
  7111. default:
  7112. {
  7113. GGML_ASSERT(false);
  7114. } break;
  7115. }
  7116. }
  7117. // ggml_compute_forward_gelu
  7118. static void ggml_compute_forward_gelu_f32(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7123. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7124. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7126. return;
  7127. }
  7128. const int ith = params->ith;
  7129. const int nth = params->nth;
  7130. const int nc = src0->ne[0];
  7131. const int nr = ggml_nrows(src0);
  7132. // rows per thread
  7133. const int dr = (nr + nth - 1)/nth;
  7134. // row range for this thread
  7135. const int ir0 = dr*ith;
  7136. const int ir1 = MIN(ir0 + dr, nr);
  7137. for (int i1 = ir0; i1 < ir1; i1++) {
  7138. ggml_vec_gelu_f32(nc,
  7139. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7140. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7141. #ifndef NDEBUG
  7142. for (int k = 0; k < nc; k++) {
  7143. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7144. UNUSED(x);
  7145. assert(!isnan(x));
  7146. assert(!isinf(x));
  7147. }
  7148. #endif
  7149. }
  7150. }
  7151. static void ggml_compute_forward_gelu(
  7152. const struct ggml_compute_params * params,
  7153. const struct ggml_tensor * src0,
  7154. struct ggml_tensor * dst) {
  7155. switch (src0->type) {
  7156. case GGML_TYPE_F32:
  7157. {
  7158. ggml_compute_forward_gelu_f32(params, src0, dst);
  7159. } break;
  7160. default:
  7161. {
  7162. GGML_ASSERT(false);
  7163. } break;
  7164. }
  7165. }
  7166. // ggml_compute_forward_gelu_quick
  7167. static void ggml_compute_forward_gelu_quick_f32(
  7168. const struct ggml_compute_params * params,
  7169. const struct ggml_tensor * src0,
  7170. struct ggml_tensor * dst) {
  7171. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7172. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7173. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7175. return;
  7176. }
  7177. const int ith = params->ith;
  7178. const int nth = params->nth;
  7179. const int nc = src0->ne[0];
  7180. const int nr = ggml_nrows(src0);
  7181. // rows per thread
  7182. const int dr = (nr + nth - 1)/nth;
  7183. // row range for this thread
  7184. const int ir0 = dr*ith;
  7185. const int ir1 = MIN(ir0 + dr, nr);
  7186. for (int i1 = ir0; i1 < ir1; i1++) {
  7187. ggml_vec_gelu_quick_f32(nc,
  7188. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7189. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7190. #ifndef NDEBUG
  7191. for (int k = 0; k < nc; k++) {
  7192. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7193. UNUSED(x);
  7194. assert(!isnan(x));
  7195. assert(!isinf(x));
  7196. }
  7197. #endif
  7198. }
  7199. }
  7200. static void ggml_compute_forward_gelu_quick(
  7201. const struct ggml_compute_params * params,
  7202. const struct ggml_tensor * src0,
  7203. struct ggml_tensor * dst) {
  7204. switch (src0->type) {
  7205. case GGML_TYPE_F32:
  7206. {
  7207. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7208. } break;
  7209. default:
  7210. {
  7211. GGML_ASSERT(false);
  7212. } break;
  7213. }
  7214. }
  7215. // ggml_compute_forward_silu
  7216. static void ggml_compute_forward_silu_f32(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. struct ggml_tensor * dst) {
  7220. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7221. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7222. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. const int ith = params->ith;
  7227. const int nth = params->nth;
  7228. const int nc = src0->ne[0];
  7229. const int nr = ggml_nrows(src0);
  7230. // rows per thread
  7231. const int dr = (nr + nth - 1)/nth;
  7232. // row range for this thread
  7233. const int ir0 = dr*ith;
  7234. const int ir1 = MIN(ir0 + dr, nr);
  7235. for (int i1 = ir0; i1 < ir1; i1++) {
  7236. ggml_vec_silu_f32(nc,
  7237. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7238. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7239. #ifndef NDEBUG
  7240. for (int k = 0; k < nc; k++) {
  7241. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7242. UNUSED(x);
  7243. assert(!isnan(x));
  7244. assert(!isinf(x));
  7245. }
  7246. #endif
  7247. }
  7248. }
  7249. static void ggml_compute_forward_silu(
  7250. const struct ggml_compute_params * params,
  7251. const struct ggml_tensor * src0,
  7252. struct ggml_tensor * dst) {
  7253. switch (src0->type) {
  7254. case GGML_TYPE_F32:
  7255. {
  7256. ggml_compute_forward_silu_f32(params, src0, dst);
  7257. } break;
  7258. default:
  7259. {
  7260. GGML_ASSERT(false);
  7261. } break;
  7262. }
  7263. }
  7264. // ggml_compute_forward_leaky
  7265. static void ggml_compute_forward_leaky_f32(
  7266. const struct ggml_compute_params * params,
  7267. const struct ggml_tensor * src0,
  7268. struct ggml_tensor * dst) {
  7269. assert(params->ith == 0);
  7270. assert(ggml_are_same_shape(src0, dst));
  7271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7272. return;
  7273. }
  7274. const int n = ggml_nrows(src0);
  7275. const int nc = src0->ne[0];
  7276. assert(dst->nb[0] == sizeof(float));
  7277. assert(src0->nb[0] == sizeof(float));
  7278. for (int i = 0; i < n; i++) {
  7279. ggml_vec_leaky_f32(nc,
  7280. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7281. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7282. }
  7283. }
  7284. static void ggml_compute_forward_leaky(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. struct ggml_tensor * dst) {
  7288. switch (src0->type) {
  7289. case GGML_TYPE_F32:
  7290. {
  7291. ggml_compute_forward_leaky_f32(params, src0, dst);
  7292. } break;
  7293. default:
  7294. {
  7295. GGML_ASSERT(false);
  7296. } break;
  7297. }
  7298. }
  7299. // ggml_compute_forward_silu_back
  7300. static void ggml_compute_forward_silu_back_f32(
  7301. const struct ggml_compute_params * params,
  7302. const struct ggml_tensor * src0,
  7303. const struct ggml_tensor * grad,
  7304. struct ggml_tensor * dst) {
  7305. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7306. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7307. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7308. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7309. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7311. return;
  7312. }
  7313. const int ith = params->ith;
  7314. const int nth = params->nth;
  7315. const int nc = src0->ne[0];
  7316. const int nr = ggml_nrows(src0);
  7317. // rows per thread
  7318. const int dr = (nr + nth - 1)/nth;
  7319. // row range for this thread
  7320. const int ir0 = dr*ith;
  7321. const int ir1 = MIN(ir0 + dr, nr);
  7322. for (int i1 = ir0; i1 < ir1; i1++) {
  7323. ggml_vec_silu_backward_f32(nc,
  7324. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7325. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7326. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7327. #ifndef NDEBUG
  7328. for (int k = 0; k < nc; k++) {
  7329. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7330. UNUSED(x);
  7331. assert(!isnan(x));
  7332. assert(!isinf(x));
  7333. }
  7334. #endif
  7335. }
  7336. }
  7337. static void ggml_compute_forward_silu_back(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * grad,
  7341. struct ggml_tensor * dst) {
  7342. switch (src0->type) {
  7343. case GGML_TYPE_F32:
  7344. {
  7345. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7346. } break;
  7347. default:
  7348. {
  7349. GGML_ASSERT(false);
  7350. } break;
  7351. }
  7352. }
  7353. // ggml_compute_forward_norm
  7354. static void ggml_compute_forward_norm_f32(
  7355. const struct ggml_compute_params * params,
  7356. const struct ggml_tensor * src0,
  7357. struct ggml_tensor * dst) {
  7358. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7360. return;
  7361. }
  7362. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7363. const int ith = params->ith;
  7364. const int nth = params->nth;
  7365. GGML_TENSOR_UNARY_OP_LOCALS
  7366. float eps;
  7367. memcpy(&eps, dst->op_params, sizeof(float));
  7368. // TODO: optimize
  7369. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7370. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7371. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7372. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7373. ggml_float sum = 0.0;
  7374. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7375. sum += (ggml_float)x[i00];
  7376. }
  7377. float mean = sum/ne00;
  7378. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7379. ggml_float sum2 = 0.0;
  7380. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7381. float v = x[i00] - mean;
  7382. y[i00] = v;
  7383. sum2 += (ggml_float)(v*v);
  7384. }
  7385. float variance = sum2/ne00;
  7386. const float scale = 1.0f/sqrtf(variance + eps);
  7387. ggml_vec_scale_f32(ne00, y, scale);
  7388. }
  7389. }
  7390. }
  7391. }
  7392. static void ggml_compute_forward_norm(
  7393. const struct ggml_compute_params * params,
  7394. const struct ggml_tensor * src0,
  7395. struct ggml_tensor * dst) {
  7396. switch (src0->type) {
  7397. case GGML_TYPE_F32:
  7398. {
  7399. ggml_compute_forward_norm_f32(params, src0, dst);
  7400. } break;
  7401. default:
  7402. {
  7403. GGML_ASSERT(false);
  7404. } break;
  7405. }
  7406. }
  7407. // ggml_compute_forward_group_rms_norm
  7408. static void ggml_compute_forward_rms_norm_f32(
  7409. const struct ggml_compute_params * params,
  7410. const struct ggml_tensor * src0,
  7411. struct ggml_tensor * dst) {
  7412. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7417. const int ith = params->ith;
  7418. const int nth = params->nth;
  7419. GGML_TENSOR_UNARY_OP_LOCALS
  7420. float eps;
  7421. memcpy(&eps, dst->op_params, sizeof(float));
  7422. // TODO: optimize
  7423. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7424. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7425. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7426. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7427. ggml_float sum = 0.0;
  7428. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7429. sum += (ggml_float)(x[i00] * x[i00]);
  7430. }
  7431. const float mean = sum/ne00;
  7432. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7433. memcpy(y, x, ne00 * sizeof(float));
  7434. // for (int i00 = 0; i00 < ne00; i00++) {
  7435. // y[i00] = x[i00];
  7436. // }
  7437. const float scale = 1.0f/sqrtf(mean + eps);
  7438. ggml_vec_scale_f32(ne00, y, scale);
  7439. }
  7440. }
  7441. }
  7442. }
  7443. static void ggml_compute_forward_rms_norm(
  7444. const struct ggml_compute_params * params,
  7445. const struct ggml_tensor * src0,
  7446. struct ggml_tensor * dst) {
  7447. switch (src0->type) {
  7448. case GGML_TYPE_F32:
  7449. {
  7450. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7451. } break;
  7452. default:
  7453. {
  7454. GGML_ASSERT(false);
  7455. } break;
  7456. }
  7457. }
  7458. static void ggml_compute_forward_rms_norm_back_f32(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. const struct ggml_tensor * src1,
  7462. struct ggml_tensor * dst) {
  7463. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7465. return;
  7466. }
  7467. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7468. const int ith = params->ith;
  7469. const int nth = params->nth;
  7470. GGML_TENSOR_BINARY_OP_LOCALS
  7471. float eps;
  7472. memcpy(&eps, dst->op_params, sizeof(float));
  7473. // TODO: optimize
  7474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7476. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7477. // src1 is same shape as src0 => same indices
  7478. const int64_t i11 = i01;
  7479. const int64_t i12 = i02;
  7480. const int64_t i13 = i03;
  7481. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7482. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7483. ggml_float sum_xx = 0.0;
  7484. ggml_float sum_xdz = 0.0;
  7485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7486. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7487. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7488. }
  7489. //const float mean = (float)(sum_xx)/ne00;
  7490. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7491. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7492. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7493. // we could cache rms from forward pass to improve performance.
  7494. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7495. //const float rms = sqrtf(mean_eps);
  7496. const float rrms = 1.0f / sqrtf(mean_eps);
  7497. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7498. {
  7499. // z = rms_norm(x)
  7500. //
  7501. // rms_norm(src0) =
  7502. // scale(
  7503. // src0,
  7504. // div(
  7505. // 1,
  7506. // sqrt(
  7507. // add(
  7508. // scale(
  7509. // sum(
  7510. // sqr(
  7511. // src0)),
  7512. // (1.0/N)),
  7513. // eps))));
  7514. // postorder:
  7515. // ## op args grad
  7516. // 00 param src0 grad[#00]
  7517. // 01 const 1
  7518. // 02 sqr (#00) grad[#02]
  7519. // 03 sum (#02) grad[#03]
  7520. // 04 const 1/N
  7521. // 05 scale (#03, #04) grad[#05]
  7522. // 06 const eps
  7523. // 07 add (#05, #06) grad[#07]
  7524. // 08 sqrt (#07) grad[#08]
  7525. // 09 div (#01,#08) grad[#09]
  7526. // 10 scale (#00,#09) grad[#10]
  7527. //
  7528. // backward pass, given grad[#10]
  7529. // #10: scale
  7530. // grad[#00] += scale(grad[#10],#09)
  7531. // grad[#09] += sum(mul(grad[#10],#00))
  7532. // #09: div
  7533. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7534. // #08: sqrt
  7535. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7536. // #07: add
  7537. // grad[#05] += grad[#07]
  7538. // #05: scale
  7539. // grad[#03] += scale(grad[#05],#04)
  7540. // #03: sum
  7541. // grad[#02] += repeat(grad[#03], #02)
  7542. // #02:
  7543. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7544. //
  7545. // substitute and simplify:
  7546. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7547. // grad[#02] = repeat(grad[#03], #02)
  7548. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7549. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7550. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7551. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7552. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7553. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7554. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7555. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7556. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7557. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7558. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7559. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7560. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7561. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7562. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7563. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7564. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7565. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7566. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7567. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7568. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7569. // a = b*c + d*e
  7570. // a = b*c*f/f + d*e*f/f
  7571. // a = (b*c*f + d*e*f)*(1/f)
  7572. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7573. // a = (b + d*e/c)*c
  7574. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7575. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7576. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7577. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7578. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7579. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7580. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7581. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7582. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7583. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7584. }
  7585. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7586. // post-order:
  7587. // dx := x
  7588. // dx := scale(dx,-mean_xdz/mean_eps)
  7589. // dx := add(dx, dz)
  7590. // dx := scale(dx, rrms)
  7591. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7592. ggml_vec_cpy_f32 (ne00, dx, x);
  7593. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7594. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7595. ggml_vec_acc_f32 (ne00, dx, dz);
  7596. ggml_vec_scale_f32(ne00, dx, rrms);
  7597. }
  7598. }
  7599. }
  7600. }
  7601. static void ggml_compute_forward_rms_norm_back(
  7602. const struct ggml_compute_params * params,
  7603. const struct ggml_tensor * src0,
  7604. const struct ggml_tensor * src1,
  7605. struct ggml_tensor * dst) {
  7606. switch (src0->type) {
  7607. case GGML_TYPE_F32:
  7608. {
  7609. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7610. } break;
  7611. default:
  7612. {
  7613. GGML_ASSERT(false);
  7614. } break;
  7615. }
  7616. }
  7617. // ggml_compute_forward_group_norm
  7618. static void ggml_compute_forward_group_norm_f32(
  7619. const struct ggml_compute_params * params,
  7620. const struct ggml_tensor * src0,
  7621. struct ggml_tensor * dst) {
  7622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7624. return;
  7625. }
  7626. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7627. const int ith = params->ith;
  7628. const int nth = params->nth;
  7629. GGML_TENSOR_UNARY_OP_LOCALS
  7630. const float eps = 1e-6f; // TODO: make this a parameter
  7631. // TODO: optimize
  7632. int n_channels = src0->ne[2];
  7633. int n_groups = dst->op_params[0];
  7634. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7635. for (int i = ith; i < n_groups; i+=nth) {
  7636. int start = i * n_channels_per_group;
  7637. int end = start + n_channels_per_group;
  7638. if (end > n_channels) {
  7639. end = n_channels;
  7640. }
  7641. int step = end - start;
  7642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7643. ggml_float sum = 0.0;
  7644. for (int64_t i02 = start; i02 < end; i02++) {
  7645. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7646. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7648. sum += (ggml_float)x[i00];
  7649. }
  7650. }
  7651. }
  7652. float mean = sum / (ne00 * ne01 * step);
  7653. ggml_float sum2 = 0.0;
  7654. for (int64_t i02 = start; i02 < end; i02++) {
  7655. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7656. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7657. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7658. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7659. float v = x[i00] - mean;
  7660. y[i00] = v;
  7661. sum2 += (ggml_float)(v * v);
  7662. }
  7663. }
  7664. }
  7665. float variance = sum2 / (ne00 * ne01 * step);
  7666. const float scale = 1.0f / sqrtf(variance + eps);
  7667. for (int64_t i02 = start; i02 < end; i02++) {
  7668. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7669. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7670. ggml_vec_scale_f32(ne00, y, scale);
  7671. }
  7672. }
  7673. }
  7674. }
  7675. }
  7676. static void ggml_compute_forward_group_norm(
  7677. const struct ggml_compute_params * params,
  7678. const struct ggml_tensor * src0,
  7679. struct ggml_tensor * dst) {
  7680. switch (src0->type) {
  7681. case GGML_TYPE_F32:
  7682. {
  7683. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7684. } break;
  7685. default:
  7686. {
  7687. GGML_ASSERT(false);
  7688. } break;
  7689. }
  7690. }
  7691. // ggml_compute_forward_mul_mat
  7692. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7693. // helper function to determine if it is better to use BLAS or not
  7694. // for large matrices, BLAS is faster
  7695. static bool ggml_compute_forward_mul_mat_use_blas(
  7696. const struct ggml_tensor * src0,
  7697. const struct ggml_tensor * src1,
  7698. struct ggml_tensor * dst) {
  7699. //const int64_t ne00 = src0->ne[0];
  7700. //const int64_t ne01 = src0->ne[1];
  7701. const int64_t ne10 = src1->ne[0];
  7702. const int64_t ne0 = dst->ne[0];
  7703. const int64_t ne1 = dst->ne[1];
  7704. // TODO: find the optimal values for these
  7705. if (ggml_is_contiguous(src0) &&
  7706. ggml_is_contiguous(src1) &&
  7707. src0->type == GGML_TYPE_F32 &&
  7708. src1->type == GGML_TYPE_F32 &&
  7709. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7710. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7711. return true;
  7712. }
  7713. return false;
  7714. }
  7715. #endif
  7716. static void ggml_compute_forward_mul_mat(
  7717. const struct ggml_compute_params * params,
  7718. const struct ggml_tensor * src0,
  7719. const struct ggml_tensor * src1,
  7720. struct ggml_tensor * dst) {
  7721. int64_t t0 = ggml_perf_time_us();
  7722. UNUSED(t0);
  7723. GGML_TENSOR_BINARY_OP_LOCALS
  7724. const int ith = params->ith;
  7725. const int nth = params->nth;
  7726. const enum ggml_type type = src0->type;
  7727. const bool src1_cont = ggml_is_contiguous(src1);
  7728. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7729. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7730. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7731. GGML_ASSERT(ne0 == ne01);
  7732. GGML_ASSERT(ne1 == ne11);
  7733. GGML_ASSERT(ne2 == ne12);
  7734. GGML_ASSERT(ne3 == ne13);
  7735. // we don't support permuted src0 or src1
  7736. GGML_ASSERT(nb00 == ggml_type_size(type));
  7737. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7738. // dst cannot be transposed or permuted
  7739. GGML_ASSERT(nb0 == sizeof(float));
  7740. GGML_ASSERT(nb0 <= nb1);
  7741. GGML_ASSERT(nb1 <= nb2);
  7742. GGML_ASSERT(nb2 <= nb3);
  7743. // broadcast factors
  7744. const int64_t r2 = ne12/ne02;
  7745. const int64_t r3 = ne13/ne03;
  7746. // nb01 >= nb00 - src0 is not transposed
  7747. // compute by src0 rows
  7748. #if defined(GGML_USE_CLBLAST)
  7749. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7750. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7751. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7752. }
  7753. return;
  7754. }
  7755. #endif
  7756. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7757. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7758. if (params->ith != 0) {
  7759. return;
  7760. }
  7761. if (params->type == GGML_TASK_INIT) {
  7762. return;
  7763. }
  7764. if (params->type == GGML_TASK_FINALIZE) {
  7765. return;
  7766. }
  7767. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7768. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7769. // broadcast src0 into src1 across 2nd,3rd dimension
  7770. const int64_t i03 = i13/r3;
  7771. const int64_t i02 = i12/r2;
  7772. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7773. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7774. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7775. if (type != GGML_TYPE_F32) {
  7776. float * const wdata = params->wdata;
  7777. ggml_to_float_t const to_float = type_traits[type].to_float;
  7778. size_t id = 0;
  7779. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7780. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7781. id += ne00;
  7782. }
  7783. assert(id*sizeof(float) <= params->wsize);
  7784. x = wdata;
  7785. }
  7786. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7787. ne11, ne01, ne10,
  7788. 1.0f, y, ne10,
  7789. x, ne00,
  7790. 0.0f, d, ne01);
  7791. }
  7792. }
  7793. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7794. return;
  7795. }
  7796. #endif
  7797. if (params->type == GGML_TASK_INIT) {
  7798. if (src1->type != vec_dot_type) {
  7799. char * wdata = params->wdata;
  7800. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7801. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7802. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7803. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7804. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7805. wdata += row_size;
  7806. }
  7807. }
  7808. }
  7809. }
  7810. return;
  7811. }
  7812. if (params->type == GGML_TASK_FINALIZE) {
  7813. return;
  7814. }
  7815. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7816. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7817. const int64_t nr0 = ne01; // src0 rows
  7818. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7819. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7820. // distribute the thread work across the inner or outer loop based on which one is larger
  7821. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7822. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7823. const int64_t ith0 = ith % nth0;
  7824. const int64_t ith1 = ith / nth0;
  7825. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7826. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7827. const int64_t ir010 = dr0*ith0;
  7828. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7829. const int64_t ir110 = dr1*ith1;
  7830. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7831. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7832. // threads with no work simply yield (not sure if it helps)
  7833. if (ir010 >= ir011 || ir110 >= ir111) {
  7834. sched_yield();
  7835. return;
  7836. }
  7837. assert(ne12 % ne02 == 0);
  7838. assert(ne13 % ne03 == 0);
  7839. // block-tiling attempt
  7840. const int64_t blck_0 = 16;
  7841. const int64_t blck_1 = 16;
  7842. // attempt to reduce false-sharing (does not seem to make a difference)
  7843. float tmp[16];
  7844. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7845. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7846. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7847. const int64_t i13 = (ir1/(ne12*ne11));
  7848. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7849. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7850. // broadcast src0 into src1
  7851. const int64_t i03 = i13/r3;
  7852. const int64_t i02 = i12/r2;
  7853. const int64_t i1 = i11;
  7854. const int64_t i2 = i12;
  7855. const int64_t i3 = i13;
  7856. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7857. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7858. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7859. // the original src1 data pointer, so we should index using the indices directly
  7860. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7861. const char * src1_col = (const char *) wdata +
  7862. (src1_cont || src1->type != vec_dot_type
  7863. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7864. : (i11*nb11 + i12*nb12 + i13*nb13));
  7865. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7866. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7867. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7868. //}
  7869. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7870. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7871. }
  7872. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7873. }
  7874. }
  7875. }
  7876. }
  7877. // ggml_compute_forward_out_prod
  7878. static void ggml_compute_forward_out_prod_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. const struct ggml_tensor * src1,
  7882. struct ggml_tensor * dst) {
  7883. // int64_t t0 = ggml_perf_time_us();
  7884. // UNUSED(t0);
  7885. GGML_TENSOR_BINARY_OP_LOCALS
  7886. const int ith = params->ith;
  7887. const int nth = params->nth;
  7888. GGML_ASSERT(ne0 == ne00);
  7889. GGML_ASSERT(ne1 == ne10);
  7890. GGML_ASSERT(ne2 == ne02);
  7891. GGML_ASSERT(ne02 == ne12);
  7892. GGML_ASSERT(ne3 == ne13);
  7893. GGML_ASSERT(ne03 == ne13);
  7894. // we don't support permuted src0 or src1
  7895. GGML_ASSERT(nb00 == sizeof(float));
  7896. // dst cannot be transposed or permuted
  7897. GGML_ASSERT(nb0 == sizeof(float));
  7898. // GGML_ASSERT(nb0 <= nb1);
  7899. // GGML_ASSERT(nb1 <= nb2);
  7900. // GGML_ASSERT(nb2 <= nb3);
  7901. // nb01 >= nb00 - src0 is not transposed
  7902. // compute by src0 rows
  7903. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  7904. // TODO: #if defined(GGML_USE_CLBLAST)
  7905. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7906. bool use_blas = ggml_is_matrix(src0) &&
  7907. ggml_is_matrix(src1) &&
  7908. ggml_is_contiguous(src0) &&
  7909. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  7910. #endif
  7911. if (params->type == GGML_TASK_INIT) {
  7912. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  7913. if (use_blas) {
  7914. return;
  7915. }
  7916. #endif
  7917. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7918. return;
  7919. }
  7920. if (params->type == GGML_TASK_FINALIZE) {
  7921. return;
  7922. }
  7923. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7924. if (use_blas) {
  7925. if (params->ith != 0) { // All threads other than the first do no work.
  7926. return;
  7927. }
  7928. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  7929. // src0: (k,n)
  7930. // src1: (k,m)
  7931. // dst: (m,n)
  7932. //
  7933. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  7934. // Also expressed as (major,minor)
  7935. // a: (m,k): so src1 transposed
  7936. // b: (k,n): so src0
  7937. // c: (m,n)
  7938. //
  7939. // However, if ggml_is_transposed(src1) is true, then
  7940. // src1->data already contains a transposed version, so sgemm mustn't
  7941. // transpose it further.
  7942. int n = src0->ne[0];
  7943. int k = src0->ne[1];
  7944. int m = src1->ne[0];
  7945. int transposeA, lda;
  7946. if (!ggml_is_transposed(src1)) {
  7947. transposeA = CblasTrans;
  7948. lda = m;
  7949. } else {
  7950. transposeA = CblasNoTrans;
  7951. lda = k;
  7952. }
  7953. float * a = (float *) ((char *) src1->data);
  7954. float * b = (float *) ((char *) src0->data);
  7955. float * c = (float *) ((char *) dst->data);
  7956. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  7957. return;
  7958. }
  7959. #endif
  7960. // dst[:,:,:,:] = 0
  7961. // for i2,i3:
  7962. // for i1:
  7963. // for i01:
  7964. // for i0:
  7965. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  7966. // parallelize by last three dimensions
  7967. // total rows in dst
  7968. const int64_t nr = ne1*ne2*ne3;
  7969. // rows per thread
  7970. const int64_t dr = (nr + nth - 1)/nth;
  7971. // row range for this thread
  7972. const int64_t ir0 = dr*ith;
  7973. const int64_t ir1 = MIN(ir0 + dr, nr);
  7974. // block-tiling attempt
  7975. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  7976. const int64_t blck_1 = 16;
  7977. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  7978. const int64_t bir1 = MIN(bir + blck_1, ir1);
  7979. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  7980. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  7981. for (int64_t ir = bir; ir < bir1; ++ir) {
  7982. // dst indices
  7983. const int64_t i3 = ir/(ne2*ne1);
  7984. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  7985. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7986. const int64_t i02 = i2;
  7987. const int64_t i03 = i3;
  7988. //const int64_t i10 = i1;
  7989. const int64_t i12 = i2;
  7990. const int64_t i13 = i3;
  7991. #if GGML_VEC_MAD_UNROLL > 2
  7992. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  7993. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  7994. const int64_t i11 = i01;
  7995. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  7996. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  7997. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7998. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  7999. }
  8000. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8001. const int64_t i11 = i01;
  8002. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8003. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8004. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8005. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8006. }
  8007. #else
  8008. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8009. const int64_t i11 = i01;
  8010. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8011. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8012. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8013. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8014. }
  8015. #endif
  8016. }
  8017. }
  8018. }
  8019. //int64_t t1 = ggml_perf_time_us();
  8020. //static int64_t acc = 0;
  8021. //acc += t1 - t0;
  8022. //if (t1 - t0 > 10) {
  8023. // printf("\n");
  8024. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8025. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8026. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8027. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8028. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8029. //}
  8030. }
  8031. static void ggml_compute_forward_out_prod_q_f32(
  8032. const struct ggml_compute_params * params,
  8033. const struct ggml_tensor * src0,
  8034. const struct ggml_tensor * src1,
  8035. struct ggml_tensor * dst) {
  8036. // int64_t t0 = ggml_perf_time_us();
  8037. // UNUSED(t0);
  8038. GGML_TENSOR_BINARY_OP_LOCALS;
  8039. const int ith = params->ith;
  8040. const int nth = params->nth;
  8041. const enum ggml_type type = src0->type;
  8042. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8043. GGML_ASSERT(ne02 == ne12);
  8044. GGML_ASSERT(ne03 == ne13);
  8045. GGML_ASSERT(ne2 == ne12);
  8046. GGML_ASSERT(ne3 == ne13);
  8047. // we don't support permuted src0 dim0
  8048. GGML_ASSERT(nb00 == ggml_type_size(type));
  8049. // dst dim0 cannot be transposed or permuted
  8050. GGML_ASSERT(nb0 == sizeof(float));
  8051. // GGML_ASSERT(nb0 <= nb1);
  8052. // GGML_ASSERT(nb1 <= nb2);
  8053. // GGML_ASSERT(nb2 <= nb3);
  8054. GGML_ASSERT(ne0 == ne00);
  8055. GGML_ASSERT(ne1 == ne10);
  8056. GGML_ASSERT(ne2 == ne02);
  8057. GGML_ASSERT(ne3 == ne03);
  8058. // nb01 >= nb00 - src0 is not transposed
  8059. // compute by src0 rows
  8060. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8061. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8062. if (params->type == GGML_TASK_INIT) {
  8063. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8064. return;
  8065. }
  8066. if (params->type == GGML_TASK_FINALIZE) {
  8067. return;
  8068. }
  8069. // parallelize by last three dimensions
  8070. // total rows in dst
  8071. const int64_t nr = ne1*ne2*ne3;
  8072. // rows per thread
  8073. const int64_t dr = (nr + nth - 1)/nth;
  8074. // row range for this thread
  8075. const int64_t ir0 = dr*ith;
  8076. const int64_t ir1 = MIN(ir0 + dr, nr);
  8077. // dst[:,:,:,:] = 0
  8078. // for i2,i3:
  8079. // for i1:
  8080. // for i01:
  8081. // for i0:
  8082. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8083. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8084. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8085. // dst indices
  8086. const int64_t i3 = ir/(ne2*ne1);
  8087. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8088. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8089. const int64_t i02 = i2;
  8090. const int64_t i03 = i3;
  8091. //const int64_t i10 = i1;
  8092. const int64_t i12 = i2;
  8093. const int64_t i13 = i3;
  8094. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8095. const int64_t i11 = i01;
  8096. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8097. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8098. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8099. dequantize_row_q(s0, wdata, ne0);
  8100. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8101. }
  8102. }
  8103. //int64_t t1 = ggml_perf_time_us();
  8104. //static int64_t acc = 0;
  8105. //acc += t1 - t0;
  8106. //if (t1 - t0 > 10) {
  8107. // printf("\n");
  8108. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8109. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8110. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8111. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8112. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8113. //}
  8114. }
  8115. static void ggml_compute_forward_out_prod(
  8116. const struct ggml_compute_params * params,
  8117. const struct ggml_tensor * src0,
  8118. const struct ggml_tensor * src1,
  8119. struct ggml_tensor * dst) {
  8120. switch (src0->type) {
  8121. case GGML_TYPE_Q4_0:
  8122. case GGML_TYPE_Q4_1:
  8123. case GGML_TYPE_Q5_0:
  8124. case GGML_TYPE_Q5_1:
  8125. case GGML_TYPE_Q8_0:
  8126. case GGML_TYPE_Q2_K:
  8127. case GGML_TYPE_Q3_K:
  8128. case GGML_TYPE_Q4_K:
  8129. case GGML_TYPE_Q5_K:
  8130. case GGML_TYPE_Q6_K:
  8131. {
  8132. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8133. } break;
  8134. case GGML_TYPE_F16:
  8135. {
  8136. GGML_ASSERT(false); // todo
  8137. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8138. } break;
  8139. case GGML_TYPE_F32:
  8140. {
  8141. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8142. } break;
  8143. default:
  8144. {
  8145. GGML_ASSERT(false);
  8146. } break;
  8147. }
  8148. }
  8149. // ggml_compute_forward_scale
  8150. static void ggml_compute_forward_scale_f32(
  8151. const struct ggml_compute_params * params,
  8152. const struct ggml_tensor * src0,
  8153. const struct ggml_tensor * src1,
  8154. struct ggml_tensor * dst) {
  8155. GGML_ASSERT(ggml_is_contiguous(src0));
  8156. GGML_ASSERT(ggml_is_contiguous(dst));
  8157. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8158. GGML_ASSERT(ggml_is_scalar(src1));
  8159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8160. return;
  8161. }
  8162. // scale factor
  8163. const float v = *(float *) src1->data;
  8164. const int ith = params->ith;
  8165. const int nth = params->nth;
  8166. const int nc = src0->ne[0];
  8167. const int nr = ggml_nrows(src0);
  8168. // rows per thread
  8169. const int dr = (nr + nth - 1)/nth;
  8170. // row range for this thread
  8171. const int ir0 = dr*ith;
  8172. const int ir1 = MIN(ir0 + dr, nr);
  8173. const size_t nb01 = src0->nb[1];
  8174. const size_t nb1 = dst->nb[1];
  8175. for (int i1 = ir0; i1 < ir1; i1++) {
  8176. if (dst->data != src0->data) {
  8177. // src0 is same shape as dst => same indices
  8178. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8179. }
  8180. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8181. }
  8182. }
  8183. static void ggml_compute_forward_scale(
  8184. const struct ggml_compute_params * params,
  8185. const struct ggml_tensor * src0,
  8186. const struct ggml_tensor * src1,
  8187. struct ggml_tensor * dst) {
  8188. switch (src0->type) {
  8189. case GGML_TYPE_F32:
  8190. {
  8191. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8192. } break;
  8193. default:
  8194. {
  8195. GGML_ASSERT(false);
  8196. } break;
  8197. }
  8198. }
  8199. // ggml_compute_forward_set
  8200. static void ggml_compute_forward_set_f32(
  8201. const struct ggml_compute_params * params,
  8202. const struct ggml_tensor * src0,
  8203. const struct ggml_tensor * src1,
  8204. struct ggml_tensor * dst) {
  8205. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8206. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8207. // view src0 and dst with these strides and data offset inbytes during set
  8208. // nb0 is implicitely element_size because src0 and dst are contiguous
  8209. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8210. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8211. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8212. size_t offset = ((int32_t *) dst->op_params)[3];
  8213. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8214. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8215. // memcpy needs to be synchronized across threads to avoid race conditions.
