constants.py 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  34. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  35. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  36. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  37. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  38. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  39. EXPERT_COUNT = "{arch}.expert_count"
  40. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  41. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  42. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  43. POOLING_TYPE = "{arch}.pooling_type"
  44. LOGIT_SCALE = "{arch}.logit_scale"
  45. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  46. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  47. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  48. class Attention:
  49. HEAD_COUNT = "{arch}.attention.head_count"
  50. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  51. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  52. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  53. KEY_LENGTH = "{arch}.attention.key_length"
  54. VALUE_LENGTH = "{arch}.attention.value_length"
  55. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  56. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  57. CAUSAL = "{arch}.attention.causal"
  58. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  59. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  60. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  61. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  62. class Rope:
  63. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  64. FREQ_BASE = "{arch}.rope.freq_base"
  65. SCALING_TYPE = "{arch}.rope.scaling.type"
  66. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  67. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  68. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  69. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  70. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  71. class Split:
  72. LLM_KV_SPLIT_NO = "split.no"
  73. LLM_KV_SPLIT_COUNT = "split.count"
  74. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  75. class SSM:
  76. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  77. INNER_SIZE = "{arch}.ssm.inner_size"
  78. STATE_SIZE = "{arch}.ssm.state_size"
  79. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  80. class Tokenizer:
  81. MODEL = "tokenizer.ggml.model"
  82. PRE = "tokenizer.ggml.pre"
  83. LIST = "tokenizer.ggml.tokens"
  84. TOKEN_TYPE = "tokenizer.ggml.token_type"
  85. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  86. SCORES = "tokenizer.ggml.scores"
  87. MERGES = "tokenizer.ggml.merges"
  88. BOS_ID = "tokenizer.ggml.bos_token_id"
  89. EOS_ID = "tokenizer.ggml.eos_token_id"
  90. UNK_ID = "tokenizer.ggml.unknown_token_id"
  91. SEP_ID = "tokenizer.ggml.seperator_token_id"
  92. PAD_ID = "tokenizer.ggml.padding_token_id"
  93. CLS_ID = "tokenizer.ggml.cls_token_id"
  94. MASK_ID = "tokenizer.ggml.mask_token_id"
  95. ADD_BOS = "tokenizer.ggml.add_bos_token"
  96. ADD_EOS = "tokenizer.ggml.add_eos_token"
  97. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  98. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  99. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  100. HF_JSON = "tokenizer.huggingface.json"
  101. RWKV = "tokenizer.rwkv.world"
  102. CHAT_TEMPLATE = "tokenizer.chat_template"
  103. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  104. CHAT_TEMPLATES = "tokenizer.chat_templates"
  105. # FIM/Infill special tokens constants
  106. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  107. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  108. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  109. EOT_ID = "tokenizer.ggml.eot_token_id"
  110. #
  111. # recommended mapping of model tensor names for storage in gguf
  112. #
  113. class MODEL_ARCH(IntEnum):
  114. LLAMA = auto()
  115. FALCON = auto()
  116. BAICHUAN = auto()
  117. GROK = auto()
  118. GPT2 = auto()
  119. GPTJ = auto()
  120. GPTNEOX = auto()
  121. MPT = auto()
  122. STARCODER = auto()
  123. REFACT = auto()
  124. BERT = auto()
  125. NOMIC_BERT = auto()
  126. JINA_BERT_V2 = auto()
  127. BLOOM = auto()
  128. STABLELM = auto()
  129. QWEN = auto()
  130. QWEN2 = auto()
  131. QWEN2MOE = auto()
  132. PHI2 = auto()
  133. PHI3 = auto()
  134. PLAMO = auto()
  135. CODESHELL = auto()
  136. ORION = auto()
  137. INTERNLM2 = auto()
  138. MINICPM = auto()
  139. GEMMA = auto()
  140. GEMMA2 = auto()
  141. STARCODER2 = auto()
  142. MAMBA = auto()
  143. XVERSE = auto()
  144. COMMAND_R = auto()
  145. DBRX = auto()
  146. OLMO = auto()
  147. OPENELM = auto()
  148. ARCTIC = auto()
  149. DEEPSEEK2 = auto()
  150. CHATGLM = auto()
  151. BITNET = auto()
  152. T5 = auto()
  153. JAIS = auto()
  154. class MODEL_TENSOR(IntEnum):
  155. TOKEN_EMBD = auto()
  156. TOKEN_EMBD_NORM = auto()
  157. TOKEN_TYPES = auto()
  158. POS_EMBD = auto()
  159. OUTPUT = auto()
  160. OUTPUT_NORM = auto()
  161. ROPE_FREQS = auto()
  162. ROPE_FACTORS_LONG = auto()
  163. ROPE_FACTORS_SHORT = auto()
  164. ATTN_Q = auto()
  165. ATTN_K = auto()
