convert.py 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import concurrent.futures
  5. import enum
  6. import faulthandler
  7. import functools
  8. import itertools
  9. import json
  10. import math
  11. import mmap
  12. import os
  13. import pickle
  14. import re
  15. import signal
  16. import struct
  17. import sys
  18. import textwrap
  19. import time
  20. import zipfile
  21. from abc import ABC, abstractmethod
  22. from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
  23. from dataclasses import dataclass
  24. from pathlib import Path
  25. from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable
  26. import numpy as np
  27. from sentencepiece import SentencePieceProcessor
  28. if 'NO_LOCAL_GGUF' not in os.environ:
  29. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  30. import gguf
  31. if TYPE_CHECKING:
  32. from typing_extensions import Self, TypeAlias
  33. if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
  34. faulthandler.register(signal.SIGUSR1)
  35. NDArray: TypeAlias = 'np.ndarray[Any, Any]'
  36. ARCH = gguf.MODEL_ARCH.LLAMA
  37. DEFAULT_CONCURRENCY = 8
  38. ADDED_TOKENS_FILE = 'added_tokens.json'
  39. FAST_TOKENIZER_FILE = 'tokenizer.json'
  40. #
  41. # data types
  42. #
  43. @dataclass(frozen=True)
  44. class DataType:
  45. name: str
  46. dtype: np.dtype[Any]
  47. valid_conversions: list[str]
  48. def elements_to_bytes(self, n_elements: int) -> int:
  49. return n_elements * self.dtype.itemsize
  50. @dataclass(frozen=True)
  51. class UnquantizedDataType(DataType):
  52. pass
  53. DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
  54. DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
  55. DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
  56. DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
  57. @dataclass(frozen=True)
  58. class QuantizedDataType(DataType):
  59. block_size: int
  60. quantized_dtype: np.dtype[Any]
  61. ggml_type: gguf.GGMLQuantizationType
  62. def quantize(self, arr: NDArray) -> NDArray:
  63. raise NotImplementedError(f'Quantization for {self.name} not implemented')
  64. def elements_to_bytes(self, n_elements: int) -> int:
  65. assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
  66. return self.quantized_dtype.itemsize * (n_elements // self.block_size)
  67. @dataclass(frozen=True)
  68. class Q8_0QuantizedDataType(QuantizedDataType):
  69. # Mini Q8_0 quantization in Python!
  70. def quantize(self, arr: NDArray) -> NDArray:
  71. assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
  72. assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
  73. n_blocks = arr.size // self.block_size
  74. blocks = arr.reshape((n_blocks, self.block_size))
  75. # Much faster implementation of block quantization contributed by @Cebtenzzre
  76. def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
  77. d = abs(blocks).max(axis = 1) / np.float32(127)
  78. with np.errstate(divide = 'ignore'):
  79. qs = (blocks / d[:, None]).round()
  80. qs[d == 0] = 0
  81. yield from zip(d, qs)
  82. return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
  83. DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
  84. dtype = np.dtype(np.float32), valid_conversions = [],
  85. ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
  86. quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
  87. # Quantized types skipped here because they may also map to np.float32
  88. NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
  89. for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
  90. if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
  91. raise ValueError(f'Invalid duplicate data type {dt}')
  92. NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
  93. SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
  94. 'BF16': DT_BF16,
  95. 'F16': DT_F16,
  96. 'F32': DT_F32,
  97. 'I32': DT_I32,
  98. }
  99. # TODO: match this with `llama_ftype`
  100. # TODO: rename to LLAMAFileType
  101. # TODO: move to `gguf.py`
  102. class GGMLFileType(enum.IntEnum):
  103. AllF32 = 0
  104. MostlyF16 = 1 # except 1d tensors
  105. MostlyQ8_0 = 7 # except 1d tensors
  106. def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
  107. dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
  108. if dt is None:
  109. raise ValueError(self)
  110. # Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32.
  111. # Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now.
  112. return dt if len(tensor.shape) > 1 else DT_F32
  113. GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
  114. GGMLFileType.AllF32 : DT_F32,
  115. GGMLFileType.MostlyF16 : DT_F16,
  116. GGMLFileType.MostlyQ8_0: DT_Q8_0,
  117. }
  118. #
  119. # hparams loading
  120. #
  121. @dataclass
  122. class Params:
  123. n_vocab: int
  124. n_embd: int
  125. n_layer: int
  126. n_ctx: int
  127. n_ff: int
  128. n_head: int
  129. n_head_kv: int
  130. n_experts: int | None = None
  131. n_experts_used: int | None = None
  132. f_norm_eps: float | None = None
  133. rope_scaling_type: gguf.RopeScalingType | None = None
  134. f_rope_freq_base: float | None = None
  135. f_rope_scale: float | None = None
  136. n_orig_ctx: int | None = None
  137. rope_finetuned: bool | None = None
  138. ftype: GGMLFileType | None = None
  139. # path to the directory containing the model files
  140. path_model: Path | None = None
  141. @staticmethod
  142. def guessed(model: LazyModel) -> Params:
  143. # try transformer naming first
  144. n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
  145. # try transformer naming first
  146. if "model.layers.0.self_attn.q_proj.weight" in model:
  147. n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
  148. elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
  149. n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
  150. else:
  151. n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
  152. if n_layer < 1:
  153. msg = """\
  154. failed to guess 'n_layer'. This model is unknown or unsupported.