  8216. // => do it in INIT phase
  8217. memcpy(
  8218. ((char *) dst->data),
  8219. ((char *) src0->data),
  8220. ggml_nbytes(dst));
  8221. }
  8222. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8223. return;
  8224. }
  8225. const int ith = params->ith;
  8226. const int nth = params->nth;
  8227. const int nr = ggml_nrows(src1);
  8228. const int nc = src1->ne[0];
  8229. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8230. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8231. // src0 and dst as viewed during set
  8232. const size_t nb0 = ggml_element_size(src0);
  8233. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8234. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8235. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8236. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8237. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8238. GGML_ASSERT(nb10 == sizeof(float));
  8239. // rows per thread
  8240. const int dr = (nr + nth - 1)/nth;
  8241. // row range for this thread
  8242. const int ir0 = dr*ith;
  8243. const int ir1 = MIN(ir0 + dr, nr);
  8244. for (int ir = ir0; ir < ir1; ++ir) {
  8245. // src0 and dst are viewed with shape of src1 and offset
  8246. // => same indices
  8247. const int i3 = ir/(ne12*ne11);
  8248. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8249. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8250. ggml_vec_cpy_f32(nc,
  8251. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8252. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8253. }
  8254. }
  8255. static void ggml_compute_forward_set(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. const struct ggml_tensor * src1,
  8259. struct ggml_tensor * dst) {
  8260. switch (src0->type) {
  8261. case GGML_TYPE_F32:
  8262. {
  8263. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8264. } break;
  8265. case GGML_TYPE_F16:
  8266. case GGML_TYPE_Q4_0:
  8267. case GGML_TYPE_Q4_1:
  8268. case GGML_TYPE_Q5_0:
  8269. case GGML_TYPE_Q5_1:
  8270. case GGML_TYPE_Q8_0:
  8271. case GGML_TYPE_Q8_1:
  8272. case GGML_TYPE_Q2_K:
  8273. case GGML_TYPE_Q3_K:
  8274. case GGML_TYPE_Q4_K:
  8275. case GGML_TYPE_Q5_K:
  8276. case GGML_TYPE_Q6_K:
  8277. default:
  8278. {
  8279. GGML_ASSERT(false);
  8280. } break;
  8281. }
  8282. }
  8283. // ggml_compute_forward_cpy
  8284. static void ggml_compute_forward_cpy(
  8285. const struct ggml_compute_params * params,
  8286. const struct ggml_tensor * src0,
  8287. struct ggml_tensor * dst) {
  8288. ggml_compute_forward_dup(params, src0, dst);
  8289. }
  8290. // ggml_compute_forward_cont
  8291. static void ggml_compute_forward_cont(
  8292. const struct ggml_compute_params * params,
  8293. const struct ggml_tensor * src0,
  8294. struct ggml_tensor * dst) {
  8295. ggml_compute_forward_dup(params, src0, dst);
  8296. }
  8297. // ggml_compute_forward_reshape
  8298. static void ggml_compute_forward_reshape(
  8299. const struct ggml_compute_params * params,
  8300. const struct ggml_tensor * src0,
  8301. struct ggml_tensor * dst) {
  8302. // NOP
  8303. UNUSED(params);
  8304. UNUSED(src0);
  8305. UNUSED(dst);
  8306. }
  8307. // ggml_compute_forward_view
  8308. static void ggml_compute_forward_view(
  8309. const struct ggml_compute_params * params,
  8310. const struct ggml_tensor * src0) {
  8311. // NOP
  8312. UNUSED(params);
  8313. UNUSED(src0);
  8314. }
  8315. // ggml_compute_forward_permute
  8316. static void ggml_compute_forward_permute(
  8317. const struct ggml_compute_params * params,
  8318. const struct ggml_tensor * src0) {
  8319. // NOP
  8320. UNUSED(params);
  8321. UNUSED(src0);
  8322. }
  8323. // ggml_compute_forward_transpose
  8324. static void ggml_compute_forward_transpose(
  8325. const struct ggml_compute_params * params,
  8326. const struct ggml_tensor * src0) {
  8327. // NOP
  8328. UNUSED(params);
  8329. UNUSED(src0);
  8330. }
  8331. // ggml_compute_forward_get_rows
  8332. static void ggml_compute_forward_get_rows_q(
  8333. const struct ggml_compute_params * params,
  8334. const struct ggml_tensor * src0,
  8335. const struct ggml_tensor * src1,
  8336. struct ggml_tensor * dst) {
  8337. assert(params->ith == 0);
  8338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8339. return;
  8340. }
  8341. const int nc = src0->ne[0];
  8342. const int nr = ggml_nelements(src1);
  8343. const enum ggml_type type = src0->type;
  8344. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8345. assert( dst->ne[0] == nc);
  8346. assert( dst->ne[1] == nr);
  8347. assert(src0->nb[0] == ggml_type_size(type));
  8348. for (int i = 0; i < nr; ++i) {
  8349. const int r = ((int32_t *) src1->data)[i];
  8350. dequantize_row_q(
  8351. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8352. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8353. }
  8354. }
  8355. static void ggml_compute_forward_get_rows_f16(
  8356. const struct ggml_compute_params * params,
  8357. const struct ggml_tensor * src0,
  8358. const struct ggml_tensor * src1,
  8359. struct ggml_tensor * dst) {
  8360. assert(params->ith == 0);
  8361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8362. return;
  8363. }
  8364. const int nc = src0->ne[0];
  8365. const int nr = ggml_nelements(src1);
  8366. assert( dst->ne[0] == nc);
  8367. assert( dst->ne[1] == nr);
  8368. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8369. for (int i = 0; i < nr; ++i) {
  8370. const int r = ((int32_t *) src1->data)[i];
  8371. for (int j = 0; j < nc; ++j) {
  8372. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8373. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8374. }
  8375. }
  8376. }
  8377. static void ggml_compute_forward_get_rows_f32(
  8378. const struct ggml_compute_params * params,
  8379. const struct ggml_tensor * src0,
  8380. const struct ggml_tensor * src1,
  8381. struct ggml_tensor * dst) {
  8382. assert(params->ith == 0);
  8383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8384. return;
  8385. }
  8386. const int nc = src0->ne[0];
  8387. const int nr = ggml_nelements(src1);
  8388. assert( dst->ne[0] == nc);
  8389. assert( dst->ne[1] == nr);
  8390. assert(src0->nb[0] == sizeof(float));
  8391. for (int i = 0; i < nr; ++i) {
  8392. const int r = ((int32_t *) src1->data)[i];
  8393. ggml_vec_cpy_f32(nc,
  8394. (float *) ((char *) dst->data + i*dst->nb[1]),
  8395. (float *) ((char *) src0->data + r*src0->nb[1]));
  8396. }
  8397. }
  8398. static void ggml_compute_forward_get_rows(
  8399. const struct ggml_compute_params * params,
  8400. const struct ggml_tensor * src0,
  8401. const struct ggml_tensor * src1,
  8402. struct ggml_tensor * dst) {
  8403. switch (src0->type) {
  8404. case GGML_TYPE_Q4_0:
  8405. case GGML_TYPE_Q4_1:
  8406. case GGML_TYPE_Q5_0:
  8407. case GGML_TYPE_Q5_1:
  8408. case GGML_TYPE_Q8_0:
  8409. case GGML_TYPE_Q8_1:
  8410. case GGML_TYPE_Q2_K:
  8411. case GGML_TYPE_Q3_K:
  8412. case GGML_TYPE_Q4_K:
  8413. case GGML_TYPE_Q5_K:
  8414. case GGML_TYPE_Q6_K:
  8415. {
  8416. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8417. } break;
  8418. case GGML_TYPE_F16:
  8419. {
  8420. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8421. } break;
  8422. case GGML_TYPE_F32:
  8423. {
  8424. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8425. } break;
  8426. default:
  8427. {
  8428. GGML_ASSERT(false);
  8429. } break;
  8430. }
  8431. //static bool first = true;
  8432. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8433. //if (first) {
  8434. // first = false;
  8435. //} else {
  8436. // for (int k = 0; k < dst->ne[1]; ++k) {
  8437. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8438. // for (int i = 0; i < 16; ++i) {
  8439. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8440. // }
  8441. // printf("\n");
  8442. // }
  8443. // printf("\n");
  8444. // }
  8445. // printf("\n");
  8446. // exit(0);
  8447. //}
  8448. }
  8449. // ggml_compute_forward_get_rows_back
  8450. static void ggml_compute_forward_get_rows_back_f32_f16(
  8451. const struct ggml_compute_params * params,
  8452. const struct ggml_tensor * src0,
  8453. const struct ggml_tensor * src1,
  8454. struct ggml_tensor * dst) {
  8455. GGML_ASSERT(params->ith == 0);
  8456. GGML_ASSERT(ggml_is_contiguous(dst));
  8457. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8458. if (params->type == GGML_TASK_INIT) {
  8459. memset(dst->data, 0, ggml_nbytes(dst));
  8460. }
  8461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8462. return;
  8463. }
  8464. const int nc = src0->ne[0];
  8465. const int nr = ggml_nelements(src1);
  8466. GGML_ASSERT( dst->ne[0] == nc);
  8467. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8468. for (int i = 0; i < nr; ++i) {
  8469. const int r = ((int32_t *) src1->data)[i];
  8470. for (int j = 0; j < nc; ++j) {
  8471. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8472. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8473. }
  8474. }
  8475. }
  8476. static void ggml_compute_forward_get_rows_back_f32(
  8477. const struct ggml_compute_params * params,
  8478. const struct ggml_tensor * src0,
  8479. const struct ggml_tensor * src1,
  8480. struct ggml_tensor * dst) {
  8481. GGML_ASSERT(params->ith == 0);
  8482. GGML_ASSERT(ggml_is_contiguous(dst));
  8483. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8484. if (params->type == GGML_TASK_INIT) {
  8485. memset(dst->data, 0, ggml_nbytes(dst));
  8486. }
  8487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8488. return;
  8489. }
  8490. const int nc = src0->ne[0];
  8491. const int nr = ggml_nelements(src1);
  8492. GGML_ASSERT( dst->ne[0] == nc);
  8493. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8494. for (int i = 0; i < nr; ++i) {
  8495. const int r = ((int32_t *) src1->data)[i];
  8496. ggml_vec_add_f32(nc,
  8497. (float *) ((char *) dst->data + r*dst->nb[1]),
  8498. (float *) ((char *) dst->data + r*dst->nb[1]),
  8499. (float *) ((char *) src0->data + i*src0->nb[1]));
  8500. }
  8501. }
  8502. static void ggml_compute_forward_get_rows_back(
  8503. const struct ggml_compute_params * params,
  8504. const struct ggml_tensor * src0,
  8505. const struct ggml_tensor * src1,
  8506. struct ggml_tensor * dst) {
  8507. switch (src0->type) {
  8508. case GGML_TYPE_F16:
  8509. {
  8510. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8511. } break;
  8512. case GGML_TYPE_F32:
  8513. {
  8514. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8515. } break;
  8516. default:
  8517. {
  8518. GGML_ASSERT(false);
  8519. } break;
  8520. }
  8521. //static bool first = true;
  8522. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8523. //if (first) {
  8524. // first = false;
  8525. //} else {
  8526. // for (int k = 0; k < dst->ne[1]; ++k) {
  8527. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8528. // for (int i = 0; i < 16; ++i) {
  8529. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8530. // }
  8531. // printf("\n");
  8532. // }
  8533. // printf("\n");
  8534. // }
  8535. // printf("\n");
  8536. // exit(0);
  8537. //}
  8538. }
  8539. // ggml_compute_forward_diag
  8540. static void ggml_compute_forward_diag_f32(
  8541. const struct ggml_compute_params * params,
  8542. const struct ggml_tensor * src0,
  8543. struct ggml_tensor * dst) {
  8544. GGML_ASSERT(params->ith == 0);
  8545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8546. return;
  8547. }
  8548. // TODO: handle transposed/permuted matrices
  8549. GGML_TENSOR_UNARY_OP_LOCALS
  8550. GGML_ASSERT(ne00 == ne0);
  8551. GGML_ASSERT(ne00 == ne1);
  8552. GGML_ASSERT(ne01 == 1);
  8553. GGML_ASSERT(ne02 == ne2);
  8554. GGML_ASSERT(ne03 == ne3);
  8555. GGML_ASSERT(nb00 == sizeof(float));
  8556. GGML_ASSERT(nb0 == sizeof(float));
  8557. for (int i3 = 0; i3 < ne3; i3++) {
  8558. for (int i2 = 0; i2 < ne2; i2++) {
  8559. for (int i1 = 0; i1 < ne1; i1++) {
  8560. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8561. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8562. for (int i0 = 0; i0 < i1; i0++) {
  8563. d[i0] = 0;
  8564. }
  8565. d[i1] = s[i1];
  8566. for (int i0 = i1+1; i0 < ne0; i0++) {
  8567. d[i0] = 0;
  8568. }
  8569. }
  8570. }
  8571. }
  8572. }
  8573. static void ggml_compute_forward_diag(
  8574. const struct ggml_compute_params * params,
  8575. const struct ggml_tensor * src0,
  8576. struct ggml_tensor * dst) {
  8577. switch (src0->type) {
  8578. case GGML_TYPE_F32:
  8579. {
  8580. ggml_compute_forward_diag_f32(params, src0, dst);
  8581. } break;
  8582. default:
  8583. {
  8584. GGML_ASSERT(false);
  8585. } break;
  8586. }
  8587. }
  8588. // ggml_compute_forward_diag_mask_inf
  8589. static void ggml_compute_forward_diag_mask_f32(
  8590. const struct ggml_compute_params * params,
  8591. const struct ggml_tensor * src0,
  8592. struct ggml_tensor * dst,
  8593. const float value) {
  8594. const int ith = params->ith;
  8595. const int nth = params->nth;
  8596. const int n_past = ((int32_t *) dst->op_params)[0];
  8597. const bool inplace = src0->data == dst->data;
  8598. GGML_ASSERT(n_past >= 0);
  8599. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8600. // memcpy needs to be synchronized across threads to avoid race conditions.
  8601. // => do it in INIT phase
  8602. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8603. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8604. memcpy(
  8605. ((char *) dst->data),
  8606. ((char *) src0->data),
  8607. ggml_nbytes(dst));
  8608. }
  8609. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8610. return;
  8611. }
  8612. // TODO: handle transposed/permuted matrices
  8613. const int n = ggml_nrows(src0);
  8614. const int nc = src0->ne[0];
  8615. const int nr = src0->ne[1];
  8616. const int nz = n/nr;
  8617. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8618. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8619. for (int k = 0; k < nz; k++) {
  8620. for (int j = ith; j < nr; j += nth) {
  8621. for (int i = n_past; i < nc; i++) {
  8622. if (i > n_past + j) {
  8623. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8624. }
  8625. }
  8626. }
  8627. }
  8628. }
  8629. static void ggml_compute_forward_diag_mask_inf(
  8630. const struct ggml_compute_params * params,
  8631. const struct ggml_tensor * src0,
  8632. struct ggml_tensor * dst) {
  8633. switch (src0->type) {
  8634. case GGML_TYPE_F32:
  8635. {
  8636. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8637. } break;
  8638. default:
  8639. {
  8640. GGML_ASSERT(false);
  8641. } break;
  8642. }
  8643. }
  8644. static void ggml_compute_forward_diag_mask_zero(
  8645. const struct ggml_compute_params * params,
  8646. const struct ggml_tensor * src0,
  8647. struct ggml_tensor * dst) {
  8648. switch (src0->type) {
  8649. case GGML_TYPE_F32:
  8650. {
  8651. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8652. } break;
  8653. default:
  8654. {
  8655. GGML_ASSERT(false);
  8656. } break;
  8657. }
  8658. }
  8659. // ggml_compute_forward_soft_max
  8660. static void ggml_compute_forward_soft_max_f32(
  8661. const struct ggml_compute_params * params,
  8662. const struct ggml_tensor * src0,
  8663. struct ggml_tensor * dst) {
  8664. GGML_ASSERT(ggml_is_contiguous(src0));
  8665. GGML_ASSERT(ggml_is_contiguous(dst));
  8666. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8668. return;
  8669. }
  8670. // TODO: handle transposed/permuted matrices
  8671. const int ith = params->ith;
  8672. const int nth = params->nth;
  8673. const int nc = src0->ne[0];
  8674. const int nr = ggml_nrows(src0);
  8675. // rows per thread
  8676. const int dr = (nr + nth - 1)/nth;
  8677. // row range for this thread
  8678. const int ir0 = dr*ith;
  8679. const int ir1 = MIN(ir0 + dr, nr);
  8680. for (int i1 = ir0; i1 < ir1; i1++) {
  8681. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8682. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8683. #ifndef NDEBUG
  8684. for (int i = 0; i < nc; ++i) {
  8685. //printf("p[%d] = %f\n", i, p[i]);
  8686. assert(!isnan(sp[i]));
  8687. }
  8688. #endif
  8689. float max = -INFINITY;
  8690. ggml_vec_max_f32(nc, &max, sp);
  8691. ggml_float sum = 0.0;
  8692. uint16_t scvt;
  8693. for (int i = 0; i < nc; i++) {
  8694. if (sp[i] == -INFINITY) {
  8695. dp[i] = 0.0f;
  8696. } else {
  8697. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8698. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8699. memcpy(&scvt, &s, sizeof(scvt));
  8700. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8701. sum += (ggml_float)val;
  8702. dp[i] = val;
  8703. }
  8704. }
  8705. assert(sum > 0.0);
  8706. sum = 1.0/sum;
  8707. ggml_vec_scale_f32(nc, dp, sum);
  8708. #ifndef NDEBUG
  8709. for (int i = 0; i < nc; ++i) {
  8710. assert(!isnan(dp[i]));
  8711. assert(!isinf(dp[i]));
  8712. }
  8713. #endif
  8714. }
  8715. }
  8716. static void ggml_compute_forward_soft_max(
  8717. const struct ggml_compute_params * params,
  8718. const struct ggml_tensor * src0,
  8719. struct ggml_tensor * dst) {
  8720. switch (src0->type) {
  8721. case GGML_TYPE_F32:
  8722. {
  8723. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8724. } break;
  8725. default:
  8726. {
  8727. GGML_ASSERT(false);
  8728. } break;
  8729. }
  8730. }
  8731. // ggml_compute_forward_soft_max_back
  8732. static void ggml_compute_forward_soft_max_back_f32(
  8733. const struct ggml_compute_params * params,
  8734. const struct ggml_tensor * src0,
  8735. const struct ggml_tensor * src1,
  8736. struct ggml_tensor * dst) {
  8737. GGML_ASSERT(ggml_is_contiguous(src0));
  8738. GGML_ASSERT(ggml_is_contiguous(src1));
  8739. GGML_ASSERT(ggml_is_contiguous(dst));
  8740. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8741. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8743. return;
  8744. }
  8745. // TODO: handle transposed/permuted matrices
  8746. const int ith = params->ith;
  8747. const int nth = params->nth;
  8748. const int nc = src0->ne[0];
  8749. const int nr = ggml_nrows(src0);
  8750. // rows per thread
  8751. const int dr = (nr + nth - 1)/nth;
  8752. // row range for this thread
  8753. const int ir0 = dr*ith;
  8754. const int ir1 = MIN(ir0 + dr, nr);
  8755. for (int i1 = ir0; i1 < ir1; i1++) {
  8756. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8757. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8758. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8759. #ifndef NDEBUG
  8760. for (int i = 0; i < nc; ++i) {
  8761. //printf("p[%d] = %f\n", i, p[i]);
  8762. assert(!isnan(dy[i]));
  8763. assert(!isnan(y[i]));
  8764. }
  8765. #endif
  8766. // Jii = yi - yi*yi
  8767. // Jij = -yi*yj
  8768. // J = diag(y)-y.T*y
  8769. // dx = J * dy
  8770. // dxk = sum_i(Jki * dyi)
  8771. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8772. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8773. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8774. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8775. // dxk = -yk * dot(y, dy) + yk*dyk
  8776. // dxk = yk * (- dot(y, dy) + dyk)
  8777. // dxk = yk * (dyk - dot(y, dy))
  8778. //
  8779. // post-order:
  8780. // dot_y_dy := dot(y, dy)
  8781. // dx := dy
  8782. // dx := dx - dot_y_dy
  8783. // dx := dx * y
  8784. // linear runtime, no additional memory
  8785. float dot_y_dy = 0;
  8786. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8787. ggml_vec_cpy_f32 (nc, dx, dy);
  8788. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8789. ggml_vec_mul_f32 (nc, dx, dx, y);
  8790. #ifndef NDEBUG
  8791. for (int i = 0; i < nc; ++i) {
  8792. assert(!isnan(dx[i]));
  8793. assert(!isinf(dx[i]));
  8794. }
  8795. #endif
  8796. }
  8797. }
  8798. static void ggml_compute_forward_soft_max_back(
  8799. const struct ggml_compute_params * params,
  8800. const struct ggml_tensor * src0,
  8801. const struct ggml_tensor * src1,
  8802. struct ggml_tensor * dst) {
  8803. switch (src0->type) {
  8804. case GGML_TYPE_F32:
  8805. {
  8806. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8807. } break;
  8808. default:
  8809. {
  8810. GGML_ASSERT(false);
  8811. } break;
  8812. }
  8813. }
  8814. // ggml_compute_forward_alibi
  8815. static void ggml_compute_forward_alibi_f32(
  8816. const struct ggml_compute_params * params,
  8817. const struct ggml_tensor * src0,
  8818. struct ggml_tensor * dst) {
  8819. assert(params->ith == 0);
  8820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8821. return;
  8822. }
  8823. //const int n_past = ((int32_t *) dst->op_params)[0];
  8824. const int n_head = ((int32_t *) dst->op_params)[1];
  8825. float max_bias;
  8826. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8827. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8828. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8829. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8830. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8831. const int64_t n = ggml_nrows(src0);
  8832. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8833. const size_t nb0 = src0->nb[0];
  8834. const size_t nb1 = src0->nb[1];
  8835. const size_t nb2 = src0->nb[2];
  8836. //const int nb3 = src0->nb[3];
  8837. GGML_ASSERT(nb0 == sizeof(float));
  8838. GGML_ASSERT(n_head == ne2);
  8839. // add alibi to src0 (KQ_scaled)
  8840. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8841. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8842. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8843. for (int64_t i = 0; i < ne0; i++) {
  8844. for (int64_t j = 0; j < ne1; j++) {
  8845. for (int64_t k = 0; k < ne2_ne3; k++) {
  8846. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8847. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8848. // TODO: k*nb2 or k*nb3
  8849. float m_k;
  8850. if (k < n_heads_log2_floor) {
  8851. m_k = powf(m0, k + 1);
  8852. } else {
  8853. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8854. }
  8855. pdst[0] = i * m_k + src[0];
  8856. }
  8857. }
  8858. }
  8859. }
  8860. static void ggml_compute_forward_alibi_f16(
  8861. const struct ggml_compute_params * params,
  8862. const struct ggml_tensor * src0,
  8863. struct ggml_tensor * dst) {
  8864. assert(params->ith == 0);
  8865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8866. return;
  8867. }
  8868. //const int n_past = ((int32_t *) dst->op_params)[0];
  8869. const int n_head = ((int32_t *) dst->op_params)[1];
  8870. float max_bias;
  8871. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8872. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8873. const int ne1 = src0->ne[1]; // seq_len_without_past
  8874. const int ne2 = src0->ne[2]; // n_head -> this is k
  8875. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8876. const int n = ggml_nrows(src0);
  8877. const int ne2_ne3 = n/ne1; // ne2*ne3
  8878. const int nb0 = src0->nb[0];
  8879. const int nb1 = src0->nb[1];
  8880. const int nb2 = src0->nb[2];
  8881. //const int nb3 = src0->nb[3];
  8882. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8883. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8884. GGML_ASSERT(n_head == ne2);
  8885. // add alibi to src0 (KQ_scaled)
  8886. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8887. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8888. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8889. for (int i = 0; i < ne0; i++) {
  8890. for (int j = 0; j < ne1; j++) {
  8891. for (int k = 0; k < ne2_ne3; k++) {
  8892. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8893. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8894. // TODO: k*nb2 or k*nb3
  8895. float m_k;
  8896. if (k < n_heads_log2_floor) {
  8897. m_k = powf(m0, k + 1);
  8898. } else {
  8899. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8900. }
  8901. // we return F32
  8902. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8903. }
  8904. }
  8905. }
  8906. }
  8907. static void ggml_compute_forward_alibi(
  8908. const struct ggml_compute_params * params,
  8909. const struct ggml_tensor * src0,
  8910. struct ggml_tensor * dst) {
  8911. switch (src0->type) {
  8912. case GGML_TYPE_F16:
  8913. {
  8914. ggml_compute_forward_alibi_f16(params, src0, dst);
  8915. } break;
  8916. case GGML_TYPE_F32:
  8917. {
  8918. ggml_compute_forward_alibi_f32(params, src0, dst);
  8919. } break;
  8920. case GGML_TYPE_Q4_0:
  8921. case GGML_TYPE_Q4_1:
  8922. case GGML_TYPE_Q5_0:
  8923. case GGML_TYPE_Q5_1:
  8924. case GGML_TYPE_Q8_0:
  8925. case GGML_TYPE_Q8_1:
  8926. case GGML_TYPE_Q2_K:
  8927. case GGML_TYPE_Q3_K:
  8928. case GGML_TYPE_Q4_K:
  8929. case GGML_TYPE_Q5_K:
  8930. case GGML_TYPE_Q6_K:
  8931. case GGML_TYPE_Q8_K:
  8932. case GGML_TYPE_I8:
  8933. case GGML_TYPE_I16:
  8934. case GGML_TYPE_I32:
  8935. case GGML_TYPE_COUNT:
  8936. {
  8937. GGML_ASSERT(false);
  8938. } break;
  8939. }
  8940. }
  8941. // ggml_compute_forward_clamp
  8942. static void ggml_compute_forward_clamp_f32(
  8943. const struct ggml_compute_params * params,
  8944. const struct ggml_tensor * src0,
  8945. struct ggml_tensor * dst) {
  8946. assert(params->ith == 0);
  8947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8948. return;
  8949. }
  8950. float min;
  8951. float max;
  8952. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  8953. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  8954. const int ith = params->ith;
  8955. const int nth = params->nth;
  8956. const int n = ggml_nrows(src0);
  8957. const int nc = src0->ne[0];
  8958. const size_t nb00 = src0->nb[0];
  8959. const size_t nb01 = src0->nb[1];
  8960. const size_t nb0 = dst->nb[0];
  8961. const size_t nb1 = dst->nb[1];
  8962. GGML_ASSERT( nb0 == sizeof(float));
  8963. GGML_ASSERT(nb00 == sizeof(float));
  8964. for (int j = ith; j < n; j += nth) {
  8965. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8966. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8967. for (int i = 0; i < nc; i++) {
  8968. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8969. }
  8970. }
  8971. }
  8972. static void ggml_compute_forward_clamp(
  8973. const struct ggml_compute_params * params,
  8974. const struct ggml_tensor * src0,
  8975. struct ggml_tensor * dst) {
  8976. switch (src0->type) {
  8977. case GGML_TYPE_F32:
  8978. {
  8979. ggml_compute_forward_clamp_f32(params, src0, dst);
  8980. } break;
  8981. case GGML_TYPE_F16:
  8982. case GGML_TYPE_Q4_0:
  8983. case GGML_TYPE_Q4_1:
  8984. case GGML_TYPE_Q5_0:
  8985. case GGML_TYPE_Q5_1:
  8986. case GGML_TYPE_Q8_0:
  8987. case GGML_TYPE_Q8_1:
  8988. case GGML_TYPE_Q2_K:
  8989. case GGML_TYPE_Q3_K:
  8990. case GGML_TYPE_Q4_K:
  8991. case GGML_TYPE_Q5_K:
  8992. case GGML_TYPE_Q6_K:
  8993. case GGML_TYPE_Q8_K:
  8994. case GGML_TYPE_I8:
  8995. case GGML_TYPE_I16:
  8996. case GGML_TYPE_I32:
  8997. case GGML_TYPE_COUNT:
  8998. {
  8999. GGML_ASSERT(false);
  9000. } break;
  9001. }
  9002. }
  9003. // ggml_compute_forward_rope
  9004. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9005. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9006. return 1 - MIN(1, MAX(0, y));
  9007. }
  9008. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9009. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9010. static void rope_yarn(
  9011. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9012. float * cos_theta, float * sin_theta
  9013. ) {
  9014. // Get n-d rotational scaling corrected for extrapolation
  9015. float theta_interp = freq_scale * theta_extrap;
  9016. float theta = theta_interp;
  9017. if (ext_factor != 0.0f) {
  9018. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9019. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9020. // Get n-d magnitude scaling corrected for interpolation
  9021. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9022. }
  9023. *cos_theta = cosf(theta) * mscale;
  9024. *sin_theta = sinf(theta) * mscale;
  9025. }
  9026. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9027. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9028. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9029. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9030. }
  9031. void ggml_rope_yarn_corr_dims(
  9032. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9033. ) {
  9034. // start and end correction dims
  9035. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9036. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9037. }
  9038. static void ggml_compute_forward_rope_f32(
  9039. const struct ggml_compute_params * params,
  9040. const struct ggml_tensor * src0,
  9041. const struct ggml_tensor * src1,
  9042. struct ggml_tensor * dst,
  9043. const bool forward) {
  9044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9045. return;
  9046. }
  9047. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9048. // these two only relevant for xPos RoPE:
  9049. float xpos_base;
  9050. bool xpos_down;
  9051. //const int n_past = ((int32_t *) dst->op_params)[0];
  9052. const int n_dims = ((int32_t *) dst->op_params)[1];
  9053. const int mode = ((int32_t *) dst->op_params)[2];
  9054. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9055. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9056. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9057. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9058. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9059. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9060. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9061. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9062. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9063. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9064. GGML_TENSOR_UNARY_OP_LOCALS
  9065. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9066. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9067. GGML_ASSERT(nb00 == sizeof(float));
  9068. const int ith = params->ith;
  9069. const int nth = params->nth;
  9070. const int nr = ggml_nrows(dst);
  9071. GGML_ASSERT(n_dims <= ne0);
  9072. GGML_ASSERT(n_dims % 2 == 0);
  9073. // rows per thread
  9074. const int dr = (nr + nth - 1)/nth;
  9075. // row range for this thread
  9076. const int ir0 = dr*ith;
  9077. const int ir1 = MIN(ir0 + dr, nr);
  9078. // row index used to determine which thread to use
  9079. int ir = 0;
  9080. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9081. const float inv_ndims = -1.f/n_dims;
  9082. float corr_dims[2];
  9083. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9084. const bool is_neox = mode & 2;
  9085. const bool is_glm = mode & 4;
  9086. // backward process uses inverse rotation by cos and sin.
  9087. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9088. // this essentially just switches the sign of sin.
  9089. const float sin_sign = forward ? 1.0f : -1.0f;
  9090. const int32_t * pos = (const int32_t *) src1->data;
  9091. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9092. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9093. const int64_t p = pos[i2];
  9094. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9095. if (ir++ < ir0) continue;
  9096. if (ir > ir1) break;
  9097. float theta_base = (float)p;
  9098. if (is_glm) {
  9099. theta_base = MIN(p, n_ctx - 2);
  9100. float block_theta = MAX(p - (n_ctx - 2), 0);
  9101. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9102. const float cos_theta = cosf(theta_base);
  9103. const float sin_theta = sinf(theta_base) * sin_sign;
  9104. const float cos_block_theta = cosf(block_theta);
  9105. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9106. theta_base *= theta_scale;
  9107. block_theta *= theta_scale;
  9108. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9109. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9110. const float x0 = src[0];
  9111. const float x1 = src[n_dims/2];
  9112. const float x2 = src[n_dims];
  9113. const float x3 = src[n_dims/2*3];
  9114. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9115. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9116. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9117. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9118. }
  9119. } else if (!is_neox) {
  9120. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9121. float cos_theta, sin_theta;
  9122. rope_yarn(
  9123. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9124. );
  9125. sin_theta *= sin_sign;
  9126. // zeta scaling for xPos only:
  9127. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9128. if (xpos_down) zeta = 1.0f / zeta;
  9129. theta_base *= theta_scale;
  9130. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9131. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9132. const float x0 = src[0];
  9133. const float x1 = src[1];
  9134. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9135. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9136. }
  9137. } else {
  9138. // TODO: this might be wrong for ne0 != n_dims - need double check
  9139. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9140. theta_base *= freq_scale;
  9141. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9142. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9143. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9144. float cur_rot = inv_ndims * ic - ib;
  9145. float cos_theta, sin_theta;
  9146. rope_yarn(
  9147. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9148. &cos_theta, &sin_theta
  9149. );
  9150. sin_theta *= sin_sign;
  9151. theta_base *= theta_scale;
  9152. const int64_t i0 = ib*n_dims + ic/2;
  9153. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9154. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9155. const float x0 = src[0];
  9156. const float x1 = src[n_dims/2];
  9157. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9158. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9159. }
  9160. }
  9161. }
  9162. }
  9163. }
  9164. }
  9165. }
  9166. static void ggml_compute_forward_rope_f16(
  9167. const struct ggml_compute_params * params,
  9168. const struct ggml_tensor * src0,
  9169. const struct ggml_tensor * src1,
  9170. struct ggml_tensor * dst,
  9171. const bool forward) {
  9172. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9173. return;
  9174. }
  9175. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9176. //const int n_past = ((int32_t *) dst->op_params)[0];
  9177. const int n_dims = ((int32_t *) dst->op_params)[1];
  9178. const int mode = ((int32_t *) dst->op_params)[2];
  9179. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9180. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9181. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9182. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9183. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9184. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9185. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9186. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9187. GGML_TENSOR_UNARY_OP_LOCALS
  9188. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9189. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9190. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9191. const int ith = params->ith;
  9192. const int nth = params->nth;
  9193. const int nr = ggml_nrows(dst);
  9194. GGML_ASSERT(n_dims <= ne0);
  9195. GGML_ASSERT(n_dims % 2 == 0);
  9196. // rows per thread
  9197. const int dr = (nr + nth - 1)/nth;
  9198. // row range for this thread
  9199. const int ir0 = dr*ith;
  9200. const int ir1 = MIN(ir0 + dr, nr);
  9201. // row index used to determine which thread to use
  9202. int ir = 0;
  9203. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9204. const float inv_ndims = -1.f/n_dims;
  9205. float corr_dims[2];
  9206. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9207. const bool is_neox = mode & 2;
  9208. const bool is_glm = mode & 4;
  9209. // backward process uses inverse rotation by cos and sin.
  9210. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9211. // this essentially just switches the sign of sin.
