llama-model.cpp 580 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_475M: return "475M";
  40. case LLM_TYPE_770M: return "770M";
  41. case LLM_TYPE_780M: return "780M";
  42. case LLM_TYPE_0_5B: return "0.5B";
  43. case LLM_TYPE_0_6B: return "0.6B";
  44. case LLM_TYPE_1B: return "1B";
  45. case LLM_TYPE_1_3B: return "1.3B";
  46. case LLM_TYPE_1_4B: return "1.4B";
  47. case LLM_TYPE_1_5B: return "1.5B";
  48. case LLM_TYPE_1_6B: return "1.6B";
  49. case LLM_TYPE_1_7B: return "1.7B";
  50. case LLM_TYPE_1_8B: return "1.8B";
  51. case LLM_TYPE_2B: return "2B";
  52. case LLM_TYPE_2_8B: return "2.8B";
  53. case LLM_TYPE_2_9B: return "2.9B";
  54. case LLM_TYPE_3B: return "3B";
  55. case LLM_TYPE_4B: return "4B";
  56. case LLM_TYPE_6B: return "6B";
  57. case LLM_TYPE_6_9B: return "6.9B";
  58. case LLM_TYPE_7B: return "7B";
  59. case LLM_TYPE_8B: return "8B";
  60. case LLM_TYPE_9B: return "9B";
  61. case LLM_TYPE_11B: return "11B";
  62. case LLM_TYPE_12B: return "12B";
  63. case LLM_TYPE_13B: return "13B";
  64. case LLM_TYPE_14B: return "14B";
  65. case LLM_TYPE_15B: return "15B";
  66. case LLM_TYPE_16B: return "16B";
  67. case LLM_TYPE_20B: return "20B";
  68. case LLM_TYPE_27B: return "27B";
  69. case LLM_TYPE_30B: return "30B";
  70. case LLM_TYPE_32B: return "32B";
  71. case LLM_TYPE_34B: return "34B";
  72. case LLM_TYPE_35B: return "35B";
  73. case LLM_TYPE_40B: return "40B";
  74. case LLM_TYPE_65B: return "65B";
  75. case LLM_TYPE_70B: return "70B";
  76. case LLM_TYPE_236B: return "236B";
  77. case LLM_TYPE_290B: return "290B";
  78. case LLM_TYPE_314B: return "314B";
  79. case LLM_TYPE_405B: return "405B";
  80. case LLM_TYPE_671B: return "671B";
  81. case LLM_TYPE_SMALL: return "0.1B";
  82. case LLM_TYPE_MEDIUM: return "0.4B";
  83. case LLM_TYPE_LARGE: return "0.8B";
  84. case LLM_TYPE_XL: return "1.5B";
  85. case LLM_TYPE_A1_7B: return "A1.7B";
  86. case LLM_TYPE_A2_7B: return "A2.7B";
  87. case LLM_TYPE_8x7B: return "8x7B";
  88. case LLM_TYPE_8x22B: return "8x22B";
  89. case LLM_TYPE_16x12B: return "16x12B";
  90. case LLM_TYPE_16x3_8B: return "16x3.8B";
  91. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  92. case LLM_TYPE_57B_A14B: return "57B.A14B";
  93. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  94. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  95. case LLM_TYPE_30B_A3B: return "30B.A3B";
  96. case LLM_TYPE_235B_A22B: return "235B.A22B";
  97. default: return "?B";
  98. }
  99. }
  100. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  101. switch (type) {
  102. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  103. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  104. default: return "unknown";
  105. }
  106. }
  107. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  108. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  109. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  110. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  111. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  112. };
  113. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  114. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  115. if (kv.second == name) {
  116. return (llama_rope_scaling_type) kv.first;
  117. }
  118. }
  119. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  120. }
  121. // checks if the weight tensor can be used with the specified buffer type and device
  122. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  123. GGML_ASSERT(w != nullptr);
  124. if (op == GGML_OP_NONE) {
  125. return true;
  126. }
  127. ggml_init_params params = {
  128. /*.mem_size =*/ ggml_tensor_overhead()*8,
  129. /*.mem_buffer =*/ NULL,
  130. /*.no_alloc =*/ true,
  131. };
  132. ggml_context_ptr ctx_ptr { ggml_init(params) };
  133. if (!ctx_ptr) {
  134. throw std::runtime_error(format("failed to create ggml context"));
  135. }
  136. ggml_context * ctx = ctx_ptr.get();
  137. ggml_tensor * op_tensor = nullptr;
  138. switch (op) {
  139. case GGML_OP_GET_ROWS:
  140. {
  141. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  142. op_tensor = ggml_get_rows(ctx, w, b);
  143. } break;
  144. case GGML_OP_MUL_MAT:
  145. {
  146. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  147. op_tensor = ggml_mul_mat(ctx, w, b);
  148. } break;
  149. case GGML_OP_MUL_MAT_ID:
  150. {
  151. int n_expert_used = hparams.n_expert_used;
  152. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  153. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  154. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  155. } break;
  156. case GGML_OP_ADD:
  157. {
  158. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  159. op_tensor = ggml_add(ctx, a, w);
  160. } break;
  161. case GGML_OP_MUL:
  162. {
  163. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  164. op_tensor = ggml_mul(ctx, a, w);
  165. } break;
  166. case GGML_OP_DIV:
  167. {
  168. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  169. op_tensor = ggml_div(ctx, a, w);
  170. } break;
  171. case GGML_OP_ROPE:
  172. {
  173. int n_embd_head = hparams.n_embd_head_v;
  174. int n_head = hparams.n_head();
  175. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  176. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  177. op_tensor = ggml_rope_ext(
  178. ctx, a, b, w,
  179. 0, 0, 0, 0, 0,
  180. 0, 0, 0, 0
  181. );
  182. } break;
  183. case GGML_OP_SSM_CONV:
  184. {
  185. // FIXME
  186. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  187. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  188. } break;
  189. case GGML_OP_SSM_SCAN:
  190. {
  191. // FIXME
  192. const int64_t d_state = w->ne[0];
  193. const int64_t d_inner = w->ne[1];
  194. const int64_t n_seq_tokens = 512;
  195. const int64_t n_seqs = 1;
  196. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  197. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  198. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  199. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  200. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  201. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  202. } break;
  203. case GGML_OP_RWKV_WKV6:
  204. {
  205. // FIXME
  206. const int64_t S = 123;
  207. const int64_t H = 123;
  208. const int64_t n_tokens = 123;
  209. const int64_t n_seqs = 123;
  210. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  211. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  212. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  213. ggml_tensor * tf = w;
  214. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  215. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  216. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  217. } break;
  218. case GGML_OP_IM2COL:
  219. {
  220. const int n_embd = hparams.n_embd;
  221. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  222. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  223. } break;
  224. default:
  225. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  226. }
  227. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  228. GGML_ASSERT(w->buffer == nullptr);
  229. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  230. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  231. ggml_backend_buffer_free(w->buffer);
  232. w->buffer = nullptr;
  233. return op_supported;
  234. }
  235. // lists of buffer types used for each layer
  236. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  237. // find the first buffer type in the list that can use the tensor
  238. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  239. GGML_ASSERT(!buft_list.empty());
  240. for (const auto & cur : buft_list) {
  241. ggml_backend_dev_t cur_dev = cur.first;
  242. ggml_backend_buffer_type_t cur_buft = cur.second;
  243. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  244. return cur_buft;
  245. }
  246. }
  247. return nullptr;
  248. }
  249. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  250. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  251. buft_list_t buft_list;
  252. // add ACCEL buffer types
  253. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  254. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  255. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  256. auto * buft = ggml_backend_dev_buffer_type(dev);
  257. // skip
  258. if (buft != ggml_backend_cpu_buffer_type()) {
  259. buft_list.emplace_back(dev, buft);
  260. }
  261. }
  262. }
  263. // add a host buffer type
  264. // storing the tensors in a host buffer is useful when the processing of large batches
  265. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  266. // generally, this will be done using the first device in the list
  267. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  268. // function of the device to determine if it would benefit from being stored in a host buffer
  269. for (auto * dev : devices) {
  270. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  271. if (buft) {
  272. buft_list.emplace_back(dev, buft);
  273. break;
  274. }
  275. }
  276. // add extra buffer types, only if no GPU device is present
  277. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  278. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  279. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  280. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  281. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  282. if (ggml_backend_dev_get_extra_bufts_fn) {
  283. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  284. while (extra_bufts && *extra_bufts) {
  285. buft_list.emplace_back(cpu_dev, *extra_bufts);
  286. ++extra_bufts;
  287. }
  288. }
  289. // add the CPU buffer type
  290. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  291. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  292. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  293. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  294. }
  295. }
  296. return buft_list;
  297. }
  298. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  299. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  300. buft_list_t buft_list;
  301. // add the device split buffer type if requested and available
  302. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  303. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  304. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  305. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  306. if (ggml_backend_split_buffer_type_fn) {
  307. size_t dev_index = [&]() {
  308. auto * reg = ggml_backend_dev_backend_reg(dev);
  309. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  310. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  311. return i;
  312. }
  313. }
  314. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  315. }();
  316. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  317. if (buft != nullptr) {
  318. buft_list.emplace_back(dev, buft);
  319. }
  320. }
  321. }
  322. // add the device default buffer type
  323. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  324. return buft_list;
  325. }
  326. struct llama_model::impl {
  327. impl() {}
  328. ~impl() {}
  329. uint64_t n_elements = 0;
  330. size_t n_bytes = 0;
  331. std::string desc_str;
  332. // model memory mapped files
  333. llama_mmaps mappings;
  334. // objects representing data potentially being locked in memory
  335. llama_mlocks mlock_bufs;
  336. llama_mlocks mlock_mmaps;
  337. // contexts where the model tensors metadata is stored
  338. std::vector<ggml_context_ptr> ctxs;
  339. // the model memory buffers for the tensor data
  340. std::vector<ggml_backend_buffer_ptr> bufs;
  341. buft_list_t cpu_buft_list;
  342. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  343. struct layer_dev {
  344. ggml_backend_dev_t dev;
  345. buft_list_t * buft_list;
  346. };
  347. layer_dev dev_input = {};
  348. layer_dev dev_output = {};
  349. std::vector<layer_dev> dev_layer;
  350. bool has_tensor_overrides;
  351. };
  352. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  353. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  354. }
  355. llama_model::~llama_model() {}
  356. void llama_model::load_stats(llama_model_loader & ml) {
  357. pimpl->n_elements = ml.n_elements;
  358. pimpl->n_bytes = ml.n_bytes;
  359. }
  360. void llama_model::load_arch(llama_model_loader & ml) {
  361. arch = ml.get_arch();
  362. if (arch == LLM_ARCH_UNKNOWN) {
  363. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  364. }
  365. }
  366. void llama_model::load_hparams(llama_model_loader & ml) {
  367. const gguf_context * ctx = ml.meta.get();
  368. // get metadata as string
  369. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  370. gguf_type type = gguf_get_kv_type(ctx, i);
  371. if (type == GGUF_TYPE_ARRAY) {
  372. continue;
  373. }
  374. const char * name = gguf_get_key(ctx, i);
  375. const std::string value = gguf_kv_to_str(ctx, i);
  376. gguf_kv.emplace(name, value);
  377. }
  378. // get general kv
  379. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  380. // everything past this point is not vocab-related
  381. if (hparams.vocab_only) {
  382. return;
  383. }
  384. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  385. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  386. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  387. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  388. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  389. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  390. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  391. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  392. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  393. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  394. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  395. }
  396. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  397. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  398. if (hparams.n_expert > 0) {
  399. GGML_ASSERT(hparams.n_expert_used > 0);
  400. } else {
  401. GGML_ASSERT(hparams.n_expert_used == 0);
  402. }
  403. // zero-out the array hparams
  404. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  405. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  406. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  407. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  408. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  409. // n_head_kv is optional, default to n_head
  410. hparams.n_head_kv_arr = hparams.n_head_arr;
  411. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  412. bool rope_finetuned = false;
  413. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  414. hparams.rope_finetuned = rope_finetuned;
  415. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  416. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  417. // rope_freq_base (optional)
  418. hparams.rope_freq_base_train = 10000.0f;
  419. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  420. std::string rope_scaling("linear");
  421. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  422. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  423. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  424. // rope_freq_scale (inverse of the kv) is optional
  425. float ropescale = 0.0f;
  426. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  427. // try the old key name
  428. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  429. }
  430. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  431. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  432. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  433. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  434. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  435. // non-transformer models do not have attention heads
  436. if (hparams.n_head() > 0) {
  437. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  438. // gpt-j n_rot = rotary_dim
  439. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  440. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  441. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  442. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  443. // sanity check for n_rot (optional)
  444. hparams.n_rot = hparams.n_embd_head_k;
  445. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  446. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  447. if (hparams.n_rot != hparams.n_embd_head_k) {
  448. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  449. }
  450. }
  451. } else {
  452. hparams.n_rot = 0;
  453. hparams.n_embd_head_k = 0;
  454. hparams.n_embd_head_v = 0;
  455. }
  456. // for differentiating model types
  457. uint32_t n_vocab = 0;
  458. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  459. // arch-specific KVs
  460. switch (arch) {
  461. case LLM_ARCH_LLAMA:
  462. {
  463. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  464. if (hparams.n_expert == 8) {
  465. switch (hparams.n_layer) {
  466. case 32: type = LLM_TYPE_8x7B; break;
  467. case 56: type = LLM_TYPE_8x22B; break;
  468. default: type = LLM_TYPE_UNKNOWN;
  469. }
  470. } else {
  471. switch (hparams.n_layer) {
  472. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  473. case 22: type = LLM_TYPE_1B; break;
  474. case 26: type = LLM_TYPE_3B; break;
  475. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  476. // granite uses a vocab with len 49152
  477. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  478. case 36: type = LLM_TYPE_8B; break; // granite
  479. case 40: type = LLM_TYPE_13B; break;
  480. case 48: type = LLM_TYPE_34B; break;
  481. case 60: type = LLM_TYPE_30B; break;
  482. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  483. default: type = LLM_TYPE_UNKNOWN;
  484. }
  485. }
  486. } break;
  487. case LLM_ARCH_LLAMA4:
  488. {
  489. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  490. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  491. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  492. hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
  493. hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  494. hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
  495. switch (hparams.n_expert) {
  496. case 16: type = LLM_TYPE_17B_16E; break;
  497. case 128: type = LLM_TYPE_17B_128E; break;
  498. default: type = LLM_TYPE_UNKNOWN;
  499. }
  500. if (type == LLM_TYPE_17B_128E) {
  501. hparams.use_kq_norm = false;
  502. }
  503. } break;
  504. case LLM_ARCH_DECI:
  505. {
  506. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  507. switch (hparams.n_layer) {
  508. case 32: type = LLM_TYPE_7B; break;
  509. case 80: type = LLM_TYPE_70B; break;
  510. case 162: type = LLM_TYPE_405B; break;
  511. default: type = LLM_TYPE_UNKNOWN;
  512. }
  513. } break;
  514. case LLM_ARCH_MINICPM:
  515. {
  516. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  517. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  518. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  519. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  520. switch (hparams.n_layer) {
  521. case 52: type = LLM_TYPE_1B; break;
  522. case 40: type = LLM_TYPE_2B; break;
  523. default: type = LLM_TYPE_UNKNOWN;
  524. }
  525. } break;
  526. case LLM_ARCH_MINICPM3:
  527. {
  528. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  529. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  530. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  531. switch (hparams.n_layer) {
  532. case 62: type = LLM_TYPE_4B; break;
  533. default: type = LLM_TYPE_UNKNOWN;
  534. }
  535. } break;
  536. case LLM_ARCH_GROK:
  537. {
  538. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  539. switch (hparams.n_layer) {
  540. case 64: type = LLM_TYPE_314B; break;
  541. default: type = LLM_TYPE_UNKNOWN;
  542. }
  543. } break;
  544. case LLM_ARCH_FALCON:
  545. {
  546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  547. switch (hparams.n_layer) {
  548. case 32: type = LLM_TYPE_7B; break;
  549. case 60: type = LLM_TYPE_40B; break;
  550. default: type = LLM_TYPE_UNKNOWN;
  551. }
  552. } break;
  553. case LLM_ARCH_BAICHUAN:
  554. {
  555. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  556. switch (hparams.n_layer) {
  557. case 32: type = LLM_TYPE_7B; break;
  558. case 40: type = LLM_TYPE_13B; break;
  559. default: type = LLM_TYPE_UNKNOWN;
  560. }
  561. if (type == LLM_TYPE_13B) {
  562. // TODO: become GGUF KV parameter
  563. hparams.f_max_alibi_bias = 8.0f;
  564. }
  565. } break;
  566. case LLM_ARCH_STARCODER:
  567. {
  568. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  569. switch (hparams.n_layer) {
  570. case 24: type = LLM_TYPE_1B; break;
  571. case 36: type = LLM_TYPE_3B; break;
  572. case 42: type = LLM_TYPE_7B; break;
  573. case 40: type = LLM_TYPE_15B; break;
  574. default: type = LLM_TYPE_UNKNOWN;
  575. }
  576. } break;
  577. case LLM_ARCH_REFACT:
  578. {
  579. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  580. switch (hparams.n_layer) {
  581. case 32: type = LLM_TYPE_1B; break;
  582. default: type = LLM_TYPE_UNKNOWN;
  583. }
  584. // TODO: become GGUF KV parameter
  585. hparams.f_max_alibi_bias = 8.0f;
  586. } break;
  587. case LLM_ARCH_BERT:
  588. {
  589. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  590. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  591. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  592. switch (hparams.n_layer) {
  593. case 3:
  594. type = LLM_TYPE_17M; break; // bge-micro
  595. case 6:
  596. type = LLM_TYPE_22M; break; // MiniLM-L6
  597. case 12:
  598. switch (hparams.n_embd) {
  599. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  600. case 768: type = LLM_TYPE_109M; break; // bge-base
  601. default: type = LLM_TYPE_UNKNOWN;
  602. } break;
  603. case 24:
  604. type = LLM_TYPE_335M; break; // bge-large
  605. default: type = LLM_TYPE_UNKNOWN;
  606. }
  607. } break;
  608. case LLM_ARCH_JINA_BERT_V2:
  609. {
  610. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  611. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  612. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  613. hparams.f_max_alibi_bias = 8.0f;
  614. switch (hparams.n_layer) {
  615. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  616. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  617. default: type = LLM_TYPE_UNKNOWN;
  618. }
  619. } break;
  620. case LLM_ARCH_NOMIC_BERT:
  621. case LLM_ARCH_NOMIC_BERT_MOE:
  622. {
  623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  624. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  625. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  626. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  627. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  628. if (arch == LLM_ARCH_NOMIC_BERT) {
  629. type = LLM_TYPE_137M;
  630. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  631. type = LLM_TYPE_475M;
  632. }
  633. }
  634. } break;
  635. case LLM_ARCH_BLOOM:
  636. {
  637. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  638. switch (hparams.n_layer) {
  639. case 24: type = LLM_TYPE_1B; break;
  640. case 30:
  641. switch (hparams.n_embd) {
  642. case 2560: type = LLM_TYPE_3B; break;
  643. case 4096: type = LLM_TYPE_7B; break;
  644. default: type = LLM_TYPE_UNKNOWN;
  645. } break;
  646. default: type = LLM_TYPE_UNKNOWN;
  647. }
  648. // TODO: become GGUF KV parameter
  649. hparams.f_max_alibi_bias = 8.0f;
  650. } break;
  651. case LLM_ARCH_MPT:
  652. {
  653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  654. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  655. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  656. switch (hparams.n_layer) {
  657. case 32: type = LLM_TYPE_7B; break;
  658. case 48: type = LLM_TYPE_30B; break;
  659. default: type = LLM_TYPE_UNKNOWN;
  660. }
  661. } break;
  662. case LLM_ARCH_STABLELM:
  663. {
  664. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  665. switch (hparams.n_layer) {
  666. case 24: type = LLM_TYPE_1B; break;
  667. case 32: type = LLM_TYPE_3B; break;
  668. case 40: type = LLM_TYPE_12B; break;
  669. default: type = LLM_TYPE_UNKNOWN;
  670. }
  671. } break;
  672. case LLM_ARCH_QWEN:
  673. {
  674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  675. switch (hparams.n_layer) {
  676. case 32: type = LLM_TYPE_7B; break;
  677. case 40: type = LLM_TYPE_13B; break;
  678. default: type = LLM_TYPE_UNKNOWN;
  679. }
  680. } break;
  681. case LLM_ARCH_QWEN2VL:
  682. {
  683. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  684. }
  685. // fall through
  686. case LLM_ARCH_QWEN2:
  687. {
  688. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  690. switch (hparams.n_layer) {
  691. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  692. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  693. case 32: type = LLM_TYPE_7B; break;
  694. case 36: type = LLM_TYPE_3B; break;
  695. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  696. case 48: type = LLM_TYPE_14B; break;
  697. case 64: type = LLM_TYPE_32B; break;
  698. case 80: type = LLM_TYPE_70B; break;
  699. default: type = LLM_TYPE_UNKNOWN;
  700. }
  701. } break;
  702. case LLM_ARCH_QWEN2MOE:
  703. {
  704. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  705. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  706. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  707. switch (hparams.n_layer) {
  708. case 24: type = LLM_TYPE_A2_7B; break;
  709. case 28: type = LLM_TYPE_57B_A14B; break;
  710. default: type = LLM_TYPE_UNKNOWN;
  711. }
  712. } break;
  713. case LLM_ARCH_QWEN3:
  714. {
  715. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  716. switch (hparams.n_layer) {
  717. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  718. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  719. case 40: type = LLM_TYPE_14B; break;
  720. case 64: type = LLM_TYPE_32B; break;
  721. default: type = LLM_TYPE_UNKNOWN;
  722. }
  723. } break;
  724. case LLM_ARCH_QWEN3MOE:
  725. {
  726. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  727. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  728. switch (hparams.n_layer) {
  729. case 48: type = LLM_TYPE_30B_A3B; break;
  730. case 94: type = LLM_TYPE_235B_A22B; break;
  731. default: type = LLM_TYPE_UNKNOWN;
  732. }
  733. } break;
  734. case LLM_ARCH_PHI2:
  735. {
  736. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  737. switch (hparams.n_layer) {
  738. case 24: type = LLM_TYPE_1B; break;
  739. case 32: type = LLM_TYPE_3B; break;
  740. default: type = LLM_TYPE_UNKNOWN;
  741. }
  742. } break;
  743. case LLM_ARCH_PHI3:
  744. {
  745. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  746. switch (hparams.n_layer) {
  747. case 24: type = LLM_TYPE_1B; break;
  748. case 32: type = LLM_TYPE_3B; break;
  749. case 40: type = LLM_TYPE_14B; break;
  750. default: type = LLM_TYPE_UNKNOWN;
  751. }
  752. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  753. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  754. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  755. hparams.n_swa = 2047;
  756. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  757. // default value for Phi-3-mini-128k-instruct
  758. // note: this seems incorrect because the window is bigger than the train context?
  759. hparams.n_swa = 262144;
  760. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  761. // default value for Phi-3-medium-128k-instruct
  762. // note: this seems incorrect because the window is equal to the train context?
  763. hparams.n_swa = 131072;
  764. }
  765. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  766. if (!found_swa && hparams.n_swa == 0) {
  767. throw std::runtime_error("invalid value for sliding_window");
  768. }
  769. } break;
  770. case LLM_ARCH_PHIMOE:
  771. {
  772. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  773. switch (hparams.n_layer) {
  774. case 32: type = LLM_TYPE_16x3_8B; break;
  775. default: type = LLM_TYPE_UNKNOWN;
  776. }
  777. } break;
  778. case LLM_ARCH_PLAMO:
  779. {
  780. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  781. switch (hparams.n_layer) {
  782. case 40: type = LLM_TYPE_13B; break;
  783. default: type = LLM_TYPE_UNKNOWN;
  784. }
  785. } break;
  786. case LLM_ARCH_GPT2:
  787. {
  788. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  789. switch (hparams.n_layer) {
  790. case 12: type = LLM_TYPE_SMALL; break;
  791. case 24: type = LLM_TYPE_MEDIUM; break;
  792. case 36: type = LLM_TYPE_LARGE; break;
  793. case 48: type = LLM_TYPE_XL; break;
  794. default: type = LLM_TYPE_UNKNOWN;
  795. }
  796. } break;
  797. case LLM_ARCH_CODESHELL:
  798. {
  799. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  800. switch (hparams.n_layer) {
  801. case 42: type = LLM_TYPE_7B; break;
  802. default: type = LLM_TYPE_UNKNOWN;
  803. }
  804. } break;
  805. case LLM_ARCH_ORION:
  806. {
  807. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  808. switch (hparams.n_layer) {
  809. case 40: type = LLM_TYPE_14B; break;
  810. default: type = LLM_TYPE_UNKNOWN;
  811. }
  812. } break;
  813. case LLM_ARCH_INTERNLM2:
  814. {
  815. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  816. switch (hparams.n_layer) {
  817. case 32: type = LLM_TYPE_7B; break;
  818. case 48: type = LLM_TYPE_20B; break;
  819. default: type = LLM_TYPE_UNKNOWN;
  820. }
  821. } break;
  822. case LLM_ARCH_GEMMA:
  823. {
  824. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  825. switch (hparams.n_layer) {
  826. case 18: type = LLM_TYPE_2B; break;
  827. case 28: type = LLM_TYPE_7B; break;
  828. default: type = LLM_TYPE_UNKNOWN;
  829. }
  830. } break;
  831. case LLM_ARCH_GEMMA2:
  832. {
  833. hparams.n_swa = 4096; // default value of gemma 2
  834. hparams.n_swa_pattern = 2;
  835. hparams.attn_soft_cap = true;
  836. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  837. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  838. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  839. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  840. switch (hparams.n_layer) {
  841. case 26: type = LLM_TYPE_2B; break;
  842. case 42: type = LLM_TYPE_9B; break;
  843. case 46: type = LLM_TYPE_27B; break;
  844. default: type = LLM_TYPE_UNKNOWN;
  845. }
  846. } break;
  847. case LLM_ARCH_GEMMA3:
  848. {
  849. hparams.n_swa_pattern = 6;
  850. hparams.rope_freq_base_train_swa = 10000.0f;
  851. hparams.rope_freq_scale_train_swa = 1.0f;
  852. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  853. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  854. switch (hparams.n_layer) {
  855. case 26: type = LLM_TYPE_1B; break;
  856. case 34: type = LLM_TYPE_4B; break;
  857. case 48: type = LLM_TYPE_12B; break;
  858. case 62: type = LLM_TYPE_27B; break;
  859. default: type = LLM_TYPE_UNKNOWN;
  860. }
  861. hparams.f_attention_scale = type == LLM_TYPE_27B
  862. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  863. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  864. } break;
  865. case LLM_ARCH_STARCODER2:
  866. {
  867. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  868. switch (hparams.n_layer) {
  869. case 30: type = LLM_TYPE_3B; break;
  870. case 32: type = LLM_TYPE_7B; break;
  871. case 40: type = LLM_TYPE_15B; break;
  872. case 52: type = LLM_TYPE_20B; break; // granite
  873. case 88: type = LLM_TYPE_34B; break; // granite
  874. default: type = LLM_TYPE_UNKNOWN;
  875. }
  876. } break;
  877. case LLM_ARCH_MAMBA:
  878. {
  879. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  880. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  881. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  882. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  883. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  884. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  885. switch (hparams.n_layer) {
  886. case 24:
  887. switch (hparams.n_embd) {
  888. case 768: type = LLM_TYPE_SMALL; break;
  889. default: type = LLM_TYPE_UNKNOWN;
  890. } break;
  891. case 48:
  892. switch (hparams.n_embd) {
  893. case 1024: type = LLM_TYPE_MEDIUM; break;
  894. case 1536: type = LLM_TYPE_LARGE; break;
  895. case 2048: type = LLM_TYPE_XL; break;
  896. default: type = LLM_TYPE_UNKNOWN;
  897. } break;
  898. case 64:
  899. switch (hparams.n_embd) {
  900. case 2560: type = LLM_TYPE_3B; break;
  901. default: type = LLM_TYPE_UNKNOWN;
  902. } break;
  903. default: type = LLM_TYPE_UNKNOWN;
  904. }
  905. } break;
  906. case LLM_ARCH_XVERSE:
  907. {
  908. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  909. switch (hparams.n_layer) {
  910. case 32: type = LLM_TYPE_7B; break;
  911. case 40: type = LLM_TYPE_13B; break;
  912. case 80: type = LLM_TYPE_65B; break;
  913. default: type = LLM_TYPE_UNKNOWN;
  914. }
  915. } break;
  916. case LLM_ARCH_COMMAND_R:
  917. {
  918. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  919. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  920. switch (hparams.n_layer) {
  921. case 40: type = LLM_TYPE_35B; break;
  922. default: type = LLM_TYPE_UNKNOWN;
  923. }
  924. } break;
  925. case LLM_ARCH_COHERE2:
  926. {
  927. hparams.n_swa_pattern = 4;
  928. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  929. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  930. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  931. switch (hparams.n_layer) {
  932. case 32: type = LLM_TYPE_8B; break;
  933. default: type = LLM_TYPE_UNKNOWN;
  934. }
  935. } break;
  936. case LLM_ARCH_DBRX:
  937. {
  938. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  939. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  940. switch (hparams.n_layer) {
  941. case 40: type = LLM_TYPE_16x12B; break;
  942. default: type = LLM_TYPE_UNKNOWN;
  943. }
  944. } break;
  945. case LLM_ARCH_OLMO:
  946. {
  947. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  948. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  949. switch (hparams.n_layer) {
  950. case 22: type = LLM_TYPE_1B; break;
  951. case 32: type = LLM_TYPE_7B; break;
  952. case 80: type = LLM_TYPE_70B; break;
  953. default: type = LLM_TYPE_UNKNOWN;
  954. }
  955. } break;
  956. case LLM_ARCH_OLMO2:
  957. {
  958. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  959. switch (hparams.n_layer) {
  960. case 16: type = LLM_TYPE_1B; break;
  961. case 32: type = LLM_TYPE_7B; break;
  962. case 40: type = LLM_TYPE_13B; break;
  963. case 64: type = LLM_TYPE_32B; break;
  964. default: type = LLM_TYPE_UNKNOWN;
  965. }
  966. } break;
  967. case LLM_ARCH_OLMOE:
  968. {
  969. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  970. switch (hparams.n_layer) {
  971. case 16: type = LLM_TYPE_A1_7B; break;
  972. default: type = LLM_TYPE_UNKNOWN;
  973. }
  974. } break;
  975. case LLM_ARCH_OPENELM:
  976. {
  977. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  978. switch (hparams.n_layer) {
  979. case 16: type = LLM_TYPE_270M; break;
  980. case 20: type = LLM_TYPE_450M; break;
  981. case 28: type = LLM_TYPE_1B; break;
  982. case 36: type = LLM_TYPE_3B; break;
  983. default: type = LLM_TYPE_UNKNOWN;
  984. }
  985. } break;
  986. case LLM_ARCH_GPTNEOX:
  987. {
  988. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  989. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  990. switch (hparams.n_layer) {
  991. case 6:
  992. switch (hparams.n_ff()) {
  993. case 512: type = LLM_TYPE_14M; break;
  994. case 2048: type = LLM_TYPE_70M; break;
  995. default: type = LLM_TYPE_UNKNOWN;
  996. } break;
  997. case 12:
  998. switch (hparams.n_ff()) {
  999. case 3072: type = LLM_TYPE_160M; break;
  1000. default: type = LLM_TYPE_UNKNOWN;
  1001. } break;
  1002. case 16:
  1003. switch (hparams.n_ff()) {
  1004. case 8192: type = LLM_TYPE_1B; break;
  1005. default: type = LLM_TYPE_UNKNOWN;
  1006. } break;
  1007. case 24:
  1008. switch (hparams.n_ff()) {
  1009. case 4096: type = LLM_TYPE_410M; break;
  1010. case 8192: type = LLM_TYPE_1_4B; break;
  1011. default: type = LLM_TYPE_UNKNOWN;
  1012. } break;
  1013. case 32:
  1014. switch (hparams.n_ff()) {
  1015. case 10240: type = LLM_TYPE_2_8B; break;
  1016. case 16384: type = LLM_TYPE_6_9B; break;
  1017. default: type = LLM_TYPE_UNKNOWN;
  1018. } break;
  1019. case 36:
  1020. switch (hparams.n_ff()) {
  1021. case 20480: type = LLM_TYPE_12B; break;
  1022. default: type = LLM_TYPE_UNKNOWN;
  1023. } break;
  1024. case 44:
  1025. switch (hparams.n_ff()) {
  1026. case 24576: type = LLM_TYPE_20B; break;
  1027. default: type = LLM_TYPE_UNKNOWN;
  1028. } break;
  1029. default: type = LLM_TYPE_UNKNOWN;
  1030. }
  1031. } break;
  1032. case LLM_ARCH_ARCTIC:
  1033. {
  1034. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1035. if (hparams.n_expert == 128) {
  1036. switch (hparams.n_layer) {
  1037. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1038. default: type = LLM_TYPE_UNKNOWN;
  1039. }
  1040. } else {
  1041. type = LLM_TYPE_UNKNOWN;
  1042. }
  1043. } break;
  1044. case LLM_ARCH_DEEPSEEK:
  1045. {
  1046. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1047. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1048. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1049. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1050. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1051. switch (hparams.n_layer) {
  1052. case 28: type = LLM_TYPE_20B; break;
  1053. default: type = LLM_TYPE_UNKNOWN;
  1054. }
  1055. } break;
  1056. case LLM_ARCH_DEEPSEEK2:
  1057. {
  1058. bool is_lite = (hparams.n_layer == 27);
  1059. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1060. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1061. if (!is_lite) {
  1062. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1063. }
  1064. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1065. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1066. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1067. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1068. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1069. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1070. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1071. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1072. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1073. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1074. // that have no expert_gating_func model parameter set
  1075. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1076. }
  1077. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1078. switch (hparams.n_layer) {
  1079. case 27: type = LLM_TYPE_16B; break;
  1080. case 60: type = LLM_TYPE_236B; break;
  1081. case 61: type = LLM_TYPE_671B; break;
  1082. default: type = LLM_TYPE_UNKNOWN;
  1083. }
  1084. } break;
  1085. case LLM_ARCH_PLM:
  1086. {
  1087. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1088. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1089. switch (hparams.n_layer) {
  1090. case 32: type = LLM_TYPE_1_8B; break;
  1091. default: type = LLM_TYPE_UNKNOWN;
  1092. }
  1093. } break;
  1094. case LLM_ARCH_CHATGLM:
  1095. {
  1096. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1097. switch (hparams.n_layer) {
  1098. case 28: {
  1099. if (hparams.n_head(0) == 16) {
  1100. type = LLM_TYPE_1_5B;
  1101. } else {
  1102. type = LLM_TYPE_6B;
  1103. }
  1104. } break;
  1105. case 40: {
  1106. if (hparams.n_head(0) == 24) {
  1107. type = LLM_TYPE_4B;
  1108. } else {
  1109. type = LLM_TYPE_9B;
  1110. }
  1111. } break;
  1112. default: type = LLM_TYPE_UNKNOWN;
  1113. }
  1114. } break;
  1115. case LLM_ARCH_GLM4:
  1116. {
  1117. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1118. switch (hparams.n_layer) {
  1119. case 40: type = LLM_TYPE_9B; break;
  1120. case 61: type = LLM_TYPE_32B; break;
  1121. default: type = LLM_TYPE_UNKNOWN;
  1122. }
  1123. } break;
  1124. case LLM_ARCH_BITNET:
  1125. {
  1126. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1127. switch (hparams.n_layer) {
  1128. case 26: type = LLM_TYPE_3B; break;
  1129. default: type = LLM_TYPE_UNKNOWN;
  1130. }
  1131. } break;
  1132. case LLM_ARCH_T5:
  1133. {
  1134. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1135. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1136. uint32_t dec_start_token_id;
  1137. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1138. hparams.dec_start_token_id = dec_start_token_id;
  1139. }
  1140. switch (hparams.n_layer) {
  1141. case 6: type = LLM_TYPE_60M; break; // t5-small
  1142. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1143. case 12:
  1144. switch (hparams.n_ff()) {
  1145. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1146. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1147. default: type = LLM_TYPE_UNKNOWN;
  1148. } break;
  1149. case 24:
  1150. switch (hparams.n_ff()) {
  1151. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1152. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1153. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1154. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1155. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1156. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1157. default: type = LLM_TYPE_UNKNOWN;
  1158. } break;
  1159. default: type = LLM_TYPE_UNKNOWN;
  1160. }
  1161. } break;
  1162. case LLM_ARCH_T5ENCODER:
  1163. {
  1164. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1165. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1166. type = LLM_TYPE_UNKNOWN;
  1167. } break;
  1168. case LLM_ARCH_JAIS:
  1169. {
  1170. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1171. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1172. switch (hparams.n_layer) {
  1173. case 24: type = LLM_TYPE_1_3B; break;
  1174. case 40: type = LLM_TYPE_13B; break;
  1175. /* TODO: add variants */
  1176. default: type = LLM_TYPE_UNKNOWN;
  1177. }
  1178. } break;
  1179. case LLM_ARCH_NEMOTRON:
  1180. {
  1181. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1182. switch (hparams.n_layer) {
  1183. case 32: type = LLM_TYPE_4B; break;
  1184. default: type = LLM_TYPE_UNKNOWN;
  1185. }
  1186. } break;
  1187. case LLM_ARCH_EXAONE:
  1188. {
  1189. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1190. switch (hparams.n_layer) {
  1191. case 32: type = LLM_TYPE_8B; break;
  1192. default: type = LLM_TYPE_UNKNOWN;
  1193. }
  1194. } break;
  1195. case LLM_ARCH_RWKV6:
  1196. case LLM_ARCH_RWKV6QWEN2:
  1197. {
  1198. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1199. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1200. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1201. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1202. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1203. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1204. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1205. switch (hparams.n_layer) {
  1206. case 24: type = LLM_TYPE_1_6B; break;
  1207. case 32:
  1208. switch (hparams.n_embd) {
  1209. case 2560: type = LLM_TYPE_3B; break;
  1210. case 4096: type = LLM_TYPE_7B; break;
  1211. default: type = LLM_TYPE_UNKNOWN;
  1212. } break;
  1213. case 61: type = LLM_TYPE_14B; break;
  1214. case 64: type = LLM_TYPE_32B; break;
  1215. default: type = LLM_TYPE_UNKNOWN;
  1216. }
  1217. } break;
  1218. case LLM_ARCH_RWKV7:
  1219. case LLM_ARCH_ARWKV7:
  1220. {
  1221. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1222. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1223. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1224. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1225. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1226. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1227. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1228. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1229. switch (hparams.n_layer) {
  1230. case 12: type = LLM_TYPE_190M; break;
  1231. case 24:
  1232. switch (hparams.n_embd) {
  1233. case 1024: type = LLM_TYPE_450M; break;
  1234. case 2048: type = LLM_TYPE_1_5B; break;
  1235. default: type = LLM_TYPE_UNKNOWN;
  1236. } break;
  1237. case 28:
  1238. switch (hparams.n_embd) {
  1239. case 1536: type = LLM_TYPE_1_5B; break;
  1240. case 3584: type = LLM_TYPE_7B; break;
  1241. default: type = LLM_TYPE_UNKNOWN;
  1242. } break;
  1243. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1244. default: type = LLM_TYPE_UNKNOWN;
  1245. }
  1246. } break;
  1247. case LLM_ARCH_GRANITE:
  1248. case LLM_ARCH_GRANITE_MOE:
  1249. {
  1250. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1251. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1252. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1253. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1254. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1255. switch (hparams.n_layer) {
  1256. case 32: type = LLM_TYPE_3B; break;
  1257. case 40: type = LLM_TYPE_3B; break;
  1258. // Add additional layer/vocab/etc checks here for other model sizes
  1259. default: type = LLM_TYPE_UNKNOWN;
  1260. }
  1261. } break;
  1262. case LLM_ARCH_CHAMELEON:
  1263. {
  1264. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1265. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1266. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1267. switch (hparams.n_layer) {
  1268. case 32: type = LLM_TYPE_7B; break;
  1269. case 48: type = LLM_TYPE_34B; break;
  1270. default: type = LLM_TYPE_UNKNOWN;
  1271. }
  1272. } break;
  1273. case LLM_ARCH_WAVTOKENIZER_DEC:
  1274. {
  1275. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1276. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1277. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1278. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1279. } break;
  1280. case LLM_ARCH_BAILINGMOE:
  1281. {
  1282. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1283. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1284. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1285. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1286. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1287. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1288. switch (hparams.n_layer) {
  1289. case 28: type = LLM_TYPE_16B; break;
  1290. case 88: type = LLM_TYPE_290B; break;
  1291. default: type = LLM_TYPE_UNKNOWN;
  1292. }
  1293. } break;
  1294. default: throw std::runtime_error("unsupported model architecture");
  1295. }
  1296. pimpl->n_bytes = ml.n_bytes;
  1297. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1298. if (hparams.f_max_alibi_bias > 0.0f) {
  1299. hparams.use_alibi = true;
  1300. }
  1301. hparams.rope_type = llama_model_rope_type(this);
  1302. }
  1303. void llama_model::load_vocab(llama_model_loader & ml) {
  1304. const auto kv = LLM_KV(arch);
  1305. vocab.load(ml, kv);
  1306. }
  1307. bool llama_model::load_tensors(llama_model_loader & ml) {
  1308. const auto & split_mode = params.split_mode;
  1309. const auto & n_gpu_layers = params.n_gpu_layers;
  1310. const auto & use_mlock = params.use_mlock;
  1311. const auto & tensor_split = params.tensor_split;
  1312. const int n_layer = hparams.n_layer;
  1313. const bool use_mmap_buffer = true;
  1314. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1315. // build a list of buffer types for the CPU and GPU devices
  1316. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1317. for (auto * dev : devices) {
  1318. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1319. // add CPU buffer types as a fallback
  1320. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1321. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1322. }
  1323. // calculate the split points
  1324. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1325. std::vector<float> splits(n_devices());
  1326. if (all_zero) {
  1327. // default split, by free memory
  1328. for (size_t i = 0; i < n_devices(); ++i) {
  1329. ggml_backend_dev_t dev = devices[i];
  1330. size_t total;
  1331. size_t free;
  1332. ggml_backend_dev_memory(dev, &free, &total);
  1333. splits[i] = free;
  1334. }
  1335. } else {
  1336. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1337. }
  1338. // sum and normalize the splits to get the split points
  1339. float split_sum = 0.0f;
  1340. for (size_t i = 0; i < n_devices(); ++i) {
  1341. split_sum += splits[i];
  1342. splits[i] = split_sum;
  1343. }
  1344. for (size_t i = 0; i < n_devices(); ++i) {
  1345. splits[i] /= split_sum;
  1346. }
  1347. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1348. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1349. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1350. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1351. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1352. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1353. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1354. return {cpu_dev, &pimpl->cpu_buft_list};
  1355. }
  1356. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1357. auto * dev = devices.at(layer_gpu);
  1358. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1359. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1360. };
  1361. // assign the input layer
  1362. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1363. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1364. // assign the repeating layers to the devices according to the splits
  1365. pimpl->dev_layer.resize(n_layer);
  1366. for (int il = 0; il < n_layer; ++il) {
  1367. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1368. }
  1369. // assign the output layer
  1370. pimpl->dev_output = get_layer_buft_list(n_layer);
  1371. // one ggml context per buffer type
  1372. int max_n_tensors = ml.n_tensors;
  1373. max_n_tensors += 1; // duplicated output tensor
  1374. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1375. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1376. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1377. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1378. auto it = ctx_map.find(buft);
  1379. if (it == ctx_map.end()) {
  1380. ggml_init_params params = {
  1381. /*.mem_size =*/ ctx_size,
  1382. /*.mem_buffer =*/ NULL,
  1383. /*.no_alloc =*/ true,
  1384. };
  1385. ggml_context * ctx = ggml_init(params);
  1386. if (!ctx) {
  1387. throw std::runtime_error(format("failed to create ggml context"));
  1388. }
  1389. ctx_map[buft] = ctx;
  1390. pimpl->ctxs.emplace_back(ctx);
  1391. return ctx;
  1392. }
  1393. return it->second;
  1394. };
  1395. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1396. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1397. // create tensors for the weights
  1398. {
  1399. // note: cast to int64_t since we will use these for the tensor dimensions
  1400. const int64_t n_head = hparams.n_head();
  1401. const int64_t n_head_kv = hparams.n_head_kv();
  1402. const int64_t n_embd = hparams.n_embd;
  1403. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1404. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1405. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1406. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1407. const int64_t n_ff = hparams.n_ff();
  1408. const int64_t n_embd_gqa = n_embd_v_gqa;
  1409. const int64_t n_vocab = vocab.n_tokens();
  1410. const int64_t n_token_types = vocab.n_token_types();
  1411. const int64_t n_rot = hparams.n_rot;
  1412. const int64_t n_expert = hparams.n_expert;
  1413. const int64_t n_expert_used = hparams.n_expert_used;
  1414. const int64_t n_ctx_train = hparams.n_ctx_train;
  1415. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1416. throw std::runtime_error("model has expert layers but no expert layers are used");
  1417. }
  1418. int n_moved_tensors = 0;
  1419. ggml_tensor * first_moved_tensor = nullptr;
  1420. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1421. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1422. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1423. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1424. if (!t_meta) {
  1425. if (flags & TENSOR_NOT_REQUIRED) {
  1426. return nullptr;
  1427. }
  1428. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1429. }
  1430. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1431. // the tensor is duplicated
  1432. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1433. llm_tensor tn_tensor = tn.tensor;
  1434. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1435. tn_tensor = LLM_TENSOR_OUTPUT;
  1436. }
  1437. llm_tensor_info info;
  1438. try {
  1439. info = llm_tensor_info_for(tn_tensor);
  1440. } catch (const std::out_of_range & e) {
  1441. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1442. }
  1443. // skip unused tensors
  1444. if (info.op == GGML_OP_NONE) {
  1445. const size_t nbytes = ggml_nbytes(t_meta);
  1446. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1447. ml.size_data -= nbytes;
  1448. ml.n_created++;
  1449. return nullptr;
  1450. }
  1451. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1452. ggml_op op;
  1453. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1454. if (bias) {
  1455. op = GGML_OP_ADD;
  1456. } else {
  1457. op = info.op;
  1458. }
  1459. // sanity checks
  1460. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1461. if (tn.bid != -1) {
  1462. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1463. }
  1464. } else {
  1465. if (tn.bid == -1) {
  1466. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1467. }
  1468. }
  1469. // select the buffer type for this tensor
  1470. buft_list_t * buft_list;
  1471. switch (info.layer) {
  1472. case LLM_TENSOR_LAYER_INPUT:
  1473. buft_list = pimpl->dev_input.buft_list;
  1474. break;
  1475. case LLM_TENSOR_LAYER_OUTPUT:
  1476. buft_list = pimpl->dev_output.buft_list;
  1477. break;
  1478. case LLM_TENSOR_LAYER_REPEATING:
  1479. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1480. break;
  1481. default:
  1482. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1483. }
  1484. ggml_backend_buffer_type_t buft = nullptr;
  1485. // check overrides
  1486. if (ml.tensor_buft_overrides) {
  1487. std::string tensor_name = tn.str();
  1488. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1489. std::regex pattern(overrides->pattern);
  1490. if (std::regex_search(tensor_name, pattern)) {
  1491. buft = overrides->buft;
  1492. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  1493. tensor_name.c_str(),
  1494. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  1495. ggml_backend_buft_name(buft));
  1496. break;
  1497. }
  1498. }
  1499. }
  1500. if (!buft) {
  1501. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1502. if (!buft) {
  1503. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1504. }
  1505. }
  1506. // avoid using a host buffer when using mmap
  1507. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1508. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1509. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1510. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1511. }
  1512. if (buft != buft_list->front().second) {
  1513. n_moved_tensors++;
  1514. if (!first_moved_tensor) {
  1515. first_moved_tensor = t_meta;
  1516. first_moved_from_buft = buft_list->front().second;
  1517. first_moved_to_buft = buft;
  1518. }
  1519. }
  1520. ggml_context * ctx = ctx_for_buft(buft);
  1521. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1522. if (flags & TENSOR_DUPLICATED) {
  1523. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1524. if (t) {
  1525. return t;
  1526. }
  1527. }
  1528. return ml.create_tensor(ctx, tn, ne, flags);
  1529. };
  1530. layers.resize(n_layer);
  1531. // TODO: move to a separate function
  1532. const auto tn = LLM_TN(arch);
  1533. switch (arch) {
  1534. case LLM_ARCH_LLAMA:
  1535. case LLM_ARCH_REFACT:
  1536. case LLM_ARCH_MINICPM:
  1537. case LLM_ARCH_GRANITE:
  1538. case LLM_ARCH_GRANITE_MOE:
  1539. {