  166. ATTN_V = auto()
  167. ATTN_QKV = auto()
  168. ATTN_OUT = auto()
  169. ATTN_NORM = auto()
  170. ATTN_NORM_2 = auto()
  171. ATTN_OUT_NORM = auto()
  172. ATTN_POST_NORM = auto()
  173. ATTN_ROT_EMBD = auto()
  174. FFN_GATE_INP = auto()
  175. FFN_GATE_INP_SHEXP = auto()
  176. FFN_NORM = auto()
  177. FFN_PRE_NORM = auto()
  178. FFN_POST_NORM = auto()
  179. FFN_GATE = auto()
  180. FFN_DOWN = auto()
  181. FFN_UP = auto()
  182. FFN_ACT = auto()
  183. FFN_NORM_EXP = auto()
  184. FFN_GATE_EXP = auto()
  185. FFN_DOWN_EXP = auto()
  186. FFN_UP_EXP = auto()
  187. FFN_GATE_SHEXP = auto()
  188. FFN_DOWN_SHEXP = auto()
  189. FFN_UP_SHEXP = auto()
  190. ATTN_Q_NORM = auto()
  191. ATTN_K_NORM = auto()
  192. LAYER_OUT_NORM = auto()
  193. SSM_IN = auto()
  194. SSM_CONV1D = auto()
  195. SSM_X = auto()
  196. SSM_DT = auto()
  197. SSM_A = auto()
  198. SSM_D = auto()
  199. SSM_OUT = auto()
  200. ATTN_Q_A = auto()
  201. ATTN_Q_B = auto()
  202. ATTN_KV_A_MQA = auto()
  203. ATTN_KV_B = auto()
  204. ATTN_Q_A_NORM = auto()
  205. ATTN_KV_A_NORM = auto()
  206. FFN_SUB_NORM = auto()
  207. ATTN_SUB_NORM = auto()
  208. DEC_ATTN_NORM = auto()
  209. DEC_ATTN_Q = auto()
  210. DEC_ATTN_K = auto()
  211. DEC_ATTN_V = auto()
  212. DEC_ATTN_OUT = auto()
  213. DEC_ATTN_REL_B = auto()
  214. DEC_CROSS_ATTN_NORM = auto()
  215. DEC_CROSS_ATTN_Q = auto()
  216. DEC_CROSS_ATTN_K = auto()
  217. DEC_CROSS_ATTN_V = auto()
  218. DEC_CROSS_ATTN_OUT = auto()
  219. DEC_CROSS_ATTN_REL_B = auto()
  220. DEC_FFN_NORM = auto()
  221. DEC_FFN_GATE = auto()
  222. DEC_FFN_DOWN = auto()
  223. DEC_FFN_UP = auto()
  224. DEC_OUTPUT_NORM = auto()
  225. ENC_ATTN_NORM = auto()
  226. ENC_ATTN_Q = auto()
  227. ENC_ATTN_K = auto()
  228. ENC_ATTN_V = auto()
  229. ENC_ATTN_OUT = auto()
  230. ENC_ATTN_REL_B = auto()
  231. ENC_FFN_NORM = auto()
  232. ENC_FFN_GATE = auto()
  233. ENC_FFN_DOWN = auto()
  234. ENC_FFN_UP = auto()
  235. ENC_OUTPUT_NORM = auto()
  236. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  237. MODEL_ARCH.LLAMA: "llama",
  238. MODEL_ARCH.FALCON: "falcon",
  239. MODEL_ARCH.BAICHUAN: "baichuan",
  240. MODEL_ARCH.GROK: "grok",
  241. MODEL_ARCH.GPT2: "gpt2",
  242. MODEL_ARCH.GPTJ: "gptj",
  243. MODEL_ARCH.GPTNEOX: "gptneox",
  244. MODEL_ARCH.MPT: "mpt",
  245. MODEL_ARCH.STARCODER: "starcoder",
  246. MODEL_ARCH.REFACT: "refact",
  247. MODEL_ARCH.BERT: "bert",
  248. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  249. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  250. MODEL_ARCH.BLOOM: "bloom",
  251. MODEL_ARCH.STABLELM: "stablelm",
  252. MODEL_ARCH.QWEN: "qwen",
  253. MODEL_ARCH.QWEN2: "qwen2",
  254. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  255. MODEL_ARCH.PHI2: "phi2",
  256. MODEL_ARCH.PHI3: "phi3",
  257. MODEL_ARCH.PLAMO: "plamo",
  258. MODEL_ARCH.CODESHELL: "codeshell",
  259. MODEL_ARCH.ORION: "orion",
  260. MODEL_ARCH.INTERNLM2: "internlm2",
  261. MODEL_ARCH.MINICPM: "minicpm",
  262. MODEL_ARCH.GEMMA: "gemma",
  263. MODEL_ARCH.GEMMA2: "gemma2",
  264. MODEL_ARCH.STARCODER2: "starcoder2",
  265. MODEL_ARCH.MAMBA: "mamba",
  266. MODEL_ARCH.XVERSE: "xverse",
  267. MODEL_ARCH.COMMAND_R: "command-r",
  268. MODEL_ARCH.DBRX: "dbrx",
  269. MODEL_ARCH.OLMO: "olmo",
  270. MODEL_ARCH.OPENELM: "openelm",
  271. MODEL_ARCH.ARCTIC: "arctic",
  272. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  273. MODEL_ARCH.CHATGLM: "chatglm",
  274. MODEL_ARCH.BITNET: "bitnet",
  275. MODEL_ARCH.T5: "t5",
  276. MODEL_ARCH.JAIS: "jais",
  277. }
  278. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  279. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  280. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  281. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  282. MODEL_TENSOR.POS_EMBD: "position_embd",
  283. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  284. MODEL_TENSOR.OUTPUT: "output",
  285. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  286. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  287. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  288. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  289. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  290. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  291. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  292. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  293. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  294. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  295. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  296. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  297. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  298. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  299. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  300. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  301. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  302. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  303. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  304. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  305. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  306. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  307. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  308. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  309. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  310. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  311. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  312. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  313. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  314. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  315. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  316. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  317. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  318. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  319. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  320. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  321. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  322. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  323. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  324. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  325. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  326. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  327. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  328. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  329. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  330. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  331. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  332. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  333. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  334. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  335. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  336. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  337. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  338. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  339. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  340. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  341. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  342. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  343. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  344. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  345. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  346. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  347. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  348. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  349. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  350. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  351. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  352. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  353. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  354. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  355. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  356. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  357. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  358. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  359. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  360. }
  361. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  362. MODEL_ARCH.LLAMA: [
  363. MODEL_TENSOR.TOKEN_EMBD,
  364. MODEL_TENSOR.OUTPUT_NORM,
  365. MODEL_TENSOR.OUTPUT,
  366. MODEL_TENSOR.ROPE_FREQS,
  367. MODEL_TENSOR.ATTN_NORM,
  368. MODEL_TENSOR.ATTN_Q,
  369. MODEL_TENSOR.ATTN_K,
  370. MODEL_TENSOR.ATTN_V,
  371. MODEL_TENSOR.ATTN_OUT,
  372. MODEL_TENSOR.ATTN_ROT_EMBD,
  373. MODEL_TENSOR.FFN_GATE_INP,
  374. MODEL_TENSOR.FFN_NORM,
  375. MODEL_TENSOR.FFN_GATE,
  376. MODEL_TENSOR.FFN_DOWN,
  377. MODEL_TENSOR.FFN_UP,
  378. MODEL_TENSOR.FFN_GATE_EXP,
  379. MODEL_TENSOR.FFN_DOWN_EXP,
  380. MODEL_TENSOR.FFN_UP_EXP,
  381. ],
  382. MODEL_ARCH.GROK: [
  383. MODEL_TENSOR.TOKEN_EMBD,
  384. MODEL_TENSOR.OUTPUT_NORM,
  385. MODEL_TENSOR.OUTPUT,
  386. MODEL_TENSOR.ROPE_FREQS,
  387. MODEL_TENSOR.ATTN_NORM,
  388. MODEL_TENSOR.ATTN_Q,
  389. MODEL_TENSOR.ATTN_K,
  390. MODEL_TENSOR.ATTN_V,
  391. MODEL_TENSOR.ATTN_OUT,
  392. MODEL_TENSOR.ATTN_ROT_EMBD,
  393. MODEL_TENSOR.ATTN_OUT_NORM,
  394. MODEL_TENSOR.FFN_GATE_INP,
  395. MODEL_TENSOR.FFN_NORM,
  396. MODEL_TENSOR.FFN_GATE,
  397. MODEL_TENSOR.FFN_DOWN,
  398. MODEL_TENSOR.FFN_UP,
  399. MODEL_TENSOR.FFN_GATE_EXP,
  400. MODEL_TENSOR.FFN_DOWN_EXP,
  401. MODEL_TENSOR.FFN_UP_EXP,
  402. MODEL_TENSOR.LAYER_OUT_NORM,
  403. ],
  404. MODEL_ARCH.GPTNEOX: [
  405. MODEL_TENSOR.TOKEN_EMBD,
  406. MODEL_TENSOR.OUTPUT_NORM,
  407. MODEL_TENSOR.OUTPUT,
  408. MODEL_TENSOR.ATTN_NORM,
  409. MODEL_TENSOR.ATTN_QKV,
  410. MODEL_TENSOR.ATTN_OUT,
  411. MODEL_TENSOR.FFN_NORM,
  412. MODEL_TENSOR.FFN_DOWN,
  413. MODEL_TENSOR.FFN_UP,
  414. ],
  415. MODEL_ARCH.FALCON: [
  416. MODEL_TENSOR.TOKEN_EMBD,
  417. MODEL_TENSOR.OUTPUT_NORM,
  418. MODEL_TENSOR.OUTPUT,
  419. MODEL_TENSOR.ATTN_NORM,
  420. MODEL_TENSOR.ATTN_NORM_2,
  421. MODEL_TENSOR.ATTN_QKV,
  422. MODEL_TENSOR.ATTN_OUT,
  423. MODEL_TENSOR.FFN_DOWN,
  424. MODEL_TENSOR.FFN_UP,
  425. ],
  426. MODEL_ARCH.BAICHUAN: [
  427. MODEL_TENSOR.TOKEN_EMBD,