  9212. const float sin_sign = forward ? 1.0f : -1.0f;
  9213. const int32_t * pos = (const int32_t *) src1->data;
  9214. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9215. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9216. const int64_t p = pos[i2];
  9217. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9218. if (ir++ < ir0) continue;
  9219. if (ir > ir1) break;
  9220. float theta_base = (float)p;
  9221. if (is_glm) {
  9222. theta_base = MIN(p, n_ctx - 2);
  9223. float block_theta = MAX(p - (n_ctx - 2), 0);
  9224. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9225. const float cos_theta = cosf(theta_base);
  9226. const float sin_theta = sinf(theta_base) * sin_sign;
  9227. const float cos_block_theta = cosf(block_theta);
  9228. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9229. theta_base *= theta_scale;
  9230. block_theta *= theta_scale;
  9231. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9232. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9233. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9234. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9235. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9236. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9237. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9238. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9239. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9240. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9241. }
  9242. } else if (!is_neox) {
  9243. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9244. float cos_theta, sin_theta;
  9245. rope_yarn(
  9246. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9247. );
  9248. sin_theta *= sin_sign;
  9249. theta_base *= theta_scale;
  9250. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9251. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9252. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9253. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9254. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9255. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9256. }
  9257. } else {
  9258. // TODO: this might be wrong for ne0 != n_dims - need double check
  9259. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9260. theta_base *= freq_scale;
  9261. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9262. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9263. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9264. float cur_rot = inv_ndims * ic - ib;
  9265. float cos_theta, sin_theta;
  9266. rope_yarn(
  9267. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9268. &cos_theta, &sin_theta
  9269. );
  9270. sin_theta *= sin_sign;
  9271. theta_base *= theta_scale;
  9272. const int64_t i0 = ib*n_dims + ic/2;
  9273. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9274. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9275. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9276. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9277. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9278. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9279. }
  9280. }
  9281. }
  9282. }
  9283. }
  9284. }
  9285. }
  9286. static void ggml_compute_forward_rope(
  9287. const struct ggml_compute_params * params,
  9288. const struct ggml_tensor * src0,
  9289. const struct ggml_tensor * src1,
  9290. struct ggml_tensor * dst) {
  9291. switch (src0->type) {
  9292. case GGML_TYPE_F16:
  9293. {
  9294. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9295. } break;
  9296. case GGML_TYPE_F32:
  9297. {
  9298. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9299. } break;
  9300. default:
  9301. {
  9302. GGML_ASSERT(false);
  9303. } break;
  9304. }
  9305. }
  9306. // ggml_compute_forward_rope_back
  9307. static void ggml_compute_forward_rope_back(
  9308. const struct ggml_compute_params * params,
  9309. const struct ggml_tensor * src0,
  9310. const struct ggml_tensor * src1,
  9311. struct ggml_tensor * dst) {
  9312. switch (src0->type) {
  9313. case GGML_TYPE_F16:
  9314. {
  9315. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9316. } break;
  9317. case GGML_TYPE_F32:
  9318. {
  9319. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9320. } break;
  9321. default:
  9322. {
  9323. GGML_ASSERT(false);
  9324. } break;
  9325. }
  9326. }
  9327. // ggml_compute_forward_conv_transpose_1d
  9328. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9329. const struct ggml_compute_params * params,
  9330. const struct ggml_tensor * src0,
  9331. const struct ggml_tensor * src1,
  9332. struct ggml_tensor * dst) {
  9333. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9334. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9335. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9336. int64_t t0 = ggml_perf_time_us();
  9337. UNUSED(t0);
  9338. GGML_TENSOR_BINARY_OP_LOCALS
  9339. const int ith = params->ith;
  9340. const int nth = params->nth;
  9341. const int nk = ne00*ne01*ne02;
  9342. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9343. GGML_ASSERT(nb10 == sizeof(float));
  9344. if (params->type == GGML_TASK_INIT) {
  9345. memset(params->wdata, 0, params->wsize);
  9346. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9347. {
  9348. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9349. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9350. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9351. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9352. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9353. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9354. dst_data[i00*ne02 + i02] = src[i00];
  9355. }
  9356. }
  9357. }
  9358. }
  9359. // permute source data (src1) from (L x Cin) to (Cin x L)
  9360. {
  9361. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9362. ggml_fp16_t * dst_data = wdata;
  9363. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9364. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9365. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9366. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9367. }
  9368. }
  9369. }
  9370. // need to zero dst since we are accumulating into it
  9371. memset(dst->data, 0, ggml_nbytes(dst));
  9372. return;
  9373. }
  9374. if (params->type == GGML_TASK_FINALIZE) {
  9375. return;
  9376. }
  9377. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9378. // total rows in dst
  9379. const int nr = ne1;
  9380. // rows per thread
  9381. const int dr = (nr + nth - 1)/nth;
  9382. // row range for this thread
  9383. const int ir0 = dr*ith;
  9384. const int ir1 = MIN(ir0 + dr, nr);
  9385. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9386. ggml_fp16_t * const wdata_src = wdata + nk;
  9387. for (int i1 = ir0; i1 < ir1; i1++) {
  9388. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9389. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9390. for (int i10 = 0; i10 < ne10; i10++) {
  9391. const int i1n = i10*ne11;
  9392. for (int i00 = 0; i00 < ne00; i00++) {
  9393. float v = 0;
  9394. ggml_vec_dot_f16(ne02, &v,
  9395. (ggml_fp16_t *) wdata_src + i1n,
  9396. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9397. dst_data[i10*s0 + i00] += v;
  9398. }
  9399. }
  9400. }
  9401. }
  9402. static void ggml_compute_forward_conv_transpose_1d_f32(
  9403. const struct ggml_compute_params * params,
  9404. const struct ggml_tensor * src0,
  9405. const struct ggml_tensor * src1,
  9406. struct ggml_tensor * dst) {
  9407. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9408. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9409. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9410. int64_t t0 = ggml_perf_time_us();
  9411. UNUSED(t0);
  9412. GGML_TENSOR_BINARY_OP_LOCALS
  9413. const int ith = params->ith;
  9414. const int nth = params->nth;
  9415. const int nk = ne00*ne01*ne02;
  9416. GGML_ASSERT(nb00 == sizeof(float));
  9417. GGML_ASSERT(nb10 == sizeof(float));
  9418. if (params->type == GGML_TASK_INIT) {
  9419. memset(params->wdata, 0, params->wsize);
  9420. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9421. {
  9422. float * const wdata = (float *) params->wdata + 0;
  9423. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9424. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9425. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9426. float * dst_data = wdata + i01*ne00*ne02;
  9427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9428. dst_data[i00*ne02 + i02] = src[i00];
  9429. }
  9430. }
  9431. }
  9432. }
  9433. // prepare source data (src1)
  9434. {
  9435. float * const wdata = (float *) params->wdata + nk;
  9436. float * dst_data = wdata;
  9437. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9438. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9439. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9440. dst_data[i10*ne11 + i11] = src[i10];
  9441. }
  9442. }
  9443. }
  9444. // need to zero dst since we are accumulating into it
  9445. memset(dst->data, 0, ggml_nbytes(dst));
  9446. return;
  9447. }
  9448. if (params->type == GGML_TASK_FINALIZE) {
  9449. return;
  9450. }
  9451. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9452. // total rows in dst
  9453. const int nr = ne1;
  9454. // rows per thread
  9455. const int dr = (nr + nth - 1)/nth;
  9456. // row range for this thread
  9457. const int ir0 = dr*ith;
  9458. const int ir1 = MIN(ir0 + dr, nr);
  9459. float * const wdata = (float *) params->wdata + 0;
  9460. float * const wdata_src = wdata + nk;
  9461. for (int i1 = ir0; i1 < ir1; i1++) {
  9462. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9463. float * wdata_kernel = wdata + i1*ne02*ne00;
  9464. for (int i10 = 0; i10 < ne10; i10++) {
  9465. const int i1n = i10*ne11;
  9466. for (int i00 = 0; i00 < ne00; i00++) {
  9467. float v = 0;
  9468. ggml_vec_dot_f32(ne02, &v,
  9469. wdata_src + i1n,
  9470. wdata_kernel + i00*ne02);
  9471. dst_data[i10*s0 + i00] += v;
  9472. }
  9473. }
  9474. }
  9475. }
  9476. static void ggml_compute_forward_conv_transpose_1d(
  9477. const struct ggml_compute_params * params,
  9478. const struct ggml_tensor * src0,
  9479. const struct ggml_tensor * src1,
  9480. struct ggml_tensor * dst) {
  9481. switch (src0->type) {
  9482. case GGML_TYPE_F16:
  9483. {
  9484. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9485. } break;
  9486. case GGML_TYPE_F32:
  9487. {
  9488. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9489. } break;
  9490. default:
  9491. {
  9492. GGML_ASSERT(false);
  9493. } break;
  9494. }
  9495. }
  9496. // src0: kernel [OC, IC, KH, KW]
  9497. // src1: image [N, IC, IH, IW]
  9498. // dst: result [N, OH, OW, IC*KH*KW]
  9499. static void ggml_compute_forward_im2col_f16(
  9500. const struct ggml_compute_params * params,
  9501. const struct ggml_tensor * src0,
  9502. const struct ggml_tensor * src1,
  9503. struct ggml_tensor * dst) {
  9504. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9505. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9506. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9507. int64_t t0 = ggml_perf_time_us();
  9508. UNUSED(t0);
  9509. GGML_TENSOR_BINARY_OP_LOCALS;
  9510. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9511. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9512. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9513. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9514. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9515. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9516. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9517. const int ith = params->ith;
  9518. const int nth = params->nth;
  9519. const int64_t N = is_2D ? ne13 : ne12;
  9520. const int64_t IC = is_2D ? ne12 : ne11;
  9521. const int64_t IH = is_2D ? ne11 : 1;
  9522. const int64_t IW = ne10;
  9523. const int64_t KH = is_2D ? ne01 : 1;
  9524. const int64_t KW = ne00;
  9525. const int64_t OH = is_2D ? ne2 : 1;
  9526. const int64_t OW = ne1;
  9527. int ofs0 = is_2D ? nb13 : nb12;
  9528. int ofs1 = is_2D ? nb12 : nb11;
  9529. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9530. GGML_ASSERT(nb10 == sizeof(float));
  9531. if (params->type == GGML_TASK_INIT) {
  9532. return;
  9533. }
  9534. if (params->type == GGML_TASK_FINALIZE) {
  9535. return;
  9536. }
  9537. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9538. {
  9539. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9540. for (int64_t in = 0; in < N; in++) {
  9541. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9542. for (int64_t iow = 0; iow < OW; iow++) {
  9543. for (int64_t iic = ith; iic < IC; iic += nth) {
  9544. // micro kernel
  9545. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9546. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9547. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9548. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9549. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9550. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9551. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9552. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9553. } else {
  9554. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9555. }
  9556. }
  9557. }
  9558. }
  9559. }
  9560. }
  9561. }
  9562. }
  9563. }
  9564. static void ggml_compute_forward_im2col(
  9565. const struct ggml_compute_params * params,
  9566. const struct ggml_tensor * src0,
  9567. const struct ggml_tensor * src1,
  9568. struct ggml_tensor * dst) {
  9569. switch (src0->type) {
  9570. case GGML_TYPE_F16:
  9571. {
  9572. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9573. } break;
  9574. case GGML_TYPE_F32:
  9575. {
  9576. GGML_ASSERT(false);
  9577. } break;
  9578. default:
  9579. {
  9580. GGML_ASSERT(false);
  9581. } break;
  9582. }
  9583. }
  9584. // ggml_compute_forward_conv_transpose_2d
  9585. static void ggml_compute_forward_conv_transpose_2d(
  9586. const struct ggml_compute_params * params,
  9587. const struct ggml_tensor * src0,
  9588. const struct ggml_tensor * src1,
  9589. struct ggml_tensor * dst) {
  9590. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9591. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9592. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9593. int64_t t0 = ggml_perf_time_us();
  9594. UNUSED(t0);
  9595. GGML_TENSOR_BINARY_OP_LOCALS
  9596. const int ith = params->ith;
  9597. const int nth = params->nth;
  9598. const int nk = ne00*ne01*ne02*ne03;
  9599. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9600. GGML_ASSERT(nb10 == sizeof(float));
  9601. if (params->type == GGML_TASK_INIT) {
  9602. memset(params->wdata, 0, params->wsize);
  9603. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9604. {
  9605. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9608. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9609. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9610. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9611. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9612. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9613. }
  9614. }
  9615. }
  9616. }
  9617. }
  9618. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9619. {
  9620. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9621. for (int i12 = 0; i12 < ne12; i12++) {
  9622. for (int i11 = 0; i11 < ne11; i11++) {
  9623. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9624. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9625. for (int i10 = 0; i10 < ne10; i10++) {
  9626. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9627. }
  9628. }
  9629. }
  9630. }
  9631. memset(dst->data, 0, ggml_nbytes(dst));
  9632. return;
  9633. }
  9634. if (params->type == GGML_TASK_FINALIZE) {
  9635. return;
  9636. }
  9637. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9638. // total patches in dst
  9639. const int np = ne2;
  9640. // patches per thread
  9641. const int dp = (np + nth - 1)/nth;
  9642. // patch range for this thread
  9643. const int ip0 = dp*ith;
  9644. const int ip1 = MIN(ip0 + dp, np);
  9645. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9646. ggml_fp16_t * const wdata_src = wdata + nk;
  9647. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9648. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9649. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9650. for (int i11 = 0; i11 < ne11; i11++) {
  9651. for (int i10 = 0; i10 < ne10; i10++) {
  9652. const int i1n = i11*ne10*ne12 + i10*ne12;
  9653. for (int i01 = 0; i01 < ne01; i01++) {
  9654. for (int i00 = 0; i00 < ne00; i00++) {
  9655. float v = 0;
  9656. ggml_vec_dot_f16(ne03, &v,
  9657. wdata_src + i1n,
  9658. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9659. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9660. }
  9661. }
  9662. }
  9663. }
  9664. }
  9665. }
  9666. // ggml_compute_forward_pool_1d_sk_p0
  9667. static void ggml_compute_forward_pool_1d_sk_p0(
  9668. const struct ggml_compute_params * params,
  9669. const enum ggml_op_pool op,
  9670. const struct ggml_tensor * src,
  9671. const int k,
  9672. struct ggml_tensor * dst) {
  9673. assert(src->type == GGML_TYPE_F32);
  9674. assert(params->ith == 0);
  9675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9676. return;
  9677. }
  9678. const char * cdata = (const char *)src->data;
  9679. const char * const data_end = cdata + ggml_nbytes(src);
  9680. float * drow = (float *)dst->data;
  9681. const int64_t rs = dst->ne[0];
  9682. while (cdata < data_end) {
  9683. const float * const srow = (const float *)cdata;
  9684. int j = 0;
  9685. for (int64_t i = 0; i < rs; ++i) {
  9686. switch (op) {
  9687. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  9688. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  9689. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9690. }
  9691. for (int ki = 0; ki < k; ++ki) {
  9692. switch (op) {
  9693. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  9694. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  9695. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9696. }
  9697. ++j;
  9698. }
  9699. switch (op) {
  9700. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  9701. case GGML_OP_POOL_MAX: break;
  9702. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9703. }
  9704. }
  9705. cdata += src->nb[1];
  9706. drow += rs;
  9707. }
  9708. }
  9709. // ggml_compute_forward_pool_1d
  9710. static void ggml_compute_forward_pool_1d(
  9711. const struct ggml_compute_params * params,
  9712. const struct ggml_tensor * src0,
  9713. struct ggml_tensor * dst) {
  9714. const int32_t * opts = (const int32_t *)dst->op_params;
  9715. enum ggml_op_pool op = opts[0];
  9716. const int k0 = opts[1];
  9717. const int s0 = opts[2];
  9718. const int p0 = opts[3];
  9719. GGML_ASSERT(p0 == 0); // padding not supported
  9720. GGML_ASSERT(k0 == s0); // only s = k supported
  9721. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  9722. }
  9723. // ggml_compute_forward_pool_2d
  9724. static void ggml_compute_forward_pool_2d(
  9725. const struct ggml_compute_params * params,
  9726. const struct ggml_tensor * src,
  9727. struct ggml_tensor * dst) {
  9728. assert(src->type == GGML_TYPE_F32);
  9729. assert(params->ith == 0);
  9730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9731. return;
  9732. }
  9733. const int32_t * opts = (const int32_t *)dst->op_params;
  9734. enum ggml_op_pool op = opts[0];
  9735. const int k0 = opts[1];
  9736. const int k1 = opts[2];
  9737. const int s0 = opts[3];
  9738. const int s1 = opts[4];
  9739. const int p0 = opts[5];
  9740. const int p1 = opts[6];
  9741. const char * cdata = (const char*)src->data;
  9742. const char * const data_end = cdata + ggml_nbytes(src);
  9743. const int64_t px = dst->ne[0];
  9744. const int64_t py = dst->ne[1];
  9745. const int64_t pa = px * py;
  9746. float * dplane = (float *)dst->data;
  9747. const int ka = k0 * k1;
  9748. const int offset0 = -p0;
  9749. const int offset1 = -p1;
  9750. while (cdata < data_end) {
  9751. for (int oy = 0; oy < py; ++oy) {
  9752. float * const drow = dplane + oy * px;
  9753. for (int ox = 0; ox < px; ++ox) {
  9754. float * const out = drow + ox;
  9755. switch (op) {
  9756. case GGML_OP_POOL_AVG: *out = 0; break;
  9757. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  9758. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9759. }
  9760. const int ix = offset0 + ox * s0;
  9761. const int iy = offset1 + oy * s1;
  9762. for (int ky = 0; ky < k1; ++ky) {
  9763. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  9764. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  9765. for (int kx = 0; kx < k0; ++kx) {
  9766. int j = ix + kx;
  9767. if (j < 0 || j >= src->ne[0]) continue;
  9768. switch (op) {
  9769. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  9770. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  9771. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9772. }
  9773. }
  9774. }
  9775. switch (op) {
  9776. case GGML_OP_POOL_AVG: *out /= ka; break;
  9777. case GGML_OP_POOL_MAX: break;
  9778. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9779. }
  9780. }
  9781. }
  9782. cdata += src->nb[2];
  9783. dplane += pa;
  9784. }
  9785. }
  9786. // ggml_compute_forward_upscale
  9787. static void ggml_compute_forward_upscale_f32(
  9788. const struct ggml_compute_params * params,
  9789. const struct ggml_tensor * src0,
  9790. struct ggml_tensor * dst) {
  9791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9792. return;
  9793. }
  9794. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9795. const int ith = params->ith;
  9796. GGML_TENSOR_UNARY_OP_LOCALS
  9797. const int scale_factor = dst->op_params[0];
  9798. // TODO: optimize
  9799. for (int i03 = 0; i03 < ne03; i03++) {
  9800. for (int i02 = ith; i02 < ne02; i02++) {
  9801. for (int m = 0; m < dst->ne[1]; m++) {
  9802. int i01 = m / scale_factor;
  9803. for (int n = 0; n < dst->ne[0]; n++) {
  9804. int i00 = n / scale_factor;
  9805. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  9806. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  9807. *y = *x;
  9808. }
  9809. }
  9810. }
  9811. }
  9812. }
  9813. static void ggml_compute_forward_upscale(
  9814. const struct ggml_compute_params * params,
  9815. const struct ggml_tensor * src0,
  9816. struct ggml_tensor * dst) {
  9817. switch (src0->type) {
  9818. case GGML_TYPE_F32:
  9819. {
  9820. ggml_compute_forward_upscale_f32(params, src0, dst);
  9821. } break;
  9822. default:
  9823. {
  9824. GGML_ASSERT(false);
  9825. } break;
  9826. }
  9827. }
  9828. // ggml_compute_forward_flash_attn
  9829. static void ggml_compute_forward_flash_attn_f32(
  9830. const struct ggml_compute_params * params,
  9831. const struct ggml_tensor * q,
  9832. const struct ggml_tensor * k,
  9833. const struct ggml_tensor * v,
  9834. const bool masked,
  9835. struct ggml_tensor * dst) {
  9836. int64_t t0 = ggml_perf_time_us();
  9837. UNUSED(t0);
  9838. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  9839. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  9840. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  9841. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  9842. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  9843. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  9844. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9845. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  9846. const int ith = params->ith;
  9847. const int nth = params->nth;
  9848. const int64_t D = neq0;
  9849. const int64_t N = neq1;
  9850. const int64_t P = nek1 - N;
  9851. const int64_t M = P + N;
  9852. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9853. GGML_ASSERT(ne0 == D);
  9854. GGML_ASSERT(ne1 == N);
  9855. GGML_ASSERT(P >= 0);
  9856. GGML_ASSERT(nbq0 == sizeof(float));
  9857. GGML_ASSERT(nbk0 == sizeof(float));
  9858. GGML_ASSERT(nbv0 == sizeof(float));
  9859. GGML_ASSERT(neq0 == D);
  9860. GGML_ASSERT(nek0 == D);
  9861. GGML_ASSERT(nev1 == D);
  9862. GGML_ASSERT(neq1 == N);
  9863. GGML_ASSERT(nek1 == N + P);
  9864. GGML_ASSERT(nev1 == D);
  9865. // dst cannot be transposed or permuted
  9866. GGML_ASSERT(nb0 == sizeof(float));
  9867. GGML_ASSERT(nb0 <= nb1);
  9868. GGML_ASSERT(nb1 <= nb2);
  9869. GGML_ASSERT(nb2 <= nb3);
  9870. if (params->type == GGML_TASK_INIT) {
  9871. return;
  9872. }
  9873. if (params->type == GGML_TASK_FINALIZE) {
  9874. return;
  9875. }
  9876. // parallelize by q rows using ggml_vec_dot_f32
  9877. // total rows in q
  9878. const int nr = neq1*neq2*neq3;
  9879. // rows per thread
  9880. const int dr = (nr + nth - 1)/nth;
  9881. // row range for this thread
  9882. const int ir0 = dr*ith;
  9883. const int ir1 = MIN(ir0 + dr, nr);
  9884. const float scale = 1.0f/sqrtf(D);
  9885. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9886. for (int ir = ir0; ir < ir1; ++ir) {
  9887. // q indices
  9888. const int iq3 = ir/(neq2*neq1);
  9889. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9890. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9891. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9892. for (int i = M; i < Mup; ++i) {
  9893. S[i] = -INFINITY;
  9894. }
  9895. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  9896. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9897. // k indices
  9898. const int ik3 = iq3;
  9899. const int ik2 = iq2 % nek2;
  9900. const int ik1 = ic;
  9901. // S indices
  9902. const int i1 = ik1;
  9903. ggml_vec_dot_f32(neq0,
  9904. S + i1,
  9905. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9906. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9907. }
  9908. // scale
  9909. ggml_vec_scale_f32(masked_begin, S, scale);
  9910. for (int64_t i = masked_begin; i < M; i++) {
  9911. S[i] = -INFINITY;
  9912. }
  9913. // softmax
  9914. // exclude known -INF S[..] values from max and loop
  9915. // dont forget to set their SW values to zero
  9916. {
  9917. float max = -INFINITY;
  9918. ggml_vec_max_f32(masked_begin, &max, S);
  9919. ggml_float sum = 0.0;
  9920. {
  9921. #ifdef GGML_SOFT_MAX_ACCELERATE
  9922. max = -max;
  9923. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9924. vvexpf(S, S, &Mup);
  9925. ggml_vec_sum_f32(Mup, &sum, S);
  9926. #else
  9927. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  9928. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9929. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9930. if (i >= masked_begin) {
  9931. break;
  9932. }
  9933. float * SS = S + i;
  9934. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9935. if (i + j >= masked_begin) {
  9936. break;
  9937. } else if (SS[j] == -INFINITY) {
  9938. SS[j] = 0.0f;
  9939. } else {
  9940. #ifndef GGML_FLASH_ATTN_EXP_FP16
  9941. const float val = expf(SS[j] - max);
  9942. #else
  9943. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9944. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9945. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  9946. #endif
  9947. sump[j] += (ggml_float)val;
  9948. SS[j] = val;
  9949. }
  9950. }
  9951. }
  9952. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9953. sum += sump[i];
  9954. }
  9955. #endif
  9956. }
  9957. assert(sum > 0.0);
  9958. sum = 1.0/sum;
  9959. ggml_vec_scale_f32(masked_begin, S, sum);
  9960. #ifndef NDEBUG
  9961. for (int i = 0; i < masked_begin; ++i) {
  9962. assert(!isnan(S[i]));
  9963. assert(!isinf(S[i]));
  9964. }
  9965. #endif
  9966. }
  9967. for (int64_t ic = 0; ic < nev1; ++ic) {
  9968. // dst indices
  9969. const int i1 = iq1;
  9970. const int i2 = iq2;
  9971. const int i3 = iq3;
  9972. // v indices
  9973. const int iv2 = iq2 % nev2;
  9974. const int iv3 = iq3;
  9975. ggml_vec_dot_f32(masked_begin,
  9976. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9977. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  9978. S);
  9979. }
  9980. }
  9981. }
  9982. static void ggml_compute_forward_flash_attn_f16(
  9983. const struct ggml_compute_params * params,
  9984. const struct ggml_tensor * q,
  9985. const struct ggml_tensor * k,
  9986. const struct ggml_tensor * v,
  9987. const bool masked,
  9988. struct ggml_tensor * dst) {
  9989. int64_t t0 = ggml_perf_time_us();
  9990. UNUSED(t0);
  9991. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  9992. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  9993. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  9994. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  9995. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  9996. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  9997. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9998. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  9999. const int ith = params->ith;
  10000. const int nth = params->nth;
  10001. const int64_t D = neq0;
  10002. const int64_t N = neq1;
  10003. const int64_t P = nek1 - N;
  10004. const int64_t M = P + N;
  10005. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10006. GGML_ASSERT(ne0 == D);
  10007. GGML_ASSERT(ne1 == N);
  10008. GGML_ASSERT(P >= 0);
  10009. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10010. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10011. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10012. GGML_ASSERT(neq0 == D);
  10013. GGML_ASSERT(nek0 == D);
  10014. GGML_ASSERT(nev1 == D);
  10015. GGML_ASSERT(neq1 == N);
  10016. GGML_ASSERT(nek1 == N + P);
  10017. GGML_ASSERT(nev1 == D);
  10018. // dst cannot be transposed or permuted
  10019. GGML_ASSERT(nb0 == sizeof(float));
  10020. GGML_ASSERT(nb0 <= nb1);
  10021. GGML_ASSERT(nb1 <= nb2);
  10022. GGML_ASSERT(nb2 <= nb3);
  10023. if (params->type == GGML_TASK_INIT) {
  10024. return;
  10025. }
  10026. if (params->type == GGML_TASK_FINALIZE) {
  10027. return;
  10028. }
  10029. // parallelize by q rows using ggml_vec_dot_f32
  10030. // total rows in q
  10031. const int nr = neq1*neq2*neq3;
  10032. // rows per thread
  10033. const int dr = (nr + nth - 1)/nth;
  10034. // row range for this thread
  10035. const int ir0 = dr*ith;
  10036. const int ir1 = MIN(ir0 + dr, nr);
  10037. const float scale = 1.0f/sqrtf(D);
  10038. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10039. for (int ir = ir0; ir < ir1; ++ir) {
  10040. // q indices
  10041. const int iq3 = ir/(neq2*neq1);
  10042. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10043. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10044. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10045. for (int i = M; i < Mup; ++i) {
  10046. S[i] = -INFINITY;
  10047. }
  10048. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10049. for (int64_t ic = 0; ic < nek1; ++ic) {
  10050. // k indices
  10051. const int ik3 = iq3;
  10052. const int ik2 = iq2 % nek2;
  10053. const int ik1 = ic;
  10054. // S indices
  10055. const int i1 = ik1;
  10056. ggml_vec_dot_f16(neq0,
  10057. S + i1,
  10058. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10059. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10060. }
  10061. } else {
  10062. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10063. // k indices
  10064. const int ik3 = iq3;
  10065. const int ik2 = iq2 % nek2;
  10066. const int ik1 = ic;
  10067. // S indices
  10068. const int i1 = ik1;
  10069. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10070. S + i1,
  10071. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10072. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10073. }
  10074. }
  10075. // scale
  10076. ggml_vec_scale_f32(nek1, S, scale);
  10077. if (masked) {
  10078. for (int64_t i = P; i < M; i++) {
  10079. if (i > P + iq1) {
  10080. S[i] = -INFINITY;
  10081. }
  10082. }
  10083. }
  10084. // softmax
  10085. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10086. // dont forget to set their S values to zero
  10087. {
  10088. float max = -INFINITY;
  10089. ggml_vec_max_f32(M, &max, S);
  10090. ggml_float sum = 0.0;
  10091. {
  10092. #ifdef GGML_SOFT_MAX_ACCELERATE
  10093. max = -max;
  10094. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10095. vvexpf(S, S, &Mup);
  10096. ggml_vec_sum_f32(Mup, &sum, S);
  10097. #else
  10098. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10099. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10100. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10101. float * SS = S + i;
  10102. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10103. if (SS[j] == -INFINITY) {
  10104. SS[j] = 0.0f;
  10105. } else {
  10106. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10107. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10108. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10109. sump[j] += (ggml_float)val;
  10110. SS[j] = val;
  10111. }
  10112. }
  10113. }
  10114. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10115. sum += sump[i];
  10116. }
  10117. #endif
  10118. }
  10119. assert(sum > 0.0);
  10120. sum = 1.0/sum;
  10121. ggml_vec_scale_f32(M, S, sum);
  10122. #ifndef NDEBUG
  10123. for (int i = 0; i < M; ++i) {
  10124. assert(!isnan(S[i]));
  10125. assert(!isinf(S[i]));
  10126. }
  10127. #endif
  10128. }
  10129. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10130. for (int64_t i = 0; i < M; i++) {
  10131. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10132. }
  10133. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10134. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10135. for (int64_t ic = 0; ic < nev1; ++ic) {
  10136. // dst indices
  10137. const int i1 = iq1;
  10138. const int i2 = iq2;
  10139. const int i3 = iq3;
  10140. // v indices
  10141. const int iv2 = iq2 % nev2;
  10142. const int iv3 = iq3;
  10143. ggml_vec_dot_f16(nev0,
  10144. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10145. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10146. S16);
  10147. }
  10148. } else {
  10149. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10150. // dst indices
  10151. const int i1 = iq1;
  10152. const int i2 = iq2;
  10153. const int i3 = iq3;
  10154. // v indices
  10155. const int iv2 = iq2 % nev2;
  10156. const int iv3 = iq3;
  10157. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10158. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10159. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10160. S16);
  10161. }
  10162. }
  10163. }
  10164. }
  10165. static void ggml_compute_forward_flash_attn(
  10166. const struct ggml_compute_params * params,
  10167. const struct ggml_tensor * q,
  10168. const struct ggml_tensor * k,
  10169. const struct ggml_tensor * v,
  10170. const bool masked,
  10171. struct ggml_tensor * dst) {
  10172. switch (q->type) {
  10173. case GGML_TYPE_F16:
  10174. {
  10175. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10176. } break;
  10177. case GGML_TYPE_F32:
  10178. {
  10179. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10180. } break;
  10181. default:
  10182. {
  10183. GGML_ASSERT(false);
  10184. } break;
  10185. }
  10186. }
  10187. // ggml_compute_forward_flash_ff
  10188. static void ggml_compute_forward_flash_ff_f16(
  10189. const struct ggml_compute_params * params,
  10190. const struct ggml_tensor * a, // F16
  10191. const struct ggml_tensor * b0, // F16 fc_w
  10192. const struct ggml_tensor * b1, // F32 fc_b
  10193. const struct ggml_tensor * c0, // F16 proj_w
  10194. const struct ggml_tensor * c1, // F32 proj_b
  10195. struct ggml_tensor * dst) {
  10196. int64_t t0 = ggml_perf_time_us();
  10197. UNUSED(t0);
  10198. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10199. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10200. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10201. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10202. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10203. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10204. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10205. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10206. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10207. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10208. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10209. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10210. const int ith = params->ith;
  10211. const int nth = params->nth;
  10212. const int64_t D = nea0;
  10213. //const int64_t N = nea1;
  10214. const int64_t M = neb01;
  10215. GGML_ASSERT(ne0 == nea0);
  10216. GGML_ASSERT(ne1 == nea1);
  10217. GGML_ASSERT(ne2 == nea2);
  10218. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10219. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10220. GGML_ASSERT(nbb10 == sizeof(float));
  10221. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10222. GGML_ASSERT(nbc10 == sizeof(float));
  10223. GGML_ASSERT(neb00 == D);
  10224. GGML_ASSERT(neb01 == M);
  10225. GGML_ASSERT(neb10 == M);
  10226. GGML_ASSERT(neb11 == 1);
  10227. GGML_ASSERT(nec00 == M);
  10228. GGML_ASSERT(nec01 == D);
  10229. GGML_ASSERT(nec10 == D);
  10230. GGML_ASSERT(nec11 == 1);
  10231. // dst cannot be transposed or permuted
  10232. GGML_ASSERT(nb0 == sizeof(float));
  10233. GGML_ASSERT(nb0 <= nb1);
  10234. GGML_ASSERT(nb1 <= nb2);
  10235. GGML_ASSERT(nb2 <= nb3);
  10236. if (params->type == GGML_TASK_INIT) {
  10237. return;
  10238. }
  10239. if (params->type == GGML_TASK_FINALIZE) {
  10240. return;
  10241. }
  10242. // parallelize by a rows using ggml_vec_dot_f32
  10243. // total rows in a
  10244. const int nr = nea1*nea2*nea3;
  10245. // rows per thread
  10246. const int dr = (nr + nth - 1)/nth;
  10247. // row range for this thread
  10248. const int ir0 = dr*ith;
  10249. const int ir1 = MIN(ir0 + dr, nr);
  10250. for (int ir = ir0; ir < ir1; ++ir) {
  10251. // a indices
  10252. const int ia3 = ir/(nea2*nea1);
  10253. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10254. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10255. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10256. for (int64_t ic = 0; ic < neb01; ++ic) {
  10257. // b0 indices
  10258. const int ib03 = ia3;
  10259. const int ib02 = ia2;
  10260. const int ib01 = ic;
  10261. // S indices
  10262. const int i1 = ib01;
  10263. ggml_vec_dot_f16(nea0,
  10264. S + i1,
  10265. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10266. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10267. }
  10268. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10269. //ggml_vec_gelu_f32(neb01, S, S);
  10270. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10271. for (int64_t i = 0; i < M; i++) {
  10272. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10273. }
  10274. ggml_vec_gelu_f16(neb01, S16, S16);
  10275. {
  10276. // dst indices
  10277. const int i1 = ia1;
  10278. const int i2 = ia2;
  10279. const int i3 = ia3;
  10280. for (int64_t ic = 0; ic < nec01; ++ic) {
  10281. ggml_vec_dot_f16(neb01,
  10282. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10283. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10284. S16);
  10285. }
  10286. ggml_vec_add_f32(nec01,
  10287. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10288. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10289. (float *) c1->data);
  10290. }
  10291. }
  10292. }
  10293. static void ggml_compute_forward_flash_ff(
  10294. const struct ggml_compute_params * params,
  10295. const struct ggml_tensor * a,
  10296. const struct ggml_tensor * b0,
  10297. const struct ggml_tensor * b1,
  10298. const struct ggml_tensor * c0,
  10299. const struct ggml_tensor * c1,
  10300. struct ggml_tensor * dst) {
  10301. switch (b0->type) {
  10302. case GGML_TYPE_F16:
  10303. {
  10304. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10305. } break;
  10306. case GGML_TYPE_F32:
  10307. {
  10308. GGML_ASSERT(false); // TODO
  10309. } break;
  10310. default:
  10311. {
  10312. GGML_ASSERT(false);
  10313. } break;
  10314. }
  10315. }
  10316. // ggml_compute_forward_flash_attn_back
  10317. static void ggml_compute_forward_flash_attn_back_f32(
  10318. const struct ggml_compute_params * params,
  10319. const struct ggml_tensor * q,
  10320. const struct ggml_tensor * k,
  10321. const struct ggml_tensor * v,
  10322. const struct ggml_tensor * d,
  10323. const bool masked,
  10324. struct ggml_tensor * dst) {
  10325. int64_t t0 = ggml_perf_time_us();
  10326. UNUSED(t0);
  10327. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10328. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10329. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10330. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10331. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10332. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10333. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10334. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10335. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10336. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10337. const int ith = params->ith;
  10338. const int nth = params->nth;
  10339. const int64_t D = neq0;
  10340. const int64_t N = neq1;
  10341. const int64_t P = nek1 - N;
  10342. const int64_t M = P + N;
  10343. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10344. const int mxDM = MAX(D, Mup);
  10345. // GGML_ASSERT(ne0 == D);
  10346. // GGML_ASSERT(ne1 == N);
  10347. GGML_ASSERT(P >= 0);
  10348. GGML_ASSERT(nbq0 == sizeof(float));
  10349. GGML_ASSERT(nbk0 == sizeof(float));
  10350. GGML_ASSERT(nbv0 == sizeof(float));
  10351. GGML_ASSERT(neq0 == D);
  10352. GGML_ASSERT(nek0 == D);
  10353. GGML_ASSERT(nev1 == D);
  10354. GGML_ASSERT(ned0 == D);
  10355. GGML_ASSERT(neq1 == N);
  10356. GGML_ASSERT(nek1 == N + P);
  10357. GGML_ASSERT(nev1 == D);
  10358. GGML_ASSERT(ned1 == N);
  10359. // dst cannot be transposed or permuted
  10360. GGML_ASSERT(nb0 == sizeof(float));
  10361. GGML_ASSERT(nb0 <= nb1);
  10362. GGML_ASSERT(nb1 <= nb2);
  10363. GGML_ASSERT(nb2 <= nb3);
  10364. if (params->type == GGML_TASK_INIT) {
  10365. if (ith == 0) {
  10366. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10367. }
  10368. return;
  10369. }
  10370. if (params->type == GGML_TASK_FINALIZE) {
  10371. return;
  10372. }
  10373. const int64_t elem_q = ggml_nelements(q);
  10374. const int64_t elem_k = ggml_nelements(k);
  10375. enum ggml_type result_type = dst->type;
  10376. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10377. const size_t tsize = ggml_type_size(result_type);
  10378. const size_t offs_q = 0;
  10379. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10380. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10381. void * grad_q = (char *) dst->data;
  10382. void * grad_k = (char *) dst->data + offs_k;
  10383. void * grad_v = (char *) dst->data + offs_v;
  10384. const size_t nbgq1 = nb0*neq0;
  10385. const size_t nbgq2 = nb0*neq0*neq1;
  10386. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10387. const size_t nbgk1 = nb0*nek0;
  10388. const size_t nbgk2 = nb0*nek0*nek1;
  10389. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10390. const size_t nbgv1 = nb0*nev0;
  10391. const size_t nbgv2 = nb0*nev0*nev1;
  10392. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10393. // parallelize by k rows using ggml_vec_dot_f32
  10394. // total rows in k
  10395. const int nr = nek2*nek3;
  10396. // rows per thread
  10397. const int dr = (nr + nth - 1)/nth;
  10398. // row range for this thread
  10399. const int ir0 = dr*ith;
  10400. const int ir1 = MIN(ir0 + dr, nr);
  10401. const float scale = 1.0f/sqrtf(D);
  10402. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10403. // how often k2 (and v2) is repeated in q2
  10404. int nrep = neq2/nek2;
  10405. for (int ir = ir0; ir < ir1; ++ir) {
  10406. // q indices
  10407. const int ik3 = ir/(nek2);
  10408. const int ik2 = ir - ik3*nek2;
  10409. const int iq3 = ik3;
  10410. const int id3 = ik3;
  10411. const int iv3 = ik3;
  10412. const int iv2 = ik2;
  10413. for (int irep = 0; irep < nrep; ++irep) {
  10414. const int iq2 = ik2 + irep*nek2;
  10415. const int id2 = iq2;
  10416. // (ik2 + irep*nek2) % nek2 == ik2
  10417. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10418. const int id1 = iq1;
  10419. // not sure about CACHE_LINE_SIZE_F32..
