convert-hf-to-gguf.py 125 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.use_temp_file = use_temp_file
  39. self.is_safetensors = self._is_model_safetensors()
  40. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  41. self.part_names = self._get_part_names()
  42. self.hparams = Model.load_hparams(self.dir_model)
  43. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  44. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  45. @property
  46. @abstractmethod
  47. def model_arch(self) -> gguf.MODEL_ARCH:
  48. pass
  49. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  50. key = next((k for k in keys if k in self.hparams), None)
  51. if key is not None:
  52. return self.hparams[key]
  53. if optional:
  54. return None
  55. raise KeyError(f"could not find any of: {keys}")
  56. def set_vocab(self):
  57. self._set_vocab_gpt2()
  58. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  59. for part_name in self.part_names:
  60. print(f"gguf: loading model part '{part_name}'")
  61. ctx: ContextManager[Any]
  62. if self.is_safetensors:
  63. from safetensors import safe_open
  64. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  65. else:
  66. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  67. with ctx as model_part:
  68. for name in model_part.keys():
  69. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  70. yield name, data
  71. def set_gguf_parameters(self):
  72. self.gguf_writer.add_name(self.dir_model.name)
  73. self.gguf_writer.add_block_count(self.block_count)
  74. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  75. self.gguf_writer.add_context_length(n_ctx)
  76. print(f"gguf: context length = {n_ctx}")
  77. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  78. self.gguf_writer.add_embedding_length(n_embd)
  79. print(f"gguf: embedding length = {n_embd}")
  80. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  81. self.gguf_writer.add_feed_forward_length(n_ff)
  82. print(f"gguf: feed forward length = {n_ff}")
  83. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  84. self.gguf_writer.add_head_count(n_head)
  85. print(f"gguf: head count = {n_head}")
  86. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  87. self.gguf_writer.add_head_count_kv(n_head_kv)
  88. print(f"gguf: key-value head count = {n_head_kv}")
  89. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  90. self.gguf_writer.add_rope_freq_base(rope_theta)
  91. print(f"gguf: rope theta = {rope_theta}")
  92. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  93. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  94. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  95. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  96. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  97. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  98. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  99. self.gguf_writer.add_expert_count(n_experts)
  100. print(f"gguf: expert count = {n_experts}")
  101. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  102. self.gguf_writer.add_expert_used_count(n_experts_used)
  103. print(f"gguf: experts used count = {n_experts_used}")
  104. self.gguf_writer.add_file_type(self.ftype)
  105. print(f"gguf: file type = {self.ftype}")
  106. def write_tensors(self):
  107. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  108. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  109. for name, data_torch in self.get_tensors():
  110. # we don't need these
  111. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  112. continue
  113. old_dtype = data_torch.dtype
  114. # convert any unsupported data types to float32
  115. if data_torch.dtype not in (torch.float16, torch.float32):
  116. data_torch = data_torch.to(torch.float32)
  117. data = data_torch.squeeze().numpy()
  118. # map tensor names
  119. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  120. if new_name is None:
  121. print(f"Can not map tensor {name!r}")
  122. sys.exit()
  123. n_dims = len(data.shape)
  124. data_dtype = data.dtype
  125. # if f32 desired, convert any float16 to float32
  126. if self.ftype == 0 and data_dtype == np.float16:
  127. data = data.astype(np.float32)
  128. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  129. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  130. data = data.astype(np.float32)
  131. # if f16 desired, convert any float32 2-dim weight tensors to float16
  132. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  133. data = data.astype(np.float16)
  134. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  135. self.gguf_writer.add_tensor(new_name, data)
  136. def write(self):
  137. self.write_tensors()
  138. self.gguf_writer.write_header_to_file()
  139. self.gguf_writer.write_kv_data_to_file()
  140. self.gguf_writer.write_tensors_to_file()
  141. self.gguf_writer.close()
  142. def write_vocab(self):
  143. self.gguf_writer.write_header_to_file()
  144. self.gguf_writer.write_kv_data_to_file()
  145. self.gguf_writer.close()
  146. @staticmethod
  147. def count_model_parts(dir_model: Path, prefix: str) -> int:
  148. num_parts = 0
  149. for filename in os.listdir(dir_model):
  150. if filename.endswith(prefix):
  151. num_parts += 1
  152. return num_parts
  153. @staticmethod
  154. def load_hparams(dir_model):
  155. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  156. return json.load(f)
  157. @classmethod
  158. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  159. assert names
  160. def func(modelcls: type[Model]):
  161. for name in names:
  162. cls._model_classes[name] = modelcls
  163. return modelcls
  164. return func
  165. @classmethod
  166. def from_model_architecture(cls, arch):
  167. try:
  168. return cls._model_classes[arch]
  169. except KeyError:
  170. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  171. def _is_model_safetensors(self) -> bool:
  172. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  173. def _get_part_names(self):
  174. if self.is_safetensors:
  175. if self.num_parts == 1: # there's only one .safetensors file
  176. return ("model.safetensors",)
  177. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  178. if self.num_parts == 1: # there's only one .bin file
  179. return ("pytorch_model.bin",)
  180. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  181. # used for GPT-2 BPE and WordPiece vocabs
  182. def get_basic_vocab(self) -> tuple[list[str], list[int]]:
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  187. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. return tokens, toktypes
  205. def _set_vocab_gpt2(self) -> None:
  206. tokens, toktypes = self.get_basic_vocab()
  207. self.gguf_writer.add_tokenizer_model("gpt2")
  208. self.gguf_writer.add_token_list(tokens)
  209. self.gguf_writer.add_token_types(toktypes)
  210. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  211. special_vocab.add_to_gguf(self.gguf_writer)
  212. def _set_vocab_qwen(self):
  213. dir_model = self.dir_model
  214. hparams = self.hparams
  215. tokens: list[str] = []
  216. toktypes: list[int] = []
  217. from transformers import AutoTokenizer
  218. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  219. vocab_size = hparams["vocab_size"]
  220. assert max(tokenizer.get_vocab().values()) < vocab_size
  221. merges = []
  222. vocab = {}
  223. mergeable_ranks = tokenizer.mergeable_ranks
  224. for token, rank in mergeable_ranks.items():
  225. vocab[QwenModel.token_bytes_to_string(token)] = rank
  226. if len(token) == 1:
  227. continue
  228. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  229. assert len(merged) == 2
  230. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  231. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  232. added_vocab = tokenizer.special_tokens
  233. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  234. for i in range(vocab_size):
  235. if i not in reverse_vocab:
  236. tokens.append(f"[PAD{i}]")
  237. toktypes.append(gguf.TokenType.USER_DEFINED)
  238. elif reverse_vocab[i] in added_vocab:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.CONTROL)
  241. else:
  242. tokens.append(reverse_vocab[i])
  243. toktypes.append(gguf.TokenType.NORMAL)
  244. self.gguf_writer.add_tokenizer_model("gpt2")
  245. self.gguf_writer.add_token_list(tokens)
  246. self.gguf_writer.add_token_types(toktypes)
  247. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  248. special_vocab.merges = merges
  249. # only add special tokens when they were not already loaded from config.json
  250. if len(special_vocab.special_token_ids) == 0:
  251. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  253. # this one is usually not in config.json anyway
  254. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  255. special_vocab.add_to_gguf(self.gguf_writer)
  256. def _set_vocab_sentencepiece(self):
  257. from sentencepiece import SentencePieceProcessor
  258. tokenizer_path = self.dir_model / 'tokenizer.model'
  259. tokens: list[bytes] = []
  260. scores: list[float] = []
  261. toktypes: list[int] = []
  262. if not tokenizer_path.is_file():
  263. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  264. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  265. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  266. for token_id in range(tokenizer.vocab_size()):
  267. piece = tokenizer.id_to_piece(token_id)
  268. text = piece.encode("utf-8")
  269. score = tokenizer.get_score(token_id)
  270. toktype = SentencePieceTokenTypes.NORMAL
  271. if tokenizer.is_unknown(token_id):
  272. toktype = SentencePieceTokenTypes.UNKNOWN
  273. elif tokenizer.is_control(token_id):
  274. toktype = SentencePieceTokenTypes.CONTROL
  275. elif tokenizer.is_unused(token_id):
  276. toktype = SentencePieceTokenTypes.UNUSED
  277. elif tokenizer.is_byte(token_id):
  278. toktype = SentencePieceTokenTypes.BYTE
  279. tokens.append(text)
  280. scores.append(score)
  281. toktypes.append(toktype)
  282. added_tokens_file = self.dir_model / 'added_tokens.json'
  283. if added_tokens_file.is_file():
  284. with open(added_tokens_file, "r", encoding="utf-8") as f:
  285. added_tokens_json = json.load(f)
  286. for key in added_tokens_json:
  287. key = key.encode("utf-8")
  288. if key not in tokens:
  289. tokens.append(key)
  290. scores.append(-1000.0)
  291. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  292. if vocab_size > len(tokens):
  293. pad_count = vocab_size - len(tokens)
  294. print(
  295. f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
  296. )
  297. for i in range(1, pad_count + 1):
  298. tokens.append(f"[PAD{i}]")
  299. scores.append(-1000.0)
  300. toktypes.append(SentencePieceTokenTypes.UNUSED)
  301. assert len(tokens) == vocab_size
  302. self.gguf_writer.add_tokenizer_model("llama")
  303. self.gguf_writer.add_token_list(tokens)
  304. self.gguf_writer.add_token_scores(scores)
  305. self.gguf_writer.add_token_types(toktypes)
  306. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  307. special_vocab.add_to_gguf(self.gguf_writer)
  308. def _set_vocab_llama_hf(self):
  309. vocab = LlamaHfVocab(self.dir_model)
  310. tokens = []
  311. scores = []
  312. toktypes = []
  313. for text, score, toktype in vocab.all_tokens():
  314. tokens.append(text)
  315. scores.append(score)
  316. toktypes.append(toktype)
  317. assert len(tokens) == vocab.vocab_size
  318. self.gguf_writer.add_tokenizer_model("llama")
  319. self.gguf_writer.add_token_list(tokens)
  320. self.gguf_writer.add_token_scores(scores)
  321. self.gguf_writer.add_token_types(toktypes)
  322. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  323. special_vocab.add_to_gguf(self.gguf_writer)
  324. @Model.register("GPTNeoXForCausalLM")
  325. class GPTNeoXModel(Model):
  326. model_arch = gguf.MODEL_ARCH.GPTNEOX
  327. def set_gguf_parameters(self):
  328. block_count = self.hparams["num_hidden_layers"]
  329. self.gguf_writer.add_name(self.dir_model.name)
  330. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  331. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  332. self.gguf_writer.add_block_count(block_count)
  333. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  334. self.gguf_writer.add_rope_dimension_count(
  335. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  336. )
  337. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  338. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  339. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  340. @Model.register("BloomForCausalLM")
  341. class BloomModel(Model):
  342. model_arch = gguf.MODEL_ARCH.BLOOM
  343. def set_gguf_parameters(self):
  344. self.gguf_writer.add_name("Bloom")
  345. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  346. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  347. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  348. self.gguf_writer.add_embedding_length(n_embed)
  349. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  350. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  351. self.gguf_writer.add_head_count(n_head)
  352. self.gguf_writer.add_head_count_kv(n_head)
  353. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  354. self.gguf_writer.add_file_type(self.ftype)