  1540. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1541. // output
  1542. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1543. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1544. // if output is NULL, init from the input tok embed
  1545. if (output == NULL) {
  1546. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1547. }
  1548. for (int i = 0; i < n_layer; ++i) {
  1549. auto & layer = layers[i];
  1550. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1551. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1552. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1553. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1554. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1555. // optional bias tensors
  1556. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1557. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1558. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1559. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1560. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1561. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1562. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1563. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1564. }
  1565. else {
  1566. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1567. }
  1568. if (n_expert == 0) {
  1569. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1570. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1571. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1572. // optional MLP bias
  1573. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1574. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1575. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1576. } else {
  1577. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1578. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1579. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1580. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1581. }
  1582. }
  1583. } break;
  1584. case LLM_ARCH_LLAMA4:
  1585. {
  1586. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1587. // output
  1588. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1589. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1590. // if output is NULL, init from the input tok embed
  1591. if (output == NULL) {
  1592. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1593. }
  1594. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1595. for (int i = 0; i < n_layer; ++i) {
  1596. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1597. auto & layer = layers[i];
  1598. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1599. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1600. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1601. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1602. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1603. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1604. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1605. if (is_moe_layer) {
  1606. int n_ff_exp = hparams.n_ff_exp;
  1607. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1608. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1609. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1610. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1611. // Shared expert
  1612. const int64_t n_ff_shexp = n_ff_exp;
  1613. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1614. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1615. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1616. } else {
  1617. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1618. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1619. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1620. }
  1621. }
  1622. } break;
  1623. case LLM_ARCH_DECI:
  1624. {
  1625. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1626. // output
  1627. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1628. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1629. // if output is NULL, init from the input tok embed
  1630. if (output == NULL) {
  1631. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1632. }
  1633. for (int i = 0; i < n_layer; ++i) {
  1634. auto & layer = layers[i];
  1635. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1636. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1637. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1638. const int64_t n_ff = hparams.n_ff(i);
  1639. const int64_t n_head = hparams.n_head(i);
  1640. const int64_t n_head_kv = hparams.n_head_kv(i);
  1641. if (n_head_kv == 0 && n_head > 0) {
  1642. // linear attention for DeciLMCausalModel
  1643. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1644. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1645. }
  1646. else if (n_head_kv > 0) {
  1647. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1648. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1649. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1650. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1651. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1652. }
  1653. // optional bias tensors
  1654. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1655. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1656. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1657. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1658. if (n_ff > 0) {
  1659. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1660. }
  1661. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1662. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1663. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1664. }
  1665. else {
  1666. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1667. }
  1668. if (n_ff > 0) {
  1669. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1670. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1671. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1672. }
  1673. // optional MLP bias
  1674. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1675. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1676. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1677. }
  1678. } break;
  1679. case LLM_ARCH_MINICPM3:
  1680. {
  1681. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1682. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1683. const int64_t q_lora_rank = hparams.n_lora_q;
  1684. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1685. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1686. // output
  1687. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1688. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1689. // if output is NULL, init from the input tok embed
  1690. if (output == NULL) {
  1691. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1692. }
  1693. for (int i = 0; i < n_layer; ++i) {
  1694. auto & layer = layers[i];
  1695. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1696. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1697. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1698. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1699. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1700. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1701. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1702. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1703. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1704. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1705. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1706. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1707. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1708. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1709. }
  1710. } break;
  1711. case LLM_ARCH_GROK:
  1712. {
  1713. if (n_expert == 0) {
  1714. throw std::runtime_error("Grok model cannot have zero experts");
  1715. }
  1716. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1717. // output
  1718. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1719. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1720. // if output is NULL, init from the input tok embed
  1721. if (output == NULL) {
  1722. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1723. }
  1724. for (int i = 0; i < n_layer; ++i) {
  1725. auto & layer = layers[i];
  1726. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1727. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1728. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1729. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1730. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1731. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1732. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1733. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1734. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1735. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1736. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1737. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1738. }
  1739. } break;
  1740. case LLM_ARCH_DBRX:
  1741. {
  1742. if (n_expert == 0) {
  1743. throw std::runtime_error("DBRX model cannot have zero experts");
  1744. }
  1745. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1746. // output
  1747. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1748. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1749. for (int i = 0; i < n_layer; ++i) {
  1750. auto & layer = layers[i];
  1751. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1752. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1753. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1754. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1755. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1756. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1757. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1758. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1759. }
  1760. } break;
  1761. case LLM_ARCH_BAICHUAN:
  1762. {
  1763. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1764. {
  1765. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1766. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1767. }
  1768. for (int i = 0; i < n_layer; ++i) {
  1769. auto & layer = layers[i];
  1770. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1771. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1772. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1773. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1774. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1775. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1776. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1777. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1778. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1779. }
  1780. } break;
  1781. case LLM_ARCH_FALCON:
  1782. {
  1783. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1784. // output
  1785. {
  1786. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1787. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1788. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1789. if (!output) {
  1790. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1791. }
  1792. }
  1793. for (int i = 0; i < n_layer; ++i) {
  1794. auto & layer = layers[i];
  1795. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1796. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1797. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1798. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1799. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1800. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1801. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1802. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1803. }
  1804. } break;
  1805. case LLM_ARCH_STARCODER:
  1806. {
  1807. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1808. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1809. // output
  1810. {
  1811. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1812. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1813. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1814. if (!output) {
  1815. // needs to be on GPU
  1816. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1817. }
  1818. }
  1819. for (int i = 0; i < n_layer; ++i) {
  1820. auto & layer = layers[i];
  1821. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1822. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1823. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1824. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1825. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1826. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1827. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1828. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1829. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1830. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1831. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1832. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1833. }
  1834. } break;
  1835. case LLM_ARCH_BERT:
  1836. case LLM_ARCH_NOMIC_BERT:
  1837. case LLM_ARCH_NOMIC_BERT_MOE:
  1838. {
  1839. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1840. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1841. if (arch == LLM_ARCH_BERT) {
  1842. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1843. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1844. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1845. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1846. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1847. }
  1848. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1849. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1850. for (int i = 0; i < n_layer; ++i) {
  1851. auto & layer = layers[i];
  1852. if (arch == LLM_ARCH_BERT) {
  1853. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1854. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1855. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1856. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1857. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1858. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1859. } else {
  1860. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1861. }
  1862. if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1863. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1864. }
  1865. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1866. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1867. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1868. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1869. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1870. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1871. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1872. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1873. } else {
  1874. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1875. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1876. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1877. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1878. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1879. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1880. } else {
  1881. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1882. }
  1883. }
  1884. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1885. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1886. }
  1887. } break;
  1888. case LLM_ARCH_JINA_BERT_V2:
  1889. {
  1890. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1891. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1892. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1893. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1894. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1895. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1896. for (int i = 0; i < n_layer; ++i) {
  1897. auto & layer = layers[i]; // JinaBertLayer
  1898. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1899. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1900. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1901. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1902. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1903. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1904. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1905. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1906. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1907. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1908. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1909. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1910. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1911. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1912. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1913. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1914. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1915. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1916. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1917. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1918. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1919. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1920. }
  1921. } break;
  1922. case LLM_ARCH_BLOOM:
  1923. {
  1924. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1925. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1926. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1927. // output
  1928. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1929. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1930. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1931. // if output is NULL, init from the input tok embed
  1932. if (output == NULL) {
  1933. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1934. }
  1935. for (int i = 0; i < n_layer; ++i) {
  1936. auto & layer = layers[i];
  1937. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1938. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1939. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1940. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1941. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1942. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1943. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1944. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1945. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1946. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1947. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1948. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1949. }
  1950. } break;
  1951. case LLM_ARCH_MPT:
  1952. {
  1953. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1954. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1955. // output
  1956. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1957. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1958. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1959. if (!output) {
  1960. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1961. }
  1962. for (int i = 0; i < n_layer; ++i) {
  1963. auto & layer = layers[i];
  1964. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1965. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1966. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1967. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1968. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1969. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1970. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1971. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1972. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1973. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1974. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1975. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1976. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1977. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1978. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1979. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1980. // AWQ ScaleActivation layer
  1981. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1982. }
  1983. } break;
  1984. case LLM_ARCH_STABLELM:
  1985. {
  1986. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1987. // output
  1988. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1989. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1990. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1991. for (int i = 0; i < n_layer; ++i) {
  1992. auto & layer = layers[i];
  1993. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1994. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1995. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1996. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1997. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1998. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1999. // optional bias tensors, present in Stable LM 2 1.6B
  2000. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2001. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2002. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2003. // optional q and k layernorms, present in StableLM 2 12B
  2004. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2005. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2006. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2007. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2008. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2009. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2010. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2011. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2012. }
  2013. } break;
  2014. case LLM_ARCH_QWEN:
  2015. {
  2016. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2017. // output
  2018. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2019. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2020. for (int i = 0; i < n_layer; ++i) {
  2021. auto & layer = layers[i];
  2022. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2023. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2024. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2025. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2026. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2027. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2028. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2029. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2030. }
  2031. } break;
  2032. case LLM_ARCH_QWEN2:
  2033. case LLM_ARCH_QWEN2VL:
  2034. {
  2035. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2036. // output
  2037. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2038. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2039. // if output is NULL, init from the input tok embed
  2040. if (output == NULL) {
  2041. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2042. }
  2043. for (int i = 0; i < n_layer; ++i) {
  2044. auto & layer = layers[i];
  2045. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2046. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2047. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2048. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2049. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2050. // optional bias tensors
  2051. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2052. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2053. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2054. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2055. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2056. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2057. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2058. }
  2059. } break;
  2060. case LLM_ARCH_QWEN2MOE:
  2061. {
  2062. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2063. // output
  2064. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2065. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2066. for (int i = 0; i < n_layer; ++i) {
  2067. auto & layer = layers[i];
  2068. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2069. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2070. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2071. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2072. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2073. // optional bias tensors
  2074. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2075. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2076. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2077. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2078. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2079. if (n_expert == 0) {
  2080. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2081. }
  2082. if (n_expert_used == 0) {
  2083. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2084. }
  2085. // MoE branch
  2086. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2087. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2088. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2089. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2090. // Shared expert branch
  2091. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2092. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2093. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2094. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2095. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2096. }
  2097. } break;
  2098. case LLM_ARCH_QWEN3:
  2099. {
  2100. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2101. // output
  2102. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2103. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2104. // if output is NULL, init from the input tok embed
  2105. if (output == NULL) {
  2106. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2107. }
  2108. for (int i = 0; i < n_layer; ++i) {
  2109. auto & layer = layers[i];
  2110. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2111. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2112. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2113. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2114. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2115. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2116. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2117. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2118. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2119. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2120. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2121. }
  2122. } break;
  2123. case LLM_ARCH_QWEN3MOE:
  2124. {
  2125. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2126. // output
  2127. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2128. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2129. for (int i = 0; i < n_layer; ++i) {
  2130. auto & layer = layers[i];
  2131. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2132. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2133. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2134. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2135. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2136. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2137. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2138. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2139. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2140. if (n_expert == 0) {
  2141. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2142. }
  2143. if (n_expert_used == 0) {
  2144. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2145. }
  2146. // MoE branch
  2147. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2148. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2149. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2150. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2151. }
  2152. } break;
  2153. case LLM_ARCH_PHI2:
  2154. {
  2155. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2156. // output
  2157. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2158. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2159. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2160. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2161. for (int i = 0; i < n_layer; ++i) {
  2162. auto & layer = layers[i];
  2163. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2164. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2165. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2166. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2167. if (layer.wqkv == nullptr) {
  2168. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2169. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2170. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2171. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2172. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2173. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2174. }
  2175. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2176. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2177. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2178. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2179. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2180. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2181. }
  2182. } break;
  2183. case LLM_ARCH_PHI3:
  2184. {
  2185. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2186. // output
  2187. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2188. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2189. // if output is NULL, init from the input tok embed
  2190. if (output == NULL) {
  2191. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2192. }
  2193. for (int i = 0; i < n_layer; ++i) {
  2194. auto & layer = layers[i];
  2195. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2196. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2197. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2198. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2199. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2200. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2201. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2202. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2203. }
  2204. } break;
  2205. case LLM_ARCH_PHIMOE:
  2206. {
  2207. const int64_t n_embd_head = n_embd / n_head;
  2208. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2209. // output
  2210. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2211. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2212. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2213. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2214. for (int i = 0; i < n_layer; ++i) {
  2215. auto & layer = layers[i];
  2216. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2217. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2218. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2219. if (layer.wqkv == nullptr) {
  2220. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2221. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2222. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2223. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2224. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2225. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2226. }
  2227. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2228. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2229. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2230. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2231. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2232. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2233. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2234. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2235. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2236. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2237. }
  2238. } break;
  2239. case LLM_ARCH_PLAMO:
  2240. {
  2241. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2242. // output
  2243. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2244. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2245. for (int i = 0; i < n_layer; ++i) {
  2246. auto & layer = layers[i];
  2247. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2248. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2249. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2250. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2251. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2252. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2253. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2254. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2255. }
  2256. } break;
  2257. case LLM_ARCH_GPT2:
  2258. {
  2259. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2260. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2261. // output
  2262. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2263. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2264. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2265. // if output is NULL, init from the input tok embed
  2266. if (output == NULL) {
  2267. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2268. }
  2269. for (int i = 0; i < n_layer; ++i) {
  2270. auto & layer = layers[i];
  2271. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2272. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2273. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2274. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2275. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2276. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2277. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2278. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2279. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2280. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2281. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2282. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2283. }
  2284. } break;
  2285. case LLM_ARCH_CODESHELL:
  2286. {
  2287. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2288. // if tok embd is NULL, init from output
  2289. if (tok_embd == NULL) {
  2290. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2291. }
  2292. // output
  2293. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2294. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2295. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2296. for (int i = 0; i < n_layer; ++i) {
  2297. auto & layer = layers[i];
  2298. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2299. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2300. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2301. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2302. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2303. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2304. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2305. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2306. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2307. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2308. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2309. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2310. }
  2311. } break;
  2312. case LLM_ARCH_ORION:
  2313. {
  2314. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2315. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2316. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2317. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2318. for (int i = 0; i < n_layer; ++i) {
  2319. auto & layer = layers[i];
  2320. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2321. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2322. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2323. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2324. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2325. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2326. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2327. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2328. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2329. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2330. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2331. }
  2332. } break;
  2333. case LLM_ARCH_INTERNLM2:
  2334. {
  2335. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2336. // output
  2337. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2338. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2339. for (int i = 0; i < n_layer; ++i) {
  2340. auto & layer = layers[i];
  2341. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2342. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2343. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2344. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2345. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2346. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2347. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2348. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2349. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2350. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2351. }
  2352. } break;
  2353. case LLM_ARCH_GEMMA:
  2354. {
  2355. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2356. // output
  2357. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2358. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2359. for (int i = 0; i < n_layer; ++i) {
  2360. auto & layer = layers[i];
  2361. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2362. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2363. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2364. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2365. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2366. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2367. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2368. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2369. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2370. }
  2371. } break;
  2372. case LLM_ARCH_GEMMA2:
  2373. {
  2374. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2375. // output
  2376. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2377. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2378. for (int i = 0; i < n_layer; ++i) {
  2379. auto & layer = layers[i];
  2380. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2381. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2382. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2383. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2384. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2385. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2386. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2387. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2388. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2389. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2390. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2391. }
  2392. } break;
  2393. case LLM_ARCH_GEMMA3:
  2394. {
  2395. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2396. // output
  2397. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2398. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2399. // if output is NULL, init from the input tok embed
  2400. if (output == NULL) {
  2401. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2402. }
  2403. for (int i = 0; i < n_layer; ++i) {
  2404. auto & layer = layers[i];
  2405. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2406. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2407. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2408. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2409. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2410. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2411. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2412. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2413. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2414. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2415. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2416. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2417. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2418. }
  2419. } break;
  2420. case LLM_ARCH_STARCODER2:
  2421. {
  2422. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2423. // output
  2424. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2425. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2426. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2427. // if output is NULL, init from the input tok embed
  2428. if (output == NULL) {
  2429. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2430. }
  2431. for (int i = 0; i < n_layer; ++i) {
  2432. auto & layer = layers[i];
  2433. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2434. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2435. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2436. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2437. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2438. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2439. // optional bias tensors
  2440. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2441. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2442. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2443. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2444. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2445. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2446. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2447. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2448. // optional bias tensors
  2449. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2450. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2451. }
  2452. } break;
  2453. case LLM_ARCH_MAMBA:
  2454. {
  2455. const int64_t d_conv = hparams.ssm_d_conv;
  2456. const int64_t d_inner = hparams.ssm_d_inner;
  2457. const int64_t d_state = hparams.ssm_d_state;
  2458. const int64_t dt_rank = hparams.ssm_dt_rank;
  2459. // only an expansion factor of 2 is supported for now
  2460. if (2 * n_embd != d_inner) {
  2461. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2462. }
  2463. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2464. // output
  2465. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2466. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2467. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2468. if (output == NULL) {
  2469. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2470. }
  2471. for (int i = 0; i < n_layer; ++i) {
  2472. auto & layer = layers[i];
  2473. // norm
  2474. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2475. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2476. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2477. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2478. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2479. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2480. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2481. // no "weight" suffix for these
  2482. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2483. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2484. // out_proj
  2485. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2486. }
  2487. } break;
  2488. case LLM_ARCH_XVERSE:
  2489. {
  2490. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2491. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2492. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2493. for (int i = 0; i < n_layer; ++i) {
  2494. auto & layer = layers[i];
  2495. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2496. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2497. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2498. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2499. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2500. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2501. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2502. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2503. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2504. }
  2505. } break;
  2506. case LLM_ARCH_COMMAND_R:
  2507. {
  2508. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2509. // output
  2510. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2511. // init output from the input tok embed
  2512. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2513. for (int i = 0; i < n_layer; ++i) {
  2514. auto & layer = layers[i];
  2515. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2516. if (n_layer >= 64){
  2517. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2518. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2519. }
  2520. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2521. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2522. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2523. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2524. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2525. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2526. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2527. }
  2528. } break;
  2529. case LLM_ARCH_COHERE2:
  2530. {
  2531. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2532. // output
  2533. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2534. // init output from the input tok embed
  2535. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2536. TENSOR_DUPLICATED);
  2537. for (int i = 0; i < n_layer; ++i) {
  2538. auto & layer = layers[i];
  2539. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2540. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2541. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2542. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2543. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2544. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2545. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2546. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2547. }
  2548. }
  2549. break;
  2550. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2551. {
  2552. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2553. // output
  2554. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2555. // if output is NULL, init from the input tok embed
  2556. if (output == NULL) {
  2557. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2558. }
  2559. for (int i = 0; i < n_layer; ++i) {
  2560. auto & layer = layers[i];
  2561. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2562. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2563. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2564. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2565. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2566. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2567. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2568. }
  2569. } break;
  2570. case LLM_ARCH_OLMO2:
  2571. {
  2572. const int64_t n_embd_head = n_embd / n_head;
  2573. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2574. // output
  2575. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2576. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2577. for (int i = 0; i < n_layer; ++i) {
  2578. auto & layer = layers[i];
  2579. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2580. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2581. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2582. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2583. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2584. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2585. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2586. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2587. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2588. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2589. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2590. }
  2591. } break;
  2592. case LLM_ARCH_OLMOE:
  2593. {
  2594. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2595. // output
  2596. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2597. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2598. for (int i = 0; i < n_layer; ++i) {
  2599. auto & layer = layers[i];
  2600. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2601. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2602. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2603. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2604. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2605. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2606. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2607. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2608. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2609. if (n_expert == 0) {
  2610. throw std::runtime_error("n_expert must be > 0");
  2611. }
  2612. if (n_expert_used == 0) {
  2613. throw std::runtime_error("n_expert_used must be > 0");
  2614. }
  2615. // MoE branch
  2616. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2617. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2618. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2619. }
  2620. } break;
  2621. case LLM_ARCH_OPENELM:
  2622. {
  2623. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2624. // output
  2625. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2626. // init output from the input tok embed
  2627. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2628. for (int i = 0; i < n_layer; ++i) {
  2629. const int64_t n_head = hparams.n_head(i);
  2630. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2631. const int64_t n_ff = hparams.n_ff(i);
  2632. auto & layer = layers[i];
  2633. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2634. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2635. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2636. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2637. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2638. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2639. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2640. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2641. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2642. }
  2643. } break;
  2644. case LLM_ARCH_GPTNEOX:
  2645. {
  2646. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2647. // output
  2648. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2649. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2650. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2651. for (int i = 0; i < n_layer; ++i) {
  2652. auto & layer = layers[i];
  2653. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2654. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2655. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2656. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2657. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2658. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2659. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2660. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2661. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2662. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2663. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2664. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2665. }
  2666. } break;
  2667. case LLM_ARCH_ARCTIC:
  2668. {
  2669. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2670. // output
  2671. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2672. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2673. // if output is NULL, init from the input tok embed
  2674. if (output == NULL) {
  2675. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2676. }
  2677. for (int i = 0; i < n_layer; ++i) {
  2678. auto & layer = layers[i];
  2679. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2680. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2681. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2682. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2683. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2684. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2685. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2686. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2687. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2688. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2689. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2690. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2691. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2692. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2693. }
  2694. } break;
  2695. case LLM_ARCH_DEEPSEEK:
  2696. {
  2697. const int64_t n_ff_exp = hparams.n_ff_exp;
  2698. const int64_t n_expert_shared = hparams.n_expert_shared;
  2699. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2700. // output
  2701. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2702. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2703. for (int i = 0; i < n_layer; ++i) {
  2704. auto & layer = layers[i];
  2705. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2706. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2707. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2708. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2709. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2710. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2711. if (i < (int) hparams.n_layer_dense_lead) {
  2712. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2713. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2714. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2715. } else {
  2716. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2717. if (n_expert == 0) {
  2718. throw std::runtime_error("n_expert must be > 0");
  2719. }
  2720. if (n_expert_used == 0) {
  2721. throw std::runtime_error("n_expert_used must be > 0");
  2722. }
  2723. // MoE branch
  2724. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2725. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2726. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2727. // Shared expert branch
  2728. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2729. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2730. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2731. }
  2732. }
  2733. } break;
  2734. case LLM_ARCH_DEEPSEEK2:
  2735. {
  2736. const bool is_lite = (hparams.n_layer == 27);
  2737. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2738. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2739. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2740. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2741. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2742. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2743. const int64_t q_lora_rank = hparams.n_lora_q;
  2744. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2745. const int64_t n_ff_exp = hparams.n_ff_exp;
  2746. const int64_t n_expert_shared = hparams.n_expert_shared;
  2747. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2748. // output
  2749. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2750. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2751. for (int i = 0; i < n_layer; ++i) {
  2752. auto & layer = layers[i];
  2753. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2754. if (!is_lite) {
  2755. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2756. }
  2757. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2758. if (!is_lite) {
  2759. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2760. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2761. } else {
  2762. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2763. }
  2764. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2765. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2766. if (is_mla) {
  2767. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2768. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2769. } else {
  2770. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2771. }
  2772. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2773. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2774. if (i < (int) hparams.n_layer_dense_lead) {
  2775. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2776. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2777. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2778. } else {
  2779. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2780. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2781. if (n_expert == 0) {
  2782. throw std::runtime_error("n_expert must be > 0");
  2783. }
  2784. if (n_expert_used == 0) {
  2785. throw std::runtime_error("n_expert_used must be > 0");
  2786. }
  2787. // MoE branch
  2788. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2789. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2790. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2791. // Shared expert branch
  2792. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2793. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2794. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2795. }
  2796. }
  2797. } break;
  2798. case LLM_ARCH_PLM:
  2799. {
  2800. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2801. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2802. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2803. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2804. // output
  2805. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2806. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2807. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2808. for (int i = 0; i < n_layer; ++i) {
  2809. auto & layer = layers[i];
  2810. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2811. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2812. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2813. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2814. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2815. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2816. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2817. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2818. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2819. }
  2820. } break;
  2821. case LLM_ARCH_BITNET:
  2822. {
  2823. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2824. // output
  2825. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2826. for (int i = 0; i < n_layer; ++i) {
  2827. auto & layer = layers[i];
  2828. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2829. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2830. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2831. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2832. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2833. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2834. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2835. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2836. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2837. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2838. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2839. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2840. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2841. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2842. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2843. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2844. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2845. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2846. }
  2847. } break;
  2848. case LLM_ARCH_T5:
  2849. {
  2850. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2851. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2852. // output
  2853. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2854. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2855. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2856. // if output is NULL, init from the input tok embed
  2857. if (output == NULL) {
  2858. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2859. }
  2860. for (int i = 0; i < n_layer; ++i) {
  2861. auto & layer = layers[i];
  2862. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2863. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2864. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2865. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2866. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2867. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2868. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2869. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2870. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2871. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2872. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2873. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2874. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2875. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2876. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2877. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2878. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2879. // this tensor seems to be unused in HF transformers implementation
  2880. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2881. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2882. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2883. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2884. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2885. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2886. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2887. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2888. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2889. }
  2890. } break;
  2891. case LLM_ARCH_T5ENCODER:
  2892. {
  2893. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2894. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2895. // output
  2896. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2897. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2898. // if output is NULL, init from the input tok embed
  2899. if (output == NULL) {
  2900. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2901. }
  2902. for (int i = 0; i < n_layer; ++i) {
  2903. auto & layer = layers[i];
  2904. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2905. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2906. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2907. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2908. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2909. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2910. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2911. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2912. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2913. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2914. }
  2915. } break;
  2916. case LLM_ARCH_JAIS:
  2917. {
  2918. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2919. // output
  2920. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2921. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2922. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2923. for (int i = 0; i < n_layer; ++i) {
  2924. auto & layer = layers[i];
  2925. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2926. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2927. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2928. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2929. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2930. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2931. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2932. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2933. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2934. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2935. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2936. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2937. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2938. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2939. }
  2940. } break;
  2941. case LLM_ARCH_CHATGLM:
  2942. {
  2943. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2944. // output
  2945. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2946. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2947. // if output is NULL, init from the input tok embed
  2948. if (output == NULL) {
  2949. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2950. }
  2951. for (int i = 0; i < n_layer; ++i) {
  2952. auto & layer = layers[i];
  2953. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2954. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2955. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2956. if (layer.wqkv == nullptr) {
  2957. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2958. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2959. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2960. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2961. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2962. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2963. }
  2964. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2965. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2966. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2967. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2968. }
  2969. } break;
  2970. case LLM_ARCH_GLM4:
  2971. {
  2972. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2973. // output
  2974. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2975. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2976. // if output is NULL, init from the input tok embed
  2977. if (output == NULL) {
  2978. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2979. }
  2980. for (int i = 0; i < n_layer; ++i) {
  2981. auto & layer = layers[i];
  2982. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2983. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2984. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2985. if (layer.wqkv == nullptr) {
  2986. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2987. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2988. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2989. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2990. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2991. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2992. }
  2993. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2994. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2995. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2996. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2997. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2998. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2999. }
  3000. } break;
  3001. case LLM_ARCH_NEMOTRON:
  3002. {
  3003. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3004. // output
  3005. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3006. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3007. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3008. for (int i = 0; i < n_layer; ++i) {
  3009. auto & layer = layers[i];
  3010. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3011. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3012. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3013. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3014. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3015. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3016. // optional bias tensors
  3017. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3018. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3019. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3020. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3021. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3022. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3023. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3024. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3025. // optional MLP bias
  3026. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3027. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3028. }
  3029. } break;
  3030. case LLM_ARCH_EXAONE:
  3031. {
  3032. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3033. // output
  3034. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3035. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3036. // if output is NULL, init from the input tok embed
  3037. if (output == NULL) {
  3038. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3039. }
  3040. for (int i = 0; i < n_layer; ++i) {
  3041. auto & layer = layers[i];
  3042. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3043. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3044. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3045. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3046. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3047. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3048. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3049. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3050. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3051. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3052. }
  3053. } break;
  3054. case LLM_ARCH_RWKV6:
  3055. {
  3056. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3057. // Block 0, LN0
  3058. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3059. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3060. // output
  3061. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3062. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3063. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3064. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3065. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3066. const int head_size = hparams.wkv_head_size;
  3067. const int attn_hidden_size = n_embd;
  3068. const int ffn_size = hparams.n_ff_arr[0];
  3069. for (int i = 0; i < n_layer; ++i) {
  3070. auto & layer = layers[i];
  3071. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3072. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3073. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3074. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3075. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3076. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3077. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3078. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3079. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3080. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3081. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3082. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3083. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3084. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3085. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3086. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3087. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3088. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3089. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3090. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3091. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3092. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3093. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3094. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3095. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3096. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3097. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3098. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3099. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3100. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3101. }
  3102. } break;
  3103. case LLM_ARCH_RWKV6QWEN2:
  3104. {
  3105. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3106. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3107. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3108. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3109. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3110. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3111. const int head_size = hparams.wkv_head_size;
  3112. const int attn_hidden_size = n_embd;
  3113. const int n_head_kv = hparams.n_head_kv();
  3114. int attn_key_value_size;
  3115. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3116. attn_key_value_size = attn_hidden_size;
  3117. } else {
  3118. attn_key_value_size = n_head_kv * head_size;
  3119. }
  3120. for (int i = 0; i < n_layer; ++i) {
  3121. auto & layer = layers[i];
  3122. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3123. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3124. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3125. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3126. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3127. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3128. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3129. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3130. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3131. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3132. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3133. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3134. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3135. // optional bias tensors
  3136. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3137. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3138. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3139. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3140. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3141. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3142. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3143. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3144. }
  3145. } break;
  3146. case LLM_ARCH_RWKV7:
  3147. {
  3148. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3149. // Block 0, LN0
  3150. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3151. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3152. // output
  3153. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3154. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3155. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3156. const int n_lora_decay = hparams.n_lora_decay;
  3157. const int n_lora_iclr = hparams.n_lora_iclr;
  3158. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3159. const int n_lora_gate = hparams.n_lora_gate;
  3160. const int attn_hidden_size = n_embd;
  3161. const int ffn_size = hparams.n_ff_arr[0];
  3162. for (int i = 0; i < n_layer; ++i) {
  3163. auto & layer = layers[i];
  3164. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3165. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3166. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3167. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3168. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3169. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3170. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3171. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3172. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3173. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3174. if (i == 0) {
  3175. // actually not used
  3176. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3177. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3178. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3179. } else {
  3180. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3181. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3182. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3183. }
  3184. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3185. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3186. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3187. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3188. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3189. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3190. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3191. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3192. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3193. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3194. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3195. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3196. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3197. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3198. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3199. }
  3200. } break;
  3201. case LLM_ARCH_ARWKV7:
  3202. {
  3203. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3204. // output
  3205. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3206. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3207. const int n_lora_decay = hparams.n_lora_decay;
  3208. const int n_lora_iclr = hparams.n_lora_iclr;
  3209. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3210. const int n_lora_gate = hparams.n_lora_gate;
  3211. const int attn_hidden_size = n_embd;
  3212. for (int i = 0; i < n_layer; ++i) {
  3213. auto & layer = layers[i];
  3214. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3215. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3216. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3217. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3218. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3219. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3220. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3221. if (i == 0) {
  3222. // actually not used
  3223. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3224. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3225. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3226. } else {
  3227. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3228. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3229. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3230. }
  3231. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3232. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3233. try {
  3234. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3235. } catch(std::runtime_error & e) {
  3236. // ARWKV models may not have gate tensors
  3237. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3238. }
  3239. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3240. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3241. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3242. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3243. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3244. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3245. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3246. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3247. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3248. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3249. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3250. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3251. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3252. }
  3253. } break;
  3254. case LLM_ARCH_CHAMELEON:
  3255. {
  3256. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3257. // output
  3258. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3259. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3260. // if output is NULL, init from the input tok embed
  3261. if (output == NULL) {
  3262. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3263. }
  3264. for (int i = 0; i < n_layer; ++i) {
  3265. auto & layer = layers[i];
  3266. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3267. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3268. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3269. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3270. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3271. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3272. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3273. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3274. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3275. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3276. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3277. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3278. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3279. }
  3280. } break;
  3281. case LLM_ARCH_WAVTOKENIZER_DEC:
  3282. {
  3283. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3284. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3285. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3286. // posnet
  3287. {
  3288. const int64_t n_embd = hparams.posnet.n_embd;
  3289. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3290. auto & layer = layers[i].posnet;
  3291. // posnet:
  3292. //
  3293. // - resnet
  3294. // - resnet
  3295. // - attn
  3296. // - resnet
  3297. // - resnet
  3298. // - norm
  3299. //
  3300. switch (i) {
  3301. case 0:
  3302. case 1:
  3303. case 3:
  3304. case 4:
  3305. {
  3306. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3307. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3308. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3309. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3310. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3311. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3312. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3313. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3314. } break;
  3315. case 2:
  3316. {
  3317. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3318. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3319. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3320. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3321. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3322. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3323. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3324. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3325. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3326. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3327. } break;
  3328. case 5:
  3329. {
  3330. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3331. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3332. } break;
  3333. default: GGML_ABORT("unknown posnet layer");
  3334. };
  3335. }
  3336. }
  3337. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3338. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3339. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3340. // convnext
  3341. {
  3342. const int64_t n_embd = hparams.convnext.n_embd;
  3343. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3344. auto & layer = layers[i].convnext;
  3345. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3346. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3347. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3348. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3349. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3350. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3351. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3352. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3353. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3354. }
  3355. // output
  3356. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3357. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3358. }
  3359. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3360. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3361. } break;
  3362. case LLM_ARCH_BAILINGMOE:
  3363. {
  3364. const int64_t n_ff_exp = hparams.n_ff_exp;
  3365. const int64_t n_expert_shared = hparams.n_expert_shared;
  3366. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3367. // output
  3368. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3369. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3370. for (int i = 0; i < n_layer; ++i) {
  3371. auto & layer = layers[i];
  3372. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3373. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3374. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3375. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3376. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3377. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3378. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3379. if (n_expert == 0) {
  3380. throw std::runtime_error("n_expert must be > 0");
  3381. }
  3382. if (n_expert_used == 0) {
  3383. throw std::runtime_error("n_expert_used must be > 0");
  3384. }
  3385. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3386. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3387. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3388. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3389. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3390. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3391. }
  3392. } break;
  3393. default:
  3394. throw std::runtime_error("unknown architecture");
  3395. }
  3396. if (n_moved_tensors > 0) {
  3397. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3398. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3399. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3400. }
  3401. }
  3402. ml.done_getting_tensors();
  3403. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3404. pimpl->mappings.reserve(ml.mappings.size());
  3405. // create the backend buffers
  3406. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3407. ctx_bufs.reserve(ctx_map.size());
  3408. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3409. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3410. pimpl->bufs.reserve(n_max_backend_buffer);
  3411. for (auto & it : ctx_map) {
  3412. ggml_backend_buffer_type_t buft = it.first;
  3413. ggml_context * ctx = it.second;
  3414. // skip contexts without tensors
  3415. if (ggml_get_first_tensor(ctx) == nullptr) {
  3416. continue;
  3417. }
  3418. llama_buf_map buf_map;
  3419. buf_map.reserve(n_max_backend_buffer);
  3420. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3421. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3422. if (!dev) {
  3423. // FIXME: workaround for CPU backend buft having a NULL device
  3424. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3425. }
  3426. ggml_backend_dev_props props;
  3427. ggml_backend_dev_get_props(dev, &props);
  3428. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3429. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3430. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3431. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3432. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3433. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3434. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3435. void * addr = nullptr;
  3436. size_t first, last; // NOLINT
  3437. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3438. if (first >= last) {
  3439. continue;
  3440. }
  3441. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3442. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3443. if (buf == nullptr) {
  3444. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3445. }
  3446. pimpl->bufs.emplace_back(buf);
  3447. buf_map.emplace(idx, buf);
  3448. }
  3449. }
  3450. else {
  3451. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3452. if (buf == nullptr) {
  3453. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3454. }
  3455. pimpl->bufs.emplace_back(buf);
  3456. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3457. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3458. auto & mlock_buf = pimpl->mlock_bufs.back();
  3459. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3460. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3461. }
  3462. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3463. buf_map.emplace(idx, buf);
  3464. }
  3465. }
  3466. if (pimpl->bufs.empty()) {
  3467. throw std::runtime_error("failed to allocate buffer");
  3468. }
  3469. for (auto & buf : buf_map) {
  3470. // indicate that this buffer contains weights
  3471. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3472. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3473. }
  3474. ctx_bufs.emplace_back(ctx, buf_map);
  3475. }
  3476. if (llama_supports_gpu_offload()) {
  3477. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3478. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3479. if (n_gpu_layers > (int) hparams.n_layer) {
  3480. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3481. }
  3482. const int max_backend_supported_layers = hparams.n_layer + 1;
  3483. const int max_offloadable_layers = hparams.n_layer + 1;
  3484. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3485. }
  3486. // print memory requirements per buffer type
  3487. for (auto & buf : pimpl->bufs) {
  3488. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3489. }
  3490. // populate tensors_by_name
  3491. for (auto & ctx : pimpl->ctxs) {
  3492. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3493. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3494. }
  3495. }
  3496. // load tensor data
  3497. for (auto & it : ctx_bufs) {
  3498. ggml_context * ctx = it.first;
  3499. auto & bufs = it.second;
  3500. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3501. return false;
  3502. }
  3503. }
  3504. if (use_mmap_buffer) {
  3505. for (auto & mapping : ml.mappings) {
  3506. pimpl->mappings.emplace_back(std::move(mapping));
  3507. }
  3508. }
  3509. return true;
  3510. }
  3511. std::string llama_model::arch_name() const {
  3512. return llm_arch_name(arch);
  3513. }
  3514. std::string llama_model::type_name() const {
  3515. return llm_type_name(type);
  3516. }
  3517. std::string llama_model::desc() const {
  3518. return pimpl->desc_str;
  3519. }
  3520. size_t llama_model::size() const {
  3521. return pimpl->n_bytes;
  3522. }
  3523. size_t llama_model::n_tensors() const {
  3524. return tensors_by_name.size();
  3525. }
  3526. size_t llama_model::n_devices() const {
  3527. return devices.size();
  3528. }
  3529. uint64_t llama_model::n_elements() const {
  3530. return pimpl->n_elements;
  3531. }
  3532. void llama_model::print_info() const {
  3533. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3534. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3535. bool is_var = false;
  3536. std::vector<uint32_t> v;
  3537. for (uint32_t i = 0; i < n; ++i) {
  3538. v.push_back(f(i));
  3539. if (v[i] != v[0]) {
  3540. is_var = true;
  3541. }
  3542. }
  3543. std::stringstream ss;
  3544. if (is_var) {
  3545. ss << "[";
  3546. for (uint32_t i = 0; i < n; ++i) {
  3547. ss << v[i];
  3548. if (i < n - 1) {
  3549. ss << ", ";
  3550. }
  3551. }
  3552. ss << "]";
  3553. } else {
  3554. ss << v[0];
  3555. }
  3556. return ss.str();
  3557. };
  3558. // hparams
  3559. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3560. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3561. if (!hparams.vocab_only) {
  3562. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3563. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3564. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3565. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3566. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3567. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3568. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3569. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3570. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3571. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3572. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3573. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3574. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3575. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3576. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3577. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3578. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3579. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3580. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3581. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3582. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3583. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3584. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3585. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3586. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3587. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3588. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3589. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3590. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3591. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3592. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3593. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3594. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3595. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3596. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3597. }
  3598. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3599. if (pimpl->n_elements >= 1e12) {
  3600. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3601. } else if (pimpl->n_elements >= 1e9) {
  3602. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3603. } else if (pimpl->n_elements >= 1e6) {
  3604. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3605. } else {
  3606. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3607. }
  3608. // general kv
  3609. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3610. if (arch == LLM_ARCH_DEEPSEEK) {
  3611. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3612. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3613. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3614. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3615. }
  3616. if (arch == LLM_ARCH_DEEPSEEK2) {
  3617. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3618. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3619. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3620. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3621. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3622. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3623. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3624. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3625. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3626. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3627. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3628. }
  3629. if (arch == LLM_ARCH_QWEN2MOE) {
  3630. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3631. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3632. }
  3633. if (arch == LLM_ARCH_QWEN3MOE) {
  3634. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3635. }
  3636. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3637. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3638. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3639. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3640. }
  3641. if (arch == LLM_ARCH_BAILINGMOE) {
  3642. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3643. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3644. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3645. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3646. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3647. }
  3648. vocab.print_info();
  3649. }
  3650. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3651. return pimpl->dev_layer.at(il).dev;
  3652. }
  3653. ggml_backend_dev_t llama_model::dev_output() const {
  3654. return pimpl->dev_output.dev;
  3655. }
  3656. template<typename F>
  3657. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3658. ggml_init_params params = {
  3659. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3660. /*.mem_buffer =*/ NULL,
  3661. /*.no_alloc =*/ true,
  3662. };
  3663. ggml_context_ptr ctx { ggml_init(params) };
  3664. if (!ctx) {
  3665. throw std::runtime_error(format("failed to create ggml context"));
  3666. }
  3667. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3668. ggml_tensor * op_tensor = fn(ctx.get());
  3669. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3670. if (op_tensor->src[i] != nullptr) {
  3671. assert(op_tensor->src[i]->buffer == nullptr);
  3672. op_tensor->src[i]->buffer = buf.get();
  3673. }
  3674. }
  3675. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3676. return op_supported;
  3677. }
  3678. template<typename F>
  3679. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3680. for (const auto & cur : buft_list) {
  3681. ggml_backend_dev_t cur_dev = cur.first;
  3682. ggml_backend_buffer_type_t cur_buft = cur.second;
  3683. if (buft_supported(cur_buft, cur_dev, fn)) {
  3684. return cur_buft;
  3685. }
  3686. }
  3687. throw std::runtime_error(format("no suitable buffer type found"));
  3688. }
  3689. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3690. return ::select_buft(
  3691. *pimpl->dev_layer.at(il).buft_list,
  3692. [&](ggml_context * ctx) {
  3693. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3694. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3695. return ggml_add(ctx, cur, layer_dir);
  3696. });
  3697. }
  3698. bool llama_model::has_tensor_overrides() const {
  3699. return pimpl->has_tensor_overrides;
  3700. }
  3701. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3702. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3703. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3704. return it.first == name;
  3705. });
  3706. if (it == tensors_by_name.end()) {
  3707. return nullptr;
  3708. }
  3709. return it->second;
  3710. }
  3711. ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
  3712. // choose long/short freq factors based on the context size
  3713. if (layers[il].rope_freqs != nullptr) {
  3714. return layers[il].rope_freqs;
  3715. }
  3716. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  3717. return layers[il].rope_long;
  3718. }
  3719. return layers[il].rope_short;
  3720. }
  3721. struct llm_build_llama : public llm_graph_context {
  3722. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3723. const int64_t n_embd_head = hparams.n_embd_head_v;
  3724. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3725. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3726. ggml_tensor * cur;
  3727. ggml_tensor * inpL;
  3728. inpL = build_inp_embd(model.tok_embd);
  3729. // inp_pos - contains the positions
  3730. ggml_tensor * inp_pos = build_inp_pos();
  3731. // temperature tuning
  3732. ggml_tensor * inp_attn_scale = nullptr;
  3733. if (arch == LLM_ARCH_LLAMA4) {
  3734. inp_attn_scale = build_inp_attn_scale();
  3735. }
  3736. auto * inp_attn = build_attn_inp_kv_unified();
  3737. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3738. for (int il = 0; il < n_layer; ++il) {
  3739. ggml_tensor * inpSA = inpL;
  3740. bool use_rope = arch == LLM_ARCH_LLAMA4
  3741. ? (il + 1) % hparams.n_no_rope_layer_step != 0
  3742. : true;
  3743. // norm
  3744. cur = build_norm(inpL,
  3745. model.layers[il].attn_norm, NULL,
  3746. LLM_NORM_RMS, il);
  3747. cb(cur, "attn_norm", il);
  3748. // self-attention
  3749. {
  3750. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3751. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3752. // compute Q and K and RoPE them
  3753. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3754. cb(Qcur, "Qcur", il);
  3755. if (model.layers[il].bq) {
  3756. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3757. cb(Qcur, "Qcur", il);
  3758. }
  3759. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3760. cb(Kcur, "Kcur", il);
  3761. if (model.layers[il].bk) {
  3762. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3763. cb(Kcur, "Kcur", il);
  3764. }
  3765. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3766. cb(Vcur, "Vcur", il);
  3767. if (model.layers[il].bv) {
  3768. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3769. cb(Vcur, "Vcur", il);
  3770. }
  3771. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3772. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3773. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3774. if (use_rope) {
  3775. Qcur = ggml_rope_ext(
  3776. ctx0, Qcur, inp_pos, rope_factors,
  3777. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3778. ext_factor, attn_factor, beta_fast, beta_slow
  3779. );
  3780. Kcur = ggml_rope_ext(
  3781. ctx0, Kcur, inp_pos, rope_factors,
  3782. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3783. ext_factor, attn_factor, beta_fast, beta_slow
  3784. );
  3785. } else if (inp_attn_scale) {
  3786. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3787. }
  3788. cb(Qcur, "Qcur", il);
  3789. cb(Kcur, "Kcur", il);
  3790. cb(Vcur, "Vcur", il);
  3791. if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
  3792. // Llama4TextL2Norm
  3793. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3794. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3795. cb(Qcur, "Qcur_normed", il);
  3796. cb(Kcur, "Kcur_normed", il);
  3797. }
  3798. cur = build_attn(inp_attn, gf,
  3799. model.layers[il].wo, model.layers[il].bo,
  3800. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3801. cb(cur, "attn_out", il);
  3802. }
  3803. if (il == n_layer - 1) {
  3804. // skip computing output for unused tokens
  3805. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3806. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3807. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3808. }
  3809. // For Granite architecture
  3810. if (hparams.f_residual_scale) {
  3811. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3812. }
  3813. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3814. cb(ffn_inp, "ffn_inp", il);
  3815. // feed-forward network (non-MoE)
  3816. if (model.layers[il].ffn_gate_inp == nullptr) {
  3817. cur = build_norm(ffn_inp,
  3818. model.layers[il].ffn_norm, NULL,
  3819. LLM_NORM_RMS, il);
  3820. cb(cur, "ffn_norm", il);
  3821. cur = build_ffn(cur,
  3822. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3823. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3824. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3825. NULL,
  3826. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3827. cb(cur, "ffn_out", il);
  3828. } else if (arch == LLM_ARCH_LLAMA4) {
  3829. // llama4 MoE
  3830. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3831. model.layers[il].ffn_norm, NULL,
  3832. LLM_NORM_RMS, il);
  3833. cb(cur, "ffn_norm", il);
  3834. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3835. model.layers[il].ffn_gate_inp,
  3836. model.layers[il].ffn_up_exps,
  3837. model.layers[il].ffn_gate_exps,
  3838. model.layers[il].ffn_down_exps,
  3839. nullptr,
  3840. n_expert, n_expert_used,
  3841. LLM_FFN_SILU, false,
  3842. false, 0.0,
  3843. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  3844. il);
  3845. // Shared experts
  3846. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  3847. model.layers[il].ffn_up_shexp, NULL, NULL,
  3848. model.layers[il].ffn_gate_shexp, NULL, NULL,
  3849. model.layers[il].ffn_down_shexp, NULL, NULL,
  3850. NULL,
  3851. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3852. cb(shexp_out, "ffn_moe_shexp", il);
  3853. cur = ggml_add(ctx0, moe_out, shexp_out);
  3854. cb(cur, "ffn_moe_out_merged", il);
  3855. } else {
  3856. // MoE branch
  3857. cur = build_norm(ffn_inp,
  3858. model.layers[il].ffn_norm, NULL,
  3859. LLM_NORM_RMS, il);
  3860. cb(cur, "ffn_norm", il);
  3861. cur = build_moe_ffn(cur,
  3862. model.layers[il].ffn_gate_inp,
  3863. model.layers[il].ffn_up_exps,
  3864. model.layers[il].ffn_gate_exps,
  3865. model.layers[il].ffn_down_exps,
  3866. nullptr,
  3867. n_expert, n_expert_used,
  3868. LLM_FFN_SILU, true,
  3869. false, 0.0,
  3870. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3871. il);
  3872. cb(cur, "ffn_moe_out", il);
  3873. }
  3874. // For Granite architecture
  3875. if (hparams.f_residual_scale) {
  3876. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3877. }
  3878. cur = ggml_add(ctx0, cur, ffn_inp);
  3879. cb(cur, "ffn_out", il);
  3880. cur = build_cvec(cur, il);
  3881. cb(cur, "l_out", il);
  3882. // input for next layer
  3883. inpL = cur;
  3884. }
  3885. cur = inpL;
  3886. cur = build_norm(cur,
  3887. model.output_norm, NULL,
  3888. LLM_NORM_RMS, -1);
  3889. cb(cur, "result_norm", -1);
  3890. res->t_embd = cur;
  3891. // lm_head
  3892. cur = build_lora_mm(model.output, cur);
  3893. // For Granite architecture
  3894. if (hparams.f_logit_scale) {
  3895. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3896. }
  3897. cb(cur, "result_output", -1);
  3898. res->t_logits = cur;
  3899. ggml_build_forward_expand(gf, cur);
  3900. }
  3901. };
  3902. struct llm_build_deci : public llm_graph_context {
  3903. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3904. const int64_t n_embd_head = hparams.n_embd_head_v;
  3905. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3906. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3907. ggml_tensor * cur;
  3908. ggml_tensor * inpL;
  3909. inpL = build_inp_embd(model.tok_embd);
  3910. // inp_pos - contains the positions
  3911. ggml_tensor * inp_pos = build_inp_pos();
  3912. auto * inp_attn = build_attn_inp_kv_unified();
  3913. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3914. for (int il = 0; il < n_layer; ++il) {
  3915. ggml_tensor * inpSA = inpL;
  3916. const int64_t n_head_kv = hparams.n_head_kv(il);
  3917. const int64_t n_head = hparams.n_head(il);
  3918. const int64_t n_ff = hparams.n_ff(il);
  3919. if (n_head == 0) {
  3920. // attention-free layer of Llama-3_1-Nemotron-51B
  3921. cur = inpL;
  3922. } else {
  3923. // norm
  3924. cur = build_norm(inpL,
  3925. model.layers[il].attn_norm, NULL,
  3926. LLM_NORM_RMS, il);
  3927. cb(cur, "attn_norm", il);
  3928. }
  3929. if (n_head > 0 && n_head_kv == 0) {
  3930. // "linear attention" of Llama-3_1-Nemotron-51B
  3931. cur = build_lora_mm(model.layers[il].wo, cur);
  3932. cb(cur, "wo", il);
  3933. } else if (n_head > 0) {
  3934. // self-attention
  3935. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3936. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  3937. // compute Q and K and RoPE them
  3938. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3939. cb(Qcur, "Qcur", il);
  3940. if (model.layers[il].bq) {
  3941. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3942. cb(Qcur, "Qcur", il);
  3943. }
  3944. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3945. cb(Kcur, "Kcur", il);
  3946. if (model.layers[il].bk) {
  3947. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3948. cb(Kcur, "Kcur", il);
  3949. }
  3950. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3951. cb(Vcur, "Vcur", il);
  3952. if (model.layers[il].bv) {
  3953. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3954. cb(Vcur, "Vcur", il);
  3955. }
  3956. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3957. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3958. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3959. Qcur = ggml_rope_ext(
  3960. ctx0, Qcur, inp_pos, rope_factors,
  3961. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3962. ext_factor, attn_factor, beta_fast, beta_slow
  3963. );
  3964. Kcur = ggml_rope_ext(
  3965. ctx0, Kcur, inp_pos, rope_factors,
  3966. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3967. ext_factor, attn_factor, beta_fast, beta_slow
  3968. );
  3969. cb(Qcur, "Qcur", il);
  3970. cb(Kcur, "Kcur", il);
  3971. cb(Vcur, "Vcur", il);
  3972. cur = build_attn(inp_attn, gf,
  3973. model.layers[il].wo, model.layers[il].bo,
  3974. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3975. }
  3976. if (il == n_layer - 1) {
  3977. // skip computing output for unused tokens
  3978. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3979. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3980. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3981. }
  3982. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  3983. if (n_ff == 0) {
  3984. continue;
  3985. }
  3986. // For Granite architecture
  3987. if (hparams.f_residual_scale) {
  3988. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3989. }
  3990. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3991. ggml_tensor * ffn_inp = cur;
  3992. if (n_head > 0) {
  3993. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3994. cb(ffn_inp, "ffn_inp", il);
  3995. }
  3996. // feed-forward network
  3997. if (model.layers[il].ffn_gate_inp == nullptr) {
  3998. cur = build_norm(ffn_inp,
  3999. model.layers[il].ffn_norm, NULL,
  4000. LLM_NORM_RMS, il);
  4001. cb(cur, "ffn_norm", il);
  4002. cur = build_ffn(cur,
  4003. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4004. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  4005. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4006. NULL,
  4007. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4008. cb(cur, "ffn_out", il);
  4009. }
  4010. // For Granite architecture
  4011. if (hparams.f_residual_scale) {
  4012. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  4013. }
  4014. cur = ggml_add(ctx0, cur, ffn_inp);
  4015. cb(cur, "ffn_out", il);
  4016. cur = build_cvec(cur, il);
  4017. cb(cur, "l_out", il);
  4018. // input for next layer
  4019. inpL = cur;
  4020. }
  4021. cur = inpL;
  4022. cur = build_norm(cur,
  4023. model.output_norm, NULL,
  4024. LLM_NORM_RMS, -1);
  4025. cb(cur, "result_norm", -1);
  4026. res->t_embd = cur;
  4027. // lm_head
  4028. cur = build_lora_mm(model.output, cur);
  4029. // For Granite architecture
  4030. if (hparams.f_logit_scale) {
  4031. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  4032. }
  4033. cb(cur, "result_output", -1);
  4034. res->t_logits = cur;
  4035. ggml_build_forward_expand(gf, cur);
  4036. }
  4037. };
  4038. struct llm_build_baichuan : public llm_graph_context {
  4039. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4040. const int64_t n_embd_head = hparams.n_embd_head_v;
  4041. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4042. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4043. ggml_tensor * cur;
  4044. ggml_tensor * inpL;
  4045. inpL = build_inp_embd(model.tok_embd);
  4046. // inp_pos - contains the positions
  4047. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4048. auto * inp_attn = build_attn_inp_kv_unified();
  4049. for (int il = 0; il < n_layer; ++il) {
  4050. ggml_tensor * inpSA = inpL;
  4051. cur = build_norm(inpL,
  4052. model.layers[il].attn_norm, NULL,
  4053. LLM_NORM_RMS, il);
  4054. cb(cur, "attn_norm", il);
  4055. // self-attention
  4056. {
  4057. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4058. cb(Qcur, "Qcur", il);
  4059. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4060. cb(Kcur, "Kcur", il);
  4061. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4062. cb(Vcur, "Vcur", il);
  4063. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4064. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4065. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4066. switch (model.type) {
  4067. case LLM_TYPE_7B:
  4068. Qcur = ggml_rope_ext(
  4069. ctx0, Qcur, inp_pos, nullptr,
  4070. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4071. ext_factor, attn_factor, beta_fast, beta_slow
  4072. );
  4073. Kcur = ggml_rope_ext(
  4074. ctx0, Kcur, inp_pos, nullptr,
  4075. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4076. ext_factor, attn_factor, beta_fast, beta_slow
  4077. );
  4078. break;
  4079. case LLM_TYPE_13B:
  4080. break;
  4081. default:
  4082. GGML_ABORT("fatal error");
  4083. }
  4084. cb(Qcur, "Qcur", il);
  4085. cb(Kcur, "Kcur", il);
  4086. cb(Vcur, "Vcur", il);
  4087. cur = build_attn(inp_attn, gf,
  4088. model.layers[il].wo, NULL,
  4089. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4090. }
  4091. if (il == n_layer - 1) {
  4092. // skip computing output for unused tokens
  4093. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4094. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4095. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4096. }
  4097. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4098. cb(ffn_inp, "ffn_inp", il);
  4099. // feed-forward network
  4100. {
  4101. cur = build_norm(ffn_inp,
  4102. model.layers[il].ffn_norm, NULL,
  4103. LLM_NORM_RMS, il);
  4104. cb(cur, "ffn_norm", il);
  4105. cur = build_ffn(cur,
  4106. model.layers[il].ffn_up, NULL, NULL,
  4107. model.layers[il].ffn_gate, NULL, NULL,
  4108. model.layers[il].ffn_down, NULL, NULL,
  4109. NULL,
  4110. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4111. cb(cur, "ffn_out", il);
  4112. }
  4113. cur = ggml_add(ctx0, cur, ffn_inp);
  4114. cur = build_cvec(cur, il);
  4115. cb(cur, "l_out", il);
  4116. // input for next layer
  4117. inpL = cur;
  4118. }
  4119. cur = inpL;
  4120. cur = build_norm(cur,
  4121. model.output_norm, NULL,
  4122. LLM_NORM_RMS, -1);
  4123. cb(cur, "result_norm", -1);
  4124. res->t_embd = cur;
  4125. // lm_head
  4126. cur = build_lora_mm(model.output, cur);
  4127. cb(cur, "result_output", -1);
  4128. res->t_logits = cur;
  4129. ggml_build_forward_expand(gf, cur);
  4130. }
  4131. };
  4132. struct llm_build_xverse : public llm_graph_context {
  4133. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4134. const int64_t n_embd_head = hparams.n_embd_head_v;
  4135. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4136. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4137. ggml_tensor * cur;
  4138. ggml_tensor * inpL;
  4139. inpL = build_inp_embd(model.tok_embd);
  4140. // inp_pos - contains the positions
  4141. ggml_tensor * inp_pos = build_inp_pos();
  4142. auto * inp_attn = build_attn_inp_kv_unified();
  4143. for (int il = 0; il < n_layer; ++il) {
  4144. ggml_tensor * inpSA = inpL;
  4145. cur = build_norm(inpL,
  4146. model.layers[il].attn_norm, NULL,
  4147. LLM_NORM_RMS, il);
  4148. cb(cur, "attn_norm", il);
  4149. // self-attention
  4150. {
  4151. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4152. cb(Qcur, "Qcur", il);
  4153. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4154. cb(Kcur, "Kcur", il);
  4155. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4156. cb(Vcur, "Vcur", il);
  4157. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4158. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4159. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4160. Qcur = ggml_rope_ext(
  4161. ctx0, Qcur, inp_pos, nullptr,
  4162. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4163. ext_factor, attn_factor, beta_fast, beta_slow
  4164. );
  4165. Kcur = ggml_rope_ext(
  4166. ctx0, Kcur, inp_pos, nullptr,
  4167. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4168. ext_factor, attn_factor, beta_fast, beta_slow
  4169. );
  4170. cb(Qcur, "Qcur", il);
  4171. cb(Kcur, "Kcur", il);
  4172. cb(Vcur, "Vcur", il);
  4173. cur = build_attn(inp_attn, gf,
  4174. model.layers[il].wo, NULL,
  4175. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4176. }
  4177. if (il == n_layer - 1) {
  4178. // skip computing output for unused tokens
  4179. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4180. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4181. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4182. }
  4183. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4184. cb(ffn_inp, "ffn_inp", il);
  4185. // feed-forward network
  4186. {
  4187. cur = build_norm(ffn_inp,
  4188. model.layers[il].ffn_norm, NULL,
  4189. LLM_NORM_RMS, il);
  4190. cb(cur, "ffn_norm", il);
  4191. cur = build_ffn(cur,
  4192. model.layers[il].ffn_up, NULL, NULL,
  4193. model.layers[il].ffn_gate, NULL, NULL,
  4194. model.layers[il].ffn_down, NULL, NULL,
  4195. NULL,
  4196. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4197. cb(cur, "ffn_out", il);
  4198. }
  4199. cur = ggml_add(ctx0, cur, ffn_inp);
  4200. cur = build_cvec(cur, il);
  4201. cb(cur, "l_out", il);
  4202. // input for next layer
  4203. inpL = cur;
  4204. }
  4205. cur = inpL;
  4206. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4207. cb(cur, "result_norm", -1);
  4208. res->t_embd = cur;
  4209. // lm_head
  4210. cur = build_lora_mm(model.output, cur);
  4211. cb(cur, "result_output", -1);
  4212. res->t_logits = cur;
  4213. ggml_build_forward_expand(gf, cur);
  4214. }
  4215. };
  4216. struct llm_build_falcon : public llm_graph_context {
  4217. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4218. const int64_t n_embd_head = hparams.n_embd_head_v;
  4219. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4220. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4221. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4222. ggml_tensor * cur;
  4223. ggml_tensor * inpL;
  4224. inpL = build_inp_embd(model.tok_embd);
  4225. // inp_pos - contains the positions
  4226. ggml_tensor * inp_pos = build_inp_pos();
  4227. auto * inp_attn = build_attn_inp_kv_unified();
  4228. for (int il = 0; il < n_layer; ++il) {
  4229. ggml_tensor * attn_norm;
  4230. attn_norm = build_norm(inpL,
  4231. model.layers[il].attn_norm,
  4232. model.layers[il].attn_norm_b,
  4233. LLM_NORM, il);
  4234. cb(attn_norm, "attn_norm", il);
  4235. // self-attention
  4236. {
  4237. if (model.layers[il].attn_norm_2) {
  4238. // Falcon-40B
  4239. cur = build_norm(inpL,
  4240. model.layers[il].attn_norm_2,
  4241. model.layers[il].attn_norm_2_b,
  4242. LLM_NORM, il);
  4243. cb(cur, "attn_norm_2", il);
  4244. } else {
  4245. cur = attn_norm;
  4246. }
  4247. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4248. cb(cur, "wqkv", il);
  4249. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4250. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4251. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4252. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4253. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4254. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4255. // using mode = 2 for neox mode
  4256. Qcur = ggml_rope_ext(
  4257. ctx0, Qcur, inp_pos, nullptr,
  4258. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4259. ext_factor, attn_factor, beta_fast, beta_slow
  4260. );
  4261. Kcur = ggml_rope_ext(
  4262. ctx0, Kcur, inp_pos, nullptr,
  4263. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4264. ext_factor, attn_factor, beta_fast, beta_slow
  4265. );
  4266. cb(Qcur, "Qcur", il);
  4267. cb(Kcur, "Kcur", il);
  4268. cb(Vcur, "Vcur", il);
  4269. cur = build_attn(inp_attn, gf,
  4270. model.layers[il].wo, NULL,
  4271. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4272. }
  4273. if (il == n_layer - 1) {
  4274. // skip computing output for unused tokens
  4275. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4276. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4277. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4278. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4279. }
  4280. ggml_tensor * ffn_inp = cur;
  4281. // feed forward
  4282. {
  4283. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4284. model.layers[il].ffn_up, NULL, NULL,
  4285. NULL, NULL, NULL,
  4286. model.layers[il].ffn_down, NULL, NULL,
  4287. NULL,
  4288. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4289. cb(cur, "ffn_out", il);
  4290. }
  4291. cur = ggml_add(ctx0, cur, ffn_inp);
  4292. cur = ggml_add(ctx0, cur, inpL);
  4293. cur = build_cvec(cur, il);
  4294. cb(cur, "l_out", il);
  4295. // input for next layer
  4296. inpL = cur;
  4297. }
  4298. cur = inpL;
  4299. // norm
  4300. cur = build_norm(cur,
  4301. model.output_norm,
  4302. model.output_norm_b,
  4303. LLM_NORM, -1);
  4304. cb(cur, "result_norm", -1);
  4305. res->t_embd = cur;
  4306. cur = build_lora_mm(model.output, cur);
  4307. cb(cur, "result_output", -1);
  4308. res->t_logits = cur;
  4309. ggml_build_forward_expand(gf, cur);
  4310. }
  4311. };
  4312. struct llm_build_grok : public llm_graph_context {
  4313. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4314. const int64_t n_embd_head = hparams.n_embd_head_v;
  4315. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4316. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4317. ggml_tensor * cur;
  4318. ggml_tensor * inpL;
  4319. inpL = build_inp_embd(model.tok_embd);
  4320. // multiply by embedding_multiplier_scale of 78.38367176906169
  4321. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4322. // inp_pos - contains the positions
  4323. ggml_tensor * inp_pos = build_inp_pos();
  4324. auto * inp_attn = build_attn_inp_kv_unified();
  4325. for (int il = 0; il < n_layer; ++il) {
  4326. ggml_tensor * inpSA = inpL;
  4327. // norm
  4328. cur = build_norm(inpL,
  4329. model.layers[il].attn_norm, NULL,
  4330. LLM_NORM_RMS, il);
  4331. cb(cur, "attn_norm", il);
  4332. // self-attention
  4333. {
  4334. // compute Q and K and RoPE them
  4335. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4336. cb(Qcur, "Qcur", il);
  4337. if (model.layers[il].bq) {
  4338. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4339. cb(Qcur, "Qcur", il);
  4340. }
  4341. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4342. cb(Kcur, "Kcur", il);
  4343. if (model.layers[il].bk) {
  4344. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4345. cb(Kcur, "Kcur", il);
  4346. }
  4347. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4348. cb(Vcur, "Vcur", il);
  4349. if (model.layers[il].bv) {
  4350. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4351. cb(Vcur, "Vcur", il);
  4352. }
  4353. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4354. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4355. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4356. Qcur = ggml_rope_ext(
  4357. ctx0, Qcur, inp_pos, nullptr,
  4358. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4359. ext_factor, attn_factor, beta_fast, beta_slow
  4360. );
  4361. Kcur = ggml_rope_ext(
  4362. ctx0, Kcur, inp_pos, nullptr,
  4363. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4364. ext_factor, attn_factor, beta_fast, beta_slow
  4365. );
  4366. cb(Qcur, "Qcur", il);
  4367. cb(Kcur, "Kcur", il);
  4368. cb(Vcur, "Vcur", il);
  4369. cur = build_attn(inp_attn, gf,
  4370. model.layers[il].wo, model.layers[il].bo,
  4371. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4372. }
  4373. if (il == n_layer - 1) {
  4374. // skip computing output for unused tokens
  4375. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4376. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4377. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4378. }
  4379. // Grok
  4380. // if attn_out_norm is present then apply it before adding the input
  4381. if (model.layers[il].attn_out_norm) {
  4382. cur = build_norm(cur,
  4383. model.layers[il].attn_out_norm, NULL,
  4384. LLM_NORM_RMS, il);
  4385. cb(cur, "attn_out_norm", il);
  4386. }
  4387. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4388. cb(ffn_inp, "ffn_inp", il);
  4389. // feed-forward network
  4390. // MoE branch
  4391. cur = build_norm(ffn_inp,
  4392. model.layers[il].ffn_norm, NULL,
  4393. LLM_NORM_RMS, il);
  4394. cb(cur, "ffn_norm", il);
  4395. cur = build_moe_ffn(cur,
  4396. model.layers[il].ffn_gate_inp,
  4397. model.layers[il].ffn_up_exps,
  4398. model.layers[il].ffn_gate_exps,
  4399. model.layers[il].ffn_down_exps,
  4400. nullptr,
  4401. n_expert, n_expert_used,
  4402. LLM_FFN_GELU, true,
  4403. false, 0.0,
  4404. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4405. il);
  4406. cb(cur, "ffn_moe_out", il);
  4407. // Grok
  4408. // if layer_out_norm is present then apply it before adding the input
  4409. // Idea: maybe ffn_out_norm is a better name
  4410. if (model.layers[il].layer_out_norm) {
  4411. cur = build_norm(cur,
  4412. model.layers[il].layer_out_norm, NULL,
  4413. LLM_NORM_RMS, il);
  4414. cb(cur, "layer_out_norm", il);
  4415. }
  4416. cur = ggml_add(ctx0, cur, ffn_inp);
  4417. cb(cur, "ffn_out", il);
  4418. cur = build_cvec(cur, il);
  4419. cb(cur, "l_out", il);
  4420. // input for next layer
  4421. inpL = cur;
  4422. }
  4423. cur = inpL;
  4424. cur = build_norm(cur,
  4425. model.output_norm, NULL,
  4426. LLM_NORM_RMS, -1);
  4427. cb(cur, "result_norm", -1);
  4428. res->t_embd = cur;
  4429. // lm_head
  4430. cur = build_lora_mm(model.output, cur);
  4431. // Grok
  4432. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4433. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4434. cb(cur, "result_output", -1);
  4435. res->t_logits = cur;
  4436. ggml_build_forward_expand(gf, cur);
  4437. }
  4438. };
  4439. struct llm_build_dbrx : public llm_graph_context {
  4440. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4441. const int64_t n_embd_head = hparams.n_embd_head_v;
  4442. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4443. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4444. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4445. ggml_tensor * cur;
  4446. ggml_tensor * inpL;
  4447. inpL = build_inp_embd(model.tok_embd);
  4448. // inp_pos - contains the positions
  4449. ggml_tensor * inp_pos = build_inp_pos();
  4450. auto * inp_attn = build_attn_inp_kv_unified();
  4451. for (int il = 0; il < n_layer; ++il) {
  4452. ggml_tensor * inpSA = inpL;
  4453. // norm
  4454. cur = build_norm(inpL,
  4455. model.layers[il].attn_norm, NULL,
  4456. LLM_NORM, il);
  4457. cb(cur, "attn_norm", il);
  4458. // self-attention
  4459. {
  4460. ggml_tensor * Qcur = nullptr;
  4461. ggml_tensor * Kcur = nullptr;
  4462. ggml_tensor * Vcur = nullptr;
  4463. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4464. cb(cur, "wqkv", il);
  4465. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4466. cb(cur, "wqkv_clamped", il);
  4467. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4468. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4469. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4470. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4471. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4472. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4473. Qcur = ggml_rope_ext(
  4474. ctx0, Qcur, inp_pos, nullptr,
  4475. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4476. ext_factor, attn_factor, beta_fast, beta_slow
  4477. );
  4478. Kcur = ggml_rope_ext(
  4479. ctx0, Kcur, inp_pos, nullptr,
  4480. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4481. ext_factor, attn_factor, beta_fast, beta_slow
  4482. );
  4483. cb(Qcur, "Qcur", il);
  4484. cb(Kcur, "Kcur", il);
  4485. cb(Vcur, "Vcur", il);
  4486. cur = build_attn(inp_attn, gf,
  4487. model.layers[il].wo, NULL,
  4488. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4489. }
  4490. if (il == n_layer - 1) {
  4491. // skip computing output for unused tokens
  4492. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4493. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4494. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4495. }
  4496. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4497. cb(ffn_inp, "ffn_inp", il);
  4498. // feed-forward network
  4499. // MoE branch
  4500. cur = build_norm(ffn_inp,
  4501. model.layers[il].attn_out_norm, NULL,
  4502. LLM_NORM, il);
  4503. cb(cur, "attn_out_norm", il);
  4504. cur = build_moe_ffn(cur,
  4505. model.layers[il].ffn_gate_inp,
  4506. model.layers[il].ffn_up_exps,
  4507. model.layers[il].ffn_gate_exps,
  4508. model.layers[il].ffn_down_exps,
  4509. nullptr,
  4510. n_expert, n_expert_used,
  4511. LLM_FFN_SILU, true,
  4512. false, 0.0,
  4513. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4514. il);
  4515. cb(cur, "ffn_moe_out", il);
  4516. cur = ggml_add(ctx0, cur, ffn_inp);
  4517. cb(cur, "ffn_out", il);
  4518. cur = build_cvec(cur, il);
  4519. cb(cur, "l_out", il);
  4520. // input for next layer
  4521. inpL = cur;
  4522. }
  4523. cur = inpL;
  4524. cur = build_norm(cur,
  4525. model.output_norm, NULL,
  4526. LLM_NORM, -1);
  4527. cb(cur, "result_norm", -1);
  4528. res->t_embd = cur;
  4529. // lm_head
  4530. cur = build_lora_mm(model.output, cur);
  4531. cb(cur, "result_output", -1);
  4532. res->t_logits = cur;
  4533. ggml_build_forward_expand(gf, cur);
  4534. }
  4535. };
  4536. struct llm_build_starcoder : public llm_graph_context {
  4537. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4538. const int64_t n_embd_head = hparams.n_embd_head_v;
  4539. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4540. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4541. ggml_tensor * cur;
  4542. ggml_tensor * inpL;
  4543. inpL = build_inp_embd(model.tok_embd);
  4544. // inp_pos - contains the positions
  4545. ggml_tensor * inp_pos = build_inp_pos();
  4546. auto * inp_attn = build_attn_inp_kv_unified();
  4547. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4548. cb(pos, "pos_embd", -1);
  4549. inpL = ggml_add(ctx0, inpL, pos);
  4550. cb(inpL, "inpL", -1);
  4551. for (int il = 0; il < n_layer; ++il) {
  4552. cur = build_norm(inpL,
  4553. model.layers[il].attn_norm,
  4554. model.layers[il].attn_norm_b,
  4555. LLM_NORM, il);
  4556. cb(cur, "attn_norm", il);
  4557. // self-attention
  4558. {
  4559. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4560. cb(cur, "wqkv", il);
  4561. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4562. cb(cur, "bqkv", il);
  4563. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4564. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4565. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4566. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4567. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4568. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4569. cb(Qcur, "Qcur", il);
  4570. cb(Kcur, "Kcur", il);
  4571. cb(Vcur, "Vcur", il);
  4572. cur = build_attn(inp_attn, gf,
  4573. model.layers[il].wo, model.layers[il].bo,
  4574. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4575. }
  4576. if (il == n_layer - 1) {
  4577. // skip computing output for unused tokens
  4578. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4579. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4580. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4581. }
  4582. // add the input
  4583. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4584. cb(ffn_inp, "ffn_inp", il);
  4585. // FF
  4586. {
  4587. cur = build_norm(ffn_inp,
  4588. model.layers[il].ffn_norm,
  4589. model.layers[il].ffn_norm_b,
  4590. LLM_NORM, il);
  4591. cb(cur, "ffn_norm", il);
  4592. cur = build_ffn(cur,
  4593. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4594. NULL, NULL, NULL,
  4595. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4596. NULL,
  4597. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4598. cb(cur, "ffn_out", il);
  4599. }
  4600. cur = ggml_add(ctx0, cur, ffn_inp);
  4601. cur = build_cvec(cur, il);
  4602. cb(cur, "l_out", il);
  4603. // input for next layer
  4604. inpL = cur;
  4605. }
  4606. cur = build_norm(inpL,
  4607. model.output_norm,
  4608. model.output_norm_b,
  4609. LLM_NORM, -1);
  4610. cb(cur, "result_norm", -1);
  4611. res->t_embd = cur;
  4612. cur = build_lora_mm(model.output, cur);
  4613. cb(cur, "result_output", -1);
  4614. res->t_logits = cur;
  4615. ggml_build_forward_expand(gf, cur);
  4616. }
  4617. };
  4618. struct llm_build_refact : public llm_graph_context {
  4619. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4620. const int64_t n_embd_head = hparams.n_embd_head_v;
  4621. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4622. ggml_tensor * cur;
  4623. ggml_tensor * inpL;
  4624. inpL = build_inp_embd(model.tok_embd);
  4625. auto * inp_attn = build_attn_inp_kv_unified();
  4626. for (int il = 0; il < n_layer; ++il) {
  4627. ggml_tensor * inpSA = inpL;
  4628. cur = build_norm(inpL,
  4629. model.layers[il].attn_norm, NULL,
  4630. LLM_NORM_RMS, il);
  4631. cb(cur, "attn_norm", il);
  4632. // self-attention
  4633. {
  4634. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4635. cb(Qcur, "Qcur", il);
  4636. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4637. cb(Kcur, "Kcur", il);
  4638. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4639. cb(Vcur, "Vcur", il);
  4640. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4641. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4642. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4643. cb(Qcur, "Qcur", il);
  4644. cb(Kcur, "Kcur", il);
  4645. cb(Vcur, "Vcur", il);
  4646. cur = build_attn(inp_attn, gf,
  4647. model.layers[il].wo, NULL,
  4648. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4649. }
  4650. if (il == n_layer - 1) {
  4651. // skip computing output for unused tokens
  4652. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4653. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4654. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4655. }
  4656. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4657. cb(ffn_inp, "ffn_inp", il);
  4658. // feed-forward network
  4659. {
  4660. cur = build_norm(ffn_inp,
  4661. model.layers[il].ffn_norm, NULL,
  4662. LLM_NORM_RMS, il);
  4663. cb(cur, "ffn_norm", il);
  4664. cur = build_ffn(cur,
  4665. model.layers[il].ffn_up, NULL, NULL,
  4666. model.layers[il].ffn_gate, NULL, NULL,
  4667. model.layers[il].ffn_down, NULL, NULL,
  4668. NULL,
  4669. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4670. cb(cur, "ffn_out", il);
  4671. }
  4672. cur = ggml_add(ctx0, cur, ffn_inp);
  4673. cur = build_cvec(cur, il);
  4674. cb(cur, "l_out", il);
  4675. // input for next layer
  4676. inpL = cur;
  4677. }
  4678. cur = inpL;
  4679. cur = build_norm(cur,
  4680. model.output_norm, NULL,
  4681. LLM_NORM_RMS, -1);
  4682. cb(cur, "result_norm", -1);
  4683. res->t_embd = cur;
  4684. // lm_head
  4685. cur = build_lora_mm(model.output, cur);
  4686. cb(cur, "result_output", -1);
  4687. res->t_logits = cur;
  4688. ggml_build_forward_expand(gf, cur);
  4689. }
  4690. };
  4691. struct llm_build_bert : public llm_graph_context {
  4692. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4693. const int64_t n_embd_head = hparams.n_embd_head_v;
  4694. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4695. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4696. ggml_tensor * cur;
  4697. ggml_tensor * inpL;
  4698. ggml_tensor * inp_pos = nullptr;
  4699. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4700. inp_pos = build_inp_pos();
  4701. }
  4702. // construct input embeddings (token, type, position)
  4703. inpL = build_inp_embd(model.tok_embd);
  4704. // token types are hardcoded to zero ("Sentence A")
  4705. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4706. inpL = ggml_add(ctx0, inpL, type_row0);
  4707. if (model.arch == LLM_ARCH_BERT) {
  4708. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4709. }
  4710. cb(inpL, "inp_embd", -1);
  4711. // embed layer norm
  4712. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4713. cb(inpL, "inp_norm", -1);
  4714. auto * inp_attn = build_attn_inp_no_cache();
  4715. // iterate layers
  4716. for (int il = 0; il < n_layer; ++il) {
  4717. ggml_tensor * cur = inpL;
  4718. ggml_tensor * Qcur;
  4719. ggml_tensor * Kcur;
  4720. ggml_tensor * Vcur;
  4721. // self-attention
  4722. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4723. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4724. if (model.layers[il].attn_q_norm) {
  4725. Qcur = build_norm(Qcur,
  4726. model.layers[il].attn_q_norm,
  4727. model.layers[il].attn_q_norm_b,
  4728. LLM_NORM, il);
  4729. }
  4730. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4731. if (model.layers[il].attn_k_norm) {
  4732. Kcur = build_norm(Kcur,
  4733. model.layers[il].attn_k_norm,
  4734. model.layers[il].attn_k_norm_b,
  4735. LLM_NORM, il);
  4736. }
  4737. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4738. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4739. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4740. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4741. } else {
  4742. // compute Q and K and RoPE them
  4743. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4744. cb(cur, "wqkv", il);
  4745. if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4746. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4747. cb(cur, "bqkv", il);
  4748. }
  4749. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4750. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4751. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4752. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4753. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4754. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4755. Qcur = ggml_rope_ext(
  4756. ctx0, Qcur, inp_pos, nullptr,
  4757. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4758. ext_factor, attn_factor, beta_fast, beta_slow
  4759. );
  4760. Kcur = ggml_rope_ext(
  4761. ctx0, Kcur, inp_pos, nullptr,
  4762. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4763. ext_factor, attn_factor, beta_fast, beta_slow
  4764. );
  4765. }
  4766. cb(Qcur, "Qcur", il);
  4767. cb(Kcur, "Kcur", il);
  4768. cb(Vcur, "Vcur", il);
  4769. cur = build_attn(inp_attn, gf,
  4770. model.layers[il].wo, model.layers[il].bo,
  4771. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4772. cb(cur, "kqv_out", il);
  4773. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4774. // skip computing output for unused tokens
  4775. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4776. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4777. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4778. }
  4779. // re-add the layer input
  4780. cur = ggml_add(ctx0, cur, inpL);
  4781. // attention layer norm
  4782. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4783. if (model.layers[il].attn_norm_2 != nullptr) {
  4784. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4785. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4786. }
  4787. ggml_tensor * ffn_inp = cur;
  4788. cb(ffn_inp, "ffn_inp", il);
  4789. // feed-forward network
  4790. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4791. // MoE branch
  4792. cur = build_moe_ffn(cur,
  4793. model.layers[il].ffn_gate_inp,
  4794. model.layers[il].ffn_up_exps,
  4795. nullptr,
  4796. model.layers[il].ffn_down_exps,
  4797. nullptr,
  4798. hparams.n_expert,
  4799. hparams.n_expert_used,
  4800. LLM_FFN_GELU,
  4801. false, false,
  4802. 0.0f,
  4803. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4804. cb(cur, "ffn_moe_out", il);
  4805. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4806. cur = build_ffn(cur,
  4807. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4808. NULL, NULL, NULL,
  4809. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4810. NULL,
  4811. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4812. cb(cur, "ffn_out", il);
  4813. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4814. cur = build_ffn(cur,
  4815. model.layers[il].ffn_up, NULL, NULL,
  4816. model.layers[il].ffn_gate, NULL, NULL,
  4817. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4818. NULL,
  4819. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4820. cb(cur, "ffn_out", il);
  4821. } else {
  4822. cur = build_ffn(cur,
  4823. model.layers[il].ffn_up, NULL, NULL,
  4824. model.layers[il].ffn_gate, NULL, NULL,
  4825. model.layers[il].ffn_down, NULL, NULL,
  4826. NULL,
  4827. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4828. cb(cur, "ffn_out", il);
  4829. }
  4830. // attentions bypass the intermediate layer
  4831. cur = ggml_add(ctx0, cur, ffn_inp);
  4832. // output layer norm
  4833. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4834. // input for next layer
  4835. inpL = cur;
  4836. }
  4837. cur = inpL;
  4838. cb(cur, "result_embd", -1);
  4839. res->t_embd = cur;
  4840. ggml_build_forward_expand(gf, cur);
  4841. }
  4842. };
  4843. struct llm_build_bloom : public llm_graph_context {
  4844. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4845. const int64_t n_embd_head = hparams.n_embd_head_v;
  4846. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4847. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4848. ggml_tensor * cur;
  4849. ggml_tensor * inpL;
  4850. inpL = build_inp_embd(model.tok_embd);
  4851. auto * inp_attn = build_attn_inp_kv_unified();
  4852. inpL = build_norm(inpL,
  4853. model.tok_norm,
  4854. model.tok_norm_b,
  4855. LLM_NORM, -1);
  4856. cb(inpL, "inp_norm", -1);
  4857. for (int il = 0; il < n_layer; ++il) {
  4858. cur = build_norm(inpL,
  4859. model.layers[il].attn_norm,
  4860. model.layers[il].attn_norm_b,
  4861. LLM_NORM, il);
  4862. cb(cur, "attn_norm", il);
  4863. // self-attention
  4864. {
  4865. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4866. cb(cur, "wqkv", il);
  4867. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4868. cb(cur, "bqkv", il);
  4869. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4870. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4871. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4872. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4873. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4874. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4875. cb(Qcur, "Qcur", il);
  4876. cb(Kcur, "Kcur", il);
  4877. cb(Vcur, "Vcur", il);
  4878. cur = build_attn(inp_attn, gf,
  4879. model.layers[il].wo, model.layers[il].bo,
  4880. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4881. }
  4882. if (il == n_layer - 1) {
  4883. // skip computing output for unused tokens
  4884. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4885. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4886. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4887. }
  4888. // Add the input
  4889. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4890. cb(ffn_inp, "ffn_inp", il);
  4891. // FF
  4892. {
  4893. cur = build_norm(ffn_inp,
  4894. model.layers[il].ffn_norm,
  4895. model.layers[il].ffn_norm_b,
  4896. LLM_NORM, il);
  4897. cb(cur, "ffn_norm", il);
  4898. cur = build_ffn(cur,
  4899. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4900. NULL, NULL, NULL,
  4901. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4902. NULL,
  4903. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4904. cb(cur, "ffn_out", il);
  4905. }
  4906. cur = ggml_add(ctx0, cur, ffn_inp);
  4907. cur = build_cvec(cur, il);
  4908. cb(cur, "l_out", il);
  4909. // input for next layer
  4910. inpL = cur;
  4911. }
  4912. cur = build_norm(inpL,
  4913. model.output_norm,
  4914. model.output_norm_b,
  4915. LLM_NORM, -1);
  4916. cb(cur, "result_norm", -1);
  4917. res->t_embd = cur;
  4918. cur = build_lora_mm(model.output, cur);
  4919. cb(cur, "result_output", -1);
  4920. res->t_logits = cur;
  4921. ggml_build_forward_expand(gf, cur);
  4922. }
  4923. };
  4924. struct llm_build_mpt : public llm_graph_context {
  4925. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4926. const int64_t n_embd_head = hparams.n_embd_head_v;
  4927. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4928. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4929. ggml_tensor * cur;
  4930. ggml_tensor * pos;
  4931. ggml_tensor * inpL;
  4932. inpL = build_inp_embd(model.tok_embd);
  4933. auto * inp_attn = build_attn_inp_kv_unified();
  4934. if (model.pos_embd) {
  4935. // inp_pos - contains the positions
  4936. ggml_tensor * inp_pos = build_inp_pos();
  4937. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4938. cb(pos, "pos_embd", -1);
  4939. inpL = ggml_add(ctx0, inpL, pos);
  4940. cb(inpL, "inpL", -1);
  4941. }
  4942. for (int il = 0; il < n_layer; ++il) {
  4943. ggml_tensor * attn_norm;
  4944. attn_norm = build_norm(inpL,
  4945. model.layers[il].attn_norm,
  4946. model.layers[il].attn_norm_b,
  4947. LLM_NORM, il);
  4948. cb(attn_norm, "attn_norm", il);
  4949. // self-attention
  4950. {
  4951. cur = attn_norm;
  4952. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4953. cb(cur, "wqkv", il);
  4954. if (model.layers[il].bqkv){
  4955. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4956. cb(cur, "bqkv", il);
  4957. }
  4958. if (hparams.f_clamp_kqv > 0.0f) {
  4959. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4960. cb(cur, "wqkv_clamped", il);
  4961. }
  4962. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4963. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4964. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4965. cb(Qcur, "Qcur", il);
  4966. cb(Kcur, "Kcur", il);
  4967. cb(Vcur, "Vcur", il);
  4968. // Q/K Layernorm
  4969. if (model.layers[il].attn_q_norm) {
  4970. Qcur = build_norm(Qcur,
  4971. model.layers[il].attn_q_norm,
  4972. model.layers[il].attn_q_norm_b,
  4973. LLM_NORM, il);
  4974. cb(Qcur, "Qcur", il);
  4975. Kcur = build_norm(Kcur,
  4976. model.layers[il].attn_k_norm,
  4977. model.layers[il].attn_k_norm_b,
  4978. LLM_NORM, il);
  4979. cb(Kcur, "Kcur", il);
  4980. }
  4981. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4982. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4983. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4984. cb(Qcur, "Qcur", il);
  4985. cb(Kcur, "Kcur", il);
  4986. cb(Vcur, "Vcur", il);
  4987. cur = build_attn(inp_attn, gf,
  4988. model.layers[il].wo, model.layers[il].bo,
  4989. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4990. }
  4991. if (il == n_layer - 1) {
  4992. // skip computing output for unused tokens
  4993. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4994. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4995. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4996. }
  4997. // Add the input
  4998. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4999. cb(ffn_inp, "ffn_inp", il);
  5000. // feed forward
  5001. {
  5002. cur = build_norm(ffn_inp,
  5003. model.layers[il].ffn_norm,
  5004. model.layers[il].ffn_norm_b,
  5005. LLM_NORM, il);
  5006. cb(cur, "ffn_norm", il);
  5007. cur = build_ffn(cur,
  5008. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5009. NULL, NULL, NULL,
  5010. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5011. model.layers[il].ffn_act,
  5012. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5013. cb(cur, "ffn_out", il);
  5014. }
  5015. cur = ggml_add(ctx0, cur, ffn_inp);
  5016. cur = build_cvec(cur, il);
  5017. cb(cur, "l_out", il);
  5018. // input for next layer
  5019. inpL = cur;
  5020. }
  5021. cur = inpL;
  5022. cur = build_norm(cur,
  5023. model.output_norm,
  5024. model.output_norm_b,
  5025. LLM_NORM, -1);
  5026. cb(cur, "result_norm", -1);
  5027. res->t_embd = cur;
  5028. cur = build_lora_mm(model.output, cur);
  5029. cb(cur, "result_output", -1);
  5030. res->t_logits = cur;
  5031. ggml_build_forward_expand(gf, cur);
  5032. }
  5033. };
  5034. struct llm_build_stablelm : public llm_graph_context {
  5035. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5036. const int64_t n_embd_head = hparams.n_embd_head_v;
  5037. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5038. ggml_tensor * cur;
  5039. ggml_tensor * inpL;
  5040. inpL = build_inp_embd(model.tok_embd);
  5041. // inp_pos - contains the positions
  5042. ggml_tensor * inp_pos = build_inp_pos();
  5043. auto * inp_attn = build_attn_inp_kv_unified();
  5044. for (int il = 0; il < n_layer; ++il) {
  5045. // norm
  5046. cur = build_norm(inpL,
  5047. model.layers[il].attn_norm,
  5048. model.layers[il].attn_norm_b,
  5049. LLM_NORM, il);
  5050. cb(cur, "attn_norm", il);
  5051. ggml_tensor * inpSA = cur;
  5052. // self-attention
  5053. {
  5054. // compute Q and K and RoPE them
  5055. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5056. cb(Qcur, "Qcur", il);
  5057. if (model.layers[il].bq) {
  5058. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5059. cb(Qcur, "Qcur", il);
  5060. }
  5061. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5062. cb(Kcur, "Kcur", il);
  5063. if (model.layers[il].bk) {
  5064. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5065. cb(Kcur, "Kcur", il);
  5066. }
  5067. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5068. cb(Vcur, "Vcur", il);
  5069. if (model.layers[il].bv) {
  5070. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5071. cb(Vcur, "Vcur", il);
  5072. }
  5073. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5074. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5075. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5076. if (model.layers[il].attn_q_norm) {
  5077. Qcur = build_norm(Qcur,
  5078. model.layers[il].attn_q_norm,
  5079. NULL,
  5080. LLM_NORM, il);
  5081. cb(Qcur, "Qcur", il);
  5082. }
  5083. if (model.layers[il].attn_k_norm) {
  5084. Kcur = build_norm(Kcur,
  5085. model.layers[il].attn_k_norm,
  5086. NULL,
  5087. LLM_NORM, il);
  5088. cb(Kcur, "Kcur", il);
  5089. }
  5090. Qcur = ggml_rope_ext(
  5091. ctx0, Qcur, inp_pos, nullptr,
  5092. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5093. ext_factor, attn_factor, beta_fast, beta_slow
  5094. );
  5095. Kcur = ggml_rope_ext(
  5096. ctx0, Kcur, inp_pos, nullptr,
  5097. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5098. ext_factor, attn_factor, beta_fast, beta_slow
  5099. );
  5100. cb(Qcur, "Qcur", il);
  5101. cb(Kcur, "Kcur", il);
  5102. cb(Vcur, "Vcur", il);
  5103. cur = build_attn(inp_attn, gf,
  5104. model.layers[il].wo, NULL,
  5105. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5106. }
  5107. if (il == n_layer - 1) {
  5108. // skip computing output for unused tokens
  5109. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5110. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5111. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5112. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5113. }
  5114. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5115. cb(ffn_inp, "ffn_inp", il);
  5116. // feed-forward network
  5117. {
  5118. if (model.layers[il].ffn_norm) {
  5119. cur = build_norm(ffn_inp,
  5120. model.layers[il].ffn_norm,
  5121. model.layers[il].ffn_norm_b,
  5122. LLM_NORM, il);
  5123. cb(cur, "ffn_norm", il);
  5124. } else {
  5125. // parallel residual
  5126. cur = inpSA;
  5127. }
  5128. cur = build_ffn(cur,
  5129. model.layers[il].ffn_up, NULL, NULL,
  5130. model.layers[il].ffn_gate, NULL, NULL,
  5131. model.layers[il].ffn_down, NULL, NULL,
  5132. NULL,
  5133. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5134. cb(cur, "ffn_out", il);
  5135. }
  5136. cur = ggml_add(ctx0, cur, ffn_inp);
  5137. cur = build_cvec(cur, il);
  5138. cb(cur, "l_out", il);
  5139. // input for next layer
  5140. inpL = cur;
  5141. }
  5142. cur = inpL;
  5143. cur = build_norm(cur,
  5144. model.output_norm,
  5145. model.output_norm_b,
  5146. LLM_NORM, -1);
  5147. cb(cur, "result_norm", -1);
  5148. res->t_embd = cur;
  5149. // lm_head
  5150. cur = build_lora_mm(model.output, cur);
  5151. cb(cur, "result_output", -1);
  5152. res->t_logits = cur;
  5153. ggml_build_forward_expand(gf, cur);
  5154. }
  5155. };
  5156. struct llm_build_qwen : public llm_graph_context {
  5157. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5158. const int64_t n_embd_head = hparams.n_embd_head_v;
  5159. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5160. ggml_tensor * cur;
  5161. ggml_tensor * inpL;
  5162. inpL = build_inp_embd(model.tok_embd);
  5163. // inp_pos - contains the positions
  5164. ggml_tensor * inp_pos = build_inp_pos();
  5165. auto * inp_attn = build_attn_inp_kv_unified();
  5166. for (int il = 0; il < n_layer; ++il) {
  5167. ggml_tensor * inpSA = inpL;
  5168. cur = build_norm(inpL,
  5169. model.layers[il].attn_norm, NULL,
  5170. LLM_NORM_RMS, il);
  5171. cb(cur, "attn_norm", il);
  5172. // self-attention
  5173. {
  5174. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5175. cb(cur, "wqkv", il);
  5176. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5177. cb(cur, "bqkv", il);
  5178. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5179. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5180. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5181. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5182. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5183. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5184. // using mode = 2 for neox mode
  5185. Qcur = ggml_rope_ext(
  5186. ctx0, Qcur, inp_pos, nullptr,
  5187. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5188. ext_factor, attn_factor, beta_fast, beta_slow
  5189. );
  5190. Kcur = ggml_rope_ext(
  5191. ctx0, Kcur, inp_pos, nullptr,
  5192. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5193. ext_factor, attn_factor, beta_fast, beta_slow
  5194. );
  5195. cb(Qcur, "Qcur", il);
  5196. cb(Kcur, "Kcur", il);
  5197. cb(Vcur, "Vcur", il);
  5198. cur = build_attn(inp_attn, gf,
  5199. model.layers[il].wo, NULL,
  5200. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5201. }
  5202. if (il == n_layer - 1) {
  5203. // skip computing output for unused tokens
  5204. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5205. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5206. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5207. }
  5208. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5209. cb(ffn_inp, "ffn_inp", il);
  5210. // feed-forward forward
  5211. {
  5212. cur = build_norm(ffn_inp,
  5213. model.layers[il].ffn_norm, NULL,
  5214. LLM_NORM_RMS, il);
  5215. cb(cur, "ffn_norm", il);
  5216. cur = build_ffn(cur,
  5217. model.layers[il].ffn_up, NULL, NULL,
  5218. model.layers[il].ffn_gate, NULL, NULL,
  5219. model.layers[il].ffn_down, NULL, NULL,
  5220. NULL,
  5221. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5222. cb(cur, "ffn_out", il);
  5223. }
  5224. cur = ggml_add(ctx0, cur, ffn_inp);
  5225. cur = build_cvec(cur, il);
  5226. cb(cur, "l_out", il);
  5227. // input for next layer
  5228. inpL = cur;
  5229. }
  5230. cur = inpL;
  5231. cur = build_norm(cur,
  5232. model.output_norm, NULL,
  5233. LLM_NORM_RMS, -1);
  5234. cb(cur, "result_norm", -1);
  5235. res->t_embd = cur;
  5236. // lm_head
  5237. cur = build_lora_mm(model.output, cur);
  5238. cb(cur, "result_output", -1);
  5239. res->t_logits = cur;
  5240. ggml_build_forward_expand(gf, cur);
  5241. }
  5242. };
  5243. struct llm_build_qwen2 : public llm_graph_context {
  5244. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5245. const int64_t n_embd_head = hparams.n_embd_head_v;
  5246. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5247. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5248. ggml_tensor * cur;
  5249. ggml_tensor * inpL;
  5250. inpL = build_inp_embd(model.tok_embd);
  5251. // inp_pos - contains the positions
  5252. ggml_tensor * inp_pos = build_inp_pos();
  5253. auto * inp_attn = build_attn_inp_kv_unified();
  5254. for (int il = 0; il < n_layer; ++il) {
  5255. ggml_tensor * inpSA = inpL;
  5256. // norm
  5257. cur = build_norm(inpL,
  5258. model.layers[il].attn_norm, NULL,
  5259. LLM_NORM_RMS, il);
  5260. cb(cur, "attn_norm", il);
  5261. // self-attention
  5262. {
  5263. // compute Q and K and RoPE them
  5264. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5265. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5266. cb(Qcur, "Qcur", il);
  5267. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5268. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5269. cb(Kcur, "Kcur", il);
  5270. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5271. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5272. cb(Vcur, "Vcur", il);
  5273. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5274. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5275. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5276. Qcur = ggml_rope_ext(
  5277. ctx0, Qcur, inp_pos, nullptr,
  5278. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5279. ext_factor, attn_factor, beta_fast, beta_slow
  5280. );
  5281. Kcur = ggml_rope_ext(
  5282. ctx0, Kcur, inp_pos, nullptr,
  5283. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5284. ext_factor, attn_factor, beta_fast, beta_slow
  5285. );
  5286. cb(Qcur, "Qcur", il);
  5287. cb(Kcur, "Kcur", il);
  5288. cb(Vcur, "Vcur", il);
  5289. cur = build_attn(inp_attn, gf,
  5290. model.layers[il].wo, model.layers[il].bo,
  5291. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5292. }
  5293. if (il == n_layer - 1) {
  5294. // skip computing output for unused tokens
  5295. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5296. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5297. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5298. }
  5299. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5300. cb(ffn_inp, "ffn_inp", il);
  5301. // feed-forward network
  5302. cur = build_norm(ffn_inp,
  5303. model.layers[il].ffn_norm, NULL,
  5304. LLM_NORM_RMS, il);
  5305. cb(cur, "ffn_norm", il);
  5306. cur = build_ffn(cur,
  5307. model.layers[il].ffn_up, NULL, NULL,
  5308. model.layers[il].ffn_gate, NULL, NULL,
  5309. model.layers[il].ffn_down, NULL, NULL,
  5310. NULL,
  5311. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5312. cb(cur, "ffn_out", il);
  5313. cur = ggml_add(ctx0, cur, ffn_inp);
  5314. cur = build_cvec(cur, il);
  5315. cb(cur, "l_out", il);
  5316. // input for next layer
  5317. inpL = cur;
  5318. }
  5319. cur = inpL;
  5320. cur = build_norm(cur,
  5321. model.output_norm, NULL,
  5322. LLM_NORM_RMS, -1);
  5323. cb(cur, "result_norm", -1);
  5324. res->t_embd = cur;
  5325. // lm_head
  5326. cur = build_lora_mm(model.output, cur);
  5327. cb(cur, "result_output", -1);
  5328. res->t_logits = cur;
  5329. ggml_build_forward_expand(gf, cur);
  5330. }
  5331. };
  5332. struct llm_build_qwen2vl : public llm_graph_context {
  5333. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5334. const int64_t n_embd_head = hparams.n_embd_head_v;
  5335. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5336. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5337. ggml_tensor * cur;
  5338. ggml_tensor * inpL;
  5339. inpL = build_inp_embd(model.tok_embd);
  5340. // inp_pos - contains the positions
  5341. ggml_tensor * inp_pos = build_inp_pos();
  5342. auto * inp_attn = build_attn_inp_kv_unified();
  5343. int sections[4];
  5344. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5345. for (int il = 0; il < n_layer; ++il) {
  5346. ggml_tensor * inpSA = inpL;
  5347. // norm
  5348. cur = build_norm(inpL,
  5349. model.layers[il].attn_norm, NULL,
  5350. LLM_NORM_RMS, il);
  5351. cb(cur, "attn_norm", il);
  5352. // self-attention
  5353. {
  5354. // compute Q and K and RoPE them
  5355. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5356. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5357. cb(Qcur, "Qcur", il);
  5358. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5359. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5360. cb(Kcur, "Kcur", il);
  5361. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5362. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5363. cb(Vcur, "Vcur", il);
  5364. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5365. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5366. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5367. Qcur = ggml_rope_multi(
  5368. ctx0, Qcur, inp_pos, nullptr,
  5369. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5370. ext_factor, attn_factor, beta_fast, beta_slow
  5371. );
  5372. Kcur = ggml_rope_multi(
  5373. ctx0, Kcur, inp_pos, nullptr,
  5374. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5375. ext_factor, attn_factor, beta_fast, beta_slow
  5376. );
  5377. cb(Qcur, "Qcur", il);
  5378. cb(Kcur, "Kcur", il);
  5379. cb(Vcur, "Vcur", il);
  5380. cur = build_attn(inp_attn, gf,
  5381. model.layers[il].wo, model.layers[il].bo,
  5382. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5383. }
  5384. if (il == n_layer - 1) {
  5385. // skip computing output for unused tokens
  5386. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5387. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5388. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5389. }
  5390. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5391. cb(ffn_inp, "ffn_inp", il);
  5392. // feed-forward network
  5393. cur = build_norm(ffn_inp,
  5394. model.layers[il].ffn_norm, NULL,
  5395. LLM_NORM_RMS, il);
  5396. cb(cur, "ffn_norm", il);
  5397. cur = build_ffn(cur,
  5398. model.layers[il].ffn_up, NULL, NULL,
  5399. model.layers[il].ffn_gate, NULL, NULL,
  5400. model.layers[il].ffn_down, NULL, NULL,
  5401. NULL,
  5402. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5403. cb(cur, "ffn_out", il);
  5404. cur = ggml_add(ctx0, cur, ffn_inp);
  5405. cur = build_cvec(cur, il);
  5406. cb(cur, "l_out", il);
  5407. // input for next layer
  5408. inpL = cur;
  5409. }
  5410. cur = inpL;
  5411. cur = build_norm(cur,
  5412. model.output_norm, NULL,
  5413. LLM_NORM_RMS, -1);
  5414. cb(cur, "result_norm", -1);
  5415. res->t_embd = cur;
  5416. // lm_head
  5417. cur = build_lora_mm(model.output, cur);
  5418. cb(cur, "result_output", -1);
  5419. res->t_logits = cur;
  5420. ggml_build_forward_expand(gf, cur);
  5421. }
  5422. };
  5423. struct llm_build_qwen2moe : public llm_graph_context {
  5424. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5425. const int64_t n_embd_head = hparams.n_embd_head_v;
  5426. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5427. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5428. ggml_tensor * cur;
  5429. ggml_tensor * inpL;
  5430. inpL = build_inp_embd(model.tok_embd);
  5431. // inp_pos - contains the positions
  5432. ggml_tensor * inp_pos = build_inp_pos();
  5433. auto * inp_attn = build_attn_inp_kv_unified();
  5434. for (int il = 0; il < n_layer; ++il) {
  5435. ggml_tensor * inpSA = inpL;
  5436. // norm
  5437. cur = build_norm(inpL,
  5438. model.layers[il].attn_norm, NULL,
  5439. LLM_NORM_RMS, il);
  5440. cb(cur, "attn_norm", il);
  5441. // self_attention
  5442. {
  5443. // compute Q and K and RoPE them
  5444. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5445. cb(Qcur, "Qcur", il);
  5446. if (model.layers[il].bq) {
  5447. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5448. cb(Qcur, "Qcur", il);
  5449. }
  5450. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5451. cb(Kcur, "Kcur", il);
  5452. if (model.layers[il].bk) {
  5453. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5454. cb(Kcur, "Kcur", il);
  5455. }
  5456. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5457. cb(Vcur, "Vcur", il);
  5458. if (model.layers[il].bv) {
  5459. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5460. cb(Vcur, "Vcur", il);
  5461. }
  5462. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5463. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5464. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5465. Qcur = ggml_rope_ext(
  5466. ctx0, Qcur, inp_pos, nullptr,
  5467. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5468. ext_factor, attn_factor, beta_fast, beta_slow
  5469. );
  5470. Kcur = ggml_rope_ext(
  5471. ctx0, Kcur, inp_pos, nullptr,
  5472. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5473. ext_factor, attn_factor, beta_fast, beta_slow
  5474. );
  5475. cb(Qcur, "Qcur", il);
  5476. cb(Kcur, "Kcur", il);
  5477. cb(Vcur, "Vcur", il);
  5478. cur = build_attn(inp_attn, gf,
  5479. model.layers[il].wo, model.layers[il].bo,
  5480. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5481. }
  5482. if (il == n_layer - 1) {
  5483. // skip computing output for unused tokens
  5484. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5485. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5486. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5487. }
  5488. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5489. cb(ffn_inp, "ffn_inp", il);
  5490. // MoE branch
  5491. cur = build_norm(ffn_inp,
  5492. model.layers[il].ffn_norm, NULL,
  5493. LLM_NORM_RMS, il);
  5494. cb(cur, "ffn_norm", il);
  5495. ggml_tensor * moe_out =
  5496. build_moe_ffn(cur,
  5497. model.layers[il].ffn_gate_inp,
  5498. model.layers[il].ffn_up_exps,
  5499. model.layers[il].ffn_gate_exps,
  5500. model.layers[il].ffn_down_exps,
  5501. nullptr,
  5502. n_expert, n_expert_used,
  5503. LLM_FFN_SILU, false,
  5504. false, 0.0,
  5505. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5506. il);
  5507. cb(moe_out, "ffn_moe_out", il);
  5508. // FFN shared expert
  5509. {
  5510. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5511. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5512. // sigmoid
  5513. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5514. cb(cur_gate, "ffn_shexp_gate", il);
  5515. ggml_tensor * cur_ffn = build_ffn(cur,
  5516. model.layers[il].ffn_up_shexp, NULL, NULL,
  5517. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5518. model.layers[il].ffn_down_shexp, NULL, NULL,
  5519. NULL,
  5520. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5521. cb(cur_ffn, "ffn_shexp", il);
  5522. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5523. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5524. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5525. cb(moe_out, "ffn_out", il);
  5526. cur = moe_out;
  5527. }
  5528. cur = ggml_add(ctx0, cur, ffn_inp);
  5529. cur = build_cvec(cur, il);
  5530. cb(cur, "l_out", il);
  5531. // input for next layer
  5532. inpL = cur;
  5533. }
  5534. cur = inpL;
  5535. cur = build_norm(cur,
  5536. model.output_norm, NULL,
  5537. LLM_NORM_RMS, -1);
  5538. cb(cur, "result_norm", -1);
  5539. res->t_embd = cur;
  5540. // lm_head
  5541. cur = build_lora_mm(model.output, cur);
  5542. cb(cur, "result_output", -1);
  5543. res->t_logits = cur;
  5544. ggml_build_forward_expand(gf, cur);
  5545. }
  5546. };
  5547. struct llm_build_qwen3 : public llm_graph_context {
  5548. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5549. const int64_t n_embd_head = hparams.n_embd_head_v;
  5550. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5551. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5552. ggml_tensor * cur;
  5553. ggml_tensor * inpL;
  5554. inpL = build_inp_embd(model.tok_embd);
  5555. // inp_pos - contains the positions
  5556. ggml_tensor * inp_pos = build_inp_pos();
  5557. auto * inp_attn = build_attn_inp_kv_unified();
  5558. for (int il = 0; il < n_layer; ++il) {
  5559. ggml_tensor * inpSA = inpL;
  5560. // norm
  5561. cur = build_norm(inpL,
  5562. model.layers[il].attn_norm, NULL,
  5563. LLM_NORM_RMS, il);
  5564. cb(cur, "attn_norm", il);
  5565. // self-attention
  5566. {
  5567. // compute Q and K and RoPE them
  5568. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5569. cb(Qcur, "Qcur", il);
  5570. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5571. cb(Kcur, "Kcur", il);
  5572. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5573. cb(Vcur, "Vcur", il);
  5574. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5575. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5576. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5577. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5578. cb(Qcur, "Qcur_normed", il);
  5579. Qcur = ggml_rope_ext(
  5580. ctx0, Qcur, inp_pos, nullptr,
  5581. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5582. ext_factor, attn_factor, beta_fast, beta_slow
  5583. );
  5584. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5585. cb(Kcur, "Kcur_normed", il);
  5586. Kcur = ggml_rope_ext(
  5587. ctx0, Kcur, inp_pos, nullptr,
  5588. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5589. ext_factor, attn_factor, beta_fast, beta_slow
  5590. );
  5591. cb(Qcur, "Qcur", il);
  5592. cb(Kcur, "Kcur", il);
  5593. cb(Vcur, "Vcur", il);
  5594. cur = build_attn(inp_attn, gf,
  5595. model.layers[il].wo, model.layers[il].bo,
  5596. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5597. }
  5598. if (il == n_layer - 1) {
  5599. // skip computing output for unused tokens
  5600. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5601. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5602. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5603. }
  5604. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5605. cb(ffn_inp, "ffn_inp", il);
  5606. // feed-forward network
  5607. cur = build_norm(ffn_inp,
  5608. model.layers[il].ffn_norm, NULL,
  5609. LLM_NORM_RMS, il);
  5610. cb(cur, "ffn_norm", il);
  5611. cur = build_ffn(cur,
  5612. model.layers[il].ffn_up, NULL, NULL,
  5613. model.layers[il].ffn_gate, NULL, NULL,
  5614. model.layers[il].ffn_down, NULL, NULL,
  5615. NULL,
  5616. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5617. cb(cur, "ffn_out", il);
  5618. cur = ggml_add(ctx0, cur, ffn_inp);
  5619. cur = build_cvec(cur, il);
  5620. cb(cur, "l_out", il);
  5621. // input for next layer
  5622. inpL = cur;
  5623. }
  5624. cur = inpL;
  5625. cur = build_norm(cur,
  5626. model.output_norm, NULL,
  5627. LLM_NORM_RMS, -1);
  5628. cb(cur, "result_norm", -1);
  5629. res->t_embd = cur;
  5630. // lm_head
  5631. cur = build_lora_mm(model.output, cur);
  5632. cb(cur, "result_output", -1);
  5633. res->t_logits = cur;
  5634. ggml_build_forward_expand(gf, cur);
  5635. }
  5636. };
  5637. struct llm_build_qwen3moe : public llm_graph_context {
  5638. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5639. const int64_t n_embd_head = hparams.n_embd_head_v;
  5640. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5641. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5642. ggml_tensor * cur;
  5643. ggml_tensor * inpL;
  5644. inpL = build_inp_embd(model.tok_embd);
  5645. // inp_pos - contains the positions
  5646. ggml_tensor * inp_pos = build_inp_pos();
  5647. auto * inp_attn = build_attn_inp_kv_unified();
  5648. for (int il = 0; il < n_layer; ++il) {
  5649. ggml_tensor * inpSA = inpL;
  5650. // norm
  5651. cur = build_norm(inpL,
  5652. model.layers[il].attn_norm, NULL,
  5653. LLM_NORM_RMS, il);
  5654. cb(cur, "attn_norm", il);
  5655. // self_attention
  5656. {
  5657. // compute Q and K and RoPE them
  5658. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5659. cb(Qcur, "Qcur", il);
  5660. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5661. cb(Kcur, "Kcur", il);
  5662. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5663. cb(Vcur, "Vcur", il);
  5664. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5665. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5666. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5667. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5668. cb(Qcur, "Qcur_normed", il);
  5669. Qcur = ggml_rope_ext(
  5670. ctx0, Qcur, inp_pos, nullptr,
  5671. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5672. ext_factor, attn_factor, beta_fast, beta_slow
  5673. );
  5674. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5675. cb(Kcur, "Kcur_normed", il);
  5676. Kcur = ggml_rope_ext(
  5677. ctx0, Kcur, inp_pos, nullptr,
  5678. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5679. ext_factor, attn_factor, beta_fast, beta_slow
  5680. );
  5681. cb(Qcur, "Qcur", il);
  5682. cb(Kcur, "Kcur", il);
  5683. cb(Vcur, "Vcur", il);
  5684. cur = build_attn(inp_attn, gf,
  5685. model.layers[il].wo, model.layers[il].bo,
  5686. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5687. }
  5688. if (il == n_layer - 1) {
  5689. // skip computing output for unused tokens
  5690. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5691. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5692. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5693. }
  5694. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5695. cb(ffn_inp, "ffn_inp", il);
  5696. // MoE branch
  5697. cur = build_norm(ffn_inp,
  5698. model.layers[il].ffn_norm, NULL,
  5699. LLM_NORM_RMS, il);
  5700. cb(cur, "ffn_norm", il);
  5701. ggml_tensor * moe_out =
  5702. build_moe_ffn(cur,
  5703. model.layers[il].ffn_gate_inp,
  5704. model.layers[il].ffn_up_exps,
  5705. model.layers[il].ffn_gate_exps,
  5706. model.layers[il].ffn_down_exps,
  5707. nullptr,
  5708. n_expert, n_expert_used,
  5709. LLM_FFN_SILU, true,
  5710. false, 0.0,
  5711. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5712. il);
  5713. cb(moe_out, "ffn_moe_out", il);
  5714. cur = moe_out;
  5715. cur = ggml_add(ctx0, cur, ffn_inp);
  5716. cur = build_cvec(cur, il);
  5717. cb(cur, "l_out", il);
  5718. // input for next layer
  5719. inpL = cur;
  5720. }
  5721. cur = inpL;
  5722. cur = build_norm(cur,
  5723. model.output_norm, NULL,
  5724. LLM_NORM_RMS, -1);
  5725. cb(cur, "result_norm", -1);
  5726. res->t_embd = cur;
  5727. // lm_head
  5728. cur = build_lora_mm(model.output, cur);
  5729. cb(cur, "result_output", -1);
  5730. res->t_logits = cur;
  5731. ggml_build_forward_expand(gf, cur);
  5732. }
  5733. };
  5734. struct llm_build_phi2 : public llm_graph_context {
  5735. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5736. const int64_t n_embd_head = hparams.n_embd_head_v;
  5737. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5738. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5739. ggml_tensor * cur;
  5740. ggml_tensor * attn_norm_output;
  5741. ggml_tensor * ffn_output;
  5742. ggml_tensor * inpL;
  5743. inpL = build_inp_embd(model.tok_embd);
  5744. // inp_pos - contains the positions
  5745. ggml_tensor * inp_pos = build_inp_pos();
  5746. auto * inp_attn = build_attn_inp_kv_unified();
  5747. for (int il = 0; il < n_layer; ++il) {
  5748. attn_norm_output = build_norm(inpL,
  5749. model.layers[il].attn_norm,
  5750. model.layers[il].attn_norm_b,
  5751. LLM_NORM, il);
  5752. cb(attn_norm_output, "attn_norm", il);
  5753. // self-attention
  5754. {
  5755. ggml_tensor * Qcur = nullptr;
  5756. ggml_tensor * Kcur = nullptr;
  5757. ggml_tensor * Vcur = nullptr;
  5758. if (model.layers[il].wqkv) {
  5759. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5760. cb(cur, "wqkv", il);
  5761. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5762. cb(cur, "bqkv", il);
  5763. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5764. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5765. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5766. } else {
  5767. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5768. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5769. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5770. }
  5771. cb(Qcur, "Qcur", il);
  5772. cb(Kcur, "Kcur", il);
  5773. cb(Vcur, "Vcur", il);
  5774. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5775. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5776. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5777. Qcur = ggml_rope_ext(
  5778. ctx0, Qcur, inp_pos, nullptr,
  5779. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5780. ext_factor, attn_factor, beta_fast, beta_slow
  5781. );
  5782. Kcur = ggml_rope_ext(
  5783. ctx0, Kcur, inp_pos, nullptr,
  5784. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5785. ext_factor, attn_factor, beta_fast, beta_slow
  5786. );
  5787. cb(Qcur, "Qcur", il);
  5788. cb(Kcur, "Kcur", il);
  5789. cb(Vcur, "Vcur", il);
  5790. // with phi2, we scale the Q to avoid precision issues
  5791. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5792. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5793. cur = build_attn(inp_attn, gf,
  5794. model.layers[il].wo, model.layers[il].bo,
  5795. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5796. }
  5797. if (il == n_layer - 1) {
  5798. // skip computing output for unused tokens
  5799. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5800. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5801. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5802. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5803. }
  5804. // FF
  5805. {
  5806. ffn_output = build_ffn(attn_norm_output,
  5807. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5808. NULL, NULL, NULL,
  5809. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5810. NULL,
  5811. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5812. cb(ffn_output, "ffn_out", il);
  5813. }
  5814. cur = ggml_add(ctx0, cur, ffn_output);
  5815. cur = ggml_add(ctx0, cur, inpL);
  5816. cur = build_cvec(cur, il);
  5817. cb(cur, "l_out", il);
  5818. // input for next layer
  5819. inpL = cur;
  5820. }
  5821. cur = build_norm(inpL,
  5822. model.output_norm,
  5823. model.output_norm_b,
  5824. LLM_NORM, -1);
  5825. cb(cur, "result_norm", -1);
  5826. res->t_embd = cur;
  5827. cur = build_lora_mm(model.output, cur);
  5828. cb(cur, "result_output_no_bias", -1);
  5829. cur = ggml_add(ctx0, cur, model.output_b);
  5830. cb(cur, "result_output", -1);
  5831. res->t_logits = cur;
  5832. ggml_build_forward_expand(gf, cur);
  5833. }
  5834. };
  5835. struct llm_build_phi3 : public llm_graph_context {
  5836. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5837. const int64_t n_embd_head = hparams.n_embd_head_v;
  5838. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5839. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5840. ggml_tensor * cur;
  5841. ggml_tensor * inpL;
  5842. inpL = build_inp_embd(model.tok_embd);
  5843. // inp_pos - contains the positions
  5844. ggml_tensor * inp_pos = build_inp_pos();
  5845. auto * inp_attn = build_attn_inp_kv_unified();
  5846. for (int il = 0; il < n_layer; ++il) {
  5847. auto * residual = inpL;
  5848. // self-attention
  5849. {
  5850. // rope freq factors for 128k context
  5851. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  5852. ggml_tensor* attn_norm_output = build_norm(inpL,
  5853. model.layers[il].attn_norm,
  5854. model.layers[il].attn_norm_b,
  5855. LLM_NORM_RMS, il);
  5856. cb(attn_norm_output, "attn_norm", il);
  5857. ggml_tensor * Qcur = nullptr;
  5858. ggml_tensor * Kcur = nullptr;
  5859. ggml_tensor * Vcur = nullptr;
  5860. if (model.layers[il].wqkv) {
  5861. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5862. cb(cur, "wqkv", il);
  5863. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5864. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5865. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5866. } else {
  5867. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5868. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5869. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5870. }
  5871. cb(Qcur, "Qcur", il);
  5872. cb(Kcur, "Kcur", il);
  5873. cb(Vcur, "Vcur", il);
  5874. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5875. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5876. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5877. Qcur = ggml_rope_ext(
  5878. ctx0, Qcur, inp_pos, rope_factors,
  5879. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5880. ext_factor, attn_factor, beta_fast, beta_slow
  5881. );
  5882. Kcur = ggml_rope_ext(
  5883. ctx0, Kcur, inp_pos, rope_factors,
  5884. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5885. ext_factor, attn_factor, beta_fast, beta_slow
  5886. );
  5887. cb(Qcur, "Qcur", il);
  5888. cb(Kcur, "Kcur", il);
  5889. cb(Vcur, "Vcur", il);
  5890. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5891. cb(Qcur, "Qcur", il);
  5892. cur = build_attn(inp_attn, gf,
  5893. model.layers[il].wo, model.layers[il].bo,
  5894. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5895. }
  5896. if (il == n_layer - 1) {
  5897. // skip computing output for unused tokens
  5898. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5899. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5900. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5901. }
  5902. cur = ggml_add(ctx0, cur, residual);
  5903. residual = cur;
  5904. cur = build_norm(cur,
  5905. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5906. LLM_NORM_RMS, il);
  5907. cb(cur, "ffn_norm", il);
  5908. // feed-forward network
  5909. if (model.layers[il].ffn_gate_inp == nullptr) {
  5910. cur = build_ffn(cur,
  5911. model.layers[il].ffn_up, NULL, NULL,
  5912. NULL, NULL, NULL,
  5913. model.layers[il].ffn_down, NULL, NULL,
  5914. NULL,
  5915. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5916. cb(cur, "ffn_out", il);
  5917. } else {
  5918. // MoE branch
  5919. cur = build_moe_ffn(cur,
  5920. model.layers[il].ffn_gate_inp,
  5921. model.layers[il].ffn_up_exps,
  5922. model.layers[il].ffn_gate_exps,
  5923. model.layers[il].ffn_down_exps,
  5924. nullptr,
  5925. n_expert, n_expert_used,
  5926. LLM_FFN_SILU, true,
  5927. false, 0.0,
  5928. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5929. il);
  5930. cb(cur, "ffn_moe_out", il);
  5931. }
  5932. cur = ggml_add(ctx0, residual, cur);
  5933. cur = build_cvec(cur, il);
  5934. cb(cur, "l_out", il);
  5935. // input for next layer
  5936. inpL = cur;
  5937. }
  5938. cur = build_norm(inpL,
  5939. model.output_norm,
  5940. model.output_norm_b,
  5941. LLM_NORM_RMS, -1);
  5942. cb(cur, "result_norm", -1);
  5943. res->t_embd = cur;
  5944. cur = build_lora_mm(model.output, cur);
  5945. if (model.output_b != nullptr) {
  5946. cb(cur, "result_output_no_bias", -1);
  5947. cur = ggml_add(ctx0, cur, model.output_b);
  5948. }
  5949. cb(cur, "result_output", -1);
  5950. res->t_logits = cur;
  5951. ggml_build_forward_expand(gf, cur);
  5952. }
  5953. };
  5954. struct llm_build_plamo : public llm_graph_context {
  5955. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5956. const int64_t n_embd_head = hparams.n_embd_head_v;
  5957. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5958. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5959. ggml_tensor * cur;
  5960. ggml_tensor * inpL;
  5961. inpL = build_inp_embd(model.tok_embd);
  5962. // inp_pos - contains the positions
  5963. ggml_tensor * inp_pos = build_inp_pos();
  5964. auto * inp_attn = build_attn_inp_kv_unified();
  5965. for (int il = 0; il < n_layer; ++il) {
  5966. // norm
  5967. cur = build_norm(inpL,
  5968. model.layers[il].attn_norm, NULL,
  5969. LLM_NORM_RMS, il);
  5970. cb(cur, "attn_norm", il);
  5971. ggml_tensor * attention_norm = cur;
  5972. // self-attention
  5973. {
  5974. // compute Q and K and RoPE them
  5975. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5976. cb(Qcur, "Qcur", il);
  5977. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5978. cb(Kcur, "Kcur", il);
  5979. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5980. cb(Vcur, "Vcur", il);
  5981. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5982. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5983. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5984. Qcur = ggml_rope_ext(
  5985. ctx0, Qcur, inp_pos, nullptr,
  5986. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5987. ext_factor, attn_factor, beta_fast, beta_slow
  5988. );
  5989. Kcur = ggml_rope_ext(
  5990. ctx0, Kcur, inp_pos, nullptr,
  5991. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5992. ext_factor, attn_factor, beta_fast, beta_slow
  5993. );
  5994. cb(Qcur, "Qcur", il);
  5995. cb(Kcur, "Kcur", il);
  5996. cb(Vcur, "Vcur", il);
  5997. cur = build_attn(inp_attn, gf,
  5998. model.layers[il].wo, NULL,
  5999. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6000. }
  6001. ggml_tensor * sa_out = cur;
  6002. cur = attention_norm;
  6003. if (il == n_layer - 1) {
  6004. // skip computing output for unused tokens
  6005. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6006. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6007. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6008. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6009. }
  6010. // feed-forward network
  6011. {
  6012. cur = build_ffn(cur,
  6013. model.layers[il].ffn_up, NULL, NULL,
  6014. model.layers[il].ffn_gate, NULL, NULL,
  6015. model.layers[il].ffn_down, NULL, NULL,
  6016. NULL,
  6017. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6018. cb(cur, "ffn_out", il);
  6019. }
  6020. cur = ggml_add(ctx0, cur, sa_out);
  6021. cur = ggml_add(ctx0, cur, inpL);
  6022. cur = build_cvec(cur, il);
  6023. cb(cur, "l_out", il);
  6024. // input for next layer
  6025. inpL = cur;
  6026. }
  6027. cur = inpL;
  6028. cur = build_norm(cur,
  6029. model.output_norm, NULL,
  6030. LLM_NORM_RMS, -1);
  6031. cb(cur, "result_norm", -1);
  6032. res->t_embd = cur;
  6033. // lm_head
  6034. cur = build_lora_mm(model.output, cur);
  6035. cb(cur, "result_output", -1);
  6036. res->t_logits = cur;
  6037. ggml_build_forward_expand(gf, cur);
  6038. }
  6039. };
  6040. struct llm_build_gpt2 : public llm_graph_context {
  6041. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6042. const int64_t n_embd_head = hparams.n_embd_head_v;
  6043. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6044. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6045. ggml_tensor * cur;
  6046. ggml_tensor * pos;
  6047. ggml_tensor * inpL;
  6048. inpL = build_inp_embd(model.tok_embd);
  6049. // inp_pos - contains the positions
  6050. ggml_tensor * inp_pos = build_inp_pos();
  6051. auto * inp_attn = build_attn_inp_kv_unified();
  6052. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6053. cb(pos, "pos_embd", -1);
  6054. inpL = ggml_add(ctx0, inpL, pos);
  6055. cb(inpL, "inpL", -1);
  6056. for (int il = 0; il < n_layer; ++il) {
  6057. cur = build_norm(inpL,
  6058. model.layers[il].attn_norm,
  6059. model.layers[il].attn_norm_b,
  6060. LLM_NORM, il);
  6061. cb(cur, "attn_norm", il);
  6062. // self-attention
  6063. {
  6064. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6065. cb(cur, "wqkv", il);
  6066. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6067. cb(cur, "bqkv", il);
  6068. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6069. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6070. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6071. cb(Qcur, "Qcur", il);
  6072. cb(Kcur, "Kcur", il);
  6073. cb(Vcur, "Vcur", il);
  6074. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6075. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6076. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6077. cur = build_attn(inp_attn, gf,
  6078. model.layers[il].wo, model.layers[il].bo,
  6079. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6080. }
  6081. if (il == n_layer - 1) {
  6082. // skip computing output for unused tokens
  6083. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6084. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6085. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6086. }
  6087. // add the input
  6088. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6089. cb(ffn_inp, "ffn_inp", il);
  6090. // FF
  6091. {
  6092. cur = build_norm(ffn_inp,
  6093. model.layers[il].ffn_norm,
  6094. model.layers[il].ffn_norm_b,
  6095. LLM_NORM, il);
  6096. cb(cur, "ffn_norm", il);
  6097. cur = build_ffn(cur,
  6098. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6099. NULL, NULL, NULL,
  6100. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6101. NULL,
  6102. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6103. cb(cur, "ffn_out", il);
  6104. }
  6105. cur = ggml_add(ctx0, cur, ffn_inp);
  6106. cur = build_cvec(cur, il);
  6107. cb(cur, "l_out", il);
  6108. // input for next layer
  6109. inpL = cur;
  6110. }
  6111. cur = build_norm(inpL,
  6112. model.output_norm,
  6113. model.output_norm_b,
  6114. LLM_NORM, -1);
  6115. cb(cur, "result_norm", -1);
  6116. res->t_embd = cur;
  6117. cur = build_lora_mm(model.output, cur);
  6118. cb(cur, "result_output", -1);
  6119. res->t_logits = cur;
  6120. ggml_build_forward_expand(gf, cur);
  6121. }
  6122. };
  6123. struct llm_build_codeshell : public llm_graph_context {
  6124. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6125. const int64_t n_embd_head = hparams.n_embd_head_v;
  6126. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6127. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6128. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6129. ggml_tensor * cur;
  6130. ggml_tensor * inpL;
  6131. inpL = build_inp_embd(model.tok_embd);
  6132. // inp_pos - contains the positions
  6133. ggml_tensor * inp_pos = build_inp_pos();
  6134. auto * inp_attn = build_attn_inp_kv_unified();
  6135. for (int il = 0; il < n_layer; ++il) {
  6136. cur = build_norm(inpL,
  6137. model.layers[il].attn_norm,
  6138. model.layers[il].attn_norm_b,
  6139. LLM_NORM, il);
  6140. cb(cur, "attn_norm", il);
  6141. // self-attention
  6142. {
  6143. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6144. cb(cur, "wqkv", il);
  6145. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6146. cb(cur, "bqkv", il);
  6147. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6148. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6149. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6150. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6151. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6152. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6153. Qcur = ggml_rope_ext(
  6154. ctx0, Qcur, inp_pos, nullptr,
  6155. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6156. ext_factor, attn_factor, beta_fast, beta_slow
  6157. );
  6158. Kcur = ggml_rope_ext(
  6159. ctx0, Kcur, inp_pos, nullptr,
  6160. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6161. ext_factor, attn_factor, beta_fast, beta_slow
  6162. );
  6163. cb(Qcur, "Qcur", il);
  6164. cb(Kcur, "Kcur", il);
  6165. cb(Vcur, "Vcur", il);
  6166. cur = build_attn(inp_attn, gf,
  6167. model.layers[il].wo, model.layers[il].bo,
  6168. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6169. }
  6170. if (il == n_layer - 1) {
  6171. // skip computing output for unused tokens
  6172. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6173. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6174. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6175. }
  6176. // add the input
  6177. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6178. cb(ffn_inp, "ffn_inp", il);
  6179. // FF
  6180. {
  6181. cur = build_norm(ffn_inp,
  6182. model.layers[il].ffn_norm,
  6183. model.layers[il].ffn_norm_b,
  6184. LLM_NORM, il);
  6185. cb(cur, "ffn_norm", il);
  6186. cur = build_ffn(cur,
  6187. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6188. NULL, NULL, NULL,
  6189. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6190. NULL,
  6191. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6192. cb(cur, "ffn_out", il);
  6193. }
  6194. cur = ggml_add(ctx0, cur, ffn_inp);
  6195. cur = build_cvec(cur, il);
  6196. cb(cur, "l_out", il);
  6197. // input for next layer
  6198. inpL = cur;
  6199. }
  6200. cur = build_norm(inpL,
  6201. model.output_norm,
  6202. model.output_norm_b,
  6203. LLM_NORM, -1);
  6204. cb(cur, "result_norm", -1);
  6205. res->t_embd = cur;
  6206. cur = build_lora_mm(model.output, cur);
  6207. cb(cur, "result_output", -1);
  6208. res->t_logits = cur;
  6209. ggml_build_forward_expand(gf, cur);
  6210. }
  6211. };
  6212. struct llm_build_orion : public llm_graph_context {
  6213. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6214. const int64_t n_embd_head = hparams.n_embd_head_v;
  6215. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6216. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6217. ggml_tensor * cur;
  6218. ggml_tensor * inpL;
  6219. inpL = build_inp_embd(model.tok_embd);
  6220. // inp_pos - contains the positions
  6221. ggml_tensor * inp_pos = build_inp_pos();
  6222. auto * inp_attn = build_attn_inp_kv_unified();
  6223. for (int il = 0; il < n_layer; ++il) {
  6224. ggml_tensor * inpSA = inpL;
  6225. // norm
  6226. cur = build_norm(inpL,
  6227. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6228. LLM_NORM, il);
  6229. cb(cur, "attn_norm", il);
  6230. // self-attention
  6231. {
  6232. // compute Q and K and RoPE them
  6233. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6234. cb(Qcur, "Qcur", il);
  6235. // if (model.layers[il].bq) {
  6236. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6237. // cb(Qcur, "Qcur", il);
  6238. // }
  6239. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6240. cb(Kcur, "Kcur", il);
  6241. // if (model.layers[il].bk) {
  6242. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6243. // cb(Kcur, "Kcur", il);
  6244. // }
  6245. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6246. cb(Vcur, "Vcur", il);
  6247. // if (model.layers[il].bv) {
  6248. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6249. // cb(Vcur, "Vcur", il);
  6250. // }
  6251. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6252. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6253. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6254. Qcur = ggml_rope_ext(
  6255. ctx0, Qcur, inp_pos, nullptr,
  6256. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6257. ext_factor, attn_factor, beta_fast, beta_slow
  6258. );
  6259. Kcur = ggml_rope_ext(
  6260. ctx0, Kcur, inp_pos, nullptr,
  6261. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6262. ext_factor, attn_factor, beta_fast, beta_slow
  6263. );
  6264. cb(Qcur, "Qcur", il);
  6265. cb(Kcur, "Kcur", il);
  6266. cb(Vcur, "Vcur", il);
  6267. cur = build_attn(inp_attn, gf,
  6268. model.layers[il].wo, NULL,
  6269. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6270. }
  6271. if (il == n_layer - 1) {
  6272. // skip computing output for unused tokens
  6273. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6274. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6275. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6276. }
  6277. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6278. cb(ffn_inp, "ffn_inp", il);
  6279. // feed-forward network
  6280. cur = build_norm(ffn_inp,
  6281. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6282. LLM_NORM, il);
  6283. cb(cur, "ffn_norm", il);
  6284. cur = build_ffn(cur,
  6285. model.layers[il].ffn_up, NULL, NULL,
  6286. model.layers[il].ffn_gate, NULL, NULL,
  6287. model.layers[il].ffn_down, NULL, NULL,
  6288. NULL,
  6289. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6290. cb(cur, "ffn_out", il);
  6291. cur = ggml_add(ctx0, cur, ffn_inp);
  6292. cur = build_cvec(cur, il);
  6293. cb(cur, "l_out", il);
  6294. // input for next layer
  6295. inpL = cur;
  6296. }
  6297. cur = inpL;
  6298. cur = build_norm(cur,
  6299. model.output_norm, model.output_norm_b,
  6300. LLM_NORM, -1);
  6301. cb(cur, "result_norm", -1);
  6302. res->t_embd = cur;
  6303. // lm_head
  6304. cur = build_lora_mm(model.output, cur);
  6305. cb(cur, "result_output", -1);
  6306. res->t_logits = cur;
  6307. ggml_build_forward_expand(gf, cur);
  6308. }
  6309. };
  6310. struct llm_build_internlm2 : public llm_graph_context {
  6311. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6312. const int64_t n_embd_head = hparams.n_embd_head_v;
  6313. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6314. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6315. ggml_tensor * cur;
  6316. ggml_tensor * inpL;
  6317. inpL = build_inp_embd(model.tok_embd);
  6318. // inp_pos - contains the positions
  6319. ggml_tensor * inp_pos = build_inp_pos();
  6320. auto * inp_attn = build_attn_inp_kv_unified();
  6321. for (int il = 0; il < n_layer; ++il) {
  6322. ggml_tensor * inpSA = inpL;
  6323. // norm
  6324. cur = build_norm(inpL,
  6325. model.layers[il].attn_norm, NULL,
  6326. LLM_NORM_RMS, il);
  6327. cb(cur, "attn_norm", il);
  6328. // self-attention
  6329. {
  6330. // compute Q and K and RoPE them
  6331. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6332. cb(Qcur, "Qcur", il);
  6333. if (model.layers[il].bq) {
  6334. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6335. cb(Qcur, "Qcur", il);
  6336. }
  6337. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6338. cb(Kcur, "Kcur", il);
  6339. if (model.layers[il].bk) {
  6340. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6341. cb(Kcur, "Kcur", il);
  6342. }
  6343. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6344. cb(Vcur, "Vcur", il);
  6345. if (model.layers[il].bv) {
  6346. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6347. cb(Vcur, "Vcur", il);
  6348. }
  6349. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6350. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6351. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6352. Qcur = ggml_rope_ext(
  6353. ctx0, Qcur, inp_pos, nullptr,
  6354. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6355. ext_factor, attn_factor, beta_fast, beta_slow
  6356. );
  6357. Kcur = ggml_rope_ext(
  6358. ctx0, Kcur, inp_pos, nullptr,
  6359. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6360. ext_factor, attn_factor, beta_fast, beta_slow
  6361. );
  6362. cb(Qcur, "Qcur", il);
  6363. cb(Kcur, "Kcur", il);
  6364. cb(Vcur, "Vcur", il);
  6365. cur = build_attn(inp_attn, gf,
  6366. model.layers[il].wo, model.layers[il].bo,
  6367. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6368. }
  6369. if (il == n_layer - 1) {
  6370. // skip computing output for unused tokens
  6371. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6372. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6373. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6374. }
  6375. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6376. cb(ffn_inp, "ffn_inp", il);
  6377. // feed-forward network
  6378. cur = build_norm(ffn_inp,
  6379. model.layers[il].ffn_norm, NULL,
  6380. LLM_NORM_RMS, il);
  6381. cb(cur, "ffn_norm", il);
  6382. cur = build_ffn(cur,
  6383. model.layers[il].ffn_up, NULL, NULL,
  6384. model.layers[il].ffn_gate, NULL, NULL,
  6385. model.layers[il].ffn_down, NULL, NULL,
  6386. NULL,
  6387. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6388. cb(cur, "ffn_out", il);
  6389. cur = ggml_add(ctx0, cur, ffn_inp);
  6390. cur = build_cvec(cur, il);
  6391. cb(cur, "l_out", il);
  6392. // input for next layer
  6393. inpL = cur;
  6394. }
  6395. cur = inpL;
  6396. cur = build_norm(cur,
  6397. model.output_norm, NULL,
  6398. LLM_NORM_RMS, -1);
  6399. cb(cur, "result_norm", -1);
  6400. res->t_embd = cur;
  6401. // lm_head
  6402. cur = build_lora_mm(model.output, cur);
  6403. cb(cur, "result_output", -1);
  6404. res->t_logits = cur;
  6405. ggml_build_forward_expand(gf, cur);
  6406. }
  6407. };
  6408. struct llm_build_minicpm3 : public llm_graph_context {
  6409. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6410. //TODO: if the model varies, these parameters need to be read from the model
  6411. const int64_t n_embd_base = 256;
  6412. const float scale_embd = 12.0f;
  6413. const float scale_depth = 1.4f;
  6414. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6415. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6416. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6417. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6418. ggml_tensor * cur;
  6419. ggml_tensor * inpL;
  6420. inpL = build_inp_embd(model.tok_embd);
  6421. // scale the input embeddings
  6422. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6423. cb(inpL, "inp_scaled", -1);
  6424. // inp_pos - contains the positions
  6425. ggml_tensor * inp_pos = build_inp_pos();
  6426. auto * inp_attn = build_attn_inp_kv_unified();
  6427. for (int il = 0; il < n_layer; ++il) {
  6428. ggml_tensor * inpSA = inpL;
  6429. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  6430. // norm
  6431. cur = build_norm(inpL,
  6432. model.layers[il].attn_norm, NULL,
  6433. LLM_NORM_RMS, il);
  6434. cb(cur, "attn_norm", il);
  6435. // self_attention
  6436. {
  6437. ggml_tensor * q = NULL;
  6438. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6439. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6440. cb(q, "q", il);
  6441. q = build_norm(q,
  6442. model.layers[il].attn_q_a_norm, NULL,
  6443. LLM_NORM_RMS, il);
  6444. cb(q, "q", il);
  6445. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6446. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6447. cb(q, "q", il);
  6448. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6449. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6450. ggml_row_size(q->type, hparams.n_embd_head_k),
  6451. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6452. 0);
  6453. cb(q_nope, "q_nope", il);
  6454. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6455. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6456. ggml_row_size(q->type, hparams.n_embd_head_k),
  6457. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6458. ggml_row_size(q->type, n_embd_head_qk_nope));
  6459. cb(q_pe, "q_pe", il);
  6460. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6461. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6462. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6463. // split into {kv_lora_rank, n_tokens}
  6464. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6465. kv_pe_compresseed->nb[1],
  6466. 0);
  6467. cb(kv_compressed, "kv_compressed", il);
  6468. // and {n_embd_head_qk_rope, n_tokens}
  6469. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6470. kv_pe_compresseed->nb[1],
  6471. kv_pe_compresseed->nb[1],
  6472. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6473. cb(k_pe, "k_pe", il);
  6474. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6475. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6476. kv_compressed = build_norm(kv_compressed,
  6477. model.layers[il].attn_kv_a_norm, NULL,
  6478. LLM_NORM_RMS, il);
  6479. cb(kv_compressed, "kv_compressed", il);
  6480. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6481. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6482. cb(kv, "kv", il);
  6483. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6484. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6485. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6486. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6487. 0);
  6488. cb(k_nope, "k_nope", il);
  6489. // and {n_head * n_embd_head_v, n_tokens}
  6490. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6491. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6492. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6493. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6494. cb(v_states, "v_states", il);
  6495. v_states = ggml_cont(ctx0, v_states);
  6496. cb(v_states, "v_states", il);
  6497. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6498. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6499. 0);
  6500. cb(v_states, "v_states", il);
  6501. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6502. q_pe = ggml_rope_ext(
  6503. ctx0, q_pe, inp_pos, rope_factors,
  6504. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6505. ext_factor, attn_factor, beta_fast, beta_slow
  6506. );
  6507. cb(q_pe, "q_pe", il);
  6508. // shared RoPE key
  6509. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6510. k_pe = ggml_rope_ext(
  6511. ctx0, k_pe, inp_pos, rope_factors,
  6512. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6513. ext_factor, attn_factor, beta_fast, beta_slow
  6514. );
  6515. cb(k_pe, "k_pe", il);
  6516. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6517. cb(q_states, "q_states", il);
  6518. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6519. cb(k_states, "k_states", il);
  6520. cur = build_attn(inp_attn, gf,
  6521. model.layers[il].wo, NULL,
  6522. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6523. }
  6524. if (il == n_layer - 1) {
  6525. // skip computing output for unused tokens
  6526. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6527. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6528. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6529. }
  6530. // scale_res - scale the hidden states for residual connection
  6531. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6532. cur = ggml_scale(ctx0, cur, scale_res);
  6533. cb(cur, "hidden_scaled", il);
  6534. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6535. cb(ffn_inp, "ffn_inp", il);
  6536. // feed-forward network
  6537. {
  6538. cur = build_norm(ffn_inp,
  6539. model.layers[il].ffn_norm, NULL,
  6540. LLM_NORM_RMS, il);
  6541. cb(cur, "ffn_norm", il);
  6542. cur = build_ffn(cur,
  6543. model.layers[il].ffn_up, NULL, NULL,
  6544. model.layers[il].ffn_gate, NULL, NULL,
  6545. model.layers[il].ffn_down, NULL, NULL,
  6546. NULL,
  6547. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6548. cb(cur, "ffn_out", il);
  6549. }
  6550. // scale the hidden states for residual connection
  6551. cur = ggml_scale(ctx0, cur, scale_res);
  6552. cb(cur, "hidden_scaled_ffn", il);
  6553. cur = ggml_add(ctx0, cur, ffn_inp);
  6554. cur = build_cvec(cur, il);
  6555. cb(cur, "l_out", il);
  6556. // input for next layer
  6557. inpL = cur;
  6558. }
  6559. cur = inpL;
  6560. cur = build_norm(cur,
  6561. model.output_norm, NULL,
  6562. LLM_NORM_RMS, -1);
  6563. cb(cur, "result_norm", -1);
  6564. res->t_embd = cur;
  6565. // lm_head scaling
  6566. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6567. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6568. cb(cur, "lmhead_scaling", -1);
  6569. // lm_head
  6570. cur = build_lora_mm(model.output, cur);
  6571. cb(cur, "result_output", -1);
  6572. res->t_logits = cur;
  6573. ggml_build_forward_expand(gf, cur);
  6574. }
  6575. };
  6576. struct llm_build_gemma : public llm_graph_context {
  6577. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6578. const int64_t n_embd_head = hparams.n_embd_head_v;
  6579. ggml_tensor * cur;
  6580. ggml_tensor * inpL;
  6581. inpL = build_inp_embd(model.tok_embd);
  6582. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6583. cb(inpL, "inp_scaled", -1);
  6584. // inp_pos - contains the positions
  6585. ggml_tensor * inp_pos = build_inp_pos();
  6586. auto * inp_attn = build_attn_inp_kv_unified();
  6587. for (int il = 0; il < n_layer; ++il) {
  6588. // norm
  6589. cur = build_norm(inpL,
  6590. model.layers[il].attn_norm, NULL,
  6591. LLM_NORM_RMS, il);
  6592. cb(cur, "attn_norm", il);
  6593. // self-attention
  6594. {
  6595. // compute Q and K and RoPE them
  6596. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6597. cb(Qcur, "Qcur", il);
  6598. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6599. cb(Kcur, "Kcur", il);
  6600. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6601. cb(Vcur, "Vcur", il);
  6602. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6603. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6604. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6605. Qcur = ggml_rope_ext(
  6606. ctx0, Qcur, inp_pos, nullptr,
  6607. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6608. ext_factor, attn_factor, beta_fast, beta_slow);
  6609. Kcur = ggml_rope_ext(
  6610. ctx0, Kcur, inp_pos, nullptr,
  6611. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6612. ext_factor, attn_factor, beta_fast, beta_slow);
  6613. cb(Qcur, "Qcur", il);
  6614. cb(Kcur, "Kcur", il);
  6615. cb(Vcur, "Vcur", il);
  6616. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6617. cb(Qcur, "Qcur_scaled", il);
  6618. cur = build_attn(inp_attn, gf,
  6619. model.layers[il].wo, NULL,
  6620. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6621. }
  6622. if (il == n_layer - 1) {
  6623. // skip computing output for unused tokens
  6624. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6625. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6626. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6627. }
  6628. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6629. cb(sa_out, "sa_out", il);
  6630. cur = build_norm(sa_out,
  6631. model.layers[il].ffn_norm, NULL,
  6632. LLM_NORM_RMS, il);
  6633. cb(cur, "ffn_norm", il);
  6634. // feed-forward network
  6635. {
  6636. cur = build_ffn(cur,
  6637. model.layers[il].ffn_up, NULL, NULL,
  6638. model.layers[il].ffn_gate, NULL, NULL,
  6639. model.layers[il].ffn_down, NULL, NULL,
  6640. NULL,
  6641. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6642. cb(cur, "ffn_out", il);
  6643. }
  6644. cur = ggml_add(ctx0, cur, sa_out);
  6645. cur = build_cvec(cur, il);
  6646. cb(cur, "l_out", il);
  6647. // input for next layer
  6648. inpL = cur;
  6649. }
  6650. cur = inpL;
  6651. cur = build_norm(cur,
  6652. model.output_norm, NULL,
  6653. LLM_NORM_RMS, -1);
  6654. cb(cur, "result_norm", -1);
  6655. res->t_embd = cur;
  6656. // lm_head
  6657. cur = build_lora_mm(model.output, cur);
  6658. cb(cur, "result_output", -1);
  6659. res->t_logits = cur;
  6660. ggml_build_forward_expand(gf, cur);
  6661. }
  6662. };
  6663. struct llm_build_gemma2 : public llm_graph_context {
  6664. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6665. const int64_t n_embd_head = hparams.n_embd_head_k;
  6666. ggml_tensor * cur;
  6667. ggml_tensor * inpL;
  6668. inpL = build_inp_embd(model.tok_embd);
  6669. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6670. cb(inpL, "inp_scaled", -1);
  6671. // inp_pos - contains the positions
  6672. ggml_tensor * inp_pos = build_inp_pos();
  6673. auto * inp_attn = build_attn_inp_kv_unified();
  6674. for (int il = 0; il < n_layer; ++il) {
  6675. // norm
  6676. cur = build_norm(inpL,
  6677. model.layers[il].attn_norm, NULL,
  6678. LLM_NORM_RMS, il);
  6679. cb(cur, "attn_norm", il);
  6680. // self-attention
  6681. {
  6682. // compute Q and K and RoPE them
  6683. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6684. cb(Qcur, "Qcur", il);
  6685. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6686. cb(Kcur, "Kcur", il);
  6687. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6688. cb(Vcur, "Vcur", il);
  6689. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6690. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6691. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6692. Qcur = ggml_rope_ext(
  6693. ctx0, Qcur, inp_pos, nullptr,
  6694. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6695. ext_factor, attn_factor, beta_fast, beta_slow);
  6696. Kcur = ggml_rope_ext(
  6697. ctx0, Kcur, inp_pos, nullptr,
  6698. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6699. ext_factor, attn_factor, beta_fast, beta_slow);
  6700. cb(Qcur, "Qcur", il);
  6701. cb(Kcur, "Kcur", il);
  6702. cb(Vcur, "Vcur", il);
  6703. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6704. switch (model.type) {
  6705. case LLM_TYPE_2B:
  6706. case LLM_TYPE_9B:
  6707. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6708. default: GGML_ABORT("fatal error");
  6709. };
  6710. cb(Qcur, "Qcur_scaled", il);
  6711. cur = build_attn(inp_attn, gf,
  6712. model.layers[il].wo, NULL,
  6713. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6714. }
  6715. cur = build_norm(cur,
  6716. model.layers[il].attn_post_norm, NULL,
  6717. LLM_NORM_RMS, il);
  6718. cb(cur, "attn_post_norm", il);
  6719. if (il == n_layer - 1) {
  6720. // skip computing output for unused tokens
  6721. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6722. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6723. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6724. }
  6725. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6726. cb(sa_out, "sa_out", il);
  6727. cur = build_norm(sa_out,
  6728. model.layers[il].ffn_norm, NULL,
  6729. LLM_NORM_RMS, il);
  6730. cb(cur, "ffn_norm", il);
  6731. // feed-forward network
  6732. {
  6733. cur = build_ffn(cur,
  6734. model.layers[il].ffn_up, NULL, NULL,
  6735. model.layers[il].ffn_gate, NULL, NULL,
  6736. model.layers[il].ffn_down, NULL, NULL,
  6737. NULL,
  6738. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6739. cb(cur, "ffn_out", il);
  6740. }
  6741. cur = build_norm(cur,
  6742. model.layers[il].ffn_post_norm, NULL,
  6743. LLM_NORM_RMS, -1);
  6744. cb(cur, "ffn_post_norm", -1);
  6745. cur = ggml_add(ctx0, cur, sa_out);
  6746. cur = build_cvec(cur, il);
  6747. cb(cur, "l_out", il);
  6748. // input for next layer
  6749. inpL = cur;
  6750. }
  6751. cur = inpL;
  6752. cur = build_norm(cur,
  6753. model.output_norm, NULL,
  6754. LLM_NORM_RMS, -1);
  6755. cb(cur, "result_norm", -1);
  6756. res->t_embd = cur;
  6757. // lm_head
  6758. cur = build_lora_mm(model.output, cur);
  6759. // final logit soft-capping
  6760. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6761. cur = ggml_tanh(ctx0, cur);
  6762. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6763. cb(cur, "result_output", -1);
  6764. res->t_logits = cur;
  6765. ggml_build_forward_expand(gf, cur);
  6766. }
  6767. };
  6768. struct llm_build_gemma3 : public llm_graph_context {
  6769. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6770. const int64_t n_embd_head = hparams.n_embd_head_k;
  6771. ggml_tensor * cur;
  6772. ggml_tensor * inpL;
  6773. inpL = build_inp_embd(model.tok_embd);
  6774. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6775. if (ubatch.token) {
  6776. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6777. cb(inpL, "inp_scaled", -1);
  6778. }
  6779. // inp_pos - contains the positions
  6780. ggml_tensor * inp_pos = build_inp_pos();
  6781. // TODO: is causal == true correct? might need some changes
  6782. auto * inp_attn = build_attn_inp_kv_unified();
  6783. for (int il = 0; il < n_layer; ++il) {
  6784. const bool is_swa = hparams.is_swa(il);
  6785. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6786. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6787. // norm
  6788. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6789. cb(cur, "attn_norm", il);
  6790. // self-attention
  6791. {
  6792. // compute Q and K and RoPE them
  6793. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6794. cb(Qcur, "Qcur", il);
  6795. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6796. cb(Kcur, "Kcur", il);
  6797. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6798. cb(Vcur, "Vcur", il);
  6799. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6800. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6801. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6802. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6803. cb(Qcur, "Qcur_normed", il);
  6804. Qcur = ggml_rope_ext(
  6805. ctx0, Qcur, inp_pos, nullptr,
  6806. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6807. ext_factor, attn_factor, beta_fast, beta_slow);
  6808. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6809. cb(Kcur, "Kcur_normed", il);
  6810. Kcur = ggml_rope_ext(
  6811. ctx0, Kcur, inp_pos, nullptr,
  6812. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6813. ext_factor, attn_factor, beta_fast, beta_slow);
  6814. cb(Qcur, "Qcur", il);
  6815. cb(Kcur, "Kcur", il);
  6816. cb(Vcur, "Vcur", il);
  6817. cur = build_attn(inp_attn, gf,
  6818. model.layers[il].wo, NULL,
  6819. Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
  6820. }
  6821. cur = build_norm(cur,
  6822. model.layers[il].attn_post_norm, NULL,
  6823. LLM_NORM_RMS, il);
  6824. cb(cur, "attn_post_norm", il);
  6825. if (il == n_layer - 1) {
  6826. // skip computing output for unused tokens
  6827. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6828. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6829. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6830. }
  6831. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6832. cb(sa_out, "sa_out", il);
  6833. cur = build_norm(sa_out,
  6834. model.layers[il].ffn_norm, NULL,
  6835. LLM_NORM_RMS, il);
  6836. cb(cur, "ffn_norm", il);
  6837. // feed-forward network
  6838. {
  6839. cur = build_ffn(cur,
  6840. model.layers[il].ffn_up, NULL, NULL,
  6841. model.layers[il].ffn_gate, NULL, NULL,
  6842. model.layers[il].ffn_down, NULL, NULL,
  6843. NULL,
  6844. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6845. cb(cur, "ffn_out", il);
  6846. }
  6847. cur = build_norm(cur,
  6848. model.layers[il].ffn_post_norm, NULL,
  6849. LLM_NORM_RMS, -1);
  6850. cb(cur, "ffn_post_norm", -1);
  6851. cur = ggml_add(ctx0, cur, sa_out);
  6852. cur = build_cvec(cur, il);
  6853. cb(cur, "l_out", il);
  6854. // input for next layer
  6855. inpL = cur;
  6856. }
  6857. cur = inpL;
  6858. cur = build_norm(cur,
  6859. model.output_norm, NULL,
  6860. LLM_NORM_RMS, -1);
  6861. cb(cur, "result_norm", -1);
  6862. res->t_embd = cur;
  6863. // lm_head
  6864. cur = build_lora_mm(model.output, cur);
  6865. cb(cur, "result_output", -1);
  6866. res->t_logits = cur;
  6867. ggml_build_forward_expand(gf, cur);
  6868. }
  6869. };
  6870. // TODO: move up next to build_starcoder
  6871. struct llm_build_starcoder2 : public llm_graph_context {
  6872. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6873. const int64_t n_embd_head = hparams.n_embd_head_v;
  6874. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6875. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6876. ggml_tensor * cur;
  6877. ggml_tensor * inpL;
  6878. inpL = build_inp_embd(model.tok_embd);
  6879. // inp_pos - contains the positions
  6880. ggml_tensor * inp_pos = build_inp_pos();
  6881. auto * inp_attn = build_attn_inp_kv_unified();
  6882. for (int il = 0; il < n_layer; ++il) {
  6883. ggml_tensor * inpSA = inpL;
  6884. // norm
  6885. cur = build_norm(inpL,
  6886. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6887. LLM_NORM, il);
  6888. cb(cur, "attn_norm", il);
  6889. // self-attention
  6890. {
  6891. // compute Q and K and RoPE them
  6892. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6893. cb(Qcur, "Qcur", il);
  6894. if (model.layers[il].bq) {
  6895. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6896. cb(Qcur, "Qcur", il);
  6897. }
  6898. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6899. cb(Kcur, "Kcur", il);
  6900. if (model.layers[il].bk) {
  6901. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6902. cb(Kcur, "Kcur", il);
  6903. }
  6904. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6905. cb(Vcur, "Vcur", il);
  6906. if (model.layers[il].bv) {
  6907. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6908. cb(Vcur, "Vcur", il);
  6909. }
  6910. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6911. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6912. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6913. Qcur = ggml_rope_ext(
  6914. ctx0, Qcur, inp_pos, nullptr,
  6915. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6916. ext_factor, attn_factor, beta_fast, beta_slow
  6917. );
  6918. Kcur = ggml_rope_ext(
  6919. ctx0, Kcur, inp_pos, nullptr,
  6920. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6921. ext_factor, attn_factor, beta_fast, beta_slow
  6922. );
  6923. cb(Qcur, "Qcur", il);
  6924. cb(Kcur, "Kcur", il);
  6925. cb(Vcur, "Vcur", il);
  6926. cur = build_attn(inp_attn, gf,
  6927. model.layers[il].wo, model.layers[il].bo,
  6928. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6929. }
  6930. if (il == n_layer - 1) {
  6931. // skip computing output for unused tokens
  6932. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6933. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6934. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6935. }
  6936. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6937. cb(ffn_inp, "ffn_inp", il);
  6938. // feed-forward network
  6939. cur = build_norm(ffn_inp,
  6940. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6941. LLM_NORM, il);
  6942. cb(cur, "ffn_norm", il);
  6943. cur = build_ffn(cur,
  6944. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6945. NULL, NULL, NULL,
  6946. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6947. NULL,
  6948. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6949. cb(cur, "ffn_out", il);
  6950. cur = ggml_add(ctx0, cur, ffn_inp);
  6951. cur = build_cvec(cur, il);
  6952. cb(cur, "l_out", il);
  6953. // input for next layer
  6954. inpL = cur;
  6955. }
  6956. cur = inpL;
  6957. cur = build_norm(cur,
  6958. model.output_norm, model.output_norm_b,
  6959. LLM_NORM, -1);
  6960. cb(cur, "result_norm", -1);
  6961. res->t_embd = cur;
  6962. // lm_head
  6963. cur = build_lora_mm(model.output, cur);
  6964. cb(cur, "result_output", -1);
  6965. res->t_logits = cur;
  6966. ggml_build_forward_expand(gf, cur);
  6967. }
  6968. };
  6969. struct llm_build_mamba : public llm_graph_context {
  6970. const llama_model & model;
  6971. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6972. ggml_tensor * cur;
  6973. ggml_tensor * inpL;
  6974. // {n_embd, n_tokens}
  6975. inpL = build_inp_embd(model.tok_embd);
  6976. ggml_tensor * state_copy = build_inp_s_copy();
  6977. ggml_tensor * state_mask = build_inp_s_mask();
  6978. for (int il = 0; il < n_layer; ++il) {
  6979. // norm
  6980. cur = build_norm(inpL,
  6981. model.layers[il].attn_norm, NULL,
  6982. LLM_NORM_RMS, il);
  6983. cb(cur, "attn_norm", il);
  6984. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6985. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6986. if (il == n_layer - 1) {
  6987. // skip computing output for unused tokens
  6988. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6989. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6990. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6991. }
  6992. // residual
  6993. cur = ggml_add(ctx0, cur, inpL);
  6994. cur = build_cvec(cur, il);
  6995. cb(cur, "l_out", il);
  6996. // input for next layer
  6997. inpL = cur;
  6998. }
  6999. // final rmsnorm
  7000. cur = build_norm(inpL,
  7001. model.output_norm, NULL,
  7002. LLM_NORM_RMS, -1);
  7003. cb(cur, "result_norm", -1);
  7004. res->t_embd = cur;
  7005. // lm_head
  7006. cur = build_lora_mm(model.output, cur);
  7007. cb(cur, "result_output", -1);
  7008. res->t_logits = cur;
  7009. ggml_build_forward_expand(gf, cur);
  7010. }
  7011. // TODO: split
  7012. ggml_tensor * build_mamba_layer(
  7013. ggml_cgraph * gf,
  7014. ggml_tensor * cur,
  7015. ggml_tensor * state_copy,
  7016. ggml_tensor * state_mask,
  7017. const llama_ubatch & ubatch,
  7018. int il) const {
  7019. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  7020. const auto kv_head = kv_self->head;
  7021. const int64_t d_conv = hparams.ssm_d_conv;
  7022. const int64_t d_inner = hparams.ssm_d_inner;
  7023. const int64_t d_state = hparams.ssm_d_state;
  7024. const int64_t dt_rank = hparams.ssm_dt_rank;
  7025. const int64_t n_seqs = ubatch.n_seqs;
  7026. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  7027. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  7028. // Use the same RMS norm as the final layer norm
  7029. const float norm_rms_eps = hparams.f_norm_rms_eps;
  7030. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  7031. GGML_ASSERT(n_seqs != 0);
  7032. GGML_ASSERT(ubatch.equal_seqs);
  7033. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7034. ggml_tensor * conv_states_all = kv_self->k_l[il];
  7035. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  7036. // (ab)using the KV cache to store the states
  7037. ggml_tensor * conv = build_copy_mask_state(
  7038. gf, conv_states_all, state_copy, state_mask,
  7039. hparams.n_embd_k_s(), n_seqs);
  7040. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7041. ggml_tensor * ssm = build_copy_mask_state(
  7042. gf, ssm_states_all, state_copy, state_mask,
  7043. hparams.n_embd_v_s(), n_seqs);
  7044. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7045. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7046. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7047. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7048. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7049. // split the above in two
  7050. // => {d_inner, n_seq_tokens, n_seqs}
  7051. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7052. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7053. // conv
  7054. {
  7055. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7056. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7057. // copy last (d_conv - 1) columns back into the state cache
  7058. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7059. ggml_build_forward_expand(gf,
  7060. ggml_cpy(ctx0, last_conv,
  7061. ggml_view_1d(ctx0, conv_states_all,
  7062. (d_conv - 1)*(d_inner)*(n_seqs),
  7063. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7064. // 1D convolution
  7065. // The equivalent is to make a self-overlapping view of conv_x
  7066. // over d_conv columns at each stride in the 3rd dimension,
  7067. // then element-wise multiply that with the conv1d weight,
  7068. // then sum the elements of each row,
  7069. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7070. // then permute away the ne[0] dimension,
  7071. // and then you're left with the resulting x tensor.