  10420. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10421. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10422. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10423. for (int i = M; i < Mup; ++i) {
  10424. S[i] = -INFINITY;
  10425. }
  10426. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10427. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10428. // k indices
  10429. const int ik1 = ic;
  10430. // S indices
  10431. const int i1 = ik1;
  10432. ggml_vec_dot_f32(neq0,
  10433. S + i1,
  10434. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10435. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10436. }
  10437. // scale
  10438. ggml_vec_scale_f32(masked_begin, S, scale);
  10439. for (int64_t i = masked_begin; i < M; i++) {
  10440. S[i] = -INFINITY;
  10441. }
  10442. // softmax
  10443. // exclude known -INF S[..] values from max and loop
  10444. // dont forget to set their SM values to zero
  10445. {
  10446. float max = -INFINITY;
  10447. ggml_vec_max_f32(masked_begin, &max, S);
  10448. ggml_float sum = 0.0;
  10449. {
  10450. #ifdef GGML_SOFT_MAX_ACCELERATE
  10451. max = -max;
  10452. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10453. vvexpf(SM, SM, &Mup);
  10454. ggml_vec_sum_f32(Mup, &sum, SM);
  10455. #else
  10456. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10457. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10458. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10459. if (i >= masked_begin) {
  10460. break;
  10461. }
  10462. float * SR = S + i;
  10463. float * SW = SM + i;
  10464. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10465. if (i + j >= masked_begin) {
  10466. break;
  10467. } else if (SR[j] == -INFINITY) {
  10468. SW[j] = 0.0f;
  10469. } else {
  10470. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10471. const float val = expf(SR[j] - max);
  10472. #else
  10473. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10474. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10475. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10476. #endif
  10477. sump[j] += (ggml_float)val;
  10478. SW[j] = val;
  10479. }
  10480. }
  10481. }
  10482. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10483. sum += sump[i];
  10484. }
  10485. #endif
  10486. }
  10487. assert(sum > 0.0);
  10488. sum = 1.0/sum;
  10489. ggml_vec_scale_f32(masked_begin, SM, sum);
  10490. }
  10491. // step-by-step explanation
  10492. {
  10493. // forward-process shape grads from backward process
  10494. // parallel_for ik2,ik3:
  10495. // for irep:
  10496. // iq2 = ik2 + irep*nek2
  10497. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10498. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10499. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10500. // for iq1:
  10501. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10502. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10503. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10504. // S0 = -Inf [D,1,1,1]
  10505. // ~S1[i] = dot(kcur[:D,i], qcur)
  10506. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10507. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10508. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10509. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10510. // ~S5[i] = dot(vcur[:,i], S4)
  10511. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10512. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10513. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10514. // dst backward-/ grad[dst] = d
  10515. //
  10516. // output gradients with their dependencies:
  10517. //
  10518. // grad[kcur] = grad[S1].T @ qcur
  10519. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10520. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10521. // grad[S4] = grad[S5] @ vcur
  10522. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10523. // grad[qcur] = grad[S1] @ kcur
  10524. // grad[vcur] = grad[S5].T @ S4
  10525. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10526. //
  10527. // in post-order:
  10528. //
  10529. // S1 = qcur @ kcur.T
  10530. // S2 = S1 * scale
  10531. // S3 = diag_mask_inf(S2, P)
  10532. // S4 = softmax(S3)
  10533. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10534. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10535. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10536. // grad[qcur] = grad[S1] @ kcur
  10537. // grad[kcur] = grad[S1].T @ qcur
  10538. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10539. //
  10540. // using less variables (SM=S4):
  10541. //
  10542. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10543. // SM = softmax(S)
  10544. // S = d[:D,iq1,iq2,iq3] @ vcur
  10545. // dot_SM_gradSM = dot(SM, S)
  10546. // S = SM * (S - dot(SM, S))
  10547. // S = diag_mask_zero(S, P) * scale
  10548. //
  10549. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10550. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10551. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10552. }
  10553. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10554. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10555. // for ic:
  10556. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10557. // exclude known future zero S[..] values from operation
  10558. ggml_vec_set_f32(masked_begin, S, 0);
  10559. for (int64_t ic = 0; ic < D; ++ic) {
  10560. ggml_vec_mad_f32(masked_begin,
  10561. S,
  10562. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10563. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10564. }
  10565. // S = SM * (S - dot(SM, S))
  10566. float dot_SM_gradSM = 0;
  10567. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  10568. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  10569. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  10570. // S = diag_mask_zero(S, P) * scale
  10571. // already done by above ggml_vec_set_f32
  10572. // exclude known zero S[..] values from operation
  10573. ggml_vec_scale_f32(masked_begin, S, scale);
  10574. // S shape [M,1]
  10575. // SM shape [M,1]
  10576. // kcur shape [D,M]
  10577. // qcur shape [D,1]
  10578. // vcur shape [M,D]
  10579. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10580. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  10581. // for ic:
  10582. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  10583. // exclude known zero S[..] values from loop
  10584. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10585. ggml_vec_mad_f32(D,
  10586. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  10587. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10588. S[ic]);
  10589. }
  10590. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  10591. // for ic:
  10592. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  10593. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  10594. // exclude known zero S[..] values from loop
  10595. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10596. ggml_vec_mad_f32(D,
  10597. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  10598. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  10599. S[ic]);
  10600. }
  10601. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10602. // for ic:
  10603. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  10604. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  10605. // exclude known zero SM[..] values from mad
  10606. for (int64_t ic = 0; ic < D; ++ic) {
  10607. ggml_vec_mad_f32(masked_begin,
  10608. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  10609. SM,
  10610. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10611. }
  10612. }
  10613. }
  10614. }
  10615. }
  10616. static void ggml_compute_forward_flash_attn_back(
  10617. const struct ggml_compute_params * params,
  10618. const struct ggml_tensor * q,
  10619. const struct ggml_tensor * k,
  10620. const struct ggml_tensor * v,
  10621. const struct ggml_tensor * d,
  10622. const bool masked,
  10623. struct ggml_tensor * dst) {
  10624. switch (q->type) {
  10625. case GGML_TYPE_F32:
  10626. {
  10627. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  10628. } break;
  10629. default:
  10630. {
  10631. GGML_ASSERT(false);
  10632. } break;
  10633. }
  10634. }
  10635. // ggml_compute_forward_win_part
  10636. static void ggml_compute_forward_win_part_f32(
  10637. const struct ggml_compute_params * params,
  10638. const struct ggml_tensor * src0,
  10639. struct ggml_tensor * dst) {
  10640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10641. return;
  10642. }
  10643. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10644. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10645. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  10646. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  10647. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  10648. assert(ne00 == ne0);
  10649. assert(ne3 == nep0*nep1);
  10650. // TODO: optimize / multi-thread
  10651. for (int py = 0; py < nep1; ++py) {
  10652. for (int px = 0; px < nep0; ++px) {
  10653. const int64_t i3 = py*nep0 + px;
  10654. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10655. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10656. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10657. const int64_t i02 = py*w + i2;
  10658. const int64_t i01 = px*w + i1;
  10659. const int64_t i00 = i0;
  10660. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  10661. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  10662. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  10663. ((float *) dst->data)[i] = 0.0f;
  10664. } else {
  10665. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  10666. }
  10667. }
  10668. }
  10669. }
  10670. }
  10671. }
  10672. }
  10673. static void ggml_compute_forward_win_part(
  10674. const struct ggml_compute_params * params,
  10675. const struct ggml_tensor * src0,
  10676. struct ggml_tensor * dst) {
  10677. switch (src0->type) {
  10678. case GGML_TYPE_F32:
  10679. {
  10680. ggml_compute_forward_win_part_f32(params, src0, dst);
  10681. } break;
  10682. default:
  10683. {
  10684. GGML_ASSERT(false);
  10685. } break;
  10686. }
  10687. }
  10688. // ggml_compute_forward_win_unpart
  10689. static void ggml_compute_forward_win_unpart_f32(
  10690. const struct ggml_compute_params * params,
  10691. const struct ggml_tensor * src0,
  10692. struct ggml_tensor * dst) {
  10693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10694. return;
  10695. }
  10696. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10697. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10698. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  10699. // padding
  10700. const int px = (w - ne1%w)%w;
  10701. //const int py = (w - ne2%w)%w;
  10702. const int npx = (px + ne1)/w;
  10703. //const int npy = (py + ne2)/w;
  10704. assert(ne0 == ne00);
  10705. // TODO: optimize / multi-thread
  10706. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10707. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10708. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10709. const int ip2 = i2/w;
  10710. const int ip1 = i1/w;
  10711. const int64_t i02 = i2%w;
  10712. const int64_t i01 = i1%w;
  10713. const int64_t i00 = i0;
  10714. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  10715. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  10716. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  10717. }
  10718. }
  10719. }
  10720. }
  10721. static void ggml_compute_forward_win_unpart(
  10722. const struct ggml_compute_params * params,
  10723. const struct ggml_tensor * src0,
  10724. struct ggml_tensor * dst) {
  10725. switch (src0->type) {
  10726. case GGML_TYPE_F32:
  10727. {
  10728. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  10729. } break;
  10730. default:
  10731. {
  10732. GGML_ASSERT(false);
  10733. } break;
  10734. }
  10735. }
  10736. //gmml_compute_forward_unary
  10737. static void ggml_compute_forward_unary(
  10738. const struct ggml_compute_params * params,
  10739. const struct ggml_tensor * src0,
  10740. struct ggml_tensor * dst) {
  10741. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  10742. switch (op) {
  10743. case GGML_UNARY_OP_ABS:
  10744. {
  10745. ggml_compute_forward_abs(params, src0, dst);
  10746. } break;
  10747. case GGML_UNARY_OP_SGN:
  10748. {
  10749. ggml_compute_forward_sgn(params, src0, dst);
  10750. } break;
  10751. case GGML_UNARY_OP_NEG:
  10752. {
  10753. ggml_compute_forward_neg(params, src0, dst);
  10754. } break;
  10755. case GGML_UNARY_OP_STEP:
  10756. {
  10757. ggml_compute_forward_step(params, src0, dst);
  10758. } break;
  10759. case GGML_UNARY_OP_TANH:
  10760. {
  10761. ggml_compute_forward_tanh(params, src0, dst);
  10762. } break;
  10763. case GGML_UNARY_OP_ELU:
  10764. {
  10765. ggml_compute_forward_elu(params, src0, dst);
  10766. } break;
  10767. case GGML_UNARY_OP_RELU:
  10768. {
  10769. ggml_compute_forward_relu(params, src0, dst);
  10770. } break;
  10771. case GGML_UNARY_OP_GELU:
  10772. {
  10773. ggml_compute_forward_gelu(params, src0, dst);
  10774. } break;
  10775. case GGML_UNARY_OP_GELU_QUICK:
  10776. {
  10777. ggml_compute_forward_gelu_quick(params, src0, dst);
  10778. } break;
  10779. case GGML_UNARY_OP_SILU:
  10780. {
  10781. ggml_compute_forward_silu(params, src0, dst);
  10782. } break;
  10783. case GGML_UNARY_OP_LEAKY:
  10784. {
  10785. ggml_compute_forward_leaky(params, src0, dst);
  10786. } break;
  10787. default:
  10788. {
  10789. GGML_ASSERT(false);
  10790. } break;
  10791. }
  10792. }
  10793. // ggml_compute_forward_get_rel_pos
  10794. static void ggml_compute_forward_get_rel_pos_f16(
  10795. const struct ggml_compute_params * params,
  10796. const struct ggml_tensor * src0,
  10797. struct ggml_tensor * dst) {
  10798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10799. return;
  10800. }
  10801. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  10802. GGML_TENSOR_UNARY_OP_LOCALS
  10803. const int64_t w = ne1;
  10804. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  10805. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  10806. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10807. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10808. const int64_t pos = (w - i1 - 1) + i2;
  10809. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10810. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  10811. }
  10812. }
  10813. }
  10814. }
  10815. static void ggml_compute_forward_get_rel_pos(
  10816. const struct ggml_compute_params * params,
  10817. const struct ggml_tensor * src0,
  10818. struct ggml_tensor * dst) {
  10819. switch (src0->type) {
  10820. case GGML_TYPE_F16:
  10821. {
  10822. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  10823. } break;
  10824. default:
  10825. {
  10826. GGML_ASSERT(false);
  10827. } break;
  10828. }
  10829. }
  10830. // ggml_compute_forward_add_rel_pos
  10831. static void ggml_compute_forward_add_rel_pos_f32(
  10832. const struct ggml_compute_params * params,
  10833. const struct ggml_tensor * src0,
  10834. const struct ggml_tensor * src1,
  10835. const struct ggml_tensor * src2,
  10836. struct ggml_tensor * dst) {
  10837. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  10838. if (!inplace && params->type == GGML_TASK_INIT) {
  10839. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  10840. return;
  10841. }
  10842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10843. return;
  10844. }
  10845. int64_t t0 = ggml_perf_time_us();
  10846. UNUSED(t0);
  10847. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  10848. float * src1_data = (float *) src1->data;
  10849. float * src2_data = (float *) src2->data;
  10850. float * dst_data = (float *) dst->data;
  10851. const int64_t ne10 = src1->ne[0];
  10852. const int64_t ne11 = src1->ne[1];
  10853. const int64_t ne12 = src1->ne[2];
  10854. const int64_t ne13 = src1->ne[3];
  10855. const int ith = params->ith;
  10856. const int nth = params->nth;
  10857. // total patches in dst
  10858. const int np = ne13;
  10859. // patches per thread
  10860. const int dp = (np + nth - 1)/nth;
  10861. // patch range for this thread
  10862. const int ip0 = dp*ith;
  10863. const int ip1 = MIN(ip0 + dp, np);
  10864. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  10865. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10866. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10867. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  10868. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  10869. const int64_t jp0 = jp1 + i10;
  10870. const float src1_e = src1_data[jp0];
  10871. const float src2_e = src2_data[jp0];
  10872. const int64_t jdh = jp0 * ne10;
  10873. const int64_t jdw = jdh - (ne10 - 1) * i10;
  10874. for (int64_t j = 0; j < ne10; ++j) {
  10875. dst_data[jdh + j ] += src2_e;
  10876. dst_data[jdw + j*ne10] += src1_e;
  10877. }
  10878. }
  10879. }
  10880. }
  10881. }
  10882. }
  10883. static void ggml_compute_forward_add_rel_pos(
  10884. const struct ggml_compute_params * params,
  10885. const struct ggml_tensor * src0,
  10886. const struct ggml_tensor * src1,
  10887. const struct ggml_tensor * src2,
  10888. struct ggml_tensor * dst) {
  10889. switch (src0->type) {
  10890. case GGML_TYPE_F32:
  10891. {
  10892. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  10893. } break;
  10894. default:
  10895. {
  10896. GGML_ASSERT(false);
  10897. } break;
  10898. }
  10899. }
  10900. // ggml_compute_forward_map_unary
  10901. static void ggml_compute_forward_map_unary_f32(
  10902. const struct ggml_compute_params * params,
  10903. const struct ggml_tensor * src0,
  10904. struct ggml_tensor * dst,
  10905. const ggml_unary_op_f32_t fun) {
  10906. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10908. return;
  10909. }
  10910. const int n = ggml_nrows(src0);
  10911. const int nc = src0->ne[0];
  10912. assert( dst->nb[0] == sizeof(float));
  10913. assert(src0->nb[0] == sizeof(float));
  10914. for (int i = 0; i < n; i++) {
  10915. fun(nc,
  10916. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10917. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10918. }
  10919. }
  10920. static void ggml_compute_forward_map_unary(
  10921. const struct ggml_compute_params * params,
  10922. const struct ggml_tensor * src0,
  10923. struct ggml_tensor * dst,
  10924. const ggml_unary_op_f32_t fun) {
  10925. switch (src0->type) {
  10926. case GGML_TYPE_F32:
  10927. {
  10928. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10929. } break;
  10930. default:
  10931. {
  10932. GGML_ASSERT(false);
  10933. } break;
  10934. }
  10935. }
  10936. // ggml_compute_forward_map_binary
  10937. static void ggml_compute_forward_map_binary_f32(
  10938. const struct ggml_compute_params * params,
  10939. const struct ggml_tensor * src0,
  10940. const struct ggml_tensor * src1,
  10941. struct ggml_tensor * dst,
  10942. const ggml_binary_op_f32_t fun) {
  10943. assert(params->ith == 0);
  10944. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10946. return;
  10947. }
  10948. const int n = ggml_nrows(src0);
  10949. const int nc = src0->ne[0];
  10950. assert( dst->nb[0] == sizeof(float));
  10951. assert(src0->nb[0] == sizeof(float));
  10952. assert(src1->nb[0] == sizeof(float));
  10953. for (int i = 0; i < n; i++) {
  10954. fun(nc,
  10955. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10956. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10957. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10958. }
  10959. }
  10960. static void ggml_compute_forward_map_binary(
  10961. const struct ggml_compute_params * params,
  10962. const struct ggml_tensor * src0,
  10963. const struct ggml_tensor * src1,
  10964. struct ggml_tensor * dst,
  10965. const ggml_binary_op_f32_t fun) {
  10966. switch (src0->type) {
  10967. case GGML_TYPE_F32:
  10968. {
  10969. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10970. } break;
  10971. default:
  10972. {
  10973. GGML_ASSERT(false);
  10974. } break;
  10975. }
  10976. }
  10977. // ggml_compute_forward_map_custom1
  10978. static void ggml_compute_forward_map_custom1_f32(
  10979. const struct ggml_compute_params * params,
  10980. const struct ggml_tensor * a,
  10981. struct ggml_tensor * dst,
  10982. const ggml_custom1_op_f32_t fun) {
  10983. assert(params->ith == 0);
  10984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10985. return;
  10986. }
  10987. fun(dst, a);
  10988. }
  10989. // ggml_compute_forward_map_custom2
  10990. static void ggml_compute_forward_map_custom2_f32(
  10991. const struct ggml_compute_params * params,
  10992. const struct ggml_tensor * a,
  10993. const struct ggml_tensor * b,
  10994. struct ggml_tensor * dst,
  10995. const ggml_custom2_op_f32_t fun) {
  10996. assert(params->ith == 0);
  10997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10998. return;
  10999. }
  11000. fun(dst, a, b);
  11001. }
  11002. // ggml_compute_forward_map_custom3
  11003. static void ggml_compute_forward_map_custom3_f32(
  11004. const struct ggml_compute_params * params,
  11005. const struct ggml_tensor * a,
  11006. const struct ggml_tensor * b,
  11007. const struct ggml_tensor * c,
  11008. struct ggml_tensor * dst,
  11009. const ggml_custom3_op_f32_t fun) {
  11010. assert(params->ith == 0);
  11011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11012. return;
  11013. }
  11014. fun(dst, a, b, c);
  11015. }
  11016. // ggml_compute_forward_map_custom1
  11017. static void ggml_compute_forward_map_custom1(
  11018. const struct ggml_compute_params * params,
  11019. const struct ggml_tensor * a,
  11020. struct ggml_tensor * dst) {
  11021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11022. return;
  11023. }
  11024. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11025. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11026. }
  11027. // ggml_compute_forward_map_custom2
  11028. static void ggml_compute_forward_map_custom2(
  11029. const struct ggml_compute_params * params,
  11030. const struct ggml_tensor * a,
  11031. const struct ggml_tensor * b,
  11032. struct ggml_tensor * dst) {
  11033. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11034. return;
  11035. }
  11036. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11037. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11038. }
  11039. // ggml_compute_forward_map_custom3
  11040. static void ggml_compute_forward_map_custom3(
  11041. const struct ggml_compute_params * params,
  11042. const struct ggml_tensor * a,
  11043. const struct ggml_tensor * b,
  11044. const struct ggml_tensor * c,
  11045. struct ggml_tensor * dst) {
  11046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11047. return;
  11048. }
  11049. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11050. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11051. }
  11052. // ggml_compute_forward_cross_entropy_loss
  11053. static void ggml_compute_forward_cross_entropy_loss_f32(
  11054. const struct ggml_compute_params * params,
  11055. const struct ggml_tensor * src0,
  11056. const struct ggml_tensor * src1,
  11057. struct ggml_tensor * dst) {
  11058. GGML_ASSERT(ggml_is_contiguous(src0));
  11059. GGML_ASSERT(ggml_is_contiguous(src1));
  11060. GGML_ASSERT(ggml_is_scalar(dst));
  11061. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11062. const int ith = params->ith;
  11063. const int nth = params->nth;
  11064. float * sums = (float *) params->wdata;
  11065. // TODO: handle transposed/permuted matrices
  11066. const int nc = src0->ne[0];
  11067. const int nr = ggml_nrows(src0);
  11068. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11069. if (params->type == GGML_TASK_INIT) {
  11070. if (ith == 0) {
  11071. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11072. }
  11073. return;
  11074. }
  11075. if (params->type == GGML_TASK_FINALIZE) {
  11076. if (ith == 0) {
  11077. float * dp = (float *) dst->data;
  11078. ggml_vec_sum_f32(nth, dp, sums);
  11079. dp[0] *= -1.0f / (float) nr;
  11080. }
  11081. return;
  11082. }
  11083. const double eps = 1e-9;
  11084. // rows per thread
  11085. const int dr = (nr + nth - 1)/nth;
  11086. // row range for this thread
  11087. const int ir0 = dr*ith;
  11088. const int ir1 = MIN(ir0 + dr, nr);
  11089. for (int i1 = ir0; i1 < ir1; i1++) {
  11090. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11091. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11092. float * st = ((float *) params->wdata) + nth + ith*nc;
  11093. #ifndef NDEBUG
  11094. for (int i = 0; i < nc; ++i) {
  11095. //printf("p[%d] = %f\n", i, p[i]);
  11096. assert(!isnan(s0[i]));
  11097. assert(!isnan(s1[i]));
  11098. }
  11099. #endif
  11100. // soft_max
  11101. ggml_float sum = 0.0;
  11102. {
  11103. float max = -INFINITY;
  11104. ggml_vec_max_f32(nc, &max, s0);
  11105. uint16_t scvt; UNUSED(scvt);
  11106. for (int i = 0; i < nc; i++) {
  11107. if (s0[i] == -INFINITY) {
  11108. st[i] = 0.0f;
  11109. } else {
  11110. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11111. const float s = s0[i] - max;
  11112. const float val = expf(s);
  11113. #else
  11114. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11115. memcpy(&scvt, &s, sizeof(scvt));
  11116. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11117. #endif
  11118. sum += (ggml_float)val;
  11119. st[i] = val;
  11120. }
  11121. }
  11122. assert(sum > 0.0);
  11123. // sum = 1.0/sum;
  11124. }
  11125. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11126. sum = (1.0 - eps) / sum;
  11127. ggml_vec_scale_f32(nc, st, sum);
  11128. ggml_vec_add1_f32(nc, st, st, eps);
  11129. ggml_vec_log_f32(nc, st, st);
  11130. ggml_vec_mul_f32(nc, st, st, s1);
  11131. float st_sum = 0;
  11132. ggml_vec_sum_f32(nc, &st_sum, st);
  11133. sums[ith] += st_sum;
  11134. #ifndef NDEBUG
  11135. for (int i = 0; i < nc; ++i) {
  11136. assert(!isnan(st[i]));
  11137. assert(!isinf(st[i]));
  11138. }
  11139. #endif
  11140. }
  11141. }
  11142. static void ggml_compute_forward_cross_entropy_loss(
  11143. const struct ggml_compute_params * params,
  11144. const struct ggml_tensor * src0,
  11145. const struct ggml_tensor * src1,
  11146. struct ggml_tensor * dst) {
  11147. switch (src0->type) {
  11148. case GGML_TYPE_F32:
  11149. {
  11150. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11151. } break;
  11152. default:
  11153. {
  11154. GGML_ASSERT(false);
  11155. } break;
  11156. }
  11157. }
  11158. // ggml_compute_forward_cross_entropy_loss_back
  11159. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11160. const struct ggml_compute_params * params,
  11161. const struct ggml_tensor * src0,
  11162. const struct ggml_tensor * src1,
  11163. const struct ggml_tensor * opt0,
  11164. struct ggml_tensor * dst) {
  11165. GGML_ASSERT(ggml_is_contiguous(dst));
  11166. GGML_ASSERT(ggml_is_contiguous(src0));
  11167. GGML_ASSERT(ggml_is_contiguous(src1));
  11168. GGML_ASSERT(ggml_is_contiguous(opt0));
  11169. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11170. const int64_t ith = params->ith;
  11171. const int64_t nth = params->nth;
  11172. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11173. return;
  11174. }
  11175. const double eps = 1e-9;
  11176. // TODO: handle transposed/permuted matrices
  11177. const int64_t nc = src0->ne[0];
  11178. const int64_t nr = ggml_nrows(src0);
  11179. // rows per thread
  11180. const int64_t dr = (nr + nth - 1)/nth;
  11181. // row range for this thread
  11182. const int64_t ir0 = dr*ith;
  11183. const int64_t ir1 = MIN(ir0 + dr, nr);
  11184. float * d = (float *) opt0->data;
  11185. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11186. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11187. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11188. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11189. #ifndef NDEBUG
  11190. for (int i = 0; i < nc; ++i) {
  11191. //printf("p[%d] = %f\n", i, p[i]);
  11192. assert(!isnan(s0[i]));
  11193. assert(!isnan(s1[i]));
  11194. }
  11195. #endif
  11196. // soft_max
  11197. ggml_float sum = 0.0;
  11198. {
  11199. float max = -INFINITY;
  11200. ggml_vec_max_f32(nc, &max, s0);
  11201. uint16_t scvt; UNUSED(scvt);
  11202. for (int i = 0; i < nc; i++) {
  11203. if (s0[i] == -INFINITY) {
  11204. ds0[i] = 0.0f;
  11205. } else {
  11206. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11207. const float s = s0[i] - max;
  11208. const float val = expf(s);
  11209. #else
  11210. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11211. memcpy(&scvt, &s, sizeof(scvt));
  11212. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11213. #endif
  11214. sum += (ggml_float)val;
  11215. ds0[i] = val;
  11216. }
  11217. }
  11218. assert(sum > 0.0);
  11219. sum = (1.0 - eps)/sum;
  11220. }
  11221. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11222. ggml_vec_scale_f32(nc, ds0, sum);
  11223. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11224. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11225. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11226. #ifndef NDEBUG
  11227. for (int i = 0; i < nc; ++i) {
  11228. assert(!isnan(ds0[i]));
  11229. assert(!isinf(ds0[i]));
  11230. }
  11231. #endif
  11232. }
  11233. }
  11234. static void ggml_compute_forward_cross_entropy_loss_back(
  11235. const struct ggml_compute_params * params,
  11236. const struct ggml_tensor * src0,
  11237. const struct ggml_tensor * src1,
  11238. const struct ggml_tensor * opt0,
  11239. struct ggml_tensor * dst) {
  11240. switch (src0->type) {
  11241. case GGML_TYPE_F32:
  11242. {
  11243. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11244. } break;
  11245. default:
  11246. {
  11247. GGML_ASSERT(false);
  11248. } break;
  11249. }
  11250. }
  11251. /////////////////////////////////
  11252. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11253. GGML_ASSERT(params);
  11254. if (tensor->op == GGML_OP_NONE) {
  11255. return;
  11256. }
  11257. #ifdef GGML_USE_CUBLAS
  11258. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11259. if (skip_cpu) {
  11260. return;
  11261. }
  11262. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11263. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11264. #endif // GGML_USE_CUBLAS
  11265. switch (tensor->op) {
  11266. case GGML_OP_DUP:
  11267. {
  11268. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11269. } break;
  11270. case GGML_OP_ADD:
  11271. {
  11272. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11273. } break;
  11274. case GGML_OP_ADD1:
  11275. {
  11276. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11277. } break;
  11278. case GGML_OP_ACC:
  11279. {
  11280. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11281. } break;
  11282. case GGML_OP_SUB:
  11283. {
  11284. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11285. } break;
  11286. case GGML_OP_MUL:
  11287. {
  11288. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11289. } break;
  11290. case GGML_OP_DIV:
  11291. {
  11292. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11293. } break;
  11294. case GGML_OP_SQR:
  11295. {
  11296. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11297. } break;
  11298. case GGML_OP_SQRT:
  11299. {
  11300. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11301. } break;
  11302. case GGML_OP_LOG:
  11303. {
  11304. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11305. } break;
  11306. case GGML_OP_SUM:
  11307. {
  11308. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11309. } break;
  11310. case GGML_OP_SUM_ROWS:
  11311. {
  11312. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11313. } break;
  11314. case GGML_OP_MEAN:
  11315. {
  11316. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11317. } break;
  11318. case GGML_OP_ARGMAX:
  11319. {
  11320. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11321. } break;
  11322. case GGML_OP_REPEAT:
  11323. {
  11324. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11325. } break;
  11326. case GGML_OP_REPEAT_BACK:
  11327. {
  11328. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11329. } break;
  11330. case GGML_OP_CONCAT:
  11331. {
  11332. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11333. } break;
  11334. case GGML_OP_SILU_BACK:
  11335. {
  11336. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11337. } break;
  11338. case GGML_OP_NORM:
  11339. {
  11340. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11341. } break;
  11342. case GGML_OP_RMS_NORM:
  11343. {
  11344. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11345. } break;
  11346. case GGML_OP_RMS_NORM_BACK:
  11347. {
  11348. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11349. } break;
  11350. case GGML_OP_GROUP_NORM:
  11351. {
  11352. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11353. } break;
  11354. case GGML_OP_MUL_MAT:
  11355. {
  11356. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11357. } break;
  11358. case GGML_OP_OUT_PROD:
  11359. {
  11360. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11361. } break;
  11362. case GGML_OP_SCALE:
  11363. {
  11364. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11365. } break;
  11366. case GGML_OP_SET:
  11367. {
  11368. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11369. } break;
  11370. case GGML_OP_CPY:
  11371. {
  11372. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11373. } break;
  11374. case GGML_OP_CONT:
  11375. {
  11376. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11377. } break;
  11378. case GGML_OP_RESHAPE:
  11379. {
  11380. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11381. } break;
  11382. case GGML_OP_VIEW:
  11383. {
  11384. ggml_compute_forward_view(params, tensor->src[0]);
  11385. } break;
  11386. case GGML_OP_PERMUTE:
  11387. {
  11388. ggml_compute_forward_permute(params, tensor->src[0]);
  11389. } break;
  11390. case GGML_OP_TRANSPOSE:
  11391. {
  11392. ggml_compute_forward_transpose(params, tensor->src[0]);
  11393. } break;
  11394. case GGML_OP_GET_ROWS:
  11395. {
  11396. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11397. } break;
  11398. case GGML_OP_GET_ROWS_BACK:
  11399. {
  11400. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11401. } break;
  11402. case GGML_OP_DIAG:
  11403. {
  11404. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11405. } break;
  11406. case GGML_OP_DIAG_MASK_INF:
  11407. {
  11408. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11409. } break;
  11410. case GGML_OP_DIAG_MASK_ZERO:
  11411. {
  11412. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11413. } break;
  11414. case GGML_OP_SOFT_MAX:
  11415. {
  11416. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  11417. } break;
  11418. case GGML_OP_SOFT_MAX_BACK:
  11419. {
  11420. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11421. } break;
  11422. case GGML_OP_ROPE:
  11423. {
  11424. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11425. } break;
  11426. case GGML_OP_ROPE_BACK:
  11427. {
  11428. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11429. } break;
  11430. case GGML_OP_ALIBI:
  11431. {
  11432. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11433. } break;
  11434. case GGML_OP_CLAMP:
  11435. {
  11436. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11437. } break;
  11438. case GGML_OP_CONV_TRANSPOSE_1D:
  11439. {
  11440. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11441. } break;
  11442. case GGML_OP_IM2COL:
  11443. {
  11444. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11445. } break;
  11446. case GGML_OP_CONV_TRANSPOSE_2D:
  11447. {
  11448. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11449. } break;
  11450. case GGML_OP_POOL_1D:
  11451. {
  11452. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11453. } break;
  11454. case GGML_OP_POOL_2D:
  11455. {
  11456. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11457. } break;
  11458. case GGML_OP_UPSCALE:
  11459. {
  11460. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11461. } break;
  11462. case GGML_OP_FLASH_ATTN:
  11463. {
  11464. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11465. GGML_ASSERT(t == 0 || t == 1);
  11466. const bool masked = t != 0;
  11467. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11468. } break;
  11469. case GGML_OP_FLASH_FF:
  11470. {
  11471. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11472. } break;
  11473. case GGML_OP_FLASH_ATTN_BACK:
  11474. {
  11475. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11476. GGML_ASSERT(t == 0 || t == 1);
  11477. bool masked = t != 0;
  11478. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11479. } break;
  11480. case GGML_OP_WIN_PART:
  11481. {
  11482. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11483. } break;
  11484. case GGML_OP_WIN_UNPART:
  11485. {
  11486. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11487. } break;
  11488. case GGML_OP_UNARY:
  11489. {
  11490. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11491. } break;
  11492. case GGML_OP_GET_REL_POS:
  11493. {
  11494. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11495. } break;
  11496. case GGML_OP_ADD_REL_POS:
  11497. {
  11498. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11499. } break;
  11500. case GGML_OP_MAP_UNARY:
  11501. {
  11502. ggml_unary_op_f32_t fun;
  11503. memcpy(&fun, tensor->op_params, sizeof(fun));
  11504. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11505. }
  11506. break;
  11507. case GGML_OP_MAP_BINARY:
  11508. {
  11509. ggml_binary_op_f32_t fun;
  11510. memcpy(&fun, tensor->op_params, sizeof(fun));
  11511. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11512. }
  11513. break;
  11514. case GGML_OP_MAP_CUSTOM1_F32:
  11515. {
  11516. ggml_custom1_op_f32_t fun;
  11517. memcpy(&fun, tensor->op_params, sizeof(fun));
  11518. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11519. }
  11520. break;
  11521. case GGML_OP_MAP_CUSTOM2_F32:
  11522. {
  11523. ggml_custom2_op_f32_t fun;
  11524. memcpy(&fun, tensor->op_params, sizeof(fun));
  11525. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11526. }
  11527. break;
  11528. case GGML_OP_MAP_CUSTOM3_F32:
  11529. {
  11530. ggml_custom3_op_f32_t fun;
  11531. memcpy(&fun, tensor->op_params, sizeof(fun));
  11532. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11533. }
  11534. break;
  11535. case GGML_OP_MAP_CUSTOM1:
  11536. {
  11537. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11538. }
  11539. break;
  11540. case GGML_OP_MAP_CUSTOM2:
  11541. {
  11542. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11543. }
  11544. break;
  11545. case GGML_OP_MAP_CUSTOM3:
  11546. {
  11547. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11548. }
  11549. break;
  11550. case GGML_OP_CROSS_ENTROPY_LOSS:
  11551. {
  11552. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  11553. }
  11554. break;
  11555. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11556. {
  11557. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11558. }
  11559. break;
  11560. case GGML_OP_NONE:
  11561. {
  11562. // nop
  11563. } break;
  11564. case GGML_OP_COUNT:
  11565. {
  11566. GGML_ASSERT(false);
  11567. } break;
  11568. }
  11569. }
  11570. ////////////////////////////////////////////////////////////////////////////////
  11571. static size_t ggml_hash_size(size_t min_sz) {
  11572. // next primes after powers of two
  11573. static const size_t primes[] = {
  11574. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  11575. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  11576. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  11577. 16777259, 33554467, 67108879, 134217757, 268435459,
  11578. 536870923, 1073741827, 2147483659
  11579. };
  11580. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  11581. // find the smallest prime that is larger or equal to min_sz
  11582. size_t l = 0;
  11583. size_t r = n_primes;
  11584. while (l < r) {
  11585. size_t m = (l + r)/2;
  11586. if (primes[m] < min_sz) {
  11587. l = m + 1;
  11588. } else {
  11589. r = m;
  11590. }
  11591. }
  11592. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  11593. return sz;
  11594. }
  11595. static size_t ggml_hash(const void * p) {
  11596. return (size_t)p;
  11597. }
  11598. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11599. size_t h = ggml_hash(key) % hash_set.size;
  11600. // linear probing
  11601. size_t i = h;
  11602. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  11603. i = (i + 1) % hash_set.size;
  11604. if (i == h) {
  11605. // visited all hash table entries -> not found
  11606. return GGML_HASHTABLE_FULL;
  11607. }
  11608. }
  11609. return i;
  11610. }
  11611. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11612. size_t i = ggml_hash_find(hash_set, key);
  11613. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  11614. }
  11615. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11616. size_t i = ggml_hash_find(hash_set, key);