  428. MODEL_TENSOR.OUTPUT_NORM,
  429. MODEL_TENSOR.OUTPUT,
  430. MODEL_TENSOR.ROPE_FREQS,
  431. MODEL_TENSOR.ATTN_NORM,
  432. MODEL_TENSOR.ATTN_Q,
  433. MODEL_TENSOR.ATTN_K,
  434. MODEL_TENSOR.ATTN_V,
  435. MODEL_TENSOR.ATTN_OUT,
  436. MODEL_TENSOR.ATTN_ROT_EMBD,
  437. MODEL_TENSOR.FFN_NORM,
  438. MODEL_TENSOR.FFN_GATE,
  439. MODEL_TENSOR.FFN_DOWN,
  440. MODEL_TENSOR.FFN_UP,
  441. ],
  442. MODEL_ARCH.STARCODER: [
  443. MODEL_TENSOR.TOKEN_EMBD,
  444. MODEL_TENSOR.POS_EMBD,
  445. MODEL_TENSOR.OUTPUT_NORM,
  446. MODEL_TENSOR.OUTPUT,
  447. MODEL_TENSOR.ATTN_NORM,
  448. MODEL_TENSOR.ATTN_QKV,
  449. MODEL_TENSOR.ATTN_OUT,
  450. MODEL_TENSOR.FFN_NORM,
  451. MODEL_TENSOR.FFN_DOWN,
  452. MODEL_TENSOR.FFN_UP,
  453. ],
  454. MODEL_ARCH.BERT: [
  455. MODEL_TENSOR.TOKEN_EMBD,
  456. MODEL_TENSOR.TOKEN_EMBD_NORM,
  457. MODEL_TENSOR.TOKEN_TYPES,
  458. MODEL_TENSOR.POS_EMBD,
  459. MODEL_TENSOR.OUTPUT_NORM,
  460. MODEL_TENSOR.ATTN_OUT_NORM,
  461. MODEL_TENSOR.ATTN_Q,
  462. MODEL_TENSOR.ATTN_K,
  463. MODEL_TENSOR.ATTN_V,
  464. MODEL_TENSOR.ATTN_OUT,
  465. MODEL_TENSOR.FFN_DOWN,
  466. MODEL_TENSOR.FFN_UP,
  467. MODEL_TENSOR.LAYER_OUT_NORM,
  468. ],
  469. MODEL_ARCH.NOMIC_BERT: [
  470. MODEL_TENSOR.TOKEN_EMBD,
  471. MODEL_TENSOR.TOKEN_EMBD_NORM,
  472. MODEL_TENSOR.TOKEN_TYPES,
  473. MODEL_TENSOR.POS_EMBD,
  474. MODEL_TENSOR.OUTPUT_NORM,
  475. MODEL_TENSOR.ATTN_OUT_NORM,
  476. MODEL_TENSOR.ATTN_QKV,
  477. MODEL_TENSOR.ATTN_OUT,
  478. MODEL_TENSOR.FFN_GATE,
  479. MODEL_TENSOR.FFN_DOWN,
  480. MODEL_TENSOR.FFN_UP,
  481. MODEL_TENSOR.LAYER_OUT_NORM,
  482. ],
  483. MODEL_ARCH.JINA_BERT_V2: [
  484. MODEL_TENSOR.TOKEN_EMBD,
  485. MODEL_TENSOR.TOKEN_EMBD_NORM,
  486. MODEL_TENSOR.TOKEN_TYPES,
  487. MODEL_TENSOR.ATTN_NORM_2,
  488. MODEL_TENSOR.ATTN_OUT_NORM,
  489. MODEL_TENSOR.ATTN_Q,
  490. MODEL_TENSOR.ATTN_Q_NORM,
  491. MODEL_TENSOR.ATTN_K,
  492. MODEL_TENSOR.ATTN_K_NORM,
  493. MODEL_TENSOR.ATTN_V,
  494. MODEL_TENSOR.ATTN_OUT,
  495. MODEL_TENSOR.FFN_UP,
  496. MODEL_TENSOR.FFN_GATE,
  497. MODEL_TENSOR.FFN_DOWN,
  498. MODEL_TENSOR.LAYER_OUT_NORM,
  499. ],
  500. MODEL_ARCH.MPT: [
  501. MODEL_TENSOR.TOKEN_EMBD,
  502. MODEL_TENSOR.OUTPUT_NORM,
  503. MODEL_TENSOR.OUTPUT,
  504. MODEL_TENSOR.ATTN_NORM,
  505. MODEL_TENSOR.ATTN_QKV,
  506. MODEL_TENSOR.ATTN_OUT,
  507. MODEL_TENSOR.FFN_NORM,
  508. MODEL_TENSOR.FFN_DOWN,
  509. MODEL_TENSOR.FFN_UP,
  510. MODEL_TENSOR.FFN_ACT,
  511. MODEL_TENSOR.ATTN_Q_NORM,
  512. MODEL_TENSOR.ATTN_K_NORM,
  513. MODEL_TENSOR.POS_EMBD,
  514. ],
  515. MODEL_ARCH.GPTJ: [
  516. MODEL_TENSOR.TOKEN_EMBD,
  517. MODEL_TENSOR.OUTPUT_NORM,
  518. MODEL_TENSOR.OUTPUT,
  519. MODEL_TENSOR.ATTN_NORM,
  520. MODEL_TENSOR.ATTN_Q,
  521. MODEL_TENSOR.ATTN_K,
  522. MODEL_TENSOR.ATTN_V,
  523. MODEL_TENSOR.ATTN_OUT,
  524. MODEL_TENSOR.FFN_DOWN,
  525. MODEL_TENSOR.FFN_UP,
  526. ],
  527. MODEL_ARCH.REFACT: [
  528. MODEL_TENSOR.TOKEN_EMBD,
  529. MODEL_TENSOR.OUTPUT_NORM,
  530. MODEL_TENSOR.OUTPUT,
  531. MODEL_TENSOR.ATTN_NORM,
  532. MODEL_TENSOR.ATTN_Q,
  533. MODEL_TENSOR.ATTN_K,
  534. MODEL_TENSOR.ATTN_V,
  535. MODEL_TENSOR.ATTN_OUT,
  536. MODEL_TENSOR.FFN_NORM,
  537. MODEL_TENSOR.FFN_GATE,
  538. MODEL_TENSOR.FFN_DOWN,
  539. MODEL_TENSOR.FFN_UP,
  540. ],
  541. MODEL_ARCH.BLOOM: [
  542. MODEL_TENSOR.TOKEN_EMBD,
  543. MODEL_TENSOR.TOKEN_EMBD_NORM,
  544. MODEL_TENSOR.OUTPUT_NORM,
  545. MODEL_TENSOR.OUTPUT,
  546. MODEL_TENSOR.ATTN_NORM,
  547. MODEL_TENSOR.ATTN_QKV,
  548. MODEL_TENSOR.ATTN_OUT,
  549. MODEL_TENSOR.FFN_NORM,
  550. MODEL_TENSOR.FFN_DOWN,
  551. MODEL_TENSOR.FFN_UP,
  552. ],
  553. MODEL_ARCH.STABLELM: [
  554. MODEL_TENSOR.TOKEN_EMBD,
  555. MODEL_TENSOR.OUTPUT_NORM,
  556. MODEL_TENSOR.OUTPUT,
  557. MODEL_TENSOR.ROPE_FREQS,
  558. MODEL_TENSOR.ATTN_NORM,
  559. MODEL_TENSOR.ATTN_Q,
  560. MODEL_TENSOR.ATTN_K,
  561. MODEL_TENSOR.ATTN_V,
  562. MODEL_TENSOR.ATTN_OUT,
  563. MODEL_TENSOR.FFN_NORM,
  564. MODEL_TENSOR.FFN_GATE,
  565. MODEL_TENSOR.FFN_DOWN,
  566. MODEL_TENSOR.FFN_UP,
  567. MODEL_TENSOR.ATTN_Q_NORM,
  568. MODEL_TENSOR.ATTN_K_NORM,
  569. ],
  570. MODEL_ARCH.QWEN: [
  571. MODEL_TENSOR.TOKEN_EMBD,
  572. MODEL_TENSOR.OUTPUT_NORM,
  573. MODEL_TENSOR.OUTPUT,
  574. MODEL_TENSOR.ROPE_FREQS,
  575. MODEL_TENSOR.ATTN_NORM,
  576. MODEL_TENSOR.ATTN_QKV,
  577. MODEL_TENSOR.ATTN_OUT,
  578. MODEL_TENSOR.ATTN_ROT_EMBD,
  579. MODEL_TENSOR.FFN_NORM,
  580. MODEL_TENSOR.FFN_GATE,
  581. MODEL_TENSOR.FFN_DOWN,
  582. MODEL_TENSOR.FFN_UP,
  583. ],
  584. MODEL_ARCH.QWEN2: [
  585. MODEL_TENSOR.TOKEN_EMBD,
  586. MODEL_TENSOR.OUTPUT_NORM,
  587. MODEL_TENSOR.OUTPUT,
  588. MODEL_TENSOR.ATTN_NORM,
  589. MODEL_TENSOR.ATTN_Q,
  590. MODEL_TENSOR.ATTN_K,
  591. MODEL_TENSOR.ATTN_V,
  592. MODEL_TENSOR.ATTN_OUT,
  593. MODEL_TENSOR.FFN_NORM,
  594. MODEL_TENSOR.FFN_GATE,
  595. MODEL_TENSOR.FFN_DOWN,
  596. MODEL_TENSOR.FFN_UP,
  597. ],
  598. MODEL_ARCH.QWEN2MOE: [
  599. MODEL_TENSOR.TOKEN_EMBD,
  600. MODEL_TENSOR.OUTPUT_NORM,
  601. MODEL_TENSOR.OUTPUT,
  602. MODEL_TENSOR.ATTN_NORM,
  603. MODEL_TENSOR.ATTN_Q,
  604. MODEL_TENSOR.ATTN_K,
  605. MODEL_TENSOR.ATTN_V,
  606. MODEL_TENSOR.ATTN_OUT,
  607. MODEL_TENSOR.FFN_NORM,