  355. def write_tensors(self):
  356. block_count = self.hparams["n_layer"]
  357. tensors = dict(self.get_tensors())
  358. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  359. has_lm_head = True
  360. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  361. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  362. for name, data_torch in tensors.items():
  363. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  364. has_lm_head = False
  365. name = re.sub(r'transformer\.', '', name)
  366. old_dtype = data_torch.dtype
  367. # convert any unsupported data types to float32
  368. if data_torch.dtype not in (torch.float16, torch.float32):
  369. data_torch = data_torch.to(torch.float32)
  370. data = data_torch.squeeze().numpy()
  371. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  372. # Map bloom-style qkv_linear to gpt-style qkv_linear
  373. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  374. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  375. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  376. data = np.concatenate(
  377. (
  378. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  379. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  380. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  381. ),
  382. axis=0,
  383. )
  384. print("re-format attention.linear_qkv.weight")
  385. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  386. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  387. data = np.concatenate(
  388. (
  389. qkv_bias[:, 0, :].reshape((n_embed,)),
  390. qkv_bias[:, 1, :].reshape((n_embed,)),
  391. qkv_bias[:, 2, :].reshape((n_embed,)),
  392. ),
  393. axis=0,
  394. )
  395. print("re-format attention.linear_qkv.bias")
  396. # map tensor names
  397. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  398. if new_name is None:
  399. print(f"Can not map tensor {name!r}")
  400. sys.exit()
  401. n_dims = len(data.shape)
  402. data_dtype = data.dtype
  403. # if f32 desired, convert any float16 to float32
  404. if self.ftype == 0 and data_dtype == np.float16:
  405. data = data.astype(np.float32)
  406. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  407. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  408. data = data.astype(np.float32)
  409. # if f16 desired, convert any float32 2-dim weight tensors to float16
  410. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  411. data = data.astype(np.float16)
  412. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  413. self.gguf_writer.add_tensor(new_name, data)
  414. if not has_lm_head and name == "word_embeddings.weight":
  415. self.gguf_writer.add_tensor("output.weight", data)
  416. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  417. @Model.register("MPTForCausalLM")
  418. class MPTModel(Model):
  419. model_arch = gguf.MODEL_ARCH.MPT
  420. def set_vocab(self):
  421. try:
  422. self._set_vocab_gpt2()
  423. except Exception:
  424. # Fallback for SEA-LION model
  425. self._set_vocab_sentencepiece()
  426. self.gguf_writer.add_add_bos_token(False)
  427. self.gguf_writer.add_pad_token_id(3)
  428. self.gguf_writer.add_eos_token_id(1)
  429. self.gguf_writer.add_unk_token_id(0)
  430. def set_gguf_parameters(self):
  431. block_count = self.hparams["n_layers"]
  432. self.gguf_writer.add_name(self.dir_model.name)
  433. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  434. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  435. self.gguf_writer.add_block_count(block_count)
  436. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  437. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  438. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  439. self.gguf_writer.add_head_count_kv(kv_n_heads)
  440. self.gguf_writer.add_layer_norm_eps(1e-5)
  441. if self.hparams["attn_config"]["clip_qkv"] is not None:
  442. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  443. if self.hparams["attn_config"]["alibi"]:
  444. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  445. else:
  446. self.gguf_writer.add_max_alibi_bias(0.0)
  447. def write_tensors(self):
  448. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  449. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  450. for name, data_torch in self.get_tensors():
  451. # we don't need these
  452. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  453. continue
  454. old_dtype = data_torch.dtype
  455. # convert any unsupported data types to float32
  456. if data_torch.dtype not in (torch.float16, torch.float32):
  457. data_torch = data_torch.to(torch.float32)
  458. data = data_torch.squeeze().numpy()
  459. # map tensor names
  460. if "scales" in name:
  461. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  462. if new_name is not None:
  463. new_name = new_name.replace("scales", "act.scales")
  464. else:
  465. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  466. if new_name is None:
  467. print(f"Can not map tensor {name!r}")
  468. sys.exit()
  469. n_dims = len(data.shape)
  470. data_dtype = data.dtype
  471. # if f32 desired, convert any float16 to float32
  472. if self.ftype == 0 and data_dtype == np.float16:
  473. data = data.astype(np.float32)
  474. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  475. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  476. data = data.astype(np.float32)
  477. # if f16 desired, convert any float32 2-dim weight tensors to float16
  478. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  479. data = data.astype(np.float16)
  480. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  481. self.gguf_writer.add_tensor(new_name, data)
  482. @Model.register("OrionForCausalLM")
  483. class OrionModel(Model):
  484. model_arch = gguf.MODEL_ARCH.ORION
  485. def set_vocab(self):
  486. self._set_vocab_sentencepiece()
  487. def set_gguf_parameters(self):
  488. block_count = self.hparams["num_hidden_layers"]
  489. head_count = self.hparams["num_attention_heads"]
  490. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  491. hf_repo = self.hparams.get("_name_or_path", "")
  492. ctx_length = 0
  493. if "max_sequence_length" in self.hparams:
  494. ctx_length = self.hparams["max_sequence_length"]
  495. elif "max_position_embeddings" in self.hparams:
  496. ctx_length = self.hparams["max_position_embeddings"]
  497. elif "model_max_length" in self.hparams:
  498. ctx_length = self.hparams["model_max_length"]
  499. else:
  500. print("gguf: can not find ctx length parameter.")
  501. sys.exit()
  502. self.gguf_writer.add_file_type(self.ftype)
  503. self.gguf_writer.add_name(self.dir_model.name)
  504. self.gguf_writer.add_source_hf_repo(hf_repo)
  505. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  506. self.gguf_writer.add_context_length(ctx_length)
  507. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  508. self.gguf_writer.add_block_count(block_count)
  509. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  510. self.gguf_writer.add_head_count(head_count)
  511. self.gguf_writer.add_head_count_kv(head_count_kv)
  512. # note: config provides rms norm but it is actually layer norm
  513. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  514. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  515. def write_tensors(self):
  516. # Collect tensors from generator object
  517. model_kv = dict(self.get_tensors())
  518. block_count = self.hparams["num_hidden_layers"]
  519. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  520. for name, data_torch in model_kv.items():
  521. # we don't need these
  522. if name.endswith(".rotary_emb.inv_freq"):
  523. continue
  524. old_dtype = data_torch.dtype
  525. # convert any unsupported data types to float32
  526. if data_torch.dtype not in (torch.float16, torch.float32):
  527. data_torch = data_torch.to(torch.float32)
  528. data = data_torch.squeeze().numpy()
  529. # map tensor names
  530. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  531. if new_name is None:
  532. print(f"Can not map tensor {name!r}")
  533. sys.exit()
  534. n_dims = len(data.shape)
  535. data_dtype = data.dtype
  536. # if f32 desired, convert any float16 to float32
  537. if self.ftype == 0 and data_dtype == np.float16:
  538. data = data.astype(np.float32)
  539. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  540. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  541. data = data.astype(np.float32)
  542. # if f16 desired, convert any float32 2-dim weight tensors to float16
  543. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  544. data = data.astype(np.float16)
  545. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  546. self.gguf_writer.add_tensor(new_name, data)
  547. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  548. class BaichuanModel(Model):
  549. model_arch = gguf.MODEL_ARCH.BAICHUAN
  550. def set_vocab(self):
  551. self._set_vocab_sentencepiece()
  552. def set_gguf_parameters(self):
  553. block_count = self.hparams["num_hidden_layers"]
  554. head_count = self.hparams["num_attention_heads"]
  555. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  556. hf_repo = self.hparams.get("_name_or_path", "")
  557. ctx_length = 0
  558. if "max_sequence_length" in self.hparams:
  559. ctx_length = self.hparams["max_sequence_length"]
  560. elif "max_position_embeddings" in self.hparams:
  561. ctx_length = self.hparams["max_position_embeddings"]
  562. elif "model_max_length" in self.hparams:
  563. ctx_length = self.hparams["model_max_length"]
  564. else:
  565. print("gguf: can not find ctx length parameter.")
  566. sys.exit()
  567. self.gguf_writer.add_name(self.dir_model.name)
  568. self.gguf_writer.add_source_hf_repo(hf_repo)
  569. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  570. self.gguf_writer.add_context_length(ctx_length)
  571. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  572. self.gguf_writer.add_block_count(block_count)
  573. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  574. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  575. self.gguf_writer.add_head_count(head_count)
  576. self.gguf_writer.add_head_count_kv(head_count_kv)
  577. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  578. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  579. if self.hparams["rope_scaling"].get("type") == "linear":
  580. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  581. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  582. def write_tensors(self):
  583. # Collect tensors from generator object
  584. model_kv = dict(self.get_tensors())
  585. block_count = self.hparams["num_hidden_layers"]
  586. head_count = self.hparams["num_attention_heads"]
  587. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  588. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  589. for i in range(block_count):
  590. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  591. print(f"Unpacking and permuting layer {i}")
  592. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  593. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  594. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  595. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  596. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  597. self._reverse_hf_part(w, 2)
  598. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  599. for name, data_torch in model_kv.items():
  600. # we don't need these
  601. if name.endswith(".rotary_emb.inv_freq"):
  602. continue
  603. old_dtype = data_torch.dtype
  604. # convert any unsupported data types to float32
  605. if data_torch.dtype not in (torch.float16, torch.float32):
  606. data_torch = data_torch.to(torch.float32)
  607. data = data_torch.squeeze().numpy()
  608. # map tensor names
  609. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  610. if new_name is None:
  611. print(f"Can not map tensor {name!r}")
  612. sys.exit()
  613. n_dims = len(data.shape)
  614. data_dtype = data.dtype
  615. # if f32 desired, convert any float16 to float32
  616. if self.ftype == 0 and data_dtype == np.float16:
  617. data = data.astype(np.float32)
  618. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  619. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  620. data = data.astype(np.float32)
  621. # if f16 desired, convert any float32 2-dim weight tensors to float16
  622. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  623. data = data.astype(np.float16)
  624. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  625. self.gguf_writer.add_tensor(new_name, data)
  626. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  627. if n_kv_head is not None and n_head != n_kv_head:
  628. n_head //= n_kv_head
  629. return (
  630. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  631. .swapaxes(1, 2)
  632. .reshape(weights.shape)
  633. )
  634. def _reverse_hf_permute_part(
  635. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  636. ) -> Tensor:
  637. r = weights.shape[0] // 3
  638. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  639. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  640. r = weights.shape[0] // 3
  641. return weights[r * n_part:r * n_part + r, ...]