  11617. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11618. if (hash_set.keys[i] == key) {
  11619. return GGML_HASHTABLE_ALREADY_EXISTS;
  11620. }
  11621. // insert
  11622. GGML_ASSERT(hash_set.keys[i] == NULL);
  11623. hash_set.keys[i] = key;
  11624. return i;
  11625. }
  11626. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11627. size_t i = ggml_hash_find(hash_set, key);
  11628. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11629. hash_set.keys[i] = key;
  11630. return i;
  11631. }
  11632. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  11633. size = ggml_hash_size(size);
  11634. struct ggml_hash_set result;
  11635. result.size = size;
  11636. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  11637. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  11638. return result;
  11639. }
  11640. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  11641. free(hash_set.keys);
  11642. }
  11643. struct hash_map {
  11644. struct ggml_hash_set set;
  11645. struct ggml_tensor ** vals;
  11646. };
  11647. static struct hash_map * ggml_new_hash_map(size_t size) {
  11648. struct hash_map * result = malloc(sizeof(struct hash_map));
  11649. result->set = ggml_hash_set_new(size);
  11650. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  11651. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  11652. return result;
  11653. }
  11654. static void ggml_hash_map_free(struct hash_map * map) {
  11655. ggml_hash_set_free(map->set);
  11656. free(map->vals);
  11657. free(map);
  11658. }
  11659. // gradient checkpointing
  11660. static struct ggml_tensor * ggml_recompute_graph_node(
  11661. struct ggml_context * ctx,
  11662. struct ggml_cgraph * graph,
  11663. struct hash_map * replacements,
  11664. struct ggml_tensor * node) {
  11665. if (node == NULL) {
  11666. return NULL;
  11667. }
  11668. if (node->is_param) {
  11669. return node;
  11670. }
  11671. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  11672. return node;
  11673. }
  11674. int count_children = 0;
  11675. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11676. if (node->src[k]) {
  11677. ++count_children;
  11678. }
  11679. }
  11680. if (count_children == 0) {
  11681. return node;
  11682. }
  11683. size_t i = ggml_hash_find(replacements->set, node);
  11684. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  11685. if (replacements->set.keys[i] == node) {
  11686. return replacements->vals[i];
  11687. }
  11688. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  11689. // insert clone into replacements
  11690. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  11691. replacements->set.keys[i] = node;
  11692. replacements->vals[i] = clone;
  11693. clone->op = node->op;
  11694. clone->grad = node->grad;
  11695. clone->is_param = node->is_param;
  11696. clone->extra = node->extra;
  11697. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  11698. clone->nb[k] = node->nb[k];
  11699. }
  11700. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11701. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  11702. }
  11703. if (node->view_src != NULL) {
  11704. clone->data = (node->view_src->data == NULL)
  11705. ? NULL // view_src not yet allocated
  11706. : (char *) node->view_src->data // view_src already allocated
  11707. + node->view_offs;
  11708. clone->view_src = node->view_src;
  11709. clone->view_offs = node->view_offs;
  11710. }
  11711. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  11712. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  11713. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  11714. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  11715. return clone;
  11716. }
  11717. void ggml_build_backward_gradient_checkpointing(
  11718. struct ggml_context * ctx,
  11719. struct ggml_cgraph * gf,
  11720. struct ggml_cgraph * gb,
  11721. struct ggml_cgraph * gb_tmp,
  11722. struct ggml_tensor * * checkpoints,
  11723. int n_checkpoints) {
  11724. ggml_graph_cpy(gf, gb_tmp);
  11725. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  11726. if (n_checkpoints <= 0) {
  11727. ggml_graph_cpy(gb_tmp, gb);
  11728. return;
  11729. }
  11730. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  11731. // insert checkpoints in replacements
  11732. for (int i = 0; i < n_checkpoints; ++i) {
  11733. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  11734. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  11735. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  11736. replacements->set.keys[k] = checkpoints[i];
  11737. replacements->vals[k] = checkpoints[i];
  11738. }
  11739. ggml_graph_cpy(gf, gb);
  11740. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  11741. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  11742. // by recomputing them from checkpoints
  11743. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  11744. struct ggml_tensor * node = gb_tmp->nodes[i];
  11745. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11746. // insert new tensors recomputing src, reusing already made replacements,
  11747. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  11748. // recurse for input tensors,
  11749. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  11750. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  11751. }
  11752. // insert rewritten backward node with replacements made into resulting backward graph gb
  11753. ggml_build_forward_expand(gb, node);
  11754. }
  11755. ggml_hash_map_free(replacements);
  11756. }
  11757. // functions to change gradients considering the case that input a might be initial gradient with zero value
  11758. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11759. if (ggml_hash_contains(zero_table, a)) {
  11760. return b;
  11761. } else {
  11762. return ggml_add_impl(ctx, a, b, false);
  11763. }
  11764. }
  11765. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  11766. if (ggml_hash_contains(zero_table, a)) {
  11767. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  11768. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  11769. } else {
  11770. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  11771. }
  11772. }
  11773. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11774. if (ggml_hash_contains(zero_table, a)) {
  11775. return ggml_repeat(ctx, b, a);
  11776. } else {
  11777. return ggml_add1_impl(ctx, a, b, false);
  11778. }
  11779. }
  11780. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11781. if (ggml_hash_contains(zero_table, a)) {
  11782. return ggml_neg(ctx, b);
  11783. } else {
  11784. return ggml_sub_impl(ctx, a, b, false);
  11785. }
  11786. }
  11787. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  11788. struct ggml_tensor * src0 = tensor->src[0];
  11789. struct ggml_tensor * src1 = tensor->src[1];
  11790. switch (tensor->op) {
  11791. case GGML_OP_DUP:
  11792. {
  11793. if (src0->grad) {
  11794. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11795. }
  11796. } break;
  11797. case GGML_OP_ADD:
  11798. {
  11799. if (src0->grad) {
  11800. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11801. }
  11802. if (src1->grad) {
  11803. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11804. }
  11805. } break;
  11806. case GGML_OP_ADD1:
  11807. {
  11808. if (src0->grad) {
  11809. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11810. }
  11811. if (src1->grad) {
  11812. src1->grad = ggml_add_or_set(ctx,
  11813. src1->grad,
  11814. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11815. zero_table);
  11816. }
  11817. } break;
  11818. case GGML_OP_ACC:
  11819. {
  11820. if (src0->grad) {
  11821. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11822. }
  11823. if (src1->grad) {
  11824. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  11825. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  11826. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  11827. const size_t offset = ((int32_t *) tensor->op_params)[3];
  11828. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  11829. tensor->grad,
  11830. src1->grad->ne[0],
  11831. src1->grad->ne[1],
  11832. src1->grad->ne[2],
  11833. src1->grad->ne[3],
  11834. nb1, nb2, nb3, offset);
  11835. src1->grad =
  11836. ggml_add_or_set(ctx,
  11837. src1->grad,
  11838. ggml_reshape(ctx,
  11839. ggml_cont(ctx, tensor_grad_view),
  11840. src1->grad),
  11841. zero_table);
  11842. }
  11843. } break;
  11844. case GGML_OP_SUB:
  11845. {
  11846. if (src0->grad) {
  11847. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11848. }
  11849. if (src1->grad) {
  11850. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11851. }
  11852. } break;
  11853. case GGML_OP_MUL:
  11854. {
  11855. if (src0->grad) {
  11856. src0->grad =
  11857. ggml_add_or_set(ctx,
  11858. src0->grad,
  11859. ggml_mul(ctx, src1, tensor->grad),
  11860. zero_table);
  11861. }
  11862. if (src1->grad) {
  11863. src1->grad =
  11864. ggml_add_or_set(ctx,
  11865. src1->grad,
  11866. ggml_mul(ctx, src0, tensor->grad),
  11867. zero_table);
  11868. }
  11869. } break;
  11870. case GGML_OP_DIV:
  11871. {
  11872. if (src0->grad) {
  11873. src0->grad =
  11874. ggml_add_or_set(ctx,
  11875. src0->grad,
  11876. ggml_div(ctx, tensor->grad, src1),
  11877. zero_table);
  11878. }
  11879. if (src1->grad) {
  11880. src1->grad =
  11881. ggml_sub_or_set(ctx,
  11882. src1->grad,
  11883. ggml_mul(ctx,
  11884. tensor->grad,
  11885. ggml_div(ctx, tensor, src1)),
  11886. zero_table);
  11887. }
  11888. } break;
  11889. case GGML_OP_SQR:
  11890. {
  11891. if (src0->grad) {
  11892. src0->grad =
  11893. ggml_add_or_set(ctx,
  11894. src0->grad,
  11895. ggml_scale(ctx,
  11896. ggml_mul(ctx, src0, tensor->grad),
  11897. ggml_new_f32(ctx, 2.0f)),
  11898. zero_table);
  11899. }
  11900. } break;
  11901. case GGML_OP_SQRT:
  11902. {
  11903. if (src0->grad) {
  11904. src0->grad =
  11905. ggml_add_or_set(ctx,
  11906. src0->grad,
  11907. ggml_scale(ctx,
  11908. ggml_div(ctx,
  11909. tensor->grad,
  11910. tensor),
  11911. ggml_new_f32(ctx, 0.5f)),
  11912. zero_table);
  11913. }
  11914. } break;
  11915. case GGML_OP_LOG:
  11916. {
  11917. if (src0->grad) {
  11918. src0->grad =
  11919. ggml_add_or_set(ctx,
  11920. src0->grad,
  11921. ggml_div(ctx,
  11922. tensor->grad,
  11923. src0),
  11924. zero_table);
  11925. }
  11926. } break;
  11927. case GGML_OP_SUM:
  11928. {
  11929. if (src0->grad) {
  11930. src0->grad =
  11931. ggml_add1_or_set(ctx,
  11932. src0->grad,
  11933. tensor->grad,
  11934. zero_table);
  11935. }
  11936. } break;
  11937. case GGML_OP_SUM_ROWS:
  11938. {
  11939. if (src0->grad) {
  11940. src0->grad =
  11941. ggml_add_or_set(ctx,
  11942. src0->grad,
  11943. ggml_repeat(ctx,
  11944. tensor->grad,
  11945. src0->grad),
  11946. zero_table);
  11947. }
  11948. } break;
  11949. case GGML_OP_MEAN:
  11950. case GGML_OP_ARGMAX:
  11951. {
  11952. GGML_ASSERT(false); // TODO: implement
  11953. } break;
  11954. case GGML_OP_REPEAT:
  11955. {
  11956. // necessary for llama
  11957. if (src0->grad) {
  11958. src0->grad = ggml_add_or_set(ctx,
  11959. src0->grad,
  11960. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  11961. zero_table);
  11962. }
  11963. } break;
  11964. case GGML_OP_REPEAT_BACK:
  11965. {
  11966. if (src0->grad) {
  11967. // TODO: test this
  11968. src0->grad = ggml_add_or_set(ctx,
  11969. src0->grad,
  11970. ggml_repeat(ctx, tensor->grad, src0->grad),
  11971. zero_table);
  11972. }
  11973. } break;
  11974. case GGML_OP_CONCAT:
  11975. {
  11976. GGML_ASSERT(false); // TODO: implement
  11977. } break;
  11978. case GGML_OP_SILU_BACK:
  11979. {
  11980. GGML_ASSERT(false); // TODO: not implemented
  11981. } break;
  11982. case GGML_OP_NORM:
  11983. {
  11984. GGML_ASSERT(false); // TODO: not implemented
  11985. } break;
  11986. case GGML_OP_RMS_NORM:
  11987. {
  11988. // necessary for llama
  11989. if (src0->grad) {
  11990. float eps;
  11991. memcpy(&eps, tensor->op_params, sizeof(float));
  11992. src0->grad = ggml_add_or_set(ctx,
  11993. src0->grad,
  11994. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  11995. zero_table);
  11996. }
  11997. } break;
  11998. case GGML_OP_RMS_NORM_BACK:
  11999. {
  12000. GGML_ASSERT(false); // TODO: not implemented
  12001. } break;
  12002. case GGML_OP_GROUP_NORM:
  12003. {
  12004. GGML_ASSERT(false); // TODO: not implemented
  12005. } break;
  12006. case GGML_OP_MUL_MAT:
  12007. {
  12008. // https://cs231n.github.io/optimization-2/#staged
  12009. // # forward pass
  12010. // s0 = np.random.randn(5, 10)
  12011. // s1 = np.random.randn(10, 3)
  12012. // t = s0.dot(s1)
  12013. // # now suppose we had the gradient on t from above in the circuit
  12014. // dt = np.random.randn(*t.shape) # same shape as t
  12015. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12016. // ds1 = t.T.dot(dt)
  12017. // tensor.shape [m,p,qq,rr]
  12018. // src0.shape [n,m,q1,r1]
  12019. // src1.shape [n,p,qq,rr]
  12020. // necessary for llama
  12021. if (src0->grad) {
  12022. struct ggml_tensor * s1_tg =
  12023. ggml_out_prod(ctx, // [n,m,qq,rr]
  12024. src1, // [n,p,qq,rr]
  12025. tensor->grad); // [m,p,qq,rr]
  12026. const int64_t qq = s1_tg->ne[2];
  12027. const int64_t rr = s1_tg->ne[3];
  12028. const int64_t q1 = src0->ne[2];
  12029. const int64_t r1 = src0->ne[3];
  12030. const bool ne2_broadcasted = qq > q1;
  12031. const bool ne3_broadcasted = rr > r1;
  12032. if (ne2_broadcasted || ne3_broadcasted) {
  12033. // sum broadcast repetitions of s1_tg into shape of src0
  12034. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12035. }
  12036. src0->grad =
  12037. ggml_add_or_set(ctx,
  12038. src0->grad, // [n,m,q1,r1]
  12039. s1_tg, // [n,m,q1,r1]
  12040. zero_table);
  12041. }
  12042. if (src1->grad) {
  12043. src1->grad =
  12044. ggml_add_or_set(ctx,
  12045. src1->grad, // [n,p,qq,rr]
  12046. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12047. // ggml_cont(ctx, // [m,n,q1,r1]
  12048. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12049. // tensor->grad), // [m,p,qq,rr]
  12050. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12051. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12052. // // and then use ggml_out_prod
  12053. ggml_out_prod(ctx, // [n,p,qq,rr]
  12054. src0, // [n,m,q1,r1]
  12055. ggml_transpose(ctx, // [p,m,qq,rr]
  12056. tensor->grad)), // [m,p,qq,rr]
  12057. zero_table);
  12058. }
  12059. } break;
  12060. case GGML_OP_OUT_PROD:
  12061. {
  12062. GGML_ASSERT(false); // TODO: not implemented
  12063. } break;
  12064. case GGML_OP_SCALE:
  12065. {
  12066. // necessary for llama
  12067. if (src0->grad) {
  12068. src0->grad =
  12069. ggml_add_or_set(ctx,
  12070. src0->grad,
  12071. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12072. zero_table);
  12073. }
  12074. if (src1->grad) {
  12075. src1->grad =
  12076. ggml_add_or_set(ctx,
  12077. src1->grad,
  12078. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12079. zero_table);
  12080. }
  12081. } break;
  12082. case GGML_OP_SET:
  12083. {
  12084. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12085. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12086. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12087. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12088. struct ggml_tensor * tensor_grad_view = NULL;
  12089. if (src0->grad || src1->grad) {
  12090. GGML_ASSERT(src0->type == tensor->type);
  12091. GGML_ASSERT(tensor->grad->type == tensor->type);
  12092. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12093. tensor_grad_view = ggml_view_4d(ctx,
  12094. tensor->grad,
  12095. src1->grad->ne[0],
  12096. src1->grad->ne[1],
  12097. src1->grad->ne[2],
  12098. src1->grad->ne[3],
  12099. nb1, nb2, nb3, offset);
  12100. }
  12101. if (src0->grad) {
  12102. src0->grad = ggml_add_or_set(ctx,
  12103. src0->grad,
  12104. ggml_acc_impl(ctx,
  12105. tensor->grad,
  12106. ggml_neg(ctx, tensor_grad_view),
  12107. nb1, nb2, nb3, offset, false),
  12108. zero_table);
  12109. }
  12110. if (src1->grad) {
  12111. src1->grad =
  12112. ggml_add_or_set(ctx,
  12113. src1->grad,
  12114. ggml_reshape(ctx,
  12115. ggml_cont(ctx, tensor_grad_view),
  12116. src1->grad),
  12117. zero_table);
  12118. }
  12119. } break;
  12120. case GGML_OP_CPY:
  12121. {
  12122. // necessary for llama
  12123. // cpy overwrites value of src1 by src0 and returns view(src1)
  12124. // the overwriting is mathematically equivalent to:
  12125. // tensor = src0 * 1 + src1 * 0
  12126. if (src0->grad) {
  12127. // dsrc0 = dtensor * 1
  12128. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12129. }
  12130. if (src1->grad) {
  12131. // dsrc1 = dtensor * 0 -> noop
  12132. }
  12133. } break;
  12134. case GGML_OP_CONT:
  12135. {
  12136. // same as cpy
  12137. if (src0->grad) {
  12138. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12139. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12140. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12141. }
  12142. } break;
  12143. case GGML_OP_RESHAPE:
  12144. {
  12145. // necessary for llama
  12146. if (src0->grad) {
  12147. src0->grad =
  12148. ggml_add_or_set(ctx, src0->grad,
  12149. ggml_reshape(ctx,
  12150. ggml_is_contiguous(tensor->grad)
  12151. ? tensor->grad
  12152. : ggml_cont(ctx, tensor->grad),
  12153. src0->grad),
  12154. zero_table);
  12155. }
  12156. } break;
  12157. case GGML_OP_VIEW:
  12158. {
  12159. // necessary for llama
  12160. if (src0->grad) {
  12161. size_t offset;
  12162. memcpy(&offset, tensor->op_params, sizeof(offset));
  12163. size_t nb1 = tensor->nb[1];
  12164. size_t nb2 = tensor->nb[2];
  12165. size_t nb3 = tensor->nb[3];
  12166. if (src0->type != src0->grad->type) {
  12167. // gradient is typically F32, but src0 could be other type
  12168. size_t ng = ggml_element_size(src0->grad);
  12169. size_t n0 = ggml_element_size(src0);
  12170. GGML_ASSERT(offset % n0 == 0);
  12171. GGML_ASSERT(nb1 % n0 == 0);
  12172. GGML_ASSERT(nb2 % n0 == 0);
  12173. GGML_ASSERT(nb3 % n0 == 0);
  12174. offset = (offset / n0) * ng;
  12175. nb1 = (nb1 / n0) * ng;
  12176. nb2 = (nb2 / n0) * ng;
  12177. nb3 = (nb3 / n0) * ng;
  12178. }
  12179. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12180. }
  12181. } break;
  12182. case GGML_OP_PERMUTE:
  12183. {
  12184. // necessary for llama
  12185. if (src0->grad) {
  12186. int32_t * axes = (int32_t *) tensor->op_params;
  12187. int axis0 = axes[0] & 0x3;
  12188. int axis1 = axes[1] & 0x3;
  12189. int axis2 = axes[2] & 0x3;
  12190. int axis3 = axes[3] & 0x3;
  12191. int axes_backward[4] = {0,0,0,0};
  12192. axes_backward[axis0] = 0;
  12193. axes_backward[axis1] = 1;
  12194. axes_backward[axis2] = 2;
  12195. axes_backward[axis3] = 3;
  12196. src0->grad =
  12197. ggml_add_or_set(ctx, src0->grad,
  12198. ggml_permute(ctx,
  12199. tensor->grad,
  12200. axes_backward[0],
  12201. axes_backward[1],
  12202. axes_backward[2],
  12203. axes_backward[3]),
  12204. zero_table);
  12205. }
  12206. } break;
  12207. case GGML_OP_TRANSPOSE:
  12208. {
  12209. // necessary for llama
  12210. if (src0->grad) {
  12211. src0->grad =
  12212. ggml_add_or_set(ctx, src0->grad,
  12213. ggml_transpose(ctx, tensor->grad),
  12214. zero_table);
  12215. }
  12216. } break;
  12217. case GGML_OP_GET_ROWS:
  12218. {
  12219. // necessary for llama (only for tokenizer)
  12220. if (src0->grad) {
  12221. src0->grad =
  12222. ggml_add_or_set(ctx, src0->grad,
  12223. // last ggml_get_rows_back argument src0->grad is only
  12224. // necessary to setup correct output shape
  12225. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12226. zero_table);
  12227. }
  12228. if (src1->grad) {
  12229. // noop
  12230. }
  12231. } break;
  12232. case GGML_OP_GET_ROWS_BACK:
  12233. {
  12234. GGML_ASSERT(false); // TODO: not implemented
  12235. } break;
  12236. case GGML_OP_DIAG:
  12237. {
  12238. GGML_ASSERT(false); // TODO: not implemented
  12239. } break;
  12240. case GGML_OP_DIAG_MASK_INF:
  12241. {
  12242. // necessary for llama
  12243. if (src0->grad) {
  12244. const int n_past = ((int32_t *) tensor->op_params)[0];
  12245. src0->grad =
  12246. ggml_add_or_set(ctx, src0->grad,
  12247. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12248. zero_table);
  12249. }
  12250. } break;
  12251. case GGML_OP_DIAG_MASK_ZERO:
  12252. {
  12253. // necessary for llama
  12254. if (src0->grad) {
  12255. const int n_past = ((int32_t *) tensor->op_params)[0];
  12256. src0->grad =
  12257. ggml_add_or_set(ctx, src0->grad,
  12258. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12259. zero_table);
  12260. }
  12261. } break;
  12262. case GGML_OP_SOFT_MAX:
  12263. {
  12264. // necessary for llama
  12265. if (src0->grad) {
  12266. src0->grad =
  12267. ggml_add_or_set(ctx, src0->grad,
  12268. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12269. zero_table);
  12270. }
  12271. } break;
  12272. case GGML_OP_SOFT_MAX_BACK:
  12273. {
  12274. GGML_ASSERT(false); // TODO: not implemented
  12275. } break;
  12276. case GGML_OP_ROPE:
  12277. {
  12278. // necessary for llama
  12279. if (src0->grad) {
  12280. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12281. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12282. const int mode = ((int32_t *) tensor->op_params)[2];
  12283. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12284. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12285. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12286. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12287. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12288. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12289. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12290. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12291. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12292. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12293. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12294. src0->grad = ggml_add_or_set(ctx,
  12295. src0->grad,
  12296. ggml_rope_back(ctx,
  12297. tensor->grad,
  12298. src1,
  12299. n_dims,
  12300. mode,
  12301. n_ctx,
  12302. n_orig_ctx,
  12303. freq_base,
  12304. freq_scale,
  12305. ext_factor,
  12306. attn_factor,
  12307. beta_fast,
  12308. beta_slow,
  12309. xpos_base,
  12310. xpos_down),
  12311. zero_table);
  12312. }
  12313. } break;
  12314. case GGML_OP_ROPE_BACK:
  12315. {
  12316. if (src0->grad) {
  12317. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12318. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12319. const int mode = ((int32_t *) tensor->op_params)[2];
  12320. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12321. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12322. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12323. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12324. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12325. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12326. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12327. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12328. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12329. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12330. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12331. src0->grad = ggml_add_or_set(ctx,
  12332. src0->grad,
  12333. ggml_rope_impl(ctx,
  12334. tensor->grad,
  12335. src1,
  12336. n_dims,
  12337. mode,
  12338. n_ctx,
  12339. n_orig_ctx,
  12340. freq_base,
  12341. freq_scale,
  12342. ext_factor,
  12343. attn_factor,
  12344. beta_fast,
  12345. beta_slow,
  12346. xpos_base,
  12347. xpos_down,
  12348. false),
  12349. zero_table);
  12350. }
  12351. } break;
  12352. case GGML_OP_ALIBI:
  12353. {
  12354. GGML_ASSERT(false); // TODO: not implemented
  12355. } break;
  12356. case GGML_OP_CLAMP:
  12357. {
  12358. GGML_ASSERT(false); // TODO: not implemented
  12359. } break;
  12360. case GGML_OP_CONV_TRANSPOSE_1D:
  12361. {
  12362. GGML_ASSERT(false); // TODO: not implemented
  12363. } break;
  12364. case GGML_OP_IM2COL:
  12365. {
  12366. GGML_ASSERT(false); // TODO: not implemented
  12367. } break;
  12368. case GGML_OP_CONV_TRANSPOSE_2D:
  12369. {
  12370. GGML_ASSERT(false); // TODO: not implemented
  12371. } break;
  12372. case GGML_OP_POOL_1D:
  12373. {
  12374. GGML_ASSERT(false); // TODO: not implemented
  12375. } break;
  12376. case GGML_OP_POOL_2D:
  12377. {
  12378. GGML_ASSERT(false); // TODO: not implemented
  12379. } break;
  12380. case GGML_OP_UPSCALE:
  12381. {
  12382. GGML_ASSERT(false); // TODO: not implemented
  12383. } break;
  12384. case GGML_OP_FLASH_ATTN:
  12385. {
  12386. struct ggml_tensor * flash_grad = NULL;
  12387. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12388. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12389. GGML_ASSERT(t == 0 || t == 1);
  12390. bool masked = t != 0;
  12391. flash_grad =
  12392. ggml_flash_attn_back(ctx,
  12393. src0,
  12394. src1,
  12395. tensor->src[2],
  12396. tensor->grad,
  12397. masked);
  12398. }
  12399. struct ggml_tensor * src2 = tensor->src[2];
  12400. const int64_t elem_q = ggml_nelements(src0);
  12401. const int64_t elem_k = ggml_nelements(src1);
  12402. const int64_t elem_v = ggml_nelements(src2);
  12403. enum ggml_type result_type = flash_grad->type;
  12404. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12405. const size_t tsize = ggml_type_size(result_type);
  12406. const size_t offs_q = 0;
  12407. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12408. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12409. if (src0->grad) {
  12410. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12411. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12412. src0->grad = ggml_add_or_set(ctx,
  12413. src0->grad,
  12414. grad_q,
  12415. zero_table);
  12416. }
  12417. if (src1->grad) {
  12418. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12419. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12420. src1->grad = ggml_add_or_set(ctx,
  12421. src1->grad,
  12422. grad_k,
  12423. zero_table);
  12424. }
  12425. if (src2->grad) {
  12426. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12427. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12428. src2->grad = ggml_add_or_set(ctx,
  12429. src2->grad,
  12430. grad_v,
  12431. zero_table);
  12432. }
  12433. } break;
  12434. case GGML_OP_FLASH_FF:
  12435. {
  12436. GGML_ASSERT(false); // not supported
  12437. } break;
  12438. case GGML_OP_FLASH_ATTN_BACK:
  12439. {
  12440. GGML_ASSERT(false); // not supported
  12441. } break;
  12442. case GGML_OP_WIN_PART:
  12443. case GGML_OP_WIN_UNPART:
  12444. case GGML_OP_UNARY:
  12445. {
  12446. switch (ggml_get_unary_op(tensor)) {
  12447. case GGML_UNARY_OP_ABS:
  12448. {
  12449. if (src0->grad) {
  12450. src0->grad =
  12451. ggml_add_or_set(ctx,
  12452. src0->grad,
  12453. ggml_mul(ctx,
  12454. ggml_sgn(ctx, src0),
  12455. tensor->grad),
  12456. zero_table);
  12457. }
  12458. } break;
  12459. case GGML_UNARY_OP_SGN:
  12460. {
  12461. if (src0->grad) {
  12462. // noop
  12463. }
  12464. } break;
  12465. case GGML_UNARY_OP_NEG:
  12466. {
  12467. if (src0->grad) {
  12468. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12469. }
  12470. } break;
  12471. case GGML_UNARY_OP_STEP:
  12472. {
  12473. if (src0->grad) {
  12474. // noop
  12475. }
  12476. } break;
  12477. case GGML_UNARY_OP_TANH:
  12478. {
  12479. GGML_ASSERT(false); // TODO: not implemented
  12480. } break;
  12481. case GGML_UNARY_OP_ELU:
  12482. {
  12483. GGML_ASSERT(false); // TODO: not implemented
  12484. } break;
  12485. case GGML_UNARY_OP_RELU:
  12486. {
  12487. if (src0->grad) {
  12488. src0->grad = ggml_add_or_set(ctx,
  12489. src0->grad,
  12490. ggml_mul(ctx,
  12491. ggml_step(ctx, src0),
  12492. tensor->grad),
  12493. zero_table);
  12494. }
  12495. } break;
  12496. case GGML_UNARY_OP_GELU:
  12497. {
  12498. GGML_ASSERT(false); // TODO: not implemented
  12499. } break;
  12500. case GGML_UNARY_OP_GELU_QUICK:
  12501. {
  12502. GGML_ASSERT(false); // TODO: not implemented
  12503. } break;
  12504. case GGML_UNARY_OP_SILU:
  12505. {
  12506. // necessary for llama
  12507. if (src0->grad) {
  12508. src0->grad = ggml_add_or_set(ctx,
  12509. src0->grad,
  12510. ggml_silu_back(ctx, src0, tensor->grad),
  12511. zero_table);
  12512. }
  12513. } break;
  12514. default:
  12515. GGML_ASSERT(false);
  12516. }
  12517. } break;
  12518. case GGML_OP_GET_REL_POS:
  12519. case GGML_OP_ADD_REL_POS:
  12520. case GGML_OP_MAP_UNARY:
  12521. case GGML_OP_MAP_BINARY:
  12522. case GGML_OP_MAP_CUSTOM1_F32:
  12523. case GGML_OP_MAP_CUSTOM2_F32:
  12524. case GGML_OP_MAP_CUSTOM3_F32:
  12525. case GGML_OP_MAP_CUSTOM1:
  12526. case GGML_OP_MAP_CUSTOM2:
  12527. case GGML_OP_MAP_CUSTOM3:
  12528. {
  12529. GGML_ASSERT(false); // not supported
  12530. } break;
  12531. case GGML_OP_CROSS_ENTROPY_LOSS:
  12532. {
  12533. if (src0->grad) {
  12534. src0->grad = ggml_add_or_set(ctx,
  12535. src0->grad,
  12536. ggml_cross_entropy_loss_back(ctx,
  12537. src0,
  12538. src1,
  12539. tensor->grad),
  12540. zero_table);
  12541. }
  12542. } break;
  12543. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12544. {
  12545. GGML_ASSERT(false); // not supported
  12546. } break;
  12547. case GGML_OP_NONE:
  12548. {
  12549. // nop
  12550. } break;
  12551. case GGML_OP_COUNT:
  12552. {
  12553. GGML_ASSERT(false);
  12554. } break;
  12555. }
  12556. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12557. if (tensor->src[i] && tensor->src[i]->grad) {
  12558. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  12559. }
  12560. }
  12561. }
  12562. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12563. if (node->grad == NULL) {
  12564. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12565. // it can also happen during forward pass, if the user performs computations with constants
  12566. if (node->op != GGML_OP_NONE) {
  12567. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12568. }
  12569. }
  12570. // check if already visited
  12571. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  12572. return;
  12573. }
  12574. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12575. const int k =
  12576. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  12577. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  12578. /* unknown order, just fall back to using i*/ i;
  12579. if (node->src[k]) {
  12580. ggml_visit_parents(cgraph, node->src[k]);
  12581. }
  12582. }
  12583. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12584. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12585. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  12586. if (strlen(node->name) == 0) {
  12587. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12588. }
  12589. cgraph->leafs[cgraph->n_leafs] = node;
  12590. cgraph->n_leafs++;
  12591. } else {
  12592. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  12593. if (strlen(node->name) == 0) {
  12594. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12595. }
  12596. cgraph->nodes[cgraph->n_nodes] = node;
  12597. if (cgraph->grads) {
  12598. cgraph->grads[cgraph->n_nodes] = node->grad;
  12599. }
  12600. cgraph->n_nodes++;
  12601. }
  12602. }
  12603. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12604. if (!expand) {
  12605. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  12606. ggml_graph_clear(cgraph);
  12607. }
  12608. const int n0 = cgraph->n_nodes;
  12609. UNUSED(n0);
  12610. ggml_visit_parents(cgraph, tensor);
  12611. const int n_new = cgraph->n_nodes - n0;
  12612. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12613. if (n_new > 0) {
  12614. // the last added node should always be starting point
  12615. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12616. }
  12617. }
  12618. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12619. ggml_build_forward_impl(cgraph, tensor, true);
  12620. }
  12621. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  12622. GGML_ASSERT(gf->n_nodes > 0);
  12623. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12624. if (keep) {
  12625. for (int i = 0; i < gf->n_nodes; i++) {
  12626. struct ggml_tensor * node = gf->nodes[i];
  12627. if (node->grad) {
  12628. node->grad = ggml_dup_tensor(ctx, node);
  12629. gf->grads[i] = node->grad;
  12630. }
  12631. }
  12632. }
  12633. // remember original gradients which start with zero values
  12634. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  12635. for (int i = 0; i < gf->n_nodes; i++) {
  12636. if (gf->grads[i]) {
  12637. ggml_hash_insert(zero_table, gf->grads[i]);
  12638. }
  12639. }
  12640. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12641. struct ggml_tensor * node = gf->nodes[i];
  12642. // inplace operations to add gradients are not created by ggml_compute_backward
  12643. // use allocator to automatically make inplace operations
  12644. if (node->grad) {
  12645. ggml_compute_backward(ctx, node, zero_table);
  12646. }
  12647. }
  12648. for (int i = 0; i < gf->n_nodes; i++) {
  12649. struct ggml_tensor * node = gf->nodes[i];
  12650. if (node->is_param) {
  12651. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12652. ggml_build_forward_expand(gb, node->grad);
  12653. }
  12654. }
  12655. ggml_hash_set_free(zero_table);
  12656. }
  12657. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  12658. size_t nbytes = sizeof(struct ggml_cgraph);
  12659. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  12660. if (grads) {
  12661. nbytes += size * sizeof(struct ggml_tensor *); // grads
  12662. }
  12663. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  12664. return nbytes;
  12665. }
  12666. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  12667. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  12668. }
  12669. size_t ggml_graph_overhead(void) {
  12670. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  12671. }
  12672. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  12673. const size_t obj_size = ggml_graph_nbytes(size, grads);
  12674. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12675. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12676. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  12677. size_t hash_size = ggml_hash_size(size * 2);
  12678. struct ggml_tensor ** nodes_ptr = data_start;
  12679. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  12680. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  12681. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  12682. // check that we allocated the correct amount of memory
  12683. assert(obj_size == (size_t) (
  12684. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  12685. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  12686. *cgraph = (struct ggml_cgraph) {
  12687. /*.size =*/ size,
  12688. /*.n_nodes =*/ 0,
  12689. /*.n_leafs =*/ 0,
  12690. /*.nodes =*/ nodes_ptr,
  12691. /*.grads =*/ grads_ptr,
  12692. /*.leafs =*/ leafs_ptr,
  12693. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  12694. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  12695. /*.perf_runs =*/ 0,
  12696. /*.perf_cycles =*/ 0,
  12697. /*.perf_time_us =*/ 0,
  12698. };
  12699. return cgraph;
  12700. }
  12701. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  12702. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  12703. }
  12704. struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgraph * cgraph0, int i0, int i1) {
  12705. const size_t obj_size = sizeof(struct ggml_cgraph);
  12706. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12707. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12708. *cgraph = (struct ggml_cgraph) {
  12709. /*.size =*/ 0,
  12710. /*.n_nodes =*/ i1 - i0,
  12711. /*.n_leafs =*/ 0,
  12712. /*.nodes =*/ cgraph0->nodes + i0,
  12713. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  12714. /*.leafs =*/ NULL,
  12715. /*.hash_table =*/ { 0, NULL },
  12716. /*.order =*/ cgraph0->order,
  12717. /*.perf_runs =*/ 0,
  12718. /*.perf_cycles =*/ 0,
  12719. /*.perf_time_us =*/ 0,
  12720. };
  12721. return cgraph;
  12722. }
  12723. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  12724. GGML_ASSERT(dst->size >= src->n_leafs);
  12725. GGML_ASSERT(dst->size >= src->n_nodes);
  12726. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  12727. dst->n_leafs = src->n_leafs;
  12728. dst->n_nodes = src->n_nodes;
  12729. dst->order = src->order;
  12730. for (int i = 0; i < src->n_leafs; ++i) {
  12731. dst->leafs[i] = src->leafs[i];
  12732. }
  12733. for (int i = 0; i < src->n_nodes; ++i) {
  12734. dst->nodes[i] = src->nodes[i];
  12735. }
  12736. if (src->grads) {
  12737. GGML_ASSERT(dst->grads != NULL);
  12738. for (int i = 0; i < src->n_nodes; ++i) {
  12739. dst->grads[i] = src->grads[i];
  12740. }
  12741. }
  12742. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  12743. if (src->visited_hash_table.keys[i]) {
  12744. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  12745. }
  12746. }
  12747. }
  12748. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12749. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  12750. ggml_graph_cpy(cgraph, result);
  12751. return result;
  12752. }
  12753. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12754. GGML_ASSERT(cgraph->grads != NULL);
  12755. for (int i = 0; i < cgraph->n_nodes; i++) {
  12756. struct ggml_tensor * grad = cgraph->grads[i];
  12757. if (grad) {
  12758. ggml_set_zero(grad);
  12759. }
  12760. }
  12761. }
  12762. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  12763. cgraph->n_leafs = 0;
  12764. cgraph->n_nodes = 0;
  12765. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  12766. }
  12767. //
  12768. // thread data
  12769. //
  12770. // synchronization is done via busy loops
  12771. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12772. //
  12773. #ifdef __APPLE__
  12774. //#include <os/lock.h>
  12775. //
  12776. //typedef os_unfair_lock ggml_lock_t;
  12777. //
  12778. //#define ggml_lock_init(x) UNUSED(x)
  12779. //#define ggml_lock_destroy(x) UNUSED(x)
  12780. //#define ggml_lock_lock os_unfair_lock_lock
  12781. //#define ggml_lock_unlock os_unfair_lock_unlock
  12782. //
  12783. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12784. typedef int ggml_lock_t;
  12785. #define ggml_lock_init(x) UNUSED(x)
  12786. #define ggml_lock_destroy(x) UNUSED(x)
  12787. #define ggml_lock_lock(x) UNUSED(x)
  12788. #define ggml_lock_unlock(x) UNUSED(x)
  12789. #define GGML_LOCK_INITIALIZER 0
  12790. typedef pthread_t ggml_thread_t;
  12791. #define ggml_thread_create pthread_create
  12792. #define ggml_thread_join pthread_join
  12793. #else
  12794. //typedef pthread_spinlock_t ggml_lock_t;
  12795. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12796. //#define ggml_lock_destroy pthread_spin_destroy
  12797. //#define ggml_lock_lock pthread_spin_lock
  12798. //#define ggml_lock_unlock pthread_spin_unlock
  12799. typedef int ggml_lock_t;
  12800. #define ggml_lock_init(x) UNUSED(x)
  12801. #define ggml_lock_destroy(x) UNUSED(x)
  12802. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12803. #define ggml_lock_lock(x) _mm_pause()
  12804. #else
  12805. #define ggml_lock_lock(x) UNUSED(x)
  12806. #endif
  12807. #define ggml_lock_unlock(x) UNUSED(x)
  12808. #define GGML_LOCK_INITIALIZER 0
  12809. typedef pthread_t ggml_thread_t;
  12810. #define ggml_thread_create pthread_create
  12811. #define ggml_thread_join pthread_join
  12812. #endif
  12813. // Android's libc implementation "bionic" does not support setting affinity
  12814. #if defined(__linux__) && !defined(__BIONIC__)
  12815. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  12816. if (!ggml_is_numa()) {
  12817. return;
  12818. }
  12819. // run thread on node_num thread_n / (threads per node)
  12820. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  12821. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  12822. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  12823. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  12824. CPU_ZERO_S(setsize, cpus);
  12825. for (size_t i = 0; i < node->n_cpus; ++i) {
  12826. CPU_SET_S(node->cpus[i], setsize, cpus);
  12827. }
  12828. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  12829. if (rv) {
  12830. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  12831. strerror(rv));
  12832. }
  12833. CPU_FREE(cpus);
  12834. }
  12835. static void clear_numa_thread_affinity(void) {
  12836. if (!ggml_is_numa()) {
  12837. return;
  12838. }
  12839. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  12840. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  12841. CPU_ZERO_S(setsize, cpus);
  12842. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  12843. CPU_SET_S(i, setsize, cpus);
  12844. }
  12845. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  12846. if (rv) {
  12847. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  12848. strerror(rv));
  12849. }
  12850. CPU_FREE(cpus);
  12851. }
  12852. #else
  12853. // TODO: Windows etc.
