1
0

ggml.c 697 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  289. for (int64_t i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  294. int64_t i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. #if defined(__ARM_NEON)
  778. #if !defined(__aarch64__)
  779. // 64-bit compatibility
  780. inline static float vaddvq_f32(float32x4_t v) {
  781. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  782. }
  783. #endif
  784. #endif
  785. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  786. // we then implement the fundamental computation operations below using only these macros
  787. // adding support for new architectures requires to define the corresponding SIMD macros
  788. //
  789. // GGML_F32_STEP / GGML_F16_STEP
  790. // number of elements to process in a single step
  791. //
  792. // GGML_F32_EPR / GGML_F16_EPR
  793. // number of elements to fit in a single register
  794. //
  795. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  796. #define GGML_SIMD
  797. // F32 NEON
  798. #define GGML_F32_STEP 16
  799. #define GGML_F32_EPR 4
  800. #define GGML_F32x4 float32x4_t
  801. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  802. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  803. #define GGML_F32x4_LOAD vld1q_f32
  804. #define GGML_F32x4_STORE vst1q_f32
  805. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  806. #define GGML_F32x4_ADD vaddq_f32
  807. #define GGML_F32x4_MUL vmulq_f32
  808. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  809. #define GGML_F32x4_REDUCE(res, x) \
  810. { \
  811. int offset = GGML_F32_ARR >> 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. offset >>= 1; \
  820. for (int i = 0; i < offset; ++i) { \
  821. x[i] = vaddq_f32(x[i], x[offset+i]); \
  822. } \
  823. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  824. }
  825. #define GGML_F32_VEC GGML_F32x4
  826. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  827. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  828. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  829. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  830. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  831. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  832. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  833. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  834. // F16 NEON
  835. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  836. #define GGML_F16_STEP 32
  837. #define GGML_F16_EPR 8
  838. #define GGML_F16x8 float16x8_t
  839. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  840. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  841. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  842. #define GGML_F16x8_STORE vst1q_f16
  843. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  844. #define GGML_F16x8_ADD vaddq_f16
  845. #define GGML_F16x8_MUL vmulq_f16
  846. #define GGML_F16x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F16_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = vaddq_f16(x[i], x[offset+i]); \
  859. } \
  860. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  861. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  862. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  863. } while (0)
  864. #define GGML_F16_VEC GGML_F16x8
  865. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  866. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  867. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  869. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  870. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  871. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  872. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  873. #else
  874. // if FP16 vector arithmetic is not supported, we use FP32 instead
  875. // and take advantage of the vcvt_ functions to convert to/from FP16
  876. #define GGML_F16_STEP 16
  877. #define GGML_F16_EPR 4
  878. #define GGML_F32Cx4 float32x4_t
  879. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  880. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  881. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  882. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  883. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  884. #define GGML_F32Cx4_ADD vaddq_f32
  885. #define GGML_F32Cx4_MUL vmulq_f32
  886. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  887. #define GGML_F16_VEC GGML_F32Cx4
  888. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  890. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  891. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  892. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  893. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  894. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  895. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  896. #endif
  897. #elif defined(__AVX512F__)
  898. #define GGML_SIMD
  899. // F32 AVX512
  900. #define GGML_F32_STEP 64
  901. #define GGML_F32_EPR 16
  902. #define GGML_F32x16 __m512
  903. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  904. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  905. #define GGML_F32x16_LOAD _mm512_loadu_ps
  906. #define GGML_F32x16_STORE _mm512_storeu_ps
  907. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  908. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  909. #define GGML_F32x16_ADD _mm512_add_ps
  910. #define GGML_F32x16_MUL _mm512_mul_ps
  911. #define GGML_F32x16_REDUCE(res, x) \
  912. do { \
  913. int offset = GGML_F32_ARR >> 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  924. } \
  925. res = _mm512_reduce_add_ps(x[0]); \
  926. } while (0)
  927. // TODO: is this optimal ?
  928. #define GGML_F32_VEC GGML_F32x16
  929. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  930. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  931. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  932. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  933. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  934. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  935. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  936. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  937. // F16 AVX512
  938. // F16 AVX
  939. #define GGML_F16_STEP 64
  940. #define GGML_F16_EPR 16
  941. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  942. #define GGML_F32Cx16 __m512
  943. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  944. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  945. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  946. // so F16C guard isn't required
  947. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  948. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  949. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  950. #define GGML_F32Cx16_ADD _mm512_add_ps
  951. #define GGML_F32Cx16_MUL _mm512_mul_ps
  952. #define GGML_F32Cx16_REDUCE(res, x) \
  953. do { \
  954. int offset = GGML_F32_ARR >> 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  965. } \
  966. res = _mm512_reduce_add_ps(x[0]); \
  967. } while (0)
  968. #define GGML_F16_VEC GGML_F32Cx16
  969. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  971. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  972. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  973. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  974. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  975. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  976. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  977. #elif defined(__AVX__)
  978. #define GGML_SIMD
  979. // F32 AVX
  980. #define GGML_F32_STEP 32
  981. #define GGML_F32_EPR 8
  982. #define GGML_F32x8 __m256
  983. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  984. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  985. #define GGML_F32x8_LOAD _mm256_loadu_ps
  986. #define GGML_F32x8_STORE _mm256_storeu_ps
  987. #if defined(__FMA__)
  988. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  989. #else
  990. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  991. #endif
  992. #define GGML_F32x8_ADD _mm256_add_ps
  993. #define GGML_F32x8_MUL _mm256_mul_ps
  994. #define GGML_F32x8_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1009. _mm256_extractf128_ps(x[0], 1)); \
  1010. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1011. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1012. } while (0)
  1013. // TODO: is this optimal ?
  1014. #define GGML_F32_VEC GGML_F32x8
  1015. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1016. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1017. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1018. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1019. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1020. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1021. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1022. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1023. // F16 AVX
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1027. #define GGML_F32Cx8 __m256
  1028. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1029. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1030. #if defined(__F16C__)
  1031. // the _mm256_cvt intrinsics require F16C
  1032. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1033. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1034. #else
  1035. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1036. float tmp[8];
  1037. for (int i = 0; i < 8; i++) {
  1038. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1039. }
  1040. return _mm256_loadu_ps(tmp);
  1041. }
  1042. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1043. float arr[8];
  1044. _mm256_storeu_ps(arr, y);
  1045. for (int i = 0; i < 8; i++)
  1046. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1047. }
  1048. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1049. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1050. #endif
  1051. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1052. #define GGML_F32Cx8_ADD _mm256_add_ps
  1053. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1054. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1055. #define GGML_F16_VEC GGML_F32Cx8
  1056. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1058. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1059. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1060. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1061. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1062. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1063. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1064. #elif defined(__POWER9_VECTOR__)
  1065. #define GGML_SIMD
  1066. // F32 POWER9
  1067. #define GGML_F32_STEP 32
  1068. #define GGML_F32_EPR 4
  1069. #define GGML_F32x4 vector float
  1070. #define GGML_F32x4_ZERO 0.0f
  1071. #define GGML_F32x4_SET1 vec_splats
  1072. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1073. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1074. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1075. #define GGML_F32x4_ADD vec_add
  1076. #define GGML_F32x4_MUL vec_mul
  1077. #define GGML_F32x4_REDUCE(res, x) \
  1078. { \
  1079. int offset = GGML_F32_ARR >> 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = vec_add(x[i], x[offset+i]); \
  1090. } \
  1091. res = vec_extract(x[0], 0) + \
  1092. vec_extract(x[0], 1) + \
  1093. vec_extract(x[0], 2) + \
  1094. vec_extract(x[0], 3); \
  1095. }
  1096. #define GGML_F32_VEC GGML_F32x4
  1097. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1098. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1099. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1100. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1101. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1102. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1103. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1104. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // F16 POWER9
  1106. #define GGML_F16_STEP GGML_F32_STEP
  1107. #define GGML_F16_EPR GGML_F32_EPR
  1108. #define GGML_F16_VEC GGML_F32x4
  1109. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1111. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1113. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1114. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1115. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1116. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1117. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1118. #define GGML_F16_VEC_STORE(p, r, i) \
  1119. if (i & 0x1) \
  1120. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1121. r[i - GGML_ENDIAN_BYTE(0)]), \
  1122. 0, p - GGML_F16_EPR)
  1123. #elif defined(__wasm_simd128__)
  1124. #define GGML_SIMD
  1125. // F32 WASM
  1126. #define GGML_F32_STEP 16
  1127. #define GGML_F32_EPR 4
  1128. #define GGML_F32x4 v128_t
  1129. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1130. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1131. #define GGML_F32x4_LOAD wasm_v128_load
  1132. #define GGML_F32x4_STORE wasm_v128_store
  1133. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1134. #define GGML_F32x4_ADD wasm_f32x4_add
  1135. #define GGML_F32x4_MUL wasm_f32x4_mul
  1136. #define GGML_F32x4_REDUCE(res, x) \
  1137. { \
  1138. int offset = GGML_F32_ARR >> 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1151. wasm_f32x4_extract_lane(x[0], 1) + \
  1152. wasm_f32x4_extract_lane(x[0], 2) + \
  1153. wasm_f32x4_extract_lane(x[0], 3); \
  1154. }
  1155. #define GGML_F32_VEC GGML_F32x4
  1156. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1157. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1158. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1159. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1160. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1161. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1162. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1163. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1164. // F16 WASM
  1165. #define GGML_F16_STEP 16
  1166. #define GGML_F16_EPR 4
  1167. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1168. float tmp[4];
  1169. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1170. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1171. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1172. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1173. return wasm_v128_load(tmp);
  1174. }
  1175. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1176. float tmp[4];
  1177. wasm_v128_store(tmp, x);
  1178. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1179. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1180. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1181. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1182. }
  1183. #define GGML_F16x4 v128_t
  1184. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1187. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1188. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1189. #define GGML_F16x4_ADD wasm_f32x4_add
  1190. #define GGML_F16x4_MUL wasm_f32x4_mul
  1191. #define GGML_F16x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F16_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F16_VEC GGML_F16x4
  1211. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1212. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1213. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1214. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1215. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1216. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1217. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1218. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1219. #elif defined(__SSE3__)
  1220. #define GGML_SIMD
  1221. // F32 SSE
  1222. #define GGML_F32_STEP 32
  1223. #define GGML_F32_EPR 4
  1224. #define GGML_F32x4 __m128
  1225. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1226. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1227. #define GGML_F32x4_LOAD _mm_loadu_ps
  1228. #define GGML_F32x4_STORE _mm_storeu_ps
  1229. #if defined(__FMA__)
  1230. // TODO: Does this work?
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1232. #else
  1233. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1234. #endif
  1235. #define GGML_F32x4_ADD _mm_add_ps
  1236. #define GGML_F32x4_MUL _mm_mul_ps
  1237. #define GGML_F32x4_REDUCE(res, x) \
  1238. { \
  1239. int offset = GGML_F32_ARR >> 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1252. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1253. }
  1254. // TODO: is this optimal ?
  1255. #define GGML_F32_VEC GGML_F32x4
  1256. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1257. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1258. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1259. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1260. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1261. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1262. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1263. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1264. // F16 SSE
  1265. #define GGML_F16_STEP 32
  1266. #define GGML_F16_EPR 4
  1267. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1268. float tmp[4];
  1269. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1270. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1271. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1272. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1273. return _mm_loadu_ps(tmp);
  1274. }
  1275. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1276. float arr[4];
  1277. _mm_storeu_ps(arr, y);
  1278. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1279. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1280. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1281. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1282. }
  1283. #define GGML_F32Cx4 __m128
  1284. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1285. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1286. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1287. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1288. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1289. #define GGML_F32Cx4_ADD _mm_add_ps
  1290. #define GGML_F32Cx4_MUL _mm_mul_ps
  1291. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1292. #define GGML_F16_VEC GGML_F32Cx4
  1293. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1301. #endif
  1302. // GGML_F32_ARR / GGML_F16_ARR
  1303. // number of registers to use per step
  1304. #ifdef GGML_SIMD
  1305. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1306. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1307. #endif
  1308. //
  1309. // fundamental operations
  1310. //
  1311. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1312. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1314. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1316. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1317. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1318. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1319. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1320. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1321. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1322. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1323. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1324. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1325. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1326. assert(nrc == 1);
  1327. UNUSED(nrc);
  1328. UNUSED(bx);
  1329. UNUSED(by);
  1330. UNUSED(bs);
  1331. #ifdef GGML_SIMD
  1332. float sumf = 0.0f;
  1333. const int np = (n & ~(GGML_F32_STEP - 1));
  1334. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1335. GGML_F32_VEC ax[GGML_F32_ARR];
  1336. GGML_F32_VEC ay[GGML_F32_ARR];
  1337. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1338. for (int j = 0; j < GGML_F32_ARR; j++) {
  1339. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1340. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1341. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1342. }
  1343. }
  1344. // reduce sum0..sum3 to sum0
  1345. GGML_F32_VEC_REDUCE(sumf, sum);
  1346. // leftovers
  1347. for (int i = np; i < n; ++i) {
  1348. sumf += x[i]*y[i];
  1349. }
  1350. #else
  1351. // scalar
  1352. ggml_float sumf = 0.0;
  1353. for (int i = 0; i < n; ++i) {
  1354. sumf += (ggml_float)(x[i]*y[i]);
  1355. }
  1356. #endif
  1357. *s = sumf;
  1358. }
  1359. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1360. assert(nrc == 1);
  1361. UNUSED(nrc);
  1362. UNUSED(bx);
  1363. UNUSED(by);
  1364. UNUSED(bs);
  1365. ggml_float sumf = 0.0;
  1366. #if defined(GGML_SIMD)
  1367. const int np = (n & ~(GGML_F16_STEP - 1));
  1368. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1369. GGML_F16_VEC ax[GGML_F16_ARR];
  1370. GGML_F16_VEC ay[GGML_F16_ARR];
  1371. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1372. for (int j = 0; j < GGML_F16_ARR; j++) {
  1373. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1374. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1375. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1376. }
  1377. }
  1378. // reduce sum0..sum3 to sum0
  1379. GGML_F16_VEC_REDUCE(sumf, sum);
  1380. // leftovers
  1381. for (int i = np; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #else
  1385. for (int i = 0; i < n; ++i) {
  1386. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1387. }
  1388. #endif
  1389. *s = sumf;
  1390. }
  1391. // compute GGML_VEC_DOT_UNROLL dot products at once
  1392. // xs - x row stride in bytes
  1393. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1394. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1395. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1396. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1397. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1398. }
  1399. #if defined(GGML_SIMD)
  1400. const int np = (n & ~(GGML_F16_STEP - 1));
  1401. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1402. GGML_F16_VEC ax[GGML_F16_ARR];
  1403. GGML_F16_VEC ay[GGML_F16_ARR];
  1404. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1405. for (int j = 0; j < GGML_F16_ARR; j++) {
  1406. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1407. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1408. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1409. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. }
  1413. // reduce sum0..sum3 to sum0
  1414. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1415. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1416. }
  1417. // leftovers
  1418. for (int i = np; i < n; ++i) {
  1419. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1420. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1421. }
  1422. }
  1423. #else
  1424. for (int i = 0; i < n; ++i) {
  1425. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1426. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1427. }
  1428. }
  1429. #endif
  1430. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1431. s[i] = sumf[i];
  1432. }
  1433. }
  1434. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1435. #if defined(GGML_SIMD)
  1436. const int np = (n & ~(GGML_F32_STEP - 1));
  1437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1438. GGML_F32_VEC ax[GGML_F32_ARR];
  1439. GGML_F32_VEC ay[GGML_F32_ARR];
  1440. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1441. for (int j = 0; j < GGML_F32_ARR; j++) {
  1442. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1443. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1444. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1445. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1446. }
  1447. }
  1448. // leftovers
  1449. for (int i = np; i < n; ++i) {
  1450. y[i] += x[i]*v;
  1451. }
  1452. #else
  1453. // scalar
  1454. for (int i = 0; i < n; ++i) {
  1455. y[i] += x[i]*v;
  1456. }
  1457. #endif
  1458. }
  1459. // xs and vs are byte strides of x and v
  1460. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1461. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1462. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1463. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1464. x[i] = (const float *) ((const char *) xv + i*xs);
  1465. v[i] = (const float *) ((const char *) vv + i*vs);
  1466. }
  1467. #if defined(GGML_SIMD)
  1468. const int np = (n & ~(GGML_F32_STEP - 1));
  1469. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1472. }
  1473. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1474. GGML_F32_VEC ay[GGML_F32_ARR];
  1475. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1476. for (int j = 0; j < GGML_F32_ARR; j++) {
  1477. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1478. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1479. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1480. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1481. }
  1482. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1483. }
  1484. }
  1485. // leftovers
  1486. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1487. for (int i = np; i < n; ++i) {
  1488. y[i] += x[k][i]*v[k][0];
  1489. }
  1490. }
  1491. #else
  1492. // scalar
  1493. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1494. for (int i = 0; i < n; ++i) {
  1495. y[i] += x[k][i]*v[k][0];
  1496. }
  1497. }
  1498. #endif
  1499. }
  1500. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1501. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1502. #if defined(GGML_USE_ACCELERATE)
  1503. vDSP_vsmul(y, 1, &v, y, 1, n);
  1504. #elif defined(GGML_SIMD)
  1505. const int np = (n & ~(GGML_F32_STEP - 1));
  1506. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1507. GGML_F32_VEC ay[GGML_F32_ARR];
  1508. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1509. for (int j = 0; j < GGML_F32_ARR; j++) {
  1510. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1511. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1512. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1513. }
  1514. }
  1515. // leftovers
  1516. for (int i = np; i < n; ++i) {
  1517. y[i] *= v;
  1518. }
  1519. #else
  1520. // scalar
  1521. for (int i = 0; i < n; ++i) {
  1522. y[i] *= v;
  1523. }
  1524. #endif
  1525. }
  1526. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1527. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1528. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1529. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1530. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1531. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1532. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1533. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1534. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1535. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1536. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1537. // TODO: optimize performance
  1538. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1539. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1540. static const float GELU_COEF_A = 0.044715f;
  1541. static const float GELU_QUICK_COEF = -1.702f;
  1542. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1543. inline static float ggml_gelu_f32(float x) {
  1544. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1545. }
  1546. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1547. const uint16_t * i16 = (const uint16_t *) x;
  1548. for (int i = 0; i < n; ++i) {
  1549. y[i] = ggml_table_gelu_f16[i16[i]];
  1550. }
  1551. }
  1552. #ifdef GGML_GELU_FP16
  1553. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1554. uint16_t t;
  1555. for (int i = 0; i < n; ++i) {
  1556. if (x[i] <= -10.0f) {
  1557. y[i] = 0.0f;
  1558. } else if (x[i] >= 10.0f) {
  1559. y[i] = x[i];
  1560. } else {
  1561. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1562. memcpy(&t, &fp16, sizeof(uint16_t));
  1563. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1564. }
  1565. }
  1566. }
  1567. #else
  1568. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1569. for (int i = 0; i < n; ++i) {
  1570. y[i] = ggml_gelu_f32(x[i]);
  1571. }
  1572. }
  1573. #endif
  1574. inline static float ggml_gelu_quick_f32(float x) {
  1575. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1576. }
  1577. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1578. // const uint16_t * i16 = (const uint16_t *) x;
  1579. // for (int i = 0; i < n; ++i) {
  1580. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1581. // }
  1582. //}
  1583. #ifdef GGML_GELU_QUICK_FP16
  1584. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1585. uint16_t t;
  1586. for (int i = 0; i < n; ++i) {
  1587. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1588. memcpy(&t, &fp16, sizeof(uint16_t));
  1589. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1590. }
  1591. }
  1592. #else
  1593. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1594. for (int i = 0; i < n; ++i) {
  1595. y[i] = ggml_gelu_quick_f32(x[i]);
  1596. }
  1597. }
  1598. #endif
  1599. // Sigmoid Linear Unit (SiLU) function
  1600. inline static float ggml_silu_f32(float x) {
  1601. return x/(1.0f + expf(-x));
  1602. }
  1603. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1604. // const uint16_t * i16 = (const uint16_t *) x;
  1605. // for (int i = 0; i < n; ++i) {
  1606. // y[i] = ggml_table_silu_f16[i16[i]];
  1607. // }
  1608. //}
  1609. #ifdef GGML_SILU_FP16
  1610. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1611. uint16_t t;
  1612. for (int i = 0; i < n; ++i) {
  1613. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1614. memcpy(&t, &fp16, sizeof(uint16_t));
  1615. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1616. }
  1617. }
  1618. #else
  1619. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1620. for (int i = 0; i < n; ++i) {
  1621. y[i] = ggml_silu_f32(x[i]);
  1622. }
  1623. }
  1624. #endif
  1625. inline static float ggml_silu_backward_f32(float x, float dy) {
  1626. const float s = 1.0f/(1.0f + expf(-x));
  1627. return dy*s*(1.0f + x*(1.0f - s));
  1628. }
  1629. #ifdef GGML_SILU_FP16
  1630. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1631. for (int i = 0; i < n; ++i) {
  1632. // we did not use x[i] to compute forward silu but its f16 equivalent
  1633. // take derivative at f16 of x[i]:
  1634. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1635. float usedx = GGML_FP16_TO_FP32(fp16);
  1636. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1637. }
  1638. }
  1639. #else
  1640. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1641. for (int i = 0; i < n; ++i) {
  1642. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1643. }
  1644. }
  1645. #endif
  1646. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1647. #ifndef GGML_USE_ACCELERATE
  1648. ggml_float sum = 0.0;
  1649. for (int i = 0; i < n; ++i) {
  1650. sum += (ggml_float)x[i];
  1651. }
  1652. *s = sum;
  1653. #else
  1654. vDSP_sve(x, 1, s, n);
  1655. #endif
  1656. }
  1657. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1658. ggml_float sum = 0.0;
  1659. for (int i = 0; i < n; ++i) {
  1660. sum += (ggml_float)x[i];
  1661. }
  1662. *s = sum;
  1663. }
  1664. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1665. float sum = 0.0f;
  1666. for (int i = 0; i < n; ++i) {
  1667. sum += GGML_FP16_TO_FP32(x[i]);
  1668. }
  1669. *s = sum;
  1670. }
  1671. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1672. #ifndef GGML_USE_ACCELERATE
  1673. float max = -INFINITY;
  1674. for (int i = 0; i < n; ++i) {
  1675. max = MAX(max, x[i]);
  1676. }
  1677. *s = max;
  1678. #else
  1679. vDSP_maxv(x, 1, s, n);
  1680. #endif
  1681. }
  1682. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1683. ggml_vec_norm_f32(n, s, x);
  1684. *s = 1.f/(*s);
  1685. }
  1686. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1687. float max = -INFINITY;
  1688. int idx = 0;
  1689. for (int i = 0; i < n; ++i) {
  1690. max = MAX(max, x[i]);
  1691. if (max == x[i]) { idx = i; }
  1692. }
  1693. *s = idx;
  1694. }
  1695. //
  1696. // data types
  1697. //
  1698. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1699. "NONE",
  1700. "DUP",
  1701. "ADD",
  1702. "ADD1",
  1703. "ACC",
  1704. "SUB",
  1705. "MUL",
  1706. "DIV",
  1707. "SQR",
  1708. "SQRT",
  1709. "LOG",
  1710. "SUM",
  1711. "SUM_ROWS",
  1712. "MEAN",
  1713. "ARGMAX",
  1714. "REPEAT",
  1715. "REPEAT_BACK",
  1716. "CONCAT",
  1717. "SILU_BACK",
  1718. "NORM",
  1719. "RMS_NORM",
  1720. "RMS_NORM_BACK",
  1721. "GROUP_NORM",
  1722. "MUL_MAT",
  1723. "MUL_MAT_ID",
  1724. "OUT_PROD",
  1725. "SCALE",
  1726. "SET",
  1727. "CPY",
  1728. "CONT",
  1729. "RESHAPE",
  1730. "VIEW",
  1731. "PERMUTE",
  1732. "TRANSPOSE",
  1733. "GET_ROWS",
  1734. "GET_ROWS_BACK",
  1735. "DIAG",
  1736. "DIAG_MASK_INF",
  1737. "DIAG_MASK_ZERO",
  1738. "SOFT_MAX",
  1739. "SOFT_MAX_BACK",
  1740. "ROPE",
  1741. "ROPE_BACK",
  1742. "ALIBI",
  1743. "CLAMP",
  1744. "CONV_TRANSPOSE_1D",
  1745. "IM2COL",
  1746. "CONV_TRANSPOSE_2D",
  1747. "POOL_1D",
  1748. "POOL_2D",
  1749. "UPSCALE",
  1750. "PAD",
  1751. "ARANGE",
  1752. "TIMESTEP_EMBEDDING",
  1753. "ARGSORT",
  1754. "LEAKY_RELU",
  1755. "FLASH_ATTN",
  1756. "FLASH_FF",
  1757. "FLASH_ATTN_BACK",
  1758. "SSM_CONV",
  1759. "SSM_SCAN",
  1760. "WIN_PART",
  1761. "WIN_UNPART",
  1762. "GET_REL_POS",
  1763. "ADD_REL_POS",
  1764. "UNARY",
  1765. "MAP_UNARY",
  1766. "MAP_BINARY",
  1767. "MAP_CUSTOM1_F32",
  1768. "MAP_CUSTOM2_F32",
  1769. "MAP_CUSTOM3_F32",
  1770. "MAP_CUSTOM1",
  1771. "MAP_CUSTOM2",
  1772. "MAP_CUSTOM3",
  1773. "CROSS_ENTROPY_LOSS",
  1774. "CROSS_ENTROPY_LOSS_BACK",
  1775. };
  1776. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1777. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1778. "none",
  1779. "x",
  1780. "x+y",
  1781. "x+y",
  1782. "view(x,nb,offset)+=y->x",
  1783. "x-y",
  1784. "x*y",
  1785. "x/y",
  1786. "x^2",
  1787. "√x",
  1788. "log(x)",
  1789. "Σx",
  1790. "Σx_k",
  1791. "Σx/n",
  1792. "argmax(x)",
  1793. "repeat(x)",
  1794. "repeat_back(x)",
  1795. "concat(x, y)",
  1796. "silu_back(x)",
  1797. "norm(x)",
  1798. "rms_norm(x)",
  1799. "rms_norm_back(x)",
  1800. "group_norm(x)",
  1801. "X*Y",
  1802. "X[i]*Y",
  1803. "X*Y",
  1804. "x*v",
  1805. "y-\\>view(x)",
  1806. "x-\\>y",
  1807. "cont(x)",
  1808. "reshape(x)",
  1809. "view(x)",
  1810. "permute(x)",
  1811. "transpose(x)",
  1812. "get_rows(x)",
  1813. "get_rows_back(x)",
  1814. "diag(x)",
  1815. "diag_mask_inf(x)",
  1816. "diag_mask_zero(x)",
  1817. "soft_max(x)",
  1818. "soft_max_back(x)",
  1819. "rope(x)",
  1820. "rope_back(x)",
  1821. "alibi(x)",
  1822. "clamp(x)",
  1823. "conv_transpose_1d(x)",
  1824. "im2col(x)",
  1825. "conv_transpose_2d(x)",
  1826. "pool_1d(x)",
  1827. "pool_2d(x)",
  1828. "upscale(x)",
  1829. "pad(x)",
  1830. "arange(start, stop, step)",
  1831. "timestep_embedding(timesteps, dim, max_period)",
  1832. "argsort(x)",
  1833. "leaky_relu(x)",
  1834. "flash_attn(x)",
  1835. "flash_ff(x)",
  1836. "flash_attn_back(x)",
  1837. "ssm_conv(x)",
  1838. "ssm_scan(x)",
  1839. "win_part(x)",
  1840. "win_unpart(x)",
  1841. "get_rel_pos(x)",
  1842. "add_rel_pos(x)",
  1843. "unary(x)",
  1844. "f(x)",
  1845. "f(x,y)",
  1846. "custom_f32(x)",
  1847. "custom_f32(x,y)",
  1848. "custom_f32(x,y,z)",
  1849. "custom(x)",
  1850. "custom(x,y)",
  1851. "custom(x,y,z)",
  1852. "cross_entropy_loss(x,y)",
  1853. "cross_entropy_loss_back(x,y)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1856. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1857. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1858. "ABS",
  1859. "SGN",
  1860. "NEG",
  1861. "STEP",
  1862. "TANH",
  1863. "ELU",
  1864. "RELU",
  1865. "GELU",
  1866. "GELU_QUICK",
  1867. "SILU",
  1868. "HARDSWISH",
  1869. "HARDSIGMOID",
  1870. };
  1871. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1872. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1873. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1874. // WARN:
  1875. // Mis-configuration can lead to problem that's hard to reason about:
  1876. // * At best it crash or talks nosense.
  1877. // * At worst it talks slightly difference but hard to perceive.
  1878. //
  1879. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1880. // Take care about compile options (e.g., GGML_USE_xxx).