  642. @Model.register("XverseForCausalLM")
  643. class XverseModel(Model):
  644. model_arch = gguf.MODEL_ARCH.XVERSE
  645. def set_vocab(self):
  646. assert (self.dir_model / "tokenizer.json").is_file()
  647. dir_model = self.dir_model
  648. hparams = self.hparams
  649. tokens: list[bytearray] = []
  650. toktypes: list[int] = []
  651. from transformers import AutoTokenizer
  652. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  653. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  654. assert max(tokenizer.vocab.values()) < vocab_size
  655. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  656. added_vocab = tokenizer.get_added_vocab()
  657. for token_id in range(vocab_size):
  658. token_text = reverse_vocab[token_id].encode('utf-8')
  659. # replace "\x00" to string with length > 0
  660. if token_text == b"\x00":
  661. toktype = gguf.TokenType.BYTE # special
  662. token_text = f"<{token_text}>".encode('utf-8')
  663. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  664. toktype = gguf.TokenType.BYTE # special
  665. elif reverse_vocab[token_id] in added_vocab:
  666. if tokenizer.added_tokens_decoder[token_id].special:
  667. toktype = gguf.TokenType.CONTROL
  668. else:
  669. toktype = gguf.TokenType.USER_DEFINED
  670. else:
  671. toktype = gguf.TokenType.NORMAL
  672. tokens.append(token_text)
  673. toktypes.append(toktype)
  674. self.gguf_writer.add_tokenizer_model("llama")
  675. self.gguf_writer.add_token_list(tokens)
  676. self.gguf_writer.add_token_types(toktypes)
  677. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  678. special_vocab.add_to_gguf(self.gguf_writer)
  679. def set_gguf_parameters(self):
  680. block_count = self.hparams["num_hidden_layers"]
  681. head_count = self.hparams["num_attention_heads"]
  682. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  683. hf_repo = self.hparams.get("_name_or_path", "")
  684. ctx_length = 0
  685. if "max_sequence_length" in self.hparams:
  686. ctx_length = self.hparams["max_sequence_length"]
  687. elif "max_position_embeddings" in self.hparams:
  688. ctx_length = self.hparams["max_position_embeddings"]
  689. elif "model_max_length" in self.hparams:
  690. ctx_length = self.hparams["model_max_length"]
  691. else:
  692. print("gguf: can not find ctx length parameter.")
  693. sys.exit()
  694. self.gguf_writer.add_name(self.dir_model.name)
  695. self.gguf_writer.add_source_hf_repo(hf_repo)
  696. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  697. self.gguf_writer.add_context_length(ctx_length)
  698. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  699. self.gguf_writer.add_block_count(block_count)
  700. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  701. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  702. self.gguf_writer.add_head_count(head_count)
  703. self.gguf_writer.add_head_count_kv(head_count_kv)
  704. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  705. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  706. if self.hparams["rope_scaling"].get("type") == "linear":
  707. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  708. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  709. def write_tensors(self):
  710. # Collect tensors from generator object
  711. model_kv = dict(self.get_tensors())
  712. block_count = self.hparams["num_hidden_layers"]
  713. head_count = self.hparams["num_attention_heads"]
  714. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  715. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  716. for name, data_torch in model_kv.items():
  717. # we don't need these
  718. if name.endswith(".rotary_emb.inv_freq"):
  719. continue
  720. old_dtype = data_torch.dtype
  721. # convert any unsupported data types to float32
  722. if data_torch.dtype not in (torch.float16, torch.float32):
  723. data_torch = data_torch.to(torch.float32)
  724. # HF models permute some of the tensors, so we need to undo that
  725. if name.endswith(("q_proj.weight")):
  726. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  727. if name.endswith(("k_proj.weight")):
  728. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  729. data = data_torch.squeeze().numpy()
  730. # map tensor names
  731. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  732. if new_name is None:
  733. print(f"Can not map tensor {name!r}")
  734. sys.exit()
  735. n_dims = len(data.shape)
  736. data_dtype = data.dtype
  737. # if f32 desired, convert any float16 to float32
  738. if self.ftype == 0 and data_dtype == np.float16:
  739. data = data.astype(np.float32)
  740. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  741. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  742. data = data.astype(np.float32)
  743. # if f16 desired, convert any float32 2-dim weight tensors to float16
  744. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  745. data = data.astype(np.float16)
  746. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  747. self.gguf_writer.add_tensor(new_name, data)
  748. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  749. if n_kv_head is not None and n_head != n_kv_head:
  750. n_head //= n_kv_head
  751. return (
  752. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  753. .swapaxes(1, 2)
  754. .reshape(weights.shape)
  755. )
  756. @Model.register("FalconForCausalLM", "RWForCausalLM")
  757. class FalconModel(Model):
  758. model_arch = gguf.MODEL_ARCH.FALCON
  759. def set_gguf_parameters(self):
  760. block_count = self.hparams.get("num_hidden_layers")
  761. if block_count is None:
  762. block_count = self.hparams["n_layer"] # old name
  763. n_head = self.hparams.get("num_attention_heads")
  764. if n_head is None:
  765. n_head = self.hparams["n_head"] # old name
  766. n_head_kv = self.hparams.get("num_kv_heads")
  767. if n_head_kv is None:
  768. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  769. self.gguf_writer.add_name("Falcon")
  770. self.gguf_writer.add_context_length(2048) # not in config.json
  771. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  772. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  773. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  774. self.gguf_writer.add_block_count(block_count)
  775. self.gguf_writer.add_head_count(n_head)
  776. self.gguf_writer.add_head_count_kv(n_head_kv)
  777. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  778. self.gguf_writer.add_file_type(self.ftype)
  779. def write_tensors(self):
  780. block_count = self.hparams.get("num_hidden_layers")
  781. if block_count is None:
  782. block_count = self.hparams["n_layer"] # old name
  783. n_head = self.hparams.get("num_attention_heads")
  784. if n_head is None:
  785. n_head = self.hparams["n_head"] # old name
  786. n_head_kv = self.hparams.get("num_kv_heads")
  787. if n_head_kv is None:
  788. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  789. head_dim = self.hparams["hidden_size"] // n_head
  790. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  791. for name, data_torch in self.get_tensors():
  792. old_dtype = data_torch.dtype
  793. # convert any unsupported data types to float32
  794. if data_torch.dtype not in (torch.float16, torch.float32):
  795. data_torch = data_torch.to(torch.float32)
  796. # QKV tensor transform
  797. # The original query_key_value tensor contains n_head_kv "kv groups",
  798. # each consisting of n_head/n_head_kv query weights followed by one key
  799. # and one value weight (shared by all query heads in the kv group).
  800. # This layout makes it a big pain to work with in GGML.
  801. # So we rearrange them here,, so that we have n_head query weights
  802. # followed by n_head_kv key weights followed by n_head_kv value weights,
  803. # in contiguous fashion.
  804. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  805. if "query_key_value" in name:
  806. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  807. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  808. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  809. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  810. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  811. data = data_torch.squeeze().numpy()
  812. # map tensor names
  813. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  814. if new_name is None:
  815. print(f"Can not map tensor {name!r}")
  816. sys.exit()
  817. n_dims = len(data.shape)
  818. data_dtype = data.dtype
  819. # if f32 desired, convert any float16 to float32
  820. if self.ftype == 0 and data_dtype == np.float16:
  821. data = data.astype(np.float32)
  822. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  823. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  824. data = data.astype(np.float32)
  825. # if f16 desired, convert any float32 2-dim weight tensors to float16
  826. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  827. data = data.astype(np.float16)
  828. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  829. self.gguf_writer.add_tensor(new_name, data)
  830. @Model.register("GPTBigCodeForCausalLM")
  831. class StarCoderModel(Model):
  832. model_arch = gguf.MODEL_ARCH.STARCODER
  833. def set_gguf_parameters(self):
  834. block_count = self.hparams["n_layer"]
  835. self.gguf_writer.add_name("StarCoder")
  836. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  837. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  838. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  839. self.gguf_writer.add_block_count(block_count)
  840. self.gguf_writer.add_head_count(self.hparams["n_head"])
  841. self.gguf_writer.add_head_count_kv(1)
  842. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  843. self.gguf_writer.add_file_type(self.ftype)
  844. @Model.register("GPTRefactForCausalLM")
  845. class RefactModel(Model):
  846. model_arch = gguf.MODEL_ARCH.REFACT
  847. def set_gguf_parameters(self):
  848. hidden_dim = self.hparams["n_embd"]
  849. inner_dim = 4 * hidden_dim
  850. hidden_dim = int(2 * inner_dim / 3)
  851. multiple_of = 256
  852. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  853. block_count = self.hparams["n_layer"]
  854. self.gguf_writer.add_name("Refact")
  855. # refact uses Alibi. So this is from config.json which might be used by training.
  856. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  857. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  858. self.gguf_writer.add_feed_forward_length(ff_dim)
  859. self.gguf_writer.add_block_count(block_count)
  860. self.gguf_writer.add_head_count(self.hparams["n_head"])
  861. self.gguf_writer.add_head_count_kv(1)
  862. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  863. self.gguf_writer.add_file_type(self.ftype)
  864. def write_tensors(self):
  865. hidden_dim = self.hparams["n_embd"]
  866. inner_dim = 4 * hidden_dim
  867. hidden_dim = int(2 * inner_dim / 3)
  868. multiple_of = 256
  869. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  870. n_head = self.hparams["n_head"]
  871. n_head_kv = 1
  872. head_dim = self.hparams["n_embd"] // n_head
  873. block_count = self.hparams["n_layer"]
  874. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  875. tensors = dict(self.get_tensors())
  876. for i in range(block_count):
  877. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  878. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  879. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  880. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  881. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  882. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  883. del tensors[f"transformer.h.{i}.attn.q.weight"]
  884. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  885. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  886. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  887. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  888. for name, data_torch in tensors.items():
  889. old_dtype = data_torch.dtype
  890. # convert any unsupported data types to float32
  891. if data_torch.dtype not in (torch.float16, torch.float32):
  892. data_torch = data_torch.to(torch.float32)
  893. data = data_torch.squeeze().numpy()
  894. # map tensor names
  895. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  896. if new_name is None:
  897. print(f"Can not map tensor {name!r}")
  898. sys.exit()
  899. n_dims = len(data.shape)
  900. data_dtype = data.dtype
  901. # if f32 desired, convert any float16 to float32
  902. if self.ftype == 0 and data_dtype == np.float16:
  903. data = data.astype(np.float32)
  904. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  905. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  906. data = data.astype(np.float32)
  907. # if f16 desired, convert any float32 2-dim weight tensors to float16
  908. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  909. data = data.astype(np.float16)
  910. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  911. self.gguf_writer.add_tensor(new_name, data)
  912. @Model.register("PersimmonForCausalLM")
  913. class PersimmonModel(Model):
  914. model_arch = gguf.MODEL_ARCH.PERSIMMON
  915. def set_gguf_parameters(self):
  916. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  917. head_count = self.hparams["num_attention_heads"]
  918. head_count_kv = head_count
  919. hidden_size = self.hparams["hidden_size"]
  920. self.gguf_writer.add_name('persimmon-8b-chat')
  921. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  922. self.gguf_writer.add_embedding_length(hidden_size)
  923. self.gguf_writer.add_block_count(block_count)
  924. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  925. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  926. # than the head size?
  927. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  928. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  929. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  930. self.gguf_writer.add_head_count(head_count)
  931. self.gguf_writer.add_head_count_kv(head_count_kv)
  932. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  933. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  934. def set_vocab(self):
  935. self._set_vocab_sentencepiece()
  936. # self.gguf_writer.add_bos_token_id(71013)
  937. # self.gguf_writer.add_eos_token_id(71013)
  938. def write_tensors(self):
  939. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  940. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  941. for name, data_torch in self.get_tensors():
  942. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  943. continue
  944. old_dtype = data_torch.dtype
  945. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  946. data = data_torch.to(torch.float32).squeeze().numpy()
  947. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  948. if new_name is None:
  949. print(f"Can not map tensor {name!r}")
  950. sys.exit()
  951. n_dims = len(data.shape)
  952. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  953. self.gguf_writer.add_tensor(new_name, data)
  954. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  955. class StableLMModel(Model):
  956. model_arch = gguf.MODEL_ARCH.STABLELM
  957. def set_vocab(self):
  958. if (self.dir_model / "tokenizer.json").is_file():
  959. self._set_vocab_gpt2()
  960. else:
  961. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  962. self._set_vocab_qwen()
  963. def set_gguf_parameters(self):
  964. hparams = self.hparams
  965. block_count = hparams["num_hidden_layers"]
  966. self.gguf_writer.add_name(self.dir_model.name)
  967. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  968. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  969. self.gguf_writer.add_block_count(block_count)
  970. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  971. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  972. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  973. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  974. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  975. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  976. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  977. def write_tensors(self):
  978. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  979. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  980. n_head = self.hparams.get("num_attention_heads")
  981. n_kv_head = self.hparams.get("num_key_value_heads")
  982. q_norms = dict()
  983. k_norms = dict()
  984. for name, data_torch in self.get_tensors():
  985. # we don't need these
  986. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  987. continue
  988. old_dtype = data_torch.dtype
  989. # convert any unsupported data types to float32
  990. if data_torch.dtype not in (torch.float16, torch.float32):
  991. data_torch = data_torch.to(torch.float32)
  992. data = data_torch.squeeze().numpy()
  993. n_dims = len(data.shape)
  994. if name.find("q_layernorm.norms") != -1:
  995. q_norms[name] = data
  996. if len(q_norms) >= (block_count * n_head):
  997. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  998. continue
  999. if name.find("k_layernorm.norms") != -1:
  1000. k_norms[name] = data
  1001. if len(k_norms) >= (block_count * n_kv_head):
  1002. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1003. continue
  1004. # map tensor names
  1005. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1006. if new_name is None:
  1007. print(f"Can not map tensor {name!r}")
  1008. sys.exit()
  1009. n_dims = len(data.shape)
  1010. data_dtype = data.dtype
  1011. # if f32 desired, convert any float16 to float32
  1012. if self.ftype == 0 and data_dtype == np.float16:
  1013. data = data.astype(np.float32)
  1014. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1015. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1016. data = data.astype(np.float32)
  1017. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1018. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1019. data = data.astype(np.float16)
  1020. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1021. self.gguf_writer.add_tensor(new_name, data)
  1022. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1023. for bid in range(block_count):
  1024. datas = []
  1025. for xid in range(n_head):
  1026. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1027. datas.append(norms[ename])
  1028. del norms[ename]
  1029. data = np.stack(datas, axis=0)
  1030. data_dtype = data.dtype
  1031. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1032. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1033. if new_name is None:
  1034. print(f"Can not map tensor {name!r}")
  1035. sys.exit()
  1036. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1037. data = data.astype(np.float32)
  1038. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1039. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1040. data = data.astype(np.float16)
  1041. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1042. self.gguf_writer.add_tensor(new_name, data)
  1043. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1044. class LlamaModel(Model):
  1045. model_arch = gguf.MODEL_ARCH.LLAMA
  1046. def set_vocab(self):
  1047. try:
  1048. self. _set_vocab_sentencepiece()
  1049. except FileNotFoundError:
  1050. try:
  1051. self._set_vocab_llama_hf()
  1052. except (FileNotFoundError, TypeError):
  1053. # Llama 3
  1054. self._set_vocab_gpt2()
  1055. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1056. if self.hparams.get("vocab_size", 32000) == 32016:
  1057. special_vocab = gguf.SpecialVocab(
  1058. self.dir_model, load_merges=False,
  1059. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1060. )
  1061. special_vocab._set_special_token("prefix", 32007)
  1062. special_vocab._set_special_token("suffix", 32008)
  1063. special_vocab._set_special_token("middle", 32009)
  1064. special_vocab._set_special_token("eot", 32010)
  1065. special_vocab.add_to_gguf(self.gguf_writer)
  1066. def set_gguf_parameters(self):
  1067. super().set_gguf_parameters()
  1068. hparams = self.hparams
  1069. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1070. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1071. # Same as super class, but permuting q_proj, k_proj
  1072. def write_tensors(self):
  1073. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1074. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1075. n_head = self.hparams.get("num_attention_heads")
  1076. n_kv_head = self.hparams.get("num_key_value_heads")
  1077. n_experts = self.hparams.get("num_local_experts")
  1078. experts = dict()
  1079. for name, data_torch in self.get_tensors():
  1080. # we don't need these
  1081. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1082. continue
  1083. old_dtype = data_torch.dtype
  1084. # convert any unsupported data types to float32
  1085. if data_torch.dtype not in (torch.float16, torch.float32):
  1086. data_torch = data_torch.to(torch.float32)
  1087. data = data_torch.numpy()
  1088. if name.endswith("q_proj.weight"):
  1089. data = permute(data, n_head, n_head)
  1090. if name.endswith("k_proj.weight"):
  1091. data = permute(data, n_head, n_kv_head)
  1092. data = data.squeeze()
  1093. # process the experts separately
  1094. if name.find("block_sparse_moe.experts") != -1:
  1095. experts[name] = data
  1096. if len(experts) >= n_experts:
  1097. # merge the experts into a single 3d tensor
  1098. for bid in range(block_count):
  1099. for wid in range(1, 4):
  1100. full = True
  1101. for xid in range(n_experts):
  1102. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1103. if ename not in experts:
  1104. full = False
  1105. break
  1106. if not full:
  1107. continue
  1108. datas = []
  1109. for xid in range(n_experts):
  1110. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1111. datas.append(experts[ename])
  1112. del experts[ename]
  1113. data = np.stack(datas, axis=0)
  1114. data_dtype = data.dtype
  1115. if self.ftype == 0 and data_dtype == np.float16:
  1116. data = data.astype(np.float32)
  1117. if self.ftype == 1 and data_dtype == np.float32:
  1118. data = data.astype(np.float16)
  1119. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1120. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1121. if new_name is None:
  1122. print(f"Can not map tensor {name!r}")
  1123. sys.exit()
  1124. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1125. self.gguf_writer.add_tensor(new_name, data)
  1126. continue
  1127. # map tensor names
  1128. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1129. if new_name is None:
  1130. print(f"Can not map tensor {name!r}")
  1131. sys.exit()
  1132. n_dims = len(data.shape)
  1133. data_dtype = data.dtype
  1134. # if f32 desired, convert any float16 to float32
  1135. if self.ftype == 0 and data_dtype == np.float16:
  1136. data = data.astype(np.float32)
  1137. # 1d tensors need to be converted to float32
  1138. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1139. data = data.astype(np.float32)
  1140. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1141. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1142. data = data.astype(np.float16)
  1143. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1144. self.gguf_writer.add_tensor(new_name, data)
  1145. if len(experts) > 0:
  1146. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1147. @Model.register("GrokForCausalLM")
  1148. class GrokModel(Model):
  1149. model_arch = gguf.MODEL_ARCH.GROK
  1150. def set_vocab(self):
  1151. self._set_vocab_sentencepiece()
  1152. def __init__(self, *args, **kwargs):
  1153. super().__init__(*args, **kwargs)
  1154. def set_gguf_parameters(self):
  1155. super().set_gguf_parameters()
  1156. self.gguf_writer.add_name("Grok")
  1157. def write_tensors(self):
  1158. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1159. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1160. n_experts = self.hparams.get("num_local_experts")
  1161. experts = dict()
  1162. for name, data_torch in self.get_tensors():
  1163. # we don't need these
  1164. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1165. continue
  1166. old_dtype = data_torch.dtype
  1167. # convert any unsupported data types to float32
  1168. if data_torch.dtype not in (torch.float16, torch.float32):
  1169. data_torch = data_torch.to(torch.float32)
  1170. data = data_torch.squeeze().numpy()
  1171. # process the experts separately
  1172. if name.find(".moe.") != -1:
  1173. experts[name] = data
  1174. if len(experts) >= n_experts:
  1175. # merge the experts into a single 3d tensor
  1176. for bid in range(block_count):
  1177. for wid in ["linear", "linear_1", "linear_v"]:
  1178. full = True
  1179. for xid in range(n_experts):
  1180. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1181. if ename not in experts:
  1182. full = False
  1183. break
  1184. if not full:
  1185. continue
  1186. datas = []
  1187. for xid in range(n_experts):
  1188. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1189. datas.append(experts[ename])
  1190. del experts[ename]
  1191. data = np.stack(datas, axis=0)
  1192. data_dtype = data.dtype
  1193. if self.ftype == 0 and data_dtype == np.float16:
  1194. data = data.astype(np.float32)
  1195. if self.ftype == 1 and data_dtype == np.float32:
  1196. data = data.astype(np.float16)
  1197. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1198. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1199. if new_name is None:
  1200. print(f"Can not map tensor {name!r}")
  1201. sys.exit()
  1202. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1203. self.gguf_writer.add_tensor(new_name, data)
  1204. continue
  1205. # map tensor names
  1206. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1207. if new_name is None:
  1208. print(f"Can not map tensor {name!r}")
  1209. sys.exit()
  1210. n_dims = len(data.shape)
  1211. data_dtype = data.dtype
  1212. # if f32 desired, convert any float16 to float32
  1213. if self.ftype == 0 and data_dtype == np.float16:
  1214. data = data.astype(np.float32)
  1215. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1216. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1217. data = data.astype(np.float32)
  1218. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1219. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1220. data = data.astype(np.float16)
  1221. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1222. self.gguf_writer.add_tensor(new_name, data)
  1223. @Model.register("DbrxForCausalLM")
  1224. class DbrxModel(Model):
  1225. model_arch = gguf.MODEL_ARCH.DBRX
  1226. def set_gguf_parameters(self):
  1227. ffn_config = self.hparams["ffn_config"]
  1228. attn_config = self.hparams["attn_config"]
  1229. self.gguf_writer.add_name(self.hparams["model_type"])
  1230. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1231. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1232. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1233. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1234. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1235. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1236. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1237. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1238. self.gguf_writer.add_file_type(self.ftype)
  1239. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1240. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1241. self.gguf_writer.add_layer_norm_eps(1e-5)
  1242. self.gguf_writer.add_file_type(self.ftype)
  1243. print(f"gguf: file type = {self.ftype}")
  1244. def write_tensors(self):
  1245. block_count = self.hparams.get("n_layers")
  1246. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1247. for name, data_torch in self.get_tensors():
  1248. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1249. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1250. n_embd = self.hparams["d_model"]
  1251. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1252. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1253. # But llama.cpp moe graph works differently
  1254. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1255. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1256. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1257. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1258. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1259. experts = False
  1260. for exp_tensor_name in exp_tensor_names.keys():
  1261. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1262. experts = True
  1263. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1264. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1265. data_torch = data_torch.permute(*permute_tensor)
  1266. break
  1267. old_dtype = data_torch.dtype
  1268. # convert any unsupported data types to float32
  1269. if data_torch.dtype not in (torch.float16, torch.float32):
  1270. data_torch = data_torch.to(torch.float32)
  1271. data = data_torch.squeeze().numpy()
  1272. # map tensor names
  1273. # In MoE models the ffn tensors are typically most of the model weights,
  1274. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1275. # Every other model has the weight names ending in .weight,
  1276. # let's assume that is the convention which is not the case for dbrx:
  1277. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1278. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1279. if new_name is None:
  1280. print(f"Can not map tensor {name!r}")
  1281. sys.exit()
  1282. n_dims = len(data.shape)
  1283. data_dtype = data.dtype
  1284. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1285. # and most of the outputs tensors are F32.
  1286. if data_dtype != np.float32 and n_dims == 1:
  1287. print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1288. sys.exit()
  1289. # if f32 desired, convert any float16 to float32
  1290. if self.ftype == 0 and data_dtype == np.float16:
  1291. data = data.astype(np.float32)
  1292. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1293. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1294. data = data.astype(np.float16)
  1295. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1296. self.gguf_writer.add_tensor(new_name, data)
  1297. @Model.register("MiniCPMForCausalLM")
  1298. class MiniCPMModel(Model):
  1299. model_arch = gguf.MODEL_ARCH.MINICPM
  1300. def set_gguf_parameters(self):
  1301. block_count = self.hparams["num_hidden_layers"]
  1302. self.gguf_writer.add_name("MiniCPM")
  1303. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1304. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1305. self.gguf_writer.add_block_count(block_count)
  1306. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1307. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1308. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1309. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1310. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1311. self.gguf_writer.add_file_type(self.ftype)
  1312. def set_vocab(self):
  1313. self._set_vocab_llama_hf()
  1314. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1315. if n_kv_head is not None and n_head != n_kv_head:
  1316. n_head //= n_kv_head
  1317. return (
  1318. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1319. .swapaxes(1, 2)
  1320. .reshape(weights.shape)
  1321. )
  1322. def write_tensors(self):
  1323. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1324. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1325. n_head = self.hparams.get("num_attention_heads")
  1326. n_kv_head = self.hparams.get("num_key_value_heads")
  1327. for name, data_torch in self.get_tensors():
  1328. # we don't need these
  1329. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1330. continue
  1331. old_dtype = data_torch.dtype
  1332. # convert any unsupported data types to float32
  1333. if data_torch.dtype not in (torch.float16, torch.float32):
  1334. data_torch = data_torch.to(torch.float32)
  1335. # HF models permute some of the tensors, so we need to undo that
  1336. if name.endswith(("q_proj.weight")):
  1337. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1338. if name.endswith(("k_proj.weight")):
  1339. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1340. data = data_torch.squeeze().numpy()
  1341. # map tensor names
  1342. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1343. if new_name is None:
  1344. print(f"Can not map tensor {name!r}")
  1345. sys.exit()
  1346. n_dims = len(data.shape)
  1347. data_dtype = data.dtype
  1348. # if f32 desired, convert any float16 to float32
  1349. if self.ftype == 0 and data_dtype == np.float16:
  1350. data = data.astype(np.float32)
  1351. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1352. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1353. data = data.astype(np.float32)
  1354. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1355. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1356. data = data.astype(np.float16)
  1357. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1358. self.gguf_writer.add_tensor(new_name, data)
  1359. @Model.register("QWenLMHeadModel")
  1360. class QwenModel(Model):
  1361. model_arch = gguf.MODEL_ARCH.QWEN
  1362. @staticmethod
  1363. def token_bytes_to_string(b):
  1364. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1365. byte_encoder = bytes_to_unicode()
  1366. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1367. @staticmethod
  1368. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1369. parts = [bytes([b]) for b in token]
  1370. while True:
  1371. min_idx = None
  1372. min_rank = None
  1373. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1374. rank = mergeable_ranks.get(pair[0] + pair[1])
  1375. if rank is not None and (min_rank is None or rank < min_rank):
  1376. min_idx = i
  1377. min_rank = rank
  1378. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1379. break
  1380. assert min_idx is not None
  1381. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1382. return parts
  1383. def set_vocab(self):
  1384. self._set_vocab_qwen()
  1385. def set_gguf_parameters(self):
  1386. self.gguf_writer.add_name("Qwen")
  1387. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1388. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1389. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1390. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1391. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1392. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1393. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1394. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1395. def write_tensors(self):
  1396. block_count = self.hparams["num_hidden_layers"]
  1397. model_kv = dict(self.get_tensors())
  1398. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1399. for name, data_torch in model_kv.items():
  1400. # we don't need these
  1401. if name.endswith(".rotary_emb.inv_freq"):
  1402. continue
  1403. old_dtype = data_torch.dtype
  1404. # convert any unsupported data types to float32
  1405. if data_torch.dtype not in (torch.float16, torch.float32):
  1406. data_torch = data_torch.to(torch.float32)
  1407. data = data_torch.squeeze().numpy()
  1408. # map tensor names
  1409. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1410. if new_name is None:
  1411. print(f"Can not map tensor {name!r}")
  1412. sys.exit()
  1413. n_dims = len(data.shape)
  1414. data_dtype = data.dtype
  1415. # if f32 desired, convert any float16 to float32
  1416. if self.ftype == 0 and data_dtype == np.float16:
  1417. data = data.astype(np.float32)
  1418. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1419. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1420. data = data.astype(np.float32)
  1421. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1422. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1423. data = data.astype(np.float16)
  1424. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1425. self.gguf_writer.add_tensor(new_name, data)
  1426. @Model.register("Qwen2ForCausalLM")
  1427. class Qwen2Model(Model):
  1428. model_arch = gguf.MODEL_ARCH.QWEN2
  1429. def set_vocab(self):
  1430. try:
  1431. self._set_vocab_sentencepiece()
  1432. except FileNotFoundError:
  1433. self._set_vocab_gpt2()
  1434. @Model.register("Qwen2MoeForCausalLM")
  1435. class Qwen2MoeModel(Model):
  1436. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1437. def set_gguf_parameters(self):
  1438. super().set_gguf_parameters()
  1439. if (n_experts := self.hparams.get("num_experts")) is not None:
  1440. self.gguf_writer.add_expert_count(n_experts)
  1441. def write_tensors(self):
  1442. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1443. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1444. n_experts = self.hparams.get("num_experts")
  1445. experts = dict()
  1446. for name, data_torch in self.get_tensors():
  1447. # we don't need these
  1448. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1449. continue
  1450. old_dtype = data_torch.dtype
  1451. # convert any unsupported data types to float32
  1452. if data_torch.dtype not in (torch.float16, torch.float32):
  1453. data_torch = data_torch.to(torch.float32)
  1454. data = data_torch.squeeze().numpy()
  1455. # process the experts separately
  1456. if name.find("experts") != -1:
  1457. experts[name] = data
  1458. if len(experts) >= n_experts * 3:
  1459. # merge the experts into a single 3d tensor
  1460. for bid in range(block_count):
  1461. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1462. full = True
  1463. for xid in range(n_experts):
  1464. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1465. if ename not in experts:
  1466. full = False
  1467. break
  1468. if not full:
  1469. continue
  1470. datas = []
  1471. for xid in range(n_experts):
  1472. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1473. datas.append(experts[ename])
  1474. del experts[ename]
  1475. data = np.stack(datas, axis=0)
  1476. data_dtype = data.dtype
  1477. if self.ftype == 0 and data_dtype == np.float16:
  1478. data = data.astype(np.float32)
  1479. if self.ftype == 1 and data_dtype == np.float32:
  1480. data = data.astype(np.float16)
  1481. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1482. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1483. if new_name is None:
  1484. print(f"Can not map tensor {name!r}")
  1485. sys.exit()
  1486. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1487. self.gguf_writer.add_tensor(new_name, data)
  1488. continue
  1489. # map tensor names
  1490. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1491. if new_name is None:
  1492. print(f"Can not map tensor {name!r}")
  1493. sys.exit()
  1494. n_dims = len(data.shape)
  1495. data_dtype = data.dtype
  1496. # if f32 desired, convert any float16 to float32
  1497. if self.ftype == 0 and data_dtype == np.float16:
  1498. data = data.astype(np.float32)
  1499. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1500. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1501. data = data.astype(np.float32)
  1502. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1503. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1504. data = data.astype(np.float16)
  1505. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1506. self.gguf_writer.add_tensor(new_name, data)
  1507. if len(experts) > 0:
  1508. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1509. @Model.register("GPT2LMHeadModel")
  1510. class GPT2Model(Model):
  1511. model_arch = gguf.MODEL_ARCH.GPT2
  1512. def set_gguf_parameters(self):
  1513. self.gguf_writer.add_name(self.dir_model.name)
  1514. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1515. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1516. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1517. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1518. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1519. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1520. self.gguf_writer.add_file_type(self.ftype)
  1521. def write_tensors(self):
  1522. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1523. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1524. for name, data_torch in self.get_tensors():
  1525. # we don't need these
  1526. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1527. continue
  1528. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1529. data_torch = data_torch.transpose(1, 0)
  1530. old_dtype = data_torch.dtype
  1531. # convert any unsupported data types to float32
  1532. if data_torch.dtype not in (torch.float16, torch.float32):
  1533. data_torch = data_torch.to(torch.float32)
  1534. data = data_torch.squeeze().numpy()
  1535. # map tensor names
  1536. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1537. if new_name is None:
  1538. print(f"Can not map tensor {name!r}")
  1539. sys.exit()
  1540. n_dims = len(data.shape)
  1541. data_dtype = data.dtype
  1542. # if f32 desired, convert any float16 to float32
  1543. if self.ftype == 0 and data_dtype == np.float16:
  1544. data = data.astype(np.float32)
  1545. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1546. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1547. data = data.astype(np.float32)
  1548. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1549. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1550. data = data.astype(np.float16)
  1551. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1552. self.gguf_writer.add_tensor(new_name, data)
  1553. # note: GPT2 output is tied to (same as) wte in original model
  1554. if new_name == "token_embd.weight":
  1555. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1556. self.gguf_writer.add_tensor("output.weight", data)
  1557. @Model.register("PhiForCausalLM")
  1558. class Phi2Model(Model):
  1559. model_arch = gguf.MODEL_ARCH.PHI2
  1560. def set_gguf_parameters(self):
  1561. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1562. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1563. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1564. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1565. self.gguf_writer.add_name("Phi2")
  1566. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1567. self.gguf_writer.add_embedding_length(n_embd)
  1568. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1569. self.gguf_writer.add_block_count(block_count)
  1570. self.gguf_writer.add_head_count(n_head)
  1571. self.gguf_writer.add_head_count_kv(n_head)
  1572. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1573. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1574. self.gguf_writer.add_file_type(self.ftype)
  1575. self.gguf_writer.add_add_bos_token(False)
  1576. @Model.register("Phi3ForCausalLM")
  1577. class Phi3MiniModel(Model):
  1578. model_arch = gguf.MODEL_ARCH.PHI3
  1579. def set_vocab(self):
  1580. from sentencepiece import SentencePieceProcessor
  1581. tokenizer_path = self.dir_model / 'tokenizer.model'
  1582. if not tokenizer_path.is_file():
  1583. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1584. sys.exit(1)
  1585. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1586. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1587. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1588. scores: list[float] = [-10000.0] * vocab_size
  1589. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1590. for token_id in range(tokenizer.vocab_size()):
  1591. piece = tokenizer.id_to_piece(token_id)
  1592. text = piece.encode("utf-8")
  1593. score = tokenizer.get_score(token_id)
  1594. toktype = SentencePieceTokenTypes.NORMAL
  1595. if tokenizer.is_unknown(token_id):
  1596. toktype = SentencePieceTokenTypes.UNKNOWN
  1597. elif tokenizer.is_control(token_id):
  1598. toktype = SentencePieceTokenTypes.CONTROL
  1599. elif tokenizer.is_unused(token_id):
  1600. toktype = SentencePieceTokenTypes.UNUSED
  1601. elif tokenizer.is_byte(token_id):
  1602. toktype = SentencePieceTokenTypes.BYTE
  1603. tokens[token_id] = text
  1604. scores[token_id] = score
  1605. toktypes[token_id] = toktype
  1606. added_tokens_file = self.dir_model / 'added_tokens.json'
  1607. if added_tokens_file.is_file():
  1608. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1609. added_tokens_json = json.load(f)
  1610. for key in added_tokens_json:
  1611. token_id = added_tokens_json[key]
  1612. if (token_id >= vocab_size):
  1613. print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1614. continue
  1615. tokens[token_id] = key.encode("utf-8")
  1616. scores[token_id] = -1000.0
  1617. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1618. self.gguf_writer.add_tokenizer_model("llama")
  1619. self.gguf_writer.add_token_list(tokens)
  1620. self.gguf_writer.add_token_scores(scores)
  1621. self.gguf_writer.add_token_types(toktypes)
  1622. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1623. special_vocab.add_to_gguf(self.gguf_writer)
  1624. def set_gguf_parameters(self):
  1625. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1626. rot_pct = 1.0
  1627. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1628. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1629. rms_eps = self.find_hparam(["rms_norm_eps"])
  1630. self.gguf_writer.add_name("Phi3")
  1631. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1632. self.gguf_writer.add_embedding_length(n_embd)
  1633. self.gguf_writer.add_feed_forward_length(8192)
  1634. self.gguf_writer.add_block_count(block_count)
  1635. self.gguf_writer.add_head_count(n_head)
  1636. self.gguf_writer.add_head_count_kv(n_head)
  1637. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1638. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1639. self.gguf_writer.add_file_type(self.ftype)
  1640. @Model.register("PlamoForCausalLM")
  1641. class PlamoModel(Model):
  1642. model_arch = gguf.MODEL_ARCH.PLAMO
  1643. def set_vocab(self):
  1644. self._set_vocab_sentencepiece()
  1645. def set_gguf_parameters(self):
  1646. hparams = self.hparams
  1647. block_count = hparams["num_hidden_layers"]
  1648. self.gguf_writer.add_name("PLaMo")
  1649. self.gguf_writer.add_context_length(4096) # not in config.json
  1650. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1651. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1652. self.gguf_writer.add_block_count(block_count)
  1653. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1654. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1655. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1656. def shuffle_attn_q_weight(self, data_torch):
  1657. assert data_torch.size() == (5120, 5120)
  1658. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1659. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1660. data_torch = torch.reshape(data_torch, (5120, 5120))
  1661. return data_torch
  1662. def shuffle_attn_output_weight(self, data_torch):
  1663. assert data_torch.size() == (5120, 5120)
  1664. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1665. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1666. data_torch = torch.reshape(data_torch, (5120, 5120))
  1667. return data_torch
  1668. def write_tensors(self):
  1669. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1670. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1671. for name, data_torch in self.get_tensors():
  1672. if "self_attn.rotary_emb.inv_freq" in name:
  1673. continue
  1674. # map tensor names
  1675. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1676. if new_name is None:
  1677. print(f"Can not map tensor {name!r}")
  1678. sys.exit()
  1679. # shuffle for broadcasting of gqa in ggml_mul_mat
  1680. if new_name.endswith("attn_q.weight"):
  1681. data_torch = self.shuffle_attn_q_weight(data_torch)
  1682. elif new_name.endswith("attn_output.weight"):
  1683. data_torch = self.shuffle_attn_output_weight(data_torch)
  1684. old_dtype = data_torch.dtype
  1685. # convert any unsupported data types to float32
  1686. if data_torch.dtype not in (torch.float16, torch.float32):
  1687. data_torch = data_torch.to(torch.float32)
  1688. data = data_torch.squeeze().numpy()
  1689. n_dims = len(data.shape)
  1690. data_dtype = data.dtype
  1691. # if f32 desired, convert any float16 to float32
  1692. if self.ftype == 0 and data_dtype == np.float16:
  1693. data = data.astype(np.float32)
  1694. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1695. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1696. data = data.astype(np.float32)
  1697. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1698. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1699. data = data.astype(np.float16)
  1700. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1701. self.gguf_writer.add_tensor(new_name, data)
  1702. @Model.register("CodeShellForCausalLM")
  1703. class CodeShellModel(Model):
  1704. model_arch = gguf.MODEL_ARCH.CODESHELL
  1705. def set_gguf_parameters(self):
  1706. block_count = self.hparams["n_layer"]
  1707. self.gguf_writer.add_name("CodeShell")
  1708. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1709. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1710. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1711. self.gguf_writer.add_block_count(block_count)
  1712. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1713. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1714. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1715. self.gguf_writer.add_file_type(self.ftype)
  1716. self.gguf_writer.add_rope_freq_base(10000.0)
  1717. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1718. self.gguf_writer.add_rope_scaling_factor(1.0)
  1719. def write_tensors(self):
  1720. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1721. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1722. tensors = dict(self.get_tensors())
  1723. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1724. for name, data_torch in tensors.items():
  1725. # we don't need these
  1726. if name.endswith((".attn.rotary_emb.inv_freq")):
  1727. continue
  1728. old_dtype = data_torch.dtype
  1729. # convert any unsupported data types to float32
  1730. if data_torch.dtype not in (torch.float16, torch.float32):
  1731. data_torch = data_torch.to(torch.float32)
  1732. data = data_torch.squeeze().numpy()
  1733. # map tensor names
  1734. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1735. if new_name is None:
  1736. print(f"Can not map tensor {name!r}")
  1737. sys.exit()
  1738. n_dims = len(data.shape)
  1739. data_dtype = data.dtype
  1740. # if f32 desired, convert any float16 to float32
  1741. if self.ftype == 0 and data_dtype == np.float16:
  1742. data = data.astype(np.float32)
  1743. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1744. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1745. data = data.astype(np.float32)
  1746. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1747. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1748. data = data.astype(np.float16)
  1749. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1750. self.gguf_writer.add_tensor(new_name, data)
  1751. if not has_lm_head and name == "transformer.wte.weight":
  1752. self.gguf_writer.add_tensor("output.weight", data)
  1753. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1754. @Model.register("InternLM2ForCausalLM")
  1755. class InternLM2Model(Model):
  1756. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1757. def set_vocab(self):
  1758. # (TODO): Is there a better way?
  1759. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1760. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1761. # recognized as an empty string in C++.
  1762. from sentencepiece import SentencePieceProcessor
  1763. from sentencepiece import sentencepiece_model_pb2 as model
  1764. tokenizer_path = self.dir_model / 'tokenizer.model'
  1765. tokens: list[bytes] = []
  1766. scores: list[float] = []
  1767. toktypes: list[int] = []
  1768. if not tokenizer_path.is_file():
  1769. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1770. sys.exit(1)
  1771. sentencepiece_model = model.ModelProto()
  1772. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1773. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1774. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1775. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1776. for token_id in range(vocab_size):
  1777. piece = tokenizer.id_to_piece(token_id)
  1778. text = piece.encode("utf-8")
  1779. score = tokenizer.get_score(token_id)
  1780. if text == b"\x00":
  1781. # (TODO): fixme
  1782. # Hack here and replace the \x00 characters.
  1783. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1784. text = "🐉"
  1785. toktype = SentencePieceTokenTypes.NORMAL
  1786. if tokenizer.is_unknown(token_id):
  1787. toktype = SentencePieceTokenTypes.UNKNOWN
  1788. elif tokenizer.is_control(token_id):
  1789. toktype = SentencePieceTokenTypes.CONTROL
  1790. elif tokenizer.is_unused(token_id):
  1791. toktype = SentencePieceTokenTypes.UNUSED
  1792. elif tokenizer.is_byte(token_id):
  1793. toktype = SentencePieceTokenTypes.BYTE
  1794. tokens.append(text)
  1795. scores.append(score)
  1796. toktypes.append(toktype)
  1797. added_tokens_file = self.dir_model / 'added_tokens.json'
  1798. if added_tokens_file.is_file():
  1799. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1800. added_tokens_json = json.load(f)
  1801. for key in added_tokens_json:
  1802. tokens.append(key.encode("utf-8"))
  1803. scores.append(-1000.0)
  1804. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1805. self.gguf_writer.add_tokenizer_model("llama")
  1806. self.gguf_writer.add_token_list(tokens)
  1807. self.gguf_writer.add_token_scores(scores)
  1808. self.gguf_writer.add_token_types(toktypes)
  1809. self.gguf_writer.add_add_space_prefix(add_prefix)
  1810. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1811. old_eos = special_vocab.special_token_ids["eos"]
  1812. if "chat" in os.path.basename(self.dir_model.absolute()):
  1813. # For the chat model, we replace the eos with '<|im_end|>'.
  1814. # TODO: this is a hack, should be fixed
  1815. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1816. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1817. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1818. in chat mode so that the conversation can end normally.")
  1819. special_vocab.add_to_gguf(self.gguf_writer)
  1820. def _try_get_sft_eos(self, tokenizer):
  1821. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1822. im_end_list = tokenizer.encode('<|im_end|>')
  1823. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1824. if len(unused_145_list) == 1:
  1825. eos_token = unused_145_list[0]
  1826. if len(im_end_list) == 1:
  1827. eos_token = im_end_list[0]
  1828. return eos_token
  1829. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1830. if n_head_kv is not None and n_head != n_head_kv:
  1831. n_head = n_head_kv
  1832. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1833. .swapaxes(1, 2)
  1834. .reshape(weights.shape))
  1835. def set_gguf_parameters(self):
  1836. self.gguf_writer.add_name("InternLM2")
  1837. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1838. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1839. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1840. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1841. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1842. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1843. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1844. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1845. def post_write_tensors(self, tensor_map, name, data_torch):
  1846. old_dtype = data_torch.dtype
  1847. # convert any unsupported data types to float32
  1848. if data_torch.dtype not in (torch.float16, torch.float32):
  1849. data_torch = data_torch.to(torch.float32)
  1850. data = data_torch.squeeze().numpy()
  1851. # map tensor names
  1852. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1853. if new_name is None:
  1854. print(f"Can not map tensor {name!r}")
  1855. sys.exit()
  1856. n_dims = len(data.shape)
  1857. data_dtype = data.dtype
  1858. # if f32 desired, convert any float16 to float32
  1859. if self.ftype == 0 and data_dtype == np.float16:
  1860. data = data.astype(np.float32)
  1861. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1862. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1863. data = data.astype(np.float32)
  1864. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1865. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1866. data = data.astype(np.float16)
  1867. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1868. self.gguf_writer.add_tensor(new_name, data)
  1869. def write_tensors(self):
  1870. from einops import rearrange
  1871. num_heads = self.hparams.get("num_attention_heads")
  1872. num_kv_heads = self.hparams.get("num_key_value_heads")
  1873. hidden_size = self.hparams.get("hidden_size")
  1874. q_per_kv = num_heads // num_kv_heads
  1875. head_dim = hidden_size // num_heads
  1876. num_groups = num_heads // q_per_kv
  1877. block_count = self.hparams["num_hidden_layers"]
  1878. model_kv = dict(self.get_tensors())
  1879. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1880. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1881. for name, data_torch in model_kv.items():
  1882. # we don't need these
  1883. if name.endswith(".rotary_emb.inv_freq"):
  1884. continue
  1885. if re.match(qkv_pattern, name):
  1886. bid = re.findall(qkv_pattern, name)[0]
  1887. qkv = data_torch
  1888. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1889. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1890. # The model weights of q and k equire additional reshape.
  1891. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1892. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1893. v = rearrange(v, " o g n i -> o (g n i)").T
  1894. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1895. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1896. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1897. else:
  1898. self.post_write_tensors(tensor_map, name, data_torch)
  1899. @Model.register("BertModel", "CamembertModel")
  1900. class BertModel(Model):
  1901. model_arch = gguf.MODEL_ARCH.BERT
  1902. def __init__(self, *args, **kwargs):
  1903. super().__init__(*args, **kwargs)
  1904. self.vocab_size = None
  1905. def set_gguf_parameters(self):
  1906. super().set_gguf_parameters()
  1907. self.gguf_writer.add_causal_attention(False)
  1908. # get pooling path
  1909. pooling_path = None
  1910. module_path = self.dir_model / "modules.json"
  1911. if module_path.is_file():
  1912. with open(module_path, encoding="utf-8") as f:
  1913. modules = json.load(f)
  1914. for mod in modules:
  1915. if mod["type"] == "sentence_transformers.models.Pooling":
  1916. pooling_path = mod["path"]
  1917. break
  1918. # get pooling type
  1919. if pooling_path is not None:
  1920. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1921. pooling = json.load(f)
  1922. if pooling["pooling_mode_mean_tokens"]:
  1923. pooling_type = gguf.PoolingType.MEAN
  1924. elif pooling["pooling_mode_cls_token"]:
  1925. pooling_type = gguf.PoolingType.CLS
  1926. else:
  1927. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1928. self.gguf_writer.add_pooling_type(pooling_type)
  1929. def set_vocab(self):
  1930. tokens, toktypes = self.get_basic_vocab()
  1931. self.vocab_size = len(tokens)
  1932. # we need this to validate the size of the token_type embeddings
  1933. # though currently we are passing all zeros to the token_type embeddings
  1934. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1935. # convert to phantom space vocab
  1936. def phantom(tok):
  1937. if tok.startswith("[") and tok.endswith("]"):
  1938. return tok
  1939. if tok.startswith("##"):
  1940. return tok[2:]
  1941. return "\u2581" + tok
  1942. tokens = list(map(phantom, tokens))
  1943. # add vocab to gguf
  1944. self.gguf_writer.add_tokenizer_model("bert")
  1945. self.gguf_writer.add_token_list(tokens)
  1946. self.gguf_writer.add_token_types(toktypes)
  1947. # handle special tokens
  1948. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1949. special_vocab.add_to_gguf(self.gguf_writer)
  1950. def write_tensors(self):
  1951. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1952. tensors = dict(self.get_tensors())
  1953. for name, data_torch in tensors.items():
  1954. # we are only using BERT for embeddings so we don't need the pooling layer
  1955. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1956. continue # we don't need these
  1957. # map tensor names
  1958. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1959. if new_name is None:
  1960. print(f"Can not map tensor {name!r}")
  1961. sys.exit()
  1962. data = data_torch.squeeze().numpy()
  1963. n_dims = len(data.shape)
  1964. new_dtype: type[np.floating[Any]]
  1965. if (
  1966. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1967. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1968. ):
  1969. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1970. new_dtype = np.float16
  1971. else:
  1972. # if f32 desired, convert any float16 to float32
  1973. new_dtype = np.float32
  1974. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1975. if data.dtype != new_dtype:
  1976. data = data.astype(new_dtype)
  1977. self.gguf_writer.add_tensor(new_name, data)
  1978. @Model.register("NomicBertModel")
  1979. class NomicBertModel(BertModel):
  1980. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1981. def __init__(self, *args, **kwargs):
  1982. super().__init__(*args, **kwargs)
  1983. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1984. self.hparams["n_ctx"] = 2048
  1985. # SwigLU activation
  1986. assert self.hparams["activation_function"] == "swiglu"
  1987. # this doesn't do anything in the HF version
  1988. assert self.hparams["causal"] is False
  1989. # no bias tensors
  1990. assert self.hparams["qkv_proj_bias"] is False
  1991. assert self.hparams["mlp_fc1_bias"] is False
  1992. assert self.hparams["mlp_fc2_bias"] is False
  1993. # norm at end of layer
  1994. assert self.hparams["prenorm"] is False
  1995. # standard RoPE
  1996. assert self.hparams["rotary_emb_fraction"] == 1.0
  1997. assert self.hparams["rotary_emb_interleaved"] is False
  1998. assert self.hparams["rotary_emb_scale_base"] is None
  1999. def set_gguf_parameters(self):
  2000. super().set_gguf_parameters()
  2001. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2002. @Model.register("GemmaForCausalLM")
  2003. class GemmaModel(Model):
  2004. model_arch = gguf.MODEL_ARCH.GEMMA
  2005. def set_vocab(self):
  2006. self._set_vocab_sentencepiece()
  2007. # TODO: these special tokens should be exported only for the CodeGemma family
  2008. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2009. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2010. special_vocab._set_special_token("prefix", 67)
  2011. special_vocab._set_special_token("suffix", 69)
  2012. special_vocab._set_special_token("middle", 68)
  2013. special_vocab._set_special_token("fsep", 70)
  2014. special_vocab._set_special_token("eot", 107)
  2015. special_vocab.add_to_gguf(self.gguf_writer)
  2016. def set_gguf_parameters(self):
  2017. hparams = self.hparams
  2018. block_count = hparams["num_hidden_layers"]
  2019. self.gguf_writer.add_name(self.dir_model.name)
  2020. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2021. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2022. self.gguf_writer.add_block_count(block_count)
  2023. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2024. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2025. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2026. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2027. self.gguf_writer.add_key_length(hparams["head_dim"])
  2028. self.gguf_writer.add_value_length(hparams["head_dim"])
  2029. self.gguf_writer.add_file_type(self.ftype)
  2030. def write_tensors(self):
  2031. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2032. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2033. for name, data_torch in self.get_tensors():
  2034. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2035. # To prevent errors, skip loading lm_head.weight.