  12854. // (the linux implementation may also work on BSD, someone should test)
  12855. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  12856. static void clear_numa_thread_affinity(void) {}
  12857. #endif
  12858. struct ggml_compute_state_shared {
  12859. const struct ggml_cgraph * cgraph;
  12860. const struct ggml_cplan * cplan;
  12861. int64_t perf_node_start_cycles;
  12862. int64_t perf_node_start_time_us;
  12863. const int n_threads;
  12864. // synchronization primitives
  12865. atomic_int n_active; // num active threads
  12866. atomic_int node_n; // active graph node
  12867. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  12868. void * abort_callback_data;
  12869. };
  12870. struct ggml_compute_state {
  12871. ggml_thread_t thrd;
  12872. int ith;
  12873. struct ggml_compute_state_shared * shared;
  12874. };
  12875. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  12876. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  12877. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  12878. node->perf_runs++;
  12879. node->perf_cycles += cycles_cur;
  12880. node->perf_time_us += time_us_cur;
  12881. }
  12882. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  12883. int n_tasks = 0;
  12884. switch (node->op) {
  12885. case GGML_OP_CPY:
  12886. case GGML_OP_DUP:
  12887. case GGML_OP_ADD:
  12888. case GGML_OP_ADD1:
  12889. case GGML_OP_ACC:
  12890. {
  12891. n_tasks = n_threads;
  12892. } break;
  12893. case GGML_OP_SUB:
  12894. case GGML_OP_DIV:
  12895. case GGML_OP_SQR:
  12896. case GGML_OP_SQRT:
  12897. case GGML_OP_LOG:
  12898. case GGML_OP_SUM:
  12899. case GGML_OP_SUM_ROWS:
  12900. case GGML_OP_MEAN:
  12901. case GGML_OP_ARGMAX:
  12902. case GGML_OP_REPEAT:
  12903. case GGML_OP_REPEAT_BACK:
  12904. {
  12905. n_tasks = 1;
  12906. } break;
  12907. case GGML_OP_UNARY:
  12908. switch (ggml_get_unary_op(node)) {
  12909. case GGML_UNARY_OP_ABS:
  12910. case GGML_UNARY_OP_SGN:
  12911. case GGML_UNARY_OP_NEG:
  12912. case GGML_UNARY_OP_STEP:
  12913. case GGML_UNARY_OP_TANH:
  12914. case GGML_UNARY_OP_ELU:
  12915. case GGML_UNARY_OP_RELU:
  12916. case GGML_UNARY_OP_LEAKY:
  12917. {
  12918. n_tasks = 1;
  12919. } break;
  12920. case GGML_UNARY_OP_GELU:
  12921. case GGML_UNARY_OP_GELU_QUICK:
  12922. case GGML_UNARY_OP_SILU:
  12923. {
  12924. n_tasks = n_threads;
  12925. } break;
  12926. }
  12927. break;
  12928. case GGML_OP_SILU_BACK:
  12929. case GGML_OP_MUL:
  12930. case GGML_OP_NORM:
  12931. case GGML_OP_RMS_NORM:
  12932. case GGML_OP_RMS_NORM_BACK:
  12933. case GGML_OP_GROUP_NORM:
  12934. case GGML_OP_CONCAT:
  12935. {
  12936. n_tasks = n_threads;
  12937. } break;
  12938. case GGML_OP_MUL_MAT:
  12939. {
  12940. n_tasks = n_threads;
  12941. // TODO: use different scheduling for different matrix sizes
  12942. //const int nr0 = ggml_nrows(node->src[0]);
  12943. //const int nr1 = ggml_nrows(node->src[1]);
  12944. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  12945. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  12946. #if defined(GGML_USE_CUBLAS)
  12947. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  12948. n_tasks = 1; // TODO: this actually is doing nothing
  12949. // the threads are still spinning
  12950. }
  12951. #elif defined(GGML_USE_CLBLAST)
  12952. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  12953. n_tasks = 1; // TODO: this actually is doing nothing
  12954. // the threads are still spinning
  12955. }
  12956. #endif
  12957. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12958. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  12959. n_tasks = 1; // TODO: this actually is doing nothing
  12960. // the threads are still spinning
  12961. }
  12962. #endif
  12963. } break;
  12964. case GGML_OP_OUT_PROD:
  12965. {
  12966. n_tasks = n_threads;
  12967. } break;
  12968. case GGML_OP_SCALE:
  12969. case GGML_OP_SET:
  12970. case GGML_OP_CONT:
  12971. case GGML_OP_RESHAPE:
  12972. case GGML_OP_VIEW:
  12973. case GGML_OP_PERMUTE:
  12974. case GGML_OP_TRANSPOSE:
  12975. case GGML_OP_GET_ROWS:
  12976. case GGML_OP_GET_ROWS_BACK:
  12977. case GGML_OP_DIAG:
  12978. {
  12979. n_tasks = 1;
  12980. } break;
  12981. case GGML_OP_DIAG_MASK_ZERO:
  12982. case GGML_OP_DIAG_MASK_INF:
  12983. case GGML_OP_SOFT_MAX:
  12984. case GGML_OP_SOFT_MAX_BACK:
  12985. case GGML_OP_ROPE:
  12986. case GGML_OP_ROPE_BACK:
  12987. case GGML_OP_ADD_REL_POS:
  12988. {
  12989. n_tasks = n_threads;
  12990. } break;
  12991. case GGML_OP_ALIBI:
  12992. {
  12993. n_tasks = 1; //TODO
  12994. } break;
  12995. case GGML_OP_CLAMP:
  12996. {
  12997. n_tasks = 1; //TODO
  12998. } break;
  12999. case GGML_OP_CONV_TRANSPOSE_1D:
  13000. {
  13001. n_tasks = n_threads;
  13002. } break;
  13003. case GGML_OP_IM2COL:
  13004. {
  13005. n_tasks = n_threads;
  13006. } break;
  13007. case GGML_OP_CONV_TRANSPOSE_2D:
  13008. {
  13009. n_tasks = n_threads;
  13010. } break;
  13011. case GGML_OP_POOL_1D:
  13012. case GGML_OP_POOL_2D:
  13013. {
  13014. n_tasks = 1;
  13015. } break;
  13016. case GGML_OP_UPSCALE:
  13017. {
  13018. n_tasks = n_threads;
  13019. } break;
  13020. case GGML_OP_FLASH_ATTN:
  13021. {
  13022. n_tasks = n_threads;
  13023. } break;
  13024. case GGML_OP_FLASH_FF:
  13025. {
  13026. n_tasks = n_threads;
  13027. } break;
  13028. case GGML_OP_FLASH_ATTN_BACK:
  13029. {
  13030. n_tasks = n_threads;
  13031. } break;
  13032. case GGML_OP_WIN_PART:
  13033. case GGML_OP_WIN_UNPART:
  13034. case GGML_OP_GET_REL_POS:
  13035. case GGML_OP_MAP_UNARY:
  13036. case GGML_OP_MAP_BINARY:
  13037. case GGML_OP_MAP_CUSTOM1_F32:
  13038. case GGML_OP_MAP_CUSTOM2_F32:
  13039. case GGML_OP_MAP_CUSTOM3_F32:
  13040. {
  13041. n_tasks = 1;
  13042. } break;
  13043. case GGML_OP_MAP_CUSTOM1:
  13044. {
  13045. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13046. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13047. n_tasks = n_threads;
  13048. } else {
  13049. n_tasks = MIN(p->n_tasks, n_threads);
  13050. }
  13051. } break;
  13052. case GGML_OP_MAP_CUSTOM2:
  13053. {
  13054. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13055. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13056. n_tasks = n_threads;
  13057. } else {
  13058. n_tasks = MIN(p->n_tasks, n_threads);
  13059. }
  13060. } break;
  13061. case GGML_OP_MAP_CUSTOM3:
  13062. {
  13063. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13064. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13065. n_tasks = n_threads;
  13066. } else {
  13067. n_tasks = MIN(p->n_tasks, n_threads);
  13068. }
  13069. } break;
  13070. case GGML_OP_CROSS_ENTROPY_LOSS:
  13071. {
  13072. n_tasks = n_threads;
  13073. } break;
  13074. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13075. {
  13076. n_tasks = n_threads;
  13077. } break;
  13078. case GGML_OP_NONE:
  13079. {
  13080. n_tasks = 1;
  13081. } break;
  13082. case GGML_OP_COUNT:
  13083. {
  13084. GGML_ASSERT(false);
  13085. } break;
  13086. default:
  13087. {
  13088. printf("%s: op %s not implemented\n", __func__, ggml_op_name(node->op));
  13089. GGML_ASSERT(false);
  13090. } break;
  13091. }
  13092. assert(n_tasks > 0);
  13093. return n_tasks;
  13094. }
  13095. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13096. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13097. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13098. const struct ggml_cplan * cplan = state->shared->cplan;
  13099. const int n_threads = state->shared->n_threads;
  13100. set_numa_thread_affinity(state->ith, n_threads);
  13101. int node_n = -1;
  13102. while (true) {
  13103. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13104. state->shared->node_n += 1;
  13105. return (thread_ret_t) GGML_EXIT_ABORTED;
  13106. }
  13107. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13108. // all other threads are finished and spinning
  13109. // do finalize and init here so we don't have synchronize again
  13110. struct ggml_compute_params params = {
  13111. /*.type =*/ GGML_TASK_FINALIZE,
  13112. /*.ith =*/ 0,
  13113. /*.nth =*/ 0,
  13114. /*.wsize =*/ cplan->work_size,
  13115. /*.wdata =*/ cplan->work_data,
  13116. };
  13117. if (node_n != -1) {
  13118. /* FINALIZE */
  13119. struct ggml_tensor * node = cgraph->nodes[node_n];
  13120. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13121. params.nth = ggml_get_n_tasks(node, n_threads);
  13122. ggml_compute_forward(&params, node);
  13123. }
  13124. ggml_graph_compute_perf_stats_node(node, state->shared);
  13125. }
  13126. // distribute new work or execute it direct if 1T
  13127. while (++node_n < cgraph->n_nodes) {
  13128. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13129. struct ggml_tensor * node = cgraph->nodes[node_n];
  13130. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13131. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13132. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13133. params.nth = n_tasks;
  13134. /* INIT */
  13135. if (GGML_OP_HAS_INIT[node->op]) {
  13136. params.type = GGML_TASK_INIT;
  13137. ggml_compute_forward(&params, node);
  13138. }
  13139. if (n_tasks == 1) {
  13140. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13141. // they do something more efficient than spinning (?)
  13142. params.type = GGML_TASK_COMPUTE;
  13143. ggml_compute_forward(&params, node);
  13144. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13145. params.type = GGML_TASK_FINALIZE;
  13146. ggml_compute_forward(&params, node);
  13147. }
  13148. ggml_graph_compute_perf_stats_node(node, state->shared);
  13149. } else {
  13150. break;
  13151. }
  13152. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13153. break;
  13154. }
  13155. }
  13156. atomic_store(&state->shared->n_active, n_threads);
  13157. atomic_store(&state->shared->node_n, node_n);
  13158. } else {
  13159. // wait for other threads to finish
  13160. const int last = node_n;
  13161. while (true) {
  13162. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13163. // depending on the workload and the operating system.
  13164. // since it is not clear what is the best approach, it should potentially become user-configurable
  13165. // ref: https://github.com/ggerganov/ggml/issues/291
  13166. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13167. sched_yield();
  13168. #endif
  13169. node_n = atomic_load(&state->shared->node_n);
  13170. if (node_n != last) break;
  13171. };
  13172. }
  13173. // check if we should stop
  13174. if (node_n >= cgraph->n_nodes) break;
  13175. /* COMPUTE */
  13176. struct ggml_tensor * node = cgraph->nodes[node_n];
  13177. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13178. struct ggml_compute_params params = {
  13179. /*.type =*/ GGML_TASK_COMPUTE,
  13180. /*.ith =*/ state->ith,
  13181. /*.nth =*/ n_tasks,
  13182. /*.wsize =*/ cplan->work_size,
  13183. /*.wdata =*/ cplan->work_data,
  13184. };
  13185. if (state->ith < n_tasks) {
  13186. ggml_compute_forward(&params, node);
  13187. }
  13188. }
  13189. return GGML_EXIT_SUCCESS;
  13190. }
  13191. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13192. if (n_threads <= 0) {
  13193. n_threads = GGML_DEFAULT_N_THREADS;
  13194. }
  13195. size_t work_size = 0;
  13196. struct ggml_cplan cplan;
  13197. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13198. // thread scheduling for the different operations + work buffer size estimation
  13199. for (int i = 0; i < cgraph->n_nodes; i++) {
  13200. int n_tasks = 1;
  13201. struct ggml_tensor * node = cgraph->nodes[i];
  13202. size_t cur = 0;
  13203. switch (node->op) {
  13204. case GGML_OP_CPY:
  13205. case GGML_OP_DUP:
  13206. {
  13207. n_tasks = n_threads;
  13208. if (ggml_is_quantized(node->type)) {
  13209. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13210. }
  13211. } break;
  13212. case GGML_OP_ADD:
  13213. case GGML_OP_ADD1:
  13214. {
  13215. n_tasks = n_threads;
  13216. if (ggml_is_quantized(node->src[0]->type)) {
  13217. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13218. }
  13219. } break;
  13220. case GGML_OP_ACC:
  13221. {
  13222. n_tasks = n_threads;
  13223. if (ggml_is_quantized(node->src[0]->type)) {
  13224. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13225. }
  13226. } break;
  13227. case GGML_OP_MUL_MAT:
  13228. {
  13229. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13230. #if defined(GGML_USE_CLBLAST)
  13231. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13232. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13233. } else
  13234. #endif
  13235. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13236. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13237. if (node->src[0]->type != GGML_TYPE_F32) {
  13238. // here we need memory just for single 2D matrix from src0
  13239. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13240. }
  13241. } else
  13242. #endif
  13243. if (node->src[1]->type != vec_dot_type) {
  13244. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13245. }
  13246. } break;
  13247. case GGML_OP_OUT_PROD:
  13248. {
  13249. n_tasks = n_threads;
  13250. if (ggml_is_quantized(node->src[0]->type)) {
  13251. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13252. }
  13253. } break;
  13254. case GGML_OP_CONV_TRANSPOSE_1D:
  13255. {
  13256. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13257. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13258. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13259. const int64_t ne00 = node->src[0]->ne[0]; // K
  13260. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13261. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13262. const int64_t ne10 = node->src[1]->ne[0]; // L
  13263. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13264. if (node->src[0]->type == GGML_TYPE_F16 &&
  13265. node->src[1]->type == GGML_TYPE_F32) {
  13266. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13267. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13268. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13269. node->src[1]->type == GGML_TYPE_F32) {
  13270. cur += sizeof(float)*ne00*ne01*ne02;
  13271. cur += sizeof(float)*ne10*ne11;
  13272. } else {
  13273. GGML_ASSERT(false);
  13274. }
  13275. } break;
  13276. case GGML_OP_IM2COL:
  13277. {
  13278. n_tasks = n_threads;
  13279. } break;
  13280. case GGML_OP_CONV_TRANSPOSE_2D:
  13281. {
  13282. const int64_t ne00 = node->src[0]->ne[0]; // W
  13283. const int64_t ne01 = node->src[0]->ne[1]; // H
  13284. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13285. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13286. const int64_t ne10 = node->src[1]->ne[0]; // W
  13287. const int64_t ne11 = node->src[1]->ne[1]; // H
  13288. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13289. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13290. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13291. } break;
  13292. case GGML_OP_FLASH_ATTN:
  13293. {
  13294. n_tasks = n_threads;
  13295. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13296. if (node->src[1]->type == GGML_TYPE_F32) {
  13297. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13298. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13299. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13300. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13301. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13302. }
  13303. } break;
  13304. case GGML_OP_FLASH_FF:
  13305. {
  13306. n_tasks = n_threads;
  13307. if (node->src[1]->type == GGML_TYPE_F32) {
  13308. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13309. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13310. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13311. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13312. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13313. }
  13314. } break;
  13315. case GGML_OP_FLASH_ATTN_BACK:
  13316. {
  13317. n_tasks = n_threads;
  13318. const int64_t D = node->src[0]->ne[0];
  13319. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13320. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13321. if (node->src[1]->type == GGML_TYPE_F32) {
  13322. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13323. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13324. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13325. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13326. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13327. }
  13328. } break;
  13329. case GGML_OP_CROSS_ENTROPY_LOSS:
  13330. {
  13331. n_tasks = n_threads;
  13332. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13333. } break;
  13334. case GGML_OP_COUNT:
  13335. {
  13336. GGML_ASSERT(false);
  13337. } break;
  13338. default:
  13339. break;
  13340. }
  13341. work_size = MAX(work_size, cur);
  13342. }
  13343. if (work_size > 0) {
  13344. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13345. }
  13346. cplan.n_threads = n_threads;
  13347. cplan.work_size = work_size;
  13348. cplan.work_data = NULL;
  13349. return cplan;
  13350. }
  13351. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13352. {
  13353. GGML_ASSERT(cplan);
  13354. GGML_ASSERT(cplan->n_threads > 0);
  13355. if (cplan->work_size > 0) {
  13356. GGML_ASSERT(cplan->work_data);
  13357. }
  13358. }
  13359. const int n_threads = cplan->n_threads;
  13360. struct ggml_compute_state_shared state_shared = {
  13361. /*.cgraph =*/ cgraph,
  13362. /*.cgraph_plan =*/ cplan,
  13363. /*.perf_node_start_cycles =*/ 0,
  13364. /*.perf_node_start_time_us =*/ 0,
  13365. /*.n_threads =*/ n_threads,
  13366. /*.n_active =*/ n_threads,
  13367. /*.node_n =*/ -1,
  13368. /*.abort_callback =*/ NULL,
  13369. /*.abort_callback_data =*/ NULL,
  13370. };
  13371. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13372. // create thread pool
  13373. if (n_threads > 1) {
  13374. for (int j = 1; j < n_threads; ++j) {
  13375. workers[j] = (struct ggml_compute_state) {
  13376. .thrd = 0,
  13377. .ith = j,
  13378. .shared = &state_shared,
  13379. };
  13380. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13381. GGML_ASSERT(rc == 0);
  13382. UNUSED(rc);
  13383. }
  13384. }
  13385. workers[0].ith = 0;
  13386. workers[0].shared = &state_shared;
  13387. const int64_t perf_start_cycles = ggml_perf_cycles();
  13388. const int64_t perf_start_time_us = ggml_perf_time_us();
  13389. // this is a work thread too
  13390. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13391. // don't leave affinity set on the main thread
  13392. clear_numa_thread_affinity();
  13393. // join or kill thread pool
  13394. if (n_threads > 1) {
  13395. for (int j = 1; j < n_threads; j++) {
  13396. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13397. GGML_ASSERT(rc == 0);
  13398. }
  13399. }
  13400. // performance stats (graph)
  13401. {
  13402. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13403. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13404. cgraph->perf_runs++;
  13405. cgraph->perf_cycles += perf_cycles_cur;
  13406. cgraph->perf_time_us += perf_time_us_cur;
  13407. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13408. __func__, cgraph->perf_runs,
  13409. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13410. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13411. (double) perf_time_us_cur / 1000.0,
  13412. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13413. }
  13414. return compute_status;
  13415. }
  13416. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13417. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13418. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13419. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13420. ggml_graph_compute(cgraph, &cplan);
  13421. }
  13422. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13423. for (int i = 0; i < cgraph->n_leafs; i++) {
  13424. struct ggml_tensor * leaf = cgraph->leafs[i];
  13425. if (strcmp(leaf->name, name) == 0) {
  13426. return leaf;
  13427. }
  13428. }
  13429. for (int i = 0; i < cgraph->n_nodes; i++) {
  13430. struct ggml_tensor * node = cgraph->nodes[i];
  13431. if (strcmp(node->name, name) == 0) {
  13432. return node;
  13433. }
  13434. }
  13435. return NULL;
  13436. }
  13437. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13438. const int64_t * ne = tensor->ne;
  13439. const size_t * nb = tensor->nb;
  13440. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13441. ggml_type_name(tensor->type),
  13442. ggml_op_name (tensor->op),
  13443. tensor->n_dims,
  13444. ne[0], ne[1], ne[2], ne[3],
  13445. nb[0], nb[1], nb[2], nb[3],
  13446. tensor->data,
  13447. tensor->name);
  13448. }
  13449. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13450. const int64_t * ne = tensor->ne;
  13451. const size_t * nb = tensor->nb;
  13452. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13453. arg,
  13454. ggml_type_name(tensor->type),
  13455. ggml_op_name (tensor->op),
  13456. tensor->n_dims,
  13457. ne[0], ne[1], ne[2], ne[3],
  13458. nb[0], nb[1], nb[2], nb[3],
  13459. tensor->data,
  13460. tensor->name);
  13461. }
  13462. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13463. uint64_t size_eval = 0;
  13464. // compute size of intermediate results
  13465. // TODO: does not take into account scratch buffers !!!!