  7072. // For simultaneous sequences, all sequences need to have the same length.
  7073. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7074. // bias
  7075. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7076. x = ggml_silu(ctx0, x);
  7077. }
  7078. // ssm
  7079. {
  7080. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7081. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7082. // split
  7083. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7084. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7085. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7086. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7087. if (ssm_dt_b_c_rms) {
  7088. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7089. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7090. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7091. }
  7092. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7093. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7094. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7095. // Custom operator to optimize the parallel associative scan
  7096. // as described in the Annex D of the Mamba paper.
  7097. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7098. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7099. // store last states
  7100. ggml_build_forward_expand(gf,
  7101. ggml_cpy(ctx0,
  7102. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7103. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7104. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7105. // TODO: skip computing output earlier for unused tokens
  7106. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7107. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7108. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7109. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7110. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7111. }
  7112. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7113. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7114. //cb(cur, "mamba_out", il);
  7115. return cur;
  7116. }
  7117. };
  7118. struct llm_build_command_r : public llm_graph_context {
  7119. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7120. const int64_t n_embd_head = hparams.n_embd_head_v;
  7121. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7122. const float f_logit_scale = hparams.f_logit_scale;
  7123. ggml_tensor * cur;
  7124. ggml_tensor * inpL;
  7125. inpL = build_inp_embd(model.tok_embd);
  7126. // inp_pos - contains the positions
  7127. ggml_tensor * inp_pos = build_inp_pos();
  7128. auto * inp_attn = build_attn_inp_kv_unified();
  7129. for (int il = 0; il < n_layer; ++il) {
  7130. // norm
  7131. cur = build_norm(inpL,
  7132. model.layers[il].attn_norm, NULL,
  7133. LLM_NORM, il);
  7134. cb(cur, "attn_norm", il);
  7135. ggml_tensor * ffn_inp = cur;
  7136. // self-attention
  7137. {
  7138. // compute Q and K and RoPE them
  7139. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7140. cb(Qcur, "Qcur", il);
  7141. if (model.layers[il].bq) {
  7142. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7143. cb(Qcur, "Qcur", il);
  7144. }
  7145. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7146. cb(Kcur, "Kcur", il);
  7147. if (model.layers[il].bk) {
  7148. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7149. cb(Kcur, "Kcur", il);
  7150. }
  7151. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7152. cb(Vcur, "Vcur", il);
  7153. if (model.layers[il].bv) {
  7154. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7155. cb(Vcur, "Vcur", il);
  7156. }
  7157. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7158. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7159. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7160. if (model.layers[il].attn_q_norm) {
  7161. Qcur = build_norm(Qcur,
  7162. model.layers[il].attn_q_norm,
  7163. NULL,
  7164. LLM_NORM, il);
  7165. cb(Qcur, "Qcur", il);
  7166. }
  7167. Qcur = ggml_rope_ext(
  7168. ctx0, Qcur, inp_pos, nullptr,
  7169. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7170. ext_factor, attn_factor, beta_fast, beta_slow
  7171. );
  7172. if (model.layers[il].attn_k_norm) {
  7173. Kcur = build_norm(Kcur,
  7174. model.layers[il].attn_k_norm,
  7175. NULL,
  7176. LLM_NORM, il);
  7177. cb(Kcur, "Kcur", il);
  7178. }
  7179. Kcur = ggml_rope_ext(
  7180. ctx0, Kcur, inp_pos, nullptr,
  7181. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7182. ext_factor, attn_factor, beta_fast, beta_slow
  7183. );
  7184. cb(Qcur, "Qcur", il);
  7185. cb(Kcur, "Kcur", il);
  7186. cb(Vcur, "Vcur", il);
  7187. cur = build_attn(inp_attn, gf,
  7188. model.layers[il].wo, model.layers[il].bo,
  7189. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7190. }
  7191. if (il == n_layer - 1) {
  7192. // skip computing output for unused tokens
  7193. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7194. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7195. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7196. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7197. }
  7198. ggml_tensor * attn_out = cur;
  7199. // feed-forward network
  7200. {
  7201. cur = build_ffn(ffn_inp,
  7202. model.layers[il].ffn_up, NULL, NULL,
  7203. model.layers[il].ffn_gate, NULL, NULL,
  7204. model.layers[il].ffn_down, NULL, NULL,
  7205. NULL,
  7206. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7207. cb(cur, "ffn_out", il);
  7208. }
  7209. // add together residual + FFN + self-attention
  7210. cur = ggml_add(ctx0, cur, inpL);
  7211. cur = ggml_add(ctx0, cur, attn_out);
  7212. cur = build_cvec(cur, il);
  7213. cb(cur, "l_out", il);
  7214. // input for next layer
  7215. inpL = cur;
  7216. }
  7217. cur = inpL;
  7218. cur = build_norm(cur,
  7219. model.output_norm, NULL,
  7220. LLM_NORM, -1);
  7221. cb(cur, "result_norm", -1);
  7222. res->t_embd = cur;
  7223. // lm_head
  7224. cur = build_lora_mm(model.output, cur);
  7225. if (f_logit_scale) {
  7226. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7227. }
  7228. cb(cur, "result_output", -1);
  7229. res->t_logits = cur;
  7230. ggml_build_forward_expand(gf, cur);
  7231. }
  7232. };
  7233. struct llm_build_cohere2 : public llm_graph_context {
  7234. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7235. const int64_t n_embd_head = hparams.n_embd_head_v;
  7236. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7237. const float f_logit_scale = hparams.f_logit_scale;
  7238. ggml_tensor * cur;
  7239. ggml_tensor * inpL;
  7240. inpL = build_inp_embd(model.tok_embd);
  7241. // inp_pos - contains the positions
  7242. ggml_tensor * inp_pos = build_inp_pos();
  7243. auto * inp_attn = build_attn_inp_kv_unified();
  7244. for (int il = 0; il < n_layer; ++il) {
  7245. const bool is_swa = hparams.is_swa(il);
  7246. // norm
  7247. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7248. cb(cur, "attn_norm", il);
  7249. ggml_tensor * ffn_inp = cur;
  7250. // self-attention
  7251. {
  7252. // rope freq factors for 128k context
  7253. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7254. // compute Q and K and RoPE them
  7255. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7256. cb(Qcur, "Qcur", il);
  7257. if (model.layers[il].bq) {
  7258. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7259. cb(Qcur, "Qcur", il);
  7260. }
  7261. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7262. cb(Kcur, "Kcur", il);
  7263. if (model.layers[il].bk) {
  7264. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7265. cb(Kcur, "Kcur", il);
  7266. }
  7267. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7268. cb(Vcur, "Vcur", il);
  7269. if (model.layers[il].bv) {
  7270. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7271. cb(Vcur, "Vcur", il);
  7272. }
  7273. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7274. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7275. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7276. if (is_swa) {
  7277. Qcur = ggml_rope_ext(
  7278. ctx0, Qcur, inp_pos, rope_factors,
  7279. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7280. ext_factor, attn_factor, beta_fast, beta_slow
  7281. );
  7282. Kcur = ggml_rope_ext(
  7283. ctx0, Kcur, inp_pos, rope_factors,
  7284. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7285. ext_factor, attn_factor, beta_fast, beta_slow
  7286. );
  7287. }
  7288. cb(Qcur, "Qcur", il);
  7289. cb(Kcur, "Kcur", il);
  7290. cb(Vcur, "Vcur", il);
  7291. cur = build_attn(inp_attn, gf,
  7292. model.layers[il].wo, model.layers[il].bo,
  7293. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7294. }
  7295. if (il == n_layer - 1) {
  7296. // skip computing output for unused tokens
  7297. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7298. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7299. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7300. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7301. }
  7302. ggml_tensor * attn_out = cur;
  7303. // feed-forward network
  7304. {
  7305. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7306. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7307. il);
  7308. cb(cur, "ffn_out", il);
  7309. }
  7310. // add together residual + FFN + self-attention
  7311. cur = ggml_add(ctx0, cur, inpL);
  7312. cur = ggml_add(ctx0, cur, attn_out);
  7313. cur = build_cvec(cur, il);
  7314. cb(cur, "l_out", il);
  7315. // input for next layer
  7316. inpL = cur;
  7317. }
  7318. cur = inpL;
  7319. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7320. cb(cur, "result_norm", -1);
  7321. res->t_embd = cur;
  7322. // lm_head
  7323. cur = build_lora_mm(model.output, cur);
  7324. if (f_logit_scale) {
  7325. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7326. }
  7327. cb(cur, "result_output", -1);
  7328. res->t_logits = cur;
  7329. ggml_build_forward_expand(gf, cur);
  7330. }
  7331. };
  7332. // ref: https://allenai.org/olmo
  7333. // based on the original build_llama() function, changes:
  7334. // * non-parametric layer norm
  7335. // * clamp qkv
  7336. // * removed bias
  7337. // * removed MoE
  7338. struct llm_build_olmo : public llm_graph_context {
  7339. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7340. const int64_t n_embd_head = hparams.n_embd_head_v;
  7341. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7342. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7343. ggml_tensor * cur;
  7344. ggml_tensor * inpL;
  7345. inpL = build_inp_embd(model.tok_embd);
  7346. // inp_pos - contains the positions
  7347. ggml_tensor * inp_pos = build_inp_pos();
  7348. auto * inp_attn = build_attn_inp_kv_unified();
  7349. for (int il = 0; il < n_layer; ++il) {
  7350. ggml_tensor * inpSA = inpL;
  7351. // norm
  7352. cur = build_norm(inpL,
  7353. NULL, NULL,
  7354. LLM_NORM, il);
  7355. cb(cur, "attn_norm", il);
  7356. // self-attention
  7357. {
  7358. // compute Q and K and RoPE them
  7359. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7360. cb(Qcur, "Qcur", il);
  7361. if (hparams.f_clamp_kqv > 0.0f) {
  7362. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7363. cb(Qcur, "Qcur", il);
  7364. }
  7365. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7366. cb(Kcur, "Kcur", il);
  7367. if (hparams.f_clamp_kqv > 0.0f) {
  7368. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7369. cb(Kcur, "Kcur", il);
  7370. }
  7371. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7372. cb(Vcur, "Vcur", il);
  7373. if (hparams.f_clamp_kqv > 0.0f) {
  7374. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7375. cb(Vcur, "Vcur", il);
  7376. }
  7377. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7378. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7379. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7380. Qcur = ggml_rope_ext(
  7381. ctx0, Qcur, inp_pos, nullptr,
  7382. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7383. ext_factor, attn_factor, beta_fast, beta_slow
  7384. );
  7385. Kcur = ggml_rope_ext(
  7386. ctx0, Kcur, inp_pos, nullptr,
  7387. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7388. ext_factor, attn_factor, beta_fast, beta_slow
  7389. );
  7390. cb(Qcur, "Qcur", il);
  7391. cb(Kcur, "Kcur", il);
  7392. cb(Vcur, "Vcur", il);
  7393. cur = build_attn(inp_attn, gf,
  7394. model.layers[il].wo, nullptr,
  7395. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7396. }
  7397. if (il == n_layer - 1) {
  7398. // skip computing output for unused tokens
  7399. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7400. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7401. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7402. }
  7403. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7404. cb(ffn_inp, "ffn_inp", il);
  7405. // feed-forward network
  7406. cur = build_norm(ffn_inp,
  7407. NULL, NULL,
  7408. LLM_NORM, il);
  7409. cb(cur, "ffn_norm", il);
  7410. cur = build_ffn(cur,
  7411. model.layers[il].ffn_up, NULL, NULL,
  7412. model.layers[il].ffn_gate, NULL, NULL,
  7413. model.layers[il].ffn_down, NULL, NULL,
  7414. NULL,
  7415. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7416. cb(cur, "ffn_out", il);
  7417. cur = ggml_add(ctx0, cur, ffn_inp);
  7418. cb(cur, "ffn_out", il);
  7419. cur = build_cvec(cur, il);
  7420. cb(cur, "l_out", il);
  7421. // input for next layer
  7422. inpL = cur;
  7423. }
  7424. cur = inpL;
  7425. cur = build_norm(cur,
  7426. NULL, NULL,
  7427. LLM_NORM, -1);
  7428. cb(cur, "result_norm", -1);
  7429. res->t_embd = cur;
  7430. // lm_head
  7431. cur = build_lora_mm(model.output, cur);
  7432. cb(cur, "result_output", -1);
  7433. res->t_logits = cur;
  7434. ggml_build_forward_expand(gf, cur);
  7435. }
  7436. };
  7437. struct llm_build_olmo2 : public llm_graph_context {
  7438. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7439. const int64_t n_embd_head = hparams.n_embd_head_v;
  7440. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7441. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7442. ggml_tensor * cur;
  7443. ggml_tensor * inpL;
  7444. inpL = build_inp_embd(model.tok_embd);
  7445. // inp_pos - contains the positions
  7446. ggml_tensor * inp_pos = build_inp_pos();
  7447. auto * inp_attn = build_attn_inp_kv_unified();
  7448. for (int il = 0; il < n_layer; ++il) {
  7449. ggml_tensor * inpSA = inpL;
  7450. cur = inpL;
  7451. // self_attention
  7452. {
  7453. // compute Q and K and RoPE them
  7454. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7455. cb(Qcur, "Qcur", il);
  7456. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7457. cb(Kcur, "Kcur", il);
  7458. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7459. cb(Vcur, "Vcur", il);
  7460. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7461. LLM_NORM_RMS, il);
  7462. cb(Qcur, "Qcur_normed", il);
  7463. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7464. LLM_NORM_RMS, il);
  7465. cb(Kcur, "Kcur_normed", il);
  7466. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7467. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7468. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7469. Qcur = ggml_rope_ext(
  7470. ctx0, Qcur, inp_pos, nullptr,
  7471. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7472. ext_factor, attn_factor, beta_fast, beta_slow
  7473. );
  7474. Kcur = ggml_rope_ext(
  7475. ctx0, Kcur, inp_pos, nullptr,
  7476. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7477. ext_factor, attn_factor, beta_fast, beta_slow
  7478. );
  7479. cb(Qcur, "Qcur", il);
  7480. cb(Kcur, "Kcur", il);
  7481. cb(Vcur, "Vcur", il);
  7482. cur = build_attn(inp_attn, gf,
  7483. model.layers[il].wo, NULL,
  7484. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7485. }
  7486. cur = build_norm(cur,
  7487. model.layers[il].attn_post_norm, NULL,
  7488. LLM_NORM_RMS, il);
  7489. cb(cur, "attn_post_norm", il);
  7490. if (il == n_layer - 1) {
  7491. // skip computing output for unused tokens
  7492. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7493. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7494. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7495. }
  7496. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7497. cb(ffn_inp, "ffn_inp", il);
  7498. // feed-forward network
  7499. cur = build_ffn(ffn_inp,
  7500. model.layers[il].ffn_up, NULL, NULL,
  7501. model.layers[il].ffn_gate, NULL, NULL,
  7502. model.layers[il].ffn_down, NULL, NULL,
  7503. NULL,
  7504. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7505. cb(cur, "ffn_out", il);
  7506. cur = build_norm(cur,
  7507. model.layers[il].ffn_post_norm, NULL,
  7508. LLM_NORM_RMS, -1);
  7509. cb(cur, "ffn_post_norm", -1);
  7510. cur = ggml_add(ctx0, cur, ffn_inp);
  7511. cb(cur, "ffn_out", il);
  7512. cur = build_cvec(cur, il);
  7513. cb(cur, "l_out", il);
  7514. // input for next layer
  7515. inpL = cur;
  7516. }
  7517. cur = inpL;
  7518. cur = build_norm(cur,
  7519. model.output_norm, NULL,
  7520. LLM_NORM_RMS, -1);
  7521. cb(cur, "result_norm", -1);
  7522. res->t_embd = cur;
  7523. // lm_head
  7524. cur = build_lora_mm(model.output, cur);
  7525. cb(cur, "result_output", -1);
  7526. res->t_logits = cur;
  7527. ggml_build_forward_expand(gf, cur);
  7528. }
  7529. };
  7530. // based on the build_qwen2moe() function, changes:
  7531. // * removed shared experts
  7532. // * removed bias
  7533. // * added q, k norm
  7534. struct llm_build_olmoe : public llm_graph_context {
  7535. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7536. const int64_t n_embd_head = hparams.n_embd_head_v;
  7537. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7538. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7539. ggml_tensor * cur;
  7540. ggml_tensor * inpL;
  7541. inpL = build_inp_embd(model.tok_embd);
  7542. // inp_pos - contains the positions
  7543. ggml_tensor * inp_pos = build_inp_pos();
  7544. auto * inp_attn = build_attn_inp_kv_unified();
  7545. for (int il = 0; il < n_layer; ++il) {
  7546. ggml_tensor * inpSA = inpL;
  7547. // norm
  7548. cur = build_norm(inpL,
  7549. model.layers[il].attn_norm, NULL,
  7550. LLM_NORM_RMS, il);
  7551. cb(cur, "attn_norm", il);
  7552. // self_attention
  7553. {
  7554. // compute Q and K and RoPE them
  7555. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7556. cb(Qcur, "Qcur", il);
  7557. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7558. cb(Kcur, "Kcur", il);
  7559. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7560. cb(Vcur, "Vcur", il);
  7561. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7562. LLM_NORM_RMS, il);
  7563. cb(Qcur, "Qcur_normed", il);
  7564. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7565. LLM_NORM_RMS, il);
  7566. cb(Kcur, "Kcur_normed", il);
  7567. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7568. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7569. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7570. Qcur = ggml_rope_ext(
  7571. ctx0, Qcur, inp_pos, nullptr,
  7572. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7573. ext_factor, attn_factor, beta_fast, beta_slow
  7574. );
  7575. Kcur = ggml_rope_ext(
  7576. ctx0, Kcur, inp_pos, nullptr,
  7577. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7578. ext_factor, attn_factor, beta_fast, beta_slow
  7579. );
  7580. cb(Qcur, "Qcur", il);
  7581. cb(Kcur, "Kcur", il);
  7582. cb(Vcur, "Vcur", il);
  7583. cur = build_attn(inp_attn, gf,
  7584. model.layers[il].wo, NULL,
  7585. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7586. }
  7587. if (il == n_layer - 1) {
  7588. // skip computing output for unused tokens
  7589. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7590. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7591. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7592. }
  7593. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7594. cb(ffn_inp, "ffn_inp", il);
  7595. // MoE branch
  7596. cur = build_norm(ffn_inp,
  7597. model.layers[il].ffn_norm, NULL,
  7598. LLM_NORM_RMS, il);
  7599. cb(cur, "ffn_norm", il);
  7600. cur = build_moe_ffn(cur,
  7601. model.layers[il].ffn_gate_inp,
  7602. model.layers[il].ffn_up_exps,
  7603. model.layers[il].ffn_gate_exps,
  7604. model.layers[il].ffn_down_exps,
  7605. nullptr,
  7606. n_expert, n_expert_used,
  7607. LLM_FFN_SILU, false,
  7608. false, 0.0,
  7609. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7610. il);
  7611. cb(cur, "ffn_moe_out", il);
  7612. cur = ggml_add(ctx0, cur, ffn_inp);
  7613. cur = build_cvec(cur, il);
  7614. cb(cur, "l_out", il);
  7615. // input for next layer
  7616. inpL = cur;
  7617. }
  7618. cur = inpL;
  7619. cur = build_norm(cur,
  7620. model.output_norm, NULL,
  7621. LLM_NORM_RMS, -1);
  7622. cb(cur, "result_norm", -1);
  7623. res->t_embd = cur;
  7624. // lm_head
  7625. cur = build_lora_mm(model.output, cur);
  7626. cb(cur, "result_output", -1);
  7627. res->t_logits = cur;
  7628. ggml_build_forward_expand(gf, cur);
  7629. }
  7630. };
  7631. struct llm_build_openelm : public llm_graph_context {
  7632. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7633. const int64_t n_embd_head = hparams.n_embd_head_v;
  7634. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7635. ggml_tensor * cur;
  7636. ggml_tensor * inpL;
  7637. inpL = build_inp_embd(model.tok_embd);
  7638. // inp_pos - contains the positions
  7639. ggml_tensor * inp_pos = build_inp_pos();
  7640. auto * inp_attn = build_attn_inp_kv_unified();
  7641. for (int il = 0; il < n_layer; ++il) {
  7642. const int64_t n_head = hparams.n_head(il);
  7643. const int64_t n_head_kv = hparams.n_head_kv(il);
  7644. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7645. cur = inpL;
  7646. ggml_tensor * residual = cur;
  7647. // norm
  7648. cur = build_norm(inpL,
  7649. model.layers[il].attn_norm, NULL,
  7650. LLM_NORM_RMS, il);
  7651. cb(cur, "attn_norm", il);
  7652. // self-attention
  7653. {
  7654. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7655. cb(cur, "wqkv", il);
  7656. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7657. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7658. cb(Qcur, "Qcur", il);
  7659. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7660. cb(Kcur, "Kcur", il);
  7661. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7662. cb(Vcur, "Vcur", il);
  7663. Qcur = build_norm(Qcur,
  7664. model.layers[il].attn_q_norm, NULL,
  7665. LLM_NORM_RMS, il);
  7666. cb(Qcur, "Qcur", il);
  7667. Kcur = build_norm(Kcur,
  7668. model.layers[il].attn_k_norm, NULL,
  7669. LLM_NORM_RMS, il);
  7670. cb(Kcur, "Kcur", il);
  7671. Qcur = ggml_rope_ext(
  7672. ctx0, Qcur, inp_pos, NULL,
  7673. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7674. ext_factor, attn_factor, beta_fast, beta_slow
  7675. );
  7676. Kcur = ggml_rope_ext(
  7677. ctx0, Kcur, inp_pos, NULL,
  7678. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7679. ext_factor, attn_factor, beta_fast, beta_slow
  7680. );
  7681. cb(Qcur, "Qcur", il);
  7682. cb(Kcur, "Kcur", il);
  7683. cb(Qcur, "Vcur", il);
  7684. cur = build_attn(inp_attn, gf,
  7685. model.layers[il].wo, NULL,
  7686. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7687. }
  7688. if (il == n_layer - 1) {
  7689. // skip computing output for unused tokens
  7690. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7691. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7692. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7693. }
  7694. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7695. cb(ffn_inp, "ffn_inp", il);
  7696. // feed-forward network
  7697. {
  7698. cur = build_norm(ffn_inp,
  7699. model.layers[il].ffn_norm, NULL,
  7700. LLM_NORM_RMS, il);
  7701. cb(cur, "ffn_norm", il);
  7702. cur = build_ffn(cur,
  7703. model.layers[il].ffn_up, NULL, NULL,
  7704. model.layers[il].ffn_gate, NULL, NULL,
  7705. model.layers[il].ffn_down, NULL, NULL,
  7706. NULL,
  7707. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7708. cb(cur, "ffn_out", il);
  7709. }
  7710. cur = ggml_add(ctx0, cur, ffn_inp);
  7711. cur = build_cvec(cur, il);
  7712. cb(cur, "l_out", il);
  7713. inpL = cur;
  7714. }
  7715. cur = inpL;
  7716. // norm
  7717. cur = build_norm(cur,
  7718. model.output_norm, NULL,
  7719. LLM_NORM_RMS, -1);
  7720. cb(cur, "result_norm", -1);
  7721. res->t_embd = cur;
  7722. cur = build_lora_mm(model.output, cur);
  7723. cb(cur, "result_output", -1);
  7724. res->t_logits = cur;
  7725. ggml_build_forward_expand(gf, cur);
  7726. }
  7727. };
  7728. struct llm_build_gptneox : public llm_graph_context {
  7729. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7730. const int64_t n_embd_head = hparams.n_embd_head_v;
  7731. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7732. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7733. ggml_tensor * cur;
  7734. ggml_tensor * inpL;
  7735. inpL = build_inp_embd(model.tok_embd);
  7736. // inp_pos - contains the positions
  7737. ggml_tensor * inp_pos = build_inp_pos();
  7738. auto * inp_attn = build_attn_inp_kv_unified();
  7739. for (int il = 0; il < n_layer; ++il) {
  7740. cur = build_norm(inpL,
  7741. model.layers[il].attn_norm,
  7742. model.layers[il].attn_norm_b,
  7743. LLM_NORM, il);
  7744. cb(cur, "attn_norm", il);
  7745. // self-attention
  7746. {
  7747. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7748. cb(cur, "wqkv", il);
  7749. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7750. cb(cur, "bqkv", il);
  7751. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7752. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7753. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7754. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7755. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7756. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7757. Qcur = ggml_rope_ext(
  7758. ctx0, Qcur, inp_pos, nullptr,
  7759. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7760. ext_factor, attn_factor, beta_fast, beta_slow
  7761. );
  7762. Kcur = ggml_rope_ext(
  7763. ctx0, Kcur, inp_pos, nullptr,
  7764. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7765. ext_factor, attn_factor, beta_fast, beta_slow
  7766. );
  7767. cb(Qcur, "Qcur", il);
  7768. cb(Kcur, "Kcur", il);
  7769. cb(Vcur, "Vcur", il);
  7770. cur = build_attn(inp_attn, gf,
  7771. model.layers[il].wo, model.layers[il].bo,
  7772. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7773. }
  7774. if (il == n_layer - 1) {
  7775. // skip computing output for unused tokens
  7776. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7777. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7778. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7779. }
  7780. // ffn
  7781. if (hparams.use_par_res) {
  7782. // attention and ffn are computed in parallel
  7783. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7784. ggml_tensor * attn_out = cur;
  7785. cur = build_norm(inpL,
  7786. model.layers[il].ffn_norm,
  7787. model.layers[il].ffn_norm_b,
  7788. LLM_NORM, il);
  7789. cb(cur, "ffn_norm", il);
  7790. cur = build_ffn(cur,
  7791. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7792. NULL, NULL, NULL,
  7793. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7794. NULL,
  7795. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7796. cb(cur, "ffn_out", il);
  7797. cur = ggml_add(ctx0, cur, inpL);
  7798. cb(cur, "ffn_out", il);
  7799. cur = ggml_add(ctx0, cur, attn_out);
  7800. cur = build_cvec(cur, il);
  7801. cb(cur, "l_out", il);
  7802. // input for next layer
  7803. inpL = cur;
  7804. } else {
  7805. // attention and ffn are computed sequentially
  7806. // x = x + attn(ln1(x))
  7807. // x = x + ffn(ln2(x))
  7808. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7809. cb(ffn_inp, "ffn_inp", il);
  7810. cur = build_norm(ffn_inp,
  7811. model.layers[il].ffn_norm,
  7812. model.layers[il].ffn_norm_b,
  7813. LLM_NORM, il);
  7814. cb(cur, "ffn_norm", il);
  7815. cur = build_ffn(cur,
  7816. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7817. NULL, NULL, NULL,
  7818. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7819. NULL,
  7820. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7821. cb(cur, "ffn_out", il);
  7822. cur = ggml_add(ctx0, cur, ffn_inp);
  7823. cur = build_cvec(cur, il);
  7824. cb(cur, "l_out", il);
  7825. // input for next layer
  7826. inpL = cur;
  7827. }
  7828. }
  7829. cur = build_norm(inpL,
  7830. model.output_norm,
  7831. model.output_norm_b,
  7832. LLM_NORM, -1);
  7833. cb(cur, "result_norm", -1);
  7834. res->t_embd = cur;
  7835. cur = build_lora_mm(model.output, cur);
  7836. cb(cur, "result_output", -1);
  7837. res->t_logits = cur;
  7838. ggml_build_forward_expand(gf, cur);
  7839. }
  7840. };
  7841. struct llm_build_arctic : public llm_graph_context {
  7842. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7843. const int64_t n_embd_head = hparams.n_embd_head_v;
  7844. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7845. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7846. ggml_tensor * cur;
  7847. ggml_tensor * inpL;
  7848. inpL = build_inp_embd(model.tok_embd);
  7849. // inp_pos - contains the positions
  7850. ggml_tensor * inp_pos = build_inp_pos();
  7851. auto * inp_attn = build_attn_inp_kv_unified();
  7852. for (int il = 0; il < n_layer; ++il) {
  7853. ggml_tensor * inpSA = inpL;
  7854. // norm
  7855. cur = build_norm(inpL,
  7856. model.layers[il].attn_norm, NULL,
  7857. LLM_NORM_RMS, il);
  7858. cb(cur, "attn_norm", il);
  7859. // self-attention
  7860. {
  7861. // compute Q and K and RoPE them
  7862. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7863. cb(Qcur, "Qcur", il);
  7864. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7865. cb(Kcur, "Kcur", il);
  7866. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7867. cb(Vcur, "Vcur", il);
  7868. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7869. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7870. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7871. Qcur = ggml_rope_ext(
  7872. ctx0, Qcur, inp_pos, nullptr,
  7873. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7874. ext_factor, attn_factor, beta_fast, beta_slow
  7875. );
  7876. Kcur = ggml_rope_ext(
  7877. ctx0, Kcur, inp_pos, nullptr,
  7878. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7879. ext_factor, attn_factor, beta_fast, beta_slow
  7880. );
  7881. cb(Qcur, "Qcur", il);
  7882. cb(Kcur, "Kcur", il);
  7883. cb(Vcur, "Vcur", il);
  7884. cur = build_attn(inp_attn, gf,
  7885. model.layers[il].wo, NULL,
  7886. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7887. }
  7888. if (il == n_layer - 1) {
  7889. // skip computing output for unused tokens
  7890. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7891. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7892. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7893. }
  7894. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7895. cb(ffn_inp, "ffn_inp", il);
  7896. // feed-forward network
  7897. cur = build_norm(ffn_inp,
  7898. model.layers[il].ffn_norm, NULL,
  7899. LLM_NORM_RMS, il);
  7900. cb(cur, "ffn_norm", il);
  7901. cur = build_ffn(cur,
  7902. model.layers[il].ffn_up, NULL, NULL,
  7903. model.layers[il].ffn_gate, NULL, NULL,
  7904. model.layers[il].ffn_down, NULL, NULL,
  7905. NULL,
  7906. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7907. cb(cur, "ffn_out", il);
  7908. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7909. cb(ffn_out, "ffn_out", il);
  7910. // MoE
  7911. cur = build_norm(inpSA,
  7912. model.layers[il].ffn_norm_exps, NULL,
  7913. LLM_NORM_RMS, il);
  7914. cb(cur, "ffn_norm_exps", il);
  7915. cur = build_moe_ffn(cur,
  7916. model.layers[il].ffn_gate_inp,
  7917. model.layers[il].ffn_up_exps,
  7918. model.layers[il].ffn_gate_exps,
  7919. model.layers[il].ffn_down_exps,
  7920. nullptr,
  7921. n_expert, n_expert_used,
  7922. LLM_FFN_SILU, true,
  7923. false, 0.0,
  7924. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7925. il);
  7926. cb(cur, "ffn_moe_out", il);
  7927. cur = ggml_add(ctx0, cur, ffn_out);
  7928. cb(cur, "ffn_out", il);
  7929. cur = build_cvec(cur, il);
  7930. cb(cur, "l_out", il);
  7931. // input for next layer
  7932. inpL = cur;
  7933. }
  7934. cur = inpL;
  7935. cur = build_norm(cur,
  7936. model.output_norm, NULL,
  7937. LLM_NORM_RMS, -1);
  7938. cb(cur, "result_norm", -1);
  7939. res->t_embd = cur;
  7940. // lm_head
  7941. cur = build_lora_mm(model.output, cur);
  7942. cb(cur, "result_output", -1);
  7943. res->t_logits = cur;
  7944. ggml_build_forward_expand(gf, cur);
  7945. }
  7946. };
  7947. struct llm_build_deepseek : public llm_graph_context {
  7948. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7949. const int64_t n_embd_head = hparams.n_embd_head_v;
  7950. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7951. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7952. ggml_tensor * cur;
  7953. ggml_tensor * inpL;
  7954. inpL = build_inp_embd(model.tok_embd);
  7955. // inp_pos - contains the positions
  7956. ggml_tensor * inp_pos = build_inp_pos();
  7957. auto * inp_attn = build_attn_inp_kv_unified();
  7958. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7959. for (int il = 0; il < n_layer; ++il) {
  7960. ggml_tensor * inpSA = inpL;
  7961. // norm
  7962. cur = build_norm(inpL,
  7963. model.layers[il].attn_norm, NULL,
  7964. LLM_NORM_RMS, il);
  7965. cb(cur, "attn_norm", il);
  7966. // self-attention
  7967. {
  7968. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7969. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  7970. // compute Q and K and RoPE them
  7971. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7972. cb(Qcur, "Qcur", il);
  7973. if (model.layers[il].bq) {
  7974. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7975. cb(Qcur, "Qcur", il);
  7976. }
  7977. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7978. cb(Kcur, "Kcur", il);
  7979. if (model.layers[il].bk) {
  7980. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7981. cb(Kcur, "Kcur", il);
  7982. }
  7983. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7984. cb(Vcur, "Vcur", il);
  7985. if (model.layers[il].bv) {
  7986. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7987. cb(Vcur, "Vcur", il);
  7988. }
  7989. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7990. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7991. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7992. Qcur = ggml_rope_ext(
  7993. ctx0, Qcur, inp_pos, rope_factors,
  7994. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7995. ext_factor, attn_factor, beta_fast, beta_slow
  7996. );
  7997. Kcur = ggml_rope_ext(
  7998. ctx0, Kcur, inp_pos, rope_factors,
  7999. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8000. ext_factor, attn_factor, beta_fast, beta_slow
  8001. );
  8002. cb(Qcur, "Qcur", il);
  8003. cb(Kcur, "Kcur", il);
  8004. cb(Vcur, "Vcur", il);
  8005. cur = build_attn(inp_attn, gf,
  8006. model.layers[il].wo, model.layers[il].bo,
  8007. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8008. }
  8009. if (il == n_layer - 1) {
  8010. // skip computing output for unused tokens
  8011. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8012. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8013. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8014. }
  8015. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8016. cb(ffn_inp, "ffn_inp", il);
  8017. cur = build_norm(ffn_inp,
  8018. model.layers[il].ffn_norm, NULL,
  8019. LLM_NORM_RMS, il);
  8020. cb(cur, "ffn_norm", il);
  8021. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8022. cur = build_ffn(cur,
  8023. model.layers[il].ffn_up, NULL, NULL,
  8024. model.layers[il].ffn_gate, NULL, NULL,
  8025. model.layers[il].ffn_down, NULL, NULL,
  8026. NULL,
  8027. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8028. cb(cur, "ffn_out", il);
  8029. } else {
  8030. // MoE branch
  8031. ggml_tensor * moe_out =
  8032. build_moe_ffn(cur,
  8033. model.layers[il].ffn_gate_inp,
  8034. model.layers[il].ffn_up_exps,
  8035. model.layers[il].ffn_gate_exps,
  8036. model.layers[il].ffn_down_exps,
  8037. nullptr,
  8038. n_expert, n_expert_used,
  8039. LLM_FFN_SILU, false,
  8040. false, hparams.expert_weights_scale,
  8041. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8042. il);
  8043. cb(moe_out, "ffn_moe_out", il);
  8044. // FFN shared expert
  8045. {
  8046. ggml_tensor * ffn_shexp = build_ffn(cur,
  8047. model.layers[il].ffn_up_shexp, NULL, NULL,
  8048. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8049. model.layers[il].ffn_down_shexp, NULL, NULL,
  8050. NULL,
  8051. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8052. cb(ffn_shexp, "ffn_shexp", il);
  8053. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8054. cb(cur, "ffn_out", il);
  8055. }
  8056. }
  8057. cur = ggml_add(ctx0, cur, ffn_inp);
  8058. cur = build_cvec(cur, il);
  8059. cb(cur, "l_out", il);
  8060. // input for next layer
  8061. inpL = cur;
  8062. }
  8063. cur = inpL;
  8064. cur = build_norm(cur,
  8065. model.output_norm, NULL,
  8066. LLM_NORM_RMS, -1);
  8067. cb(cur, "result_norm", -1);
  8068. res->t_embd = cur;
  8069. // lm_head
  8070. cur = build_lora_mm(model.output, cur);
  8071. cb(cur, "result_output", -1);
  8072. res->t_logits = cur;
  8073. ggml_build_forward_expand(gf, cur);
  8074. }
  8075. };
  8076. struct llm_build_deepseek2 : public llm_graph_context {
  8077. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8078. bool is_lite = (hparams.n_layer == 27);
  8079. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8080. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8081. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8082. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8083. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8084. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8085. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8086. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8087. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8088. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8089. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8090. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8091. ggml_tensor * cur;
  8092. ggml_tensor * inpL;
  8093. // {n_embd, n_tokens}
  8094. inpL = build_inp_embd(model.tok_embd);
  8095. // inp_pos - contains the positions
  8096. ggml_tensor * inp_pos = build_inp_pos();
  8097. auto * inp_attn = build_attn_inp_kv_unified();
  8098. for (int il = 0; il < n_layer; ++il) {
  8099. ggml_tensor * inpSA = inpL;
  8100. // norm
  8101. cur = build_norm(inpL,
  8102. model.layers[il].attn_norm, NULL,
  8103. LLM_NORM_RMS, il);
  8104. cb(cur, "attn_norm", il);
  8105. // self_attention
  8106. {
  8107. ggml_tensor * q = NULL;
  8108. if (!is_lite) {
  8109. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8110. cb(q, "q", il);
  8111. q = build_norm(q,
  8112. model.layers[il].attn_q_a_norm, nullptr,
  8113. LLM_NORM_RMS, il);
  8114. cb(q, "q", il);
  8115. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8116. cb(q, "q", il);
  8117. } else {
  8118. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8119. cb(q, "q", il);
  8120. }
  8121. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8122. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8123. n_embd_head_qk_nope, n_head, n_tokens,
  8124. ggml_row_size(q->type, n_embd_head_k),
  8125. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8126. 0);
  8127. cb(q_nope, "q_nope", il);
  8128. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8129. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8130. n_embd_head_qk_rope, n_head, n_tokens,
  8131. ggml_row_size(q->type, n_embd_head_k),
  8132. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8133. ggml_row_size(q->type, n_embd_head_qk_nope));
  8134. cb(q_pe, "q_pe", il);
  8135. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8136. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8137. // split into {kv_lora_rank, n_tokens}
  8138. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8139. kv_lora_rank, n_tokens,
  8140. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8141. 0);
  8142. cb(kv_cmpr, "kv_cmpr", il);
  8143. // and {n_embd_head_qk_rope, 1, n_tokens}
  8144. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8145. n_embd_head_qk_rope, 1, n_tokens,
  8146. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8147. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8148. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8149. cb(k_pe, "k_pe", il);
  8150. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8151. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8152. ext_factor, attn_factor, beta_fast, beta_slow
  8153. );
  8154. cb(q_pe, "q_pe", il);
  8155. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8156. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8157. ext_factor, attn_factor, beta_fast, beta_slow
  8158. );
  8159. cb(k_pe, "k_pe", il);
  8160. kv_cmpr = build_norm(kv_cmpr,
  8161. model.layers[il].attn_kv_a_norm, nullptr,
  8162. LLM_NORM_RMS, il);
  8163. cb(kv_cmpr, "kv_cmpr", il);
  8164. if (is_mla) {
  8165. // {n_embd_head_qk_nope, n_tokens, n_head}
  8166. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8167. cb(q_nope, "q_nope_perm", il);
  8168. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8169. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8170. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8171. // {kv_lora_rank, n_head, n_tokens}
  8172. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8173. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8174. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8175. // note: rope must go first for in-place context shifting in build_rope_shift()
  8176. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8177. cb(Qcur, "Qcur", il);
  8178. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8179. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8180. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8181. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8182. cb(Kcur, "Kcur", il);
  8183. // {kv_lora_rank, 1, n_tokens}
  8184. ggml_tensor * Vcur = kv_cmpr;
  8185. cb(Vcur, "Vcur", il);
  8186. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8187. cur = build_attn(inp_attn, gf,
  8188. model.layers[il].wo, NULL,
  8189. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8190. } else {
  8191. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8192. cb(kv, "kv", il);
  8193. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8194. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8195. n_embd_head_qk_nope, n_head, n_tokens,
  8196. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8197. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8198. 0);
  8199. cb(k_nope, "k_nope_view", il);
  8200. // and {n_embd_head_v, n_head, n_tokens}
  8201. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8202. n_embd_head_v, n_head, n_tokens,
  8203. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8204. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8205. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8206. cb(Vcur, "Vcur_view", il);
  8207. Vcur = ggml_cont(ctx0, Vcur);
  8208. cb(Vcur, "Vcur_cont", il);
  8209. // note: rope must go first for in-place context shifting in build_rope_shift()
  8210. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8211. cb(Qcur, "Qcur", il);
  8212. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8213. cb(Kcur, "Kcur", il);
  8214. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8215. cur = build_attn(inp_attn, gf,
  8216. model.layers[il].wo, NULL,
  8217. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8218. }
  8219. }
  8220. if (il == n_layer - 1) {
  8221. // skip computing output for unused tokens
  8222. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8223. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8224. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8225. }
  8226. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8227. cb(ffn_inp, "ffn_inp", il);
  8228. cur = build_norm(ffn_inp,
  8229. model.layers[il].ffn_norm, NULL,
  8230. LLM_NORM_RMS, il);
  8231. cb(cur, "ffn_norm", il);
  8232. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8233. cur = build_ffn(cur,
  8234. model.layers[il].ffn_up, NULL, NULL,
  8235. model.layers[il].ffn_gate, NULL, NULL,
  8236. model.layers[il].ffn_down, NULL, NULL,
  8237. NULL,
  8238. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8239. cb(cur, "ffn_out", il);
  8240. } else {
  8241. // MoE branch
  8242. ggml_tensor * moe_out =
  8243. build_moe_ffn(cur,
  8244. model.layers[il].ffn_gate_inp,
  8245. model.layers[il].ffn_up_exps,
  8246. model.layers[il].ffn_gate_exps,
  8247. model.layers[il].ffn_down_exps,
  8248. model.layers[il].ffn_exp_probs_b,
  8249. n_expert, n_expert_used,
  8250. LLM_FFN_SILU, hparams.expert_weights_norm,
  8251. true, hparams.expert_weights_scale,
  8252. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8253. il);
  8254. cb(moe_out, "ffn_moe_out", il);
  8255. // FFN shared expert
  8256. {
  8257. ggml_tensor * ffn_shexp = build_ffn(cur,
  8258. model.layers[il].ffn_up_shexp, NULL, NULL,
  8259. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8260. model.layers[il].ffn_down_shexp, NULL, NULL,
  8261. NULL,
  8262. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8263. cb(ffn_shexp, "ffn_shexp", il);
  8264. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8265. cb(cur, "ffn_out", il);
  8266. }
  8267. }
  8268. cur = ggml_add(ctx0, cur, ffn_inp);
  8269. cur = build_cvec(cur, il);
  8270. cb(cur, "l_out", il);
  8271. // input for next layer
  8272. inpL = cur;
  8273. }
  8274. cur = inpL;
  8275. cur = build_norm(cur,
  8276. model.output_norm, NULL,
  8277. LLM_NORM_RMS, -1);
  8278. cb(cur, "result_norm", -1);
  8279. res->t_embd = cur;
  8280. // lm_head
  8281. cur = ggml_mul_mat(ctx0, model.output, cur);
  8282. cb(cur, "result_output", -1);
  8283. res->t_logits = cur;
  8284. ggml_build_forward_expand(gf, cur);