  1881. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1882. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1883. static void ggml_setup_op_has_task_pass(void) {
  1884. { // INIT
  1885. bool * p = GGML_OP_HAS_INIT;
  1886. p[GGML_OP_ACC ] = true;
  1887. p[GGML_OP_MUL_MAT ] = true;
  1888. p[GGML_OP_MUL_MAT_ID ] = true;
  1889. p[GGML_OP_OUT_PROD ] = true;
  1890. p[GGML_OP_SET ] = true;
  1891. p[GGML_OP_GET_ROWS_BACK ] = true;
  1892. p[GGML_OP_DIAG_MASK_INF ] = true;
  1893. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1894. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1895. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1896. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1897. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1898. p[GGML_OP_ADD_REL_POS ] = true;
  1899. }
  1900. { // FINALIZE
  1901. bool * p = GGML_OP_HAS_FINALIZE;
  1902. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1903. }
  1904. }
  1905. //
  1906. // ggml context
  1907. //
  1908. struct ggml_context {
  1909. size_t mem_size;
  1910. void * mem_buffer;
  1911. bool mem_buffer_owned;
  1912. bool no_alloc;
  1913. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1914. int n_objects;
  1915. struct ggml_object * objects_begin;
  1916. struct ggml_object * objects_end;
  1917. struct ggml_scratch scratch;
  1918. struct ggml_scratch scratch_save;
  1919. };
  1920. struct ggml_context_container {
  1921. bool used;
  1922. struct ggml_context context;
  1923. };
  1924. //
  1925. // NUMA support
  1926. //
  1927. #define GGML_NUMA_MAX_NODES 8
  1928. #define GGML_NUMA_MAX_CPUS 512
  1929. struct ggml_numa_node {
  1930. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1931. uint32_t n_cpus;
  1932. };
  1933. struct ggml_numa_nodes {
  1934. enum ggml_numa_strategy numa_strategy;
  1935. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1936. uint32_t n_nodes;
  1937. uint32_t total_cpus; // hardware threads on system
  1938. uint32_t current_node; // node on which main process is execting
  1939. #if defined(__gnu_linux__)
  1940. cpu_set_t cpuset; // cpuset from numactl
  1941. #else
  1942. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1943. #endif
  1944. };
  1945. //
  1946. // ggml state
  1947. //
  1948. struct ggml_state {
  1949. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1950. struct ggml_numa_nodes numa;
  1951. };
  1952. // global state
  1953. static struct ggml_state g_state;
  1954. static atomic_int g_state_barrier = 0;
  1955. // barrier via spin lock
  1956. inline static void ggml_critical_section_start(void) {
  1957. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1958. while (processing > 0) {
  1959. // wait for other threads to finish
  1960. atomic_fetch_sub(&g_state_barrier, 1);
  1961. sched_yield(); // TODO: reconsider this
  1962. processing = atomic_fetch_add(&g_state_barrier, 1);
  1963. }
  1964. }
  1965. // TODO: make this somehow automatically executed
  1966. // some sort of "sentry" mechanism
  1967. inline static void ggml_critical_section_end(void) {
  1968. atomic_fetch_sub(&g_state_barrier, 1);
  1969. }
  1970. #if defined(__gnu_linux__)
  1971. static cpu_set_t ggml_get_numa_affinity(void) {
  1972. cpu_set_t cpuset;
  1973. pthread_t thread;
  1974. thread = pthread_self();
  1975. CPU_ZERO(&cpuset);
  1976. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1977. return cpuset;
  1978. }
  1979. #else
  1980. static uint32_t ggml_get_numa_affinity(void) {
  1981. return 0; // no NUMA support
  1982. }
  1983. #endif
  1984. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1985. if (g_state.numa.n_nodes > 0) {
  1986. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1987. return;
  1988. }
  1989. #if defined(__gnu_linux__)
  1990. struct stat st;
  1991. char path[256];
  1992. int rv;
  1993. // set numa scheme
  1994. g_state.numa.numa_strategy = numa_flag;
  1995. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1996. g_state.numa.cpuset = ggml_get_numa_affinity();
  1997. // enumerate nodes
  1998. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1999. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2000. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2001. if (stat(path, &st) != 0) { break; }
  2002. ++g_state.numa.n_nodes;
  2003. }
  2004. // enumerate CPUs
  2005. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2006. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2007. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2008. if (stat(path, &st) != 0) { break; }
  2009. ++g_state.numa.total_cpus;
  2010. }
  2011. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2012. // figure out which node we're on
  2013. uint current_cpu;
  2014. int getcpu_ret = 0;
  2015. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2016. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2017. #else
  2018. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2019. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2020. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2021. # endif
  2022. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2023. #endif
  2024. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2025. g_state.numa.n_nodes = 0;
  2026. return;
  2027. }
  2028. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2029. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2030. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2031. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2032. node->n_cpus = 0;
  2033. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2034. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2035. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2036. if (stat(path, &st) == 0) {
  2037. node->cpus[node->n_cpus++] = c;
  2038. GGML_PRINT_DEBUG(" %u", c);
  2039. }
  2040. }
  2041. GGML_PRINT_DEBUG("\n");
  2042. }
  2043. if (ggml_is_numa()) {
  2044. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2045. if (fptr != NULL) {
  2046. char buf[42];
  2047. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2048. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2049. }
  2050. fclose(fptr);
  2051. }
  2052. }
  2053. #else
  2054. GGML_UNUSED(numa_flag);
  2055. // TODO
  2056. #endif
  2057. }
  2058. bool ggml_is_numa(void) {
  2059. return g_state.numa.n_nodes > 1;
  2060. }
  2061. ////////////////////////////////////////////////////////////////////////////////
  2062. void ggml_print_object(const struct ggml_object * obj) {
  2063. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2064. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2065. }
  2066. void ggml_print_objects(const struct ggml_context * ctx) {
  2067. struct ggml_object * obj = ctx->objects_begin;
  2068. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2069. while (obj != NULL) {
  2070. ggml_print_object(obj);
  2071. obj = obj->next;
  2072. }
  2073. GGML_PRINT("%s: --- end ---\n", __func__);
  2074. }
  2075. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2082. }
  2083. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2084. size_t nbytes;
  2085. size_t blck_size = ggml_blck_size(tensor->type);
  2086. if (blck_size == 1) {
  2087. nbytes = ggml_type_size(tensor->type);
  2088. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2089. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2090. }
  2091. }
  2092. else {
  2093. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2094. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2095. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2096. }
  2097. }
  2098. return nbytes;
  2099. }
  2100. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2101. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2102. }
  2103. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2104. return type_traits[type].blck_size;
  2105. }
  2106. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2107. return type_traits[type].type_size;
  2108. }
  2109. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2110. assert(ne % ggml_blck_size(type) == 0);
  2111. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2112. }
  2113. double ggml_type_sizef(enum ggml_type type) {
  2114. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2115. }
  2116. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2117. return type_traits[type].type_name;
  2118. }
  2119. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2120. return type_traits[type].is_quantized;
  2121. }
  2122. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2123. return GGML_OP_NAME[op];
  2124. }
  2125. const char * ggml_op_symbol(enum ggml_op op) {
  2126. return GGML_OP_SYMBOL[op];
  2127. }
  2128. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2129. return GGML_UNARY_OP_NAME[op];
  2130. }
  2131. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2132. if (t->op == GGML_OP_UNARY) {
  2133. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2134. return ggml_unary_op_name(uop);
  2135. }
  2136. else {
  2137. return ggml_op_name(t->op);
  2138. }
  2139. }
  2140. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2141. return ggml_type_size(tensor->type);
  2142. }
  2143. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2152. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2153. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2154. }
  2155. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2156. return tensor->ne[3] == 1;
  2157. }
  2158. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2159. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2160. if (tensor->ne[i] > 1) {
  2161. return i + 1;
  2162. }
  2163. }
  2164. return 1;
  2165. }
  2166. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2168. return (t0->ne[0] == t1->ne[0]) &&
  2169. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2170. (t1->ne[3]%t0->ne[3] == 0);
  2171. }
  2172. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2174. return (t0->ne[1] == t1->ne[1]) &&
  2175. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2176. (t1->ne[3]%t0->ne[3] == 0);
  2177. }
  2178. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2179. enum ggml_type wtype = GGML_TYPE_COUNT;
  2180. switch (ftype) {
  2181. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2182. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2183. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2185. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2186. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2187. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2188. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2189. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2190. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2191. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2192. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2193. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2194. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2195. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2198. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2199. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2200. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2201. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2202. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2203. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2204. }
  2205. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2206. return wtype;
  2207. }
  2208. size_t ggml_tensor_overhead(void) {
  2209. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2210. }
  2211. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2212. return tensor->nb[0] > tensor->nb[1];
  2213. }
  2214. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return
  2217. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2218. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2219. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2220. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2221. }
  2222. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2224. return
  2225. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2226. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2227. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2228. }
  2229. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2232. }
  2233. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2235. return
  2236. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2237. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2238. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2239. }
  2240. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2241. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2242. if (tensor->ne[i] == 0) {
  2243. // empty if any dimension has no elements
  2244. return true;
  2245. }
  2246. }
  2247. return false;
  2248. }
  2249. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return
  2252. (t0->ne[0] == t1->ne[0] ) &&
  2253. (t0->ne[1] == t1->ne[1] ) &&
  2254. (t0->ne[2] == t1->ne[2] ) &&
  2255. (t0->ne[3] == t1->ne[3] );
  2256. }
  2257. // check if t1 can be represented as a repeatition of t0
  2258. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2260. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2261. (t1->ne[0]%t0->ne[0] == 0) &&
  2262. (t1->ne[1]%t0->ne[1] == 0) &&
  2263. (t1->ne[2]%t0->ne[2] == 0) &&
  2264. (t1->ne[3]%t0->ne[3] == 0);
  2265. }
  2266. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2267. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2268. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2269. }
  2270. static inline int ggml_up32(int n) {
  2271. return (n + 31) & ~31;
  2272. }
  2273. //static inline int ggml_up64(int n) {
  2274. // return (n + 63) & ~63;
  2275. //}
  2276. static inline int ggml_up(int n, int m) {
  2277. // assert m is a power of 2
  2278. GGML_ASSERT((m & (m - 1)) == 0);
  2279. return (n + m - 1) & ~(m - 1);
  2280. }
  2281. // assert that pointer is aligned to GGML_MEM_ALIGN
  2282. #define ggml_assert_aligned(ptr) \
  2283. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2284. ////////////////////////////////////////////////////////////////////////////////
  2285. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2286. // make this function thread safe
  2287. ggml_critical_section_start();
  2288. static bool is_first_call = true;
  2289. if (is_first_call) {
  2290. // initialize time system (required on Windows)
  2291. ggml_time_init();
  2292. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2293. {
  2294. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2295. ggml_fp16_t ii;
  2296. for (int i = 0; i < (1 << 16); ++i) {
  2297. uint16_t ui = i;
  2298. memcpy(&ii, &ui, sizeof(ii));
  2299. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2300. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2301. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2302. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2303. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2304. }
  2305. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2306. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2307. }
  2308. // initialize g_state
  2309. {
  2310. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2311. g_state = (struct ggml_state) {
  2312. /*.contexts =*/ { { 0 } },
  2313. /*.numa =*/ {
  2314. .n_nodes = 0,
  2315. .total_cpus = 0,
  2316. },
  2317. };
  2318. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2319. g_state.contexts[i].used = false;
  2320. }
  2321. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2322. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2323. }
  2324. #if defined(GGML_USE_CLBLAST)
  2325. ggml_cl_init();
  2326. #endif
  2327. ggml_setup_op_has_task_pass();
  2328. is_first_call = false;
  2329. }
  2330. // find non-used context in g_state
  2331. struct ggml_context * ctx = NULL;
  2332. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2333. if (!g_state.contexts[i].used) {
  2334. g_state.contexts[i].used = true;
  2335. ctx = &g_state.contexts[i].context;
  2336. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2337. break;
  2338. }
  2339. }
  2340. if (ctx == NULL) {
  2341. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2342. ggml_critical_section_end();
  2343. return NULL;
  2344. }
  2345. // allow to call ggml_init with 0 size
  2346. if (params.mem_size == 0) {
  2347. params.mem_size = GGML_MEM_ALIGN;
  2348. }
  2349. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2350. *ctx = (struct ggml_context) {
  2351. /*.mem_size =*/ mem_size,
  2352. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2353. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2354. /*.no_alloc =*/ params.no_alloc,
  2355. /*.no_alloc_save =*/ params.no_alloc,
  2356. /*.n_objects =*/ 0,
  2357. /*.objects_begin =*/ NULL,
  2358. /*.objects_end =*/ NULL,
  2359. /*.scratch =*/ { 0, 0, NULL, },
  2360. /*.scratch_save =*/ { 0, 0, NULL, },
  2361. };
  2362. GGML_ASSERT(ctx->mem_buffer != NULL);
  2363. ggml_assert_aligned(ctx->mem_buffer);
  2364. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2365. ggml_critical_section_end();
  2366. return ctx;
  2367. }
  2368. void ggml_free(struct ggml_context * ctx) {
  2369. if (ctx == NULL) {
  2370. return;
  2371. }
  2372. // make this function thread safe
  2373. ggml_critical_section_start();
  2374. bool found = false;
  2375. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2376. if (&g_state.contexts[i].context == ctx) {
  2377. g_state.contexts[i].used = false;
  2378. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2379. __func__, i, ggml_used_mem(ctx));
  2380. if (ctx->mem_buffer_owned) {
  2381. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2382. }
  2383. found = true;
  2384. break;
  2385. }
  2386. }
  2387. if (!found) {
  2388. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2389. }
  2390. ggml_critical_section_end();
  2391. }
  2392. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2393. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2394. }
  2395. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2396. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2397. ctx->scratch = scratch;
  2398. return result;
  2399. }
  2400. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2401. return ctx->no_alloc;
  2402. }
  2403. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2404. ctx->no_alloc = no_alloc;
  2405. }
  2406. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2407. return ctx->mem_buffer;
  2408. }
  2409. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2410. return ctx->mem_size;
  2411. }
  2412. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2413. size_t max_size = 0;
  2414. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2415. size_t bytes = ggml_nbytes(tensor);
  2416. max_size = MAX(max_size, bytes);
  2417. }
  2418. return max_size;
  2419. }
  2420. // IMPORTANT:
  2421. // when creating "opt" tensors, always save and load the scratch buffer
  2422. // this is an error prone process, but it is necessary to support inplace
  2423. // operators when using scratch buffers
  2424. // TODO: implement a better way
  2425. static void ggml_scratch_save(struct ggml_context * ctx) {
  2426. // this is needed to allow opt tensors to store their data
  2427. // TODO: again, need to find a better way
  2428. ctx->no_alloc_save = ctx->no_alloc;
  2429. ctx->no_alloc = false;
  2430. ctx->scratch_save = ctx->scratch;
  2431. ctx->scratch.data = NULL;
  2432. }
  2433. static void ggml_scratch_load(struct ggml_context * ctx) {
  2434. ctx->no_alloc = ctx->no_alloc_save;
  2435. ctx->scratch = ctx->scratch_save;
  2436. }
  2437. ////////////////////////////////////////////////////////////////////////////////
  2438. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2439. // always insert objects at the end of the context's memory pool
  2440. struct ggml_object * obj_cur = ctx->objects_end;
  2441. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2442. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2443. const size_t cur_end = cur_offs + cur_size;
  2444. // align to GGML_MEM_ALIGN
  2445. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2446. char * const mem_buffer = ctx->mem_buffer;
  2447. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2448. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2449. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2450. __func__, cur_end + size_needed, ctx->mem_size);
  2451. assert(false);
  2452. return NULL;
  2453. }
  2454. *obj_new = (struct ggml_object) {
  2455. .offs = cur_end + GGML_OBJECT_SIZE,
  2456. .size = size_needed,
  2457. .next = NULL,
  2458. .type = type,
  2459. };
  2460. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2461. if (obj_cur != NULL) {
  2462. obj_cur->next = obj_new;
  2463. } else {
  2464. // this is the first object in this context
  2465. ctx->objects_begin = obj_new;
  2466. }
  2467. ctx->objects_end = obj_new;
  2468. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2469. return obj_new;
  2470. }
  2471. static struct ggml_tensor * ggml_new_tensor_impl(
  2472. struct ggml_context * ctx,
  2473. enum ggml_type type,
  2474. int n_dims,
  2475. const int64_t * ne,
  2476. struct ggml_tensor * view_src,
  2477. size_t view_offs) {
  2478. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2479. // find the base tensor and absolute offset
  2480. if (view_src != NULL && view_src->view_src != NULL) {
  2481. view_offs += view_src->view_offs;
  2482. view_src = view_src->view_src;
  2483. }
  2484. size_t data_size = ggml_row_size(type, ne[0]);
  2485. for (int i = 1; i < n_dims; i++) {
  2486. data_size *= ne[i];
  2487. }
  2488. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2489. void * data = view_src != NULL ? view_src->data : NULL;
  2490. if (data != NULL) {
  2491. data = (char *) data + view_offs;
  2492. }
  2493. size_t obj_alloc_size = 0;
  2494. if (view_src == NULL && !ctx->no_alloc) {
  2495. if (ctx->scratch.data != NULL) {
  2496. // allocate tensor data in the scratch buffer
  2497. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2498. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2499. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2500. assert(false);
  2501. return NULL;
  2502. }
  2503. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2504. ctx->scratch.offs += data_size;
  2505. } else {
  2506. // allocate tensor data in the context's memory pool
  2507. obj_alloc_size = data_size;
  2508. }
  2509. }
  2510. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2511. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2512. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2513. *result = (struct ggml_tensor) {
  2514. /*.type =*/ type,
  2515. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2516. /*.buffer =*/ NULL,
  2517. /*.ne =*/ { 1, 1, 1, 1 },
  2518. /*.nb =*/ { 0, 0, 0, 0 },
  2519. /*.op =*/ GGML_OP_NONE,
  2520. /*.op_params =*/ { 0 },
  2521. /*.flags =*/ 0,
  2522. /*.grad =*/ NULL,
  2523. /*.src =*/ { NULL },
  2524. /*.perf_runs =*/ 0,
  2525. /*.perf_cycles =*/ 0,
  2526. /*.perf_time_us =*/ 0,
  2527. /*.view_src =*/ view_src,
  2528. /*.view_offs =*/ view_offs,
  2529. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2530. /*.name =*/ { 0 },
  2531. /*.extra =*/ NULL,
  2532. /*.padding =*/ { 0 },
  2533. };
  2534. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2535. //ggml_assert_aligned(result->data);
  2536. for (int i = 0; i < n_dims; i++) {
  2537. result->ne[i] = ne[i];
  2538. }
  2539. result->nb[0] = ggml_type_size(type);
  2540. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2541. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2542. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2543. }
  2544. ctx->n_objects++;
  2545. return result;
  2546. }
  2547. struct ggml_tensor * ggml_new_tensor(
  2548. struct ggml_context * ctx,
  2549. enum ggml_type type,
  2550. int n_dims,
  2551. const int64_t * ne) {
  2552. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2553. }
  2554. struct ggml_tensor * ggml_new_tensor_1d(
  2555. struct ggml_context * ctx,
  2556. enum ggml_type type,
  2557. int64_t ne0) {
  2558. return ggml_new_tensor(ctx, type, 1, &ne0);
  2559. }
  2560. struct ggml_tensor * ggml_new_tensor_2d(
  2561. struct ggml_context * ctx,
  2562. enum ggml_type type,
  2563. int64_t ne0,
  2564. int64_t ne1) {
  2565. const int64_t ne[2] = { ne0, ne1 };
  2566. return ggml_new_tensor(ctx, type, 2, ne);
  2567. }
  2568. struct ggml_tensor * ggml_new_tensor_3d(
  2569. struct ggml_context * ctx,
  2570. enum ggml_type type,
  2571. int64_t ne0,
  2572. int64_t ne1,
  2573. int64_t ne2) {
  2574. const int64_t ne[3] = { ne0, ne1, ne2 };
  2575. return ggml_new_tensor(ctx, type, 3, ne);
  2576. }
  2577. struct ggml_tensor * ggml_new_tensor_4d(
  2578. struct ggml_context * ctx,
  2579. enum ggml_type type,
  2580. int64_t ne0,
  2581. int64_t ne1,
  2582. int64_t ne2,
  2583. int64_t ne3) {
  2584. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2585. return ggml_new_tensor(ctx, type, 4, ne);
  2586. }
  2587. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2588. ggml_scratch_save(ctx);
  2589. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2590. ggml_scratch_load(ctx);
  2591. ggml_set_i32(result, value);
  2592. return result;
  2593. }
  2594. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2595. ggml_scratch_save(ctx);
  2596. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2597. ggml_scratch_load(ctx);
  2598. ggml_set_f32(result, value);
  2599. return result;
  2600. }
  2601. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2602. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2603. }
  2604. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2605. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2606. assert(params_size <= GGML_MAX_OP_PARAMS);
  2607. memcpy(tensor->op_params, params, params_size);
  2608. }
  2609. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2610. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2611. return ((const int32_t *)(tensor->op_params))[i];
  2612. }
  2613. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2615. return ((const float *)(tensor->op_params))[i];
  2616. }
  2617. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2618. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2619. ((int32_t *)(tensor->op_params))[i] = value;
  2620. }
  2621. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2622. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2623. ((float *)(tensor->op_params))[i] = value;
  2624. }
  2625. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2626. memset(tensor->data, 0, ggml_nbytes(tensor));
  2627. return tensor;
  2628. }
  2629. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2630. const int n = ggml_nrows(tensor);
  2631. const int nc = tensor->ne[0];
  2632. const size_t n1 = tensor->nb[1];
  2633. char * const data = tensor->data;
  2634. switch (tensor->type) {
  2635. case GGML_TYPE_I8:
  2636. {
  2637. assert(tensor->nb[0] == sizeof(int8_t));
  2638. for (int i = 0; i < n; i++) {
  2639. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2640. }
  2641. } break;
  2642. case GGML_TYPE_I16:
  2643. {
  2644. assert(tensor->nb[0] == sizeof(int16_t));
  2645. for (int i = 0; i < n; i++) {
  2646. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2647. }
  2648. } break;
  2649. case GGML_TYPE_I32:
  2650. {
  2651. assert(tensor->nb[0] == sizeof(int32_t));
  2652. for (int i = 0; i < n; i++) {
  2653. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2654. }
  2655. } break;
  2656. case GGML_TYPE_F16:
  2657. {
  2658. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2659. for (int i = 0; i < n; i++) {
  2660. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2661. }
  2662. } break;
  2663. case GGML_TYPE_F32:
  2664. {
  2665. assert(tensor->nb[0] == sizeof(float));
  2666. for (int i = 0; i < n; i++) {
  2667. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2668. }
  2669. } break;
  2670. default:
  2671. {
  2672. GGML_ASSERT(false);
  2673. } break;
  2674. }
  2675. return tensor;
  2676. }
  2677. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2678. const int n = ggml_nrows(tensor);
  2679. const int nc = tensor->ne[0];
  2680. const size_t n1 = tensor->nb[1];
  2681. char * const data = tensor->data;
  2682. switch (tensor->type) {
  2683. case GGML_TYPE_I8:
  2684. {
  2685. assert(tensor->nb[0] == sizeof(int8_t));
  2686. for (int i = 0; i < n; i++) {
  2687. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2688. }
  2689. } break;
  2690. case GGML_TYPE_I16:
  2691. {
  2692. assert(tensor->nb[0] == sizeof(int16_t));
  2693. for (int i = 0; i < n; i++) {
  2694. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2695. }
  2696. } break;
  2697. case GGML_TYPE_I32:
  2698. {
  2699. assert(tensor->nb[0] == sizeof(int32_t));
  2700. for (int i = 0; i < n; i++) {
  2701. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2702. }
  2703. } break;
  2704. case GGML_TYPE_F16:
  2705. {
  2706. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2707. for (int i = 0; i < n; i++) {
  2708. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2709. }
  2710. } break;
  2711. case GGML_TYPE_F32:
  2712. {
  2713. assert(tensor->nb[0] == sizeof(float));
  2714. for (int i = 0; i < n; i++) {
  2715. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2716. }
  2717. } break;
  2718. default:
  2719. {
  2720. GGML_ASSERT(false);
  2721. } break;
  2722. }
  2723. return tensor;
  2724. }
  2725. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2726. const int64_t ne2 = tensor->ne[2];
  2727. const int64_t ne1 = tensor->ne[1];
  2728. const int64_t ne0 = tensor->ne[0];
  2729. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2730. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2731. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2732. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2733. if (i0) {
  2734. * i0 = i0_;
  2735. }
  2736. if (i1) {
  2737. * i1 = i1_;
  2738. }
  2739. if (i2) {
  2740. * i2 = i2_;
  2741. }
  2742. if (i3) {
  2743. * i3 = i3_;
  2744. }
  2745. }
  2746. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2747. if (!ggml_is_contiguous(tensor)) {
  2748. int64_t id[4] = { 0, 0, 0, 0 };
  2749. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2750. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2751. }
  2752. switch (tensor->type) {
  2753. case GGML_TYPE_I8:
  2754. {
  2755. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2756. return ((int8_t *)(tensor->data))[i];
  2757. }
  2758. case GGML_TYPE_I16:
  2759. {
  2760. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2761. return ((int16_t *)(tensor->data))[i];
  2762. }
  2763. case GGML_TYPE_I32:
  2764. {
  2765. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2766. return ((int32_t *)(tensor->data))[i];
  2767. }
  2768. case GGML_TYPE_F16:
  2769. {
  2770. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2771. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2772. }
  2773. case GGML_TYPE_F32:
  2774. {
  2775. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2776. return ((float *)(tensor->data))[i];
  2777. }
  2778. default:
  2779. {
  2780. GGML_ASSERT(false);
  2781. }
  2782. }
  2783. return 0.0f;
  2784. }
  2785. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2786. if (!ggml_is_contiguous(tensor)) {
  2787. int64_t id[4] = { 0, 0, 0, 0 };
  2788. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2789. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2790. return;
  2791. }
  2792. switch (tensor->type) {
  2793. case GGML_TYPE_I8:
  2794. {
  2795. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2796. ((int8_t *)(tensor->data))[i] = value;
  2797. } break;
  2798. case GGML_TYPE_I16:
  2799. {
  2800. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2801. ((int16_t *)(tensor->data))[i] = value;
  2802. } break;
  2803. case GGML_TYPE_I32:
  2804. {
  2805. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2806. ((int32_t *)(tensor->data))[i] = value;
  2807. } break;
  2808. case GGML_TYPE_F16:
  2809. {
  2810. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2811. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2812. } break;
  2813. case GGML_TYPE_F32:
  2814. {
  2815. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2816. ((float *)(tensor->data))[i] = value;
  2817. } break;
  2818. default:
  2819. {
  2820. GGML_ASSERT(false);
  2821. } break;
  2822. }
  2823. }
  2824. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2825. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2826. switch (tensor->type) {
  2827. case GGML_TYPE_I8:
  2828. return ((int8_t *) data)[0];
  2829. case GGML_TYPE_I16:
  2830. return ((int16_t *) data)[0];
  2831. case GGML_TYPE_I32:
  2832. return ((int32_t *) data)[0];
  2833. case GGML_TYPE_F16:
  2834. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2835. case GGML_TYPE_F32:
  2836. return ((float *) data)[0];
  2837. default:
  2838. GGML_ASSERT(false);
  2839. }
  2840. return 0.0f;
  2841. }
  2842. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2843. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2844. switch (tensor->type) {
  2845. case GGML_TYPE_I8:
  2846. {
  2847. ((int8_t *)(data))[0] = value;
  2848. } break;
  2849. case GGML_TYPE_I16:
  2850. {
  2851. ((int16_t *)(data))[0] = value;
  2852. } break;
  2853. case GGML_TYPE_I32:
  2854. {
  2855. ((int32_t *)(data))[0] = value;
  2856. } break;
  2857. case GGML_TYPE_F16:
  2858. {
  2859. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2860. } break;
  2861. case GGML_TYPE_F32:
  2862. {
  2863. ((float *)(data))[0] = value;
  2864. } break;
  2865. default:
  2866. {
  2867. GGML_ASSERT(false);
  2868. } break;
  2869. }
  2870. }
  2871. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2872. if (!ggml_is_contiguous(tensor)) {
  2873. int64_t id[4] = { 0, 0, 0, 0 };
  2874. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2875. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2876. }
  2877. switch (tensor->type) {
  2878. case GGML_TYPE_I8:
  2879. {
  2880. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2881. return ((int8_t *)(tensor->data))[i];
  2882. }
  2883. case GGML_TYPE_I16:
  2884. {
  2885. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2886. return ((int16_t *)(tensor->data))[i];
  2887. }
  2888. case GGML_TYPE_I32:
  2889. {
  2890. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2891. return ((int32_t *)(tensor->data))[i];
  2892. }
  2893. case GGML_TYPE_F16:
  2894. {
  2895. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2896. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2897. }
  2898. case GGML_TYPE_F32:
  2899. {
  2900. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2901. return ((float *)(tensor->data))[i];
  2902. }
  2903. default:
  2904. {
  2905. GGML_ASSERT(false);
  2906. }
  2907. }
  2908. return 0.0f;
  2909. }
  2910. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2911. if (!ggml_is_contiguous(tensor)) {
  2912. int64_t id[4] = { 0, 0, 0, 0 };
  2913. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2914. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2915. return;
  2916. }
  2917. switch (tensor->type) {
  2918. case GGML_TYPE_I8:
  2919. {
  2920. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2921. ((int8_t *)(tensor->data))[i] = value;
  2922. } break;
  2923. case GGML_TYPE_I16:
  2924. {
  2925. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2926. ((int16_t *)(tensor->data))[i] = value;
  2927. } break;
  2928. case GGML_TYPE_I32:
  2929. {
  2930. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2931. ((int32_t *)(tensor->data))[i] = value;
  2932. } break;
  2933. case GGML_TYPE_F16:
  2934. {
  2935. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2936. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2937. } break;
  2938. case GGML_TYPE_F32:
  2939. {
  2940. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2941. ((float *)(tensor->data))[i] = value;
  2942. } break;
  2943. default:
  2944. {
  2945. GGML_ASSERT(false);
  2946. } break;
  2947. }
  2948. }
  2949. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2950. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2951. switch (tensor->type) {
  2952. case GGML_TYPE_I8:
  2953. return ((int8_t *) data)[0];
  2954. case GGML_TYPE_I16:
  2955. return ((int16_t *) data)[0];
  2956. case GGML_TYPE_I32:
  2957. return ((int32_t *) data)[0];
  2958. case GGML_TYPE_F16:
  2959. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2960. case GGML_TYPE_F32:
  2961. return ((float *) data)[0];
  2962. default:
  2963. GGML_ASSERT(false);
  2964. }
  2965. return 0.0f;
  2966. }
  2967. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2968. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2969. switch (tensor->type) {
  2970. case GGML_TYPE_I8:
  2971. {
  2972. ((int8_t *)(data))[0] = value;
  2973. } break;
  2974. case GGML_TYPE_I16:
  2975. {
  2976. ((int16_t *)(data))[0] = value;
  2977. } break;
  2978. case GGML_TYPE_I32:
  2979. {
  2980. ((int32_t *)(data))[0] = value;
  2981. } break;
  2982. case GGML_TYPE_F16:
  2983. {
  2984. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2985. } break;
  2986. case GGML_TYPE_F32:
  2987. {
  2988. ((float *)(data))[0] = value;
  2989. } break;
  2990. default:
  2991. {
  2992. GGML_ASSERT(false);
  2993. } break;
  2994. }
  2995. }
  2996. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2997. return tensor->data;
  2998. }
  2999. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3000. assert(tensor->type == GGML_TYPE_F32);
  3001. return (float *)(tensor->data);
  3002. }
  3003. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3004. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3005. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3006. }
  3007. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3008. return tensor->name;
  3009. }
  3010. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3011. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3012. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3013. return tensor;
  3014. }
  3015. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3016. va_list args;
  3017. va_start(args, fmt);
  3018. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3019. va_end(args);
  3020. return tensor;
  3021. }
  3022. struct ggml_tensor * ggml_view_tensor(
  3023. struct ggml_context * ctx,
  3024. struct ggml_tensor * src) {
  3025. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3026. ggml_format_name(result, "%s (view)", src->name);
  3027. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3028. result->nb[i] = src->nb[i];
  3029. }
  3030. return result;
  3031. }
  3032. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3033. struct ggml_object * obj = ctx->objects_begin;
  3034. char * const mem_buffer = ctx->mem_buffer;
  3035. while (obj != NULL) {
  3036. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3037. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3038. }
  3039. obj = obj->next;
  3040. }
  3041. return NULL;
  3042. }
  3043. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3044. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3045. obj = obj->next;
  3046. char * const mem_buffer = ctx->mem_buffer;
  3047. while (obj != NULL) {
  3048. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3049. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3050. }
  3051. obj = obj->next;
  3052. }
  3053. return NULL;
  3054. }
  3055. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3056. struct ggml_object * obj = ctx->objects_begin;
  3057. char * const mem_buffer = ctx->mem_buffer;
  3058. while (obj != NULL) {
  3059. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3060. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3061. if (strcmp(cur->name, name) == 0) {
  3062. return cur;
  3063. }
  3064. }
  3065. obj = obj->next;
  3066. }
  3067. return NULL;
  3068. }
  3069. ////////////////////////////////////////////////////////////////////////////////
  3070. // ggml_dup
  3071. static struct ggml_tensor * ggml_dup_impl(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. bool inplace) {
  3075. bool is_node = false;
  3076. if (!inplace && (a->grad)) {
  3077. is_node = true;
  3078. }
  3079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3080. result->op = GGML_OP_DUP;
  3081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3082. result->src[0] = a;
  3083. return result;
  3084. }
  3085. struct ggml_tensor * ggml_dup(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a) {
  3088. return ggml_dup_impl(ctx, a, false);
  3089. }
  3090. struct ggml_tensor * ggml_dup_inplace(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_dup_impl(ctx, a, true);
  3094. }
  3095. // ggml_add
  3096. static struct ggml_tensor * ggml_add_impl(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a,
  3099. struct ggml_tensor * b,
  3100. bool inplace) {
  3101. GGML_ASSERT(ggml_can_repeat(b, a));
  3102. bool is_node = false;
  3103. if (!inplace && (a->grad || b->grad)) {
  3104. // TODO: support backward pass for broadcasting