  13466. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13467. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13468. }
  13469. // print
  13470. {
  13471. FILE * fout = stdout;
  13472. fprintf(fout, "\n");
  13473. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13474. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13475. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13476. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13477. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13478. // header
  13479. fprintf(fout, "\n");
  13480. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13481. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13482. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13483. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13484. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13485. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13486. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13487. }
  13488. // header
  13489. fprintf(fout, "\n");
  13490. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13491. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13492. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13493. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13494. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13495. if (cgraph->nodes[i]->src[j]) {
  13496. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13497. }
  13498. }
  13499. fprintf(fout, "\n");
  13500. }
  13501. fprintf(fout, "\n");
  13502. }
  13503. // write binary data
  13504. {
  13505. FILE * fout = fopen(fname, "wb");
  13506. if (!fout) {
  13507. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13508. return;
  13509. }
  13510. // header
  13511. {
  13512. const uint32_t magic = GGML_FILE_MAGIC;
  13513. const uint32_t version = GGML_FILE_VERSION;
  13514. const uint32_t n_leafs = cgraph->n_leafs;
  13515. const uint32_t n_nodes = cgraph->n_nodes;
  13516. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13517. fwrite(&version, sizeof(uint32_t), 1, fout);
  13518. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13519. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  13520. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13521. }
  13522. // leafs
  13523. {
  13524. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13525. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13526. const uint32_t type = tensor->type;
  13527. const uint32_t op = tensor->op;
  13528. const uint32_t n_dims = tensor->n_dims;
  13529. fwrite(&type, sizeof(uint32_t), 1, fout);
  13530. fwrite(&op, sizeof(uint32_t), 1, fout);
  13531. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13532. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13533. const uint64_t ne = tensor->ne[j];
  13534. const uint64_t nb = tensor->nb[j];
  13535. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13536. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13537. }
  13538. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13539. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13540. // dump the data
  13541. // TODO: pad this to 32 byte boundary
  13542. {
  13543. const size_t size = ggml_nbytes(tensor);
  13544. fwrite(tensor->data, sizeof(char), size, fout);
  13545. }
  13546. }
  13547. }
  13548. // nodes
  13549. {
  13550. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13551. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13552. const uint32_t type = tensor->type;
  13553. const uint32_t op = tensor->op;
  13554. const uint32_t n_dims = tensor->n_dims;
  13555. fwrite(&type, sizeof(uint32_t), 1, fout);
  13556. fwrite(&op, sizeof(uint32_t), 1, fout);
  13557. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13558. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13559. const uint64_t ne = tensor->ne[j];
  13560. const uint64_t nb = tensor->nb[j];
  13561. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13562. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13563. }
  13564. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13565. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13566. // output the op arguments
  13567. {
  13568. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13569. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13570. args[j] = tensor->src[j];
  13571. }
  13572. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13573. if (args[j]) {
  13574. int32_t idx = -1;
  13575. // check if leaf
  13576. {
  13577. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13578. if (args[j] == cgraph->leafs[k]) {
  13579. idx = k;
  13580. break;
  13581. }
  13582. }
  13583. }
  13584. // check if node
  13585. if (idx == -1) {
  13586. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13587. if (args[j] == cgraph->nodes[k]) {
  13588. idx = cgraph->n_leafs + k;
  13589. break;
  13590. }
  13591. }
  13592. }
  13593. if (idx == -1) {
  13594. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13595. fclose(fout);
  13596. return;
  13597. }
  13598. fwrite(&idx, sizeof(int32_t), 1, fout);
  13599. } else {
  13600. const int32_t nul = -1;
  13601. fwrite(&nul, sizeof(int32_t), 1, fout);
  13602. }
  13603. }
  13604. }
  13605. }
  13606. }
  13607. fclose(fout);
  13608. }
  13609. }
  13610. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13611. assert(*ctx_data == NULL);
  13612. assert(*ctx_eval == NULL);
  13613. struct ggml_cgraph * result = NULL;
  13614. struct ggml_tensor * data = NULL;
  13615. // read file into data
  13616. {
  13617. FILE * fin = fopen(fname, "rb");
  13618. if (!fin) {
  13619. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13620. return result;
  13621. }
  13622. size_t fsize = 0;
  13623. fseek(fin, 0, SEEK_END);
  13624. fsize = ftell(fin);
  13625. fseek(fin, 0, SEEK_SET);
  13626. // create the data context
  13627. {
  13628. const size_t overhead = 1*ggml_tensor_overhead();
  13629. struct ggml_init_params params = {
  13630. .mem_size = fsize + overhead,
  13631. .mem_buffer = NULL,
  13632. .no_alloc = false,
  13633. };
  13634. *ctx_data = ggml_init(params);
  13635. if (!*ctx_data) {
  13636. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13637. fclose(fin);
  13638. return result;
  13639. }
  13640. }
  13641. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13642. {
  13643. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13644. if (ret != fsize) {
  13645. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13646. fclose(fin);
  13647. return result;
  13648. }
  13649. }
  13650. fclose(fin);
  13651. }
  13652. // populate result
  13653. {
  13654. char * ptr = (char *) data->data;
  13655. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13656. if (magic != GGML_FILE_MAGIC) {
  13657. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13658. return result;
  13659. }
  13660. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13661. if (version != GGML_FILE_VERSION) {
  13662. fprintf(stderr, "%s: invalid version number\n", __func__);
  13663. return result;
  13664. }
  13665. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13666. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13667. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13668. const int graph_size = MAX(n_leafs, n_nodes);
  13669. // create the data context
  13670. {
  13671. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  13672. struct ggml_init_params params = {
  13673. .mem_size = size_eval + overhead,
  13674. .mem_buffer = NULL,
  13675. .no_alloc = true,
  13676. };
  13677. *ctx_eval = ggml_init(params);
  13678. if (!*ctx_eval) {
  13679. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13680. return result;
  13681. }
  13682. }
  13683. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  13684. result->n_leafs = n_leafs;
  13685. result->n_nodes = n_nodes;
  13686. // leafs
  13687. {
  13688. uint32_t type;
  13689. uint32_t op;
  13690. uint32_t n_dims;
  13691. for (uint32_t i = 0; i < n_leafs; ++i) {
  13692. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13693. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13694. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13695. int64_t ne[GGML_MAX_DIMS];
  13696. size_t nb[GGML_MAX_DIMS];
  13697. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13698. uint64_t ne_cur;
  13699. uint64_t nb_cur;
  13700. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13701. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13702. ne[j] = ne_cur;
  13703. nb[j] = nb_cur;
  13704. }
  13705. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13706. tensor->op = (enum ggml_op) op;
  13707. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13708. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13709. tensor->data = (void *) ptr;
  13710. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13711. tensor->nb[j] = nb[j];
  13712. }
  13713. result->leafs[i] = tensor;
  13714. ptr += ggml_nbytes(tensor);
  13715. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13716. }
  13717. }
  13718. ggml_set_no_alloc(*ctx_eval, false);
  13719. // nodes
  13720. {
  13721. uint32_t type;
  13722. uint32_t op;
  13723. uint32_t n_dims;
  13724. for (uint32_t i = 0; i < n_nodes; ++i) {
  13725. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13726. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13727. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13728. enum ggml_op eop = (enum ggml_op) op;
  13729. int64_t ne[GGML_MAX_DIMS];
  13730. size_t nb[GGML_MAX_DIMS];
  13731. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13732. uint64_t ne_cur;
  13733. uint64_t nb_cur;
  13734. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13735. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13736. ne[j] = ne_cur;
  13737. nb[j] = nb_cur;
  13738. }
  13739. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13740. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13741. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13742. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13743. // parse args
  13744. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13745. const int32_t arg_idx = ptr_arg_idx[j];
  13746. if (arg_idx == -1) {
  13747. continue;
  13748. }
  13749. if (arg_idx < result->n_leafs) {
  13750. args[j] = result->leafs[arg_idx];
  13751. } else {
  13752. args[j] = result->nodes[arg_idx - result->n_leafs];
  13753. }
  13754. }
  13755. // create the tensor
  13756. // "view" operations are handled differently
  13757. // TODO: handle inplace ops - currently a copy is always made
  13758. struct ggml_tensor * tensor = NULL;
  13759. switch (eop) {
  13760. // TODO: implement other view ops
  13761. case GGML_OP_RESHAPE:
  13762. {
  13763. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13764. } break;
  13765. case GGML_OP_VIEW:
  13766. {
  13767. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13768. size_t offs;
  13769. memcpy(&offs, ptr_op_params, sizeof(offs));
  13770. tensor->data = ((char *) tensor->data) + offs;
  13771. } break;
  13772. case GGML_OP_TRANSPOSE:
  13773. {
  13774. tensor = ggml_transpose(*ctx_eval, args[0]);
  13775. } break;
  13776. case GGML_OP_PERMUTE:
  13777. {
  13778. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13779. } break;
  13780. default:
  13781. {
  13782. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13783. tensor->op = eop;
  13784. } break;
  13785. }
  13786. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13787. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  13788. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13789. tensor->nb[j] = nb[j];
  13790. }
  13791. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13792. tensor->src[j] = args[j];
  13793. }
  13794. result->nodes[i] = tensor;
  13795. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13796. }
  13797. }
  13798. }
  13799. return result;
  13800. }
  13801. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13802. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13803. GGML_PRINT("=== GRAPH ===\n");
  13804. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13805. for (int i = 0; i < cgraph->n_nodes; i++) {
  13806. struct ggml_tensor * node = cgraph->nodes[i];
  13807. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13808. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13809. i,
  13810. node->ne[0], node->ne[1], node->ne[2],
  13811. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13812. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13813. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13814. (double) node->perf_time_us / 1000.0,
  13815. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13816. }
  13817. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13818. for (int i = 0; i < cgraph->n_leafs; i++) {
  13819. struct ggml_tensor * node = cgraph->leafs[i];
  13820. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  13821. i,
  13822. node->ne[0], node->ne[1],
  13823. ggml_op_name(node->op),
  13824. ggml_get_name(node));
  13825. }
  13826. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13827. if (perf_total_per_op_us[i] == 0) {
  13828. continue;
  13829. }
  13830. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  13831. }
  13832. GGML_PRINT("========================================\n");
  13833. }
  13834. // check if node is part of the graph
  13835. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13836. if (cgraph == NULL) {
  13837. return true;
  13838. }
  13839. for (int i = 0; i < cgraph->n_nodes; i++) {
  13840. if (cgraph->nodes[i] == node) {
  13841. return true;
  13842. }
  13843. }
  13844. return false;
  13845. }
  13846. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13847. for (int i = 0; i < cgraph->n_nodes; i++) {
  13848. struct ggml_tensor * parent = cgraph->nodes[i];
  13849. if (parent->grad == node) {
  13850. return parent;
  13851. }
  13852. }
  13853. return NULL;
  13854. }
  13855. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13856. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  13857. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  13858. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  13859. gparent0 ? (void *) gparent0 : (void *) parent,
  13860. gparent0 ? "g" : "x",
  13861. gparent ? (void *) gparent : (void *) node,
  13862. gparent ? "g" : "x",
  13863. gparent ? "empty" : "vee",
  13864. gparent ? "dashed" : "solid",
  13865. label);
  13866. }
  13867. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13868. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  13869. (void *) parent, "x",
  13870. (void *) node, "x",
  13871. label);
  13872. }
  13873. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  13874. char color[16];
  13875. FILE * fp = fopen(filename, "w");
  13876. GGML_ASSERT(fp);
  13877. fprintf(fp, "digraph G {\n");
  13878. fprintf(fp, " newrank = true;\n");
  13879. fprintf(fp, " rankdir = LR;\n");
  13880. for (int i = 0; i < gb->n_nodes; i++) {
  13881. struct ggml_tensor * node = gb->nodes[i];
  13882. if (ggml_graph_get_parent(gb, node) != NULL) {
  13883. continue;
  13884. }
  13885. if (node->is_param) {
  13886. snprintf(color, sizeof(color), "yellow");
  13887. } else if (node->grad) {
  13888. if (ggml_graph_find(gf, node)) {
  13889. snprintf(color, sizeof(color), "green");
  13890. } else {
  13891. snprintf(color, sizeof(color), "lightblue");
  13892. }
  13893. } else {
  13894. snprintf(color, sizeof(color), "white");
  13895. }
  13896. fprintf(fp, " \"%p\" [ "
  13897. "style = filled; fillcolor = %s; shape = record; "
  13898. "label=\"",
  13899. (void *) node, color);
  13900. if (strlen(node->name) > 0) {
  13901. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  13902. } else {
  13903. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  13904. }
  13905. if (node->n_dims == 2) {
  13906. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  13907. } else {
  13908. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  13909. }
  13910. if (node->grad) {
  13911. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  13912. } else {
  13913. fprintf(fp, "\"; ]\n");
  13914. }
  13915. }
  13916. for (int i = 0; i < gb->n_leafs; i++) {
  13917. struct ggml_tensor * node = gb->leafs[i];
  13918. snprintf(color, sizeof(color), "pink");
  13919. fprintf(fp, " \"%p\" [ "
  13920. "style = filled; fillcolor = %s; shape = record; "
  13921. "label=\"<x>",
  13922. (void *) node, color);
  13923. if (strlen(node->name) > 0) {
  13924. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  13925. } else {
  13926. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  13927. }
  13928. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  13929. if (ggml_nelements(node) < 5) {
  13930. fprintf(fp, " | (");
  13931. for (int j = 0; j < ggml_nelements(node); j++) {
  13932. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  13933. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  13934. }
  13935. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  13936. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  13937. }
  13938. else {
  13939. fprintf(fp, "#");
  13940. }
  13941. if (j < ggml_nelements(node) - 1) {
  13942. fprintf(fp, ", ");
  13943. }
  13944. }
  13945. fprintf(fp, ")");
  13946. }
  13947. fprintf(fp, "\"; ]\n");
  13948. }
  13949. for (int i = 0; i < gb->n_nodes; i++) {
  13950. struct ggml_tensor * node = gb->nodes[i];
  13951. for (int j = 0; j < GGML_MAX_SRC; j++) {
  13952. if (node->src[j]) {
  13953. char label[16];
  13954. snprintf(label, sizeof(label), "src %d", j);
  13955. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  13956. }
  13957. }
  13958. }
  13959. for (int i = 0; i < gb->n_leafs; i++) {
  13960. struct ggml_tensor * node = gb->leafs[i];
  13961. for (int j = 0; j < GGML_MAX_SRC; j++) {
  13962. if (node->src[j]) {
  13963. char label[16];
  13964. snprintf(label, sizeof(label), "src %d", j);
  13965. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  13966. }
  13967. }
  13968. }
  13969. fprintf(fp, "}\n");
  13970. fclose(fp);
  13971. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  13972. }
  13973. ////////////////////////////////////////////////////////////////////////////////
  13974. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  13975. int i = 0;
  13976. for (int p = 0; p < np; ++p) {
  13977. const int64_t ne = ggml_nelements(ps[p]) ;
  13978. // TODO: add function to set tensor from array
  13979. for (int64_t j = 0; j < ne; ++j) {
  13980. ggml_set_f32_1d(ps[p], j, x[i++]);
  13981. }
  13982. }
  13983. }
  13984. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  13985. int i = 0;
  13986. for (int p = 0; p < np; ++p) {
  13987. const int64_t ne = ggml_nelements(ps[p]) ;
  13988. // TODO: add function to get all elements at once
  13989. for (int64_t j = 0; j < ne; ++j) {
  13990. x[i++] = ggml_get_f32_1d(ps[p], j);
  13991. }
  13992. }
  13993. }
  13994. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  13995. int64_t i = 0;
  13996. for (int p = 0; p < np; ++p) {
  13997. const int64_t ne = ggml_nelements(ps[p]) ;
  13998. // TODO: add function to get all elements at once
  13999. for (int64_t j = 0; j < ne; ++j) {
  14000. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14001. }
  14002. }
  14003. }
  14004. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14005. int64_t i = 0;
  14006. for (int p = 0; p < np; ++p) {
  14007. const int64_t ne = ggml_nelements(ps[p]) ;
  14008. // TODO: add function to get all elements at once
  14009. for (int64_t j = 0; j < ne; ++j) {
  14010. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14011. }
  14012. }
  14013. }
  14014. //
  14015. // ADAM
  14016. //
  14017. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14018. //
  14019. static enum ggml_opt_result ggml_opt_adam(
  14020. struct ggml_context * ctx,
  14021. struct ggml_opt_context * opt,
  14022. struct ggml_opt_params params,
  14023. struct ggml_tensor * f,
  14024. struct ggml_cgraph * gf,
  14025. struct ggml_cgraph * gb,
  14026. ggml_opt_callback callback,
  14027. void * callback_data) {
  14028. GGML_ASSERT(ggml_is_scalar(f));
  14029. // these will store the parameters we want to optimize
  14030. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14031. int np = 0;
  14032. int64_t nx = 0;
  14033. for (int i = 0; i < gf->n_nodes; ++i) {
  14034. if (gf->nodes[i]->is_param) {
  14035. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14036. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14037. ps[np++] = gf->nodes[i];
  14038. nx += ggml_nelements(gf->nodes[i]);
  14039. }
  14040. }
  14041. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14042. int iter = opt->iter;
  14043. ggml_opt_init(opt->ctx, opt, params, nx);
  14044. opt->iter = iter;
  14045. }
  14046. // constants
  14047. float sched = params.adam.sched;
  14048. const float alpha = params.adam.alpha;
  14049. const float decay = params.adam.decay * alpha;
  14050. const float beta1 = params.adam.beta1;
  14051. const float beta2 = params.adam.beta2;
  14052. const float eps = params.adam.eps;
  14053. const float gclip = params.adam.gclip;
  14054. const int decay_min_ndim = params.adam.decay_min_ndim;
  14055. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14056. const float accum_norm = 1.0f / (float) n_accum;
  14057. float * g = opt->adam.g->data; // gradients
  14058. float * m = opt->adam.m->data; // first moment
  14059. float * v = opt->adam.v->data; // second moment
  14060. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14061. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14062. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14063. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14064. bool cancel = false;
  14065. // compute the function value
  14066. float fx = 0;
  14067. ggml_set_zero(opt->adam.g);
  14068. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14069. if (callback) {
  14070. callback(callback_data, accum_step, &sched, &cancel);
  14071. if (cancel) {
  14072. return GGML_OPT_CANCEL;
  14073. }
  14074. }
  14075. // ggml_graph_reset (gf);
  14076. ggml_set_f32 (f->grad, 1.0f);
  14077. ggml_graph_compute(gb, &cplan);
  14078. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14079. fx += ggml_get_f32_1d(f, 0);
  14080. }
  14081. fx *= accum_norm;
  14082. opt->adam.fx_prev = fx;
  14083. opt->adam.fx_best = opt->adam.fx_prev;
  14084. if (pf) {
  14085. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14086. }
  14087. opt->loss_before = opt->adam.fx_prev;
  14088. opt->loss_after = opt->adam.fx_prev;
  14089. // initialize
  14090. if (opt->just_initialized) {
  14091. opt->adam.n_no_improvement = 0;
  14092. opt->just_initialized = false;
  14093. }
  14094. float * fx_best = &opt->adam.fx_best;
  14095. float * fx_prev = &opt->adam.fx_prev;
  14096. int * n_no_improvement = &opt->adam.n_no_improvement;
  14097. int iter0 = opt->iter;
  14098. // run the optimizer
  14099. for (int t = 0; t < params.adam.n_iter; ++t) {
  14100. opt->iter = iter0 + t + 1;
  14101. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14102. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14103. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14104. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14105. for (int i = 0; i < np; ++i) {
  14106. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14107. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14108. }
  14109. const int64_t t_start_wall = ggml_time_us();
  14110. const int64_t t_start_cpu = ggml_cycles();
  14111. UNUSED(t_start_wall);
  14112. UNUSED(t_start_cpu);
  14113. {
  14114. float gnorm = 1.0f;
  14115. if (gclip > 0.0f) {
  14116. // gradient clipping
  14117. ggml_float sum = 0.0;
  14118. for (int64_t i = 0; i < nx; ++i) {
  14119. sum += (ggml_float)(g[i]*g[i]);
  14120. }
  14121. ggml_float norm = sqrt(sum);
  14122. if (norm > (ggml_float) gclip) {
  14123. gnorm = (float) ((ggml_float) gclip / norm);
  14124. }
  14125. }
  14126. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14127. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14128. int64_t i = 0;
  14129. for (int p = 0; p < np; ++p) {
  14130. const int64_t ne = ggml_nelements(ps[p]);
  14131. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14132. for (int64_t j = 0; j < ne; ++j) {
  14133. float x = ggml_get_f32_1d(ps[p], j);
  14134. float g_ = g[i]*gnorm;
  14135. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14136. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14137. float mh = m[i]*beta1h;
  14138. float vh = v[i]*beta2h;
  14139. vh = sqrtf(vh) + eps;
  14140. x = x*(1.0f - p_decay) - mh/vh;
  14141. ggml_set_f32_1d(ps[p], j, x);
  14142. ++i;
  14143. }
  14144. }
  14145. }
  14146. fx = 0;
  14147. ggml_set_zero(opt->adam.g);
  14148. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14149. if (callback) {
  14150. callback(callback_data, accum_step, &sched, &cancel);
  14151. if (cancel) {
  14152. return GGML_OPT_CANCEL;;
  14153. }
  14154. }
  14155. // ggml_graph_reset (gf);
  14156. ggml_set_f32 (f->grad, 1.0f);
  14157. ggml_graph_compute(gb, &cplan);
  14158. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14159. fx += ggml_get_f32_1d(f, 0);
  14160. }
  14161. fx *= accum_norm;
  14162. opt->loss_after = fx;
  14163. // check convergence
  14164. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14165. GGML_PRINT_DEBUG("converged\n");
  14166. return GGML_OPT_OK;
  14167. }
  14168. // delta-based convergence test
  14169. if (pf != NULL) {
  14170. // need at least params.past iterations to start checking for convergence
  14171. if (params.past <= iter0 + t) {
  14172. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14173. if (fabsf(rate) < params.delta) {
  14174. return GGML_OPT_OK;
  14175. }
  14176. }
  14177. pf[(iter0 + t)%params.past] = fx;
  14178. }
  14179. // check for improvement
  14180. if (params.max_no_improvement > 0) {
  14181. if (fx_best[0] > fx) {
  14182. fx_best[0] = fx;
  14183. n_no_improvement[0] = 0;
  14184. } else {
  14185. ++n_no_improvement[0];
  14186. if (n_no_improvement[0] >= params.max_no_improvement) {
  14187. return GGML_OPT_OK;
  14188. }
  14189. }
  14190. }
  14191. fx_prev[0] = fx;
  14192. {
  14193. const int64_t t_end_cpu = ggml_cycles();
  14194. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14195. UNUSED(t_end_cpu);
  14196. const int64_t t_end_wall = ggml_time_us();
  14197. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14198. UNUSED(t_end_wall);
  14199. }
  14200. }
  14201. return GGML_OPT_DID_NOT_CONVERGE;
  14202. }
  14203. //
  14204. // L-BFGS
  14205. //
  14206. // the L-BFGS implementation below is based on the following implementation:
  14207. //
  14208. // https://github.com/chokkan/liblbfgs
  14209. //
  14210. struct ggml_lbfgs_iteration_data {
  14211. float alpha;
  14212. float ys;
  14213. float * s;
  14214. float * y;
  14215. };
  14216. static enum ggml_opt_result linesearch_backtracking(
  14217. const struct ggml_opt_params * params,
  14218. int nx,
  14219. float * x,
  14220. float * fx,
  14221. float * g,
  14222. float * d,
  14223. float * step,
  14224. const float * xp,
  14225. struct ggml_tensor * f,
  14226. struct ggml_cgraph * gb,
  14227. struct ggml_cplan * cplan,
  14228. const int np,
  14229. struct ggml_tensor * ps[],
  14230. bool * cancel,
  14231. ggml_opt_callback callback,
  14232. void * callback_data) {
  14233. int count = 0;
  14234. float width = 0.0f;
  14235. float dg = 0.0f;
  14236. float finit = 0.0f;
  14237. float dginit = 0.0f;
  14238. float dgtest = 0.0f;
  14239. const float dec = 0.5f;
  14240. const float inc = 2.1f;
  14241. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14242. const float accum_norm = 1.0f / (float) n_accum;
  14243. if (*step <= 0.f) {
  14244. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14245. }
  14246. // compute the initial gradient in the search direction
  14247. ggml_vec_dot_f32(nx, &dginit, g, d);
  14248. // make sure that d points to a descent direction
  14249. if (0 < dginit) {
  14250. return GGML_LINESEARCH_FAIL;
  14251. }
  14252. // initialize local variables
  14253. finit = *fx;
  14254. dgtest = params->lbfgs.ftol*dginit;
  14255. while (true) {
  14256. ggml_vec_cpy_f32(nx, x, xp);
  14257. ggml_vec_mad_f32(nx, x, d, *step);
  14258. // evaluate the function and gradient values
  14259. {
  14260. ggml_opt_set_params(np, ps, x);
  14261. *fx = 0;
  14262. memset(g, 0, sizeof(float)*nx);
  14263. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14264. if (callback) {
  14265. // LBFG-S does not support learning rate -> ignore learning schedule
  14266. float sched = 0;
  14267. callback(callback_data, accum_step, &sched, cancel);
  14268. if (*cancel) {
  14269. return GGML_OPT_CANCEL;
  14270. }
  14271. }
  14272. // ggml_graph_reset (gf);
  14273. ggml_set_f32 (f->grad, 1.0f);
  14274. ggml_graph_compute(gb, cplan);
  14275. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14276. *fx += ggml_get_f32_1d(f, 0);
  14277. }
  14278. *fx *= accum_norm;
  14279. }
  14280. ++count;
  14281. if (*fx > finit + (*step)*dgtest) {
  14282. width = dec;
  14283. } else {
  14284. // Armijo condition is satisfied
  14285. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14286. return count;
  14287. }
  14288. ggml_vec_dot_f32(nx, &dg, g, d);
  14289. // check the Wolfe condition
  14290. if (dg < params->lbfgs.wolfe * dginit) {
  14291. width = inc;
  14292. } else {
  14293. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14294. // regular Wolfe conditions
  14295. return count;
  14296. }
  14297. if(dg > -params->lbfgs.wolfe*dginit) {
  14298. width = dec;
  14299. } else {
  14300. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14301. return count;
  14302. }
  14303. }
  14304. }
  14305. if (*step < params->lbfgs.min_step) {
  14306. return GGML_LINESEARCH_MINIMUM_STEP;
  14307. }
  14308. if (*step > params->lbfgs.max_step) {
  14309. return GGML_LINESEARCH_MAXIMUM_STEP;
  14310. }
  14311. if (params->lbfgs.max_linesearch <= count) {
  14312. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14313. }
  14314. (*step) *= width;
  14315. }
  14316. GGML_UNREACHABLE();
  14317. }
  14318. static enum ggml_opt_result ggml_opt_lbfgs(
  14319. struct ggml_context * ctx,
  14320. struct ggml_opt_context * opt,
  14321. struct ggml_opt_params params,
  14322. struct ggml_tensor * f,
  14323. struct ggml_cgraph * gf,
  14324. struct ggml_cgraph * gb,
  14325. ggml_opt_callback callback,
  14326. void * callback_data) {
  14327. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14328. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14329. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14330. return GGML_OPT_INVALID_WOLFE;
  14331. }
  14332. }
  14333. const int m = params.lbfgs.m;
  14334. // these will store the parameters we want to optimize
  14335. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14336. int np = 0;
  14337. int nx = 0;
  14338. for (int i = 0; i < gf->n_nodes; ++i) {
  14339. if (gf->nodes[i]->is_param) {
  14340. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14341. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14342. ps[np++] = gf->nodes[i];
  14343. nx += ggml_nelements(gf->nodes[i]);
  14344. }
  14345. }
  14346. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14347. int iter = opt->iter;
  14348. ggml_opt_init(ctx, opt, params, nx);
  14349. opt->iter = iter;
  14350. }
  14351. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14352. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14353. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14354. float * x = opt->lbfgs.x->data; // current parameters
  14355. float * xp = opt->lbfgs.xp->data; // previous parameters
  14356. float * g = opt->lbfgs.g->data; // current gradient
  14357. float * gp = opt->lbfgs.gp->data; // previous gradient
  14358. float * d = opt->lbfgs.d->data; // search direction
  14359. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14360. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14361. const float accum_norm = 1.0f / (float) n_accum;
  14362. float fx = 0.0f; // cost function value
  14363. float xnorm = 0.0f; // ||x||
  14364. float gnorm = 0.0f; // ||g||
  14365. // initialize x from the graph nodes
  14366. ggml_opt_get_params(np, ps, x);
  14367. // the L-BFGS memory
  14368. float * lm_alpha = opt->lbfgs.lmal->data;
  14369. float * lm_ys = opt->lbfgs.lmys->data;
  14370. float * lm_s = opt->lbfgs.lms->data;
  14371. float * lm_y = opt->lbfgs.lmy->data;
  14372. bool cancel = false;
  14373. // evaluate the function value and its gradient
  14374. {
  14375. ggml_opt_set_params(np, ps, x);
  14376. fx = 0;
  14377. memset(g, 0, sizeof(float)*nx);
  14378. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14379. if (callback) {
  14380. // LBFG-S does not support learning rate -> ignore learning schedule
  14381. float sched = 0;
  14382. callback(callback_data, accum_step, &sched, &cancel);
  14383. if (cancel) {
  14384. return GGML_OPT_CANCEL;
  14385. }
  14386. }
  14387. // ggml_graph_reset (gf);
  14388. ggml_set_f32 (f->grad, 1.0f);
  14389. ggml_graph_compute(gb, &cplan);
  14390. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14391. fx += ggml_get_f32_1d(f, 0);
  14392. }
  14393. fx *= accum_norm;
  14394. opt->loss_before = fx;
  14395. opt->loss_after = fx;
  14396. }
  14397. // search direction = -gradient
  14398. ggml_vec_neg_f32(nx, d, g);
  14399. // ||x||, ||g||
  14400. ggml_vec_norm_f32(nx, &xnorm, x);
  14401. ggml_vec_norm_f32(nx, &gnorm, g);
  14402. if (xnorm < 1.0f) {
  14403. xnorm = 1.0f;
  14404. }
  14405. // already optimized
  14406. if (gnorm/xnorm <= params.lbfgs.eps) {
  14407. return GGML_OPT_OK;
  14408. }
  14409. if (opt->just_initialized) {
  14410. if (pf) {
  14411. pf[0] = fx;
  14412. }
  14413. opt->lbfgs.fx_best = fx;
  14414. // initial step
  14415. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14416. opt->lbfgs.j = 0;
  14417. opt->lbfgs.k = 1;
  14418. opt->lbfgs.end = 0;
  14419. opt->lbfgs.n_no_improvement = 0;
  14420. opt->just_initialized = false;
  14421. }
  14422. float * fx_best = &opt->lbfgs.fx_best;
  14423. float * step = &opt->lbfgs.step;
  14424. int * j = &opt->lbfgs.j;
  14425. int * k = &opt->lbfgs.k;
  14426. int * end = &opt->lbfgs.end;
  14427. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14428. int ls = 0;
  14429. int bound = 0;
  14430. float ys = 0.0f;
  14431. float yy = 0.0f;
  14432. float beta = 0.0f;
  14433. int it = 0;
  14434. while (true) {
  14435. // store the current position and gradient vectors
  14436. ggml_vec_cpy_f32(nx, xp, x);
  14437. ggml_vec_cpy_f32(nx, gp, g);
  14438. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14439. // to determine if the optimization should be cancelled
  14440. // this is a simple change, but not doing this atm, since I don't have a nice
  14441. // way to test and don't want to break something with so many changes lined up
  14442. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14443. if (cancel) {
  14444. return GGML_OPT_CANCEL;
  14445. }
  14446. if (ls < 0) {
  14447. // linesearch failed - go back to the previous point and return
  14448. ggml_vec_cpy_f32(nx, x, xp);
  14449. ggml_vec_cpy_f32(nx, g, gp);
  14450. return ls;
  14451. }
  14452. opt->loss_after = fx;
  14453. ggml_vec_norm_f32(nx, &xnorm, x);
  14454. ggml_vec_norm_f32(nx, &gnorm, g);
  14455. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14456. if (xnorm < 1.0f) {
  14457. xnorm = 1.0f;
  14458. }
  14459. if (gnorm/xnorm <= params.lbfgs.eps) {
  14460. // converged
  14461. return GGML_OPT_OK;
  14462. }
  14463. // delta-based convergence test
  14464. if (pf != NULL) {
  14465. // need at least params.past iterations to start checking for convergence
  14466. if (params.past <= k[0]) {
  14467. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14468. if (fabsf(rate) < params.delta) {
  14469. return GGML_OPT_OK;
  14470. }
  14471. }
  14472. pf[k[0]%params.past] = fx;
  14473. }
  14474. // check for improvement
  14475. if (params.max_no_improvement > 0) {
  14476. if (fx < fx_best[0]) {
  14477. fx_best[0] = fx;
  14478. n_no_improvement[0] = 0;
  14479. } else {
  14480. n_no_improvement[0]++;
  14481. if (n_no_improvement[0] >= params.max_no_improvement) {
  14482. return GGML_OPT_OK;
  14483. }
  14484. }
  14485. }
  14486. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14487. // reached the maximum number of iterations
  14488. return GGML_OPT_DID_NOT_CONVERGE;
  14489. }
  14490. // update vectors s and y:
  14491. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14492. // y_{k+1} = g_{k+1} - g_{k}.
  14493. //
  14494. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14495. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14496. // compute scalars ys and yy:
  14497. // ys = y^t \cdot s -> 1 / \rho.
  14498. // yy = y^t \cdot y.