  8285. }
  8286. };
  8287. struct llm_build_bitnet : public llm_graph_context {
  8288. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8289. const int64_t n_embd_head = hparams.n_embd_head_v;
  8290. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8291. ggml_tensor * cur;
  8292. ggml_tensor * inpL;
  8293. inpL = build_inp_embd(model.tok_embd);
  8294. // inp_pos - contains the positions
  8295. ggml_tensor * inp_pos = build_inp_pos();
  8296. auto * inp_attn = build_attn_inp_kv_unified();
  8297. for (int il = 0; il < n_layer; ++il) {
  8298. ggml_tensor * inpSA = inpL;
  8299. cur = build_norm(inpL,
  8300. model.layers[il].attn_norm, NULL,
  8301. LLM_NORM_RMS, il);
  8302. cb(cur, "attn_norm", il);
  8303. // self-attention
  8304. {
  8305. // compute Q and K and RoPE them
  8306. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8307. if (model.layers[il].wq_scale) {
  8308. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8309. }
  8310. cb(Qcur, "Qcur", il);
  8311. if (model.layers[il].bq) {
  8312. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8313. cb(Qcur, "Qcur", il);
  8314. }
  8315. // B1.K
  8316. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8317. if (model.layers[il].wk_scale) {
  8318. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8319. }
  8320. cb(Kcur, "Kcur", il);
  8321. if (model.layers[il].bk) {
  8322. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8323. cb(Kcur, "Kcur", il);
  8324. }
  8325. // B1.V
  8326. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8327. if (model.layers[il].wv_scale) {
  8328. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8329. }
  8330. cb(Vcur, "Vcur", il);
  8331. if (model.layers[il].bv) {
  8332. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8333. cb(Vcur, "Vcur", il);
  8334. }
  8335. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8336. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8337. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8338. Qcur = ggml_rope_ext(
  8339. ctx0, Qcur, inp_pos, nullptr,
  8340. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8341. ext_factor, attn_factor, beta_fast, beta_slow
  8342. );
  8343. Kcur = ggml_rope_ext(
  8344. ctx0, Kcur, inp_pos, nullptr,
  8345. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8346. ext_factor, attn_factor, beta_fast, beta_slow
  8347. );
  8348. cb(Qcur, "Qcur", il);
  8349. cb(Kcur, "Kcur", il);
  8350. cb(Vcur, "Vcur", il);
  8351. cur = build_attn(inp_attn, gf,
  8352. NULL, NULL,
  8353. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8354. cur = build_norm(cur,
  8355. model.layers[il].attn_sub_norm, NULL,
  8356. LLM_NORM_RMS, il);
  8357. cb(cur, "attn_sub_norm", il);
  8358. cur = build_lora_mm(model.layers[il].wo, cur);
  8359. if (model.layers[il].wo_scale) {
  8360. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8361. }
  8362. if (model.layers[il].bo) {
  8363. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8364. }
  8365. cb(cur, "attn_o_out", il);
  8366. }
  8367. if (il == n_layer - 1) {
  8368. // skip computing output for unused tokens
  8369. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8370. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8371. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8372. }
  8373. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8374. cb(ffn_inp, "ffn_inp", il);
  8375. // feed-forward forward
  8376. cur = build_norm(ffn_inp,
  8377. model.layers[il].ffn_norm, NULL,
  8378. LLM_NORM_RMS, il);
  8379. cb(cur, "ffn_norm", il);
  8380. cur = build_ffn(cur,
  8381. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8382. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8383. NULL, NULL, NULL,
  8384. NULL,
  8385. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8386. cb(cur, "ffn_sub_out", il);
  8387. cur = build_norm(cur,
  8388. model.layers[il].ffn_sub_norm, NULL,
  8389. LLM_NORM_RMS, il);
  8390. cb(cur, "ffn_sub_norm", il);
  8391. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8392. if (model.layers[il].ffn_down_scale) {
  8393. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8394. }
  8395. cb(cur, "ffn_down", il);
  8396. cur = ggml_add(ctx0, cur, ffn_inp);
  8397. cb(cur, "l_out", il);
  8398. // input for next layer
  8399. inpL = cur;
  8400. }
  8401. cur = inpL;
  8402. cur = build_norm(cur,
  8403. model.output_norm, NULL,
  8404. LLM_NORM_RMS, -1);
  8405. cb(cur, "result_norm", -1);
  8406. res->t_embd = cur;
  8407. // lm_head
  8408. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8409. cur = build_lora_mm(model.tok_embd, cur);
  8410. cb(cur, "result_output", -1);
  8411. res->t_logits = cur;
  8412. ggml_build_forward_expand(gf, cur);
  8413. }
  8414. };
  8415. struct llm_build_t5_enc : public llm_graph_context {
  8416. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8417. const int64_t n_embd_head = hparams.n_embd_head_v;
  8418. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8419. ggml_tensor * cur;
  8420. ggml_tensor * inpL;
  8421. inpL = build_inp_embd(model.tok_embd);
  8422. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8423. auto * inp_attn = build_attn_inp_no_cache();
  8424. for (int il = 0; il < n_layer; ++il) {
  8425. ggml_tensor * inpSA = inpL;
  8426. // norm
  8427. cur = build_norm(inpL,
  8428. model.layers[il].attn_norm_enc, NULL,
  8429. LLM_NORM_RMS, il);
  8430. cb(cur, "attn_norm", il);
  8431. // self-attention
  8432. {
  8433. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8434. cb(Qcur, "Qcur", il);
  8435. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8436. cb(Kcur, "Kcur", il);
  8437. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8438. cb(Vcur, "Vcur", il);
  8439. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8440. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8441. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8442. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8443. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8444. cur = build_attn(inp_attn, gf,
  8445. model.layers[il].wo_enc, nullptr,
  8446. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8447. cb(cur, "kqv_out", il);
  8448. }
  8449. if (il == n_layer - 1) {
  8450. // skip computing output for unused tokens
  8451. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8452. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8453. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8454. }
  8455. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8456. cb(ffn_inp, "ffn_inp", il);
  8457. // feed-forward network
  8458. {
  8459. cur = build_norm(ffn_inp,
  8460. model.layers[il].ffn_norm_enc, NULL,
  8461. LLM_NORM_RMS, il);
  8462. cb(cur, "ffn_norm", il);
  8463. // T5 uses relu, flan-T5 uses gelu-gated
  8464. cur = build_ffn(cur,
  8465. model.layers[il].ffn_up_enc, NULL, NULL,
  8466. model.layers[il].ffn_gate_enc, NULL, NULL,
  8467. model.layers[il].ffn_down_enc, NULL, NULL,
  8468. NULL,
  8469. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8470. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8471. il);
  8472. cb(cur, "ffn_out", il);
  8473. }
  8474. cur = ggml_add(ctx0, cur, ffn_inp);
  8475. cb(cur, "ffn_out", il);
  8476. cur = build_cvec(cur, il);
  8477. cb(cur, "l_out", il);
  8478. // input for next layer
  8479. inpL = cur;
  8480. }
  8481. cur = inpL;
  8482. cb(cur, "result_embd", -1);
  8483. cur = build_norm(cur,
  8484. model.output_norm_enc, NULL,
  8485. LLM_NORM_RMS, -1);
  8486. cb(cur, "result_norm", -1);
  8487. res->t_embd = cur;
  8488. ggml_build_forward_expand(gf, cur);
  8489. }
  8490. };
  8491. struct llm_build_t5_dec : public llm_graph_context {
  8492. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8493. const int64_t n_embd_head = hparams.n_embd_head_v;
  8494. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8495. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8496. ggml_tensor * cur;
  8497. ggml_tensor * inpL;
  8498. inpL = build_inp_embd(model.tok_embd);
  8499. ggml_tensor * embd_enc = build_inp_cross_embd();
  8500. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8501. const int64_t n_outputs_enc = embd_enc->ne[1];
  8502. auto * inp_attn_self = build_attn_inp_kv_unified();
  8503. auto * inp_attn_cross = build_attn_inp_cross();
  8504. for (int il = 0; il < n_layer; ++il) {
  8505. ggml_tensor * inpSA = inpL;
  8506. // norm
  8507. cur = build_norm(inpL,
  8508. model.layers[il].attn_norm, NULL,
  8509. LLM_NORM_RMS, il);
  8510. cb(cur, "attn_norm", il);
  8511. // self-attention
  8512. {
  8513. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8514. cb(Qcur, "Qcur", il);
  8515. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8516. cb(Kcur, "Kcur", il);
  8517. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8518. cb(Vcur, "Vcur", il);
  8519. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8520. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8521. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8522. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8523. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8524. cur = build_attn(inp_attn_self, gf,
  8525. model.layers[il].wo, model.layers[il].bo,
  8526. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8527. cb(cur, "kqv_out", il);
  8528. }
  8529. cur = ggml_add(ctx0, cur, inpSA);
  8530. cb(cur, "cross_inp", il);
  8531. ggml_tensor * inpCA = cur;
  8532. // norm
  8533. cur = build_norm(cur,
  8534. model.layers[il].attn_norm_cross, NULL,
  8535. LLM_NORM_RMS, il);
  8536. cb(cur, "attn_norm_cross", il);
  8537. // cross-attention
  8538. {
  8539. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8540. cb(Qcur, "Qcur", il);
  8541. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8542. cb(Kcur, "Kcur", il);
  8543. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8544. cb(Vcur, "Vcur", il);
  8545. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8546. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8547. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8548. cur = build_attn(inp_attn_cross, gf,
  8549. model.layers[il].wo_cross, nullptr,
  8550. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8551. cb(cur, "kqv_out", il);
  8552. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8553. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8554. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8555. //cb(kq, "kq", il);
  8556. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8557. //cb(kq, "kq_soft_max_ext", il);
  8558. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8559. //cb(v, "v", il);
  8560. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8561. //cb(kqv, "kqv", il);
  8562. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8563. //cb(kqv_merged, "kqv_merged", il);
  8564. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8565. //cb(cur, "kqv_merged_cont", il);
  8566. //ggml_build_forward_expand(gf, cur);
  8567. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8568. //cb(cur, "kqv_out", il);
  8569. }
  8570. if (il == n_layer - 1) {
  8571. // skip computing output for unused tokens
  8572. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8573. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8574. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8575. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8576. }
  8577. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8578. cb(ffn_inp, "ffn_inp", il);
  8579. // feed-forward network
  8580. {
  8581. cur = build_norm(ffn_inp,
  8582. model.layers[il].ffn_norm, NULL,
  8583. LLM_NORM_RMS, il);
  8584. cb(cur, "ffn_norm", il);
  8585. // T5 uses relu, flan-T5 uses gelu-gated
  8586. cur = build_ffn(cur,
  8587. model.layers[il].ffn_up, NULL, NULL,
  8588. model.layers[il].ffn_gate, NULL, NULL,
  8589. model.layers[il].ffn_down, NULL, NULL,
  8590. NULL,
  8591. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8592. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8593. il);
  8594. cb(cur, "ffn_out", il);
  8595. }
  8596. cur = ggml_add(ctx0, cur, ffn_inp);
  8597. cb(cur, "ffn_out", il);
  8598. cur = build_cvec(cur, il);
  8599. cb(cur, "l_out", il);
  8600. // input for next layer
  8601. inpL = cur;
  8602. }
  8603. cur = inpL;
  8604. cb(cur, "result_embd", -1);
  8605. cur = build_norm(cur,
  8606. model.output_norm, NULL,
  8607. LLM_NORM_RMS, -1);
  8608. cb(cur, "result_norm", -1);
  8609. res->t_embd = cur;
  8610. // lm_head
  8611. cur = build_lora_mm(model.output, cur);
  8612. cb(cur, "result_output", -1);
  8613. res->t_logits = cur;
  8614. ggml_build_forward_expand(gf, cur);
  8615. }
  8616. };
  8617. struct llm_build_jais : public llm_graph_context {
  8618. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8619. const int64_t n_embd_head = hparams.n_embd_head_v;
  8620. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8621. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8622. ggml_tensor * cur;
  8623. ggml_tensor * inpL;
  8624. inpL = build_inp_embd(model.tok_embd);
  8625. auto * inp_attn = build_attn_inp_kv_unified();
  8626. for (int il = 0; il < n_layer; ++il) {
  8627. cur = build_norm(inpL,
  8628. model.layers[il].attn_norm,
  8629. model.layers[il].attn_norm_b,
  8630. LLM_NORM, il);
  8631. cb(cur, "attn_norm", il);
  8632. // self-attention
  8633. {
  8634. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8635. cb(cur, "wqkv", il);
  8636. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8637. cb(cur, "bqkv", il);
  8638. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8639. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8640. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8641. cb(Qcur, "Qcur", il);
  8642. cb(Kcur, "Kcur", il);
  8643. cb(Vcur, "Vcur", il);
  8644. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8645. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8646. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8647. cur = build_attn(inp_attn, gf,
  8648. model.layers[il].wo, model.layers[il].bo,
  8649. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8650. }
  8651. if (il == n_layer - 1) {
  8652. // skip computing output for unused tokens
  8653. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8654. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8655. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8656. }
  8657. // add the input
  8658. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8659. cb(ffn_inp, "ffn_inp", il);
  8660. // FF
  8661. {
  8662. cur = build_norm(ffn_inp,
  8663. model.layers[il].ffn_norm,
  8664. model.layers[il].ffn_norm_b,
  8665. LLM_NORM, il);
  8666. cb(cur, "ffn_norm", il);
  8667. cur = build_ffn(cur,
  8668. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8669. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8670. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8671. NULL,
  8672. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8673. cb(cur, "ffn_out", il);
  8674. }
  8675. inpL = ggml_add(ctx0, cur, ffn_inp);
  8676. cb(inpL, "l_out", il);
  8677. }
  8678. cur = build_norm(inpL,
  8679. model.output_norm,
  8680. model.output_norm_b,
  8681. LLM_NORM, -1);
  8682. cb(cur, "result_norm", -1);
  8683. res->t_embd = cur;
  8684. cur = build_lora_mm(model.output, cur);
  8685. cb(cur, "result_output", -1);
  8686. res->t_logits = cur;
  8687. ggml_build_forward_expand(gf, cur);
  8688. }
  8689. };
  8690. struct llm_build_chatglm : public llm_graph_context {
  8691. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8692. const int64_t n_embd_head = hparams.n_embd_head_v;
  8693. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8694. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8695. ggml_tensor * cur;
  8696. ggml_tensor * inpL;
  8697. inpL = build_inp_embd(model.tok_embd);
  8698. // inp_pos - contains the positions
  8699. ggml_tensor * inp_pos = build_inp_pos();
  8700. auto * inp_attn = build_attn_inp_kv_unified();
  8701. for (int il = 0; il < n_layer; ++il) {
  8702. ggml_tensor * inpSA = inpL;
  8703. cur = build_norm(inpL,
  8704. model.layers[il].attn_norm,
  8705. NULL,
  8706. LLM_NORM_RMS, il);
  8707. cb(cur, "attn_norm", il);
  8708. // self-attention
  8709. {
  8710. ggml_tensor * Qcur = nullptr;
  8711. ggml_tensor * Kcur = nullptr;
  8712. ggml_tensor * Vcur = nullptr;
  8713. if (model.layers[il].wqkv == nullptr) {
  8714. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8715. if (model.layers[il].bq) {
  8716. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8717. }
  8718. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8719. if (model.layers[il].bk) {
  8720. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8721. }
  8722. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8723. if (model.layers[il].bv) {
  8724. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8725. }
  8726. } else {
  8727. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8728. cb(cur, "wqkv", il);
  8729. if (model.layers[il].bqkv) {
  8730. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8731. cb(cur, "bqkv", il);
  8732. }
  8733. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8734. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8735. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8736. }
  8737. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8738. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8739. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8740. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8741. Qcur = ggml_rope_ext(
  8742. ctx0, Qcur, inp_pos, nullptr,
  8743. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8744. ext_factor, attn_factor, beta_fast, beta_slow
  8745. );
  8746. Kcur = ggml_rope_ext(
  8747. ctx0, Kcur, inp_pos, nullptr,
  8748. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8749. ext_factor, attn_factor, beta_fast, beta_slow
  8750. );
  8751. cb(Qcur, "Qcur", il);
  8752. cb(Kcur, "Kcur", il);
  8753. cb(Vcur, "Vcur", il);
  8754. cur = build_attn(inp_attn, gf,
  8755. model.layers[il].wo, NULL,
  8756. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8757. }
  8758. if (il == n_layer - 1) {
  8759. // skip computing output for unused tokens
  8760. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8761. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8762. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8763. }
  8764. // Add the input
  8765. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8766. cb(ffn_inp, "ffn_inp", il);
  8767. // FF
  8768. {
  8769. cur = build_norm(ffn_inp,
  8770. model.layers[il].ffn_norm,
  8771. NULL,
  8772. LLM_NORM_RMS, il);
  8773. cb(cur, "ffn_norm", il);
  8774. cur = build_ffn(cur,
  8775. model.layers[il].ffn_up, NULL, NULL,
  8776. NULL, NULL, NULL,
  8777. model.layers[il].ffn_down, NULL, NULL,
  8778. NULL,
  8779. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8780. cb(cur, "ffn_out", il);
  8781. }
  8782. inpL = ggml_add(ctx0, cur, ffn_inp);
  8783. cb(inpL, "l_out", il);
  8784. }
  8785. cur = build_norm(inpL,
  8786. model.output_norm,
  8787. NULL,
  8788. LLM_NORM_RMS, -1);
  8789. cb(cur, "result_norm", -1);
  8790. res->t_embd = cur;
  8791. cur = build_lora_mm(model.output, cur);
  8792. cb(cur, "result_output", -1);
  8793. res->t_logits = cur;
  8794. ggml_build_forward_expand(gf, cur);
  8795. }
  8796. };
  8797. struct llm_build_glm4 : public llm_graph_context {
  8798. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8799. const int64_t n_embd_head = hparams.n_embd_head_v;
  8800. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8801. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8802. ggml_tensor * cur;
  8803. ggml_tensor * inpL;
  8804. inpL = build_inp_embd(model.tok_embd);
  8805. // inp_pos - contains the positions
  8806. ggml_tensor * inp_pos = build_inp_pos();
  8807. auto * inp_attn = build_attn_inp_kv_unified();
  8808. for (int il = 0; il < n_layer; ++il) {
  8809. ggml_tensor * inpSA = inpL;
  8810. // Pre-attention norm
  8811. cur = build_norm(inpL,
  8812. model.layers[il].attn_norm,
  8813. NULL,
  8814. LLM_NORM_RMS, il);
  8815. cb(cur, "attn_norm", il);
  8816. // self-attention
  8817. {
  8818. ggml_tensor * Qcur = nullptr;
  8819. ggml_tensor * Kcur = nullptr;
  8820. ggml_tensor * Vcur = nullptr;
  8821. if (model.layers[il].wqkv == nullptr) {
  8822. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8823. if (model.layers[il].bq) {
  8824. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8825. }
  8826. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8827. if (model.layers[il].bk) {
  8828. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8829. }
  8830. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8831. if (model.layers[il].bv) {
  8832. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8833. }
  8834. } else {
  8835. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8836. cb(cur, "wqkv", il);
  8837. if (model.layers[il].bqkv) {
  8838. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8839. cb(cur, "bqkv", il);
  8840. }
  8841. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8842. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8843. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8844. }
  8845. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8846. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8847. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8848. Qcur = ggml_rope_ext(
  8849. ctx0, Qcur, inp_pos, nullptr,
  8850. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8851. ext_factor, attn_factor, beta_fast, beta_slow
  8852. );
  8853. Kcur = ggml_rope_ext(
  8854. ctx0, Kcur, inp_pos, nullptr,
  8855. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8856. ext_factor, attn_factor, beta_fast, beta_slow
  8857. );
  8858. cb(Qcur, "Qcur", il);
  8859. cb(Kcur, "Kcur", il);
  8860. cb(Vcur, "Vcur", il);
  8861. cur = build_attn(inp_attn, gf,
  8862. model.layers[il].wo, NULL,
  8863. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8864. }
  8865. if (il == n_layer - 1) {
  8866. // skip computing output for unused tokens
  8867. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8868. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8869. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8870. }
  8871. // Post-attention norm (new!)
  8872. cur = build_norm(cur,
  8873. model.layers[il].attn_post_norm,
  8874. NULL,
  8875. LLM_NORM_RMS, il);
  8876. cb(cur, "post_attn_norm", il);
  8877. // Add the input (residual connection after post-attention norm)
  8878. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8879. cb(ffn_inp, "ffn_inp", il);
  8880. // FF
  8881. {
  8882. // Pre-MLP norm
  8883. cur = build_norm(ffn_inp,
  8884. model.layers[il].ffn_norm,
  8885. NULL,
  8886. LLM_NORM_RMS, il);
  8887. cb(cur, "ffn_norm", il);
  8888. // MLP
  8889. cur = build_ffn(cur,
  8890. model.layers[il].ffn_up, NULL, NULL,
  8891. NULL, NULL, NULL,
  8892. model.layers[il].ffn_down, NULL, NULL,
  8893. NULL,
  8894. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8895. cb(cur, "ffn_out", il);
  8896. // Post-MLP norm
  8897. cur = build_norm(cur,
  8898. model.layers[il].ffn_post_norm,
  8899. NULL,
  8900. LLM_NORM_RMS, il);
  8901. cb(cur, "post_mlp_norm", il);
  8902. }
  8903. // Add residual connection after post-MLP norm
  8904. inpL = ggml_add(ctx0, cur, ffn_inp);
  8905. cb(inpL, "l_out", il);
  8906. }
  8907. // Final norm
  8908. cur = build_norm(inpL,
  8909. model.output_norm,
  8910. NULL,
  8911. LLM_NORM_RMS, -1);
  8912. cb(cur, "result_norm", -1);
  8913. res->t_embd = cur;
  8914. // Output projection
  8915. cur = build_lora_mm(model.output, cur);
  8916. cb(cur, "result_output", -1);
  8917. res->t_logits = cur;
  8918. ggml_build_forward_expand(gf, cur);
  8919. }
  8920. };
  8921. struct llm_build_nemotron : public llm_graph_context {
  8922. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8923. const int64_t n_embd_head = hparams.n_embd_head_v;
  8924. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8925. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8926. ggml_tensor * cur;
  8927. ggml_tensor * inpL;
  8928. inpL = build_inp_embd(model.tok_embd);
  8929. // inp_pos - contains the positions
  8930. ggml_tensor * inp_pos = build_inp_pos();
  8931. auto * inp_attn = build_attn_inp_kv_unified();
  8932. for (int il = 0; il < n_layer; ++il) {
  8933. ggml_tensor * inpSA = inpL;
  8934. // norm
  8935. cur = build_norm(inpL,
  8936. model.layers[il].attn_norm,
  8937. model.layers[il].attn_norm_b,
  8938. LLM_NORM, il);
  8939. cb(cur, "attn_norm", il);
  8940. // self-attention
  8941. {
  8942. // compute Q and K and RoPE them
  8943. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8944. cb(Qcur, "Qcur", il);
  8945. if (model.layers[il].bq) {
  8946. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8947. cb(Qcur, "Qcur", il);
  8948. }
  8949. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8950. cb(Kcur, "Kcur", il);
  8951. if (model.layers[il].bk) {
  8952. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8953. cb(Kcur, "Kcur", il);
  8954. }
  8955. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8956. cb(Vcur, "Vcur", il);
  8957. if (model.layers[il].bv) {
  8958. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8959. cb(Vcur, "Vcur", il);
  8960. }
  8961. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8962. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8963. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8964. Qcur = ggml_rope_ext(
  8965. ctx0, Qcur, inp_pos, nullptr,
  8966. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8967. ext_factor, attn_factor, beta_fast, beta_slow
  8968. );
  8969. Kcur = ggml_rope_ext(
  8970. ctx0, Kcur, inp_pos, nullptr,
  8971. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8972. ext_factor, attn_factor, beta_fast, beta_slow
  8973. );
  8974. cb(Qcur, "Qcur", il);
  8975. cb(Kcur, "Kcur", il);
  8976. cb(Vcur, "Vcur", il);
  8977. cur = build_attn(inp_attn, gf,
  8978. model.layers[il].wo, model.layers[il].bo,
  8979. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8980. }
  8981. if (il == n_layer - 1) {
  8982. // skip computing output for unused tokens
  8983. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8984. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8985. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8986. }
  8987. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8988. cb(ffn_inp, "ffn_inp", il);
  8989. // feed-forward network
  8990. cur = build_norm(ffn_inp,
  8991. model.layers[il].ffn_norm,
  8992. model.layers[il].ffn_norm_b,
  8993. LLM_NORM, il);
  8994. cb(cur, "ffn_norm", il);
  8995. cur = build_ffn(cur,
  8996. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8997. NULL, NULL, NULL,
  8998. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8999. NULL,
  9000. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  9001. cur = ggml_add(ctx0, cur, ffn_inp);
  9002. cb(cur, "ffn_out", il);
  9003. cur = build_cvec(cur, il);
  9004. cb(cur, "l_out", il);
  9005. // input for next layer
  9006. inpL = cur;
  9007. }
  9008. cur = inpL;
  9009. cur = build_norm(cur,
  9010. model.output_norm, model.output_norm_b,
  9011. LLM_NORM, -1);
  9012. cb(cur, "result_norm", -1);
  9013. res->t_embd = cur;
  9014. // lm_head
  9015. cur = build_lora_mm(model.output, cur);
  9016. cb(cur, "result_output", -1);
  9017. res->t_logits = cur;
  9018. ggml_build_forward_expand(gf, cur);
  9019. }
  9020. };
  9021. struct llm_build_exaone : public llm_graph_context {
  9022. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9023. const int64_t n_embd_head = hparams.n_embd_head_v;
  9024. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9025. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9026. ggml_tensor * cur;
  9027. ggml_tensor * inpL;
  9028. inpL = build_inp_embd(model.tok_embd);
  9029. // inp_pos - contains the positions
  9030. ggml_tensor * inp_pos = build_inp_pos();
  9031. auto * inp_attn = build_attn_inp_kv_unified();
  9032. for (int il = 0; il < n_layer; ++il) {
  9033. ggml_tensor * inpSA = inpL;
  9034. // norm
  9035. cur = build_norm(inpL,
  9036. model.layers[il].attn_norm, NULL,
  9037. LLM_NORM_RMS, il);
  9038. cb(cur, "attn_norm", il);
  9039. // self-attention
  9040. {
  9041. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9042. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  9043. // compute Q and K and RoPE them
  9044. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9045. cb(Qcur, "Qcur", il);
  9046. if (model.layers[il].bq) {
  9047. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9048. cb(Qcur, "Qcur", il);
  9049. }
  9050. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9051. cb(Kcur, "Kcur", il);
  9052. if (model.layers[il].bk) {
  9053. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9054. cb(Kcur, "Kcur", il);
  9055. }
  9056. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9057. cb(Vcur, "Vcur", il);
  9058. if (model.layers[il].bv) {
  9059. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9060. cb(Vcur, "Vcur", il);
  9061. }
  9062. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9063. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9064. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9065. Qcur = ggml_rope_ext(
  9066. ctx0, Qcur, inp_pos, rope_factors,
  9067. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9068. ext_factor, attn_factor, beta_fast, beta_slow
  9069. );
  9070. Kcur = ggml_rope_ext(
  9071. ctx0, Kcur, inp_pos, rope_factors,
  9072. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9073. ext_factor, attn_factor, beta_fast, beta_slow
  9074. );
  9075. cb(Qcur, "Qcur", il);
  9076. cb(Kcur, "Kcur", il);
  9077. cb(Vcur, "Vcur", il);
  9078. cur = build_attn(inp_attn, gf,
  9079. model.layers[il].wo, model.layers[il].bo,
  9080. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9081. }
  9082. if (il == n_layer - 1) {
  9083. // skip computing output for unused tokens
  9084. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9085. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9086. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9087. }
  9088. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9089. cb(ffn_inp, "ffn_inp", il);
  9090. // feed-forward network
  9091. cur = build_norm(ffn_inp,
  9092. model.layers[il].ffn_norm, NULL,
  9093. LLM_NORM_RMS, il);
  9094. cb(cur, "ffn_norm", il);
  9095. cur = build_ffn(cur,
  9096. model.layers[il].ffn_up, NULL, NULL,
  9097. model.layers[il].ffn_gate, NULL, NULL,
  9098. model.layers[il].ffn_down, NULL, NULL,
  9099. NULL,
  9100. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9101. cb(cur, "ffn_out", il);
  9102. cur = ggml_add(ctx0, cur, ffn_inp);
  9103. cb(cur, "ffn_out", il);
  9104. cur = build_cvec(cur, il);
  9105. cb(cur, "l_out", il);
  9106. // input for next layer
  9107. inpL = cur;
  9108. }
  9109. cur = inpL;
  9110. cur = build_norm(cur,
  9111. model.output_norm, NULL,
  9112. LLM_NORM_RMS, -1);
  9113. cb(cur, "result_norm", -1);
  9114. res->t_embd = cur;
  9115. // lm_head
  9116. cur = build_lora_mm(model.output, cur);
  9117. cb(cur, "result_output", -1);
  9118. res->t_logits = cur;
  9119. ggml_build_forward_expand(gf, cur);
  9120. }
  9121. };
  9122. struct llm_build_rwkv6_base : public llm_graph_context {
  9123. const llama_model & model;
  9124. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9125. }
  9126. ggml_tensor * build_rwkv6_channel_mix(
  9127. const llama_layer * layer,
  9128. ggml_tensor * cur,
  9129. ggml_tensor * x_prev,
  9130. llm_arch arch) const {
  9131. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9132. switch (arch) {
  9133. case LLM_ARCH_RWKV6:
  9134. {
  9135. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9136. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9137. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9138. ggml_tensor * k = ggml_sqr(
  9139. ctx0,
  9140. ggml_relu(
  9141. ctx0,
  9142. build_lora_mm(layer->channel_mix_key, xk)
  9143. )
  9144. );
  9145. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9146. } break;
  9147. default:
  9148. GGML_ABORT("fatal error");
  9149. }
  9150. return cur;
  9151. }
  9152. ggml_tensor * build_rwkv6_time_mix(
  9153. ggml_cgraph * gf,
  9154. ggml_tensor * cur,
  9155. ggml_tensor * x_prev,
  9156. ggml_tensor * state_copy,
  9157. ggml_tensor * state_mask,
  9158. const llama_ubatch & ubatch,
  9159. int il) const {
  9160. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9161. const auto n_tokens = ubatch.n_tokens;
  9162. const auto n_seqs = ubatch.n_seqs;
  9163. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9164. const auto n_embd = hparams.n_embd;
  9165. const auto head_size = hparams.wkv_head_size;
  9166. const auto n_head = n_embd / head_size;
  9167. const auto n_head_kv = hparams.n_head_kv(il);
  9168. const auto kv_head = kv_self->head;
  9169. const auto & layer = model.layers[il];
  9170. bool is_qrwkv = layer.time_mix_first == nullptr;
  9171. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9172. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9173. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9174. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9175. xxx = ggml_reshape_4d(
  9176. ctx0,
  9177. ggml_tanh(
  9178. ctx0,
  9179. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9180. ),
  9181. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9182. );
  9183. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9184. xxx = ggml_mul_mat(
  9185. ctx0,
  9186. ggml_reshape_4d(
  9187. ctx0,
  9188. layer.time_mix_w2,
  9189. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9190. ),
  9191. xxx
  9192. );
  9193. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9194. if (layer.time_mix_lerp_fused) {
  9195. // fusing these weights makes some performance improvement
  9196. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9197. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9198. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9199. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9200. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9201. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9202. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9203. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9204. } else {
  9205. // for backward compatibility
  9206. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9207. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9208. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9209. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9210. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9211. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9212. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9213. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9214. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9215. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9216. }
  9217. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9218. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9219. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9220. if (layer.time_mix_receptance_b) {
  9221. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9222. }
  9223. if (layer.time_mix_key_b) {
  9224. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9225. }
  9226. if (layer.time_mix_value_b) {
  9227. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9228. }
  9229. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9230. if (is_qrwkv) {
  9231. g = ggml_sigmoid(ctx0, g);
  9232. } else {
  9233. g = ggml_silu(ctx0, g);
  9234. }
  9235. if (n_head_kv != 0 && n_head_kv != n_head) {
  9236. GGML_ASSERT(n_head % n_head_kv == 0);
  9237. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9238. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9239. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9240. k = ggml_repeat(ctx0, k, tmp);
  9241. v = ggml_repeat(ctx0, v, tmp);
  9242. }
  9243. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9244. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9245. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9246. ggml_tensor * w = ggml_mul_mat(
  9247. ctx0,
  9248. layer.time_mix_decay_w2,
  9249. ggml_tanh(
  9250. ctx0,
  9251. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9252. )
  9253. );
  9254. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9255. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9256. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9257. if (is_qrwkv) {
  9258. // k = k * (1 - w)
  9259. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9260. }
  9261. ggml_tensor * wkv_state = build_copy_mask_state(
  9262. gf, kv_self->v_l[il], state_copy, state_mask,
  9263. hparams.n_embd_v_s(), n_seqs);
  9264. ggml_tensor * wkv_output;
  9265. if (is_qrwkv) {
  9266. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9267. } else {
  9268. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9269. }
  9270. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9271. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9272. ggml_build_forward_expand(
  9273. gf,
  9274. ggml_cpy(
  9275. ctx0,
  9276. wkv_state,
  9277. ggml_view_1d(
  9278. ctx0,
  9279. kv_self->v_l[il],
  9280. hparams.n_embd_v_s() * n_seqs,
  9281. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9282. )
  9283. )
  9284. );
  9285. if (!is_qrwkv) {
  9286. // group norm with head_count groups
  9287. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9288. cur = ggml_norm(ctx0, cur, 64e-5f);
  9289. // Convert back to regular vectors.
  9290. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9291. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9292. } else {
  9293. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9294. }
  9295. cur = ggml_mul(ctx0, cur, g);
  9296. cur = build_lora_mm(layer.time_mix_output, cur);
  9297. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9298. }
  9299. };
  9300. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9301. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9302. GGML_ASSERT(hparams.token_shift_count == 2);
  9303. ggml_tensor * cur;
  9304. ggml_tensor * inpL;
  9305. inpL = build_inp_embd(model.tok_embd);
  9306. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9307. ggml_tensor * state_copy = build_inp_s_copy();
  9308. ggml_tensor * state_mask = build_inp_s_mask();
  9309. const auto n_embd = hparams.n_embd;
  9310. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9311. const auto n_seqs = ubatch.n_seqs;
  9312. for (int il = 0; il < n_layer; ++il) {
  9313. const llama_layer * layer = &model.layers[il];
  9314. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9315. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9316. gf, state_copy, state_mask, ubatch, il
  9317. );
  9318. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9319. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9320. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9321. cb(att_norm, "attn_norm", il);
  9322. ggml_tensor * x_prev = ggml_concat(
  9323. ctx0,
  9324. att_shift,
  9325. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9326. 1
  9327. );
  9328. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9329. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9330. cb(ffn_inp, "ffn_inp", il);
  9331. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9332. cb(ffn_norm, "ffn_norm", il);
  9333. x_prev = ggml_concat(
  9334. ctx0,
  9335. ffn_shift,
  9336. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9337. 1
  9338. );
  9339. token_shift = ggml_concat(ctx0,
  9340. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9341. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9342. 1
  9343. );
  9344. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9345. if (il == n_layer - 1) {
  9346. // skip computing output for unused tokens
  9347. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9348. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9349. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9350. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9351. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9352. }
  9353. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9354. cur = ggml_add(ctx0, cur, ffn_inp);
  9355. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9356. cur = ggml_scale(ctx0, cur, 0.5F);
  9357. }
  9358. cur = build_cvec(cur, il);
  9359. cb(cur, "l_out", il);
  9360. // input for next layer
  9361. inpL = cur;
  9362. }
  9363. cur = inpL;
  9364. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9365. cb(cur, "result_norm", -1);
  9366. res->t_embd = cur;
  9367. cur = build_lora_mm(model.output, cur);
  9368. cb(cur, "result_output", -1);
  9369. res->t_logits = cur;
  9370. ggml_build_forward_expand(gf, cur);
  9371. }
  9372. };
  9373. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9374. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9375. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9376. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9377. ggml_tensor * cur;
  9378. ggml_tensor * inpL;
  9379. inpL = build_inp_embd(model.tok_embd);
  9380. ggml_tensor * state_copy = build_inp_s_copy();
  9381. ggml_tensor * state_mask = build_inp_s_mask();
  9382. const auto n_embd = hparams.n_embd;
  9383. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9384. const auto n_seqs = ubatch.n_seqs;
  9385. for (int il = 0; il < n_layer; ++il) {
  9386. const llama_layer * layer = &model.layers[il];
  9387. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9388. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9389. gf, state_copy, state_mask, ubatch, il
  9390. );
  9391. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9392. cb(att_norm, "attn_norm", il);
  9393. ggml_tensor * x_prev = ggml_concat(
  9394. ctx0,
  9395. token_shift,
  9396. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9397. 1
  9398. );
  9399. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9400. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9401. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9402. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9403. cb(ffn_inp, "ffn_inp", il);
  9404. if (il == n_layer - 1) {
  9405. // skip computing output for unused tokens
  9406. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9407. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9408. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9409. }
  9410. // feed-forward network
  9411. cur = build_norm(ffn_inp,
  9412. model.layers[il].ffn_norm, NULL,
  9413. LLM_NORM_RMS, il);
  9414. cb(cur, "ffn_norm", il);
  9415. cur = build_ffn(cur,
  9416. model.layers[il].ffn_up, NULL, NULL,
  9417. model.layers[il].ffn_gate, NULL, NULL,
  9418. model.layers[il].ffn_down, NULL, NULL,
  9419. NULL,
  9420. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9421. cb(cur, "ffn_out", il);
  9422. cur = ggml_add(ctx0, cur, ffn_inp);
  9423. cur = build_cvec(cur, il);
  9424. cb(cur, "l_out", il);
  9425. // input for next layer
  9426. inpL = cur;
  9427. }
  9428. cur = inpL;
  9429. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9430. cb(cur, "result_norm", -1);
  9431. res->t_embd = cur;
  9432. cur = build_lora_mm(model.output, cur);
  9433. cb(cur, "result_output", -1);
  9434. res->t_logits = cur;
  9435. ggml_build_forward_expand(gf, cur);
  9436. }
  9437. };
  9438. struct llm_build_rwkv7_base : public llm_graph_context {
  9439. const llama_model & model;
  9440. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9441. }
  9442. ggml_tensor * build_rwkv7_channel_mix(
  9443. const llama_layer * layer,
  9444. ggml_tensor * cur,
  9445. ggml_tensor * x_prev,
  9446. llm_arch arch) const {
  9447. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9448. switch (arch) {
  9449. case LLM_ARCH_RWKV7:
  9450. {
  9451. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9452. ggml_tensor * k = ggml_sqr(
  9453. ctx0,
  9454. ggml_relu(
  9455. ctx0,
  9456. build_lora_mm(layer->channel_mix_key, xk)
  9457. )
  9458. );
  9459. cur = build_lora_mm(layer->channel_mix_value, k);
  9460. } break;
  9461. default:
  9462. GGML_ABORT("fatal error");
  9463. }
  9464. return cur;
  9465. }
  9466. ggml_tensor * build_rwkv7_time_mix(
  9467. ggml_cgraph * gf,
  9468. ggml_tensor * cur,
  9469. ggml_tensor * x_prev,
  9470. ggml_tensor * state_copy,
  9471. ggml_tensor * state_mask,
  9472. ggml_tensor *& first_layer_value,
  9473. const llama_ubatch & ubatch,
  9474. int il) const {
  9475. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9476. const auto n_tokens = ubatch.n_tokens;
  9477. const auto n_seqs = ubatch.n_seqs;
  9478. const auto n_embd = hparams.n_embd;
  9479. const auto head_size = hparams.wkv_head_size;
  9480. const auto head_count = n_embd / head_size;
  9481. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9482. const auto kv_head = kv_self->head;
  9483. const auto & layer = model.layers[il];
  9484. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9485. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9486. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9487. sx = ggml_repeat(ctx0, sx, dummy);
  9488. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9489. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9490. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9491. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9492. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9493. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9494. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9495. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9496. ggml_tensor * w = ggml_add(
  9497. ctx0,
  9498. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9499. layer.time_mix_w0
  9500. );
  9501. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9502. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9503. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9504. if (first_layer_value == nullptr) {
  9505. first_layer_value = v;
  9506. } else {
  9507. // Add the first layer value as a residual connection.
  9508. v = ggml_add(ctx0, v,
  9509. ggml_mul(ctx0,
  9510. ggml_sub(ctx0, first_layer_value, v),
  9511. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9512. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9513. layer.time_mix_v0
  9514. )
  9515. )
  9516. )
  9517. );
  9518. }
  9519. ggml_tensor * g = nullptr;
  9520. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9521. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9522. }
  9523. ggml_tensor * a = ggml_sigmoid(ctx0,
  9524. ggml_add(
  9525. ctx0,
  9526. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9527. layer.time_mix_a0
  9528. )
  9529. );
  9530. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9531. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9532. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9533. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9534. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9535. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9536. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9537. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9538. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9539. ggml_tensor * wkv_state = build_copy_mask_state(
  9540. gf, kv_self->v_l[il], state_copy, state_mask,
  9541. hparams.n_embd_v_s(), n_seqs);
  9542. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9543. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9544. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9545. ggml_build_forward_expand(
  9546. gf,
  9547. ggml_cpy(
  9548. ctx0,
  9549. wkv_state,
  9550. ggml_view_1d(
  9551. ctx0,
  9552. kv_self->v_l[il],
  9553. hparams.n_embd_v_s() * n_seqs,
  9554. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9555. )
  9556. )
  9557. );
  9558. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9559. // group norm with head_count groups
  9560. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9561. cur = ggml_norm(ctx0, cur, 64e-5f);
  9562. // Convert back to regular vectors.
  9563. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9564. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9565. } else {
  9566. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9567. }
  9568. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9569. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9570. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9571. if (has_gating) {
  9572. cur = ggml_mul(ctx0, cur, g);
  9573. }
  9574. cur = build_lora_mm(layer.time_mix_output, cur);
  9575. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9576. }
  9577. };
  9578. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9579. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9580. GGML_ASSERT(hparams.token_shift_count == 2);
  9581. ggml_tensor * cur;
  9582. ggml_tensor * inpL;
  9583. ggml_tensor * v_first = nullptr;
  9584. inpL = build_inp_embd(model.tok_embd);
  9585. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9586. ggml_tensor * state_copy = build_inp_s_copy();
  9587. ggml_tensor * state_mask = build_inp_s_mask();
  9588. const auto n_embd = hparams.n_embd;
  9589. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9590. const auto n_seqs = ubatch.n_seqs;
  9591. for (int il = 0; il < n_layer; ++il) {
  9592. const llama_layer * layer = &model.layers[il];
  9593. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9594. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9595. gf, state_copy, state_mask, ubatch, il
  9596. );
  9597. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9598. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9599. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9600. cb(att_norm, "attn_norm", il);
  9601. ggml_tensor * x_prev = ggml_concat(
  9602. ctx0,
  9603. att_shift,
  9604. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9605. 1
  9606. );
  9607. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9608. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9609. cb(ffn_inp, "ffn_inp", il);
  9610. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9611. cb(ffn_norm, "ffn_norm", il);
  9612. x_prev = ggml_concat(
  9613. ctx0,
  9614. ffn_shift,
  9615. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9616. 1
  9617. );
  9618. token_shift = ggml_concat(ctx0,
  9619. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9620. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9621. 1
  9622. );
  9623. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9624. if (il == n_layer - 1) {
  9625. // skip computing output for unused tokens
  9626. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9627. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9628. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9629. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9630. }
  9631. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9632. cur = ggml_add(ctx0, cur, ffn_inp);
  9633. cur = build_cvec(cur, il);
  9634. cb(cur, "l_out", il);
  9635. // input for next layer
  9636. inpL = cur;
  9637. }
  9638. cur = inpL;
  9639. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9640. cb(cur, "result_norm", -1);
  9641. res->t_embd = cur;
  9642. cur = build_lora_mm(model.output, cur);
  9643. cb(cur, "result_output", -1);
  9644. res->t_logits = cur;
  9645. ggml_build_forward_expand(gf, cur);
  9646. }
  9647. };
  9648. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9649. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9650. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9651. ggml_tensor * cur;
  9652. ggml_tensor * inpL;
  9653. ggml_tensor * v_first = nullptr;
  9654. inpL = build_inp_embd(model.tok_embd);
  9655. ggml_tensor * state_copy = build_inp_s_copy();
  9656. ggml_tensor * state_mask = build_inp_s_mask();
  9657. const auto n_embd = hparams.n_embd;
  9658. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9659. const auto n_seqs = ubatch.n_seqs;
  9660. for (int il = 0; il < n_layer; ++il) {
  9661. const llama_layer * layer = &model.layers[il];
  9662. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9663. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9664. gf, state_copy, state_mask, ubatch, il
  9665. );
  9666. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9667. cb(att_norm, "attn_norm", il);
  9668. ggml_tensor * x_prev = ggml_concat(
  9669. ctx0,
  9670. token_shift,
  9671. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9672. 1
  9673. );
  9674. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9675. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9676. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9677. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9678. cb(ffn_inp, "ffn_inp", il);
  9679. if (il == n_layer - 1) {
  9680. // skip computing output for unused tokens
  9681. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9682. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9683. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9684. }
  9685. // feed-forward network
  9686. cur = build_norm(ffn_inp,
  9687. model.layers[il].ffn_norm, NULL,
  9688. LLM_NORM_RMS, il);
  9689. cb(cur, "ffn_norm", il);
  9690. cur = build_ffn(cur,
  9691. model.layers[il].ffn_up, NULL, NULL,
  9692. model.layers[il].ffn_gate, NULL, NULL,
  9693. model.layers[il].ffn_down, NULL, NULL,
  9694. NULL,
  9695. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9696. cb(cur, "ffn_out", il);
  9697. cur = ggml_add(ctx0, cur, ffn_inp);
  9698. cur = build_cvec(cur, il);
  9699. cb(cur, "l_out", il);
  9700. // input for next layer
  9701. inpL = cur;
  9702. }
  9703. cur = inpL;
  9704. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9705. cb(cur, "result_norm", -1);
  9706. res->t_embd = cur;
  9707. cur = build_lora_mm(model.output, cur);
  9708. cb(cur, "result_output", -1);
  9709. res->t_logits = cur;
  9710. ggml_build_forward_expand(gf, cur);
  9711. }
  9712. };
  9713. // ref: https://github.com/facebookresearch/chameleon
  9714. // based on the original build_llama() function, changes:
  9715. // * qk-norm
  9716. // * swin-norm
  9717. // * removed bias
  9718. // * removed MoE
  9719. struct llm_build_chameleon : public llm_graph_context {
  9720. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9721. const int64_t n_embd_head = hparams.n_embd_head_v;
  9722. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9723. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9724. ggml_tensor * cur;
  9725. ggml_tensor * inpL;
  9726. inpL = build_inp_embd(model.tok_embd);
  9727. // inp_pos - contains the positions
  9728. ggml_tensor * inp_pos = build_inp_pos();
  9729. auto * inp_attn = build_attn_inp_kv_unified();
  9730. for (int il = 0; il < n_layer; ++il) {
  9731. ggml_tensor * inpSA = inpL;
  9732. // norm
  9733. if (hparams.swin_norm) {
  9734. cur = inpL;
  9735. } else {
  9736. cur = build_norm(inpL,
  9737. model.layers[il].attn_norm, NULL,
  9738. LLM_NORM_RMS, il);
  9739. cb(cur, "attn_norm", il);
  9740. }
  9741. // self-attention
  9742. {
  9743. // compute Q and K and RoPE them
  9744. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9745. cb(Qcur, "Qcur", il);
  9746. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9747. cb(Kcur, "Kcur", il);
  9748. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9749. cb(Vcur, "Vcur", il);
  9750. if (model.layers[il].attn_q_norm) {
  9751. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9752. ggml_element_size(Qcur) * n_embd_head,
  9753. ggml_element_size(Qcur) * n_embd_head * n_head,
  9754. 0);
  9755. cb(Qcur, "Qcur", il);
  9756. Qcur = build_norm(Qcur,
  9757. model.layers[il].attn_q_norm,
  9758. model.layers[il].attn_q_norm_b,
  9759. LLM_NORM, il);
  9760. cb(Qcur, "Qcur", il);
  9761. }
  9762. if (model.layers[il].attn_k_norm) {
  9763. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9764. ggml_element_size(Kcur) * n_embd_head,
  9765. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9766. 0);
  9767. cb(Kcur, "Kcur", il);
  9768. Kcur = build_norm(Kcur,
  9769. model.layers[il].attn_k_norm,
  9770. model.layers[il].attn_k_norm_b,
  9771. LLM_NORM, il);
  9772. cb(Kcur, "Kcur", il);
  9773. }
  9774. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9775. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9776. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9777. Qcur = ggml_rope_ext(
  9778. ctx0, Qcur, inp_pos, nullptr,
  9779. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9780. ext_factor, attn_factor, beta_fast, beta_slow
  9781. );
  9782. Kcur = ggml_rope_ext(
  9783. ctx0, Kcur, inp_pos, nullptr,
  9784. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9785. ext_factor, attn_factor, beta_fast, beta_slow
  9786. );
  9787. cb(Qcur, "Qcur", il);
  9788. cb(Kcur, "Kcur", il);
  9789. cb(Vcur, "Vcur", il);
  9790. cur = build_attn(inp_attn, gf,
  9791. model.layers[il].wo, nullptr,
  9792. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9793. if (hparams.swin_norm) {
  9794. cur = build_norm(cur,
  9795. model.layers[il].attn_norm, NULL,
  9796. LLM_NORM_RMS, il);
  9797. }
  9798. }
  9799. if (il == n_layer - 1) {
  9800. // skip computing output for unused tokens
  9801. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9802. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9803. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9804. }
  9805. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9806. cb(ffn_inp, "ffn_inp", il);
  9807. // feed-forward network
  9808. if (!hparams.swin_norm) {
  9809. cur = build_norm(ffn_inp,
  9810. model.layers[il].ffn_norm, NULL,
  9811. LLM_NORM_RMS, il);
  9812. cb(cur, "ffn_norm", il);
  9813. }
  9814. cur = build_ffn(cur,
  9815. model.layers[il].ffn_up, NULL, NULL,
  9816. model.layers[il].ffn_gate, NULL, NULL,
  9817. model.layers[il].ffn_down, NULL, NULL,
  9818. NULL,
  9819. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9820. cb(cur, "ffn_out", il);
  9821. if (hparams.swin_norm) {
  9822. cur = build_norm(cur,
  9823. model.layers[il].ffn_norm, NULL,
  9824. LLM_NORM_RMS, il);
  9825. cb(cur, "ffn_norm", il);
  9826. }
  9827. cur = ggml_add(ctx0, cur, ffn_inp);
  9828. cb(cur, "ffn_out", il);
  9829. cur = build_cvec(cur, il);
  9830. cb(cur, "l_out", il);
  9831. // input for next layer
  9832. inpL = cur;
  9833. }
  9834. cur = inpL;
  9835. cur = build_norm(cur,
  9836. model.output_norm, NULL,
  9837. LLM_NORM_RMS, -1);
  9838. cb(cur, "result_norm", -1);
  9839. res->t_embd = cur;
  9840. // lm_head
  9841. cur = build_lora_mm(model.output, cur);
  9842. cb(cur, "result_output_with_img_logits", -1);
  9843. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9844. // Needs to be removed once image outputs are supported.
  9845. int img_token_end_idx = 8196;
  9846. int img_token_start_idx = 4;
  9847. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9848. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9849. // which ensures that text token values are always at least larger than image token values
  9850. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9851. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9852. cb(img_logits, "img_logits", -1);
  9853. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9854. cb(cur, "result_output", -1);
  9855. res->t_logits = cur;
  9856. ggml_build_forward_expand(gf, cur);
  9857. }
  9858. };
  9859. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9860. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9861. ggml_tensor * cur;
  9862. ggml_tensor * inpL;
  9863. inpL = build_inp_embd(model.tok_embd);
  9864. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9865. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9866. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9867. // posnet
  9868. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9869. const auto & layer = model.layers[il].posnet;
  9870. inpL = cur;
  9871. switch (il) {
  9872. case 0:
  9873. case 1:
  9874. case 3:
  9875. case 4:
  9876. {
  9877. cur = build_norm(cur,
  9878. layer.norm1,
  9879. layer.norm1_b,
  9880. LLM_NORM_GROUP, 0);
  9881. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9882. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9883. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9884. cur = build_norm(cur,
  9885. layer.norm2,
  9886. layer.norm2_b,
  9887. LLM_NORM_GROUP, 0);
  9888. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9889. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9890. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9891. cur = ggml_add(ctx0, cur, inpL);
  9892. } break;
  9893. case 2:
  9894. {
  9895. cur = build_norm(cur,
  9896. layer.attn_norm,
  9897. layer.attn_norm_b,
  9898. LLM_NORM_GROUP, 0);
  9899. ggml_tensor * q;
  9900. ggml_tensor * k;
  9901. ggml_tensor * v;
  9902. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9903. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9904. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9905. q = ggml_add(ctx0, q, layer.attn_q_b);
  9906. k = ggml_add(ctx0, k, layer.attn_k_b);
  9907. v = ggml_add(ctx0, v, layer.attn_v_b);
  9908. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9909. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9910. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9911. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9912. cur = ggml_mul_mat(ctx0, kq, v);
  9913. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9914. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9915. cur = ggml_add(ctx0, cur, inpL);
  9916. } break;
  9917. case 5:
  9918. {
  9919. cur = build_norm(cur,
  9920. layer.norm,
  9921. layer.norm_b,
  9922. LLM_NORM_GROUP, 0);
  9923. } break;
  9924. default: GGML_ABORT("unknown posnet layer");
  9925. };
  9926. }
  9927. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9928. cur = build_norm(cur,
  9929. model.tok_norm,
  9930. model.tok_norm_b,
  9931. LLM_NORM, -1);
  9932. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9933. inpL = cur;
  9934. // convnext
  9935. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9936. const auto & layer = model.layers[il].convnext;
  9937. cur = inpL;
  9938. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9939. cur = ggml_add(ctx0, cur, layer.dw_b);
  9940. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9941. cur = build_norm(cur,
  9942. layer.norm,
  9943. layer.norm_b,
  9944. LLM_NORM, -1);
  9945. cur = build_ffn(cur,
  9946. layer.pw1, layer.pw1_b, NULL,
  9947. NULL, NULL, NULL,
  9948. layer.pw2, layer.pw2_b, NULL,
  9949. NULL,
  9950. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9951. cur = ggml_mul(ctx0, cur, layer.gamma);
  9952. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9953. inpL = ggml_add(ctx0, cur, inpL);
  9954. }
  9955. cur = inpL;
  9956. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9957. cur = build_norm(cur,
  9958. model.output_norm,
  9959. model.output_norm_b,
  9960. LLM_NORM, -1);
  9961. // lm_head
  9962. cur = build_lora_mm(model.output, cur);
  9963. cur = ggml_add(ctx0, cur, model.output_b);
  9964. cb(cur, "result_embd", -1);
  9965. res->t_embd = cur;
  9966. ggml_build_forward_expand(gf, cur);
  9967. }
  9968. };
  9969. struct llm_build_plm : public llm_graph_context {
  9970. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9971. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  9972. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9973. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9974. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9975. ggml_tensor * cur;
  9976. ggml_tensor * inpL;
  9977. // {n_embd, n_tokens}
  9978. inpL = build_inp_embd(model.tok_embd);
  9979. // inp_pos - contains the positions
  9980. ggml_tensor * inp_pos = build_inp_pos();
  9981. auto * inp_attn = build_attn_inp_kv_unified();
  9982. for (int il = 0; il < n_layer; ++il) {
  9983. ggml_tensor * inpSA = inpL;
  9984. // norm
  9985. cur = build_norm(inpL,
  9986. model.layers[il].attn_norm, NULL,
  9987. LLM_NORM_RMS, il);
  9988. cb(cur, "attn_norm", il);
  9989. // self_attention
  9990. {
  9991. ggml_tensor * q = NULL;
  9992. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9993. cb(q, "q", il);
  9994. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9995. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9996. ggml_row_size(q->type, hparams.n_embd_head_k),
  9997. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9998. 0);
  9999. cb(q_nope, "q_nope", il);
  10000. // and {n_head * n_embd_head_qk_rope, n_tokens}
  10001. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  10002. ggml_row_size(q->type, hparams.n_embd_head_k),
  10003. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10004. ggml_row_size(q->type, n_embd_head_qk_nope));
  10005. cb(q_pe, "q_pe", il);
  10006. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10007. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10008. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10009. // split into {kv_lora_rank, n_tokens}
  10010. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10011. kv_pe_compresseed->nb[1],
  10012. 0);
  10013. cb(kv_compressed, "kv_compressed", il);
  10014. // and {n_embd_head_qk_rope, n_tokens}
  10015. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10016. kv_pe_compresseed->nb[1],
  10017. kv_pe_compresseed->nb[1],
  10018. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10019. cb(k_pe, "k_pe", il);
  10020. kv_compressed = build_norm(kv_compressed,
  10021. model.layers[il].attn_kv_a_norm, NULL,
  10022. LLM_NORM_RMS, il);
  10023. cb(kv_compressed, "kv_compressed", il);
  10024. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10025. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10026. cb(kv, "kv", il);
  10027. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10028. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10029. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10030. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10031. 0);
  10032. cb(k_nope, "k_nope", il);
  10033. // and {n_head * n_embd_head_v, n_tokens}
  10034. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10035. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10036. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10037. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10038. cb(v_states, "v_states", il);
  10039. v_states = ggml_cont(ctx0, v_states);
  10040. cb(v_states, "v_states", il);
  10041. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10042. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10043. 0);
  10044. cb(v_states, "v_states", il);
  10045. q_pe = ggml_rope_ext(
  10046. ctx0, q_pe, inp_pos, nullptr,
  10047. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10048. ext_factor, attn_factor, beta_fast, beta_slow
  10049. );
  10050. cb(q_pe, "q_pe", il);
  10051. // shared RoPE key
  10052. k_pe = ggml_rope_ext(
  10053. ctx0, k_pe, inp_pos, nullptr,
  10054. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10055. ext_factor, attn_factor, beta_fast, beta_slow
  10056. );
  10057. cb(k_pe, "k_pe", il);
  10058. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10059. cb(q_states, "q_states", il);
  10060. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10061. cb(k_states, "k_states", il);
  10062. cur = build_attn(inp_attn, gf,
  10063. model.layers[il].wo, NULL,
  10064. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10065. }
  10066. if (il == n_layer - 1) {
  10067. // skip computing output for unused tokens
  10068. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10069. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10070. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10071. }
  10072. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10073. cb(ffn_inp, "ffn_inp", il);
  10074. cur = build_norm(ffn_inp,
  10075. model.layers[il].ffn_norm, NULL,
  10076. LLM_NORM_RMS, il);
  10077. cb(cur, "ffn_norm", il);
  10078. cur = build_ffn(cur,
  10079. model.layers[il].ffn_up, NULL, NULL,
  10080. NULL, NULL, NULL,
  10081. model.layers[il].ffn_down, NULL, NULL,
  10082. NULL,
  10083. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10084. cb(cur, "ffn_out", il);
  10085. cur = ggml_add(ctx0, cur, ffn_inp);
  10086. cur = build_cvec(cur, il);
  10087. cb(cur, "l_out", il);
  10088. // input for next layer
  10089. inpL = cur;
  10090. }
  10091. cur = inpL;
  10092. cur = build_norm(cur,
  10093. model.output_norm, NULL,
  10094. LLM_NORM_RMS, -1);
  10095. cb(cur, "result_norm", -1);
  10096. res->t_embd = cur;
  10097. cur = build_lora_mm(model.output, cur);
  10098. cb(cur, "result_output", -1);
  10099. res->t_logits = cur;
  10100. ggml_build_forward_expand(gf, cur);
  10101. }
  10102. };
  10103. struct llm_build_bailingmoe : public llm_graph_context {
  10104. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10105. ggml_tensor * cur;
  10106. ggml_tensor * inpL;
  10107. inpL = build_inp_embd(model.tok_embd);
  10108. // inp_pos - contains the positions
  10109. ggml_tensor * inp_pos = build_inp_pos();
  10110. auto * inp_attn = build_attn_inp_kv_unified();
  10111. for (int il = 0; il < n_layer; ++il) {
  10112. ggml_tensor * inpSA = inpL;
  10113. // norm
  10114. cur = build_norm(inpL,
  10115. model.layers[il].attn_norm, NULL,
  10116. LLM_NORM_RMS, il);
  10117. cb(cur, "attn_norm", il);
  10118. // self-attention
  10119. {
  10120. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10121. ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
  10122. // compute Q and K and RoPE them
  10123. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10124. cb(Qcur, "Qcur", il);
  10125. if (model.layers[il].bq) {
  10126. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10127. cb(Qcur, "Qcur", il);
  10128. }
  10129. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10130. cb(Kcur, "Kcur", il);
  10131. if (model.layers[il].bk) {
  10132. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10133. cb(Kcur, "Kcur", il);
  10134. }
  10135. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10136. cb(Vcur, "Vcur", il);
  10137. if (model.layers[il].bv) {
  10138. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10139. cb(Vcur, "Vcur", il);
  10140. }
  10141. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10142. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10143. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10144. Qcur = ggml_rope_ext(
  10145. ctx0, Qcur, inp_pos, rope_factors,
  10146. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10147. ext_factor, attn_factor, beta_fast, beta_slow
  10148. );
  10149. Kcur = ggml_rope_ext(
  10150. ctx0, Kcur, inp_pos, rope_factors,
  10151. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10152. ext_factor, attn_factor, beta_fast, beta_slow
  10153. );
  10154. cb(Qcur, "Qcur", il);
  10155. cb(Kcur, "Kcur", il);
  10156. cb(Vcur, "Vcur", il);
  10157. cur = build_attn(inp_attn, gf,
  10158. model.layers[il].wo, model.layers[il].bo,
  10159. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10160. }
  10161. if (il == n_layer - 1) {
  10162. // skip computing output for unused tokens
  10163. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10164. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10165. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10166. }
  10167. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10168. cb(ffn_inp, "ffn_inp", il);
  10169. cur = build_norm(ffn_inp,
  10170. model.layers[il].ffn_norm, NULL,
  10171. LLM_NORM_RMS, il);
  10172. cb(cur, "ffn_norm", il);
  10173. ggml_tensor * moe_out =
  10174. build_moe_ffn(cur,
  10175. model.layers[il].ffn_gate_inp,
  10176. model.layers[il].ffn_up_exps,
  10177. model.layers[il].ffn_gate_exps,
  10178. model.layers[il].ffn_down_exps,
  10179. nullptr,
  10180. n_expert, n_expert_used,
  10181. LLM_FFN_SILU, hparams.expert_weights_norm,
  10182. false, hparams.expert_weights_scale,
  10183. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10184. il);
  10185. cb(moe_out, "ffn_moe_out", il);
  10186. // FFN shared expert
  10187. {
  10188. ggml_tensor * ffn_shexp = build_ffn(cur,
  10189. model.layers[il].ffn_up_shexp, NULL, NULL,
  10190. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10191. model.layers[il].ffn_down_shexp, NULL, NULL,
  10192. NULL,
  10193. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10194. cb(ffn_shexp, "ffn_shexp", il);
  10195. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10196. cb(cur, "ffn_out", il);
  10197. }
  10198. cur = ggml_add(ctx0, cur, ffn_inp);
  10199. cur = build_cvec(cur, il);
  10200. cb(cur, "l_out", il);
  10201. // input for next layer
  10202. inpL = cur;
  10203. }
  10204. cur = inpL;
  10205. cur = build_norm(cur,
  10206. model.output_norm, NULL,
  10207. LLM_NORM_RMS, -1);
  10208. cb(cur, "result_norm", -1);
  10209. res->t_embd = cur;
  10210. // lm_head
  10211. cur = build_lora_mm(model.output, cur);
  10212. cb(cur, "result_output", -1);
  10213. res->t_logits = cur;
  10214. ggml_build_forward_expand(gf, cur);
  10215. }
  10216. };
  10217. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  10218. llama_memory_i * res;
  10219. switch (arch) {
  10220. case LLM_ARCH_BERT:
  10221. case LLM_ARCH_JINA_BERT_V2:
  10222. case LLM_ARCH_NOMIC_BERT:
  10223. case LLM_ARCH_NOMIC_BERT_MOE:
  10224. {
  10225. res = nullptr;
  10226. } break;
  10227. case LLM_ARCH_MAMBA:
  10228. case LLM_ARCH_RWKV6:
  10229. case LLM_ARCH_RWKV6QWEN2:
  10230. case LLM_ARCH_RWKV7:
  10231. case LLM_ARCH_ARWKV7:
  10232. {
  10233. res = new llama_kv_cache_recurrent(
  10234. *this,
  10235. GGML_TYPE_F32,
  10236. GGML_TYPE_F32,
  10237. cparams.offload_kqv,
  10238. std::max((uint32_t) 1, cparams.n_seq_max));
  10239. } break;
  10240. default:
  10241. {
  10242. const auto padding = llama_kv_cache_unified::get_padding(cparams);
  10243. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  10244. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  10245. res = new llama_kv_cache_unified(
  10246. *this,
  10247. params.type_k,
  10248. params.type_v,
  10249. !cparams.flash_attn,
  10250. cparams.offload_kqv,
  10251. cparams.n_ctx,
  10252. padding);
  10253. }
  10254. }
  10255. return res;
  10256. }
  10257. llm_graph_result_ptr llama_model::build_graph(
  10258. const llm_graph_params & params,
  10259. ggml_cgraph * gf,
  10260. llm_graph_type type) const {
  10261. std::unique_ptr<llm_graph_context> llm;
  10262. switch (arch) {
  10263. case LLM_ARCH_LLAMA:
  10264. case LLM_ARCH_LLAMA4:
  10265. case LLM_ARCH_MINICPM:
  10266. case LLM_ARCH_GRANITE:
  10267. case LLM_ARCH_GRANITE_MOE:
  10268. {
  10269. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10270. } break;
  10271. case LLM_ARCH_DECI:
  10272. {
  10273. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10274. } break;
  10275. case LLM_ARCH_BAICHUAN:
  10276. {
  10277. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10278. } break;
  10279. case LLM_ARCH_FALCON:
  10280. {
  10281. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10282. } break;
  10283. case LLM_ARCH_GROK:
  10284. {
  10285. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10286. } break;
  10287. case LLM_ARCH_STARCODER:
  10288. {
  10289. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10290. } break;
  10291. case LLM_ARCH_REFACT:
  10292. {
  10293. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10294. } break;
  10295. case LLM_ARCH_BERT:
  10296. case LLM_ARCH_JINA_BERT_V2:
  10297. case LLM_ARCH_NOMIC_BERT:
  10298. case LLM_ARCH_NOMIC_BERT_MOE:
  10299. {
  10300. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10301. } break;
  10302. case LLM_ARCH_BLOOM:
  10303. {
  10304. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10305. } break;
  10306. case LLM_ARCH_MPT:
  10307. {
  10308. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10309. } break;
  10310. case LLM_ARCH_STABLELM:
  10311. {
  10312. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10313. } break;
  10314. case LLM_ARCH_QWEN:
  10315. {
  10316. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10317. } break;
  10318. case LLM_ARCH_QWEN2:
  10319. {
  10320. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10321. } break;
  10322. case LLM_ARCH_QWEN2VL:
  10323. {
  10324. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10325. } break;
  10326. case LLM_ARCH_QWEN2MOE:
  10327. {
  10328. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10329. } break;
  10330. case LLM_ARCH_QWEN3:
  10331. {
  10332. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10333. } break;
  10334. case LLM_ARCH_QWEN3MOE:
  10335. {
  10336. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10337. } break;
  10338. case LLM_ARCH_PHI2:
  10339. {
  10340. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10341. } break;
  10342. case LLM_ARCH_PHI3:
  10343. case LLM_ARCH_PHIMOE:
  10344. {
  10345. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  10346. } break;
  10347. case LLM_ARCH_PLAMO:
  10348. {
  10349. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10350. } break;
  10351. case LLM_ARCH_GPT2:
  10352. {
  10353. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10354. } break;
  10355. case LLM_ARCH_CODESHELL:
  10356. {
  10357. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10358. } break;
  10359. case LLM_ARCH_ORION:
  10360. {
  10361. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10362. } break;
  10363. case LLM_ARCH_INTERNLM2:
  10364. {
  10365. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10366. } break;
  10367. case LLM_ARCH_MINICPM3:
  10368. {
  10369. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10370. } break;
  10371. case LLM_ARCH_GEMMA:
  10372. {
  10373. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10374. } break;
  10375. case LLM_ARCH_GEMMA2:
  10376. {
  10377. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  10378. } break;
  10379. case LLM_ARCH_GEMMA3:
  10380. {
  10381. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  10382. } break;
  10383. case LLM_ARCH_STARCODER2:
  10384. {
  10385. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10386. } break;
  10387. case LLM_ARCH_MAMBA:
  10388. {
  10389. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10390. } break;
  10391. case LLM_ARCH_XVERSE:
  10392. {
  10393. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10394. } break;
  10395. case LLM_ARCH_COMMAND_R:
  10396. {
  10397. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10398. } break;
  10399. case LLM_ARCH_COHERE2:
  10400. {
  10401. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  10402. } break;
  10403. case LLM_ARCH_DBRX:
  10404. {
  10405. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10406. } break;
  10407. case LLM_ARCH_OLMO:
  10408. {
  10409. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10410. } break;
  10411. case LLM_ARCH_OLMO2:
  10412. {
  10413. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10414. } break;
  10415. case LLM_ARCH_OLMOE:
  10416. {
  10417. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10418. } break;
  10419. case LLM_ARCH_OPENELM:
  10420. {
  10421. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10422. } break;
  10423. case LLM_ARCH_GPTNEOX:
  10424. {
  10425. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10426. } break;
  10427. case LLM_ARCH_ARCTIC:
  10428. {
  10429. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10430. } break;
  10431. case LLM_ARCH_DEEPSEEK:
  10432. {
  10433. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10434. } break;
  10435. case LLM_ARCH_DEEPSEEK2:
  10436. {
  10437. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10438. } break;
  10439. case LLM_ARCH_CHATGLM:
  10440. {
  10441. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10442. } break;
  10443. case LLM_ARCH_GLM4:
  10444. {
  10445. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10446. } break;
  10447. case LLM_ARCH_BITNET:
  10448. {
  10449. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10450. } break;
  10451. case LLM_ARCH_T5:
  10452. {
  10453. switch (type) {
  10454. case LLM_GRAPH_TYPE_ENCODER:
  10455. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10456. break;
  10457. case LLM_GRAPH_TYPE_DEFAULT:
  10458. case LLM_GRAPH_TYPE_DECODER:
  10459. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10460. break;
  10461. default:
  10462. GGML_ABORT("invalid graph type");
  10463. };
  10464. } break;
  10465. case LLM_ARCH_T5ENCODER:
  10466. {
  10467. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10468. }
  10469. break;
  10470. case LLM_ARCH_JAIS:
  10471. {
  10472. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10473. } break;
  10474. case LLM_ARCH_NEMOTRON:
  10475. {
  10476. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10477. } break;
  10478. case LLM_ARCH_EXAONE:
  10479. {
  10480. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10481. } break;
  10482. case LLM_ARCH_RWKV6:
  10483. {
  10484. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10485. } break;
  10486. case LLM_ARCH_RWKV6QWEN2:
  10487. {
  10488. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10489. } break;
  10490. case LLM_ARCH_RWKV7:
  10491. {
  10492. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10493. } break;
  10494. case LLM_ARCH_ARWKV7:
  10495. {
  10496. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10497. } break;
  10498. case LLM_ARCH_CHAMELEON:
  10499. {
  10500. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10501. } break;
  10502. case LLM_ARCH_WAVTOKENIZER_DEC:
  10503. {
  10504. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10505. } break;
  10506. case LLM_ARCH_PLM:
  10507. {
  10508. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10509. } break;
  10510. case LLM_ARCH_BAILINGMOE:
  10511. {
  10512. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10513. } break;
  10514. default:
  10515. GGML_ABORT("fatal error");
  10516. }
  10517. // add on pooling layer
  10518. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10519. return std::move(llm->res);
  10520. }
  10521. //
  10522. // interface implementation
  10523. //
  10524. llama_model_params llama_model_default_params() {
  10525. llama_model_params result = {
  10526. /*.devices =*/ nullptr,
  10527. /*.tensor_buft_overrides =*/ nullptr,
  10528. /*.n_gpu_layers =*/ 0,
  10529. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10530. /*.main_gpu =*/ 0,
  10531. /*.tensor_split =*/ nullptr,
  10532. /*.progress_callback =*/ nullptr,
  10533. /*.progress_callback_user_data =*/ nullptr,
  10534. /*.kv_overrides =*/ nullptr,
  10535. /*.vocab_only =*/ false,
  10536. /*.use_mmap =*/ true,
  10537. /*.use_mlock =*/ false,
  10538. /*.check_tensors =*/ false,
  10539. };
  10540. #ifdef GGML_USE_METAL
  10541. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10542. result.n_gpu_layers = 999;
  10543. #endif
  10544. return result;
  10545. }
  10546. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10547. return &model->vocab;
  10548. }
  10549. void llama_free_model(llama_model * model) {
  10550. llama_model_free(model);
  10551. }
  10552. void llama_model_free(llama_model * model) {
  10553. delete model;
  10554. }
  10555. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10556. return model->hparams.n_ctx_train;
  10557. }
  10558. int32_t llama_model_n_embd(const llama_model * model) {
  10559. return model->hparams.n_embd;
  10560. }
  10561. int32_t llama_model_n_layer(const llama_model * model) {
  10562. return model->hparams.n_layer;
  10563. }
  10564. int32_t llama_model_n_head(const llama_model * model) {
  10565. return model->hparams.n_head();
  10566. }
  10567. int32_t llama_model_n_head_kv(const llama_model * model) {
  10568. return model->hparams.n_head_kv();
  10569. }
  10570. // deprecated
  10571. int32_t llama_n_ctx_train(const llama_model * model) {
  10572. return llama_model_n_ctx_train(model);
  10573. }
  10574. // deprecated
  10575. int32_t llama_n_embd(const llama_model * model) {
  10576. return llama_model_n_embd(model);
  10577. }
  10578. // deprecated
  10579. int32_t llama_n_layer(const llama_model * model) {
  10580. return llama_model_n_layer(model);
  10581. }
  10582. // deprecated
  10583. int32_t llama_n_head(const llama_model * model) {
  10584. return llama_model_n_head(model);
  10585. }
  10586. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10587. switch (model->arch) {
  10588. // these models do not use RoPE
  10589. case LLM_ARCH_GPT2:
  10590. case LLM_ARCH_GPTJ:
  10591. case LLM_ARCH_MPT:
  10592. case LLM_ARCH_REFACT:
  10593. case LLM_ARCH_BLOOM:
  10594. case LLM_ARCH_MAMBA:
  10595. case LLM_ARCH_JINA_BERT_V2:
  10596. case LLM_ARCH_T5:
  10597. case LLM_ARCH_T5ENCODER:
  10598. case LLM_ARCH_JAIS:
  10599. case LLM_ARCH_RWKV6:
  10600. case LLM_ARCH_RWKV6QWEN2:
  10601. case LLM_ARCH_RWKV7:
  10602. case LLM_ARCH_ARWKV7:
  10603. case LLM_ARCH_WAVTOKENIZER_DEC:
  10604. return LLAMA_ROPE_TYPE_NONE;
  10605. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10606. case LLM_ARCH_LLAMA:
  10607. case LLM_ARCH_LLAMA4:
  10608. case LLM_ARCH_DECI:
  10609. case LLM_ARCH_BAICHUAN:
  10610. case LLM_ARCH_STARCODER:
  10611. case LLM_ARCH_INTERNLM2:
  10612. case LLM_ARCH_MINICPM:
  10613. case LLM_ARCH_XVERSE:
  10614. case LLM_ARCH_COMMAND_R:
  10615. case LLM_ARCH_COHERE2:
  10616. case LLM_ARCH_OLMO:
  10617. case LLM_ARCH_ARCTIC:
  10618. case LLM_ARCH_DEEPSEEK:
  10619. case LLM_ARCH_DEEPSEEK2:
  10620. case LLM_ARCH_PLM:
  10621. case LLM_ARCH_CHATGLM:
  10622. case LLM_ARCH_GLM4:
  10623. case LLM_ARCH_GRANITE:
  10624. case LLM_ARCH_GRANITE_MOE:
  10625. case LLM_ARCH_CHAMELEON:
  10626. case LLM_ARCH_BAILINGMOE:
  10627. return LLAMA_ROPE_TYPE_NORM;
  10628. // the pairs of head values are offset by n_rot/2
  10629. case LLM_ARCH_FALCON:
  10630. case LLM_ARCH_GROK:
  10631. case LLM_ARCH_DBRX:
  10632. case LLM_ARCH_BERT:
  10633. case LLM_ARCH_NOMIC_BERT:
  10634. case LLM_ARCH_NOMIC_BERT_MOE:
  10635. case LLM_ARCH_STABLELM:
  10636. case LLM_ARCH_BITNET:
  10637. case LLM_ARCH_QWEN:
  10638. case LLM_ARCH_QWEN2:
  10639. case LLM_ARCH_QWEN2MOE:
  10640. case LLM_ARCH_QWEN3:
  10641. case LLM_ARCH_QWEN3MOE:
  10642. case LLM_ARCH_OLMO2:
  10643. case LLM_ARCH_OLMOE:
  10644. case LLM_ARCH_PHI2:
  10645. case LLM_ARCH_PHI3:
  10646. case LLM_ARCH_PHIMOE:
  10647. case LLM_ARCH_PLAMO:
  10648. case LLM_ARCH_GEMMA:
  10649. case LLM_ARCH_GEMMA2:
  10650. case LLM_ARCH_GEMMA3:
  10651. case LLM_ARCH_STARCODER2:
  10652. case LLM_ARCH_OPENELM:
  10653. case LLM_ARCH_GPTNEOX:
  10654. case LLM_ARCH_CODESHELL:
  10655. case LLM_ARCH_ORION:
  10656. case LLM_ARCH_NEMOTRON:
  10657. case LLM_ARCH_EXAONE:
  10658. case LLM_ARCH_MINICPM3:
  10659. return LLAMA_ROPE_TYPE_NEOX;
  10660. case LLM_ARCH_QWEN2VL:
  10661. return LLAMA_ROPE_TYPE_MROPE;
  10662. // all model arches should be listed explicitly here
  10663. case LLM_ARCH_UNKNOWN:
  10664. GGML_ABORT("unknown architecture");
  10665. }
  10666. return LLAMA_ROPE_TYPE_NONE;
  10667. }
  10668. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10669. return model->hparams.rope_freq_scale_train;
  10670. }
  10671. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10672. const auto & it = model->gguf_kv.find(key);
  10673. if (it == model->gguf_kv.end()) {
  10674. if (buf_size > 0) {
  10675. buf[0] = '\0';
  10676. }
  10677. return -1;
  10678. }
  10679. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10680. }
  10681. int32_t llama_model_meta_count(const llama_model * model) {
  10682. return (int)model->gguf_kv.size();
  10683. }
  10684. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10685. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10686. if (buf_size > 0) {
  10687. buf[0] = '\0';
  10688. }
  10689. return -1;
  10690. }
  10691. auto it = model->gguf_kv.begin();
  10692. std::advance(it, i);
  10693. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10694. }
  10695. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10696. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10697. if (buf_size > 0) {
  10698. buf[0] = '\0';
  10699. }
  10700. return -1;
  10701. }
  10702. auto it = model->gguf_kv.begin();
  10703. std::advance(it, i);
  10704. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10705. }
  10706. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  10707. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  10708. }
  10709. uint64_t llama_model_size(const llama_model * model) {
  10710. return model->size();
  10711. }
  10712. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  10713. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  10714. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  10715. const auto & it = model->gguf_kv.find(key);
  10716. if (it == model->gguf_kv.end()) {
  10717. // one-off fix for very popular models (so we are not flooded with issues)
  10718. // do not extend this list unless absolutely necessary
  10719. // Mistral-Small-2503 does not have built-in chat template
  10720. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  10721. if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  10722. return "mistral-v7-tekken";
  10723. }
  10724. return nullptr;
  10725. }
  10726. return it->second.c_str();
  10727. }
  10728. uint64_t llama_model_n_params(const llama_model * model) {
  10729. return model->n_elements();
  10730. }
  10731. bool llama_model_has_encoder(const llama_model * model) {
  10732. switch (model->arch) {
  10733. case LLM_ARCH_T5: return true;
  10734. case LLM_ARCH_T5ENCODER: return true;
  10735. default: return false;
  10736. }
  10737. }
  10738. bool llama_model_has_decoder(const llama_model * model) {
  10739. switch (model->arch) {
  10740. case LLM_ARCH_T5ENCODER: return false;
  10741. default: return true;
  10742. }
  10743. }
  10744. llama_token llama_model_decoder_start_token(const llama_model * model) {
  10745. return model->hparams.dec_start_token_id;
  10746. }
  10747. bool llama_model_is_recurrent(const llama_model * model) {
  10748. switch (model->arch) {
  10749. case LLM_ARCH_MAMBA: return true;
  10750. case LLM_ARCH_RWKV6: return true;
  10751. case LLM_ARCH_RWKV6QWEN2: return true;
  10752. case LLM_ARCH_RWKV7: return true;
  10753. case LLM_ARCH_ARWKV7: return true;
  10754. default: return false;
  10755. }
  10756. }
  10757. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  10758. return model->tensors_by_name;
  10759. }