  2036. if name == "lm_head.weight":
  2037. print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2038. continue
  2039. old_dtype = data_torch.dtype
  2040. # convert any unsupported data types to float32
  2041. if data_torch.dtype not in (torch.float16, torch.float32):
  2042. data_torch = data_torch.to(torch.float32)
  2043. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2044. if name.endswith("norm.weight"):
  2045. data_torch = data_torch + 1
  2046. data = data_torch.squeeze().numpy()
  2047. # map tensor names
  2048. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2049. if new_name is None:
  2050. print(f"Can not map tensor {name!r}")
  2051. sys.exit()
  2052. n_dims = len(data.shape)
  2053. data_dtype = data.dtype
  2054. data = data.astype(np.float32)
  2055. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2056. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2057. data = data.astype(np.float16)
  2058. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2059. self.gguf_writer.add_tensor(new_name, data)
  2060. @Model.register("Starcoder2ForCausalLM")
  2061. class StarCoder2Model(Model):
  2062. model_arch = gguf.MODEL_ARCH.STARCODER2
  2063. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2064. class MambaModel(Model):
  2065. model_arch = gguf.MODEL_ARCH.MAMBA
  2066. def set_vocab(self):
  2067. vocab_size = self.hparams["vocab_size"]
  2068. # Round vocab size to next multiple of 8
  2069. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2070. # pad using ceiling division
  2071. # ref: https://stackoverflow.com/a/17511341/22827863
  2072. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2073. self.hparams["vocab_size"] = vocab_size
  2074. if (self.dir_model / "tokenizer.json").is_file():
  2075. self._set_vocab_gpt2()
  2076. else:
  2077. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2078. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2079. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2080. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2081. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2082. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2083. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2084. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2085. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2086. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2087. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2088. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2089. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2090. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2091. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2092. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2093. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2094. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2095. def set_gguf_parameters(self):
  2096. d_model = self.find_hparam(["hidden_size", "d_model"])
  2097. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2098. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2099. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2100. # ceiling division
  2101. # ref: https://stackoverflow.com/a/17511341/22827863
  2102. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2103. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2104. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2105. # Fail early for models which don't have a block expansion factor of 2
  2106. assert d_inner == 2 * d_model
  2107. self.gguf_writer.add_name(self.dir_model.name)
  2108. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2109. self.gguf_writer.add_embedding_length(d_model)
  2110. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2111. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2112. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2113. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2114. self.gguf_writer.add_ssm_inner_size(d_inner)
  2115. self.gguf_writer.add_ssm_state_size(d_state)
  2116. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2117. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2118. self.gguf_writer.add_file_type(self.ftype)
  2119. def write_tensors(self):
  2120. block_count = self.hparams["n_layer"]
  2121. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2122. tok_embd = None
  2123. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2124. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2125. for name, data_torch in self.get_tensors():
  2126. old_dtype = data_torch.dtype
  2127. # convert any unsupported data types to float32
  2128. if data_torch.dtype not in (torch.float16, torch.float32):
  2129. data_torch = data_torch.to(torch.float32)
  2130. # map tensor names
  2131. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2132. if new_name is None:
  2133. print(f"Can not map tensor {name!r}")
  2134. sys.exit()
  2135. if name.endswith(".A_log"):
  2136. print("A_log --> A ==> " + new_name)
  2137. data_torch = -torch.exp(data_torch)
  2138. # assuming token_embd.weight is seen before output.weight
  2139. if tok_embd is not None and new_name == output_name:
  2140. if torch.equal(tok_embd, data_torch):
  2141. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2142. continue
  2143. if new_name == tok_embd_name:
  2144. tok_embd = data_torch
  2145. data = data_torch.squeeze().numpy()
  2146. n_dims = len(data.shape)
  2147. data_dtype = data.dtype
  2148. # if f32 desired, convert any float16 to float32
  2149. if self.ftype == 0 and data_dtype == np.float16:
  2150. data = data.astype(np.float32)
  2151. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2152. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2153. data = data.astype(np.float32)
  2154. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2155. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2156. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2157. data = data.astype(np.float16)
  2158. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2159. self.gguf_writer.add_tensor(new_name, data)
  2160. @Model.register("CohereForCausalLM")
  2161. class CommandR2Model(Model):
  2162. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2163. def __init__(self, *args, **kwargs):
  2164. super().__init__(*args, **kwargs)
  2165. # max_position_embeddings = 8192 in config.json but model was actually
  2166. # trained on 128k context length
  2167. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2168. def set_gguf_parameters(self):
  2169. super().set_gguf_parameters()
  2170. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2171. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2172. @Model.register("OlmoForCausalLM")
  2173. @Model.register("OLMoForCausalLM")
  2174. class OlmoModel(Model):
  2175. model_arch = gguf.MODEL_ARCH.OLMO
  2176. def set_gguf_parameters(self):
  2177. super().set_gguf_parameters()
  2178. self.gguf_writer.add_layer_norm_eps(1e-5)
  2179. if "clip_qkv" in self.hparams is not None:
  2180. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2181. # Same as super class, but permuting q_proj, k_proj
  2182. # Copied from: LlamaModel
  2183. def write_tensors(self):
  2184. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2185. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2186. n_head = self.hparams.get("num_attention_heads")
  2187. n_kv_head = self.hparams.get("num_key_value_heads")
  2188. for name, data_torch in self.get_tensors():
  2189. old_dtype = data_torch.dtype
  2190. # convert any unsupported data types to float32
  2191. if data_torch.dtype not in (torch.float16, torch.float32):
  2192. data_torch = data_torch.to(torch.float32)
  2193. data = data_torch.numpy()
  2194. if name.endswith("q_proj.weight"):
  2195. data = permute(data, n_head, n_head)
  2196. if name.endswith("k_proj.weight"):
  2197. data = permute(data, n_head, n_kv_head)
  2198. data = data.squeeze()
  2199. # map tensor names
  2200. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2201. if new_name is None:
  2202. print(f"Can not map tensor {name!r}")
  2203. sys.exit()
  2204. n_dims = len(data.shape)
  2205. data_dtype = data.dtype
  2206. # if f32 desired, convert any float16 to float32
  2207. if self.ftype == 0 and data_dtype == np.float16:
  2208. data = data.astype(np.float32)
  2209. # 1d tensors need to be converted to float32
  2210. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2211. data = data.astype(np.float32)
  2212. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2213. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2214. data = data.astype(np.float16)
  2215. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2216. self.gguf_writer.add_tensor(new_name, data)
  2217. ###### CONVERSION LOGIC ######
  2218. def parse_args() -> argparse.Namespace:
  2219. parser = argparse.ArgumentParser(
  2220. description="Convert a huggingface model to a GGML compatible file")
  2221. parser.add_argument(
  2222. "--vocab-only", action="store_true",
  2223. help="extract only the vocab",
  2224. )
  2225. parser.add_argument(
  2226. "--awq-path", type=Path, default=None,
  2227. help="Path to scale awq cache file")
  2228. parser.add_argument(
  2229. "--outfile", type=Path,
  2230. help="path to write to; default: based on input",
  2231. )
  2232. parser.add_argument(
  2233. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2234. help="output format - use f32 for float32, f16 for float16",
  2235. )
  2236. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2237. parser.add_argument(
  2238. "model", type=Path,
  2239. help="directory containing model file",
  2240. )
  2241. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2242. return parser.parse_args()
  2243. def main() -> None:
  2244. args = parse_args()
  2245. dir_model = args.model
  2246. if args.awq_path:
  2247. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2248. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2249. tmp_model_path = args.model / "weighted_model"
  2250. dir_model = tmp_model_path
  2251. if tmp_model_path.is_dir():
  2252. print(f"{tmp_model_path} exists as a weighted model.")
  2253. else:
  2254. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2255. print("Saving new weighted model ...")
  2256. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2257. print(f"Saved weighted model at {tmp_model_path}.")
  2258. if not dir_model.is_dir():
  2259. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  2260. sys.exit(1)
  2261. ftype_map = {
  2262. "f32": gguf.GGMLQuantizationType.F32,
  2263. "f16": gguf.GGMLQuantizationType.F16,
  2264. }
  2265. if args.outfile is not None:
  2266. fname_out = args.outfile
  2267. else:
  2268. # output in the same directory as the model by default
  2269. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2270. print(f"Loading model: {dir_model.name}")
  2271. hparams = Model.load_hparams(dir_model)
  2272. with torch.inference_mode():
  2273. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2274. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2275. print("Set model parameters")
  2276. model_instance.set_gguf_parameters()
  2277. print("Set model tokenizer")
  2278. model_instance.set_vocab()
  2279. if args.vocab_only:
  2280. print(f"Exporting model vocab to '{fname_out}'")
  2281. model_instance.write_vocab()
  2282. else:
  2283. print(f"Exporting model to '{fname_out}'")
  2284. model_instance.write()
  2285. print(f"Model successfully exported to '{fname_out}'")
  2286. if __name__ == '__main__':
  2287. main()