  155. Suggestion: provide 'config.json' of the model in the same directory containing model files."""
  156. raise KeyError(textwrap.dedent(msg))
  157. n_head = n_embd // 128 # guessed
  158. n_mult = 256 # guessed
  159. # TODO: verify this
  160. n_ff = int(2 * (4 * n_embd) / 3)
  161. n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
  162. return Params(
  163. n_vocab = n_vocab,
  164. n_embd = n_embd,
  165. n_layer = n_layer,
  166. n_ctx = -1,
  167. n_ff = n_ff,
  168. n_head = n_head,
  169. n_head_kv = n_head,
  170. f_norm_eps = 1e-5,
  171. )
  172. @staticmethod
  173. def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
  174. with open(config_path) as f:
  175. config = json.load(f)
  176. rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
  177. rope_scaling = config.get("rope_scaling")
  178. if rope_scaling is not None and (typ := rope_scaling.get("type")):
  179. rope_factor = rope_scaling.get("factor")
  180. f_rope_scale = rope_factor
  181. if typ == "linear":
  182. rope_scaling_type = gguf.RopeScalingType.LINEAR
  183. elif typ == "yarn":
  184. rope_scaling_type = gguf.RopeScalingType.YARN
  185. n_orig_ctx = rope_scaling['original_max_position_embeddings']
  186. rope_finetuned = rope_scaling['finetuned']
  187. else:
  188. raise NotImplementedError(f'Unknown rope scaling type: {typ}')
  189. if "max_sequence_length" in config:
  190. n_ctx = config["max_sequence_length"]
  191. elif "max_position_embeddings" in config:
  192. n_ctx = config["max_position_embeddings"]
  193. else:
  194. msg = """\
  195. failed to guess 'n_ctx'. This model is unknown or unsupported.
  196. Suggestion: provide 'config.json' of the model in the same directory containing model files."""
  197. raise KeyError(textwrap.dedent(msg))
  198. n_experts = None
  199. n_experts_used = None
  200. if "num_local_experts" in config:
  201. n_experts = config["num_local_experts"]
  202. n_experts_used = config["num_experts_per_tok"]
  203. return Params(
  204. n_vocab = config["vocab_size"],
  205. n_embd = config["hidden_size"],
  206. n_layer = config["num_hidden_layers"],
  207. n_ctx = n_ctx,
  208. n_ff = config["intermediate_size"],
  209. n_head = (n_head := config["num_attention_heads"]),
  210. n_head_kv = config.get("num_key_value_heads", n_head),
  211. n_experts = n_experts,
  212. n_experts_used = n_experts_used,
  213. f_norm_eps = config["rms_norm_eps"],
  214. f_rope_freq_base = config.get("rope_theta"),
  215. rope_scaling_type = rope_scaling_type,
  216. f_rope_scale = f_rope_scale,
  217. n_orig_ctx = n_orig_ctx,
  218. rope_finetuned = rope_finetuned,
  219. )
  220. # LLaMA v2 70B params.json
  221. # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
  222. @staticmethod
  223. def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
  224. with open(config_path) as f:
  225. config = json.load(f)
  226. n_experts = None
  227. n_experts_used = None
  228. f_rope_freq_base = None
  229. # hack to determine LLaMA v1 vs v2 vs CodeLlama
  230. if config.get("moe"):
  231. # Mixtral
  232. n_ctx = 32768
  233. elif config.get("rope_theta") == 1000000:
  234. # CodeLlama
  235. n_ctx = 16384
  236. elif config["norm_eps"] == 1e-05:
  237. # LLaMA v2
  238. n_ctx = 4096
  239. else:
  240. # LLaMA v1
  241. n_ctx = 2048
  242. if "layers.0.feed_forward.w1.weight" in model:
  243. n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
  244. if config.get("moe"):
  245. n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
  246. n_experts = config["moe"]["num_experts"]
  247. n_experts_used = config["moe"]["num_experts_per_tok"]
  248. f_rope_freq_base = 1e6
  249. return Params(
  250. n_vocab = model["tok_embeddings.weight"].shape[0],
  251. n_embd = config["dim"],
  252. n_layer = config["n_layers"],
  253. n_ctx = n_ctx,
  254. n_ff = n_ff,
  255. n_head = (n_head := config["n_heads"]),
  256. n_head_kv = config.get("n_kv_heads", n_head),
  257. n_experts = n_experts,
  258. n_experts_used = n_experts_used,
  259. f_norm_eps = config["norm_eps"],
  260. f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
  261. )
  262. @staticmethod
  263. def load(model_plus: ModelPlus) -> Params:
  264. hf_config_path = model_plus.paths[0].parent / "config.json"
  265. orig_config_path = model_plus.paths[0].parent / "params.json"
  266. if hf_config_path.exists():
  267. params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
  268. elif orig_config_path.exists():
  269. params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
  270. elif model_plus.format != 'none':
  271. params = Params.guessed(model_plus.model)
  272. else:
  273. raise ValueError('Cannot guess params when model format is none')
  274. params.path_model = model_plus.paths[0].parent
  275. return params
  276. #
  277. # vocab
  278. #
  279. @runtime_checkable
  280. class BaseVocab(Protocol):
  281. tokenizer_model: ClassVar[str]
  282. name: ClassVar[str]
  283. class NoVocab(BaseVocab):
  284. tokenizer_model = "no_vocab"
  285. name = "no_vocab"
  286. def __repr__(self) -> str:
  287. return "<NoVocab for a model without integrated vocabulary>"
  288. @runtime_checkable
  289. class Vocab(BaseVocab, Protocol):
  290. vocab_size: int
  291. added_tokens_dict: dict[str, int]
  292. added_tokens_list: list[str]
  293. fname_tokenizer: Path
  294. def __init__(self, base_path: Path): ...
  295. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
  296. class BpeVocab(Vocab):
  297. tokenizer_model = "gpt2"
  298. name = "bpe"
  299. def __init__(self, base_path: Path):
  300. added_tokens: dict[str, int] = {}
  301. if (fname_tokenizer := base_path / 'vocab.json').exists():
  302. # "slow" tokenizer
  303. with open(fname_tokenizer, encoding="utf-8") as f:
  304. self.vocab = json.load(f)
  305. try:
  306. # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
  307. with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
  308. added_tokens = json.load(f)
  309. except FileNotFoundError:
  310. pass
  311. else:
  312. # "fast" tokenizer
  313. fname_tokenizer = base_path / FAST_TOKENIZER_FILE
  314. # if this fails, FileNotFoundError propagates to caller
  315. with open(fname_tokenizer, encoding="utf-8") as f:
  316. tokenizer_json = json.load(f)
  317. tokenizer_model: dict[str, Any] = tokenizer_json['model']
  318. if (
  319. tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
  320. or tokenizer_json['decoder']['type'] != 'ByteLevel'
  321. ):
  322. raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
  323. self.vocab = tokenizer_model["vocab"]
  324. if (added := tokenizer_json.get('added_tokens')) is not None:
  325. # Added tokens here can be duplicates of the main vocabulary.