  608. MODEL_TENSOR.FFN_GATE_INP,
  609. MODEL_TENSOR.FFN_GATE_EXP,
  610. MODEL_TENSOR.FFN_DOWN_EXP,
  611. MODEL_TENSOR.FFN_UP_EXP,
  612. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  613. MODEL_TENSOR.FFN_GATE_SHEXP,
  614. MODEL_TENSOR.FFN_DOWN_SHEXP,
  615. MODEL_TENSOR.FFN_UP_SHEXP,
  616. ],
  617. MODEL_ARCH.PLAMO: [
  618. MODEL_TENSOR.TOKEN_EMBD,
  619. MODEL_TENSOR.OUTPUT_NORM,
  620. MODEL_TENSOR.OUTPUT,
  621. MODEL_TENSOR.ROPE_FREQS,
  622. MODEL_TENSOR.ATTN_NORM,
  623. MODEL_TENSOR.ATTN_Q,
  624. MODEL_TENSOR.ATTN_K,
  625. MODEL_TENSOR.ATTN_V,
  626. MODEL_TENSOR.ATTN_OUT,
  627. MODEL_TENSOR.ATTN_ROT_EMBD,
  628. MODEL_TENSOR.FFN_GATE,
  629. MODEL_TENSOR.FFN_DOWN,
  630. MODEL_TENSOR.FFN_UP,
  631. ],
  632. MODEL_ARCH.GPT2: [
  633. MODEL_TENSOR.TOKEN_EMBD,
  634. MODEL_TENSOR.POS_EMBD,
  635. MODEL_TENSOR.OUTPUT_NORM,
  636. MODEL_TENSOR.OUTPUT,
  637. MODEL_TENSOR.ATTN_NORM,
  638. MODEL_TENSOR.ATTN_QKV,
  639. MODEL_TENSOR.ATTN_OUT,
  640. MODEL_TENSOR.FFN_NORM,
  641. MODEL_TENSOR.FFN_DOWN,
  642. MODEL_TENSOR.FFN_UP,
  643. ],
  644. MODEL_ARCH.PHI2: [
  645. MODEL_TENSOR.TOKEN_EMBD,
  646. MODEL_TENSOR.OUTPUT_NORM,
  647. MODEL_TENSOR.OUTPUT,
  648. MODEL_TENSOR.ATTN_NORM,
  649. MODEL_TENSOR.ATTN_QKV,
  650. MODEL_TENSOR.ATTN_Q,
  651. MODEL_TENSOR.ATTN_K,
  652. MODEL_TENSOR.ATTN_V,
  653. MODEL_TENSOR.ATTN_OUT,
  654. MODEL_TENSOR.FFN_NORM,
  655. MODEL_TENSOR.FFN_DOWN,
  656. MODEL_TENSOR.FFN_UP,
  657. ],
  658. MODEL_ARCH.PHI3: [
  659. MODEL_TENSOR.TOKEN_EMBD,
  660. MODEL_TENSOR.OUTPUT_NORM,
  661. MODEL_TENSOR.OUTPUT,
  662. MODEL_TENSOR.ATTN_NORM,
  663. MODEL_TENSOR.ATTN_QKV,
  664. MODEL_TENSOR.ATTN_Q,
  665. MODEL_TENSOR.ATTN_K,
  666. MODEL_TENSOR.ATTN_V,
  667. MODEL_TENSOR.ATTN_OUT,
  668. MODEL_TENSOR.FFN_NORM,
  669. MODEL_TENSOR.FFN_DOWN,
  670. MODEL_TENSOR.FFN_UP,
  671. ],
  672. MODEL_ARCH.CODESHELL: [
  673. MODEL_TENSOR.TOKEN_EMBD,
  674. MODEL_TENSOR.POS_EMBD,
  675. MODEL_TENSOR.OUTPUT_NORM,
  676. MODEL_TENSOR.OUTPUT,
  677. MODEL_TENSOR.ATTN_NORM,
  678. MODEL_TENSOR.ATTN_QKV,
  679. MODEL_TENSOR.ATTN_OUT,
  680. MODEL_TENSOR.ATTN_ROT_EMBD,
  681. MODEL_TENSOR.FFN_NORM,
  682. MODEL_TENSOR.FFN_DOWN,
  683. MODEL_TENSOR.FFN_UP,
  684. ],
  685. MODEL_ARCH.ORION: [
  686. MODEL_TENSOR.TOKEN_EMBD,
  687. MODEL_TENSOR.OUTPUT_NORM,
  688. MODEL_TENSOR.OUTPUT,
  689. MODEL_TENSOR.ROPE_FREQS,
  690. MODEL_TENSOR.ATTN_NORM,
  691. MODEL_TENSOR.ATTN_Q,
  692. MODEL_TENSOR.ATTN_K,
  693. MODEL_TENSOR.ATTN_V,
  694. MODEL_TENSOR.ATTN_OUT,
  695. MODEL_TENSOR.ATTN_ROT_EMBD,
  696. MODEL_TENSOR.FFN_NORM,
  697. MODEL_TENSOR.FFN_GATE,
  698. MODEL_TENSOR.FFN_DOWN,
  699. MODEL_TENSOR.FFN_UP,
  700. ],
  701. MODEL_ARCH.INTERNLM2: [
  702. MODEL_TENSOR.TOKEN_EMBD,
  703. MODEL_TENSOR.OUTPUT_NORM,
  704. MODEL_TENSOR.OUTPUT,
  705. MODEL_TENSOR.ATTN_NORM,
  706. MODEL_TENSOR.ATTN_Q,
  707. MODEL_TENSOR.ATTN_K,
  708. MODEL_TENSOR.ATTN_V,
  709. MODEL_TENSOR.ATTN_OUT,
  710. MODEL_TENSOR.ATTN_ROT_EMBD,
  711. MODEL_TENSOR.FFN_NORM,
  712. MODEL_TENSOR.FFN_GATE,
  713. MODEL_TENSOR.FFN_DOWN,
  714. MODEL_TENSOR.FFN_UP,
  715. ],
  716. MODEL_ARCH.MINICPM: [
  717. MODEL_TENSOR.TOKEN_EMBD,
  718. MODEL_TENSOR.OUTPUT,
  719. MODEL_TENSOR.OUTPUT_NORM,
  720. MODEL_TENSOR.ROPE_FREQS,
  721. MODEL_TENSOR.ATTN_NORM,
  722. MODEL_TENSOR.ATTN_Q,
  723. MODEL_TENSOR.ATTN_K,
  724. MODEL_TENSOR.ATTN_V,
  725. MODEL_TENSOR.ATTN_OUT,
  726. MODEL_TENSOR.ATTN_ROT_EMBD,
  727. MODEL_TENSOR.FFN_GATE_INP,
  728. MODEL_TENSOR.FFN_NORM,
  729. MODEL_TENSOR.FFN_GATE,
  730. MODEL_TENSOR.FFN_DOWN,
  731. MODEL_TENSOR.FFN_UP,
  732. MODEL_TENSOR.FFN_GATE_EXP,
  733. MODEL_TENSOR.FFN_DOWN_EXP,
  734. MODEL_TENSOR.FFN_UP_EXP,
  735. ],
  736. MODEL_ARCH.GEMMA: [
  737. MODEL_TENSOR.TOKEN_EMBD,
  738. MODEL_TENSOR.OUTPUT_NORM,
  739. MODEL_TENSOR.ATTN_NORM,
  740. MODEL_TENSOR.ATTN_Q,
  741. MODEL_TENSOR.ATTN_K,
  742. MODEL_TENSOR.ATTN_V,
  743. MODEL_TENSOR.ATTN_OUT,
  744. MODEL_TENSOR.FFN_GATE,
  745. MODEL_TENSOR.FFN_DOWN,
  746. MODEL_TENSOR.FFN_UP,
  747. MODEL_TENSOR.FFN_NORM,
  748. ],
  749. MODEL_ARCH.GEMMA2: [
  750. MODEL_TENSOR.TOKEN_EMBD,
  751. MODEL_TENSOR.OUTPUT_NORM,
  752. MODEL_TENSOR.ATTN_Q,
  753. MODEL_TENSOR.ATTN_K,
  754. MODEL_TENSOR.ATTN_V,
  755. MODEL_TENSOR.ATTN_OUT,
  756. MODEL_TENSOR.FFN_GATE,
  757. MODEL_TENSOR.FFN_DOWN,
  758. MODEL_TENSOR.FFN_UP,
  759. MODEL_TENSOR.ATTN_NORM,
  760. MODEL_TENSOR.ATTN_POST_NORM,
  761. MODEL_TENSOR.FFN_PRE_NORM,
  762. MODEL_TENSOR.FFN_POST_NORM,
  763. ],
  764. MODEL_ARCH.STARCODER2: [
  765. MODEL_TENSOR.TOKEN_EMBD,
  766. MODEL_TENSOR.OUTPUT_NORM,
  767. MODEL_TENSOR.OUTPUT,
  768. MODEL_TENSOR.ROPE_FREQS,
  769. MODEL_TENSOR.ATTN_NORM,
  770. MODEL_TENSOR.ATTN_Q,
  771. MODEL_TENSOR.ATTN_K,
  772. MODEL_TENSOR.ATTN_V,
  773. MODEL_TENSOR.ATTN_OUT,
  774. MODEL_TENSOR.ATTN_ROT_EMBD,
  775. MODEL_TENSOR.FFN_NORM,
  776. MODEL_TENSOR.FFN_DOWN,
  777. MODEL_TENSOR.FFN_UP,
  778. ],
  779. MODEL_ARCH.MAMBA: [
  780. MODEL_TENSOR.TOKEN_EMBD,
  781. MODEL_TENSOR.OUTPUT_NORM,
  782. MODEL_TENSOR.OUTPUT,
  783. MODEL_TENSOR.ATTN_NORM,
  784. MODEL_TENSOR.SSM_IN,
  785. MODEL_TENSOR.SSM_CONV1D,