  3105. GGML_ASSERT(ggml_are_same_shape(a, b));
  3106. is_node = true;
  3107. }
  3108. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3109. result->op = GGML_OP_ADD;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src[0] = a;
  3112. result->src[1] = b;
  3113. return result;
  3114. }
  3115. struct ggml_tensor * ggml_add(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. struct ggml_tensor * b) {
  3119. return ggml_add_impl(ctx, a, b, false);
  3120. }
  3121. struct ggml_tensor * ggml_add_inplace(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b) {
  3125. return ggml_add_impl(ctx, a, b, true);
  3126. }
  3127. // ggml_add_cast
  3128. static struct ggml_tensor * ggml_add_cast_impl(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a,
  3131. struct ggml_tensor * b,
  3132. enum ggml_type type) {
  3133. // TODO: support less-strict constraint
  3134. // GGML_ASSERT(ggml_can_repeat(b, a));
  3135. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3136. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3137. bool is_node = false;
  3138. if (a->grad || b->grad) {
  3139. // TODO: support backward pass for broadcasting
  3140. GGML_ASSERT(ggml_are_same_shape(a, b));
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3144. result->op = GGML_OP_ADD;
  3145. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3146. result->src[0] = a;
  3147. result->src[1] = b;
  3148. return result;
  3149. }
  3150. struct ggml_tensor * ggml_add_cast(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. struct ggml_tensor * b,
  3154. enum ggml_type type) {
  3155. return ggml_add_cast_impl(ctx, a, b, type);
  3156. }
  3157. // ggml_add1
  3158. static struct ggml_tensor * ggml_add1_impl(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a,
  3161. struct ggml_tensor * b,
  3162. bool inplace) {
  3163. GGML_ASSERT(ggml_is_scalar(b));
  3164. GGML_ASSERT(ggml_is_padded_1d(a));
  3165. bool is_node = false;
  3166. if (a->grad || b->grad) {
  3167. is_node = true;
  3168. }
  3169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3170. result->op = GGML_OP_ADD1;
  3171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3172. result->src[0] = a;
  3173. result->src[1] = b;
  3174. return result;
  3175. }
  3176. struct ggml_tensor * ggml_add1(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a,
  3179. struct ggml_tensor * b) {
  3180. return ggml_add1_impl(ctx, a, b, false);
  3181. }
  3182. struct ggml_tensor * ggml_add1_inplace(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. struct ggml_tensor * b) {
  3186. return ggml_add1_impl(ctx, a, b, true);
  3187. }
  3188. // ggml_acc
  3189. static struct ggml_tensor * ggml_acc_impl(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. struct ggml_tensor * b,
  3193. size_t nb1,
  3194. size_t nb2,
  3195. size_t nb3,
  3196. size_t offset,
  3197. bool inplace) {
  3198. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3199. GGML_ASSERT(ggml_is_contiguous(a));
  3200. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3201. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3202. bool is_node = false;
  3203. if (!inplace && (a->grad || b->grad)) {
  3204. is_node = true;
  3205. }
  3206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3207. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3208. ggml_set_op_params(result, params, sizeof(params));
  3209. result->op = GGML_OP_ACC;
  3210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3211. result->src[0] = a;
  3212. result->src[1] = b;
  3213. return result;
  3214. }
  3215. struct ggml_tensor * ggml_acc(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a,
  3218. struct ggml_tensor * b,
  3219. size_t nb1,
  3220. size_t nb2,
  3221. size_t nb3,
  3222. size_t offset) {
  3223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3224. }
  3225. struct ggml_tensor * ggml_acc_inplace(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b,
  3229. size_t nb1,
  3230. size_t nb2,
  3231. size_t nb3,
  3232. size_t offset) {
  3233. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3234. }
  3235. // ggml_sub
  3236. static struct ggml_tensor * ggml_sub_impl(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a,
  3239. struct ggml_tensor * b,
  3240. bool inplace) {
  3241. GGML_ASSERT(ggml_are_same_shape(a, b));
  3242. bool is_node = false;
  3243. if (!inplace && (a->grad || b->grad)) {
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SUB;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src[0] = a;
  3250. result->src[1] = b;
  3251. return result;
  3252. }
  3253. struct ggml_tensor * ggml_sub(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. struct ggml_tensor * b) {
  3257. return ggml_sub_impl(ctx, a, b, false);
  3258. }
  3259. struct ggml_tensor * ggml_sub_inplace(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. struct ggml_tensor * b) {
  3263. return ggml_sub_impl(ctx, a, b, true);
  3264. }
  3265. // ggml_mul
  3266. static struct ggml_tensor * ggml_mul_impl(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b,
  3270. bool inplace) {
  3271. GGML_ASSERT(ggml_can_repeat(b, a));
  3272. bool is_node = false;
  3273. if (!inplace && (a->grad || b->grad)) {
  3274. // TODO: support backward pass for broadcasting
  3275. GGML_ASSERT(ggml_are_same_shape(a, b));
  3276. is_node = true;
  3277. }
  3278. if (inplace) {
  3279. GGML_ASSERT(!is_node);
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. result->op = GGML_OP_MUL;
  3283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3284. result->src[0] = a;
  3285. result->src[1] = b;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_mul(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b) {
  3292. return ggml_mul_impl(ctx, a, b, false);
  3293. }
  3294. struct ggml_tensor * ggml_mul_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. struct ggml_tensor * b) {
  3298. return ggml_mul_impl(ctx, a, b, true);
  3299. }
  3300. // ggml_div
  3301. static struct ggml_tensor * ggml_div_impl(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. bool inplace) {
  3306. GGML_ASSERT(ggml_can_repeat(b, a));
  3307. bool is_node = false;
  3308. if (!inplace && (a->grad || b->grad)) {
  3309. is_node = true;
  3310. }
  3311. if (inplace) {
  3312. GGML_ASSERT(!is_node);
  3313. }
  3314. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3315. result->op = GGML_OP_DIV;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src[0] = a;
  3318. result->src[1] = b;
  3319. return result;
  3320. }
  3321. struct ggml_tensor * ggml_div(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. struct ggml_tensor * b) {
  3325. return ggml_div_impl(ctx, a, b, false);
  3326. }
  3327. struct ggml_tensor * ggml_div_inplace(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. struct ggml_tensor * b) {
  3331. return ggml_div_impl(ctx, a, b, true);
  3332. }
  3333. // ggml_sqr
  3334. static struct ggml_tensor * ggml_sqr_impl(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. bool inplace) {
  3338. bool is_node = false;
  3339. if (!inplace && (a->grad)) {
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op = GGML_OP_SQR;
  3344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3345. result->src[0] = a;
  3346. return result;
  3347. }
  3348. struct ggml_tensor * ggml_sqr(
  3349. struct ggml_context * ctx,
  3350. struct ggml_tensor * a) {
  3351. return ggml_sqr_impl(ctx, a, false);
  3352. }
  3353. struct ggml_tensor * ggml_sqr_inplace(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_sqr_impl(ctx, a, true);
  3357. }
  3358. // ggml_sqrt
  3359. static struct ggml_tensor * ggml_sqrt_impl(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a,
  3362. bool inplace) {
  3363. bool is_node = false;
  3364. if (!inplace && (a->grad)) {
  3365. is_node = true;
  3366. }
  3367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3368. result->op = GGML_OP_SQRT;
  3369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3370. result->src[0] = a;
  3371. return result;
  3372. }
  3373. struct ggml_tensor * ggml_sqrt(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_sqrt_impl(ctx, a, false);
  3377. }
  3378. struct ggml_tensor * ggml_sqrt_inplace(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_sqrt_impl(ctx, a, true);
  3382. }
  3383. // ggml_log
  3384. static struct ggml_tensor * ggml_log_impl(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a,
  3387. bool inplace) {
  3388. bool is_node = false;
  3389. if (!inplace && (a->grad)) {
  3390. is_node = true;
  3391. }
  3392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3393. result->op = GGML_OP_LOG;
  3394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3395. result->src[0] = a;
  3396. return result;
  3397. }
  3398. struct ggml_tensor * ggml_log(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. return ggml_log_impl(ctx, a, false);
  3402. }
  3403. struct ggml_tensor * ggml_log_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. return ggml_log_impl(ctx, a, true);
  3407. }
  3408. // ggml_sum
  3409. struct ggml_tensor * ggml_sum(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a) {
  3412. bool is_node = false;
  3413. if (a->grad) {
  3414. is_node = true;
  3415. }
  3416. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3417. result->op = GGML_OP_SUM;
  3418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3419. result->src[0] = a;
  3420. return result;
  3421. }
  3422. // ggml_sum_rows
  3423. struct ggml_tensor * ggml_sum_rows(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a) {
  3426. bool is_node = false;
  3427. if (a->grad) {
  3428. is_node = true;
  3429. }
  3430. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3431. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3432. ne[i] = a->ne[i];
  3433. }
  3434. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3435. result->op = GGML_OP_SUM_ROWS;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. return result;
  3439. }
  3440. // ggml_mean
  3441. struct ggml_tensor * ggml_mean(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a) {
  3444. bool is_node = false;
  3445. if (a->grad) {
  3446. GGML_ASSERT(false); // TODO: implement
  3447. is_node = true;
  3448. }
  3449. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3451. result->op = GGML_OP_MEAN;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src[0] = a;
  3454. return result;
  3455. }
  3456. // ggml_argmax
  3457. struct ggml_tensor * ggml_argmax(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a) {
  3460. GGML_ASSERT(ggml_is_matrix(a));
  3461. bool is_node = false;
  3462. if (a->grad) {
  3463. GGML_ASSERT(false);
  3464. is_node = true;
  3465. }
  3466. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3467. result->op = GGML_OP_ARGMAX;
  3468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3469. result->src[0] = a;
  3470. return result;
  3471. }
  3472. // ggml_repeat
  3473. struct ggml_tensor * ggml_repeat(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b) {
  3477. GGML_ASSERT(ggml_can_repeat(a, b));
  3478. bool is_node = false;
  3479. if (a->grad) {
  3480. is_node = true;
  3481. }
  3482. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3483. result->op = GGML_OP_REPEAT;
  3484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3485. result->src[0] = a;
  3486. return result;
  3487. }
  3488. // ggml_repeat_back
  3489. struct ggml_tensor * ggml_repeat_back(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a,
  3492. struct ggml_tensor * b) {
  3493. GGML_ASSERT(ggml_can_repeat(b, a));
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. is_node = true;
  3497. }
  3498. if (ggml_are_same_shape(a, b) && !is_node) {
  3499. return a;
  3500. }
  3501. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3502. result->op = GGML_OP_REPEAT_BACK;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src[0] = a;
  3505. return result;
  3506. }
  3507. // ggml_concat
  3508. struct ggml_tensor * ggml_concat(
  3509. struct ggml_context* ctx,
  3510. struct ggml_tensor* a,
  3511. struct ggml_tensor* b) {
  3512. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3513. bool is_node = false;
  3514. if (a->grad || b->grad) {
  3515. is_node = true;
  3516. }
  3517. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3518. result->op = GGML_OP_CONCAT;
  3519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3520. result->src[0] = a;
  3521. result->src[1] = b;
  3522. return result;
  3523. }
  3524. // ggml_abs
  3525. struct ggml_tensor * ggml_abs(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a) {
  3528. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3529. }
  3530. struct ggml_tensor * ggml_abs_inplace(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a) {
  3533. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3534. }
  3535. // ggml_sgn
  3536. struct ggml_tensor * ggml_sgn(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a) {
  3539. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3540. }
  3541. struct ggml_tensor * ggml_sgn_inplace(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a) {
  3544. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3545. }
  3546. // ggml_neg
  3547. struct ggml_tensor * ggml_neg(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a) {
  3550. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3551. }
  3552. struct ggml_tensor * ggml_neg_inplace(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a) {
  3555. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3556. }
  3557. // ggml_step
  3558. struct ggml_tensor * ggml_step(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a) {
  3561. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3562. }
  3563. struct ggml_tensor * ggml_step_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a) {
  3566. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3567. }
  3568. // ggml_tanh
  3569. struct ggml_tensor * ggml_tanh(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3573. }
  3574. struct ggml_tensor * ggml_tanh_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3578. }
  3579. // ggml_elu
  3580. struct ggml_tensor * ggml_elu(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a) {
  3583. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3584. }
  3585. struct ggml_tensor * ggml_elu_inplace(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3589. }
  3590. // ggml_relu
  3591. struct ggml_tensor * ggml_relu(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3595. }
  3596. struct ggml_tensor * ggml_relu_inplace(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a) {
  3599. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3600. }
  3601. // ggml_leaky_relu
  3602. struct ggml_tensor * ggml_leaky_relu(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3605. bool is_node = false;
  3606. if (!inplace && (a->grad)) {
  3607. is_node = true;
  3608. }
  3609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3610. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3611. result->op = GGML_OP_LEAKY_RELU;
  3612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3613. result->src[0] = a;
  3614. return result;
  3615. }
  3616. // ggml_gelu
  3617. struct ggml_tensor * ggml_gelu(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a) {
  3620. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3621. }
  3622. struct ggml_tensor * ggml_gelu_inplace(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3626. }
  3627. // ggml_gelu_quick
  3628. struct ggml_tensor * ggml_gelu_quick(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a) {
  3631. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3632. }
  3633. struct ggml_tensor * ggml_gelu_quick_inplace(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a) {
  3636. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3637. }
  3638. // ggml_silu
  3639. struct ggml_tensor * ggml_silu(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3643. }
  3644. struct ggml_tensor * ggml_silu_inplace(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3648. }
  3649. // ggml_silu_back
  3650. struct ggml_tensor * ggml_silu_back(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. struct ggml_tensor * b) {
  3654. bool is_node = false;
  3655. if (a->grad || b->grad) {
  3656. // TODO: implement backward
  3657. is_node = true;
  3658. }
  3659. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3660. result->op = GGML_OP_SILU_BACK;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src[0] = a;
  3663. result->src[1] = b;
  3664. return result;
  3665. }
  3666. // ggml hardswish
  3667. struct ggml_tensor * ggml_hardswish(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a) {
  3670. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3671. }
  3672. // ggml hardsigmoid
  3673. struct ggml_tensor * ggml_hardsigmoid(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * a) {
  3676. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3677. }
  3678. // ggml_norm
  3679. static struct ggml_tensor * ggml_norm_impl(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. float eps,
  3683. bool inplace) {
  3684. bool is_node = false;
  3685. if (!inplace && (a->grad)) {
  3686. GGML_ASSERT(false); // TODO: implement backward
  3687. is_node = true;
  3688. }
  3689. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3690. ggml_set_op_params(result, &eps, sizeof(eps));
  3691. result->op = GGML_OP_NORM;
  3692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3693. result->src[0] = a;
  3694. return result;
  3695. }
  3696. struct ggml_tensor * ggml_norm(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. float eps) {
  3700. return ggml_norm_impl(ctx, a, eps, false);
  3701. }
  3702. struct ggml_tensor * ggml_norm_inplace(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. float eps) {
  3706. return ggml_norm_impl(ctx, a, eps, true);
  3707. }
  3708. // ggml_rms_norm
  3709. static struct ggml_tensor * ggml_rms_norm_impl(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. float eps,
  3713. bool inplace) {
  3714. bool is_node = false;
  3715. if (!inplace && (a->grad)) {
  3716. is_node = true;
  3717. }
  3718. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3719. ggml_set_op_params(result, &eps, sizeof(eps));
  3720. result->op = GGML_OP_RMS_NORM;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src[0] = a;
  3723. return result;
  3724. }
  3725. struct ggml_tensor * ggml_rms_norm(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. float eps) {
  3729. return ggml_rms_norm_impl(ctx, a, eps, false);
  3730. }
  3731. struct ggml_tensor * ggml_rms_norm_inplace(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. float eps) {
  3735. return ggml_rms_norm_impl(ctx, a, eps, true);
  3736. }
  3737. // ggml_rms_norm_back
  3738. struct ggml_tensor * ggml_rms_norm_back(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. struct ggml_tensor * b,
  3742. float eps) {
  3743. bool is_node = false;
  3744. if (a->grad) {
  3745. // TODO: implement backward
  3746. is_node = true;
  3747. }
  3748. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3749. ggml_set_op_params(result, &eps, sizeof(eps));
  3750. result->op = GGML_OP_RMS_NORM_BACK;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src[0] = a;
  3753. result->src[1] = b;
  3754. return result;
  3755. }
  3756. // ggml_group_norm
  3757. static struct ggml_tensor * ggml_group_norm_impl(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. int n_groups,
  3761. bool inplace) {
  3762. bool is_node = false;
  3763. if (!inplace && (a->grad)) {
  3764. GGML_ASSERT(false); // TODO: implement backward
  3765. is_node = true;
  3766. }
  3767. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3768. result->op_params[0] = n_groups;
  3769. result->op = GGML_OP_GROUP_NORM;
  3770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3771. result->src[0] = a;
  3772. return result;
  3773. }
  3774. struct ggml_tensor * ggml_group_norm(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a,
  3777. int n_groups) {
  3778. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3779. }
  3780. struct ggml_tensor * ggml_group_norm_inplace(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. int n_groups) {
  3784. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3785. }
  3786. // ggml_mul_mat
  3787. struct ggml_tensor * ggml_mul_mat(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b) {
  3791. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3792. GGML_ASSERT(!ggml_is_transposed(a));
  3793. bool is_node = false;
  3794. if (a->grad || b->grad) {
  3795. is_node = true;
  3796. }
  3797. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3798. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3799. result->op = GGML_OP_MUL_MAT;
  3800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3801. result->src[0] = a;
  3802. result->src[1] = b;
  3803. return result;
  3804. }
  3805. void ggml_mul_mat_set_prec(
  3806. struct ggml_tensor * a,
  3807. enum ggml_prec prec) {
  3808. const int32_t prec_i32 = (int32_t) prec;
  3809. ggml_set_op_params_i32(a, 0, prec_i32);
  3810. }
  3811. // ggml_mul_mat_id
  3812. /*
  3813. c = ggml_mul_mat_id(ctx, as, b, ids);
  3814. as -> [cols, rows, n_expert]
  3815. ids -> [n_experts_used, n_tokens] (i32)
  3816. b -> [cols, n_expert_used, n_tokens]
  3817. c -> [cols, n_expert_used, n_tokens]
  3818. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  3819. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  3820. */
  3821. struct ggml_tensor * ggml_mul_mat_id(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * as,
  3824. struct ggml_tensor * b,
  3825. struct ggml_tensor * ids) {
  3826. GGML_ASSERT(!ggml_is_transposed(as));
  3827. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3828. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  3829. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  3830. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3831. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  3832. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3833. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  3834. bool is_node = false;
  3835. if (as->grad || b->grad) {
  3836. is_node = true;
  3837. }
  3838. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  3839. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3840. result->op = GGML_OP_MUL_MAT_ID;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src[0] = as;
  3843. result->src[1] = b;
  3844. result->src[2] = ids;
  3845. return result;
  3846. }
  3847. // ggml_out_prod
  3848. struct ggml_tensor * ggml_out_prod(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b) {
  3852. GGML_ASSERT(ggml_can_out_prod(a, b));
  3853. GGML_ASSERT(!ggml_is_transposed(a));
  3854. bool is_node = false;
  3855. if (a->grad || b->grad) {
  3856. is_node = true;
  3857. }
  3858. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3859. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3860. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3861. result->op = GGML_OP_OUT_PROD;
  3862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3863. result->src[0] = a;
  3864. result->src[1] = b;
  3865. return result;
  3866. }
  3867. // ggml_scale
  3868. static struct ggml_tensor * ggml_scale_impl(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. float s,
  3872. bool inplace) {
  3873. GGML_ASSERT(ggml_is_padded_1d(a));
  3874. bool is_node = false;
  3875. if (a->grad) {
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3879. ggml_set_op_params(result, &s, sizeof(s));
  3880. result->op = GGML_OP_SCALE;
  3881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3882. result->src[0] = a;
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_scale(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. float s) {
  3889. return ggml_scale_impl(ctx, a, s, false);
  3890. }
  3891. struct ggml_tensor * ggml_scale_inplace(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. float s) {
  3895. return ggml_scale_impl(ctx, a, s, true);
  3896. }
  3897. // ggml_set
  3898. static struct ggml_tensor * ggml_set_impl(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b,
  3902. size_t nb1,
  3903. size_t nb2,
  3904. size_t nb3,
  3905. size_t offset,
  3906. bool inplace) {
  3907. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3908. bool is_node = false;
  3909. if (a->grad || b->grad) {
  3910. is_node = true;
  3911. }
  3912. // make a view of the destination
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3915. ggml_set_op_params(result, params, sizeof(params));
  3916. result->op = GGML_OP_SET;
  3917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3918. result->src[0] = a;
  3919. result->src[1] = b;
  3920. return result;
  3921. }
  3922. struct ggml_tensor * ggml_set(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b,
  3926. size_t nb1,
  3927. size_t nb2,
  3928. size_t nb3,
  3929. size_t offset) {
  3930. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3931. }
  3932. struct ggml_tensor * ggml_set_inplace(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. struct ggml_tensor * b,
  3936. size_t nb1,
  3937. size_t nb2,
  3938. size_t nb3,
  3939. size_t offset) {
  3940. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3941. }
  3942. struct ggml_tensor * ggml_set_1d(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b,
  3946. size_t offset) {
  3947. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3948. }
  3949. struct ggml_tensor * ggml_set_1d_inplace(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. size_t offset) {
  3954. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3955. }
  3956. struct ggml_tensor * ggml_set_2d(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b,
  3960. size_t nb1,
  3961. size_t offset) {
  3962. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3963. }
  3964. struct ggml_tensor * ggml_set_2d_inplace(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a,
  3967. struct ggml_tensor * b,
  3968. size_t nb1,
  3969. size_t offset) {
  3970. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3971. }
  3972. // ggml_cpy
  3973. static struct ggml_tensor * ggml_cpy_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. struct ggml_tensor * b) {
  3977. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3978. bool is_node = false;
  3979. if (a->grad || b->grad) {
  3980. // inplace is false and either one have a grad
  3981. is_node = true;
  3982. }
  3983. // make a view of the destination
  3984. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3985. if (strlen(b->name) > 0) {
  3986. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3987. } else {
  3988. ggml_format_name(result, "%s (copy)", a->name);
  3989. }
  3990. result->op = GGML_OP_CPY;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. result->src[1] = b;
  3994. return result;
  3995. }
  3996. struct ggml_tensor * ggml_cpy(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. struct ggml_tensor * b) {
  4000. return ggml_cpy_impl(ctx, a, b);
  4001. }
  4002. struct ggml_tensor * ggml_cast(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. enum ggml_type type) {
  4006. bool is_node = false;
  4007. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4008. ggml_format_name(result, "%s (copy)", a->name);
  4009. result->op = GGML_OP_CPY;
  4010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4011. result->src[0] = a;
  4012. result->src[1] = result;
  4013. return result;
  4014. }
  4015. // ggml_cont
  4016. static struct ggml_tensor * ggml_cont_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a) {
  4019. bool is_node = false;
  4020. if (a->grad) {
  4021. is_node = true;
  4022. }
  4023. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4024. ggml_format_name(result, "%s (cont)", a->name);
  4025. result->op = GGML_OP_CONT;
  4026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4027. result->src[0] = a;
  4028. return result;
  4029. }
  4030. struct ggml_tensor * ggml_cont(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_cont_impl(ctx, a);
  4034. }
  4035. // make contiguous, with new shape
  4036. GGML_API struct ggml_tensor * ggml_cont_1d(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. int64_t ne0) {
  4040. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4041. }
  4042. GGML_API struct ggml_tensor * ggml_cont_2d(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. int64_t ne0,
  4046. int64_t ne1) {
  4047. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4048. }
  4049. GGML_API struct ggml_tensor * ggml_cont_3d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. int64_t ne2) {
  4055. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4056. }
  4057. struct ggml_tensor * ggml_cont_4d(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. int64_t ne0,
  4061. int64_t ne1,
  4062. int64_t ne2,
  4063. int64_t ne3) {
  4064. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4065. bool is_node = false;
  4066. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4067. ggml_format_name(result, "%s (cont)", a->name);
  4068. result->op = GGML_OP_CONT;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. return result;
  4072. }
  4073. // ggml_reshape
  4074. struct ggml_tensor * ggml_reshape(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b) {
  4078. GGML_ASSERT(ggml_is_contiguous(a));
  4079. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4080. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. if (b->grad) {
  4086. // gradient propagation is not supported
  4087. //GGML_ASSERT(false);
  4088. }
  4089. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4090. ggml_format_name(result, "%s (reshaped)", a->name);
  4091. result->op = GGML_OP_RESHAPE;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src[0] = a;
  4094. return result;
  4095. }
  4096. struct ggml_tensor * ggml_reshape_1d(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. int64_t ne0) {
  4100. GGML_ASSERT(ggml_is_contiguous(a));
  4101. GGML_ASSERT(ggml_nelements(a) == ne0);
  4102. bool is_node = false;
  4103. if (a->grad) {
  4104. is_node = true;
  4105. }
  4106. const int64_t ne[1] = { ne0 };
  4107. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4108. ggml_format_name(result, "%s (reshaped)", a->name);
  4109. result->op = GGML_OP_RESHAPE;
  4110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4111. result->src[0] = a;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_reshape_2d(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. int64_t ne0,
  4118. int64_t ne1) {
  4119. GGML_ASSERT(ggml_is_contiguous(a));
  4120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4121. bool is_node = false;
  4122. if (a->grad) {
  4123. is_node = true;
  4124. }
  4125. const int64_t ne[2] = { ne0, ne1 };
  4126. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4127. ggml_format_name(result, "%s (reshaped)", a->name);
  4128. result->op = GGML_OP_RESHAPE;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src[0] = a;
  4131. return result;
  4132. }
  4133. struct ggml_tensor * ggml_reshape_3d(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. int64_t ne0,
  4137. int64_t ne1,
  4138. int64_t ne2) {
  4139. GGML_ASSERT(ggml_is_contiguous(a));
  4140. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4141. bool is_node = false;
  4142. if (a->grad) {
  4143. is_node = true;
  4144. }
  4145. const int64_t ne[3] = { ne0, ne1, ne2 };
  4146. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4147. ggml_format_name(result, "%s (reshaped)", a->name);
  4148. result->op = GGML_OP_RESHAPE;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src[0] = a;
  4151. return result;
  4152. }
  4153. struct ggml_tensor * ggml_reshape_4d(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. int64_t ne0,
  4157. int64_t ne1,
  4158. int64_t ne2,
  4159. int64_t ne3) {
  4160. GGML_ASSERT(ggml_is_contiguous(a));
  4161. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4162. bool is_node = false;
  4163. if (a->grad) {
  4164. is_node = true;
  4165. }
  4166. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4167. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4168. ggml_format_name(result, "%s (reshaped)", a->name);
  4169. result->op = GGML_OP_RESHAPE;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src[0] = a;
  4172. return result;
  4173. }
  4174. static struct ggml_tensor * ggml_view_impl(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. int n_dims,
  4178. const int64_t * ne,
  4179. size_t offset) {
  4180. bool is_node = false;
  4181. if (a->grad) {
  4182. is_node = true;
  4183. }
  4184. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4185. ggml_format_name(result, "%s (view)", a->name);
  4186. ggml_set_op_params(result, &offset, sizeof(offset));
  4187. result->op = GGML_OP_VIEW;
  4188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4189. result->src[0] = a;
  4190. return result;
  4191. }
  4192. // ggml_view_1d
  4193. struct ggml_tensor * ggml_view_1d(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. int64_t ne0,
  4197. size_t offset) {
  4198. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4199. return result;
  4200. }
  4201. // ggml_view_2d
  4202. struct ggml_tensor * ggml_view_2d(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. int64_t ne0,
  4206. int64_t ne1,
  4207. size_t nb1,
  4208. size_t offset) {
  4209. const int64_t ne[2] = { ne0, ne1 };
  4210. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4211. result->nb[1] = nb1;
  4212. result->nb[2] = result->nb[1]*ne1;
  4213. result->nb[3] = result->nb[2];
  4214. return result;
  4215. }
  4216. // ggml_view_3d
  4217. struct ggml_tensor * ggml_view_3d(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. int64_t ne0,
  4221. int64_t ne1,
  4222. int64_t ne2,
  4223. size_t nb1,
  4224. size_t nb2,
  4225. size_t offset) {
  4226. const int64_t ne[3] = { ne0, ne1, ne2 };
  4227. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4228. result->nb[1] = nb1;
  4229. result->nb[2] = nb2;
  4230. result->nb[3] = result->nb[2]*ne2;
  4231. return result;
  4232. }
  4233. // ggml_view_4d
  4234. struct ggml_tensor * ggml_view_4d(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a,
  4237. int64_t ne0,
  4238. int64_t ne1,
  4239. int64_t ne2,
  4240. int64_t ne3,
  4241. size_t nb1,
  4242. size_t nb2,
  4243. size_t nb3,
  4244. size_t offset) {
  4245. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4246. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4247. result->nb[1] = nb1;
  4248. result->nb[2] = nb2;
  4249. result->nb[3] = nb3;
  4250. return result;
  4251. }
  4252. // ggml_permute
  4253. struct ggml_tensor * ggml_permute(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. int axis0,
  4257. int axis1,
  4258. int axis2,
  4259. int axis3) {
  4260. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4261. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4262. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4263. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4264. GGML_ASSERT(axis0 != axis1);
  4265. GGML_ASSERT(axis0 != axis2);
  4266. GGML_ASSERT(axis0 != axis3);
  4267. GGML_ASSERT(axis1 != axis2);
  4268. GGML_ASSERT(axis1 != axis3);
  4269. GGML_ASSERT(axis2 != axis3);
  4270. bool is_node = false;
  4271. if (a->grad) {
  4272. is_node = true;
  4273. }
  4274. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4275. ggml_format_name(result, "%s (permuted)", a->name);
  4276. int ne[GGML_MAX_DIMS];
  4277. int nb[GGML_MAX_DIMS];
  4278. ne[axis0] = a->ne[0];
  4279. ne[axis1] = a->ne[1];
  4280. ne[axis2] = a->ne[2];
  4281. ne[axis3] = a->ne[3];
  4282. nb[axis0] = a->nb[0];
  4283. nb[axis1] = a->nb[1];
  4284. nb[axis2] = a->nb[2];
  4285. nb[axis3] = a->nb[3];
  4286. result->ne[0] = ne[0];
  4287. result->ne[1] = ne[1];
  4288. result->ne[2] = ne[2];
  4289. result->ne[3] = ne[3];
  4290. result->nb[0] = nb[0];
  4291. result->nb[1] = nb[1];
  4292. result->nb[2] = nb[2];
  4293. result->nb[3] = nb[3];
  4294. result->op = GGML_OP_PERMUTE;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src[0] = a;
  4297. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4298. ggml_set_op_params(result, params, sizeof(params));
  4299. return result;
  4300. }
  4301. // ggml_transpose
  4302. struct ggml_tensor * ggml_transpose(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. bool is_node = false;
  4306. if (a->grad) {
  4307. is_node = true;
  4308. }
  4309. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4310. ggml_format_name(result, "%s (transposed)", a->name);
  4311. result->ne[0] = a->ne[1];
  4312. result->ne[1] = a->ne[0];
  4313. result->nb[0] = a->nb[1];
  4314. result->nb[1] = a->nb[0];
  4315. result->op = GGML_OP_TRANSPOSE;
  4316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4317. result->src[0] = a;
  4318. return result;
  4319. }
  4320. // ggml_get_rows
  4321. struct ggml_tensor * ggml_get_rows(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b) {
  4325. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4326. GGML_ASSERT(b->ne[3] == 1);
  4327. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4328. bool is_node = false;
  4329. if (a->grad || b->grad) {
  4330. is_node = true;
  4331. }
  4332. // TODO: implement non F32 return
  4333. enum ggml_type type = GGML_TYPE_F32;
  4334. if (a->type == GGML_TYPE_I32) {
  4335. type = a->type;
  4336. }
  4337. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4338. result->op = GGML_OP_GET_ROWS;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src[0] = a;
  4341. result->src[1] = b;
  4342. return result;
  4343. }
  4344. // ggml_get_rows_back
  4345. struct ggml_tensor * ggml_get_rows_back(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b,
  4349. struct ggml_tensor * c) {
  4350. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4351. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4352. bool is_node = false;
  4353. if (a->grad || b->grad) {
  4354. is_node = true;
  4355. }
  4356. // TODO: implement non F32 return
  4357. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4358. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4359. result->op = GGML_OP_GET_ROWS_BACK;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src[0] = a;
  4362. result->src[1] = b;
  4363. return result;
  4364. }
  4365. // ggml_diag
  4366. struct ggml_tensor * ggml_diag(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a) {
  4369. GGML_ASSERT(a->ne[1] == 1);
  4370. bool is_node = false;
  4371. if (a->grad) {
  4372. is_node = true;
  4373. }
  4374. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4375. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4376. result->op = GGML_OP_DIAG;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src[0] = a;
  4379. return result;
  4380. }
  4381. // ggml_diag_mask_inf
  4382. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. int n_past,
  4386. bool inplace) {
  4387. bool is_node = false;
  4388. if (a->grad) {
  4389. is_node = true;
  4390. }
  4391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4392. int32_t params[] = { n_past };
  4393. ggml_set_op_params(result, params, sizeof(params));
  4394. result->op = GGML_OP_DIAG_MASK_INF;
  4395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4396. result->src[0] = a;
  4397. return result;
  4398. }
  4399. struct ggml_tensor * ggml_diag_mask_inf(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. int n_past) {
  4403. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4404. }
  4405. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a,
  4408. int n_past) {
  4409. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4410. }
  4411. // ggml_diag_mask_zero
  4412. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. int n_past,
  4416. bool inplace) {
  4417. bool is_node = false;
  4418. if (a->grad) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. int32_t params[] = { n_past };
  4423. ggml_set_op_params(result, params, sizeof(params));
  4424. result->op = GGML_OP_DIAG_MASK_ZERO;
  4425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4426. result->src[0] = a;
  4427. return result;
  4428. }
  4429. struct ggml_tensor * ggml_diag_mask_zero(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. int n_past) {
  4433. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4434. }
  4435. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int n_past) {
  4439. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4440. }
  4441. // ggml_soft_max
  4442. static struct ggml_tensor * ggml_soft_max_impl(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * mask,
  4446. struct ggml_tensor * pos,
  4447. float scale,
  4448. float max_bias,
  4449. bool inplace) {
  4450. GGML_ASSERT(ggml_is_contiguous(a));
  4451. if (mask) {
  4452. GGML_ASSERT(ggml_is_contiguous(mask));
  4453. GGML_ASSERT(ggml_is_matrix(mask));
  4454. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4455. }
  4456. if (pos) {
  4457. GGML_ASSERT(ggml_is_vector(pos));
  4458. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4459. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4460. }
  4461. if (max_bias > 0.0f) {
  4462. GGML_ASSERT(pos);
  4463. }
  4464. bool is_node = false;
  4465. if (a->grad) {
  4466. is_node = true;
  4467. }