  326. added_tokens = {item['content']: item['id']
  327. for item in added
  328. if item['content'] not in self.vocab}
  329. vocab_size = len(self.vocab)
  330. expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
  331. actual_ids = sorted(added_tokens.values())
  332. if expected_ids != actual_ids:
  333. expected_end_id = vocab_size + len(actual_ids) - 1
  334. raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
  335. f"{vocab_size} - {expected_end_id}; got {actual_ids}")
  336. items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
  337. self.added_tokens_dict = added_tokens
  338. self.added_tokens_list = [text for (text, idx) in items]
  339. self.vocab_size_base = vocab_size
  340. self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
  341. self.fname_tokenizer = fname_tokenizer
  342. def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  343. reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
  344. for i, _ in enumerate(self.vocab):
  345. yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
  346. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  347. for text in self.added_tokens_list:
  348. score = -1000.0
  349. yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
  350. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  351. yield from self.bpe_tokens()
  352. yield from self.added_tokens()
  353. def __repr__(self) -> str:
  354. return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  355. class SentencePieceVocab(Vocab):
  356. tokenizer_model = "llama"
  357. name = "spm"
  358. def __init__(self, base_path: Path):
  359. added_tokens: dict[str, int] = {}
  360. if (fname_tokenizer := base_path / 'tokenizer.model').exists():
  361. # normal location
  362. try:
  363. with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
  364. added_tokens = json.load(f)
  365. except FileNotFoundError:
  366. pass
  367. elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
  368. # not found in alternate location either
  369. raise FileNotFoundError('Cannot find tokenizer.model')
  370. self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
  371. vocab_size = self.sentencepiece_tokenizer.vocab_size()
  372. new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
  373. expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
  374. actual_new_ids = sorted(new_tokens.keys())
  375. if expected_new_ids != actual_new_ids:
  376. raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
  377. # Token pieces that were added to the base vocabulary.
  378. self.added_tokens_dict = added_tokens
  379. self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
  380. self.vocab_size_base = vocab_size
  381. self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
  382. self.fname_tokenizer = fname_tokenizer
  383. def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  384. tokenizer = self.sentencepiece_tokenizer
  385. for i in range(tokenizer.vocab_size()):
  386. piece = tokenizer.id_to_piece(i)
  387. text = piece.encode("utf-8")
  388. score: float = tokenizer.get_score(i)
  389. toktype = gguf.TokenType.NORMAL
  390. if tokenizer.is_unknown(i):
  391. toktype = gguf.TokenType.UNKNOWN
  392. if tokenizer.is_control(i):
  393. toktype = gguf.TokenType.CONTROL
  394. # NOTE: I think added_tokens are user defined.
  395. # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
  396. # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
  397. if tokenizer.is_unused(i):
  398. toktype = gguf.TokenType.UNUSED
  399. if tokenizer.is_byte(i):
  400. toktype = gguf.TokenType.BYTE
  401. yield text, score, toktype
  402. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  403. for text in self.added_tokens_list:
  404. score = -1000.0
  405. yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
  406. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  407. yield from self.sentencepiece_tokens()
  408. yield from self.added_tokens()
  409. def __repr__(self) -> str:
  410. return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  411. class LlamaHfVocab(Vocab):
  412. tokenizer_model = "llama"
  413. name = "hfft"
  414. def __init__(self, base_path: Path):
  415. fname_tokenizer = base_path / FAST_TOKENIZER_FILE
  416. # if this fails, FileNotFoundError propagates to caller
  417. with open(fname_tokenizer, encoding='utf-8') as f:
  418. tokenizer_json = json.load(f)
  419. # pre-check so we know if we need transformers
  420. tokenizer_model: dict[str, Any] = tokenizer_json['model']
  421. is_llama3 = (
  422. tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
  423. and not tokenizer_model.get('byte_fallback', True)
  424. )
  425. if is_llama3:
  426. raise TypeError('Llama 3 must be converted with BpeVocab')
  427. if not is_llama3 and (
  428. tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
  429. or tokenizer_json['decoder']['type'] != 'Sequence'
  430. ):
  431. raise FileNotFoundError('Cannot find Llama BPE tokenizer')
  432. try:
  433. from transformers import AutoTokenizer
  434. except ImportError as e:
  435. raise ImportError(
  436. "To use LlamaHfVocab, please install the `transformers` package. "
  437. "You can install it with `pip install transformers`."
  438. ) from e
  439. # Allow the tokenizer to default to slow or fast versions.
  440. # Explicitly set tokenizer to use local paths.