  786. MODEL_TENSOR.SSM_X,
  787. MODEL_TENSOR.SSM_DT,
  788. MODEL_TENSOR.SSM_A,
  789. MODEL_TENSOR.SSM_D,
  790. MODEL_TENSOR.SSM_OUT,
  791. ],
  792. MODEL_ARCH.XVERSE: [
  793. MODEL_TENSOR.TOKEN_EMBD,
  794. MODEL_TENSOR.OUTPUT_NORM,
  795. MODEL_TENSOR.OUTPUT,
  796. MODEL_TENSOR.ROPE_FREQS,
  797. MODEL_TENSOR.ATTN_NORM,
  798. MODEL_TENSOR.ATTN_Q,
  799. MODEL_TENSOR.ATTN_K,
  800. MODEL_TENSOR.ATTN_V,
  801. MODEL_TENSOR.ATTN_OUT,
  802. MODEL_TENSOR.ATTN_ROT_EMBD,
  803. MODEL_TENSOR.FFN_NORM,
  804. MODEL_TENSOR.FFN_GATE,
  805. MODEL_TENSOR.FFN_DOWN,
  806. MODEL_TENSOR.FFN_UP,
  807. ],
  808. MODEL_ARCH.COMMAND_R: [
  809. MODEL_TENSOR.TOKEN_EMBD,
  810. MODEL_TENSOR.OUTPUT_NORM,
  811. MODEL_TENSOR.ATTN_NORM,
  812. MODEL_TENSOR.ATTN_Q,
  813. MODEL_TENSOR.ATTN_K,
  814. MODEL_TENSOR.ATTN_V,
  815. MODEL_TENSOR.ATTN_OUT,
  816. MODEL_TENSOR.FFN_GATE,
  817. MODEL_TENSOR.FFN_DOWN,
  818. MODEL_TENSOR.FFN_UP,
  819. MODEL_TENSOR.ATTN_K_NORM,
  820. MODEL_TENSOR.ATTN_Q_NORM,
  821. ],
  822. MODEL_ARCH.DBRX: [
  823. MODEL_TENSOR.TOKEN_EMBD,
  824. MODEL_TENSOR.OUTPUT_NORM,
  825. MODEL_TENSOR.OUTPUT,
  826. MODEL_TENSOR.ATTN_NORM,
  827. MODEL_TENSOR.ATTN_QKV,
  828. MODEL_TENSOR.ATTN_OUT,
  829. MODEL_TENSOR.ATTN_OUT_NORM,
  830. MODEL_TENSOR.FFN_GATE_INP,
  831. MODEL_TENSOR.FFN_GATE_EXP,
  832. MODEL_TENSOR.FFN_DOWN_EXP,
  833. MODEL_TENSOR.FFN_UP_EXP,
  834. ],
  835. MODEL_ARCH.OLMO: [
  836. MODEL_TENSOR.TOKEN_EMBD,
  837. MODEL_TENSOR.OUTPUT,
  838. MODEL_TENSOR.ATTN_Q,
  839. MODEL_TENSOR.ATTN_K,
  840. MODEL_TENSOR.ATTN_V,
  841. MODEL_TENSOR.ATTN_OUT,
  842. MODEL_TENSOR.FFN_GATE,
  843. MODEL_TENSOR.FFN_DOWN,
  844. MODEL_TENSOR.FFN_UP,
  845. ],
  846. MODEL_ARCH.OPENELM: [
  847. MODEL_TENSOR.TOKEN_EMBD,
  848. MODEL_TENSOR.OUTPUT_NORM,
  849. MODEL_TENSOR.ATTN_NORM,
  850. MODEL_TENSOR.ATTN_QKV,
  851. MODEL_TENSOR.ATTN_Q_NORM,
  852. MODEL_TENSOR.ATTN_K_NORM,
  853. MODEL_TENSOR.ATTN_OUT,
  854. MODEL_TENSOR.FFN_NORM,
  855. MODEL_TENSOR.FFN_GATE,
  856. MODEL_TENSOR.FFN_DOWN,
  857. MODEL_TENSOR.FFN_UP,
  858. ],
  859. MODEL_ARCH.ARCTIC: [
  860. MODEL_TENSOR.TOKEN_EMBD,
  861. MODEL_TENSOR.OUTPUT_NORM,
  862. MODEL_TENSOR.OUTPUT,
  863. MODEL_TENSOR.ROPE_FREQS,
  864. MODEL_TENSOR.ATTN_NORM,
  865. MODEL_TENSOR.ATTN_Q,
  866. MODEL_TENSOR.ATTN_K,
  867. MODEL_TENSOR.ATTN_V,
  868. MODEL_TENSOR.ATTN_OUT,
  869. MODEL_TENSOR.ATTN_ROT_EMBD,
  870. MODEL_TENSOR.FFN_GATE_INP,
  871. MODEL_TENSOR.FFN_NORM,
  872. MODEL_TENSOR.FFN_GATE,
  873. MODEL_TENSOR.FFN_DOWN,
  874. MODEL_TENSOR.FFN_UP,
  875. MODEL_TENSOR.FFN_NORM_EXP,
  876. MODEL_TENSOR.FFN_GATE_EXP,
  877. MODEL_TENSOR.FFN_DOWN_EXP,
  878. MODEL_TENSOR.FFN_UP_EXP,
  879. ],
  880. MODEL_ARCH.DEEPSEEK2: [
  881. MODEL_TENSOR.TOKEN_EMBD,
  882. MODEL_TENSOR.OUTPUT_NORM,
  883. MODEL_TENSOR.OUTPUT,
  884. MODEL_TENSOR.ROPE_FREQS,
  885. MODEL_TENSOR.ATTN_NORM,
  886. MODEL_TENSOR.ATTN_Q,
  887. MODEL_TENSOR.ATTN_Q_A,
  888. MODEL_TENSOR.ATTN_Q_B,
  889. MODEL_TENSOR.ATTN_KV_A_MQA,
  890. MODEL_TENSOR.ATTN_KV_B,
  891. MODEL_TENSOR.ATTN_Q_A_NORM,
  892. MODEL_TENSOR.ATTN_KV_A_NORM,
  893. MODEL_TENSOR.ATTN_OUT,
  894. MODEL_TENSOR.ATTN_ROT_EMBD,
  895. MODEL_TENSOR.FFN_GATE_INP,
  896. MODEL_TENSOR.FFN_NORM,
  897. MODEL_TENSOR.FFN_GATE,
  898. MODEL_TENSOR.FFN_DOWN,
  899. MODEL_TENSOR.FFN_UP,
  900. MODEL_TENSOR.FFN_GATE_EXP,
  901. MODEL_TENSOR.FFN_DOWN_EXP,
  902. MODEL_TENSOR.FFN_UP_EXP,
  903. MODEL_TENSOR.FFN_GATE_SHEXP,
  904. MODEL_TENSOR.FFN_DOWN_SHEXP,
  905. MODEL_TENSOR.FFN_UP_SHEXP,
  906. ],
  907. MODEL_ARCH.CHATGLM : [
  908. MODEL_TENSOR.TOKEN_EMBD,
  909. MODEL_TENSOR.ROPE_FREQS,
  910. MODEL_TENSOR.OUTPUT_NORM,
  911. MODEL_TENSOR.OUTPUT,
  912. MODEL_TENSOR.ATTN_NORM,
  913. MODEL_TENSOR.ATTN_QKV,
  914. MODEL_TENSOR.ATTN_OUT,
  915. MODEL_TENSOR.FFN_NORM,
  916. MODEL_TENSOR.FFN_DOWN,
  917. MODEL_TENSOR.FFN_UP,
  918. ],
  919. MODEL_ARCH.BITNET: [
  920. MODEL_TENSOR.ATTN_Q,
  921. MODEL_TENSOR.ATTN_K,
  922. MODEL_TENSOR.ATTN_V,
  923. MODEL_TENSOR.TOKEN_EMBD,
  924. MODEL_TENSOR.OUTPUT_NORM,
  925. MODEL_TENSOR.ATTN_NORM,
  926. MODEL_TENSOR.ATTN_OUT,
  927. MODEL_TENSOR.FFN_NORM,
  928. MODEL_TENSOR.FFN_GATE,
  929. MODEL_TENSOR.FFN_DOWN,
  930. MODEL_TENSOR.FFN_UP,
  931. MODEL_TENSOR.ATTN_SUB_NORM,
  932. MODEL_TENSOR.FFN_SUB_NORM,
  933. ],
  934. MODEL_ARCH.T5: [
  935. MODEL_TENSOR.TOKEN_EMBD,
  936. MODEL_TENSOR.OUTPUT,
  937. MODEL_TENSOR.DEC_ATTN_NORM,
  938. MODEL_TENSOR.DEC_ATTN_Q,
  939. MODEL_TENSOR.DEC_ATTN_K,
  940. MODEL_TENSOR.DEC_ATTN_V,
  941. MODEL_TENSOR.DEC_ATTN_OUT,
  942. MODEL_TENSOR.DEC_ATTN_REL_B,
  943. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  944. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  945. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  946. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  947. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  948. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  949. MODEL_TENSOR.DEC_FFN_NORM,
  950. MODEL_TENSOR.DEC_FFN_GATE,
  951. MODEL_TENSOR.DEC_FFN_DOWN,
  952. MODEL_TENSOR.DEC_FFN_UP,
  953. MODEL_TENSOR.DEC_OUTPUT_NORM,
  954. MODEL_TENSOR.ENC_ATTN_NORM,
  955. MODEL_TENSOR.ENC_ATTN_Q,