  4468. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4469. float params[] = { scale, max_bias };
  4470. ggml_set_op_params(result, params, sizeof(params));
  4471. result->op = GGML_OP_SOFT_MAX;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src[0] = a;
  4474. result->src[1] = mask;
  4475. result->src[2] = pos;
  4476. return result;
  4477. }
  4478. struct ggml_tensor * ggml_soft_max(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a) {
  4481. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4482. }
  4483. struct ggml_tensor * ggml_soft_max_inplace(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a) {
  4486. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4487. }
  4488. struct ggml_tensor * ggml_soft_max_ext(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * mask,
  4492. struct ggml_tensor * pos,
  4493. float scale,
  4494. float max_bias) {
  4495. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4496. }
  4497. // ggml_soft_max_back
  4498. static struct ggml_tensor * ggml_soft_max_back_impl(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. struct ggml_tensor * b,
  4502. bool inplace) {
  4503. bool is_node = false;
  4504. if (a->grad || b->grad) {
  4505. is_node = true; // TODO : implement backward pass
  4506. }
  4507. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4508. result->op = GGML_OP_SOFT_MAX_BACK;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. result->src[1] = b;
  4512. return result;
  4513. }
  4514. struct ggml_tensor * ggml_soft_max_back(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. struct ggml_tensor * b) {
  4518. return ggml_soft_max_back_impl(ctx, a, b, false);
  4519. }
  4520. struct ggml_tensor * ggml_soft_max_back_inplace(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. struct ggml_tensor * b) {
  4524. return ggml_soft_max_back_impl(ctx, a, b, true);
  4525. }
  4526. // ggml_rope
  4527. static struct ggml_tensor * ggml_rope_impl(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. struct ggml_tensor * b,
  4531. int n_dims,
  4532. int mode,
  4533. int n_ctx,
  4534. int n_orig_ctx,
  4535. float freq_base,
  4536. float freq_scale,
  4537. float ext_factor,
  4538. float attn_factor,
  4539. float beta_fast,
  4540. float beta_slow,
  4541. float xpos_base,
  4542. bool xpos_down,
  4543. bool inplace) {
  4544. GGML_ASSERT(ggml_is_vector(b));
  4545. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4546. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4547. bool is_node = false;
  4548. if (a->grad) {
  4549. is_node = true;
  4550. }
  4551. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4552. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4553. memcpy(params + 5, &freq_base, sizeof(float));
  4554. memcpy(params + 6, &freq_scale, sizeof(float));
  4555. memcpy(params + 7, &ext_factor, sizeof(float));
  4556. memcpy(params + 8, &attn_factor, sizeof(float));
  4557. memcpy(params + 9, &beta_fast, sizeof(float));
  4558. memcpy(params + 10, &beta_slow, sizeof(float));
  4559. memcpy(params + 11, &xpos_base, sizeof(float));
  4560. memcpy(params + 12, &xpos_down, sizeof(bool));
  4561. ggml_set_op_params(result, params, sizeof(params));
  4562. result->op = GGML_OP_ROPE;
  4563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4564. result->src[0] = a;
  4565. result->src[1] = b;
  4566. return result;
  4567. }
  4568. struct ggml_tensor * ggml_rope(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. int n_dims,
  4573. int mode,
  4574. int n_ctx) {
  4575. return ggml_rope_impl(
  4576. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4577. );
  4578. }
  4579. struct ggml_tensor * ggml_rope_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a,
  4582. struct ggml_tensor * b,
  4583. int n_dims,
  4584. int mode,
  4585. int n_ctx) {
  4586. return ggml_rope_impl(
  4587. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4588. );
  4589. }
  4590. struct ggml_tensor * ggml_rope_custom(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. struct ggml_tensor * b,
  4594. int n_dims,
  4595. int mode,
  4596. int n_ctx,
  4597. int n_orig_ctx,
  4598. float freq_base,
  4599. float freq_scale,
  4600. float ext_factor,
  4601. float attn_factor,
  4602. float beta_fast,
  4603. float beta_slow) {
  4604. return ggml_rope_impl(
  4605. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4606. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4607. );
  4608. }
  4609. struct ggml_tensor * ggml_rope_custom_inplace(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a,
  4612. struct ggml_tensor * b,
  4613. int n_dims,
  4614. int mode,
  4615. int n_ctx,
  4616. int n_orig_ctx,
  4617. float freq_base,
  4618. float freq_scale,
  4619. float ext_factor,
  4620. float attn_factor,
  4621. float beta_fast,
  4622. float beta_slow) {
  4623. return ggml_rope_impl(
  4624. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4625. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4626. );
  4627. }
  4628. struct ggml_tensor * ggml_rope_xpos_inplace(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b,
  4632. int n_dims,
  4633. float base,
  4634. bool down) {
  4635. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4636. }
  4637. // ggml_rope_back
  4638. struct ggml_tensor * ggml_rope_back(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. struct ggml_tensor * b,
  4642. int n_dims,
  4643. int mode,
  4644. int n_ctx,
  4645. int n_orig_ctx,
  4646. float freq_base,
  4647. float freq_scale,
  4648. float ext_factor,
  4649. float attn_factor,
  4650. float beta_fast,
  4651. float beta_slow,
  4652. float xpos_base,
  4653. bool xpos_down) {
  4654. GGML_ASSERT(ggml_is_vector(b));
  4655. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4656. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4657. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4658. bool is_node = false;
  4659. if (a->grad) {
  4660. is_node = false; // TODO: implement backward
  4661. }
  4662. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4663. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4664. memcpy(params + 5, &freq_base, sizeof(float));
  4665. memcpy(params + 6, &freq_scale, sizeof(float));
  4666. memcpy(params + 7, &ext_factor, sizeof(float));
  4667. memcpy(params + 8, &attn_factor, sizeof(float));
  4668. memcpy(params + 9, &beta_fast, sizeof(float));
  4669. memcpy(params + 10, &beta_slow, sizeof(float));
  4670. memcpy(params + 11, &xpos_base, sizeof(float));
  4671. memcpy(params + 12, &xpos_down, sizeof(bool));
  4672. ggml_set_op_params(result, params, sizeof(params));
  4673. result->op = GGML_OP_ROPE_BACK;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = a;
  4676. result->src[1] = b;
  4677. return result;
  4678. }
  4679. // ggml_alibi
  4680. struct ggml_tensor * ggml_alibi(
  4681. struct ggml_context * ctx,
  4682. struct ggml_tensor * a,
  4683. int n_past,
  4684. int n_head,
  4685. float bias_max) {
  4686. GGML_ASSERT(n_past >= 0);
  4687. bool is_node = false;
  4688. if (a->grad) {
  4689. GGML_ASSERT(false); // TODO: implement backward
  4690. is_node = true;
  4691. }
  4692. // TODO: when implement backward, fix this:
  4693. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4694. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4695. int32_t op_params[3] = { n_past, n_head };
  4696. memcpy(op_params + 2, &bias_max, sizeof(float));
  4697. ggml_set_op_params(result, op_params, sizeof(op_params));
  4698. result->op = GGML_OP_ALIBI;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src[0] = a;
  4701. return result;
  4702. }
  4703. // ggml_clamp
  4704. struct ggml_tensor * ggml_clamp(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. float min,
  4708. float max) {
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. GGML_ASSERT(false); // TODO: implement backward
  4712. is_node = true;
  4713. }
  4714. // TODO: when implement backward, fix this:
  4715. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4716. float params[] = { min, max };
  4717. ggml_set_op_params(result, params, sizeof(params));
  4718. result->op = GGML_OP_CLAMP;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src[0] = a;
  4721. return result;
  4722. }
  4723. // ggml_conv_1d
  4724. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4725. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4726. }
  4727. GGML_API struct ggml_tensor * ggml_conv_1d(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. struct ggml_tensor * b,
  4731. int s0,
  4732. int p0,
  4733. int d0) {
  4734. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4735. struct ggml_tensor * result =
  4736. ggml_mul_mat(ctx,
  4737. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4738. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4739. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4740. return result;
  4741. }
  4742. // ggml_conv_1d_ph
  4743. struct ggml_tensor* ggml_conv_1d_ph(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. struct ggml_tensor * b,
  4747. int s,
  4748. int d) {
  4749. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4750. }
  4751. // ggml_conv_transpose_1d
  4752. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4753. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4754. }
  4755. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a,
  4758. struct ggml_tensor * b,
  4759. int s0,
  4760. int p0,
  4761. int d0) {
  4762. GGML_ASSERT(ggml_is_matrix(b));
  4763. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4764. GGML_ASSERT(a->ne[3] == 1);
  4765. GGML_ASSERT(p0 == 0);
  4766. GGML_ASSERT(d0 == 1);
  4767. bool is_node = false;
  4768. if (a->grad || b->grad) {
  4769. GGML_ASSERT(false); // TODO: implement backward
  4770. is_node = true;
  4771. }
  4772. const int64_t ne[4] = {
  4773. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4774. a->ne[1], b->ne[2], 1,
  4775. };
  4776. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4777. int32_t params[] = { s0, p0, d0 };
  4778. ggml_set_op_params(result, params, sizeof(params));
  4779. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4781. result->src[0] = a;
  4782. result->src[1] = b;
  4783. return result;
  4784. }
  4785. // ggml_conv_depthwise
  4786. struct ggml_tensor * ggml_conv_depthwise_2d(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a,
  4789. struct ggml_tensor * b,
  4790. int s0,
  4791. int s1,
  4792. int p0,
  4793. int p1,
  4794. int d0,
  4795. int d1) {
  4796. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4797. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4798. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4799. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4800. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4801. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4802. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4803. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4804. return result;
  4805. }
  4806. // ggml_conv_2d
  4807. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4808. // a: [OC,IC, KH, KW]
  4809. // b: [N, IC, IH, IW]
  4810. // result: [N, OH, OW, IC*KH*KW]
  4811. struct ggml_tensor * ggml_im2col(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a,
  4814. struct ggml_tensor * b,
  4815. int s0,
  4816. int s1,
  4817. int p0,
  4818. int p1,
  4819. int d0,
  4820. int d1,
  4821. bool is_2D,
  4822. enum ggml_type dst_type) {
  4823. if(is_2D) {
  4824. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4825. } else {
  4826. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4827. }
  4828. bool is_node = false;
  4829. if (a->grad || b->grad) {
  4830. GGML_ASSERT(false); // TODO: implement backward
  4831. is_node = true;
  4832. }
  4833. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4834. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4835. const int64_t ne[4] = {
  4836. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4837. OW,
  4838. is_2D ? OH : b->ne[2],
  4839. is_2D ? b->ne[3] : 1,
  4840. };
  4841. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4842. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4843. ggml_set_op_params(result, params, sizeof(params));
  4844. result->op = GGML_OP_IM2COL;
  4845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4846. result->src[0] = a;
  4847. result->src[1] = b;
  4848. return result;
  4849. }
  4850. // a: [OC,IC, KH, KW]
  4851. // b: [N, IC, IH, IW]
  4852. // result: [N, OC, OH, OW]
  4853. struct ggml_tensor * ggml_conv_2d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * b,
  4857. int s0,
  4858. int s1,
  4859. int p0,
  4860. int p1,
  4861. int d0,
  4862. int d1) {
  4863. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4864. struct ggml_tensor * result =
  4865. ggml_mul_mat(ctx,
  4866. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4867. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4868. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4869. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4870. return result;
  4871. }
  4872. // ggml_conv_2d_sk_p0
  4873. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b) {
  4877. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4878. }
  4879. // ggml_conv_2d_s1_ph
  4880. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. struct ggml_tensor * b) {
  4884. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4885. }
  4886. // ggml_conv_transpose_2d_p0
  4887. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4888. return (ins - 1) * s - 2 * p + ks;
  4889. }
  4890. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. struct ggml_tensor * b,
  4894. int stride) {
  4895. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4896. bool is_node = false;
  4897. if (a->grad || b->grad) {
  4898. GGML_ASSERT(false); // TODO: implement backward
  4899. is_node = true;
  4900. }
  4901. const int64_t ne[4] = {
  4902. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4903. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4904. a->ne[2], b->ne[3],
  4905. };
  4906. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4907. ggml_set_op_params_i32(result, 0, stride);
  4908. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src[0] = a;
  4911. result->src[1] = b;
  4912. return result;
  4913. }
  4914. // ggml_pool_*
  4915. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4916. return (ins + 2 * p - ks) / s + 1;
  4917. }
  4918. // ggml_pool_1d
  4919. struct ggml_tensor * ggml_pool_1d(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. enum ggml_op_pool op,
  4923. int k0,
  4924. int s0,
  4925. int p0) {
  4926. bool is_node = false;
  4927. if (a->grad) {
  4928. GGML_ASSERT(false); // TODO: implement backward
  4929. is_node = true;
  4930. }
  4931. const int64_t ne[4] = {
  4932. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4933. a->ne[1],
  4934. a->ne[2],
  4935. a->ne[3],
  4936. };
  4937. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4938. int32_t params[] = { op, k0, s0, p0 };
  4939. ggml_set_op_params(result, params, sizeof(params));
  4940. result->op = GGML_OP_POOL_1D;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. return result;
  4944. }
  4945. // ggml_pool_2d
  4946. struct ggml_tensor * ggml_pool_2d(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. enum ggml_op_pool op,
  4950. int k0,
  4951. int k1,
  4952. int s0,
  4953. int s1,
  4954. float p0,
  4955. float p1) {
  4956. bool is_node = false;
  4957. if (a->grad) {
  4958. GGML_ASSERT(false); // TODO: implement backward
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * result;
  4962. const int64_t ne[3] = {
  4963. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4964. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4965. a->ne[2],
  4966. };
  4967. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4968. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4969. ggml_set_op_params(result, params, sizeof(params));
  4970. result->op = GGML_OP_POOL_2D;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src[0] = a;
  4973. return result;
  4974. }
  4975. // ggml_upscale
  4976. static struct ggml_tensor * ggml_upscale_impl(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. int scale_factor) {
  4980. bool is_node = false;
  4981. if (a->grad) {
  4982. GGML_ASSERT(false); // TODO: implement backward
  4983. is_node = true;
  4984. }
  4985. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4986. a->ne[0] * scale_factor,
  4987. a->ne[1] * scale_factor,
  4988. a->ne[2], a->ne[3]);
  4989. result->op = GGML_OP_UPSCALE;
  4990. result->op_params[0] = scale_factor;
  4991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4992. result->src[0] = a;
  4993. return result;
  4994. }
  4995. struct ggml_tensor * ggml_pad(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. int p0, int p1, int p2, int p3) {
  4999. bool is_node = false;
  5000. if (a->grad) {
  5001. GGML_ASSERT(false); // TODO: implement backward
  5002. is_node = true;
  5003. }
  5004. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5005. a->ne[0] + p0,
  5006. a->ne[1] + p1,
  5007. a->ne[2] + p2,
  5008. a->ne[3] + p3);
  5009. result->op = GGML_OP_PAD;
  5010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5011. result->src[0] = a;
  5012. return result;
  5013. }
  5014. struct ggml_tensor * ggml_upscale(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. int scale_factor) {
  5018. return ggml_upscale_impl(ctx, a, scale_factor);
  5019. }
  5020. struct ggml_tensor * ggml_arange(
  5021. struct ggml_context * ctx,
  5022. float start,
  5023. float stop,
  5024. float step) {
  5025. GGML_ASSERT(stop > start);
  5026. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5027. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5028. result->op = GGML_OP_ARANGE;
  5029. ggml_set_op_params_f32(result, 0, start);
  5030. ggml_set_op_params_f32(result, 1, stop);
  5031. ggml_set_op_params_f32(result, 2, step);
  5032. return result;
  5033. }
  5034. struct ggml_tensor * ggml_timestep_embedding(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * timesteps,
  5037. int dim,
  5038. int max_period) {
  5039. bool is_node = false;
  5040. if (timesteps->grad) {
  5041. GGML_ASSERT(false); // TODO: implement backward
  5042. is_node = true;
  5043. }
  5044. int actual_dim = dim;
  5045. if (dim % 2 != 0) {
  5046. actual_dim = dim + 1;
  5047. }
  5048. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5049. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5050. ggml_set_op_params_i32(result, 0, dim);
  5051. ggml_set_op_params_i32(result, 1, max_period);
  5052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5053. result->src[0] = timesteps;
  5054. return result;
  5055. }
  5056. // ggml_argsort
  5057. struct ggml_tensor * ggml_argsort(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. enum ggml_sort_order order) {
  5061. bool is_node = false;
  5062. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5063. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5064. result->op = GGML_OP_ARGSORT;
  5065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5066. result->src[0] = a;
  5067. return result;
  5068. }
  5069. // ggml_top_k
  5070. struct ggml_tensor * ggml_top_k(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. int k) {
  5074. GGML_ASSERT(a->ne[0] >= k);
  5075. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5076. result = ggml_view_4d(ctx, result,
  5077. k, result->ne[1], result->ne[2], result->ne[3],
  5078. result->nb[1], result->nb[2], result->nb[3],
  5079. 0);
  5080. return result;
  5081. }
  5082. // ggml_flash_attn
  5083. struct ggml_tensor * ggml_flash_attn(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * q,
  5086. struct ggml_tensor * k,
  5087. struct ggml_tensor * v,
  5088. bool masked) {
  5089. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5090. // TODO: check if vT can be multiplied by (k*qT)
  5091. bool is_node = false;
  5092. if (q->grad || k->grad || v->grad) {
  5093. is_node = true;
  5094. }
  5095. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5096. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5097. int32_t t = masked ? 1 : 0;
  5098. ggml_set_op_params(result, &t, sizeof(t));
  5099. result->op = GGML_OP_FLASH_ATTN;
  5100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5101. result->src[0] = q;
  5102. result->src[1] = k;
  5103. result->src[2] = v;
  5104. return result;
  5105. }
  5106. // ggml_flash_ff
  5107. struct ggml_tensor * ggml_flash_ff(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. struct ggml_tensor * b0,
  5111. struct ggml_tensor * b1,
  5112. struct ggml_tensor * c0,
  5113. struct ggml_tensor * c1) {
  5114. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5115. // TODO: more checks
  5116. bool is_node = false;
  5117. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5118. is_node = true;
  5119. }
  5120. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5121. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5122. result->op = GGML_OP_FLASH_FF;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = b0;
  5126. result->src[2] = b1;
  5127. result->src[3] = c0;
  5128. result->src[4] = c1;
  5129. return result;
  5130. }
  5131. // ggml_flash_attn_back
  5132. struct ggml_tensor * ggml_flash_attn_back(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * q,
  5135. struct ggml_tensor * k,
  5136. struct ggml_tensor * v,
  5137. struct ggml_tensor * d,
  5138. bool masked) {
  5139. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5140. // TODO: check if vT can be multiplied by (k*qT)
  5141. // d shape [D,N,ne2,ne3]
  5142. // q shape [D,N,ne2,ne3]
  5143. // k shape [D,M,kvne2,ne3]
  5144. // v shape [M,D,kvne2,ne3]
  5145. const int64_t D = q->ne[0];
  5146. const int64_t N = q->ne[1];
  5147. const int64_t M = k->ne[1];
  5148. const int64_t ne2 = q->ne[2];
  5149. const int64_t ne3 = q->ne[3];
  5150. const int64_t kvne2 = k->ne[2];
  5151. GGML_ASSERT(k->ne[0] == D);
  5152. GGML_ASSERT(v->ne[0] == M);
  5153. GGML_ASSERT(v->ne[1] == D);
  5154. GGML_ASSERT(d->ne[0] == D);
  5155. GGML_ASSERT(d->ne[1] == N);
  5156. GGML_ASSERT(k->ne[2] == kvne2);
  5157. GGML_ASSERT(k->ne[3] == ne3);
  5158. GGML_ASSERT(v->ne[2] == kvne2);
  5159. GGML_ASSERT(v->ne[3] == ne3);
  5160. GGML_ASSERT(d->ne[2] == ne2);
  5161. GGML_ASSERT(d->ne[3] == ne3);
  5162. GGML_ASSERT(ne2 % kvne2 == 0);
  5163. bool is_node = false;
  5164. if (q->grad || k->grad || v->grad) {
  5165. // when using this operation (in backwards pass) these grads are set.
  5166. // we don't want to create (big) grad of our result, so is_node is false.
  5167. is_node = false;
  5168. }
  5169. // store gradients of q, k and v as continuous tensors concatenated in result.
  5170. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5171. const int64_t elem_q = ggml_nelements(q);
  5172. const int64_t elem_k = ggml_nelements(k);
  5173. const int64_t elem_v = ggml_nelements(v);
  5174. enum ggml_type result_type = GGML_TYPE_F32;
  5175. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5176. const size_t tsize = ggml_type_size(result_type);
  5177. const size_t offs_q = 0;
  5178. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5179. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5180. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5181. const size_t nelements = (end + tsize - 1)/tsize;
  5182. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5183. int32_t masked_i = masked ? 1 : 0;
  5184. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5185. result->op = GGML_OP_FLASH_ATTN_BACK;
  5186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5187. result->src[0] = q;
  5188. result->src[1] = k;
  5189. result->src[2] = v;
  5190. result->src[3] = d;
  5191. return result;
  5192. }
  5193. // ggml_ssm_conv
  5194. struct ggml_tensor * ggml_ssm_conv(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * s,
  5197. struct ggml_tensor * x,
  5198. struct ggml_tensor * c,
  5199. struct ggml_tensor * sq) {
  5200. GGML_ASSERT(ggml_is_3d(s));
  5201. GGML_ASSERT(ggml_is_matrix(x));
  5202. GGML_ASSERT(ggml_is_matrix(c));
  5203. GGML_ASSERT(ggml_is_matrix(sq));
  5204. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5205. const int64_t d_conv = c->ne[0];
  5206. const int64_t d_inner = c->ne[1];
  5207. const int64_t n_tokens = x->ne[1];
  5208. const int64_t n_kv = s->ne[2];
  5209. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5210. GGML_ASSERT( s->ne[1] == d_inner);
  5211. GGML_ASSERT( x->ne[0] == d_inner);
  5212. GGML_ASSERT(sq->ne[0] == n_kv);
  5213. GGML_ASSERT(sq->ne[1] == n_tokens);
  5214. bool is_node = false;
  5215. if (s->grad || x->grad || c->grad || sq->grad) {
  5216. GGML_ASSERT(false); // TODO: implement
  5217. is_node = true;
  5218. }
  5219. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5220. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5221. result->op = GGML_OP_SSM_CONV;
  5222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5223. result->src[0] = s;
  5224. result->src[1] = x;
  5225. result->src[2] = c;
  5226. result->src[3] = sq;
  5227. return result;
  5228. }
  5229. // ggml_ssm_scan
  5230. struct ggml_tensor * ggml_ssm_scan(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * s,
  5233. struct ggml_tensor * x,
  5234. struct ggml_tensor * dt,
  5235. struct ggml_tensor * A,
  5236. struct ggml_tensor * B,
  5237. struct ggml_tensor * C,
  5238. struct ggml_tensor * sq) {
  5239. GGML_ASSERT(ggml_is_contiguous(s));
  5240. GGML_ASSERT(ggml_is_contiguous(x));
  5241. GGML_ASSERT(ggml_is_contiguous(dt));
  5242. GGML_ASSERT(ggml_is_contiguous(A));
  5243. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5244. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5245. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5246. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5247. {
  5248. const int64_t d_state = s->ne[0];
  5249. const int64_t d_inner = s->ne[1];
  5250. const int64_t n_tokens = x->ne[1];
  5251. GGML_ASSERT(x->ne[0] == d_inner);
  5252. GGML_ASSERT(A->ne[0] == d_state);
  5253. GGML_ASSERT(A->ne[1] == d_inner);
  5254. GGML_ASSERT(B->ne[0] == d_state);
  5255. GGML_ASSERT(B->ne[1] == n_tokens);
  5256. GGML_ASSERT(C->ne[0] == d_state);
  5257. GGML_ASSERT(C->ne[1] == n_tokens);
  5258. }
  5259. bool is_node = false;
  5260. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5261. GGML_ASSERT(false); // TODO: implement
  5262. is_node = true;
  5263. }
  5264. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5265. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5266. result->op = GGML_OP_SSM_SCAN;
  5267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5268. result->src[0] = s;
  5269. result->src[1] = x;
  5270. result->src[2] = dt;
  5271. result->src[3] = A;
  5272. result->src[4] = B;
  5273. result->src[5] = C;
  5274. result->src[6] = sq;
  5275. return result;
  5276. }
  5277. // ggml_win_part
  5278. struct ggml_tensor * ggml_win_part(
  5279. struct ggml_context * ctx,
  5280. struct ggml_tensor * a,
  5281. int w) {
  5282. GGML_ASSERT(a->ne[3] == 1);
  5283. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5284. bool is_node = false;
  5285. if (a->grad) {
  5286. GGML_ASSERT(false); // TODO: implement backward
  5287. is_node = true;
  5288. }
  5289. // padding
  5290. const int px = (w - a->ne[1]%w)%w;
  5291. const int py = (w - a->ne[2]%w)%w;
  5292. const int npx = (px + a->ne[1])/w;
  5293. const int npy = (py + a->ne[2])/w;
  5294. const int np = npx*npy;
  5295. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5296. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5297. int32_t params[] = { npx, npy, w };
  5298. ggml_set_op_params(result, params, sizeof(params));
  5299. result->op = GGML_OP_WIN_PART;
  5300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5301. result->src[0] = a;
  5302. return result;
  5303. }
  5304. // ggml_win_unpart
  5305. struct ggml_tensor * ggml_win_unpart(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. int w0,
  5309. int h0,
  5310. int w) {
  5311. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5312. bool is_node = false;
  5313. if (a->grad) {
  5314. GGML_ASSERT(false); // TODO: implement backward
  5315. is_node = true;
  5316. }
  5317. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5318. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5319. int32_t params[] = { w };
  5320. ggml_set_op_params(result, params, sizeof(params));
  5321. result->op = GGML_OP_WIN_UNPART;
  5322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5323. result->src[0] = a;
  5324. return result;
  5325. }
  5326. // ggml_get_rel_pos
  5327. struct ggml_tensor * ggml_get_rel_pos(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. int qh,
  5331. int kh) {
  5332. GGML_ASSERT(qh == kh);
  5333. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5334. bool is_node = false;
  5335. if (a->grad) {
  5336. GGML_ASSERT(false); // TODO: implement backward
  5337. is_node = true;
  5338. }
  5339. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5341. result->op = GGML_OP_GET_REL_POS;
  5342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5343. result->src[0] = a;
  5344. return result;
  5345. }
  5346. // ggml_add_rel_pos
  5347. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. struct ggml_tensor * pw,
  5351. struct ggml_tensor * ph,
  5352. bool inplace) {
  5353. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5354. GGML_ASSERT(ggml_is_contiguous(a));
  5355. GGML_ASSERT(ggml_is_contiguous(pw));
  5356. GGML_ASSERT(ggml_is_contiguous(ph));
  5357. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5358. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5359. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5360. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5361. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5362. bool is_node = false;
  5363. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5364. is_node = true;
  5365. }
  5366. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5367. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5368. result->op = GGML_OP_ADD_REL_POS;
  5369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5370. result->src[0] = a;
  5371. result->src[1] = pw;
  5372. result->src[2] = ph;
  5373. return result;
  5374. }
  5375. struct ggml_tensor * ggml_add_rel_pos(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * pw,
  5379. struct ggml_tensor * ph) {
  5380. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5381. }
  5382. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. struct ggml_tensor * pw,
  5386. struct ggml_tensor * ph) {
  5387. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5388. }
  5389. // gmml_unary
  5390. static struct ggml_tensor * ggml_unary_impl(
  5391. struct ggml_context * ctx,
  5392. struct ggml_tensor * a,
  5393. enum ggml_unary_op op,
  5394. bool inplace) {
  5395. bool is_node = false;
  5396. if (!inplace && (a->grad)) {
  5397. is_node = true;
  5398. }
  5399. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5400. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5401. result->op = GGML_OP_UNARY;
  5402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5403. result->src[0] = a;
  5404. return result;
  5405. }
  5406. struct ggml_tensor * ggml_unary(
  5407. struct ggml_context * ctx,
  5408. struct ggml_tensor * a,
  5409. enum ggml_unary_op op) {
  5410. return ggml_unary_impl(ctx, a, op, false);
  5411. }
  5412. struct ggml_tensor * ggml_unary_inplace(
  5413. struct ggml_context * ctx,
  5414. struct ggml_tensor * a,
  5415. enum ggml_unary_op op) {
  5416. return ggml_unary_impl(ctx, a, op, true);
  5417. }
  5418. // ggml_map_unary
  5419. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. const ggml_unary_op_f32_t fun,
  5423. bool inplace) {
  5424. bool is_node = false;
  5425. if (!inplace && a->grad) {
  5426. is_node = true;
  5427. }
  5428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5429. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5430. result->op = GGML_OP_MAP_UNARY;
  5431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5432. result->src[0] = a;
  5433. return result;
  5434. }
  5435. struct ggml_tensor * ggml_map_unary_f32(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. const ggml_unary_op_f32_t fun) {
  5439. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5440. }
  5441. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. const ggml_unary_op_f32_t fun) {
  5445. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5446. }
  5447. // ggml_map_binary
  5448. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5449. struct ggml_context * ctx,
  5450. struct ggml_tensor * a,
  5451. struct ggml_tensor * b,
  5452. const ggml_binary_op_f32_t fun,
  5453. bool inplace) {
  5454. GGML_ASSERT(ggml_are_same_shape(a, b));
  5455. bool is_node = false;
  5456. if (!inplace && (a->grad || b->grad)) {
  5457. is_node = true;
  5458. }
  5459. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5460. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5461. result->op = GGML_OP_MAP_BINARY;
  5462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5463. result->src[0] = a;
  5464. result->src[1] = b;
  5465. return result;
  5466. }
  5467. struct ggml_tensor * ggml_map_binary_f32(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. const ggml_binary_op_f32_t fun) {
  5472. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5473. }
  5474. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5475. struct ggml_context * ctx,
  5476. struct ggml_tensor * a,
  5477. struct ggml_tensor * b,
  5478. const ggml_binary_op_f32_t fun) {
  5479. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5480. }
  5481. // ggml_map_custom1_f32
  5482. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5483. struct ggml_context * ctx,
  5484. struct ggml_tensor * a,
  5485. const ggml_custom1_op_f32_t fun,
  5486. bool inplace) {
  5487. bool is_node = false;
  5488. if (!inplace && a->grad) {
  5489. is_node = true;
  5490. }
  5491. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5492. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5493. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. return result;
  5497. }
  5498. struct ggml_tensor * ggml_map_custom1_f32(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a,
  5501. const ggml_custom1_op_f32_t fun) {
  5502. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5503. }
  5504. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. const ggml_custom1_op_f32_t fun) {
  5508. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5509. }
  5510. // ggml_map_custom2_f32
  5511. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5512. struct ggml_context * ctx,
  5513. struct ggml_tensor * a,
  5514. struct ggml_tensor * b,
  5515. const ggml_custom2_op_f32_t fun,
  5516. bool inplace) {
  5517. bool is_node = false;
  5518. if (!inplace && (a->grad || b->grad)) {
  5519. is_node = true;
  5520. }
  5521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5522. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5523. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5525. result->src[0] = a;
  5526. result->src[1] = b;
  5527. return result;
  5528. }
  5529. struct ggml_tensor * ggml_map_custom2_f32(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. const ggml_custom2_op_f32_t fun) {
  5534. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5535. }
  5536. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. const ggml_custom2_op_f32_t fun) {
  5541. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5542. }
  5543. // ggml_map_custom3_f32
  5544. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5545. struct ggml_context * ctx,
  5546. struct ggml_tensor * a,
  5547. struct ggml_tensor * b,
  5548. struct ggml_tensor * c,
  5549. const ggml_custom3_op_f32_t fun,
  5550. bool inplace) {
  5551. bool is_node = false;
  5552. if (!inplace && (a->grad || b->grad || c->grad)) {
  5553. is_node = true;
  5554. }
  5555. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5556. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5557. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. result->src[1] = b;
  5561. result->src[2] = c;
  5562. return result;
  5563. }
  5564. struct ggml_tensor * ggml_map_custom3_f32(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. struct ggml_tensor * c,
  5569. const ggml_custom3_op_f32_t fun) {
  5570. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5571. }
  5572. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. struct ggml_tensor * b,
  5576. struct ggml_tensor * c,
  5577. const ggml_custom3_op_f32_t fun) {
  5578. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5579. }
  5580. // ggml_map_custom1
  5581. struct ggml_map_custom1_op_params {
  5582. ggml_custom1_op_t fun;
  5583. int n_tasks;
  5584. void * userdata;
  5585. };
  5586. static struct ggml_tensor * ggml_map_custom1_impl(
  5587. struct ggml_context * ctx,
  5588. struct ggml_tensor * a,
  5589. const ggml_custom1_op_t fun,
  5590. int n_tasks,
  5591. void * userdata,
  5592. bool inplace) {
  5593. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5594. bool is_node = false;
  5595. if (!inplace && a->grad) {
  5596. is_node = true;
  5597. }
  5598. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5599. struct ggml_map_custom1_op_params params = {
  5600. /*.fun =*/ fun,
  5601. /*.n_tasks =*/ n_tasks,
  5602. /*.userdata =*/ userdata
  5603. };
  5604. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5605. result->op = GGML_OP_MAP_CUSTOM1;
  5606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5607. result->src[0] = a;
  5608. return result;
  5609. }
  5610. struct ggml_tensor * ggml_map_custom1(
  5611. struct ggml_context * ctx,
  5612. struct ggml_tensor * a,
  5613. const ggml_custom1_op_t fun,
  5614. int n_tasks,
  5615. void * userdata) {
  5616. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5617. }
  5618. struct ggml_tensor * ggml_map_custom1_inplace(
  5619. struct ggml_context * ctx,
  5620. struct ggml_tensor * a,
  5621. const ggml_custom1_op_t fun,
  5622. int n_tasks,
  5623. void * userdata) {
  5624. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5625. }
  5626. // ggml_map_custom2
  5627. struct ggml_map_custom2_op_params {
  5628. ggml_custom2_op_t fun;
  5629. int n_tasks;
  5630. void * userdata;
  5631. };
  5632. static struct ggml_tensor * ggml_map_custom2_impl(
  5633. struct ggml_context * ctx,
  5634. struct ggml_tensor * a,
  5635. struct ggml_tensor * b,
  5636. const ggml_custom2_op_t fun,
  5637. int n_tasks,
  5638. void * userdata,
  5639. bool inplace) {
  5640. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5641. bool is_node = false;
  5642. if (!inplace && (a->grad || b->grad)) {
  5643. is_node = true;
  5644. }
  5645. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5646. struct ggml_map_custom2_op_params params = {
  5647. /*.fun =*/ fun,
  5648. /*.n_tasks =*/ n_tasks,
  5649. /*.userdata =*/ userdata
  5650. };
  5651. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5652. result->op = GGML_OP_MAP_CUSTOM2;
  5653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5654. result->src[0] = a;
  5655. result->src[1] = b;
  5656. return result;
  5657. }
  5658. struct ggml_tensor * ggml_map_custom2(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. struct ggml_tensor * b,
  5662. const ggml_custom2_op_t fun,
  5663. int n_tasks,
  5664. void * userdata) {
  5665. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5666. }
  5667. struct ggml_tensor * ggml_map_custom2_inplace(
  5668. struct ggml_context * ctx,
  5669. struct ggml_tensor * a,
  5670. struct ggml_tensor * b,
  5671. const ggml_custom2_op_t fun,
  5672. int n_tasks,
  5673. void * userdata) {
  5674. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5675. }
  5676. // ggml_map_custom3
  5677. struct ggml_map_custom3_op_params {
  5678. ggml_custom3_op_t fun;
  5679. int n_tasks;
  5680. void * userdata;
  5681. };
  5682. static struct ggml_tensor * ggml_map_custom3_impl(
  5683. struct ggml_context * ctx,
  5684. struct ggml_tensor * a,
  5685. struct ggml_tensor * b,
  5686. struct ggml_tensor * c,
  5687. const ggml_custom3_op_t fun,
  5688. int n_tasks,
  5689. void * userdata,
  5690. bool inplace) {
  5691. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5692. bool is_node = false;
  5693. if (!inplace && (a->grad || b->grad || c->grad)) {
  5694. is_node = true;
  5695. }
  5696. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5697. struct ggml_map_custom3_op_params params = {
  5698. /*.fun =*/ fun,
  5699. /*.n_tasks =*/ n_tasks,
  5700. /*.userdata =*/ userdata
  5701. };
  5702. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5703. result->op = GGML_OP_MAP_CUSTOM3;
  5704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5705. result->src[0] = a;
  5706. result->src[1] = b;
  5707. result->src[2] = c;
  5708. return result;
  5709. }
  5710. struct ggml_tensor * ggml_map_custom3(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. struct ggml_tensor * b,
  5714. struct ggml_tensor * c,
  5715. const ggml_custom3_op_t fun,
  5716. int n_tasks,
  5717. void * userdata) {
  5718. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5719. }
  5720. struct ggml_tensor * ggml_map_custom3_inplace(
  5721. struct ggml_context * ctx,
  5722. struct ggml_tensor * a,
  5723. struct ggml_tensor * b,
  5724. struct ggml_tensor * c,
  5725. const ggml_custom3_op_t fun,
  5726. int n_tasks,
  5727. void * userdata) {
  5728. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5729. }
  5730. // ggml_cross_entropy_loss
  5731. struct ggml_tensor * ggml_cross_entropy_loss(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. struct ggml_tensor * b) {
  5735. GGML_ASSERT(ggml_are_same_shape(a, b));
  5736. bool is_node = false;
  5737. if (a->grad || b->grad) {
  5738. is_node = true;
  5739. }
  5740. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5741. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5743. result->src[0] = a;
  5744. result->src[1] = b;
  5745. return result;
  5746. }
  5747. // ggml_cross_entropy_loss_back
  5748. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. struct ggml_tensor * b,
  5752. struct ggml_tensor * c) {
  5753. GGML_ASSERT(ggml_are_same_shape(a, b));
  5754. GGML_ASSERT(ggml_is_scalar(c));
  5755. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5756. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5757. result->grad = NULL;
  5758. result->src[0] = a;
  5759. result->src[1] = b;
  5760. result->src[2] = c;
  5761. return result;
  5762. }
  5763. ////////////////////////////////////////////////////////////////////////////////
  5764. void ggml_set_param(
  5765. struct ggml_context * ctx,
  5766. struct ggml_tensor * tensor) {
  5767. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5768. GGML_ASSERT(tensor->grad == NULL);
  5769. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5770. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5771. }
  5772. // ggml_compute_forward_dup
  5773. static void ggml_compute_forward_dup_same_cont(
  5774. const struct ggml_compute_params * params,
  5775. struct ggml_tensor * dst) {
  5776. const struct ggml_tensor * src0 = dst->src[0];
  5777. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5778. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5779. GGML_ASSERT(src0->type == dst->type);
  5780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5781. return;
  5782. }
  5783. const size_t nb00 = src0->nb[0];
  5784. const size_t nb0 = dst->nb[0];
  5785. const int ith = params->ith; // thread index
  5786. const int nth = params->nth; // number of threads
  5787. // parallelize by elements
  5788. const int ne = ggml_nelements(dst);
  5789. const int dr = (ne + nth - 1) / nth;
  5790. const int ie0 = dr * ith;
  5791. const int ie1 = MIN(ie0 + dr, ne);
  5792. if (ie0 < ie1) {
  5793. memcpy(
  5794. ((char *) dst->data + ie0*nb0),
  5795. ((char *) src0->data + ie0*nb00),
  5796. (ie1 - ie0) * ggml_type_size(src0->type));
  5797. }
  5798. }
  5799. static void ggml_compute_forward_dup_f16(
  5800. const struct ggml_compute_params * params,
  5801. struct ggml_tensor * dst) {
  5802. const struct ggml_tensor * src0 = dst->src[0];
  5803. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5805. return;
  5806. }
  5807. GGML_TENSOR_UNARY_OP_LOCALS
  5808. const int ith = params->ith; // thread index
  5809. const int nth = params->nth; // number of threads
  5810. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5811. ggml_compute_forward_dup_same_cont(params, dst);
  5812. return;
  5813. }
  5814. // parallelize by rows
  5815. const int nr = ne01;
  5816. // number of rows per thread
  5817. const int dr = (nr + nth - 1) / nth;
  5818. // row range for this thread
  5819. const int ir0 = dr * ith;
  5820. const int ir1 = MIN(ir0 + dr, nr);
  5821. if (src0->type == dst->type &&
  5822. ne00 == ne0 &&
  5823. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5824. // copy by rows
  5825. const size_t rs = ne00*nb00;
  5826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5828. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5829. memcpy(
  5830. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5831. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5832. rs);
  5833. }
  5834. }
  5835. }
  5836. return;
  5837. }
  5838. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5839. if (ggml_is_contiguous(dst)) {
  5840. if (nb00 == sizeof(ggml_fp16_t)) {
  5841. if (dst->type == GGML_TYPE_F16) {
  5842. size_t id = 0;
  5843. const size_t rs = ne00 * nb00;
  5844. char * dst_ptr = (char *) dst->data;
  5845. for (int i03 = 0; i03 < ne03; i03++) {
  5846. for (int i02 = 0; i02 < ne02; i02++) {
  5847. id += rs * ir0;
  5848. for (int i01 = ir0; i01 < ir1; i01++) {
  5849. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5850. memcpy(dst_ptr + id, src0_ptr, rs);
  5851. id += rs;
  5852. }
  5853. id += rs * (ne01 - ir1);
  5854. }
  5855. }
  5856. } else if (dst->type == GGML_TYPE_F32) {
  5857. size_t id = 0;
  5858. float * dst_ptr = (float *) dst->data;
  5859. for (int i03 = 0; i03 < ne03; i03++) {
  5860. for (int i02 = 0; i02 < ne02; i02++) {
  5861. id += ne00 * ir0;
  5862. for (int i01 = ir0; i01 < ir1; i01++) {
  5863. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5864. for (int i00 = 0; i00 < ne00; i00++) {
  5865. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5866. id++;
  5867. }
  5868. }
  5869. id += ne00 * (ne01 - ir1);
  5870. }
  5871. }
  5872. } else if (type_traits[dst->type].from_float) {
  5873. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5874. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5875. size_t id = 0;
  5876. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5877. char * dst_ptr = (char *) dst->data;
  5878. for (int i03 = 0; i03 < ne03; i03++) {
  5879. for (int i02 = 0; i02 < ne02; i02++) {
  5880. id += rs * ir0;
  5881. for (int i01 = ir0; i01 < ir1; i01++) {
  5882. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5883. for (int i00 = 0; i00 < ne00; i00++) {
  5884. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5885. }
  5886. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5887. id += rs;
  5888. }
  5889. id += rs * (ne01 - ir1);
  5890. }
  5891. }
  5892. } else {
  5893. GGML_ASSERT(false); // TODO: implement
  5894. }
  5895. } else {
  5896. //printf("%s: this is not optimal - fix me\n", __func__);
  5897. if (dst->type == GGML_TYPE_F32) {
  5898. size_t id = 0;
  5899. float * dst_ptr = (float *) dst->data;
  5900. for (int i03 = 0; i03 < ne03; i03++) {
  5901. for (int i02 = 0; i02 < ne02; i02++) {
  5902. id += ne00 * ir0;
  5903. for (int i01 = ir0; i01 < ir1; i01++) {
  5904. for (int i00 = 0; i00 < ne00; i00++) {
  5905. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5906. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5907. id++;
  5908. }
  5909. }
  5910. id += ne00 * (ne01 - ir1);
  5911. }
  5912. }
  5913. } else if (dst->type == GGML_TYPE_F16) {
  5914. size_t id = 0;
  5915. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5916. for (int i03 = 0; i03 < ne03; i03++) {
  5917. for (int i02 = 0; i02 < ne02; i02++) {
  5918. id += ne00 * ir0;
  5919. for (int i01 = ir0; i01 < ir1; i01++) {
  5920. for (int i00 = 0; i00 < ne00; i00++) {
  5921. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5922. dst_ptr[id] = *src0_ptr;
  5923. id++;
  5924. }
  5925. }
  5926. id += ne00 * (ne01 - ir1);
  5927. }
  5928. }
  5929. } else {
  5930. GGML_ASSERT(false); // TODO: implement
  5931. }
  5932. }
  5933. return;
  5934. }
  5935. // dst counters
  5936. int64_t i10 = 0;
  5937. int64_t i11 = 0;
  5938. int64_t i12 = 0;
  5939. int64_t i13 = 0;
  5940. if (dst->type == GGML_TYPE_F16) {
  5941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5942. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5943. i10 += ne00 * ir0;
  5944. while (i10 >= ne0) {
  5945. i10 -= ne0;
  5946. if (++i11 == ne1) {
  5947. i11 = 0;
  5948. if (++i12 == ne2) {
  5949. i12 = 0;
  5950. if (++i13 == ne3) {
  5951. i13 = 0;
  5952. }
  5953. }
  5954. }
  5955. }
  5956. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5957. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5958. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5959. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5960. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5961. if (++i10 == ne00) {
  5962. i10 = 0;
  5963. if (++i11 == ne01) {
  5964. i11 = 0;
  5965. if (++i12 == ne02) {
  5966. i12 = 0;
  5967. if (++i13 == ne03) {
  5968. i13 = 0;
  5969. }
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. i10 += ne00 * (ne01 - ir1);
  5976. while (i10 >= ne0) {
  5977. i10 -= ne0;
  5978. if (++i11 == ne1) {
  5979. i11 = 0;
  5980. if (++i12 == ne2) {
  5981. i12 = 0;
  5982. if (++i13 == ne3) {
  5983. i13 = 0;
  5984. }
  5985. }
  5986. }
  5987. }
  5988. }
  5989. }
  5990. } else if (dst->type == GGML_TYPE_F32) {
  5991. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5992. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5993. i10 += ne00 * ir0;
  5994. while (i10 >= ne0) {
  5995. i10 -= ne0;
  5996. if (++i11 == ne1) {
  5997. i11 = 0;
  5998. if (++i12 == ne2) {
  5999. i12 = 0;
  6000. if (++i13 == ne3) {
  6001. i13 = 0;
  6002. }
  6003. }
  6004. }
  6005. }
  6006. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6007. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6008. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6009. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6010. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6011. if (++i10 == ne0) {
  6012. i10 = 0;
  6013. if (++i11 == ne1) {
  6014. i11 = 0;
  6015. if (++i12 == ne2) {
  6016. i12 = 0;
  6017. if (++i13 == ne3) {
  6018. i13 = 0;
  6019. }
  6020. }
  6021. }
  6022. }
  6023. }
  6024. }
  6025. i10 += ne00 * (ne01 - ir1);
  6026. while (i10 >= ne0) {
  6027. i10 -= ne0;
  6028. if (++i11 == ne1) {
  6029. i11 = 0;
  6030. if (++i12 == ne2) {
  6031. i12 = 0;
  6032. if (++i13 == ne3) {
  6033. i13 = 0;
  6034. }
  6035. }
  6036. }
  6037. }
  6038. }
  6039. }
  6040. } else {
  6041. GGML_ASSERT(false); // TODO: implement
  6042. }
  6043. }
  6044. static void ggml_compute_forward_dup_f32(
  6045. const struct ggml_compute_params * params,
  6046. struct ggml_tensor * dst) {
  6047. const struct ggml_tensor * src0 = dst->src[0];
  6048. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6050. return;
  6051. }
  6052. GGML_TENSOR_UNARY_OP_LOCALS
  6053. const int ith = params->ith; // thread index
  6054. const int nth = params->nth; // number of threads
  6055. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6056. ggml_compute_forward_dup_same_cont(params, dst);
  6057. return;
  6058. }
  6059. // parallelize by rows
  6060. const int nr = ne01;
  6061. // number of rows per thread
  6062. const int dr = (nr + nth - 1) / nth;
  6063. // row range for this thread
  6064. const int ir0 = dr * ith;
  6065. const int ir1 = MIN(ir0 + dr, nr);
  6066. if (src0->type == dst->type &&
  6067. ne00 == ne0 &&
  6068. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6069. // copy by rows
  6070. const size_t rs = ne00*nb00;
  6071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6073. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6074. memcpy(
  6075. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6076. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6077. rs);
  6078. }
  6079. }
  6080. }
  6081. return;
  6082. }
  6083. if (ggml_is_contiguous(dst)) {
  6084. // TODO: simplify
  6085. if (nb00 == sizeof(float)) {
  6086. if (dst->type == GGML_TYPE_F32) {
  6087. size_t id = 0;
  6088. const size_t rs = ne00 * nb00;
  6089. char * dst_ptr = (char *) dst->data;
  6090. for (int i03 = 0; i03 < ne03; i03++) {
  6091. for (int i02 = 0; i02 < ne02; i02++) {
  6092. id += rs * ir0;
  6093. for (int i01 = ir0; i01 < ir1; i01++) {
  6094. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6095. memcpy(dst_ptr + id, src0_ptr, rs);
  6096. id += rs;
  6097. }
  6098. id += rs * (ne01 - ir1);
  6099. }
  6100. }
  6101. } else if (type_traits[dst->type].from_float) {
  6102. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6103. size_t id = 0;
  6104. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6105. char * dst_ptr = (char *) dst->data;
  6106. for (int i03 = 0; i03 < ne03; i03++) {
  6107. for (int i02 = 0; i02 < ne02; i02++) {
  6108. id += rs * ir0;
  6109. for (int i01 = ir0; i01 < ir1; i01++) {
  6110. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6111. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6112. id += rs;
  6113. }
  6114. id += rs * (ne01 - ir1);
  6115. }
  6116. }
  6117. } else {
  6118. GGML_ASSERT(false); // TODO: implement
  6119. }
  6120. } else {
  6121. //printf("%s: this is not optimal - fix me\n", __func__);
  6122. if (dst->type == GGML_TYPE_F32) {
  6123. size_t id = 0;
  6124. float * dst_ptr = (float *) dst->data;
  6125. for (int i03 = 0; i03 < ne03; i03++) {
  6126. for (int i02 = 0; i02 < ne02; i02++) {
  6127. id += ne00 * ir0;
  6128. for (int i01 = ir0; i01 < ir1; i01++) {
  6129. for (int i00 = 0; i00 < ne00; i00++) {
  6130. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6131. dst_ptr[id] = *src0_ptr;
  6132. id++;
  6133. }
  6134. }
  6135. id += ne00 * (ne01 - ir1);
  6136. }
  6137. }
  6138. } else if (dst->type == GGML_TYPE_F16) {
  6139. size_t id = 0;
  6140. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6141. for (int i03 = 0; i03 < ne03; i03++) {
  6142. for (int i02 = 0; i02 < ne02; i02++) {
  6143. id += ne00 * ir0;
  6144. for (int i01 = ir0; i01 < ir1; i01++) {
  6145. for (int i00 = 0; i00 < ne00; i00++) {
  6146. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6147. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6148. id++;
  6149. }
  6150. }
  6151. id += ne00 * (ne01 - ir1);
  6152. }
  6153. }
  6154. } else {
  6155. GGML_ASSERT(false); // TODO: implement
  6156. }
  6157. }
  6158. return;
  6159. }
  6160. // dst counters
  6161. int64_t i10 = 0;
  6162. int64_t i11 = 0;
  6163. int64_t i12 = 0;
  6164. int64_t i13 = 0;
  6165. if (dst->type == GGML_TYPE_F32) {
  6166. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6167. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6168. i10 += ne00 * ir0;
  6169. while (i10 >= ne0) {
  6170. i10 -= ne0;
  6171. if (++i11 == ne1) {
  6172. i11 = 0;
  6173. if (++i12 == ne2) {
  6174. i12 = 0;
  6175. if (++i13 == ne3) {
  6176. i13 = 0;
  6177. }
  6178. }
  6179. }
  6180. }
  6181. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6182. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6183. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6184. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6185. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6186. if (++i10 == ne0) {
  6187. i10 = 0;
  6188. if (++i11 == ne1) {
  6189. i11 = 0;
  6190. if (++i12 == ne2) {
  6191. i12 = 0;
  6192. if (++i13 == ne3) {
  6193. i13 = 0;
  6194. }
  6195. }
  6196. }
  6197. }
  6198. }
  6199. }
  6200. i10 += ne00 * (ne01 - ir1);
  6201. while (i10 >= ne0) {
  6202. i10 -= ne0;
  6203. if (++i11 == ne1) {
  6204. i11 = 0;
  6205. if (++i12 == ne2) {
  6206. i12 = 0;
  6207. if (++i13 == ne3) {
  6208. i13 = 0;
  6209. }
  6210. }
  6211. }
  6212. }
  6213. }
  6214. }
  6215. } else if (dst->type == GGML_TYPE_F16) {
  6216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6218. i10 += ne00 * ir0;
  6219. while (i10 >= ne0) {
  6220. i10 -= ne0;
  6221. if (++i11 == ne1) {
  6222. i11 = 0;
  6223. if (++i12 == ne2) {
  6224. i12 = 0;
  6225. if (++i13 == ne3) {
  6226. i13 = 0;
  6227. }
  6228. }
  6229. }
  6230. }
  6231. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6232. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6233. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6234. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6235. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6236. if (++i10 == ne0) {
  6237. i10 = 0;
  6238. if (++i11 == ne1) {
  6239. i11 = 0;
  6240. if (++i12 == ne2) {
  6241. i12 = 0;
  6242. if (++i13 == ne3) {
  6243. i13 = 0;
  6244. }
  6245. }
  6246. }
  6247. }
  6248. }
  6249. }
  6250. i10 += ne00 * (ne01 - ir1);
  6251. while (i10 >= ne0) {
  6252. i10 -= ne0;
  6253. if (++i11 == ne1) {
  6254. i11 = 0;
  6255. if (++i12 == ne2) {
  6256. i12 = 0;
  6257. if (++i13 == ne3) {
  6258. i13 = 0;
  6259. }
  6260. }
  6261. }
  6262. }
  6263. }
  6264. }
  6265. } else {
  6266. GGML_ASSERT(false); // TODO: implement
  6267. }
  6268. }
  6269. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6270. static void ggml_compute_forward_dup_bytes(
  6271. const struct ggml_compute_params * params,
  6272. struct ggml_tensor * dst) {
  6273. const struct ggml_tensor * src0 = dst->src[0];
  6274. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6275. GGML_ASSERT(src0->type == dst->type);
  6276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6277. return;
  6278. }
  6279. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6280. ggml_compute_forward_dup_same_cont(params, dst);
  6281. return;
  6282. }
  6283. GGML_TENSOR_UNARY_OP_LOCALS;
  6284. const size_t type_size = ggml_type_size(src0->type);
  6285. const int ith = params->ith; // thread index
  6286. const int nth = params->nth; // number of threads
  6287. // parallelize by rows
  6288. const int nr = ne01;
  6289. // number of rows per thread
  6290. const int dr = (nr + nth - 1) / nth;
  6291. // row range for this thread
  6292. const int ir0 = dr * ith;
  6293. const int ir1 = MIN(ir0 + dr, nr);
  6294. if (src0->type == dst->type &&
  6295. ne00 == ne0 &&
  6296. nb00 == type_size && nb0 == type_size) {
  6297. // copy by rows
  6298. const size_t rs = ne00 * type_size;
  6299. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6300. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6301. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6302. memcpy(
  6303. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6304. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6305. rs);
  6306. }
  6307. }
  6308. }
  6309. return;
  6310. }
  6311. if (ggml_is_contiguous(dst)) {
  6312. size_t id = 0;
  6313. char * dst_ptr = (char *) dst->data;
  6314. const size_t rs = ne00 * type_size;
  6315. if (nb00 == type_size) {
  6316. // src0 is contigous on first dimension, copy by rows
  6317. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6318. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6319. id += rs * ir0;
  6320. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6321. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6322. memcpy(dst_ptr + id, src0_ptr, rs);
  6323. id += rs;
  6324. }
  6325. id += rs * (ne01 - ir1);
  6326. }
  6327. }
  6328. } else {
  6329. //printf("%s: this is not optimal - fix me\n", __func__);
  6330. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6332. id += rs * ir0;
  6333. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6335. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6336. memcpy(dst_ptr + id, src0_ptr, type_size);
  6337. id += type_size;
  6338. }
  6339. }
  6340. id += rs * (ne01 - ir1);
  6341. }
  6342. }
  6343. }
  6344. return;
  6345. }
  6346. // dst counters
  6347. int64_t i10 = 0;
  6348. int64_t i11 = 0;
  6349. int64_t i12 = 0;
  6350. int64_t i13 = 0;
  6351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6353. i10 += ne00 * ir0;
  6354. while (i10 >= ne0) {
  6355. i10 -= ne0;
  6356. if (++i11 == ne1) {
  6357. i11 = 0;
  6358. if (++i12 == ne2) {
  6359. i12 = 0;
  6360. if (++i13 == ne3) {
  6361. i13 = 0;
  6362. }
  6363. }
  6364. }
  6365. }
  6366. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6367. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6368. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6369. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6370. memcpy(dst_ptr, src0_ptr, type_size);
  6371. if (++i10 == ne0) {
  6372. i10 = 0;
  6373. if (++i11 == ne1) {
  6374. i11 = 0;
  6375. if (++i12 == ne2) {
  6376. i12 = 0;
  6377. if (++i13 == ne3) {
  6378. i13 = 0;
  6379. }
  6380. }
  6381. }
  6382. }
  6383. }
  6384. }
  6385. i10 += ne00 * (ne01 - ir1);
  6386. while (i10 >= ne0) {
  6387. i10 -= ne0;
  6388. if (++i11 == ne1) {
  6389. i11 = 0;
  6390. if (++i12 == ne2) {
  6391. i12 = 0;
  6392. if (++i13 == ne3) {
  6393. i13 = 0;
  6394. }
  6395. }
  6396. }
  6397. }
  6398. }
  6399. }
  6400. }
  6401. static void ggml_compute_forward_dup(
  6402. const struct ggml_compute_params * params,
  6403. struct ggml_tensor * dst) {
  6404. const struct ggml_tensor * src0 = dst->src[0];
  6405. if (src0->type == dst->type) {
  6406. ggml_compute_forward_dup_bytes(params, dst);
  6407. return;
  6408. }
  6409. switch (src0->type) {
  6410. case GGML_TYPE_F16:
  6411. {
  6412. ggml_compute_forward_dup_f16(params, dst);
  6413. } break;
  6414. case GGML_TYPE_F32:
  6415. {
  6416. ggml_compute_forward_dup_f32(params, dst);
  6417. } break;
  6418. default:
  6419. {
  6420. GGML_ASSERT(false);
  6421. } break;
  6422. }
  6423. }
  6424. // ggml_compute_forward_add
  6425. static void ggml_compute_forward_add_f32(
  6426. const struct ggml_compute_params * params,
  6427. struct ggml_tensor * dst) {
  6428. const struct ggml_tensor * src0 = dst->src[0];
  6429. const struct ggml_tensor * src1 = dst->src[1];
  6430. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6431. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6432. return;
  6433. }
  6434. const int ith = params->ith;
  6435. const int nth = params->nth;
  6436. #ifdef GGML_USE_CLBLAST
  6437. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6438. // TODO: OpenCL kernel support full broadcast
  6439. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6440. if (ith == 0) {
  6441. ggml_cl_add(src0, src1, dst);
  6442. }
  6443. return;
  6444. }
  6445. #endif
  6446. const int nr = ggml_nrows(src0);
  6447. GGML_TENSOR_BINARY_OP_LOCALS
  6448. GGML_ASSERT( nb0 == sizeof(float));
  6449. GGML_ASSERT(nb00 == sizeof(float));
  6450. // rows per thread
  6451. const int dr = (nr + nth - 1)/nth;
  6452. // row range for this thread
  6453. const int ir0 = dr*ith;
  6454. const int ir1 = MIN(ir0 + dr, nr);
  6455. if (nb10 == sizeof(float)) {
  6456. for (int ir = ir0; ir < ir1; ++ir) {
  6457. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6458. const int64_t i03 = ir/(ne02*ne01);
  6459. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6460. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6461. const int64_t i13 = i03 % ne13;
  6462. const int64_t i12 = i02 % ne12;
  6463. const int64_t i11 = i01 % ne11;
  6464. const int64_t nr0 = ne00 / ne10;
  6465. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6466. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6467. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6468. for (int64_t r = 0; r < nr0; ++r) {
  6469. #ifdef GGML_USE_ACCELERATE
  6470. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6471. #else
  6472. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6473. #endif
  6474. }
  6475. }
  6476. } else {
  6477. // src1 is not contiguous
  6478. for (int ir = ir0; ir < ir1; ++ir) {
  6479. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6480. const int64_t i03 = ir/(ne02*ne01);
  6481. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6482. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6483. const int64_t i13 = i03 % ne13;
  6484. const int64_t i12 = i02 % ne12;
  6485. const int64_t i11 = i01 % ne11;
  6486. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6487. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6488. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6489. const int64_t i10 = i0 % ne10;
  6490. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6491. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6492. }
  6493. }
  6494. }
  6495. }
  6496. static void ggml_compute_forward_add_f16_f32(
  6497. const struct ggml_compute_params * params,
  6498. struct ggml_tensor * dst) {
  6499. const struct ggml_tensor * src0 = dst->src[0];
  6500. const struct ggml_tensor * src1 = dst->src[1];
  6501. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6502. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6503. return;
  6504. }
  6505. const int ith = params->ith;
  6506. const int nth = params->nth;
  6507. const int nr = ggml_nrows(src0);
  6508. GGML_TENSOR_BINARY_OP_LOCALS
  6509. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6510. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6511. if (dst->type == GGML_TYPE_F32) {
  6512. GGML_ASSERT( nb0 == sizeof(float));
  6513. }
  6514. else {
  6515. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6516. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6517. }
  6518. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6519. // rows per thread
  6520. const int dr = (nr + nth - 1)/nth;
  6521. // row range for this thread
  6522. const int ir0 = dr*ith;
  6523. const int ir1 = MIN(ir0 + dr, nr);
  6524. if (nb10 == sizeof(float)) {
  6525. if (dst->type == GGML_TYPE_F16) {
  6526. for (int ir = ir0; ir < ir1; ++ir) {
  6527. // src0, src1 and dst are same shape => same indices
  6528. const int i3 = ir/(ne2*ne1);
  6529. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6530. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6531. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6532. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6533. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6534. for (int i = 0; i < ne0; i++) {
  6535. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6536. }
  6537. }
  6538. } else {
  6539. for (int ir = ir0; ir < ir1; ++ir) {
  6540. // src0, src1 and dst are same shape => same indices
  6541. const int i3 = ir/(ne2*ne1);
  6542. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6543. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6544. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6545. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6546. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6547. for (int i = 0; i < ne0; i++) {
  6548. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6549. }
  6550. }
  6551. }
  6552. }
  6553. else {
  6554. // src1 is not contiguous
  6555. GGML_ASSERT(false);
  6556. }
  6557. }
  6558. static void ggml_compute_forward_add_f16_f16(
  6559. const struct ggml_compute_params * params,
  6560. struct ggml_tensor * dst) {
  6561. const struct ggml_tensor * src0 = dst->src[0];
  6562. const struct ggml_tensor * src1 = dst->src[1];
  6563. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6564. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6565. return;
  6566. }
  6567. const int ith = params->ith;
  6568. const int nth = params->nth;
  6569. const int nr = ggml_nrows(src0);
  6570. GGML_TENSOR_BINARY_OP_LOCALS
  6571. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6572. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6573. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6574. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6575. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6576. // rows per thread
  6577. const int dr = (nr + nth - 1)/nth;
  6578. // row range for this thread
  6579. const int ir0 = dr*ith;
  6580. const int ir1 = MIN(ir0 + dr, nr);
  6581. if (nb10 == sizeof(ggml_fp16_t)) {
  6582. for (int ir = ir0; ir < ir1; ++ir) {
  6583. // src0, src1 and dst are same shape => same indices
  6584. const int i3 = ir/(ne2*ne1);
  6585. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6586. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6587. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6588. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6589. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6590. for (int i = 0; i < ne0; i++) {
  6591. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6592. }
  6593. }
  6594. }
  6595. else {
  6596. // src1 is not contiguous
  6597. GGML_ASSERT(false);
  6598. }
  6599. }
  6600. static void ggml_compute_forward_add_q_f32(
  6601. const struct ggml_compute_params * params,
  6602. struct ggml_tensor * dst) {
  6603. const struct ggml_tensor * src0 = dst->src[0];
  6604. const struct ggml_tensor * src1 = dst->src[1];
  6605. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6607. return;
  6608. }
  6609. const int nr = ggml_nrows(src0);
  6610. GGML_TENSOR_BINARY_OP_LOCALS
  6611. const int ith = params->ith;
  6612. const int nth = params->nth;
  6613. const enum ggml_type type = src0->type;
  6614. const enum ggml_type dtype = dst->type;
  6615. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6616. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6617. // we don't support permuted src0 or src1
  6618. GGML_ASSERT(nb00 == ggml_type_size(type));
  6619. GGML_ASSERT(nb10 == sizeof(float));
  6620. // dst cannot be transposed or permuted
  6621. GGML_ASSERT(nb0 <= nb1);
  6622. GGML_ASSERT(nb1 <= nb2);
  6623. GGML_ASSERT(nb2 <= nb3);
  6624. GGML_ASSERT(ggml_is_quantized(src0->type));
  6625. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6626. // rows per thread
  6627. const int dr = (nr + nth - 1)/nth;
  6628. // row range for this thread
  6629. const int ir0 = dr*ith;
  6630. const int ir1 = MIN(ir0 + dr, nr);
  6631. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6632. for (int ir = ir0; ir < ir1; ++ir) {
  6633. // src0 indices
  6634. const int i03 = ir/(ne02*ne01);
  6635. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6636. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6637. // src1 and dst are same shape as src0 => same indices
  6638. const int i13 = i03;
  6639. const int i12 = i02;
  6640. const int i11 = i01;
  6641. const int i3 = i03;
  6642. const int i2 = i02;
  6643. const int i1 = i01;
  6644. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6645. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6646. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6647. assert(ne00 % 32 == 0);
  6648. // unquantize row from src0 to temp buffer
  6649. dequantize_row_q(src0_row, wdata, ne00);
  6650. // add src1
  6651. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6652. // quantize row to dst
  6653. if (quantize_row_q != NULL) {
  6654. quantize_row_q(wdata, dst_row, ne00);
  6655. } else {
  6656. memcpy(dst_row, wdata, ne0*nb0);
  6657. }
  6658. }
  6659. }
  6660. static void ggml_compute_forward_add(
  6661. const struct ggml_compute_params * params,
  6662. struct ggml_tensor * dst) {
  6663. const struct ggml_tensor * src0 = dst->src[0];
  6664. const struct ggml_tensor * src1 = dst->src[1];
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F32:
  6667. {
  6668. if (src1->type == GGML_TYPE_F32) {
  6669. ggml_compute_forward_add_f32(params, dst);
  6670. }
  6671. else {
  6672. GGML_ASSERT(false);
  6673. }
  6674. } break;
  6675. case GGML_TYPE_F16:
  6676. {
  6677. if (src1->type == GGML_TYPE_F16) {
  6678. ggml_compute_forward_add_f16_f16(params, dst);
  6679. }
  6680. else if (src1->type == GGML_TYPE_F32) {
  6681. ggml_compute_forward_add_f16_f32(params, dst);
  6682. }
  6683. else {
  6684. GGML_ASSERT(false);
  6685. }
  6686. } break;
  6687. case GGML_TYPE_Q4_0:
  6688. case GGML_TYPE_Q4_1:
  6689. case GGML_TYPE_Q5_0:
  6690. case GGML_TYPE_Q5_1:
  6691. case GGML_TYPE_Q8_0:
  6692. case GGML_TYPE_Q2_K:
  6693. case GGML_TYPE_Q3_K:
  6694. case GGML_TYPE_Q4_K:
  6695. case GGML_TYPE_Q5_K:
  6696. case GGML_TYPE_Q6_K:
  6697. case GGML_TYPE_IQ2_XXS:
  6698. case GGML_TYPE_IQ2_XS:
  6699. case GGML_TYPE_IQ3_XXS:
  6700. case GGML_TYPE_IQ1_S:
  6701. case GGML_TYPE_IQ1_M:
  6702. case GGML_TYPE_IQ4_NL:
  6703. case GGML_TYPE_IQ4_XS:
  6704. case GGML_TYPE_IQ3_S:
  6705. case GGML_TYPE_IQ2_S:
  6706. {
  6707. ggml_compute_forward_add_q_f32(params, dst);
  6708. } break;
  6709. default:
  6710. {
  6711. GGML_ASSERT(false);
  6712. } break;
  6713. }
  6714. }
  6715. // ggml_compute_forward_add1
  6716. static void ggml_compute_forward_add1_f32(
  6717. const struct ggml_compute_params * params,
  6718. struct ggml_tensor * dst) {
  6719. const struct ggml_tensor * src0 = dst->src[0];
  6720. const struct ggml_tensor * src1 = dst->src[1];
  6721. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6722. GGML_ASSERT(ggml_is_scalar(src1));
  6723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6724. return;
  6725. }
  6726. const int ith = params->ith;
  6727. const int nth = params->nth;
  6728. const int nr = ggml_nrows(src0);
  6729. GGML_TENSOR_UNARY_OP_LOCALS
  6730. GGML_ASSERT( nb0 == sizeof(float));
  6731. GGML_ASSERT(nb00 == sizeof(float));
  6732. // rows per thread
  6733. const int dr = (nr + nth - 1)/nth;
  6734. // row range for this thread
  6735. const int ir0 = dr*ith;
  6736. const int ir1 = MIN(ir0 + dr, nr);
  6737. for (int ir = ir0; ir < ir1; ++ir) {
  6738. // src0 and dst are same shape => same indices
  6739. const int i3 = ir/(ne2*ne1);
  6740. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6741. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6742. #ifdef GGML_USE_ACCELERATE
  6743. UNUSED(ggml_vec_add1_f32);
  6744. vDSP_vadd(
  6745. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6746. (float *) ((char *) src1->data), 0,
  6747. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6748. ne0);
  6749. #else
  6750. ggml_vec_add1_f32(ne0,
  6751. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6752. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6753. *(float *) src1->data);
  6754. #endif
  6755. }
  6756. }
  6757. static void ggml_compute_forward_add1_f16_f32(
  6758. const struct ggml_compute_params * params,
  6759. struct ggml_tensor * dst) {
  6760. const struct ggml_tensor * src0 = dst->src[0];
  6761. const struct ggml_tensor * src1 = dst->src[1];
  6762. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6763. GGML_ASSERT(ggml_is_scalar(src1));
  6764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6765. return;
  6766. }
  6767. // scalar to add
  6768. const float v = *(float *) src1->data;
  6769. const int ith = params->ith;
  6770. const int nth = params->nth;
  6771. const int nr = ggml_nrows(src0);
  6772. GGML_TENSOR_UNARY_OP_LOCALS
  6773. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6774. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6775. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6776. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6777. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6778. // rows per thread
  6779. const int dr = (nr + nth - 1)/nth;
  6780. // row range for this thread
  6781. const int ir0 = dr*ith;
  6782. const int ir1 = MIN(ir0 + dr, nr);
  6783. for (int ir = ir0; ir < ir1; ++ir) {
  6784. // src0 and dst are same shape => same indices
  6785. const int i3 = ir/(ne2*ne1);
  6786. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6787. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6788. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6789. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6790. for (int i = 0; i < ne0; i++) {
  6791. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6792. }
  6793. }
  6794. }
  6795. static void ggml_compute_forward_add1_f16_f16(
  6796. const struct ggml_compute_params * params,
  6797. struct ggml_tensor * dst) {
  6798. const struct ggml_tensor * src0 = dst->src[0];
  6799. const struct ggml_tensor * src1 = dst->src[1];
  6800. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6801. GGML_ASSERT(ggml_is_scalar(src1));
  6802. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6803. return;
  6804. }
  6805. // scalar to add
  6806. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6807. const int ith = params->ith;
  6808. const int nth = params->nth;
  6809. const int nr = ggml_nrows(src0);
  6810. GGML_TENSOR_UNARY_OP_LOCALS
  6811. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6812. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6813. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6814. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6815. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6816. // rows per thread
  6817. const int dr = (nr + nth - 1)/nth;
  6818. // row range for this thread
  6819. const int ir0 = dr*ith;
  6820. const int ir1 = MIN(ir0 + dr, nr);
  6821. for (int ir = ir0; ir < ir1; ++ir) {
  6822. // src0 and dst are same shape => same indices
  6823. const int i3 = ir/(ne2*ne1);
  6824. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6825. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6826. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6827. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6828. for (int i = 0; i < ne0; i++) {
  6829. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6830. }
  6831. }
  6832. }
  6833. static void ggml_compute_forward_add1_q_f32(
  6834. const struct ggml_compute_params * params,
  6835. struct ggml_tensor * dst) {
  6836. const struct ggml_tensor * src0 = dst->src[0];
  6837. const struct ggml_tensor * src1 = dst->src[1];
  6838. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6839. GGML_ASSERT(ggml_is_scalar(src1));
  6840. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6841. return;
  6842. }
  6843. // scalar to add
  6844. const float v = *(float *) src1->data;
  6845. const int ith = params->ith;
  6846. const int nth = params->nth;
  6847. const int nr = ggml_nrows(src0);
  6848. GGML_TENSOR_UNARY_OP_LOCALS
  6849. const enum ggml_type type = src0->type;
  6850. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6851. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6852. // we don't support permuted src0
  6853. GGML_ASSERT(nb00 == ggml_type_size(type));
  6854. // dst cannot be transposed or permuted
  6855. GGML_ASSERT(nb0 <= nb1);
  6856. GGML_ASSERT(nb1 <= nb2);
  6857. GGML_ASSERT(nb2 <= nb3);
  6858. GGML_ASSERT(ggml_is_quantized(src0->type));
  6859. GGML_ASSERT(dst->type == src0->type);
  6860. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6861. // rows per thread
  6862. const int dr = (nr + nth - 1)/nth;
  6863. // row range for this thread
  6864. const int ir0 = dr*ith;
  6865. const int ir1 = MIN(ir0 + dr, nr);
  6866. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6867. for (int ir = ir0; ir < ir1; ++ir) {
  6868. // src0 and dst are same shape => same indices
  6869. const int i3 = ir/(ne2*ne1);
  6870. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6871. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6872. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6873. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6874. assert(ne0 % 32 == 0);
  6875. // unquantize row from src0 to temp buffer
  6876. dequantize_row_q(src0_row, wdata, ne0);
  6877. // add src1
  6878. ggml_vec_acc1_f32(ne0, wdata, v);
  6879. // quantize row to dst
  6880. quantize_row_q(wdata, dst_row, ne0);
  6881. }
  6882. }
  6883. static void ggml_compute_forward_add1(
  6884. const struct ggml_compute_params * params,
  6885. struct ggml_tensor * dst) {
  6886. const struct ggml_tensor * src0 = dst->src[0];
  6887. const struct ggml_tensor * src1 = dst->src[1];
  6888. switch (src0->type) {
  6889. case GGML_TYPE_F32:
  6890. {
  6891. ggml_compute_forward_add1_f32(params, dst);
  6892. } break;
  6893. case GGML_TYPE_F16:
  6894. {
  6895. if (src1->type == GGML_TYPE_F16) {
  6896. ggml_compute_forward_add1_f16_f16(params, dst);
  6897. }
  6898. else if (src1->type == GGML_TYPE_F32) {
  6899. ggml_compute_forward_add1_f16_f32(params, dst);
  6900. }
  6901. else {
  6902. GGML_ASSERT(false);
  6903. }
  6904. } break;
  6905. case GGML_TYPE_Q4_0:
  6906. case GGML_TYPE_Q4_1:
  6907. case GGML_TYPE_Q5_0:
  6908. case GGML_TYPE_Q5_1:
  6909. case GGML_TYPE_Q8_0:
  6910. case GGML_TYPE_Q8_1:
  6911. case GGML_TYPE_Q2_K:
  6912. case GGML_TYPE_Q3_K:
  6913. case GGML_TYPE_Q4_K:
  6914. case GGML_TYPE_Q5_K:
  6915. case GGML_TYPE_Q6_K:
  6916. case GGML_TYPE_IQ2_XXS:
  6917. case GGML_TYPE_IQ2_XS:
  6918. case GGML_TYPE_IQ3_XXS:
  6919. case GGML_TYPE_IQ1_S:
  6920. case GGML_TYPE_IQ1_M:
  6921. case GGML_TYPE_IQ4_NL:
  6922. case GGML_TYPE_IQ4_XS:
  6923. case GGML_TYPE_IQ3_S:
  6924. case GGML_TYPE_IQ2_S:
  6925. {
  6926. ggml_compute_forward_add1_q_f32(params, dst);
  6927. } break;
  6928. default:
  6929. {
  6930. GGML_ASSERT(false);
  6931. } break;
  6932. }
  6933. }
  6934. // ggml_compute_forward_acc
  6935. static void ggml_compute_forward_acc_f32(
  6936. const struct ggml_compute_params * params,
  6937. struct ggml_tensor * dst) {
  6938. const struct ggml_tensor * src0 = dst->src[0];
  6939. const struct ggml_tensor * src1 = dst->src[1];
  6940. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6941. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6942. // view src0 and dst with these strides and data offset inbytes during acc
  6943. // nb0 is implicitly element_size because src0 and dst are contiguous
  6944. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6945. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6946. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6947. size_t offset = ((int32_t *) dst->op_params)[3];
  6948. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6949. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6950. if (params->ith != 0) {
  6951. return;
  6952. }
  6953. // memcpy needs to be synchronized across threads to avoid race conditions.
  6954. // => do it in INIT phase
  6955. memcpy(
  6956. ((char *) dst->data),
  6957. ((char *) src0->data),
  6958. ggml_nbytes(dst));
  6959. }
  6960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6961. return;
  6962. }
  6963. const int ith = params->ith;
  6964. const int nth = params->nth;
  6965. const int nr = ggml_nrows(src1);
  6966. const int nc = src1->ne[0];
  6967. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6968. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6969. // src0 and dst as viewed during acc
  6970. const size_t nb0 = ggml_element_size(src0);
  6971. const size_t nb00 = nb0;
  6972. const size_t nb01 = nb1;
  6973. const size_t nb02 = nb2;
  6974. const size_t nb03 = nb3;
  6975. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6976. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6977. GGML_ASSERT(nb10 == sizeof(float));
  6978. // rows per thread
  6979. const int dr = (nr + nth - 1)/nth;
  6980. // row range for this thread
  6981. const int ir0 = dr*ith;
  6982. const int ir1 = MIN(ir0 + dr, nr);
  6983. for (int ir = ir0; ir < ir1; ++ir) {
  6984. // src0 and dst are viewed with shape of src1 and offset
  6985. // => same indices
  6986. const int i3 = ir/(ne12*ne11);
  6987. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6988. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6989. #ifdef GGML_USE_ACCELERATE
  6990. vDSP_vadd(
  6991. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6992. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6993. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6994. #else
  6995. ggml_vec_add_f32(nc,
  6996. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6997. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6998. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6999. #endif
  7000. }
  7001. }
  7002. static void ggml_compute_forward_acc(
  7003. const struct ggml_compute_params * params,
  7004. struct ggml_tensor * dst) {
  7005. const struct ggml_tensor * src0 = dst->src[0];
  7006. switch (src0->type) {
  7007. case GGML_TYPE_F32:
  7008. {
  7009. ggml_compute_forward_acc_f32(params, dst);
  7010. } break;
  7011. case GGML_TYPE_F16:
  7012. case GGML_TYPE_Q4_0:
  7013. case GGML_TYPE_Q4_1:
  7014. case GGML_TYPE_Q5_0:
  7015. case GGML_TYPE_Q5_1:
  7016. case GGML_TYPE_Q8_0:
  7017. case GGML_TYPE_Q8_1:
  7018. case GGML_TYPE_Q2_K:
  7019. case GGML_TYPE_Q3_K:
  7020. case GGML_TYPE_Q4_K:
  7021. case GGML_TYPE_Q5_K:
  7022. case GGML_TYPE_Q6_K:
  7023. case GGML_TYPE_IQ2_XXS:
  7024. case GGML_TYPE_IQ2_XS:
  7025. case GGML_TYPE_IQ3_XXS:
  7026. case GGML_TYPE_IQ1_S:
  7027. case GGML_TYPE_IQ1_M:
  7028. case GGML_TYPE_IQ4_NL:
  7029. case GGML_TYPE_IQ4_XS:
  7030. case GGML_TYPE_IQ3_S:
  7031. case GGML_TYPE_IQ2_S:
  7032. default:
  7033. {
  7034. GGML_ASSERT(false);
  7035. } break;
  7036. }
  7037. }
  7038. // ggml_compute_forward_sub
  7039. static void ggml_compute_forward_sub_f32(
  7040. const struct ggml_compute_params * params,
  7041. struct ggml_tensor * dst) {
  7042. const struct ggml_tensor * src0 = dst->src[0];
  7043. const struct ggml_tensor * src1 = dst->src[1];
  7044. assert(params->ith == 0);
  7045. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7046. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7047. return;
  7048. }
  7049. const int nr = ggml_nrows(src0);
  7050. GGML_TENSOR_BINARY_OP_LOCALS
  7051. GGML_ASSERT( nb0 == sizeof(float));
  7052. GGML_ASSERT(nb00 == sizeof(float));
  7053. if (nb10 == sizeof(float)) {
  7054. for (int ir = 0; ir < nr; ++ir) {
  7055. // src0, src1 and dst are same shape => same indices
  7056. const int i3 = ir/(ne2*ne1);
  7057. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7058. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7059. #ifdef GGML_USE_ACCELERATE
  7060. vDSP_vsub(
  7061. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7062. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7063. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7064. ne0);
  7065. #else
  7066. ggml_vec_sub_f32(ne0,
  7067. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7068. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7069. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7070. #endif
  7071. // }
  7072. // }
  7073. }
  7074. } else {
  7075. // src1 is not contiguous
  7076. for (int ir = 0; ir < nr; ++ir) {
  7077. // src0, src1 and dst are same shape => same indices
  7078. const int i3 = ir/(ne2*ne1);
  7079. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7080. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7081. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7082. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7083. for (int i0 = 0; i0 < ne0; i0++) {
  7084. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7085. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7086. }
  7087. }
  7088. }
  7089. }
  7090. static void ggml_compute_forward_sub(
  7091. const struct ggml_compute_params * params,
  7092. struct ggml_tensor * dst) {
  7093. const struct ggml_tensor * src0 = dst->src[0];
  7094. switch (src0->type) {
  7095. case GGML_TYPE_F32:
  7096. {
  7097. ggml_compute_forward_sub_f32(params, dst);
  7098. } break;
  7099. default:
  7100. {
  7101. GGML_ASSERT(false);
  7102. } break;
  7103. }
  7104. }
  7105. // ggml_compute_forward_mul
  7106. static void ggml_compute_forward_mul_f32(
  7107. const struct ggml_compute_params * params,
  7108. struct ggml_tensor * dst) {
  7109. const struct ggml_tensor * src0 = dst->src[0];
  7110. const struct ggml_tensor * src1 = dst->src[1];
  7111. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7112. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7113. return;
  7114. }
  7115. const int ith = params->ith;
  7116. const int nth = params->nth;
  7117. #if defined(GGML_USE_CLBLAST)
  7118. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7119. // TODO: OpenCL kernel support full broadcast
  7120. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7121. if (ith == 0) {
  7122. ggml_cl_mul(src0, src1, dst);
  7123. }
  7124. return;
  7125. }
  7126. #endif
  7127. const int64_t nr = ggml_nrows(src0);
  7128. GGML_TENSOR_BINARY_OP_LOCALS
  7129. GGML_ASSERT( nb0 == sizeof(float));
  7130. GGML_ASSERT(nb00 == sizeof(float));
  7131. if (nb10 == sizeof(float)) {
  7132. for (int64_t ir = ith; ir < nr; ir += nth) {
  7133. // src0 and dst are same shape => same indices
  7134. const int64_t i03 = ir/(ne02*ne01);
  7135. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7136. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7137. const int64_t i13 = i03 % ne13;
  7138. const int64_t i12 = i02 % ne12;
  7139. const int64_t i11 = i01 % ne11;
  7140. const int64_t nr0 = ne00 / ne10;
  7141. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7142. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7143. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7144. for (int64_t r = 0 ; r < nr0; ++r) {
  7145. #ifdef GGML_USE_ACCELERATE
  7146. UNUSED(ggml_vec_mul_f32);
  7147. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7148. #else
  7149. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7150. #endif
  7151. }
  7152. }
  7153. } else {
  7154. // src1 is not contiguous
  7155. for (int64_t ir = ith; ir < nr; ir += nth) {
  7156. // src0 and dst are same shape => same indices
  7157. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7158. const int64_t i03 = ir/(ne02*ne01);
  7159. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7160. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7161. const int64_t i13 = i03 % ne13;
  7162. const int64_t i12 = i02 % ne12;
  7163. const int64_t i11 = i01 % ne11;
  7164. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7165. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7166. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7167. const int64_t i10 = i0 % ne10;
  7168. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7169. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7170. }
  7171. }
  7172. }
  7173. }
  7174. static void ggml_compute_forward_mul(
  7175. const struct ggml_compute_params * params,
  7176. struct ggml_tensor * dst) {
  7177. const struct ggml_tensor * src0 = dst->src[0];
  7178. const struct ggml_tensor * src1 = dst->src[1];
  7179. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7180. switch (src0->type) {
  7181. case GGML_TYPE_F32:
  7182. {
  7183. ggml_compute_forward_mul_f32(params, dst);
  7184. } break;
  7185. default:
  7186. {
  7187. GGML_ASSERT(false);
  7188. } break;
  7189. }
  7190. }
  7191. // ggml_compute_forward_div
  7192. static void ggml_compute_forward_div_f32(
  7193. const struct ggml_compute_params * params,
  7194. struct ggml_tensor * dst) {
  7195. const struct ggml_tensor * src0 = dst->src[0];
  7196. const struct ggml_tensor * src1 = dst->src[1];
  7197. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7198. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7199. return;
  7200. }
  7201. const int ith = params->ith;
  7202. const int nth = params->nth;
  7203. const int64_t nr = ggml_nrows(src0);
  7204. GGML_TENSOR_BINARY_OP_LOCALS
  7205. GGML_ASSERT( nb0 == sizeof(float));
  7206. GGML_ASSERT(nb00 == sizeof(float));
  7207. if (nb10 == sizeof(float)) {
  7208. for (int64_t ir = ith; ir < nr; ir += nth) {
  7209. // src0 and dst are same shape => same indices
  7210. const int64_t i03 = ir/(ne02*ne01);
  7211. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7212. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7213. const int64_t i13 = i03 % ne13;
  7214. const int64_t i12 = i02 % ne12;
  7215. const int64_t i11 = i01 % ne11;
  7216. const int64_t nr0 = ne00 / ne10;
  7217. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7218. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7219. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7220. for (int64_t r = 0; r < nr0; ++r) {
  7221. #ifdef GGML_USE_ACCELERATE
  7222. UNUSED(ggml_vec_div_f32);
  7223. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7224. #else
  7225. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7226. #endif
  7227. }
  7228. }
  7229. } else {
  7230. // src1 is not contiguous
  7231. for (int64_t ir = ith; ir < nr; ir += nth) {
  7232. // src0 and dst are same shape => same indices
  7233. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7234. const int64_t i03 = ir/(ne02*ne01);
  7235. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7236. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7237. const int64_t i13 = i03 % ne13;
  7238. const int64_t i12 = i02 % ne12;
  7239. const int64_t i11 = i01 % ne11;
  7240. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7241. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7242. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7243. const int64_t i10 = i0 % ne10;
  7244. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7245. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7246. }
  7247. }
  7248. }
  7249. }
  7250. static void ggml_compute_forward_div(
  7251. const struct ggml_compute_params * params,
  7252. struct ggml_tensor * dst) {
  7253. const struct ggml_tensor * src0 = dst->src[0];
  7254. switch (src0->type) {
  7255. case GGML_TYPE_F32:
  7256. {
  7257. ggml_compute_forward_div_f32(params, dst);
  7258. } break;
  7259. default:
  7260. {
  7261. GGML_ASSERT(false);
  7262. } break;
  7263. }
  7264. }
  7265. // ggml_compute_forward_sqr
  7266. static void ggml_compute_forward_sqr_f32(
  7267. const struct ggml_compute_params * params,
  7268. struct ggml_tensor * dst) {
  7269. const struct ggml_tensor * src0 = dst->src[0];
  7270. assert(params->ith == 0);
  7271. assert(ggml_are_same_shape(src0, dst));
  7272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7273. return;
  7274. }
  7275. const int n = ggml_nrows(src0);
  7276. const int nc = src0->ne[0];
  7277. assert( dst->nb[0] == sizeof(float));
  7278. assert(src0->nb[0] == sizeof(float));
  7279. for (int i = 0; i < n; i++) {
  7280. ggml_vec_sqr_f32(nc,
  7281. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7282. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7283. }
  7284. }
  7285. static void ggml_compute_forward_sqr(
  7286. const struct ggml_compute_params * params,
  7287. struct ggml_tensor * dst) {
  7288. const struct ggml_tensor * src0 = dst->src[0];
  7289. switch (src0->type) {
  7290. case GGML_TYPE_F32:
  7291. {
  7292. ggml_compute_forward_sqr_f32(params, dst);
  7293. } break;
  7294. default:
  7295. {
  7296. GGML_ASSERT(false);
  7297. } break;
  7298. }
  7299. }
  7300. // ggml_compute_forward_sqrt
  7301. static void ggml_compute_forward_sqrt_f32(
  7302. const struct ggml_compute_params * params,
  7303. struct ggml_tensor * dst) {
  7304. const struct ggml_tensor * src0 = dst->src[0];
  7305. assert(params->ith == 0);
  7306. assert(ggml_are_same_shape(src0, dst));
  7307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7308. return;
  7309. }
  7310. const int n = ggml_nrows(src0);
  7311. const int nc = src0->ne[0];
  7312. assert( dst->nb[0] == sizeof(float));
  7313. assert(src0->nb[0] == sizeof(float));
  7314. for (int i = 0; i < n; i++) {
  7315. ggml_vec_sqrt_f32(nc,
  7316. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7317. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7318. }
  7319. }
  7320. static void ggml_compute_forward_sqrt(
  7321. const struct ggml_compute_params * params,
  7322. struct ggml_tensor * dst) {
  7323. const struct ggml_tensor * src0 = dst->src[0];
  7324. switch (src0->type) {
  7325. case GGML_TYPE_F32:
  7326. {
  7327. ggml_compute_forward_sqrt_f32(params, dst);
  7328. } break;
  7329. default:
  7330. {
  7331. GGML_ASSERT(false);
  7332. } break;
  7333. }
  7334. }
  7335. // ggml_compute_forward_log
  7336. static void ggml_compute_forward_log_f32(
  7337. const struct ggml_compute_params * params,
  7338. struct ggml_tensor * dst) {
  7339. const struct ggml_tensor * src0 = dst->src[0];
  7340. GGML_ASSERT(params->ith == 0);
  7341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7343. return;
  7344. }
  7345. const int n = ggml_nrows(src0);
  7346. const int nc = src0->ne[0];
  7347. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7348. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7349. for (int i = 0; i < n; i++) {
  7350. ggml_vec_log_f32(nc,
  7351. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7352. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7353. }
  7354. }
  7355. static void ggml_compute_forward_log(
  7356. const struct ggml_compute_params * params,
  7357. struct ggml_tensor * dst) {
  7358. const struct ggml_tensor * src0 = dst->src[0];
  7359. switch (src0->type) {
  7360. case GGML_TYPE_F32:
  7361. {
  7362. ggml_compute_forward_log_f32(params, dst);
  7363. } break;
  7364. default:
  7365. {
  7366. GGML_ASSERT(false);
  7367. } break;
  7368. }
  7369. }
  7370. // ggml_compute_forward_sum
  7371. static void ggml_compute_forward_sum_f32(
  7372. const struct ggml_compute_params * params,
  7373. struct ggml_tensor * dst) {
  7374. const struct ggml_tensor * src0 = dst->src[0];
  7375. assert(params->ith == 0);
  7376. assert(ggml_is_scalar(dst));
  7377. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7378. return;
  7379. }
  7380. assert(ggml_is_scalar(dst));
  7381. assert(src0->nb[0] == sizeof(float));
  7382. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7383. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7384. ggml_float sum = 0;
  7385. ggml_float row_sum = 0;
  7386. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7387. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7388. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7389. ggml_vec_sum_f32_ggf(ne00,
  7390. &row_sum,
  7391. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7392. sum += row_sum;
  7393. }
  7394. }
  7395. }
  7396. ((float *) dst->data)[0] = sum;
  7397. }
  7398. static void ggml_compute_forward_sum_f16(
  7399. const struct ggml_compute_params * params,
  7400. struct ggml_tensor * dst) {
  7401. const struct ggml_tensor * src0 = dst->src[0];
  7402. assert(params->ith == 0);
  7403. assert(ggml_is_scalar(dst));
  7404. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7405. return;
  7406. }
  7407. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7408. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7409. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7410. float sum = 0;
  7411. float row_sum = 0;
  7412. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7413. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7414. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7415. ggml_vec_sum_f16_ggf(ne00,
  7416. &row_sum,
  7417. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7418. sum += row_sum;
  7419. }
  7420. }
  7421. }
  7422. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7423. }
  7424. static void ggml_compute_forward_sum(
  7425. const struct ggml_compute_params * params,
  7426. struct ggml_tensor * dst) {
  7427. const struct ggml_tensor * src0 = dst->src[0];
  7428. switch (src0->type) {
  7429. case GGML_TYPE_F32:
  7430. {
  7431. ggml_compute_forward_sum_f32(params, dst);
  7432. } break;
  7433. case GGML_TYPE_F16:
  7434. {
  7435. ggml_compute_forward_sum_f16(params, dst);
  7436. } break;
  7437. default:
  7438. {
  7439. GGML_ASSERT(false);
  7440. } break;
  7441. }
  7442. }
  7443. // ggml_compute_forward_sum_rows
  7444. static void ggml_compute_forward_sum_rows_f32(
  7445. const struct ggml_compute_params * params,
  7446. struct ggml_tensor * dst) {
  7447. const struct ggml_tensor * src0 = dst->src[0];
  7448. GGML_ASSERT(params->ith == 0);
  7449. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7450. return;
  7451. }
  7452. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7453. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7454. GGML_TENSOR_UNARY_OP_LOCALS
  7455. GGML_ASSERT(ne0 == 1);
  7456. GGML_ASSERT(ne1 == ne01);
  7457. GGML_ASSERT(ne2 == ne02);
  7458. GGML_ASSERT(ne3 == ne03);
  7459. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7460. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7461. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7462. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7463. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7464. float row_sum = 0;
  7465. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7466. dst_row[0] = row_sum;
  7467. }
  7468. }
  7469. }
  7470. }
  7471. static void ggml_compute_forward_sum_rows(
  7472. const struct ggml_compute_params * params,
  7473. struct ggml_tensor * dst) {
  7474. const struct ggml_tensor * src0 = dst->src[0];
  7475. switch (src0->type) {
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_sum_rows_f32(params, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. // ggml_compute_forward_mean
  7487. static void ggml_compute_forward_mean_f32(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. assert(params->ith == 0);
  7492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7493. return;
  7494. }
  7495. assert(src0->nb[0] == sizeof(float));
  7496. GGML_TENSOR_UNARY_OP_LOCALS
  7497. assert(ne0 == 1);
  7498. assert(ne1 == ne01);
  7499. assert(ne2 == ne02);
  7500. assert(ne3 == ne03);
  7501. UNUSED(ne0);
  7502. UNUSED(ne1);
  7503. UNUSED(ne2);
  7504. UNUSED(ne3);
  7505. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7506. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7507. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7508. ggml_vec_sum_f32(ne00,
  7509. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7510. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7511. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7512. }
  7513. }
  7514. }
  7515. }
  7516. static void ggml_compute_forward_mean(
  7517. const struct ggml_compute_params * params,
  7518. struct ggml_tensor * dst) {
  7519. const struct ggml_tensor * src0 = dst->src[0];
  7520. switch (src0->type) {
  7521. case GGML_TYPE_F32:
  7522. {
  7523. ggml_compute_forward_mean_f32(params, dst);
  7524. } break;
  7525. default:
  7526. {
  7527. GGML_ASSERT(false);
  7528. } break;
  7529. }
  7530. }
  7531. // ggml_compute_forward_argmax
  7532. static void ggml_compute_forward_argmax_f32(
  7533. const struct ggml_compute_params * params,
  7534. struct ggml_tensor * dst) {
  7535. const struct ggml_tensor * src0 = dst->src[0];
  7536. assert(params->ith == 0);
  7537. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7538. return;
  7539. }
  7540. assert(src0->nb[0] == sizeof(float));
  7541. assert(dst->nb[0] == sizeof(float));
  7542. const int64_t ne00 = src0->ne[0];
  7543. const int64_t ne01 = src0->ne[1];
  7544. const size_t nb01 = src0->nb[1];
  7545. const size_t nb0 = dst->nb[0];
  7546. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7547. float * src = (float *) ((char *) src0->data + i1*nb01);
  7548. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7549. int v = 0;
  7550. ggml_vec_argmax_f32(ne00, &v, src);
  7551. dst_[0] = v;
  7552. }
  7553. }
  7554. static void ggml_compute_forward_argmax(
  7555. const struct ggml_compute_params * params,
  7556. struct ggml_tensor * dst) {
  7557. const struct ggml_tensor * src0 = dst->src[0];
  7558. switch (src0->type) {
  7559. case GGML_TYPE_F32:
  7560. {
  7561. ggml_compute_forward_argmax_f32(params, dst);
  7562. } break;
  7563. default:
  7564. {
  7565. GGML_ASSERT(false);
  7566. } break;
  7567. }
  7568. }
  7569. // ggml_compute_forward_repeat
  7570. static void ggml_compute_forward_repeat_f32(
  7571. const struct ggml_compute_params * params,
  7572. struct ggml_tensor * dst) {
  7573. const struct ggml_tensor * src0 = dst->src[0];
  7574. GGML_ASSERT(params->ith == 0);
  7575. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7577. return;
  7578. }
  7579. GGML_TENSOR_UNARY_OP_LOCALS
  7580. // guaranteed to be an integer due to the check in ggml_can_repeat
  7581. const int nr0 = (int)(ne0/ne00);
  7582. const int nr1 = (int)(ne1/ne01);
  7583. const int nr2 = (int)(ne2/ne02);
  7584. const int nr3 = (int)(ne3/ne03);
  7585. // TODO: support for transposed / permuted tensors
  7586. GGML_ASSERT(nb0 == sizeof(float));
  7587. GGML_ASSERT(nb00 == sizeof(float));
  7588. // TODO: maybe this is not optimal?
  7589. for (int i3 = 0; i3 < nr3; i3++) {
  7590. for (int k3 = 0; k3 < ne03; k3++) {
  7591. for (int i2 = 0; i2 < nr2; i2++) {
  7592. for (int k2 = 0; k2 < ne02; k2++) {
  7593. for (int i1 = 0; i1 < nr1; i1++) {
  7594. for (int k1 = 0; k1 < ne01; k1++) {
  7595. for (int i0 = 0; i0 < nr0; i0++) {
  7596. ggml_vec_cpy_f32(ne00,
  7597. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7598. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7599. }
  7600. }
  7601. }
  7602. }
  7603. }
  7604. }
  7605. }
  7606. }
  7607. static void ggml_compute_forward_repeat_f16(
  7608. const struct ggml_compute_params * params,
  7609. struct ggml_tensor * dst) {
  7610. const struct ggml_tensor * src0 = dst->src[0];
  7611. GGML_ASSERT(params->ith == 0);
  7612. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7613. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7614. return;
  7615. }
  7616. GGML_TENSOR_UNARY_OP_LOCALS
  7617. // guaranteed to be an integer due to the check in ggml_can_repeat
  7618. const int nr0 = (int)(ne0/ne00);
  7619. const int nr1 = (int)(ne1/ne01);
  7620. const int nr2 = (int)(ne2/ne02);
  7621. const int nr3 = (int)(ne3/ne03);
  7622. // TODO: support for transposed / permuted tensors
  7623. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7624. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7625. // TODO: maybe this is not optimal?
  7626. for (int i3 = 0; i3 < nr3; i3++) {
  7627. for (int k3 = 0; k3 < ne03; k3++) {
  7628. for (int i2 = 0; i2 < nr2; i2++) {
  7629. for (int k2 = 0; k2 < ne02; k2++) {
  7630. for (int i1 = 0; i1 < nr1; i1++) {
  7631. for (int k1 = 0; k1 < ne01; k1++) {
  7632. for (int i0 = 0; i0 < nr0; i0++) {
  7633. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7634. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7635. // ggml_vec_cpy_f16(ne00, y, x)
  7636. for (int i = 0; i < ne00; ++i) {
  7637. y[i] = x[i];
  7638. }
  7639. }
  7640. }
  7641. }
  7642. }
  7643. }
  7644. }
  7645. }
  7646. }
  7647. static void ggml_compute_forward_repeat(
  7648. const struct ggml_compute_params * params,
  7649. struct ggml_tensor * dst) {
  7650. const struct ggml_tensor * src0 = dst->src[0];
  7651. switch (src0->type) {
  7652. case GGML_TYPE_F16:
  7653. case GGML_TYPE_I16:
  7654. {
  7655. ggml_compute_forward_repeat_f16(params, dst);
  7656. } break;
  7657. case GGML_TYPE_F32:
  7658. case GGML_TYPE_I32:
  7659. {
  7660. ggml_compute_forward_repeat_f32(params, dst);
  7661. } break;
  7662. default:
  7663. {
  7664. GGML_ASSERT(false);
  7665. } break;
  7666. }
  7667. }
  7668. // ggml_compute_forward_repeat_back
  7669. static void ggml_compute_forward_repeat_back_f32(
  7670. const struct ggml_compute_params * params,
  7671. struct ggml_tensor * dst) {
  7672. const struct ggml_tensor * src0 = dst->src[0];
  7673. GGML_ASSERT(params->ith == 0);
  7674. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7676. return;
  7677. }
  7678. GGML_TENSOR_UNARY_OP_LOCALS
  7679. // guaranteed to be an integer due to the check in ggml_can_repeat
  7680. const int nr0 = (int)(ne00/ne0);
  7681. const int nr1 = (int)(ne01/ne1);
  7682. const int nr2 = (int)(ne02/ne2);
  7683. const int nr3 = (int)(ne03/ne3);
  7684. // TODO: support for transposed / permuted tensors
  7685. GGML_ASSERT(nb0 == sizeof(float));
  7686. GGML_ASSERT(nb00 == sizeof(float));
  7687. if (ggml_is_contiguous(dst)) {
  7688. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7689. } else {
  7690. for (int k3 = 0; k3 < ne3; k3++) {
  7691. for (int k2 = 0; k2 < ne2; k2++) {
  7692. for (int k1 = 0; k1 < ne1; k1++) {
  7693. ggml_vec_set_f32(ne0,
  7694. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7695. 0);
  7696. }
  7697. }
  7698. }
  7699. }
  7700. // TODO: maybe this is not optimal?
  7701. for (int i3 = 0; i3 < nr3; i3++) {
  7702. for (int k3 = 0; k3 < ne3; k3++) {
  7703. for (int i2 = 0; i2 < nr2; i2++) {
  7704. for (int k2 = 0; k2 < ne2; k2++) {
  7705. for (int i1 = 0; i1 < nr1; i1++) {
  7706. for (int k1 = 0; k1 < ne1; k1++) {
  7707. for (int i0 = 0; i0 < nr0; i0++) {
  7708. ggml_vec_acc_f32(ne0,
  7709. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7710. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7711. }
  7712. }
  7713. }
  7714. }
  7715. }
  7716. }
  7717. }
  7718. }
  7719. static void ggml_compute_forward_repeat_back(
  7720. const struct ggml_compute_params * params,
  7721. struct ggml_tensor * dst) {
  7722. const struct ggml_tensor * src0 = dst->src[0];
  7723. switch (src0->type) {
  7724. case GGML_TYPE_F32:
  7725. {
  7726. ggml_compute_forward_repeat_back_f32(params, dst);
  7727. } break;
  7728. default:
  7729. {
  7730. GGML_ASSERT(false);
  7731. } break;
  7732. }
  7733. }
  7734. // ggml_compute_forward_concat
  7735. static void ggml_compute_forward_concat_f32(
  7736. const struct ggml_compute_params * params,
  7737. struct ggml_tensor * dst) {
  7738. const struct ggml_tensor * src0 = dst->src[0];
  7739. const struct ggml_tensor * src1 = dst->src[1];
  7740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7741. return;
  7742. }
  7743. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7744. const int ith = params->ith;
  7745. const int nth = params->nth;
  7746. GGML_TENSOR_BINARY_OP_LOCALS
  7747. // TODO: support for transposed / permuted tensors
  7748. GGML_ASSERT(nb0 == sizeof(float));
  7749. GGML_ASSERT(nb00 == sizeof(float));
  7750. GGML_ASSERT(nb10 == sizeof(float));
  7751. for (int i3 = 0; i3 < ne3; i3++) {
  7752. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7753. if (i2 < ne02) { // src0
  7754. for (int i1 = 0; i1 < ne1; i1++) {
  7755. for (int i0 = 0; i0 < ne0; i0++) {
  7756. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7757. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7758. *y = *x;
  7759. }
  7760. }
  7761. } // src1
  7762. else {
  7763. for (int i1 = 0; i1 < ne1; i1++) {
  7764. for (int i0 = 0; i0 < ne0; i0++) {
  7765. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7766. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7767. *y = *x;
  7768. }
  7769. }
  7770. }
  7771. }
  7772. }
  7773. }
  7774. static void ggml_compute_forward_concat(
  7775. const struct ggml_compute_params* params,
  7776. struct ggml_tensor* dst) {
  7777. const struct ggml_tensor * src0 = dst->src[0];
  7778. switch (src0->type) {
  7779. case GGML_TYPE_F32:
  7780. case GGML_TYPE_I32:
  7781. {
  7782. ggml_compute_forward_concat_f32(params, dst);
  7783. } break;
  7784. default:
  7785. {
  7786. GGML_ASSERT(false);
  7787. } break;
  7788. }
  7789. }
  7790. // ggml_compute_forward_abs
  7791. static void ggml_compute_forward_abs_f32(
  7792. const struct ggml_compute_params * params,
  7793. struct ggml_tensor * dst) {
  7794. const struct ggml_tensor * src0 = dst->src[0];
  7795. assert(params->ith == 0);
  7796. assert(ggml_are_same_shape(src0, dst));
  7797. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7798. return;
  7799. }
  7800. const int n = ggml_nrows(src0);
  7801. const int nc = src0->ne[0];
  7802. assert(dst->nb[0] == sizeof(float));
  7803. assert(src0->nb[0] == sizeof(float));
  7804. for (int i = 0; i < n; i++) {
  7805. ggml_vec_abs_f32(nc,
  7806. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7807. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7808. }
  7809. }
  7810. static void ggml_compute_forward_abs(
  7811. const struct ggml_compute_params * params,
  7812. struct ggml_tensor * dst) {
  7813. const struct ggml_tensor * src0 = dst->src[0];
  7814. switch (src0->type) {
  7815. case GGML_TYPE_F32:
  7816. {
  7817. ggml_compute_forward_abs_f32(params, dst);
  7818. } break;
  7819. default:
  7820. {
  7821. GGML_ASSERT(false);
  7822. } break;
  7823. }
  7824. }
  7825. // ggml_compute_forward_sgn
  7826. static void ggml_compute_forward_sgn_f32(
  7827. const struct ggml_compute_params * params,
  7828. struct ggml_tensor * dst) {
  7829. const struct ggml_tensor * src0 = dst->src[0];
  7830. assert(params->ith == 0);
  7831. assert(ggml_are_same_shape(src0, dst));
  7832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7833. return;
  7834. }
  7835. const int n = ggml_nrows(src0);
  7836. const int nc = src0->ne[0];
  7837. assert(dst->nb[0] == sizeof(float));
  7838. assert(src0->nb[0] == sizeof(float));
  7839. for (int i = 0; i < n; i++) {
  7840. ggml_vec_sgn_f32(nc,
  7841. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7842. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7843. }
  7844. }
  7845. static void ggml_compute_forward_sgn(
  7846. const struct ggml_compute_params * params,
  7847. struct ggml_tensor * dst) {
  7848. const struct ggml_tensor * src0 = dst->src[0];
  7849. switch (src0->type) {
  7850. case GGML_TYPE_F32:
  7851. {
  7852. ggml_compute_forward_sgn_f32(params, dst);
  7853. } break;
  7854. default:
  7855. {
  7856. GGML_ASSERT(false);
  7857. } break;
  7858. }
  7859. }
  7860. // ggml_compute_forward_neg
  7861. static void ggml_compute_forward_neg_f32(
  7862. const struct ggml_compute_params * params,
  7863. struct ggml_tensor * dst) {
  7864. const struct ggml_tensor * src0 = dst->src[0];
  7865. assert(params->ith == 0);
  7866. assert(ggml_are_same_shape(src0, dst));
  7867. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7868. return;
  7869. }
  7870. const int n = ggml_nrows(src0);
  7871. const int nc = src0->ne[0];
  7872. assert(dst->nb[0] == sizeof(float));
  7873. assert(src0->nb[0] == sizeof(float));
  7874. for (int i = 0; i < n; i++) {
  7875. ggml_vec_neg_f32(nc,
  7876. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7877. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7878. }
  7879. }
  7880. static void ggml_compute_forward_neg(
  7881. const struct ggml_compute_params * params,
  7882. struct ggml_tensor * dst) {
  7883. const struct ggml_tensor * src0 = dst->src[0];
  7884. switch (src0->type) {
  7885. case GGML_TYPE_F32:
  7886. {
  7887. ggml_compute_forward_neg_f32(params, dst);
  7888. } break;
  7889. default:
  7890. {
  7891. GGML_ASSERT(false);
  7892. } break;
  7893. }
  7894. }
  7895. // ggml_compute_forward_step
  7896. static void ggml_compute_forward_step_f32(
  7897. const struct ggml_compute_params * params,
  7898. struct ggml_tensor * dst) {
  7899. const struct ggml_tensor * src0 = dst->src[0];
  7900. assert(params->ith == 0);
  7901. assert(ggml_are_same_shape(src0, dst));
  7902. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7903. return;
  7904. }
  7905. const int n = ggml_nrows(src0);
  7906. const int nc = src0->ne[0];
  7907. assert(dst->nb[0] == sizeof(float));
  7908. assert(src0->nb[0] == sizeof(float));
  7909. for (int i = 0; i < n; i++) {
  7910. ggml_vec_step_f32(nc,
  7911. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7912. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7913. }
  7914. }
  7915. static void ggml_compute_forward_step(
  7916. const struct ggml_compute_params * params,
  7917. struct ggml_tensor * dst) {
  7918. const struct ggml_tensor * src0 = dst->src[0];
  7919. switch (src0->type) {
  7920. case GGML_TYPE_F32:
  7921. {
  7922. ggml_compute_forward_step_f32(params, dst);
  7923. } break;
  7924. default:
  7925. {
  7926. GGML_ASSERT(false);
  7927. } break;
  7928. }
  7929. }
  7930. // ggml_compute_forward_tanh
  7931. static void ggml_compute_forward_tanh_f32(
  7932. const struct ggml_compute_params * params,
  7933. struct ggml_tensor * dst) {
  7934. const struct ggml_tensor * src0 = dst->src[0];
  7935. assert(params->ith == 0);
  7936. assert(ggml_are_same_shape(src0, dst));
  7937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7938. return;
  7939. }
  7940. const int n = ggml_nrows(src0);
  7941. const int nc = src0->ne[0];
  7942. assert(dst->nb[0] == sizeof(float));
  7943. assert(src0->nb[0] == sizeof(float));
  7944. for (int i = 0; i < n; i++) {
  7945. ggml_vec_tanh_f32(nc,
  7946. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7947. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7948. }
  7949. }
  7950. static void ggml_compute_forward_tanh(
  7951. const struct ggml_compute_params * params,
  7952. struct ggml_tensor * dst) {
  7953. const struct ggml_tensor * src0 = dst->src[0];
  7954. switch (src0->type) {
  7955. case GGML_TYPE_F32:
  7956. {
  7957. ggml_compute_forward_tanh_f32(params, dst);
  7958. } break;
  7959. default:
  7960. {
  7961. GGML_ASSERT(false);
  7962. } break;
  7963. }
  7964. }
  7965. // ggml_compute_forward_elu
  7966. static void ggml_compute_forward_elu_f32(
  7967. const struct ggml_compute_params * params,
  7968. struct ggml_tensor * dst) {
  7969. const struct ggml_tensor * src0 = dst->src[0];
  7970. assert(params->ith == 0);
  7971. assert(ggml_are_same_shape(src0, dst));
  7972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7973. return;
  7974. }
  7975. const int n = ggml_nrows(src0);
  7976. const int nc = src0->ne[0];
  7977. assert(dst->nb[0] == sizeof(float));
  7978. assert(src0->nb[0] == sizeof(float));
  7979. for (int i = 0; i < n; i++) {
  7980. ggml_vec_elu_f32(nc,
  7981. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7982. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7983. }
  7984. }
  7985. static void ggml_compute_forward_elu(
  7986. const struct ggml_compute_params * params,
  7987. struct ggml_tensor * dst) {
  7988. const struct ggml_tensor * src0 = dst->src[0];
  7989. switch (src0->type) {
  7990. case GGML_TYPE_F32:
  7991. {
  7992. ggml_compute_forward_elu_f32(params, dst);
  7993. } break;
  7994. default:
  7995. {
  7996. GGML_ASSERT(false);
  7997. } break;
  7998. }
  7999. }
  8000. // ggml_compute_forward_relu
  8001. static void ggml_compute_forward_relu_f32(
  8002. const struct ggml_compute_params * params,
  8003. struct ggml_tensor * dst) {
  8004. const struct ggml_tensor * src0 = dst->src[0];
  8005. assert(params->ith == 0);
  8006. assert(ggml_are_same_shape(src0, dst));
  8007. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8008. return;
  8009. }
  8010. const int n = ggml_nrows(src0);
  8011. const int nc = src0->ne[0];
  8012. assert(dst->nb[0] == sizeof(float));
  8013. assert(src0->nb[0] == sizeof(float));
  8014. for (int i = 0; i < n; i++) {
  8015. ggml_vec_relu_f32(nc,
  8016. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8017. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8018. }
  8019. }
  8020. static void ggml_compute_forward_relu(
  8021. const struct ggml_compute_params * params,
  8022. struct ggml_tensor * dst) {
  8023. const struct ggml_tensor * src0 = dst->src[0];
  8024. switch (src0->type) {
  8025. case GGML_TYPE_F32:
  8026. {
  8027. ggml_compute_forward_relu_f32(params, dst);
  8028. } break;
  8029. default:
  8030. {
  8031. GGML_ASSERT(false);
  8032. } break;
  8033. }
  8034. }
  8035. // ggml_compute_forward_gelu
  8036. static void ggml_compute_forward_gelu_f32(
  8037. const struct ggml_compute_params * params,
  8038. struct ggml_tensor * dst) {
  8039. const struct ggml_tensor * src0 = dst->src[0];
  8040. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8041. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8042. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8044. return;
  8045. }
  8046. const int ith = params->ith;
  8047. const int nth = params->nth;
  8048. const int nc = src0->ne[0];
  8049. const int nr = ggml_nrows(src0);
  8050. // rows per thread
  8051. const int dr = (nr + nth - 1)/nth;
  8052. // row range for this thread
  8053. const int ir0 = dr*ith;
  8054. const int ir1 = MIN(ir0 + dr, nr);
  8055. for (int i1 = ir0; i1 < ir1; i1++) {
  8056. ggml_vec_gelu_f32(nc,
  8057. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8058. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8059. #ifndef NDEBUG
  8060. for (int k = 0; k < nc; k++) {
  8061. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8062. UNUSED(x);
  8063. assert(!isnan(x));
  8064. assert(!isinf(x));
  8065. }
  8066. #endif
  8067. }
  8068. }
  8069. static void ggml_compute_forward_gelu(
  8070. const struct ggml_compute_params * params,
  8071. struct ggml_tensor * dst) {
  8072. const struct ggml_tensor * src0 = dst->src[0];
  8073. switch (src0->type) {
  8074. case GGML_TYPE_F32:
  8075. {
  8076. ggml_compute_forward_gelu_f32(params, dst);
  8077. } break;
  8078. default:
  8079. {
  8080. GGML_ASSERT(false);
  8081. } break;
  8082. }
  8083. }
  8084. // ggml_compute_forward_gelu_quick
  8085. static void ggml_compute_forward_gelu_quick_f32(
  8086. const struct ggml_compute_params * params,
  8087. struct ggml_tensor * dst) {
  8088. const struct ggml_tensor * src0 = dst->src[0];
  8089. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8090. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8091. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8092. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8093. return;
  8094. }
  8095. const int ith = params->ith;
  8096. const int nth = params->nth;
  8097. const int nc = src0->ne[0];
  8098. const int nr = ggml_nrows(src0);
  8099. // rows per thread
  8100. const int dr = (nr + nth - 1)/nth;
  8101. // row range for this thread
  8102. const int ir0 = dr*ith;
  8103. const int ir1 = MIN(ir0 + dr, nr);
  8104. for (int i1 = ir0; i1 < ir1; i1++) {
  8105. ggml_vec_gelu_quick_f32(nc,
  8106. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8107. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8108. #ifndef NDEBUG
  8109. for (int k = 0; k < nc; k++) {
  8110. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8111. UNUSED(x);
  8112. assert(!isnan(x));
  8113. assert(!isinf(x));
  8114. }
  8115. #endif
  8116. }
  8117. }
  8118. static void ggml_compute_forward_gelu_quick(
  8119. const struct ggml_compute_params * params,
  8120. struct ggml_tensor * dst) {
  8121. const struct ggml_tensor * src0 = dst->src[0];
  8122. switch (src0->type) {
  8123. case GGML_TYPE_F32:
  8124. {
  8125. ggml_compute_forward_gelu_quick_f32(params, dst);
  8126. } break;
  8127. default:
  8128. {
  8129. GGML_ASSERT(false);
  8130. } break;
  8131. }
  8132. }
  8133. // ggml_compute_forward_silu
  8134. static void ggml_compute_forward_silu_f32(
  8135. const struct ggml_compute_params * params,
  8136. struct ggml_tensor * dst) {
  8137. const struct ggml_tensor * src0 = dst->src[0];
  8138. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8139. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8140. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8141. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8142. return;
  8143. }
  8144. const int ith = params->ith;
  8145. const int nth = params->nth;
  8146. const int nc = src0->ne[0];
  8147. const int nr = ggml_nrows(src0);
  8148. // rows per thread
  8149. const int dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int ir0 = dr*ith;
  8152. const int ir1 = MIN(ir0 + dr, nr);
  8153. for (int i1 = ir0; i1 < ir1; i1++) {
  8154. ggml_vec_silu_f32(nc,
  8155. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8156. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8157. #ifndef NDEBUG
  8158. for (int k = 0; k < nc; k++) {
  8159. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8160. UNUSED(x);
  8161. assert(!isnan(x));
  8162. assert(!isinf(x));
  8163. }
  8164. #endif
  8165. }
  8166. }
  8167. static void ggml_compute_forward_silu(
  8168. const struct ggml_compute_params * params,
  8169. struct ggml_tensor * dst) {
  8170. const struct ggml_tensor * src0 = dst->src[0];
  8171. switch (src0->type) {
  8172. case GGML_TYPE_F32:
  8173. {
  8174. ggml_compute_forward_silu_f32(params, dst);
  8175. } break;
  8176. default:
  8177. {
  8178. GGML_ASSERT(false);
  8179. } break;
  8180. }
  8181. }
  8182. // ggml_compute_forward_leaky_relu
  8183. static void ggml_compute_forward_leaky_relu_f32(
  8184. const struct ggml_compute_params * params,
  8185. struct ggml_tensor * dst) {
  8186. const struct ggml_tensor * src0 = dst->src[0];
  8187. assert(params->ith == 0);
  8188. assert(ggml_are_same_shape(src0, dst));
  8189. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8190. return;
  8191. }
  8192. const int n = ggml_nrows(src0);
  8193. const int nc = src0->ne[0];
  8194. float negative_slope;
  8195. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8196. assert(dst->nb[0] == sizeof(float));
  8197. assert(src0->nb[0] == sizeof(float));
  8198. for (int i = 0; i < n; i++) {
  8199. ggml_vec_leaky_relu_f32(nc,
  8200. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8201. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8202. }
  8203. }
  8204. static void ggml_compute_forward_leaky_relu(
  8205. const struct ggml_compute_params * params,
  8206. struct ggml_tensor * dst) {
  8207. const struct ggml_tensor * src0 = dst->src[0];
  8208. switch (src0->type) {
  8209. case GGML_TYPE_F32:
  8210. {
  8211. ggml_compute_forward_leaky_relu_f32(params, dst);
  8212. } break;
  8213. default:
  8214. {
  8215. GGML_ASSERT(false);
  8216. } break;
  8217. }
  8218. }
  8219. // ggml_compute_forward_silu_back
  8220. static void ggml_compute_forward_silu_back_f32(
  8221. const struct ggml_compute_params * params,
  8222. struct ggml_tensor * dst) {
  8223. const struct ggml_tensor * src0 = dst->src[0];
  8224. const struct ggml_tensor * grad = dst->src[1];
  8225. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8226. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8227. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8229. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8230. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8231. return;
  8232. }
  8233. const int ith = params->ith;
  8234. const int nth = params->nth;
  8235. const int nc = src0->ne[0];
  8236. const int nr = ggml_nrows(src0);
  8237. // rows per thread
  8238. const int dr = (nr + nth - 1)/nth;
  8239. // row range for this thread
  8240. const int ir0 = dr*ith;
  8241. const int ir1 = MIN(ir0 + dr, nr);
  8242. for (int i1 = ir0; i1 < ir1; i1++) {
  8243. ggml_vec_silu_backward_f32(nc,
  8244. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8245. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8246. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8247. #ifndef NDEBUG
  8248. for (int k = 0; k < nc; k++) {
  8249. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8250. UNUSED(x);
  8251. assert(!isnan(x));
  8252. assert(!isinf(x));
  8253. }
  8254. #endif
  8255. }
  8256. }
  8257. static void ggml_compute_forward_silu_back(
  8258. const struct ggml_compute_params * params,
  8259. struct ggml_tensor * dst) {
  8260. const struct ggml_tensor * src0 = dst->src[0];
  8261. switch (src0->type) {
  8262. case GGML_TYPE_F32:
  8263. {
  8264. ggml_compute_forward_silu_back_f32(params, dst);
  8265. } break;
  8266. default:
  8267. {
  8268. GGML_ASSERT(false);
  8269. } break;
  8270. }
  8271. }
  8272. static void ggml_compute_forward_hardswish_f32(
  8273. const struct ggml_compute_params * params,
  8274. struct ggml_tensor * dst) {
  8275. const struct ggml_tensor * src0 = dst->src[0];
  8276. assert(params->ith == 0);
  8277. assert(ggml_are_same_shape(src0, dst));
  8278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8279. return;
  8280. }
  8281. const int n = ggml_nrows(src0);
  8282. const int nc = src0->ne[0];
  8283. assert(dst->nb[0] == sizeof(float));
  8284. assert(src0->nb[0] == sizeof(float));
  8285. for (int i = 0; i < n; i++) {
  8286. ggml_vec_hardswish_f32(nc,
  8287. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8288. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8289. }
  8290. }
  8291. static void ggml_compute_forward_hardswish(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. switch (src0->type) {
  8296. case GGML_TYPE_F32:
  8297. {
  8298. ggml_compute_forward_hardswish_f32(params, dst);
  8299. } break;
  8300. default:
  8301. {
  8302. GGML_ASSERT(false);
  8303. } break;
  8304. }
  8305. }
  8306. static void ggml_compute_forward_hardsigmoid_f32(
  8307. const struct ggml_compute_params * params,
  8308. struct ggml_tensor * dst) {
  8309. const struct ggml_tensor * src0 = dst->src[0];
  8310. assert(params->ith == 0);
  8311. assert(ggml_are_same_shape(src0, dst));
  8312. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8313. return;
  8314. }
  8315. const int n = ggml_nrows(src0);
  8316. const int nc = src0->ne[0];
  8317. assert(dst->nb[0] == sizeof(float));
  8318. assert(src0->nb[0] == sizeof(float));
  8319. for (int i = 0; i < n; i++) {
  8320. ggml_vec_hardsigmoid_f32(nc,
  8321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8322. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8323. }
  8324. }
  8325. static void ggml_compute_forward_hardsigmoid(
  8326. const struct ggml_compute_params * params,
  8327. struct ggml_tensor * dst) {
  8328. const struct ggml_tensor * src0 = dst->src[0];
  8329. switch (src0->type) {
  8330. case GGML_TYPE_F32:
  8331. {
  8332. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8333. } break;
  8334. default:
  8335. {
  8336. GGML_ASSERT(false);
  8337. } break;
  8338. }
  8339. }
  8340. // ggml_compute_forward_norm
  8341. static void ggml_compute_forward_norm_f32(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8346. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8347. return;
  8348. }
  8349. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8350. const int ith = params->ith;
  8351. const int nth = params->nth;
  8352. GGML_TENSOR_UNARY_OP_LOCALS
  8353. float eps;
  8354. memcpy(&eps, dst->op_params, sizeof(float));
  8355. GGML_ASSERT(eps > 0.0f);
  8356. // TODO: optimize
  8357. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8359. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8360. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8361. ggml_float sum = 0.0;
  8362. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8363. sum += (ggml_float)x[i00];
  8364. }
  8365. float mean = sum/ne00;
  8366. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8367. ggml_float sum2 = 0.0;
  8368. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8369. float v = x[i00] - mean;
  8370. y[i00] = v;
  8371. sum2 += (ggml_float)(v*v);
  8372. }
  8373. float variance = sum2/ne00;
  8374. const float scale = 1.0f/sqrtf(variance + eps);
  8375. ggml_vec_scale_f32(ne00, y, scale);
  8376. }
  8377. }
  8378. }
  8379. }
  8380. static void ggml_compute_forward_norm(
  8381. const struct ggml_compute_params * params,
  8382. struct ggml_tensor * dst) {
  8383. const struct ggml_tensor * src0 = dst->src[0];
  8384. switch (src0->type) {
  8385. case GGML_TYPE_F32:
  8386. {
  8387. ggml_compute_forward_norm_f32(params, dst);
  8388. } break;
  8389. default:
  8390. {
  8391. GGML_ASSERT(false);
  8392. } break;
  8393. }
  8394. }
  8395. // ggml_compute_forward_group_rms_norm
  8396. static void ggml_compute_forward_rms_norm_f32(
  8397. const struct ggml_compute_params * params,
  8398. struct ggml_tensor * dst) {
  8399. const struct ggml_tensor * src0 = dst->src[0];
  8400. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8402. return;
  8403. }
  8404. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8405. const int ith = params->ith;
  8406. const int nth = params->nth;
  8407. GGML_TENSOR_UNARY_OP_LOCALS
  8408. float eps;
  8409. memcpy(&eps, dst->op_params, sizeof(float));
  8410. GGML_ASSERT(eps > 0.0f);
  8411. // TODO: optimize
  8412. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8413. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8414. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8415. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8416. ggml_float sum = 0.0;
  8417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8418. sum += (ggml_float)(x[i00] * x[i00]);
  8419. }
  8420. const float mean = sum/ne00;
  8421. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8422. memcpy(y, x, ne00 * sizeof(float));
  8423. // for (int i00 = 0; i00 < ne00; i00++) {
  8424. // y[i00] = x[i00];
  8425. // }
  8426. const float scale = 1.0f/sqrtf(mean + eps);
  8427. ggml_vec_scale_f32(ne00, y, scale);
  8428. }
  8429. }
  8430. }
  8431. }
  8432. static void ggml_compute_forward_rms_norm(
  8433. const struct ggml_compute_params * params,
  8434. struct ggml_tensor * dst) {
  8435. const struct ggml_tensor * src0 = dst->src[0];
  8436. switch (src0->type) {
  8437. case GGML_TYPE_F32:
  8438. {
  8439. ggml_compute_forward_rms_norm_f32(params, dst);
  8440. } break;
  8441. default:
  8442. {
  8443. GGML_ASSERT(false);
  8444. } break;
  8445. }
  8446. }
  8447. static void ggml_compute_forward_rms_norm_back_f32(
  8448. const struct ggml_compute_params * params,
  8449. struct ggml_tensor * dst) {
  8450. const struct ggml_tensor * src0 = dst->src[0];
  8451. const struct ggml_tensor * src1 = dst->src[1];
  8452. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8454. return;
  8455. }
  8456. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8457. const int ith = params->ith;
  8458. const int nth = params->nth;
  8459. GGML_TENSOR_BINARY_OP_LOCALS
  8460. float eps;
  8461. memcpy(&eps, dst->op_params, sizeof(float));
  8462. // TODO: optimize
  8463. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8465. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8466. // src1 is same shape as src0 => same indices
  8467. const int64_t i11 = i01;
  8468. const int64_t i12 = i02;
  8469. const int64_t i13 = i03;
  8470. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8471. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8472. ggml_float sum_xx = 0.0;
  8473. ggml_float sum_xdz = 0.0;
  8474. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8475. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8476. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8477. }
  8478. //const float mean = (float)(sum_xx)/ne00;
  8479. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8480. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8481. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8482. // we could cache rms from forward pass to improve performance.