  441. self.tokenizer = AutoTokenizer.from_pretrained(
  442. base_path,
  443. cache_dir=base_path,
  444. local_files_only=True,
  445. )
  446. assert self.tokenizer.is_fast # assume tokenizer.json is used
  447. # Initialize lists and dictionaries for added tokens
  448. self.added_tokens_list = []
  449. self.added_tokens_dict = dict()
  450. self.added_tokens_ids = set()
  451. # Process added tokens
  452. for tok, tokidx in sorted(
  453. self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
  454. ):
  455. # Only consider added tokens that are not in the base vocabulary
  456. if tokidx >= self.tokenizer.vocab_size:
  457. self.added_tokens_list.append(tok)
  458. self.added_tokens_dict[tok] = tokidx
  459. self.added_tokens_ids.add(tokidx)
  460. # Store special tokens and their IDs
  461. self.specials = {
  462. tok: self.tokenizer.get_vocab()[tok]
  463. for tok in self.tokenizer.all_special_tokens
  464. }
  465. self.special_ids = set(self.tokenizer.all_special_ids)
  466. # Set vocabulary sizes
  467. self.vocab_size_base = self.tokenizer.vocab_size
  468. self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
  469. self.fname_tokenizer = fname_tokenizer
  470. def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  471. reverse_vocab = {
  472. id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
  473. }
  474. for token_id in range(self.vocab_size_base):
  475. # Skip processing added tokens here
  476. if token_id in self.added_tokens_ids:
  477. continue
  478. # Convert token text to bytes
  479. token_text = reverse_vocab[token_id].encode("utf-8")
  480. # Yield token text, score, and type
  481. yield token_text, self.get_token_score(token_id), self.get_token_type(
  482. token_id, token_text, self.special_ids # Reuse already stored special IDs
  483. )
  484. def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
  485. # Special case for byte tokens
  486. if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  487. return gguf.TokenType.BYTE
  488. # Determine token type based on whether it's a special token
  489. return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
  490. def get_token_score(self, token_id: int) -> float:
  491. # Placeholder for actual logic to determine the token's score
  492. # This needs to be implemented based on specific requirements
  493. return -1000.0 # Default score
  494. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  495. for text in self.added_tokens_list:
  496. if text in self.specials:
  497. toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
  498. score = self.get_token_score(self.specials[text])
  499. else:
  500. toktype = gguf.TokenType.USER_DEFINED
  501. score = -1000.0
  502. yield text.encode("utf-8"), score, toktype
  503. def has_newline_token(self):
  504. return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
  505. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  506. yield from self.hf_tokens()
  507. yield from self.added_tokens()
  508. def __repr__(self) -> str:
  509. return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  510. #
  511. # data loading
  512. # TODO: reuse (probably move to gguf.py?)
  513. #
  514. def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
  515. # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
  516. if n_head_kv is not None and n_head != n_head_kv:
  517. n_head = n_head_kv
  518. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  519. .swapaxes(1, 2)
  520. .reshape(weights.shape))
  521. class Tensor(ABC):
  522. ndarray: NDArray
  523. data_type: DataType
  524. @abstractmethod
  525. def astype(self, data_type: DataType) -> Self: ...
  526. @abstractmethod
  527. def permute(self, n_head: int, n_head_kv: int) -> Self: ...
  528. @abstractmethod
  529. def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
  530. @abstractmethod
  531. def part(self, n_part: int) -> Self: ...
  532. @abstractmethod
  533. def to_ggml(self) -> GGMLCompatibleTensor: ...
  534. def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
  535. assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
  536. fp32_arr = bf16_arr.astype(np.uint32) << 16
  537. return fp32_arr.view(np.float32)
  538. class UnquantizedTensor(Tensor):
  539. def __init__(self, ndarray: NDArray):
  540. assert isinstance(ndarray, np.ndarray)
  541. self.ndarray = ndarray
  542. self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
  543. def astype(self, data_type: DataType) -> UnquantizedTensor:
  544. dtype = data_type.dtype
  545. if self.data_type == DT_BF16:
  546. self.ndarray = bf16_to_fp32(self.ndarray)
  547. return UnquantizedTensor(self.ndarray.astype(dtype))
  548. def to_ggml(self) -> Self:
  549. return self
  550. def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
  551. r = self.ndarray.shape[0] // 3
  552. return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
  553. def part(self, n_part: int) -> UnquantizedTensor:
  554. r = self.ndarray.shape[0] // 3
  555. return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
  556. def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
  557. return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
  558. def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
  559. tensor = lazy_tensor.load()
  560. assert isinstance(tensor, UnquantizedTensor)
  561. # double-check:
  562. actual_shape = list(tensor.ndarray.shape)
  563. assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
  564. if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
  565. if convert:
  566. tensor.ndarray = tensor.ndarray.astype(expected_dtype)
  567. else:
  568. raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
  569. return tensor.ndarray
  570. GGMLCompatibleTensor = UnquantizedTensor
  571. @dataclass
  572. class LazyTensor:
  573. _load: Callable[[], Tensor]
  574. shape: list[int]
  575. data_type: DataType
  576. description: str
  577. def load(self) -> Tensor:
  578. ret = self._load()
  579. # Should be okay if it maps to the same numpy type?
  580. assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
  581. (self.data_type, ret.data_type, self.description)
  582. return ret
  583. def astype(self, data_type: DataType) -> LazyTensor:
  584. self.validate_conversion_to(data_type)
  585. def load() -> Tensor:
  586. return self.load().astype(data_type)
  587. return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
  588. def validate_conversion_to(self, data_type: DataType) -> None:
  589. if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
  590. raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
  591. LazyModel: TypeAlias = 'dict[str, LazyTensor]'
  592. @dataclass
  593. class ModelPlus:
  594. model: LazyModel
  595. paths: list[Path] # Where this was read from.
  596. format: Literal['ggml', 'torch', 'safetensors', 'none']
  597. vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
  598. def merge_sharded(models: list[LazyModel]) -> LazyModel:
  599. # Original LLaMA models have each file contain one part of each tensor.
  600. # Use a dict instead of a set to preserve order.
  601. names = {name: None for model in models for name in model}
  602. def convert(name: str) -> LazyTensor:
  603. lazy_tensors = [model[name] for model in models]
  604. if len(lazy_tensors) == 1:
  605. # only one file; don't go through this procedure since there might
  606. # be quantized tensors
  607. return lazy_tensors[0]
  608. if len(lazy_tensors[0].shape) == 1:
  609. # the tensor is just duplicated in every file
  610. return lazy_tensors[0]
  611. if name.startswith('tok_embeddings.') or \
  612. name.endswith('.attention.wo.weight') or \
  613. name.endswith('.feed_forward.w2.weight'):
  614. # split by columns
  615. axis = 1
  616. else:
  617. # split by rows
  618. axis = 0
  619. concatenated_shape = list(lazy_tensors[0].shape)
  620. concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
  621. def load() -> UnquantizedTensor:
  622. ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
  623. concatenated = np.concatenate(ndarrays, axis=axis)
  624. return UnquantizedTensor(concatenated)
  625. description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
  626. return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
  627. return {name: convert(name) for name in names}
  628. def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
  629. formats = set(mp.format for mp in models_plus)
  630. assert len(formats) == 1, "different formats?"