  956. MODEL_TENSOR.ENC_ATTN_K,
  957. MODEL_TENSOR.ENC_ATTN_V,
  958. MODEL_TENSOR.ENC_ATTN_OUT,
  959. MODEL_TENSOR.ENC_ATTN_REL_B,
  960. MODEL_TENSOR.ENC_FFN_NORM,
  961. MODEL_TENSOR.ENC_FFN_GATE,
  962. MODEL_TENSOR.ENC_FFN_DOWN,
  963. MODEL_TENSOR.ENC_FFN_UP,
  964. MODEL_TENSOR.ENC_OUTPUT_NORM,
  965. ],
  966. MODEL_ARCH.JAIS: [
  967. MODEL_TENSOR.TOKEN_EMBD,
  968. MODEL_TENSOR.OUTPUT_NORM,
  969. MODEL_TENSOR.OUTPUT,
  970. MODEL_TENSOR.ATTN_NORM,
  971. MODEL_TENSOR.ATTN_QKV,
  972. MODEL_TENSOR.ATTN_OUT,
  973. MODEL_TENSOR.FFN_NORM,
  974. MODEL_TENSOR.FFN_DOWN,
  975. MODEL_TENSOR.FFN_GATE,
  976. MODEL_TENSOR.FFN_UP,
  977. ],
  978. # TODO
  979. }
  980. # tensors that will not be serialized
  981. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  982. MODEL_ARCH.LLAMA: [
  983. MODEL_TENSOR.ROPE_FREQS,
  984. MODEL_TENSOR.ATTN_ROT_EMBD,
  985. ],
  986. MODEL_ARCH.BAICHUAN: [
  987. MODEL_TENSOR.ROPE_FREQS,
  988. MODEL_TENSOR.ATTN_ROT_EMBD,
  989. ],
  990. MODEL_ARCH.QWEN: [
  991. MODEL_TENSOR.ROPE_FREQS,
  992. MODEL_TENSOR.ATTN_ROT_EMBD,
  993. ],
  994. MODEL_ARCH.CODESHELL: [
  995. MODEL_TENSOR.ROPE_FREQS,
  996. MODEL_TENSOR.ATTN_ROT_EMBD,
  997. ],
  998. MODEL_ARCH.ORION: [
  999. MODEL_TENSOR.ROPE_FREQS,
  1000. MODEL_TENSOR.ATTN_ROT_EMBD,
  1001. ],
  1002. MODEL_ARCH.STARCODER2: [
  1003. MODEL_TENSOR.ROPE_FREQS,
  1004. MODEL_TENSOR.ATTN_ROT_EMBD,
  1005. ],
  1006. MODEL_ARCH.XVERSE: [
  1007. MODEL_TENSOR.ROPE_FREQS,
  1008. MODEL_TENSOR.ATTN_ROT_EMBD,
  1009. ],
  1010. MODEL_ARCH.DEEPSEEK2: [
  1011. MODEL_TENSOR.ROPE_FREQS,
  1012. MODEL_TENSOR.ATTN_ROT_EMBD,
  1013. ],
  1014. MODEL_ARCH.CHATGLM: [
  1015. MODEL_TENSOR.ROPE_FREQS,
  1016. ],
  1017. }
  1018. #
  1019. # types
  1020. #
  1021. class TokenType(IntEnum):
  1022. NORMAL = 1
  1023. UNKNOWN = 2
  1024. CONTROL = 3
  1025. USER_DEFINED = 4
  1026. UNUSED = 5
  1027. BYTE = 6
  1028. class RopeScalingType(Enum):
  1029. NONE = 'none'
  1030. LINEAR = 'linear'
  1031. YARN = 'yarn'
  1032. class PoolingType(IntEnum):
  1033. NONE = 0
  1034. MEAN = 1
  1035. CLS = 2
  1036. class GGMLQuantizationType(IntEnum):
  1037. F32 = 0
  1038. F16 = 1
  1039. Q4_0 = 2
  1040. Q4_1 = 3
  1041. Q5_0 = 6
  1042. Q5_1 = 7
  1043. Q8_0 = 8
  1044. Q8_1 = 9
  1045. Q2_K = 10
  1046. Q3_K = 11
  1047. Q4_K = 12
  1048. Q5_K = 13
  1049. Q6_K = 14
  1050. Q8_K = 15
  1051. IQ2_XXS = 16
  1052. IQ2_XS = 17
  1053. IQ3_XXS = 18
  1054. IQ1_S = 19
  1055. IQ4_NL = 20
  1056. IQ3_S = 21
  1057. IQ2_S = 22
  1058. IQ4_XS = 23
  1059. I8 = 24
  1060. I16 = 25
  1061. I32 = 26
  1062. I64 = 27
  1063. F64 = 28
  1064. IQ1_M = 29
  1065. BF16 = 30
  1066. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1067. # from llama_ftype in llama.h
  1068. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1069. class LlamaFileType(IntEnum):
  1070. ALL_F32 = 0
  1071. MOSTLY_F16 = 1 # except 1d tensors
  1072. MOSTLY_Q4_0 = 2 # except 1d tensors
  1073. MOSTLY_Q4_1 = 3 # except 1d tensors
  1074. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1075. # MOSTLY_Q4_2 = 5 # support has been removed
  1076. # MOSTLY_Q4_3 = 6 # support has been removed
  1077. MOSTLY_Q8_0 = 7 # except 1d tensors
  1078. MOSTLY_Q5_0 = 8 # except 1d tensors
  1079. MOSTLY_Q5_1 = 9 # except 1d tensors
  1080. MOSTLY_Q2_K = 10 # except 1d tensors
  1081. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1082. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1083. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1084. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1085. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1086. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1087. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1088. MOSTLY_Q6_K = 18 # except 1d tensors
  1089. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1090. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1091. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1092. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1093. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1094. MOSTLY_IQ1_S = 24 # except 1d tensors
  1095. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1096. MOSTLY_IQ3_S = 26 # except 1d tensors
  1097. MOSTLY_IQ3_M = 27 # except 1d tensors
  1098. MOSTLY_IQ2_S = 28 # except 1d tensors
  1099. MOSTLY_IQ2_M = 29 # except 1d tensors
  1100. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1101. MOSTLY_IQ1_M = 31 # except 1d tensors
  1102. MOSTLY_BF16 = 32 # except 1d tensors
  1103. GUESSED = 1024 # not specified in the model file
  1104. class GGUFEndian(IntEnum):
  1105. LITTLE = 0
  1106. BIG = 1
  1107. class GGUFValueType(IntEnum):
  1108. UINT8 = 0
  1109. INT8 = 1
  1110. UINT16 = 2
  1111. INT16 = 3
  1112. UINT32 = 4
  1113. INT32 = 5
  1114. FLOAT32 = 6
  1115. BOOL = 7
  1116. STRING = 8
  1117. ARRAY = 9
  1118. UINT64 = 10
  1119. INT64 = 11
  1120. FLOAT64 = 12
  1121. @staticmethod
  1122. def get_type(val: Any) -> GGUFValueType:
  1123. if isinstance(val, (str, bytes, bytearray)):
  1124. return GGUFValueType.STRING
  1125. elif isinstance(val, list):
  1126. return GGUFValueType.ARRAY
  1127. elif isinstance(val, float):