  14499. //
  14500. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14501. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14502. lm_ys[end[0]] = ys;
  14503. // find new search direction
  14504. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14505. bound = (m <= k[0]) ? m : k[0];
  14506. k[0]++;
  14507. it++;
  14508. end[0] = (end[0] + 1)%m;
  14509. // initialize search direction with -g
  14510. ggml_vec_neg_f32(nx, d, g);
  14511. j[0] = end[0];
  14512. for (int i = 0; i < bound; ++i) {
  14513. j[0] = (j[0] + m - 1) % m;
  14514. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14515. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14516. lm_alpha[j[0]] /= lm_ys[j[0]];
  14517. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14518. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14519. }
  14520. ggml_vec_scale_f32(nx, d, ys/yy);
  14521. for (int i = 0; i < bound; ++i) {
  14522. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14523. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14524. beta /= lm_ys[j[0]];
  14525. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14526. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14527. j[0] = (j[0] + 1)%m;
  14528. }
  14529. step[0] = 1.0;
  14530. }
  14531. GGML_UNREACHABLE();
  14532. }
  14533. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14534. struct ggml_opt_params result;
  14535. switch (type) {
  14536. case GGML_OPT_ADAM:
  14537. {
  14538. result = (struct ggml_opt_params) {
  14539. .type = GGML_OPT_ADAM,
  14540. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14541. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  14542. .past = 0,
  14543. .delta = 1e-5f,
  14544. .max_no_improvement = 100,
  14545. .print_forward_graph = true,
  14546. .print_backward_graph = true,
  14547. .n_gradient_accumulation = 1,
  14548. .adam = {
  14549. .n_iter = 10000,
  14550. .sched = 1.000f,
  14551. .decay = 0.0f,
  14552. .decay_min_ndim = 2,
  14553. .alpha = 0.001f,
  14554. .beta1 = 0.9f,
  14555. .beta2 = 0.999f,
  14556. .eps = 1e-8f,
  14557. .eps_f = 1e-5f,
  14558. .eps_g = 1e-3f,
  14559. .gclip = 0.0f,
  14560. },
  14561. };
  14562. } break;
  14563. case GGML_OPT_LBFGS:
  14564. {
  14565. result = (struct ggml_opt_params) {
  14566. .type = GGML_OPT_LBFGS,
  14567. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14568. .n_threads = 1,
  14569. .past = 0,
  14570. .delta = 1e-5f,
  14571. .max_no_improvement = 0,
  14572. .print_forward_graph = true,
  14573. .print_backward_graph = true,
  14574. .n_gradient_accumulation = 1,
  14575. .lbfgs = {
  14576. .m = 6,
  14577. .n_iter = 100,
  14578. .max_linesearch = 20,
  14579. .eps = 1e-5f,
  14580. .ftol = 1e-4f,
  14581. .wolfe = 0.9f,
  14582. .min_step = 1e-20f,
  14583. .max_step = 1e+20f,
  14584. .linesearch = GGML_LINESEARCH_DEFAULT,
  14585. },
  14586. };
  14587. } break;
  14588. }
  14589. return result;
  14590. }
  14591. GGML_API void ggml_opt_init(
  14592. struct ggml_context * ctx,
  14593. struct ggml_opt_context * opt,
  14594. struct ggml_opt_params params,
  14595. int64_t nx) {
  14596. opt->ctx = ctx;
  14597. opt->params = params;
  14598. opt->iter = 0;
  14599. opt->nx = nx;
  14600. opt->just_initialized = true;
  14601. if (opt->ctx == NULL) {
  14602. struct ggml_init_params ctx_opt_params;
  14603. if (opt->params.type == GGML_OPT_ADAM) {
  14604. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  14605. if (opt->params.past > 0) {
  14606. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14607. }
  14608. } else if (opt->params.type == GGML_OPT_LBFGS) {
  14609. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  14610. if (opt->params.past > 0) {
  14611. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14612. }
  14613. }
  14614. ctx_opt_params.mem_buffer = NULL;
  14615. ctx_opt_params.no_alloc = false;
  14616. opt->ctx = ggml_init(ctx_opt_params);
  14617. }
  14618. switch (opt->params.type) {
  14619. case GGML_OPT_ADAM:
  14620. {
  14621. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14622. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14623. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14624. opt->adam.pf = params.past > 0
  14625. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14626. : NULL;
  14627. ggml_set_zero(opt->adam.m);
  14628. ggml_set_zero(opt->adam.v);
  14629. if (opt->adam.pf) {
  14630. ggml_set_zero(opt->adam.pf);
  14631. }
  14632. } break;
  14633. case GGML_OPT_LBFGS:
  14634. {
  14635. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14636. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14637. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14638. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14639. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14640. opt->lbfgs.pf = params.past > 0
  14641. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14642. : NULL;
  14643. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14644. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14645. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14646. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14647. ggml_set_zero(opt->lbfgs.x);
  14648. ggml_set_zero(opt->lbfgs.xp);
  14649. ggml_set_zero(opt->lbfgs.g);
  14650. ggml_set_zero(opt->lbfgs.gp);
  14651. ggml_set_zero(opt->lbfgs.d);
  14652. if (opt->lbfgs.pf) {
  14653. ggml_set_zero(opt->lbfgs.pf);
  14654. }
  14655. ggml_set_zero(opt->lbfgs.lmal);
  14656. ggml_set_zero(opt->lbfgs.lmys);
  14657. ggml_set_zero(opt->lbfgs.lms);
  14658. ggml_set_zero(opt->lbfgs.lmy);
  14659. } break;
  14660. }
  14661. }
  14662. enum ggml_opt_result ggml_opt(
  14663. struct ggml_context * ctx,
  14664. struct ggml_opt_params params,
  14665. struct ggml_tensor * f) {
  14666. bool free_ctx = false;
  14667. if (ctx == NULL) {
  14668. struct ggml_init_params params_ctx = {
  14669. .mem_size = 16*1024*1024,
  14670. .mem_buffer = NULL,
  14671. .no_alloc = false,
  14672. };
  14673. ctx = ggml_init(params_ctx);
  14674. if (ctx == NULL) {
  14675. return GGML_OPT_NO_CONTEXT;
  14676. }
  14677. free_ctx = true;
  14678. }
  14679. enum ggml_opt_result result = GGML_OPT_OK;
  14680. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14681. ggml_opt_init(ctx, opt, params, 0);
  14682. result = ggml_opt_resume(ctx, opt, f);
  14683. if (free_ctx) {
  14684. ggml_free(ctx);
  14685. }
  14686. return result;
  14687. }
  14688. enum ggml_opt_result ggml_opt_resume(
  14689. struct ggml_context * ctx,
  14690. struct ggml_opt_context * opt,
  14691. struct ggml_tensor * f) {
  14692. // build forward + backward compute graphs
  14693. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  14694. ggml_build_forward_expand(gf, f);
  14695. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  14696. ggml_build_backward_expand(ctx, gf, gb, true);
  14697. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  14698. }
  14699. enum ggml_opt_result ggml_opt_resume_g(
  14700. struct ggml_context * ctx,
  14701. struct ggml_opt_context * opt,
  14702. struct ggml_tensor * f,
  14703. struct ggml_cgraph * gf,
  14704. struct ggml_cgraph * gb,
  14705. ggml_opt_callback callback,
  14706. void * callback_data) {
  14707. // build forward + backward compute graphs
  14708. enum ggml_opt_result result = GGML_OPT_OK;
  14709. switch (opt->params.type) {
  14710. case GGML_OPT_ADAM:
  14711. {
  14712. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14713. } break;
  14714. case GGML_OPT_LBFGS:
  14715. {
  14716. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14717. } break;
  14718. }
  14719. if (opt->params.print_forward_graph) {
  14720. ggml_graph_print (gf);
  14721. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14722. }
  14723. if (opt->params.print_backward_graph) {
  14724. ggml_graph_print (gb);
  14725. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14726. }
  14727. return result;
  14728. }
  14729. ////////////////////////////////////////////////////////////////////////////////
  14730. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14731. assert(k % QK4_0 == 0);
  14732. const int nb = k / QK4_0;
  14733. for (int b = 0; b < n; b += k) {
  14734. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14735. quantize_row_q4_0_reference(src + b, y, k);
  14736. for (int i = 0; i < nb; i++) {
  14737. for (int j = 0; j < QK4_0; j += 2) {
  14738. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14739. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14740. hist[vi0]++;
  14741. hist[vi1]++;
  14742. }
  14743. }
  14744. }
  14745. return (n/QK4_0*sizeof(block_q4_0));
  14746. }
  14747. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14748. assert(k % QK4_1 == 0);
  14749. const int nb = k / QK4_1;
  14750. for (int b = 0; b < n; b += k) {
  14751. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14752. quantize_row_q4_1_reference(src + b, y, k);
  14753. for (int i = 0; i < nb; i++) {
  14754. for (int j = 0; j < QK4_1; j += 2) {
  14755. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14756. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14757. hist[vi0]++;
  14758. hist[vi1]++;
  14759. }
  14760. }
  14761. }
  14762. return (n/QK4_1*sizeof(block_q4_1));
  14763. }
  14764. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14765. assert(k % QK5_0 == 0);
  14766. const int nb = k / QK5_0;
  14767. for (int b = 0; b < n; b += k) {
  14768. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14769. quantize_row_q5_0_reference(src + b, y, k);
  14770. for (int i = 0; i < nb; i++) {
  14771. uint32_t qh;
  14772. memcpy(&qh, &y[i].qh, sizeof(qh));
  14773. for (int j = 0; j < QK5_0; j += 2) {
  14774. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14775. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14776. // cast to 16 bins
  14777. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14778. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14779. hist[vi0]++;
  14780. hist[vi1]++;
  14781. }
  14782. }
  14783. }
  14784. return (n/QK5_0*sizeof(block_q5_0));
  14785. }
  14786. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14787. assert(k % QK5_1 == 0);
  14788. const int nb = k / QK5_1;
  14789. for (int b = 0; b < n; b += k) {
  14790. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14791. quantize_row_q5_1_reference(src + b, y, k);
  14792. for (int i = 0; i < nb; i++) {
  14793. uint32_t qh;
  14794. memcpy(&qh, &y[i].qh, sizeof(qh));
  14795. for (int j = 0; j < QK5_1; j += 2) {
  14796. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14797. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14798. // cast to 16 bins
  14799. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14800. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14801. hist[vi0]++;
  14802. hist[vi1]++;
  14803. }
  14804. }
  14805. }
  14806. return (n/QK5_1*sizeof(block_q5_1));
  14807. }
  14808. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14809. assert(k % QK8_0 == 0);
  14810. const int nb = k / QK8_0;
  14811. for (int b = 0; b < n; b += k) {
  14812. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14813. quantize_row_q8_0_reference(src + b, y, k);
  14814. for (int i = 0; i < nb; i++) {
  14815. for (int j = 0; j < QK8_0; ++j) {
  14816. const int8_t vi = y[i].qs[j];
  14817. hist[vi/16 + 8]++;
  14818. }
  14819. }
  14820. }
  14821. return (n/QK8_0*sizeof(block_q8_0));
  14822. }
  14823. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14824. size_t result = 0;
  14825. switch (type) {
  14826. case GGML_TYPE_Q4_0:
  14827. {
  14828. GGML_ASSERT(start % QK4_0 == 0);
  14829. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14830. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14831. } break;
  14832. case GGML_TYPE_Q4_1:
  14833. {
  14834. GGML_ASSERT(start % QK4_1 == 0);
  14835. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14836. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14837. } break;
  14838. case GGML_TYPE_Q5_0:
  14839. {
  14840. GGML_ASSERT(start % QK5_0 == 0);
  14841. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14842. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14843. } break;
  14844. case GGML_TYPE_Q5_1:
  14845. {
  14846. GGML_ASSERT(start % QK5_1 == 0);
  14847. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14848. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14849. } break;
  14850. case GGML_TYPE_Q8_0:
  14851. {
  14852. GGML_ASSERT(start % QK8_0 == 0);
  14853. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14854. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14855. } break;
  14856. case GGML_TYPE_Q2_K:
  14857. {
  14858. GGML_ASSERT(start % QK_K == 0);
  14859. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14860. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14861. } break;
  14862. case GGML_TYPE_Q3_K:
  14863. {
  14864. GGML_ASSERT(start % QK_K == 0);
  14865. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14866. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14867. } break;
  14868. case GGML_TYPE_Q4_K:
  14869. {
  14870. GGML_ASSERT(start % QK_K == 0);
  14871. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14872. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14873. } break;
  14874. case GGML_TYPE_Q5_K:
  14875. {
  14876. GGML_ASSERT(start % QK_K == 0);
  14877. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14878. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14879. } break;
  14880. case GGML_TYPE_Q6_K:
  14881. {
  14882. GGML_ASSERT(start % QK_K == 0);
  14883. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14884. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14885. } break;
  14886. case GGML_TYPE_F16:
  14887. {
  14888. int elemsize = sizeof(ggml_fp16_t);
  14889. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14890. result = n * elemsize;
  14891. } break;
  14892. case GGML_TYPE_F32:
  14893. {
  14894. int elemsize = sizeof(float);
  14895. result = n * elemsize;
  14896. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14897. } break;
  14898. default:
  14899. assert(false);
  14900. }
  14901. return result;
  14902. }
  14903. ////////////////////////////////////////////////////////////////////////////////
  14904. struct gguf_str {
  14905. uint64_t n; // GGUFv2
  14906. char * data;
  14907. };
  14908. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  14909. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  14910. [GGUF_TYPE_INT8] = sizeof(int8_t),
  14911. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  14912. [GGUF_TYPE_INT16] = sizeof(int16_t),
  14913. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  14914. [GGUF_TYPE_INT32] = sizeof(int32_t),
  14915. [GGUF_TYPE_FLOAT32] = sizeof(float),
  14916. [GGUF_TYPE_BOOL] = sizeof(bool),
  14917. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  14918. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  14919. [GGUF_TYPE_INT64] = sizeof(int64_t),
  14920. [GGUF_TYPE_FLOAT64] = sizeof(double),
  14921. [GGUF_TYPE_ARRAY] = 0, // undefined
  14922. };
  14923. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  14924. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  14925. [GGUF_TYPE_UINT8] = "u8",
  14926. [GGUF_TYPE_INT8] = "i8",
  14927. [GGUF_TYPE_UINT16] = "u16",
  14928. [GGUF_TYPE_INT16] = "i16",
  14929. [GGUF_TYPE_UINT32] = "u32",
  14930. [GGUF_TYPE_INT32] = "i32",
  14931. [GGUF_TYPE_FLOAT32] = "f32",
  14932. [GGUF_TYPE_BOOL] = "bool",
  14933. [GGUF_TYPE_STRING] = "str",
  14934. [GGUF_TYPE_ARRAY] = "arr",
  14935. [GGUF_TYPE_UINT64] = "u64",
  14936. [GGUF_TYPE_INT64] = "i64",
  14937. [GGUF_TYPE_FLOAT64] = "f64",
  14938. };
  14939. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  14940. union gguf_value {
  14941. uint8_t uint8;
  14942. int8_t int8;
  14943. uint16_t uint16;
  14944. int16_t int16;
  14945. uint32_t uint32;
  14946. int32_t int32;
  14947. float float32;
  14948. uint64_t uint64;
  14949. int64_t int64;
  14950. double float64;
  14951. bool bool_;
  14952. struct gguf_str str;
  14953. struct {
  14954. enum gguf_type type;
  14955. uint64_t n; // GGUFv2
  14956. void * data;
  14957. } arr;
  14958. };
  14959. struct gguf_kv {
  14960. struct gguf_str key;
  14961. enum gguf_type type;
  14962. union gguf_value value;
  14963. };
  14964. struct gguf_header {
  14965. char magic[4];
  14966. uint32_t version;
  14967. uint64_t n_tensors; // GGUFv2
  14968. uint64_t n_kv; // GGUFv2
  14969. };
  14970. struct gguf_tensor_info {
  14971. struct gguf_str name;
  14972. uint32_t n_dims;
  14973. uint64_t ne[GGML_MAX_DIMS];
  14974. enum ggml_type type;
  14975. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  14976. // for writing API
  14977. const void * data;
  14978. size_t size;
  14979. };
  14980. struct gguf_context {
  14981. struct gguf_header header;
  14982. struct gguf_kv * kv;
  14983. struct gguf_tensor_info * infos;
  14984. size_t alignment;
  14985. size_t offset; // offset of `data` from beginning of file
  14986. size_t size; // size of `data` in bytes
  14987. //uint8_t * padding;
  14988. void * data;
  14989. };
  14990. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  14991. const size_t n = fread(dst, 1, size, file);
  14992. *offset += n;
  14993. return n == size;
  14994. }
  14995. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  14996. p->n = 0;
  14997. p->data = NULL;
  14998. bool ok = true;
  14999. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15000. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15001. return ok;
  15002. }
  15003. struct gguf_context * gguf_init_empty(void) {
  15004. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15005. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15006. ctx->header.version = GGUF_VERSION;
  15007. ctx->header.n_tensors = 0;
  15008. ctx->header.n_kv = 0;
  15009. ctx->kv = NULL;
  15010. ctx->infos = NULL;
  15011. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15012. ctx->offset = 0;
  15013. ctx->size = 0;
  15014. ctx->data = NULL;
  15015. return ctx;
  15016. }
  15017. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15018. FILE * file = fopen(fname, "rb");
  15019. if (!file) {
  15020. return NULL;
  15021. }
  15022. // offset from start of file
  15023. size_t offset = 0;
  15024. char magic[4];
  15025. // check the magic before making allocations
  15026. {
  15027. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15028. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15029. if (magic[i] != GGUF_MAGIC[i]) {
  15030. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15031. fclose(file);
  15032. return NULL;
  15033. }
  15034. }
  15035. }
  15036. bool ok = true;
  15037. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15038. // read the header
  15039. {
  15040. strncpy(ctx->header.magic, magic, 4);
  15041. ctx->kv = NULL;
  15042. ctx->infos = NULL;
  15043. ctx->data = NULL;
  15044. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15045. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15046. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15047. if (ctx->header.version == 1) {
  15048. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15049. fclose(file);
  15050. gguf_free(ctx);
  15051. return NULL;
  15052. }
  15053. if (!ok) {
  15054. fprintf(stderr, "%s: failed to read header\n", __func__);
  15055. fclose(file);
  15056. gguf_free(ctx);
  15057. return NULL;
  15058. }
  15059. }
  15060. // read the kv pairs
  15061. {
  15062. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15063. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15064. struct gguf_kv * kv = &ctx->kv[i];
  15065. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15066. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15067. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15068. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15069. switch (kv->type) {
  15070. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15071. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15072. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15073. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15074. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15075. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15076. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15077. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15078. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15079. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15080. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15081. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15082. case GGUF_TYPE_ARRAY:
  15083. {
  15084. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15085. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15086. switch (kv->value.arr.type) {
  15087. case GGUF_TYPE_UINT8:
  15088. case GGUF_TYPE_INT8:
  15089. case GGUF_TYPE_UINT16:
  15090. case GGUF_TYPE_INT16:
  15091. case GGUF_TYPE_UINT32:
  15092. case GGUF_TYPE_INT32:
  15093. case GGUF_TYPE_FLOAT32:
  15094. case GGUF_TYPE_UINT64:
  15095. case GGUF_TYPE_INT64:
  15096. case GGUF_TYPE_FLOAT64:
  15097. case GGUF_TYPE_BOOL:
  15098. {
  15099. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15100. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15101. } break;
  15102. case GGUF_TYPE_STRING:
  15103. {
  15104. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15105. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15106. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15107. }
  15108. } break;
  15109. case GGUF_TYPE_ARRAY:
  15110. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15111. }
  15112. } break;
  15113. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15114. }
  15115. if (!ok) {
  15116. break;
  15117. }
  15118. }
  15119. if (!ok) {
  15120. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15121. fclose(file);
  15122. gguf_free(ctx);
  15123. return NULL;
  15124. }
  15125. }
  15126. // read the tensor infos
  15127. {
  15128. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15129. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15130. struct gguf_tensor_info * info = &ctx->infos[i];
  15131. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15132. info->ne[j] = 1;
  15133. }
  15134. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15135. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15136. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15137. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15138. }
  15139. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15140. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15141. if (!ok) {
  15142. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15143. fclose(file);
  15144. gguf_free(ctx);
  15145. return NULL;
  15146. }
  15147. }
  15148. }
  15149. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15150. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15151. if (alignment_idx != -1) {
  15152. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15153. }
  15154. // we require the data section to be aligned, so take into account any padding
  15155. {
  15156. const size_t offset_pad = offset % ctx->alignment;
  15157. if (offset_pad != 0) {
  15158. offset += ctx->alignment - offset_pad;
  15159. fseek(file, offset, SEEK_SET);
  15160. }
  15161. }
  15162. // store the current file offset - this is where the data section starts
  15163. ctx->offset = offset;
  15164. // compute the total size of the data section, taking into account the alignment
  15165. {
  15166. ctx->size = 0;
  15167. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15168. struct gguf_tensor_info * info = &ctx->infos[i];
  15169. const int64_t ne =
  15170. (int64_t) info->ne[0] *
  15171. (int64_t) info->ne[1] *
  15172. (int64_t) info->ne[2] *
  15173. (int64_t) info->ne[3];
  15174. if (ne % ggml_blck_size(info->type) != 0) {
  15175. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15176. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15177. fclose(file);
  15178. gguf_free(ctx);
  15179. return NULL;
  15180. }
  15181. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15182. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15183. }
  15184. }
  15185. // load the tensor data only if requested
  15186. if (params.ctx != NULL) {
  15187. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15188. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15189. // the ggml_tensor structs to the appropriate locations in the binary blob
  15190. // compute the exact size needed for the new ggml_context
  15191. const size_t mem_size =
  15192. params.no_alloc ?
  15193. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15194. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15195. struct ggml_init_params pdata = {
  15196. .mem_size = mem_size,
  15197. .mem_buffer = NULL,
  15198. .no_alloc = params.no_alloc,
  15199. };
  15200. *params.ctx = ggml_init(pdata);
  15201. struct ggml_context * ctx_data = *params.ctx;
  15202. struct ggml_tensor * data = NULL;
  15203. if (!params.no_alloc) {
  15204. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15205. ok = ok && data != NULL;
  15206. // read the binary blob with the tensor data
  15207. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15208. if (!ok) {
  15209. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15210. fclose(file);
  15211. ggml_free(ctx_data);
  15212. gguf_free(ctx);
  15213. return NULL;
  15214. }
  15215. ctx->data = data->data;
  15216. }
  15217. ggml_set_no_alloc(ctx_data, true);
  15218. // create the tensors
  15219. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15220. const int64_t ne[GGML_MAX_DIMS] = {
  15221. ctx->infos[i].ne[0],
  15222. ctx->infos[i].ne[1],
  15223. ctx->infos[i].ne[2],
  15224. ctx->infos[i].ne[3],
  15225. };
  15226. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15227. ok = ok && cur != NULL;
  15228. ggml_set_name(cur, ctx->infos[i].name.data);
  15229. if (!ok) {
  15230. break;
  15231. }
  15232. // point the data member to the appropriate location in the binary blob using the tensor infos
  15233. if (!params.no_alloc) {
  15234. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15235. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15236. }
  15237. }
  15238. if (!ok) {
  15239. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15240. fclose(file);
  15241. ggml_free(ctx_data);
  15242. gguf_free(ctx);
  15243. return NULL;
  15244. }
  15245. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15246. }
  15247. fclose(file);
  15248. return ctx;
  15249. }
  15250. void gguf_free(struct gguf_context * ctx) {
  15251. if (ctx == NULL) {
  15252. return;
  15253. }
  15254. if (ctx->kv) {
  15255. // free string memory - not great..
  15256. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15257. struct gguf_kv * kv = &ctx->kv[i];
  15258. if (kv->key.data) {
  15259. free(kv->key.data);
  15260. }
  15261. if (kv->type == GGUF_TYPE_STRING) {
  15262. if (kv->value.str.data) {
  15263. free(kv->value.str.data);
  15264. }
  15265. }
  15266. if (kv->type == GGUF_TYPE_ARRAY) {
  15267. if (kv->value.arr.data) {
  15268. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15269. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15270. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15271. if (str->data) {
  15272. free(str->data);
  15273. }
  15274. }
  15275. }
  15276. free(kv->value.arr.data);
  15277. }
  15278. }
  15279. }
  15280. free(ctx->kv);
  15281. }
  15282. if (ctx->infos) {
  15283. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15284. struct gguf_tensor_info * info = &ctx->infos[i];
  15285. if (info->name.data) {
  15286. free(info->name.data);
  15287. }
  15288. }
  15289. free(ctx->infos);
  15290. }
  15291. GGML_ALIGNED_FREE(ctx);
  15292. }
  15293. const char * gguf_type_name(enum gguf_type type) {
  15294. return GGUF_TYPE_NAME[type];
  15295. }
  15296. int gguf_get_version(const struct gguf_context * ctx) {
  15297. return ctx->header.version;
  15298. }
  15299. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15300. return ctx->alignment;
  15301. }
  15302. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15303. return ctx->offset;
  15304. }
  15305. void * gguf_get_data(const struct gguf_context * ctx) {
  15306. return ctx->data;
  15307. }
  15308. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15309. return ctx->header.n_kv;
  15310. }
  15311. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15312. // return -1 if key not found
  15313. int keyfound = -1;
  15314. const int n_kv = gguf_get_n_kv(ctx);
  15315. for (int i = 0; i < n_kv; ++i) {
  15316. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15317. keyfound = i;
  15318. break;
  15319. }
  15320. }
  15321. return keyfound;
  15322. }
  15323. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15324. return ctx->kv[key_id].key.data;
  15325. }
  15326. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15327. return ctx->kv[key_id].type;
  15328. }
  15329. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15330. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15331. return ctx->kv[key_id].value.arr.type;
  15332. }
  15333. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15334. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15335. return ctx->kv[key_id].value.arr.data;
  15336. }
  15337. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15338. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15339. struct gguf_kv * kv = &ctx->kv[key_id];
  15340. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15341. return str->data;
  15342. }
  15343. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15344. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15345. return ctx->kv[key_id].value.arr.n;
  15346. }
  15347. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15348. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15349. return ctx->kv[key_id].value.uint8;
  15350. }
  15351. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15352. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15353. return ctx->kv[key_id].value.int8;
  15354. }
  15355. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15356. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15357. return ctx->kv[key_id].value.uint16;
  15358. }
  15359. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15360. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15361. return ctx->kv[key_id].value.int16;
  15362. }
  15363. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15364. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15365. return ctx->kv[key_id].value.uint32;
  15366. }
  15367. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15368. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15369. return ctx->kv[key_id].value.int32;
  15370. }
  15371. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15372. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15373. return ctx->kv[key_id].value.float32;
  15374. }
  15375. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15376. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15377. return ctx->kv[key_id].value.uint64;
  15378. }
  15379. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15380. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15381. return ctx->kv[key_id].value.int64;
  15382. }
  15383. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15384. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15385. return ctx->kv[key_id].value.float64;
  15386. }
  15387. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15388. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15389. return ctx->kv[key_id].value.bool_;
  15390. }
  15391. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15392. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15393. return ctx->kv[key_id].value.str.data;
  15394. }
  15395. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15396. return ctx->header.n_tensors;
  15397. }
  15398. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15399. // return -1 if tensor not found
  15400. int tensorfound = -1;
  15401. const int n_tensors = gguf_get_n_tensors(ctx);
  15402. for (int i = 0; i < n_tensors; ++i) {
  15403. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15404. tensorfound = i;
  15405. break;
  15406. }
  15407. }
  15408. return tensorfound;
  15409. }
  15410. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15411. return ctx->infos[i].offset;
  15412. }
  15413. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15414. return ctx->infos[i].name.data;
  15415. }
  15416. // returns the index
  15417. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15418. const int idx = gguf_find_key(ctx, key);
  15419. if (idx >= 0) {
  15420. return idx;
  15421. }
  15422. const int n_kv = gguf_get_n_kv(ctx);
  15423. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15424. ctx->kv[n_kv].key.n = strlen(key);
  15425. ctx->kv[n_kv].key.data = strdup(key);
  15426. ctx->header.n_kv++;
  15427. return n_kv;
  15428. }
  15429. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15430. const int idx = gguf_get_or_add_key(ctx, key);
  15431. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15432. ctx->kv[idx].value.uint8 = val;
  15433. }
  15434. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15435. const int idx = gguf_get_or_add_key(ctx, key);
  15436. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15437. ctx->kv[idx].value.int8 = val;
  15438. }
  15439. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15440. const int idx = gguf_get_or_add_key(ctx, key);
  15441. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15442. ctx->kv[idx].value.uint16 = val;
  15443. }
  15444. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15445. const int idx = gguf_get_or_add_key(ctx, key);
  15446. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15447. ctx->kv[idx].value.int16 = val;
  15448. }
  15449. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15450. const int idx = gguf_get_or_add_key(ctx, key);
  15451. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15452. ctx->kv[idx].value.uint32 = val;
  15453. }
  15454. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15455. const int idx = gguf_get_or_add_key(ctx, key);
  15456. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15457. ctx->kv[idx].value.int32 = val;
  15458. }
  15459. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15460. const int idx = gguf_get_or_add_key(ctx, key);
  15461. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15462. ctx->kv[idx].value.float32 = val;
  15463. }
  15464. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15465. const int idx = gguf_get_or_add_key(ctx, key);
  15466. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15467. ctx->kv[idx].value.uint64 = val;
  15468. }
  15469. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15470. const int idx = gguf_get_or_add_key(ctx, key);
  15471. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15472. ctx->kv[idx].value.int64 = val;
  15473. }
  15474. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15475. const int idx = gguf_get_or_add_key(ctx, key);
  15476. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15477. ctx->kv[idx].value.float64 = val;
  15478. }
  15479. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15480. const int idx = gguf_get_or_add_key(ctx, key);
  15481. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15482. ctx->kv[idx].value.bool_ = val;
  15483. }
  15484. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15485. const int idx = gguf_get_or_add_key(ctx, key);
  15486. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15487. ctx->kv[idx].value.str.n = strlen(val);
  15488. ctx->kv[idx].value.str.data = strdup(val);
  15489. }
  15490. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15491. const int idx = gguf_get_or_add_key(ctx, key);
  15492. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15493. ctx->kv[idx].value.arr.type = type;
  15494. ctx->kv[idx].value.arr.n = n;
  15495. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15496. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15497. }
  15498. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15499. const int idx = gguf_get_or_add_key(ctx, key);
  15500. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15501. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15502. ctx->kv[idx].value.arr.n = n;
  15503. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15504. for (int i = 0; i < n; i++) {
  15505. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15506. str->n = strlen(data[i]);
  15507. str->data = strdup(data[i]);
  15508. }
  15509. }
  15510. // set or add KV pairs from another context
  15511. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15512. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15513. switch (src->kv[i].type) {
  15514. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15515. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15516. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15517. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15518. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15519. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15520. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15521. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15522. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15523. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15524. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15525. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15526. case GGUF_TYPE_ARRAY:
  15527. {
  15528. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15529. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15530. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15531. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15532. }
  15533. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15534. free(data);
  15535. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15536. GGML_ASSERT(false && "nested arrays not supported");
  15537. } else {
  15538. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15539. }
  15540. } break;
  15541. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15542. }
  15543. }
  15544. }
  15545. void gguf_add_tensor(
  15546. struct gguf_context * ctx,
  15547. const struct ggml_tensor * tensor) {
  15548. const int idx = ctx->header.n_tensors;
  15549. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15550. ctx->infos[idx].name.n = strlen(tensor->name);
  15551. ctx->infos[idx].name.data = strdup(tensor->name);
  15552. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15553. ctx->infos[idx].ne[i] = 1;
  15554. }
  15555. ctx->infos[idx].n_dims = tensor->n_dims;
  15556. for (int i = 0; i < tensor->n_dims; i++) {
  15557. ctx->infos[idx].ne[i] = tensor->ne[i];
  15558. }
  15559. ctx->infos[idx].type = tensor->type;
  15560. ctx->infos[idx].offset = 0;
  15561. ctx->infos[idx].data = tensor->data;
  15562. ctx->infos[idx].size = ggml_nbytes(tensor);
  15563. if (ctx->header.n_tensors > 0) {
  15564. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15565. }
  15566. ctx->header.n_tensors++;
  15567. }
  15568. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15569. const int idx = gguf_find_tensor(ctx, name);
  15570. if (idx < 0) {
  15571. GGML_ASSERT(false && "tensor not found");
  15572. }
  15573. ctx->infos[idx].type = type;
  15574. }
  15575. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15576. const int idx = gguf_find_tensor(ctx, name);
  15577. if (idx < 0) {
  15578. GGML_ASSERT(false && "tensor not found");
  15579. }
  15580. ctx->infos[idx].data = data;
  15581. ctx->infos[idx].size = size;
  15582. // update offsets
  15583. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15584. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15585. }
  15586. }
  15587. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15588. // fwrite(&val->n, sizeof(val->n), 1, file);
  15589. // fwrite(val->data, sizeof(char), val->n, file);
  15590. //}
  15591. //
  15592. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15593. // fwrite(val, sizeof(char), size, file);
  15594. //}
  15595. struct gguf_buf {
  15596. void * data;
  15597. size_t size;
  15598. size_t offset;
  15599. };
  15600. static struct gguf_buf gguf_buf_init(size_t size) {
  15601. struct gguf_buf buf = {
  15602. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15603. /*buf.size =*/ size,
  15604. /*buf.offset =*/ 0,
  15605. };
  15606. return buf;
  15607. }
  15608. static void gguf_buf_free(struct gguf_buf buf) {
  15609. if (buf.data) {
  15610. free(buf.data);
  15611. }
  15612. }
  15613. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  15614. if (buf->offset + size > buf->size) {
  15615. buf->size = 1.5*(buf->offset + size);
  15616. if (buf->data) {
  15617. buf->data = realloc(buf->data, buf->size);
  15618. }
  15619. }
  15620. }
  15621. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  15622. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  15623. if (buf->data) {
  15624. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  15625. }
  15626. buf->offset += sizeof(val->n);
  15627. if (buf->data) {
  15628. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  15629. }
  15630. buf->offset += val->n;
  15631. }
  15632. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  15633. gguf_buf_grow(buf, el_size);
  15634. if (buf->data) {
  15635. memcpy((char *) buf->data + buf->offset, val, el_size);
  15636. }
  15637. buf->offset += el_size;
  15638. }
  15639. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  15640. // write header
  15641. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  15642. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  15643. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  15644. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  15645. // write key-value pairs
  15646. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15647. struct gguf_kv * kv = &ctx->kv[i];
  15648. gguf_bwrite_str(buf, &kv->key);
  15649. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  15650. switch (kv->type) {
  15651. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  15652. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  15653. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  15654. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  15655. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  15656. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  15657. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  15658. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  15659. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  15660. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  15661. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  15662. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  15663. case GGUF_TYPE_ARRAY:
  15664. {
  15665. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  15666. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  15667. switch (kv->value.arr.type) {
  15668. case GGUF_TYPE_UINT8:
  15669. case GGUF_TYPE_INT8:
  15670. case GGUF_TYPE_UINT16:
  15671. case GGUF_TYPE_INT16:
  15672. case GGUF_TYPE_UINT32:
  15673. case GGUF_TYPE_INT32:
  15674. case GGUF_TYPE_FLOAT32:
  15675. case GGUF_TYPE_UINT64:
  15676. case GGUF_TYPE_INT64:
  15677. case GGUF_TYPE_FLOAT64:
  15678. case GGUF_TYPE_BOOL:
  15679. {
  15680. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15681. } break;
  15682. case GGUF_TYPE_STRING:
  15683. {
  15684. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15685. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  15686. }
  15687. } break;
  15688. case GGUF_TYPE_ARRAY:
  15689. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15690. }
  15691. } break;
  15692. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15693. }
  15694. }
  15695. // write tensor infos
  15696. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15697. struct gguf_tensor_info * info = &ctx->infos[i];
  15698. gguf_bwrite_str(buf, &info->name);
  15699. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  15700. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15701. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  15702. }
  15703. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  15704. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  15705. }
  15706. // we require the data section to be aligned, so take into account any padding
  15707. {
  15708. const size_t offset = buf->offset;
  15709. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  15710. if (offset_pad != offset) {
  15711. uint8_t pad = 0;
  15712. for (size_t i = 0; i < offset_pad - offset; ++i) {
  15713. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15714. }
  15715. }
  15716. }
  15717. if (only_meta) {
  15718. return;
  15719. }
  15720. size_t offset = 0;
  15721. // write tensor data
  15722. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15723. struct gguf_tensor_info * info = &ctx->infos[i];
  15724. const size_t size = info->size;
  15725. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  15726. gguf_bwrite_el(buf, info->data, size);
  15727. if (size_pad != size) {
  15728. uint8_t pad = 0;
  15729. for (size_t j = 0; j < size_pad - size; ++j) {
  15730. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15731. }
  15732. }
  15733. GGML_ASSERT(offset == info->offset);
  15734. offset += size_pad;
  15735. }
  15736. }
  15737. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  15738. FILE * file = fopen(fname, "wb");
  15739. if (!file) {
  15740. GGML_ASSERT(false && "failed to open file for writing");
  15741. }
  15742. struct gguf_buf buf = gguf_buf_init(16*1024);
  15743. gguf_write_to_buf(ctx, &buf, only_meta);
  15744. fwrite(buf.data, 1, buf.offset, file);
  15745. gguf_buf_free(buf);
  15746. fclose(file);
  15747. }
  15748. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  15749. // no allocs - only compute size
  15750. struct gguf_buf buf = gguf_buf_init(0);
  15751. gguf_write_to_buf(ctx, &buf, true);
  15752. return buf.offset;
  15753. }
  15754. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  15755. struct gguf_buf buf = gguf_buf_init(16*1024);
  15756. gguf_write_to_buf(ctx, &buf, true);
  15757. memcpy(data, buf.data, buf.offset);
  15758. gguf_buf_free(buf);
  15759. }
  15760. ////////////////////////////////////////////////////////////////////////////////
  15761. int ggml_cpu_has_avx(void) {
  15762. #if defined(__AVX__)
  15763. return 1;
  15764. #else
  15765. return 0;
  15766. #endif
  15767. }
  15768. int ggml_cpu_has_avx2(void) {
  15769. #if defined(__AVX2__)
  15770. return 1;
  15771. #else
  15772. return 0;
  15773. #endif
  15774. }
  15775. int ggml_cpu_has_avx512(void) {
  15776. #if defined(__AVX512F__)
  15777. return 1;
  15778. #else
  15779. return 0;
  15780. #endif
  15781. }
  15782. int ggml_cpu_has_avx512_vbmi(void) {
  15783. #if defined(__AVX512VBMI__)
  15784. return 1;
  15785. #else
  15786. return 0;
  15787. #endif
  15788. }
  15789. int ggml_cpu_has_avx512_vnni(void) {
  15790. #if defined(__AVX512VNNI__)
  15791. return 1;
  15792. #else
  15793. return 0;
  15794. #endif
  15795. }
  15796. int ggml_cpu_has_fma(void) {
  15797. #if defined(__FMA__)
  15798. return 1;
  15799. #else
  15800. return 0;
  15801. #endif
  15802. }
  15803. int ggml_cpu_has_neon(void) {
  15804. #if defined(__ARM_NEON)
  15805. return 1;
  15806. #else
  15807. return 0;
  15808. #endif
  15809. }
  15810. int ggml_cpu_has_arm_fma(void) {
  15811. #if defined(__ARM_FEATURE_FMA)
  15812. return 1;
  15813. #else
  15814. return 0;
  15815. #endif
  15816. }
  15817. int ggml_cpu_has_metal(void) {
  15818. #if defined(GGML_USE_METAL)
  15819. return 1;
  15820. #else
  15821. return 0;
  15822. #endif
  15823. }
  15824. int ggml_cpu_has_f16c(void) {
  15825. #if defined(__F16C__)
  15826. return 1;
  15827. #else
  15828. return 0;
  15829. #endif
  15830. }
  15831. int ggml_cpu_has_fp16_va(void) {
  15832. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15833. return 1;
  15834. #else
  15835. return 0;
  15836. #endif
  15837. }
  15838. int ggml_cpu_has_wasm_simd(void) {
  15839. #if defined(__wasm_simd128__)
  15840. return 1;
  15841. #else
  15842. return 0;
  15843. #endif
  15844. }
  15845. int ggml_cpu_has_blas(void) {
  15846. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15847. return 1;
  15848. #else
  15849. return 0;
  15850. #endif
  15851. }
  15852. int ggml_cpu_has_cublas(void) {
  15853. #if defined(GGML_USE_CUBLAS)
  15854. return 1;
  15855. #else
  15856. return 0;
  15857. #endif
  15858. }
  15859. int ggml_cpu_has_clblast(void) {
  15860. #if defined(GGML_USE_CLBLAST)
  15861. return 1;
  15862. #else
  15863. return 0;
  15864. #endif
  15865. }
  15866. int ggml_cpu_has_gpublas(void) {
  15867. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15868. }
  15869. int ggml_cpu_has_sse3(void) {
  15870. #if defined(__SSE3__)
  15871. return 1;
  15872. #else
  15873. return 0;
  15874. #endif
  15875. }
  15876. int ggml_cpu_has_ssse3(void) {
  15877. #if defined(__SSSE3__)
  15878. return 1;
  15879. #else
  15880. return 0;
  15881. #endif
  15882. }
  15883. int ggml_cpu_has_vsx(void) {
  15884. #if defined(__POWER9_VECTOR__)
  15885. return 1;
  15886. #else
  15887. return 0;
  15888. #endif
  15889. }
  15890. ////////////////////////////////////////////////////////////////////////////////