  631. format = formats.pop()
  632. paths = [path for mp in models_plus for path in mp.paths]
  633. # Use the first non-None vocab, if any.
  634. try:
  635. vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
  636. except StopIteration:
  637. vocab = None
  638. if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
  639. # Transformers models put different tensors in different files, but
  640. # don't split individual tensors between files.
  641. model: LazyModel = {}
  642. for mp in models_plus:
  643. model.update(mp.model)
  644. else:
  645. model = merge_sharded([mp.model for mp in models_plus])
  646. return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types
  647. def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
  648. def load() -> Tensor:
  649. return lazy_tensor.load().permute(n_head, n_head_kv)
  650. return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
  651. def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
  652. def load() -> Tensor:
  653. return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
  654. s = lazy_tensor.shape.copy()
  655. s[0] = s[0] // 3
  656. return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
  657. def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
  658. def load() -> Tensor:
  659. return lazy_tensor.load().part(n_part)
  660. s = lazy_tensor.shape.copy()
  661. s[0] = s[0] // 3
  662. return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
  663. def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
  664. def load() -> Tensor:
  665. tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
  666. return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
  667. s = lazy_tensors[0].shape.copy()
  668. s.insert(0, len(lazy_tensors))
  669. return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))
  670. # Functionality that simulates `torch.load` but where individual tensors are
  671. # only loaded into memory on demand, not all at once.
  672. # PyTorch can't do this natively as of time of writing:
  673. # - https://github.com/pytorch/pytorch/issues/64327
  674. # This allows us to de-shard without multiplying RAM usage, and also
  675. # conveniently drops the PyTorch dependency (though we still need numpy).
  676. @dataclass
  677. class LazyStorageKind:
  678. data_type: DataType
  679. @dataclass
  680. class LazyStorage:
  681. load: Callable[[int, int], NDArray]
  682. kind: LazyStorageKind
  683. description: str
  684. class LazyUnpickler(pickle.Unpickler):
  685. def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
  686. super().__init__(fp)
  687. self.data_base_path = data_base_path
  688. self.zip_file = zip_file
  689. def persistent_load(self, pid: Any) -> Any:
  690. assert pid[0] == 'storage'
  691. assert isinstance(pid[1], LazyStorageKind)
  692. data_type = pid[1].data_type
  693. filename_stem = pid[2]
  694. filename = f'{self.data_base_path}/{filename_stem}'
  695. info = self.zip_file.getinfo(filename)
  696. def load(offset: int, elm_count: int) -> NDArray:
  697. dtype = data_type.dtype
  698. with self.zip_file.open(info) as fp:
  699. fp.seek(offset * dtype.itemsize)
  700. size = elm_count * dtype.itemsize
  701. data = fp.read(size)
  702. assert len(data) == size
  703. return np.frombuffer(data, dtype)
  704. description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
  705. return LazyStorage(load=load, kind=pid[1], description=description)
  706. @staticmethod
  707. def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
  708. requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
  709. assert isinstance(storage, LazyStorage)
  710. def load() -> UnquantizedTensor:
  711. elm_count = stride[0] * size[0]
  712. return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
  713. description = f'pickled storage_offset={storage_offset} in {storage.description}'
  714. return LazyTensor(load, list(size), storage.kind.data_type, description)
  715. @staticmethod
  716. def rebuild_from_type_v2(func, new_type, args, state):
  717. return func(*args)
  718. CLASSES = {
  719. # getattr used here as a workaround for mypy not being smart enough to determine
  720. # the staticmethods have a __func__ attribute.
  721. ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
  722. ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
  723. ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
  724. ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
  725. ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
  726. ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
  727. ('torch', 'Tensor'): LazyTensor,
  728. }
  729. def find_class(self, module: str, name: str) -> Any:
  730. if not module.startswith('torch'):
  731. return super().find_class(module, name)
  732. return self.CLASSES[(module, name)]
  733. def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
  734. zf = zipfile.ZipFile(outer_fp)
  735. pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
  736. assert len(pickle_paths) == 1, pickle_paths
  737. pickle_fp = zf.open(pickle_paths[0], 'r')
  738. unpickler = LazyUnpickler(pickle_fp,
  739. data_base_path=pickle_paths[0][:-4],
  740. zip_file=zf)
  741. model = unpickler.load()
  742. if 'model' in model: model = model['model']
  743. as_dict = dict(model.items())
  744. return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
  745. def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
  746. header_size, = struct.unpack('<Q', fp.read(8))
  747. header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
  748. # Use mmap for the actual data to avoid race conditions with the file offset.
  749. mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
  750. byte_buf = mapped[8 + header_size:]
  751. def convert(info: dict[str, Any]) -> LazyTensor:
  752. data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
  753. numpy_dtype = data_type.dtype
  754. shape: list[int] = info['shape']
  755. begin, end = info['data_offsets']
  756. assert 0 <= begin <= end <= len(byte_buf)
  757. assert end - begin == math.prod(shape) * numpy_dtype.itemsize
  758. buf = byte_buf[begin:end]
  759. def load() -> UnquantizedTensor:
  760. return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
  761. description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
  762. return LazyTensor(load, shape, data_type, description)
  763. model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
  764. return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
  765. def must_read(fp: IO[bytes], length: int) -> bytes:
  766. ret = fp.read(length)
  767. if len(ret) < length:
  768. raise EOFError("unexpectedly reached end of file")
  769. return ret
  770. @functools.lru_cache(maxsize=None)
  771. def lazy_load_file(path: Path) -> ModelPlus:
  772. fp = open(path, 'rb')
  773. first8 = fp.read(8)
  774. fp.seek(0)
  775. if first8[:2] == b'PK':
  776. # A zip file, i.e. PyTorch format
  777. return lazy_load_torch_file(fp, path)
  778. elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
  779. # Probably safetensors
  780. return lazy_load_safetensors_file(fp, path)
  781. else:
  782. raise ValueError(f"unknown format: {path}")
  783. In = TypeVar('In')
  784. Out = TypeVar('Out')
  785. def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
  786. '''Parallel map, but with backpressure. If the caller doesn't call `next`
  787. fast enough, this will stop calling `func` at some point rather than
  788. letting results pile up in memory. Specifically, there is a max of one
  789. output value buffered per thread.'''
  790. if concurrency < 2:
  791. yield from map(func, iterable)
  792. # Not reached.
  793. iterable = iter(iterable)
  794. executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
  795. if use_processpool_executor:
  796. executor_class = ProcessPoolExecutor
  797. else:
  798. executor_class = ThreadPoolExecutor
  799. with executor_class(max_workers=max_workers) as executor:
  800. futures: list[concurrent.futures.Future[Out]] = []
  801. done = False
  802. for _ in range(concurrency):
  803. try:
  804. futures.append(executor.submit(func, next(iterable)))
  805. except StopIteration:
  806. done = True
  807. break
  808. while futures:
  809. result = futures.pop(0).result()
  810. while not done and len(futures) < concurrency:
  811. try:
  812. futures.append(executor.submit(func, next(iterable)))
  813. except StopIteration:
  814. done = True
  815. break
  816. yield result
  817. def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None:
  818. # Handle special case where the model's vocab size is not set
  819. if params.n_vocab == -1:
  820. raise ValueError(
  821. "The model's vocab size is set to -1 in params.json. Please update it manually."
  822. + (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""),
  823. )
  824. if not isinstance(vocab, Vocab):
  825. return # model has no vocab
  826. # Check for a vocab size mismatch
  827. if params.n_vocab == vocab.vocab_size:
  828. print("Ignoring added_tokens.json since model matches vocab size without it.")
  829. return
  830. if pad_vocab and params.n_vocab > vocab.vocab_size:
  831. pad_count = params.n_vocab - vocab.vocab_size
  832. print(
  833. f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
  834. )
  835. for i in range(1, pad_count + 1):
  836. vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
  837. vocab.added_tokens_list.append(f"<dummy{i:05}>")
  838. vocab.vocab_size = params.n_vocab
  839. return
  840. msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
  841. if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
  842. msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
  843. if vocab.vocab_size < params.n_vocab:
  844. msg += " Add the --pad-vocab option and try again."
  845. raise ValueError(msg)
  846. class OutputFile:
  847. def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
  848. self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
  849. def add_meta_arch(self, params: Params) -> None:
  850. name = "LLaMA"
  851. # TODO: better logic to determine model name
  852. if params.n_ctx == 4096:
  853. name = "LLaMA v2"
  854. elif params.path_model is not None:
  855. name = str(params.path_model.parent).split('/')[-1]
  856. self.gguf.add_name (name)
  857. self.gguf.add_vocab_size (params.n_vocab)
  858. self.gguf.add_context_length (params.n_ctx)
  859. self.gguf.add_embedding_length (params.n_embd)
  860. self.gguf.add_block_count (params.n_layer)
  861. self.gguf.add_feed_forward_length (params.n_ff)
  862. self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
  863. self.gguf.add_head_count (params.n_head)
  864. self.gguf.add_head_count_kv (params.n_head_kv)
  865. if params.n_experts:
  866. self.gguf.add_expert_count(params.n_experts)
  867. if params.n_experts_used:
  868. self.gguf.add_expert_used_count(params.n_experts_used)
  869. if params.f_norm_eps:
  870. self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
  871. else:
  872. raise ValueError('f_norm_eps is None')
  873. if params.f_rope_freq_base is not None:
  874. self.gguf.add_rope_freq_base(params.f_rope_freq_base)
  875. if params.rope_scaling_type:
  876. assert params.f_rope_scale is not None
  877. self.gguf.add_rope_scaling_type(params.rope_scaling_type)
  878. self.gguf.add_rope_scaling_factor(params.f_rope_scale)
  879. if params.n_orig_ctx is not None:
  880. self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
  881. if params.rope_finetuned is not None:
  882. self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
  883. if params.ftype is not None:
  884. self.gguf.add_file_type(params.ftype)
  885. def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
  886. tokens = []
  887. scores = []
  888. toktypes = []
  889. # NOTE: `all_tokens` returns the base vocabulary and added tokens
  890. for text, score, toktype in vocab.all_tokens():
  891. tokens.append(text)
  892. scores.append(score)
  893. toktypes.append(toktype)
  894. assert len(tokens) == vocab.vocab_size
  895. return tokens, scores, toktypes
  896. def add_meta_vocab(self, vocab: Vocab) -> None:
  897. # Ensure that tokenizer_model is added to the GGUF model
  898. self.gguf.add_tokenizer_model(vocab.tokenizer_model)
  899. # Extract model vocabulary for model conversion
  900. tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
  901. # Add extracted token information for model conversion
  902. self.gguf.add_token_list(tokens)
  903. self.gguf.add_token_scores(scores)
  904. self.gguf.add_token_types(toktypes)
  905. def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
  906. svocab.add_to_gguf(self.gguf)
  907. def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
  908. n_elements = int(np.prod(tensor.shape))
  909. raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
  910. data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
  911. data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
  912. self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
  913. def write_meta(self) -> None:
  914. self.gguf.write_header_to_file()
  915. self.gguf.write_kv_data_to_file()
  916. def write_tensor_info(self) -> None:
  917. self.gguf.write_ti_data_to_file()
  918. def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
  919. ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
  920. if ftype == GGMLFileType.MostlyQ8_0:
  921. ndarrays = bounded_parallel_map(
  922. OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
  923. use_processpool_executor=True,
  924. )
  925. else:
  926. ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
  927. start = time.time()
  928. for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
  929. elapsed = time.time() - start
  930. size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
  931. padi = len(str(len(model)))
  932. print(
  933. f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
  934. )
  935. self.gguf.write_tensor_data(ndarray)
  936. def close(self) -> None:
  937. self.gguf.close()
  938. @staticmethod
  939. def write_vocab_only(
  940. fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
  941. endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
  942. ) -> None:
  943. check_vocab_size(params, vocab, pad_vocab=pad_vocab)
  944. of = OutputFile(fname_out, endianess=endianess)
  945. # meta data
  946. of.add_meta_arch(params)
  947. of.add_meta_vocab(vocab)
  948. of.add_meta_special_vocab(svocab)
  949. of.write_meta()
  950. of.close()
  951. @staticmethod
  952. def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
  953. name, lazy_tensor = item
  954. tensor = lazy_tensor.load().to_ggml()
  955. return (lazy_tensor.data_type, tensor.ndarray)
  956. @staticmethod
  957. def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
  958. dt, arr = item
  959. if not isinstance(dt, QuantizedDataType):
  960. return arr
  961. return dt.quantize(arr)
  962. @staticmethod
  963. def write_all(
  964. fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
  965. concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
  966. pad_vocab: bool = False,
  967. ) -> None:
  968. check_vocab_size(params, vocab, pad_vocab=pad_vocab)
  969. of = OutputFile(fname_out, endianess=endianess)
  970. # meta data
  971. of.add_meta_arch(params)
  972. if isinstance(vocab, Vocab):
  973. of.add_meta_vocab(vocab)
  974. of.add_meta_special_vocab(svocab)
  975. else: # NoVocab
  976. of.gguf.add_tokenizer_model(vocab.tokenizer_model)
  977. # tensor info
  978. for name, lazy_tensor in model.items():
  979. of.add_tensor_info(name, lazy_tensor)
  980. of.write_meta()
  981. of.write_tensor_info()
  982. # tensor data
  983. of.write_tensor_data(ftype, model, concurrency)
  984. of.close()
  985. def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
  986. wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
  987. if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
  988. return GGMLFileType.AllF32
  989. if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
  990. return GGMLFileType.MostlyF16
  991. if output_type_str == "q8_0":
  992. return GGMLFileType.MostlyQ8_0
  993. name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
  994. raise ValueError(f"Unexpected combination of types: {name_to_type}")
  995. def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
  996. return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
  997. for (name, tensor) in model.items()}
  998. def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
  999. tmap = gguf.TensorNameMap(ARCH, params.n_layer)
  1000. should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
  1001. tmp = model
  1002. # merge experts into one tensor
  1003. if params.n_experts and params.n_experts > 0:
  1004. for i_l in range(params.n_layer):
  1005. for w in range(1, 4):
  1006. experts = []
  1007. for e in range(params.n_experts):
  1008. if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
  1009. experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
  1010. del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
  1011. elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
  1012. experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
  1013. del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
  1014. else:
  1015. raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
  1016. tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)
  1017. # HF models permut or pack some of the tensors, so we need to undo that
  1018. for i in itertools.count():
  1019. if f"model.layers.{i}.self_attn.q_proj.weight" in model:
  1020. print(f"Permuting layer {i}")
  1021. tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
  1022. tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
  1023. # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
  1024. elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
  1025. print(f"Unpacking and permuting layer {i}")
  1026. tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
  1027. tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
  1028. tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
  1029. del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
  1030. else:
  1031. break
  1032. out: LazyModel = {}
  1033. for name, lazy_tensor in model.items():
  1034. tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
  1035. if name_new is None:
  1036. if skip_unknown:
  1037. print(f"Unexpected tensor name: {name} - skipping")
  1038. continue
  1039. raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
  1040. if tensor_type in should_skip:
  1041. print(f"skipping tensor {name_new}")
  1042. continue
  1043. print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
  1044. out[name_new] = lazy_tensor
  1045. return out
  1046. def nth_multifile_path(path: Path, n: int) -> Path | None:
  1047. '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
  1048. the nth path in the model.
  1049. '''
  1050. # Support the following patterns:
  1051. patterns = [
  1052. # - x.00.pth, x.01.pth, etc.
  1053. (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
  1054. # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
  1055. (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
  1056. # x.bin, x.bin.1, etc.
  1057. (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
  1058. ]
  1059. for regex, replacement in patterns:
  1060. if re.search(regex, path.name):
  1061. new_path = path.with_name(re.sub(regex, replacement, path.name))
  1062. if new_path.exists():
  1063. return new_path
  1064. return None
  1065. def find_multifile_paths(path: Path) -> list[Path]:
  1066. '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
  1067. the whole list of paths in the model.
  1068. '''
  1069. ret: list[Path] = []
  1070. for i in itertools.count():
  1071. nth_path = nth_multifile_path(path, i)
  1072. if nth_path is None:
  1073. break
  1074. ret.append(nth_path)
  1075. if not ret:
  1076. # No matches. This should only happen if the file was named, e.g.,
  1077. # foo.0, and there was no file named foo. Oh well, try to process it
  1078. # as a single file.
  1079. return [path]
  1080. return ret
  1081. def load_some_model(path: Path) -> ModelPlus:
  1082. '''Load a model of any supported format.'''
  1083. # Be extra-friendly and accept either a file or a directory:
  1084. if path.is_dir():
  1085. # Check if it's a set of safetensors files first
  1086. globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"]
  1087. files = [file for glob in globs for file in path.glob(glob)]
  1088. if not files:
  1089. # Try the PyTorch patterns too, with lower priority
  1090. globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
  1091. files = [file for glob in globs for file in path.glob(glob)]
  1092. if not files:
  1093. raise FileNotFoundError(f"Can't find model in directory {path}")
  1094. if len(files) > 1:
  1095. raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}")
  1096. path = files[0]
  1097. paths = find_multifile_paths(path)
  1098. models_plus: list[ModelPlus] = []
  1099. for path in paths:
  1100. print(f"Loading model file {path}")
  1101. models_plus.append(lazy_load_file(path))
  1102. model_plus = merge_multifile_models(models_plus)
  1103. return model_plus
  1104. class VocabFactory:
  1105. _VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab]
  1106. def __init__(self, path: Path):
  1107. self.path = path
  1108. def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab:
  1109. load_merges = vocab.name == "bpe"
  1110. n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None
  1111. return gguf.SpecialVocab(
  1112. model_parent_path,
  1113. load_merges=load_merges,
  1114. special_token_types=None, # Predetermined or passed as a parameter
  1115. n_vocab=n_vocab,
  1116. )
  1117. def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
  1118. vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES}
  1119. selected_vocabs: dict[str, type[Vocab]] = {}
  1120. for vtype in vocab_types:
  1121. try:
  1122. selected_vocabs[vtype] = vocab_classes[vtype]
  1123. except KeyError:
  1124. raise ValueError(f"Unsupported vocabulary type {vtype}") from None
  1125. for vtype, cls in selected_vocabs.items():
  1126. try:
  1127. vocab = cls(self.path)
  1128. break
  1129. except FileNotFoundError:
  1130. pass # ignore unavailable tokenizers
  1131. else:
  1132. raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
  1133. print(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
  1134. return vocab
  1135. def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
  1136. vocab: BaseVocab
  1137. if vocab_types is None:
  1138. vocab = NoVocab()
  1139. else:
  1140. vocab = self._create_vocab_by_path(vocab_types)
  1141. # FIXME: Respect --vocab-dir?
  1142. special_vocab = self._create_special_vocab(
  1143. vocab,
  1144. model_parent_path,
  1145. )
  1146. return vocab, special_vocab
  1147. def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
  1148. namestr = {
  1149. GGMLFileType.AllF32: "f32",
  1150. GGMLFileType.MostlyF16: "f16",
  1151. GGMLFileType.MostlyQ8_0:"q8_0",
  1152. }[file_type]
  1153. ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
  1154. if ret in model_paths:
  1155. sys.stderr.write(
  1156. f"Error: Default output path ({ret}) would overwrite the input. "
  1157. "Please explicitly specify a path using --outfile.\n")
  1158. sys.exit(1)
  1159. return ret
  1160. def do_dump_model(model_plus: ModelPlus) -> None:
  1161. print(f"model_plus.paths = {model_plus.paths!r}")
  1162. print(f"model_plus.format = {model_plus.format!r}")
  1163. print(f"model_plus.vocab = {model_plus.vocab!r}")
  1164. for name, lazy_tensor in model_plus.model.items():
  1165. print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
  1166. def main(args_in: list[str] | None = None) -> None:
  1167. output_choices = ["f32", "f16"]
  1168. if np.uint32(1) == np.uint32(1).newbyteorder("<"):
  1169. # We currently only support Q8_0 output on little endian systems.
  1170. output_choices.append("q8_0")
  1171. parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
  1172. parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
  1173. parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
  1174. parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
  1175. parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab")
  1176. parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
  1177. parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
  1178. parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
  1179. parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
  1180. parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
  1181. parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
  1182. parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
  1183. parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
  1184. parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
  1185. parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
  1186. args = parser.parse_args(args_in)
  1187. if args.no_vocab and args.vocab_only:
  1188. raise ValueError("--vocab-only does not make sense with --no-vocab")
  1189. if args.dump_single:
  1190. model_plus = lazy_load_file(args.model)
  1191. do_dump_model(model_plus)
  1192. return
  1193. if not args.vocab_only:
  1194. model_plus = load_some_model(args.model)
  1195. else:
  1196. model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
  1197. if args.dump:
  1198. do_dump_model(model_plus)
  1199. return
  1200. endianess = gguf.GGUFEndian.LITTLE
  1201. if args.big_endian:
  1202. endianess = gguf.GGUFEndian.BIG
  1203. params = Params.load(model_plus)
  1204. if params.n_ctx == -1:
  1205. if args.ctx is None:
  1206. msg = """\
  1207. The model doesn't have a context size, and you didn't specify one with --ctx
  1208. Please specify one with --ctx:
  1209. - LLaMA v1: --ctx 2048
  1210. - LLaMA v2: --ctx 4096"""
  1211. parser.error(textwrap.dedent(msg))
  1212. params.n_ctx = args.ctx
  1213. if args.outtype:
  1214. params.ftype = {
  1215. "f32": GGMLFileType.AllF32,
  1216. "f16": GGMLFileType.MostlyF16,
  1217. "q8_0": GGMLFileType.MostlyQ8_0,
  1218. }[args.outtype]
  1219. print(f"params = {params}")
  1220. model_parent_path = model_plus.paths[0].parent
  1221. vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
  1222. vocab_factory = VocabFactory(vocab_path)
  1223. vocab_types = None if args.no_vocab else args.vocab_type.split(",")
  1224. vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
  1225. if args.vocab_only:
  1226. assert isinstance(vocab, Vocab)
  1227. if not args.outfile:
  1228. raise ValueError("need --outfile if using --vocab-only")
  1229. outfile = args.outfile
  1230. OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
  1231. endianess=endianess, pad_vocab=args.pad_vocab)
  1232. print(f"Wrote {outfile}")
  1233. return
  1234. if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
  1235. vocab = model_plus.vocab
  1236. print(f"Vocab info: {vocab}")
  1237. print(f"Special vocab info: {special_vocab}")
  1238. model = model_plus.model
  1239. model = convert_model_names(model, params, args.skip_unknown)
  1240. ftype = pick_output_type(model, args.outtype)
  1241. model = convert_to_output_type(model, ftype)
  1242. outfile = args.outfile or default_outfile(model_plus.paths, ftype)
  1243. params.ftype = ftype
  1244. print(f"Writing {outfile}, format {ftype}")
  1245. OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
  1246. concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
  1247. print(f"Wrote {outfile}")
  1248. if __name__ == '__main__':
  1249. main()