  1128. return GGUFValueType.FLOAT32
  1129. elif isinstance(val, bool):
  1130. return GGUFValueType.BOOL
  1131. elif isinstance(val, int):
  1132. return GGUFValueType.INT32
  1133. # TODO: need help with 64-bit types in Python
  1134. else:
  1135. raise ValueError(f"Unknown type: {type(val)}")
  1136. # Items here are (block size, type size)
  1137. QK_K = 256
  1138. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1139. GGMLQuantizationType.F32: (1, 4),
  1140. GGMLQuantizationType.F16: (1, 2),
  1141. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1142. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1143. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1144. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1145. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1146. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1147. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1148. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1149. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1150. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1151. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1152. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1153. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1154. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1155. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1156. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1157. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1158. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1159. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1160. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1161. GGMLQuantizationType.I8: (1, 1),
  1162. GGMLQuantizationType.I16: (1, 2),
  1163. GGMLQuantizationType.I32: (1, 4),
  1164. GGMLQuantizationType.I64: (1, 8),
  1165. GGMLQuantizationType.F64: (1, 8),
  1166. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1167. GGMLQuantizationType.BF16: (1, 2),
  1168. }
  1169. # Aliases for backward compatibility.
  1170. # general
  1171. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1172. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1173. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1174. KEY_GENERAL_NAME = Keys.General.NAME
  1175. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1176. KEY_GENERAL_URL = Keys.General.URL
  1177. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1178. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1179. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1180. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  1181. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1182. # LLM
  1183. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1184. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1185. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1186. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1187. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1188. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1189. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1190. # attention
  1191. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1192. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1193. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1194. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1195. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1196. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1197. # RoPE
  1198. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1199. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1200. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1201. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1202. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1203. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1204. # SSM
  1205. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1206. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1207. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1208. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1209. # tokenization
  1210. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1211. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1212. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1213. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1214. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1215. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1216. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1217. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1218. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1219. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1220. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1221. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1222. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1223. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1224. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1225. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1226. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1227. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1228. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID