| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- import argparse
- import os
- import json
- import re
- import torch
- import numpy as np
- from gguf import *
- from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
- TEXT = "clip.text"
- VISION = "clip.vision"
- def k(raw_key: str, arch: str) -> str:
- return raw_key.format(arch=arch)
- def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
- if name in (
- "logit_scale",
- "text_model.embeddings.position_ids",
- "vision_model.embeddings.position_ids",
- ):
- return True
- if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
- return True
- if name.startswith("v") and not has_vision:
- return True
- if name.startswith("t") and not has_text:
- return True
- return False
- def get_tensor_name(name: str) -> str:
- if "projection" in name:
- return name
- if "mm_projector" in name:
- name = name.replace("model.mm_projector", "mm")
- name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
- name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
- return name
- return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1))
- + list(range(ord("¡"), ord("¬") + 1))
- + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- ap = argparse.ArgumentParser()
- ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
- ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
- ap.add_argument("--text-only", action="store_true", required=False,
- help="Save a text-only model. It can't be used to encode images")
- ap.add_argument("--vision-only", action="store_true", required=False,
- help="Save a vision-only model. It can't be used to encode texts")
- ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
- help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
- ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
- help="The clip model is from openclip (for ViT-SO400M type))")
- ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
- ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
- ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
- # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
- # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
- default_image_mean = [0.48145466, 0.4578275, 0.40821073]
- default_image_std = [0.26862954, 0.26130258, 0.27577711]
- ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
- ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
- # with proper
- args = ap.parse_args()
- if args.text_only and args.vision_only:
- print("--text-only and --image-only arguments cannot be specified at the same time.")
- exit(1)
- if args.use_f32:
- print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
- # output in the same directory as the model if output_dir is None
- dir_model = args.model_dir
- if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
- vocab = None
- tokens = None
- else:
- with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
- vocab = json.load(f)
- tokens = [key for key in vocab]
- with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
- config = json.load(f)
- if args.clip_model_is_vision:
- v_hparams = config
- t_hparams = None
- else:
- v_hparams = config["vision_config"]
- t_hparams = config["text_config"]
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if args.use_f32:
- ftype = 0
- if args.clip_model_is_vision or args.clip_model_is_openclip:
- model = CLIPVisionModel.from_pretrained(dir_model)
- processor = None
- else:
- model = CLIPModel.from_pretrained(dir_model)
- processor = CLIPProcessor.from_pretrained(dir_model)
- fname_middle = None
- has_text_encoder = True
- has_vision_encoder = True
- has_llava_projector = False
- if args.text_only:
- fname_middle = "text-"
- has_vision_encoder = False
- elif args.llava_projector is not None:
- fname_middle = "mmproj-"
- has_text_encoder = False
- has_llava_projector = True
- elif args.vision_only:
- fname_middle = "vision-"
- has_text_encoder = False
- else:
- fname_middle = ""
- output_dir = args.output_dir if args.output_dir is not None else dir_model
- os.makedirs(output_dir, exist_ok=True)
- output_prefix = os.path.basename(output_dir).replace("ggml_", "")
- fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
- fout = GGUFWriter(path=fname_out, arch="clip")
- fout.add_bool("clip.has_text_encoder", has_text_encoder)
- fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
- fout.add_bool("clip.has_llava_projector", has_llava_projector)
- fout.add_file_type(ftype)
- model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
- fout.add_name(model_name)
- if args.text_only:
- fout.add_description("text-only CLIP model")
- elif args.vision_only and not has_llava_projector:
- fout.add_description("vision-only CLIP model")
- elif has_llava_projector:
- fout.add_description("image encoder for LLaVA")
- # add projector type
- fout.add_string("clip.projector_type", args.projector_type)
- else:
- fout.add_description("two-tower CLIP model")
- if has_text_encoder:
- assert t_hparams is not None
- assert tokens is not None
- # text_model hparams
- fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
- fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
- fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
- fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
- fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
- fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
- fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
- fout.add_token_list(tokens)
- if has_vision_encoder:
- # vision_model hparams
- fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
- fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
- fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
- fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
- fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
- fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
- fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
- block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
- fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
- # /**
- # "image_grid_pinpoints": [
- # [
- # 336,
- # 672
- # ],
- # [
- # 672,
- # 336
- # ],
- # [
- # 672,
- # 672
- # ],
- # [
- # 1008,
- # 336
- # ],
- # [
- # 336,
- # 1008
- # ]
- # ],
- # Flattened:
- # [
- # 336, 672,
- # 672, 336,
- # 672, 672,
- # 1008, 336,
- # 336, 1008
- # ]
- # *
- # */
- if "image_grid_pinpoints" in v_hparams:
- # flatten it
- image_grid_pinpoints = []
- for pinpoint in v_hparams["image_grid_pinpoints"]:
- for p in pinpoint:
- image_grid_pinpoints.append(p)
- fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
- if "image_crop_resolution" in v_hparams:
- fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
- if "image_aspect_ratio" in v_hparams:
- fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
- if "image_split_resolution" in v_hparams:
- fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
- if "mm_patch_merge_type" in v_hparams:
- fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
- if "mm_projector_type" in v_hparams:
- fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
- if processor is not None:
- image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
- image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue]
- else:
- image_mean = args.image_mean if args.image_mean is not None else default_image_mean
- image_std = args.image_std if args.image_std is not None else default_image_std
- fout.add_array("clip.vision.image_mean", image_mean)
- fout.add_array("clip.vision.image_std", image_std)
- use_gelu = v_hparams["hidden_act"] == "gelu"
- fout.add_bool("clip.use_gelu", use_gelu)
- if has_llava_projector:
- model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue]
- projector = torch.load(args.llava_projector)
- for name, data in projector.items():
- name = get_tensor_name(name)
- # pw and dw conv ndim==4
- if data.ndim == 2 or data.ndim == 4:
- data = data.squeeze().numpy().astype(np.float16)
- else:
- data = data.squeeze().numpy().astype(np.float32)
- fout.add_tensor(name, data)
- print("Projector tensors added\n")
- state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue]
- for name, data in state_dict.items():
- if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
- # we don't need this
- print(f"skipping parameter: {name}")
- continue
- name = get_tensor_name(name)
- data = data.squeeze().numpy()
- n_dims = len(data.shape)
- # ftype == 0 -> float32, ftype == 1 -> float16
- ftype_cur = 0
- if n_dims == 4:
- print(f"tensor {name} is always saved in f16")
- data = data.astype(np.float16)
- ftype_cur = 1
- elif ftype == 1:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype_cur = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- if data.dtype != np.float32:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
- fout.add_tensor(name, data)
- fout.write_header_to_file()
- fout.write_kv_data_to_file()
- fout.write_tensors_to_file()
- fout.close()
- print("Done. Output file: " + fname_out)
|