  8483. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8484. //const float rms = sqrtf(mean_eps);
  8485. const float rrms = 1.0f / sqrtf(mean_eps);
  8486. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8487. {
  8488. // z = rms_norm(x)
  8489. //
  8490. // rms_norm(src0) =
  8491. // scale(
  8492. // src0,
  8493. // div(
  8494. // 1,
  8495. // sqrt(
  8496. // add(
  8497. // scale(
  8498. // sum(
  8499. // sqr(
  8500. // src0)),
  8501. // (1.0/N)),
  8502. // eps))));
  8503. // postorder:
  8504. // ## op args grad
  8505. // 00 param src0 grad[#00]
  8506. // 01 const 1
  8507. // 02 sqr (#00) grad[#02]
  8508. // 03 sum (#02) grad[#03]
  8509. // 04 const 1/N
  8510. // 05 scale (#03, #04) grad[#05]
  8511. // 06 const eps
  8512. // 07 add (#05, #06) grad[#07]
  8513. // 08 sqrt (#07) grad[#08]
  8514. // 09 div (#01,#08) grad[#09]
  8515. // 10 scale (#00,#09) grad[#10]
  8516. //
  8517. // backward pass, given grad[#10]
  8518. // #10: scale
  8519. // grad[#00] += scale(grad[#10],#09)
  8520. // grad[#09] += sum(mul(grad[#10],#00))
  8521. // #09: div
  8522. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8523. // #08: sqrt
  8524. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8525. // #07: add
  8526. // grad[#05] += grad[#07]
  8527. // #05: scale
  8528. // grad[#03] += scale(grad[#05],#04)
  8529. // #03: sum
  8530. // grad[#02] += repeat(grad[#03], #02)
  8531. // #02:
  8532. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8533. //
  8534. // substitute and simplify:
  8535. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8536. // grad[#02] = repeat(grad[#03], #02)
  8537. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8538. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8539. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8540. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8541. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8542. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8543. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8544. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8545. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8546. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8547. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8548. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8549. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8550. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8551. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8552. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8553. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8554. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8555. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8556. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8557. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8558. // a = b*c + d*e
  8559. // a = b*c*f/f + d*e*f/f
  8560. // a = (b*c*f + d*e*f)*(1/f)
  8561. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8562. // a = (b + d*e/c)*c
  8563. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8564. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8565. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8566. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8567. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8568. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8569. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8570. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8571. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8572. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8573. }
  8574. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8575. // post-order:
  8576. // dx := x
  8577. // dx := scale(dx,-mean_xdz/mean_eps)
  8578. // dx := add(dx, dz)
  8579. // dx := scale(dx, rrms)
  8580. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8581. ggml_vec_cpy_f32 (ne00, dx, x);
  8582. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8583. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8584. ggml_vec_acc_f32 (ne00, dx, dz);
  8585. ggml_vec_scale_f32(ne00, dx, rrms);
  8586. }
  8587. }
  8588. }
  8589. }
  8590. static void ggml_compute_forward_rms_norm_back(
  8591. const struct ggml_compute_params * params,
  8592. struct ggml_tensor * dst) {
  8593. const struct ggml_tensor * src0 = dst->src[0];
  8594. switch (src0->type) {
  8595. case GGML_TYPE_F32:
  8596. {
  8597. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8598. } break;
  8599. default:
  8600. {
  8601. GGML_ASSERT(false);
  8602. } break;
  8603. }
  8604. }
  8605. // ggml_compute_forward_group_norm
  8606. static void ggml_compute_forward_group_norm_f32(
  8607. const struct ggml_compute_params * params,
  8608. struct ggml_tensor * dst) {
  8609. const struct ggml_tensor * src0 = dst->src[0];
  8610. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8612. return;
  8613. }
  8614. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8615. const int ith = params->ith;
  8616. const int nth = params->nth;
  8617. GGML_TENSOR_UNARY_OP_LOCALS
  8618. const float eps = 1e-6f; // TODO: make this a parameter
  8619. // TODO: optimize
  8620. int n_channels = src0->ne[2];
  8621. int n_groups = dst->op_params[0];
  8622. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8623. for (int i = ith; i < n_groups; i += nth) {
  8624. int start = i * n_channels_per_group;
  8625. int end = start + n_channels_per_group;
  8626. if (end > n_channels) {
  8627. end = n_channels;
  8628. }
  8629. int step = end - start;
  8630. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8631. ggml_float sum = 0.0;
  8632. for (int64_t i02 = start; i02 < end; i02++) {
  8633. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8634. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8635. ggml_float sumr = 0.0;
  8636. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8637. sumr += (ggml_float)x[i00];
  8638. }
  8639. sum += sumr;
  8640. }
  8641. }
  8642. const float mean = sum / (ne00 * ne01 * step);
  8643. ggml_float sum2 = 0.0;
  8644. for (int64_t i02 = start; i02 < end; i02++) {
  8645. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8646. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8647. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8648. ggml_float sumr = 0.0;
  8649. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8650. float v = x[i00] - mean;
  8651. y[i00] = v;
  8652. sumr += (ggml_float)(v * v);
  8653. }
  8654. sum2 += sumr;
  8655. }
  8656. }
  8657. const float variance = sum2 / (ne00 * ne01 * step);
  8658. const float scale = 1.0f / sqrtf(variance + eps);
  8659. for (int64_t i02 = start; i02 < end; i02++) {
  8660. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8661. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8662. ggml_vec_scale_f32(ne00, y, scale);
  8663. }
  8664. }
  8665. }
  8666. }
  8667. }
  8668. static void ggml_compute_forward_group_norm(
  8669. const struct ggml_compute_params * params,
  8670. struct ggml_tensor * dst) {
  8671. const struct ggml_tensor * src0 = dst->src[0];
  8672. switch (src0->type) {
  8673. case GGML_TYPE_F32:
  8674. {
  8675. ggml_compute_forward_group_norm_f32(params, dst);
  8676. } break;
  8677. default:
  8678. {
  8679. GGML_ASSERT(false);
  8680. } break;
  8681. }
  8682. }
  8683. // ggml_compute_forward_mul_mat
  8684. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8685. // helper function to determine if it is better to use BLAS or not
  8686. // for large matrices, BLAS is faster
  8687. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8688. const struct ggml_tensor * src0 = dst->src[0];
  8689. const struct ggml_tensor * src1 = dst->src[1];
  8690. //const int64_t ne00 = src0->ne[0];
  8691. //const int64_t ne01 = src0->ne[1];
  8692. const int64_t ne10 = src1->ne[0];
  8693. const int64_t ne0 = dst->ne[0];
  8694. const int64_t ne1 = dst->ne[1];
  8695. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8696. // all the experts for each batch element and the processing would become incredibly slow
  8697. // TODO: find the optimal values for these
  8698. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8699. ggml_is_contiguous(src0) &&
  8700. ggml_is_contiguous(src1) &&
  8701. //src0->type == GGML_TYPE_F32 &&
  8702. src1->type == GGML_TYPE_F32 &&
  8703. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8704. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8705. return true;
  8706. }
  8707. return false;
  8708. }
  8709. #endif
  8710. static void ggml_compute_forward_mul_mat(
  8711. const struct ggml_compute_params * params,
  8712. struct ggml_tensor * dst) {
  8713. const struct ggml_tensor * src0 = dst->src[0];
  8714. const struct ggml_tensor * src1 = dst->src[1];
  8715. int64_t t0 = ggml_perf_time_us();
  8716. UNUSED(t0);
  8717. GGML_TENSOR_BINARY_OP_LOCALS
  8718. const int ith = params->ith;
  8719. const int nth = params->nth;
  8720. const enum ggml_type type = src0->type;
  8721. const bool src1_cont = ggml_is_contiguous(src1);
  8722. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8723. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8724. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8725. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8726. GGML_ASSERT(ne0 == ne01);
  8727. GGML_ASSERT(ne1 == ne11);
  8728. GGML_ASSERT(ne2 == ne12);
  8729. GGML_ASSERT(ne3 == ne13);
  8730. // we don't support permuted src0 or src1
  8731. GGML_ASSERT(nb00 == ggml_type_size(type));
  8732. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8733. // dst cannot be transposed or permuted
  8734. GGML_ASSERT(nb0 == sizeof(float));
  8735. GGML_ASSERT(nb0 <= nb1);
  8736. GGML_ASSERT(nb1 <= nb2);
  8737. GGML_ASSERT(nb2 <= nb3);
  8738. // broadcast factors
  8739. const int64_t r2 = ne12/ne02;
  8740. const int64_t r3 = ne13/ne03;
  8741. // nb01 >= nb00 - src0 is not transposed
  8742. // compute by src0 rows
  8743. #if defined(GGML_USE_CLBLAST)
  8744. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8745. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8746. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8747. }
  8748. return;
  8749. }
  8750. #endif
  8751. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8752. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8753. const int64_t ne_plane = ne01*ne00;
  8754. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8755. UNUSED(desired_wsize);
  8756. if (params->type == GGML_TASK_TYPE_INIT) {
  8757. if (type != GGML_TYPE_F32) {
  8758. assert(params->wsize >= desired_wsize);
  8759. // parallelize by src0 rows
  8760. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8761. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8762. // broadcast src0 into src1 across 2nd,3rd dimension
  8763. const int64_t i03 = i13/r3;
  8764. const int64_t i02 = i12/r2;
  8765. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8766. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8767. ggml_to_float_t const to_float = type_traits[type].to_float;
  8768. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8769. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8770. }
  8771. }
  8772. }
  8773. }
  8774. return;
  8775. }
  8776. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8777. return;
  8778. }
  8779. // perform sgemm, parallelization controlled by blas lib
  8780. if (ith != 0) {
  8781. return;
  8782. }
  8783. //const int64_t tgemm0 = ggml_perf_time_us();
  8784. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8785. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8786. const int64_t i03 = i13/r3;
  8787. const int64_t i02 = i12/r2;
  8788. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8789. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8790. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8791. if (type != GGML_TYPE_F32) {
  8792. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8793. }
  8794. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8795. ne1, ne01, ne10,
  8796. 1.0f, y, ne10,
  8797. x, ne00,
  8798. 0.0f, d, ne01);
  8799. }
  8800. }
  8801. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8802. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8803. return;
  8804. }
  8805. #endif
  8806. #if GGML_USE_LLAMAFILE
  8807. if (src1_cont) {
  8808. for (int64_t i13 = 0; i13 < ne13; i13++)
  8809. for (int64_t i12 = 0; i12 < ne12; i12++)
  8810. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8811. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8812. nb01/ggml_type_size(src0->type),
  8813. (const char *)src1->data + i12*nb12 + i13*nb13,
  8814. nb11/ggml_type_size(src1->type),
  8815. (char *)dst->data + i12*nb2 + i13*nb3,
  8816. nb1/ggml_type_size(dst->type),
  8817. ith, nth,
  8818. params->type,
  8819. src0->type,
  8820. src1->type,
  8821. dst->type))
  8822. goto UseGgmlGemm1;
  8823. return;
  8824. }
  8825. UseGgmlGemm1:;
  8826. #endif
  8827. if (params->type == GGML_TASK_TYPE_INIT) {
  8828. if (ith != 0) {
  8829. return;
  8830. }
  8831. if (src1->type != vec_dot_type) {
  8832. char * wdata = params->wdata;
  8833. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8834. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8835. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8836. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8837. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8838. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8839. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8840. wdata += row_size;
  8841. }
  8842. }
  8843. }
  8844. }
  8845. return;
  8846. }
  8847. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8848. return;
  8849. }
  8850. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8851. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8852. #if GGML_USE_LLAMAFILE
  8853. if (src1->type != vec_dot_type) {
  8854. for (int64_t i13 = 0; i13 < ne13; i13++)
  8855. for (int64_t i12 = 0; i12 < ne12; i12++)
  8856. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8857. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8858. nb01/ggml_type_size(src0->type),
  8859. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  8860. row_size/ggml_type_size(vec_dot_type),
  8861. (char *)dst->data + i12*nb2 + i13*nb3,
  8862. nb1/ggml_type_size(dst->type),
  8863. ith, nth,
  8864. params->type,
  8865. src0->type,
  8866. vec_dot_type,
  8867. dst->type))
  8868. goto UseGgmlGemm2;
  8869. return;
  8870. }
  8871. UseGgmlGemm2:;
  8872. #endif
  8873. const int64_t nr0 = ne01; // src0 rows
  8874. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8875. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8876. // distribute the thread work across the inner or outer loop based on which one is larger
  8877. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8878. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8879. const int64_t ith0 = ith % nth0;
  8880. const int64_t ith1 = ith / nth0;
  8881. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8882. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8883. const int64_t ir010 = dr0*ith0;
  8884. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8885. const int64_t ir110 = dr1*ith1;
  8886. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8887. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8888. // threads with no work simply yield (not sure if it helps)
  8889. if (ir010 >= ir011 || ir110 >= ir111) {
  8890. sched_yield();
  8891. return;
  8892. }
  8893. assert(ne12 % ne02 == 0);
  8894. assert(ne13 % ne03 == 0);
  8895. // block-tiling attempt
  8896. const int64_t blck_0 = 16;
  8897. const int64_t blck_1 = 16;
  8898. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8899. int64_t nrc = vec_dot_num_rows;
  8900. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8901. // this check can be removed once they are extended to support odd numbered rows/cols too
  8902. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8903. nrc = 1;
  8904. }
  8905. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8906. // attempt to reduce false-sharing (does not seem to make a difference)
  8907. // 16 * 2, accounting for mmla kernels
  8908. float tmp[32];
  8909. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8910. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8911. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8912. const int64_t i13 = (ir1/(ne12*ne1));
  8913. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8914. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8915. // broadcast src0 into src1
  8916. const int64_t i03 = i13/r3;
  8917. const int64_t i02 = i12/r2;
  8918. const int64_t i1 = i11;
  8919. const int64_t i2 = i12;
  8920. const int64_t i3 = i13;
  8921. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8922. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8923. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8924. // the original src1 data pointer, so we should index using the indices directly
  8925. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8926. const char * src1_col = (const char *) wdata +
  8927. (src1_cont || src1->type != vec_dot_type
  8928. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8929. : (i11*nb11 + i12*nb12 + i13*nb13));
  8930. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8931. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8932. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8933. //}
  8934. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8935. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8936. }
  8937. for (int cn = 0; cn < nrc; ++cn) {
  8938. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8939. }
  8940. }
  8941. }
  8942. }
  8943. }
  8944. // ggml_compute_forward_mul_mat_id
  8945. static void ggml_compute_forward_mul_mat_id(
  8946. const struct ggml_compute_params * params,
  8947. struct ggml_tensor * dst) {
  8948. const struct ggml_tensor * src0 = dst->src[0];
  8949. const struct ggml_tensor * src1 = dst->src[1];
  8950. const struct ggml_tensor * ids = dst->src[2];
  8951. GGML_TENSOR_BINARY_OP_LOCALS
  8952. const int ith = params->ith;
  8953. const int nth = params->nth;
  8954. const enum ggml_type type = src0->type;
  8955. const bool src1_cont = ggml_is_contiguous(src1);
  8956. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8957. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8958. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8959. // we don't support permuted src0 or src1
  8960. GGML_ASSERT(nb00 == ggml_type_size(type));
  8961. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8962. // dst cannot be transposed or permuted
  8963. GGML_ASSERT(nb0 == sizeof(float));
  8964. GGML_ASSERT(nb0 <= nb1);
  8965. GGML_ASSERT(nb1 <= nb2);
  8966. GGML_ASSERT(nb2 <= nb3);
  8967. // row groups
  8968. const int n_ids = ids->ne[0]; // n_expert_used
  8969. const int n_as = ne02; // n_expert
  8970. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8971. (char *) params->wdata :
  8972. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8973. struct mmid_row_mapping {
  8974. int32_t i1;
  8975. int32_t i2;
  8976. };
  8977. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8978. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  8979. if (params->type == GGML_TASK_TYPE_INIT) {
  8980. if (ith != 0) {
  8981. return;
  8982. }
  8983. char * wdata = params->wdata;
  8984. if (src1->type != vec_dot_type) {
  8985. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8986. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8987. assert(src1->type == GGML_TYPE_F32);
  8988. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8989. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8990. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8991. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8992. wdata += row_size;
  8993. }
  8994. }
  8995. }
  8996. }
  8997. // initialize matrix_row_counts
  8998. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8999. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9000. // group rows by src0 matrix
  9001. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9002. for (int id = 0; id < n_ids; ++id) {
  9003. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9004. assert(i02 >= 0 && i02 < n_as);
  9005. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9006. matrix_row_counts[i02] += 1;
  9007. }
  9008. }
  9009. return;
  9010. }
  9011. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9012. return;
  9013. }
  9014. // compute each matrix multiplication in sequence
  9015. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9016. const int64_t cne1 = matrix_row_counts[cur_a];
  9017. if (cne1 == 0) {
  9018. continue;
  9019. }
  9020. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9021. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9022. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9023. const int64_t nr0 = ne01; // src0 rows
  9024. const int64_t nr1 = cne1; // src1 rows
  9025. // distribute the thread work across the inner or outer loop based on which one is larger
  9026. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9027. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9028. const int64_t ith0 = ith % nth0;
  9029. const int64_t ith1 = ith / nth0;
  9030. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9031. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9032. const int64_t ir010 = dr0*ith0;
  9033. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9034. const int64_t ir110 = dr1*ith1;
  9035. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9036. // threads with no work simply yield (not sure if it helps)
  9037. //if (ir010 >= ir011 || ir110 >= ir111) {
  9038. // sched_yield();
  9039. // continue;
  9040. //}
  9041. // block-tiling attempt
  9042. const int64_t blck_0 = 16;
  9043. const int64_t blck_1 = 16;
  9044. // attempt to reduce false-sharing (does not seem to make a difference)
  9045. float tmp[16];
  9046. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9047. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9048. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9049. const int64_t _i12 = ir1; // logical row index for this expert
  9050. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9051. const int id = row_mapping.i1; // selected expert index
  9052. const int64_t i11 = id % ne11;
  9053. const int64_t i12 = row_mapping.i2; // row index in src1
  9054. const int64_t i1 = id; // selected expert index
  9055. const int64_t i2 = i12; // row
  9056. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9057. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9058. // the original src1 data pointer, so we should index using the indices directly
  9059. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9060. const char * src1_col = (const char *) wdata +
  9061. (src1_cont || src1->type != vec_dot_type
  9062. ? (i11 + i12*ne11)*row_size
  9063. : (i11*nb11 + i12*nb12));
  9064. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9065. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9066. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9067. //}
  9068. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9069. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9070. }
  9071. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9072. }
  9073. }
  9074. }
  9075. }
  9076. #undef MMID_MATRIX_ROW
  9077. }
  9078. // ggml_compute_forward_out_prod
  9079. static void ggml_compute_forward_out_prod_f32(
  9080. const struct ggml_compute_params * params,
  9081. struct ggml_tensor * dst) {
  9082. const struct ggml_tensor * src0 = dst->src[0];
  9083. const struct ggml_tensor * src1 = dst->src[1];
  9084. // int64_t t0 = ggml_perf_time_us();
  9085. // UNUSED(t0);
  9086. GGML_TENSOR_BINARY_OP_LOCALS
  9087. const int ith = params->ith;
  9088. const int nth = params->nth;
  9089. GGML_ASSERT(ne0 == ne00);
  9090. GGML_ASSERT(ne1 == ne10);
  9091. GGML_ASSERT(ne2 == ne02);
  9092. GGML_ASSERT(ne02 == ne12);
  9093. GGML_ASSERT(ne3 == ne13);
  9094. GGML_ASSERT(ne03 == ne13);
  9095. // we don't support permuted src0 or src1
  9096. GGML_ASSERT(nb00 == sizeof(float));
  9097. // dst cannot be transposed or permuted
  9098. GGML_ASSERT(nb0 == sizeof(float));
  9099. // GGML_ASSERT(nb0 <= nb1);
  9100. // GGML_ASSERT(nb1 <= nb2);
  9101. // GGML_ASSERT(nb2 <= nb3);
  9102. // nb01 >= nb00 - src0 is not transposed
  9103. // compute by src0 rows
  9104. // TODO: #if defined(GGML_USE_CLBLAST)
  9105. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9106. bool use_blas = ggml_is_matrix(src0) &&
  9107. ggml_is_matrix(src1) &&
  9108. ggml_is_contiguous(src0) &&
  9109. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9110. #endif
  9111. if (params->type == GGML_TASK_TYPE_INIT) {
  9112. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9113. if (use_blas) {
  9114. return;
  9115. }
  9116. #endif
  9117. if (ith != 0) {
  9118. return;
  9119. }
  9120. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9121. return;
  9122. }
  9123. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9124. return;
  9125. }
  9126. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9127. if (use_blas) {
  9128. if (params->ith != 0) { // All threads other than the first do no work.
  9129. return;
  9130. }
  9131. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9132. // src0: (k,n)
  9133. // src1: (k,m)
  9134. // dst: (m,n)
  9135. //
  9136. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9137. // Also expressed as (major,minor)
  9138. // a: (m,k): so src1 transposed
  9139. // b: (k,n): so src0
  9140. // c: (m,n)
  9141. //
  9142. // However, if ggml_is_transposed(src1) is true, then
  9143. // src1->data already contains a transposed version, so sgemm mustn't
  9144. // transpose it further.
  9145. int n = src0->ne[0];
  9146. int k = src0->ne[1];
  9147. int m = src1->ne[0];
  9148. int transposeA, lda;
  9149. if (!ggml_is_transposed(src1)) {
  9150. transposeA = CblasTrans;
  9151. lda = m;
  9152. } else {
  9153. transposeA = CblasNoTrans;
  9154. lda = k;
  9155. }
  9156. float * a = (float *) ((char *) src1->data);
  9157. float * b = (float *) ((char *) src0->data);
  9158. float * c = (float *) ((char *) dst->data);
  9159. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9160. return;
  9161. }
  9162. #endif
  9163. // dst[:,:,:,:] = 0
  9164. // for i2,i3:
  9165. // for i1:
  9166. // for i01:
  9167. // for i0:
  9168. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9169. // parallelize by last three dimensions
  9170. // total rows in dst
  9171. const int64_t nr = ne1*ne2*ne3;
  9172. // rows per thread
  9173. const int64_t dr = (nr + nth - 1)/nth;
  9174. // row range for this thread
  9175. const int64_t ir0 = dr*ith;
  9176. const int64_t ir1 = MIN(ir0 + dr, nr);
  9177. // block-tiling attempt
  9178. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9179. const int64_t blck_1 = 16;
  9180. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9181. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9182. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9183. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9184. for (int64_t ir = bir; ir < bir1; ++ir) {
  9185. // dst indices
  9186. const int64_t i3 = ir/(ne2*ne1);
  9187. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9188. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9189. const int64_t i02 = i2;
  9190. const int64_t i03 = i3;
  9191. //const int64_t i10 = i1;
  9192. const int64_t i12 = i2;
  9193. const int64_t i13 = i3;
  9194. #if GGML_VEC_MAD_UNROLL > 2
  9195. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9196. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9197. const int64_t i11 = i01;
  9198. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9199. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9200. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9201. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9202. }
  9203. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9204. const int64_t i11 = i01;
  9205. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9206. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9207. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9208. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9209. }
  9210. #else
  9211. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9212. const int64_t i11 = i01;
  9213. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9214. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9215. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9216. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9217. }
  9218. #endif
  9219. }
  9220. }
  9221. }
  9222. //int64_t t1 = ggml_perf_time_us();
  9223. //static int64_t acc = 0;
  9224. //acc += t1 - t0;
  9225. //if (t1 - t0 > 10) {
  9226. // printf("\n");
  9227. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9228. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9229. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9230. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9231. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9232. //}
  9233. }
  9234. static void ggml_compute_forward_out_prod_q_f32(
  9235. const struct ggml_compute_params * params,
  9236. struct ggml_tensor * dst) {
  9237. const struct ggml_tensor * src0 = dst->src[0];
  9238. const struct ggml_tensor * src1 = dst->src[1];
  9239. // int64_t t0 = ggml_perf_time_us();
  9240. // UNUSED(t0);
  9241. GGML_TENSOR_BINARY_OP_LOCALS;
  9242. const int ith = params->ith;
  9243. const int nth = params->nth;
  9244. const enum ggml_type type = src0->type;
  9245. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9246. GGML_ASSERT(ne02 == ne12);
  9247. GGML_ASSERT(ne03 == ne13);
  9248. GGML_ASSERT(ne2 == ne12);
  9249. GGML_ASSERT(ne3 == ne13);
  9250. // we don't support permuted src0 dim0
  9251. GGML_ASSERT(nb00 == ggml_type_size(type));
  9252. // dst dim0 cannot be transposed or permuted
  9253. GGML_ASSERT(nb0 == sizeof(float));
  9254. // GGML_ASSERT(nb0 <= nb1);
  9255. // GGML_ASSERT(nb1 <= nb2);
  9256. // GGML_ASSERT(nb2 <= nb3);
  9257. GGML_ASSERT(ne0 == ne00);
  9258. GGML_ASSERT(ne1 == ne10);
  9259. GGML_ASSERT(ne2 == ne02);
  9260. GGML_ASSERT(ne3 == ne03);
  9261. // nb01 >= nb00 - src0 is not transposed
  9262. // compute by src0 rows
  9263. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9264. if (params->type == GGML_TASK_TYPE_INIT) {
  9265. if (ith != 0) {
  9266. return;
  9267. }
  9268. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9269. return;
  9270. }
  9271. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9272. return;
  9273. }
  9274. // parallelize by last three dimensions
  9275. // total rows in dst
  9276. const int64_t nr = ne1*ne2*ne3;
  9277. // rows per thread
  9278. const int64_t dr = (nr + nth - 1)/nth;
  9279. // row range for this thread
  9280. const int64_t ir0 = dr*ith;
  9281. const int64_t ir1 = MIN(ir0 + dr, nr);
  9282. // dst[:,:,:,:] = 0
  9283. // for i2,i3:
  9284. // for i1:
  9285. // for i01:
  9286. // for i0:
  9287. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9288. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9289. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9290. // dst indices
  9291. const int64_t i3 = ir/(ne2*ne1);
  9292. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9293. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9294. const int64_t i02 = i2;
  9295. const int64_t i03 = i3;
  9296. //const int64_t i10 = i1;
  9297. const int64_t i12 = i2;
  9298. const int64_t i13 = i3;
  9299. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9300. const int64_t i11 = i01;
  9301. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9302. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9303. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9304. dequantize_row_q(s0, wdata, ne0);
  9305. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9306. }
  9307. }
  9308. //int64_t t1 = ggml_perf_time_us();
  9309. //static int64_t acc = 0;
  9310. //acc += t1 - t0;
  9311. //if (t1 - t0 > 10) {
  9312. // printf("\n");
  9313. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9314. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9315. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9316. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9317. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9318. //}
  9319. }
  9320. static void ggml_compute_forward_out_prod(
  9321. const struct ggml_compute_params * params,
  9322. struct ggml_tensor * dst) {
  9323. const struct ggml_tensor * src0 = dst->src[0];
  9324. switch (src0->type) {
  9325. case GGML_TYPE_Q4_0:
  9326. case GGML_TYPE_Q4_1:
  9327. case GGML_TYPE_Q5_0:
  9328. case GGML_TYPE_Q5_1:
  9329. case GGML_TYPE_Q8_0:
  9330. case GGML_TYPE_Q2_K:
  9331. case GGML_TYPE_Q3_K:
  9332. case GGML_TYPE_Q4_K:
  9333. case GGML_TYPE_Q5_K:
  9334. case GGML_TYPE_Q6_K:
  9335. case GGML_TYPE_IQ2_XXS:
  9336. case GGML_TYPE_IQ2_XS:
  9337. case GGML_TYPE_IQ3_XXS:
  9338. case GGML_TYPE_IQ1_S:
  9339. case GGML_TYPE_IQ1_M:
  9340. case GGML_TYPE_IQ4_NL:
  9341. case GGML_TYPE_IQ4_XS:
  9342. case GGML_TYPE_IQ3_S:
  9343. case GGML_TYPE_IQ2_S:
  9344. {
  9345. ggml_compute_forward_out_prod_q_f32(params, dst);
  9346. } break;
  9347. case GGML_TYPE_F16:
  9348. {
  9349. GGML_ASSERT(false); // todo
  9350. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9351. } break;
  9352. case GGML_TYPE_F32:
  9353. {
  9354. ggml_compute_forward_out_prod_f32(params, dst);
  9355. } break;
  9356. default:
  9357. {
  9358. GGML_ASSERT(false);
  9359. } break;
  9360. }
  9361. }
  9362. // ggml_compute_forward_scale
  9363. static void ggml_compute_forward_scale_f32(
  9364. const struct ggml_compute_params * params,
  9365. struct ggml_tensor * dst) {
  9366. const struct ggml_tensor * src0 = dst->src[0];
  9367. GGML_ASSERT(ggml_is_contiguous(src0));
  9368. GGML_ASSERT(ggml_is_contiguous(dst));
  9369. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9371. return;
  9372. }
  9373. // scale factor
  9374. float v;
  9375. memcpy(&v, dst->op_params, sizeof(float));
  9376. const int ith = params->ith;
  9377. const int nth = params->nth;
  9378. const int nc = src0->ne[0];
  9379. const int nr = ggml_nrows(src0);
  9380. // rows per thread
  9381. const int dr = (nr + nth - 1)/nth;
  9382. // row range for this thread
  9383. const int ir0 = dr*ith;
  9384. const int ir1 = MIN(ir0 + dr, nr);
  9385. const size_t nb01 = src0->nb[1];
  9386. const size_t nb1 = dst->nb[1];
  9387. for (int i1 = ir0; i1 < ir1; i1++) {
  9388. if (dst->data != src0->data) {
  9389. // src0 is same shape as dst => same indices
  9390. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9391. }
  9392. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9393. }
  9394. }
  9395. static void ggml_compute_forward_scale(
  9396. const struct ggml_compute_params * params,
  9397. struct ggml_tensor * dst) {
  9398. const struct ggml_tensor * src0 = dst->src[0];
  9399. switch (src0->type) {
  9400. case GGML_TYPE_F32:
  9401. {
  9402. ggml_compute_forward_scale_f32(params, dst);
  9403. } break;
  9404. default:
  9405. {
  9406. GGML_ASSERT(false);
  9407. } break;
  9408. }
  9409. }
  9410. // ggml_compute_forward_set
  9411. static void ggml_compute_forward_set_f32(
  9412. const struct ggml_compute_params * params,
  9413. struct ggml_tensor * dst) {
  9414. const struct ggml_tensor * src0 = dst->src[0];
  9415. const struct ggml_tensor * src1 = dst->src[1];
  9416. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9417. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9418. // view src0 and dst with these strides and data offset inbytes during set
  9419. // nb0 is implicitly element_size because src0 and dst are contiguous
  9420. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9421. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9422. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9423. size_t offset = ((int32_t *) dst->op_params)[3];
  9424. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9425. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9426. if (params->ith != 0) {
  9427. return;
  9428. }
  9429. // memcpy needs to be synchronized across threads to avoid race conditions.
  9430. // => do it in INIT phase
  9431. memcpy(
  9432. ((char *) dst->data),
  9433. ((char *) src0->data),
  9434. ggml_nbytes(dst));
  9435. }
  9436. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9437. return;
  9438. }
  9439. const int ith = params->ith;
  9440. const int nth = params->nth;
  9441. const int nr = ggml_nrows(src1);
  9442. const int nc = src1->ne[0];
  9443. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9444. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9445. // src0 and dst as viewed during set
  9446. const size_t nb0 = ggml_element_size(src0);
  9447. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9448. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9449. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9450. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9451. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9452. GGML_ASSERT(nb10 == sizeof(float));
  9453. // rows per thread
  9454. const int dr = (nr + nth - 1)/nth;
  9455. // row range for this thread
  9456. const int ir0 = dr*ith;
  9457. const int ir1 = MIN(ir0 + dr, nr);
  9458. for (int ir = ir0; ir < ir1; ++ir) {
  9459. // src0 and dst are viewed with shape of src1 and offset
  9460. // => same indices
  9461. const int i3 = ir/(ne12*ne11);
  9462. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9463. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9464. ggml_vec_cpy_f32(nc,
  9465. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9466. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9467. }
  9468. }
  9469. static void ggml_compute_forward_set(
  9470. const struct ggml_compute_params * params,
  9471. struct ggml_tensor * dst) {
  9472. const struct ggml_tensor * src0 = dst->src[0];
  9473. switch (src0->type) {
  9474. case GGML_TYPE_F32:
  9475. {
  9476. ggml_compute_forward_set_f32(params, dst);
  9477. } break;
  9478. case GGML_TYPE_F16:
  9479. case GGML_TYPE_Q4_0:
  9480. case GGML_TYPE_Q4_1:
  9481. case GGML_TYPE_Q5_0:
  9482. case GGML_TYPE_Q5_1:
  9483. case GGML_TYPE_Q8_0:
  9484. case GGML_TYPE_Q8_1:
  9485. case GGML_TYPE_Q2_K:
  9486. case GGML_TYPE_Q3_K:
  9487. case GGML_TYPE_Q4_K:
  9488. case GGML_TYPE_Q5_K:
  9489. case GGML_TYPE_Q6_K:
  9490. case GGML_TYPE_IQ2_XXS:
  9491. case GGML_TYPE_IQ2_XS:
  9492. case GGML_TYPE_IQ3_XXS:
  9493. case GGML_TYPE_IQ1_S:
  9494. case GGML_TYPE_IQ1_M:
  9495. case GGML_TYPE_IQ4_NL:
  9496. case GGML_TYPE_IQ4_XS:
  9497. case GGML_TYPE_IQ3_S:
  9498. case GGML_TYPE_IQ2_S:
  9499. default:
  9500. {
  9501. GGML_ASSERT(false);
  9502. } break;
  9503. }
  9504. }
  9505. // ggml_compute_forward_cpy
  9506. static void ggml_compute_forward_cpy(
  9507. const struct ggml_compute_params * params,
  9508. struct ggml_tensor * dst) {
  9509. ggml_compute_forward_dup(params, dst);
  9510. }
  9511. // ggml_compute_forward_cont
  9512. static void ggml_compute_forward_cont(
  9513. const struct ggml_compute_params * params,
  9514. struct ggml_tensor * dst) {
  9515. ggml_compute_forward_dup(params, dst);
  9516. }
  9517. // ggml_compute_forward_reshape
  9518. static void ggml_compute_forward_reshape(
  9519. const struct ggml_compute_params * params,
  9520. struct ggml_tensor * dst) {
  9521. // NOP
  9522. UNUSED(params);
  9523. UNUSED(dst);
  9524. }
  9525. // ggml_compute_forward_view
  9526. static void ggml_compute_forward_view(
  9527. const struct ggml_compute_params * params,
  9528. const struct ggml_tensor * dst) {
  9529. // NOP
  9530. UNUSED(params);
  9531. UNUSED(dst);
  9532. }
  9533. // ggml_compute_forward_permute
  9534. static void ggml_compute_forward_permute(
  9535. const struct ggml_compute_params * params,
  9536. const struct ggml_tensor * dst) {
  9537. // NOP
  9538. UNUSED(params);
  9539. UNUSED(dst);
  9540. }
  9541. // ggml_compute_forward_transpose
  9542. static void ggml_compute_forward_transpose(
  9543. const struct ggml_compute_params * params,
  9544. const struct ggml_tensor * dst) {
  9545. // NOP
  9546. UNUSED(params);
  9547. UNUSED(dst);
  9548. }
  9549. // ggml_compute_forward_get_rows
  9550. static void ggml_compute_forward_get_rows_q(
  9551. const struct ggml_compute_params * params,
  9552. struct ggml_tensor * dst) {
  9553. const struct ggml_tensor * src0 = dst->src[0];
  9554. const struct ggml_tensor * src1 = dst->src[1];
  9555. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9556. return;
  9557. }
  9558. GGML_TENSOR_BINARY_OP_LOCALS
  9559. const int64_t nc = ne00;
  9560. const int64_t nr = ggml_nelements(src1);
  9561. const enum ggml_type type = src0->type;
  9562. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9563. assert(ne0 == nc);
  9564. assert(ne02 == ne11);
  9565. assert(nb00 == ggml_type_size(type));
  9566. assert(ggml_nrows(dst) == nr);
  9567. const int ith = params->ith;
  9568. const int nth = params->nth;
  9569. // rows per thread
  9570. const int dr = (nr + nth - 1)/nth;
  9571. // row range for this thread
  9572. const int ir0 = dr*ith;
  9573. const int ir1 = MIN(ir0 + dr, nr);
  9574. for (int64_t i = ir0; i < ir1; ++i) {
  9575. const int64_t i12 = i/(ne11*ne10);
  9576. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9577. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9578. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9579. dequantize_row_q(
  9580. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9581. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9582. }
  9583. }
  9584. static void ggml_compute_forward_get_rows_f16(
  9585. const struct ggml_compute_params * params,
  9586. struct ggml_tensor * dst) {
  9587. const struct ggml_tensor * src0 = dst->src[0];
  9588. const struct ggml_tensor * src1 = dst->src[1];
  9589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9590. return;
  9591. }
  9592. GGML_TENSOR_BINARY_OP_LOCALS
  9593. const int64_t nc = ne00;
  9594. const int64_t nr = ggml_nelements(src1);
  9595. assert(ne0 == nc);
  9596. assert(ne02 == ne11);
  9597. assert(nb00 == sizeof(ggml_fp16_t));
  9598. assert(ggml_nrows(dst) == nr);
  9599. const int ith = params->ith;
  9600. const int nth = params->nth;
  9601. // rows per thread
  9602. const int dr = (nr + nth - 1)/nth;
  9603. // row range for this thread
  9604. const int ir0 = dr*ith;
  9605. const int ir1 = MIN(ir0 + dr, nr);
  9606. for (int64_t i = ir0; i < ir1; ++i) {
  9607. const int64_t i12 = i/(ne11*ne10);
  9608. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9609. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9610. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9611. ggml_fp16_to_fp32_row(
  9612. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9613. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9614. }
  9615. }
  9616. static void ggml_compute_forward_get_rows_f32(
  9617. const struct ggml_compute_params * params,
  9618. struct ggml_tensor * dst) {
  9619. const struct ggml_tensor * src0 = dst->src[0];
  9620. const struct ggml_tensor * src1 = dst->src[1];
  9621. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9622. return;
  9623. }
  9624. GGML_TENSOR_BINARY_OP_LOCALS
  9625. const int64_t nc = ne00;
  9626. const int64_t nr = ggml_nelements(src1);
  9627. assert(ne0 == nc);
  9628. assert(ne02 == ne11);
  9629. assert(nb00 == sizeof(float));
  9630. assert(ggml_nrows(dst) == nr);
  9631. const int ith = params->ith;
  9632. const int nth = params->nth;
  9633. // rows per thread
  9634. const int dr = (nr + nth - 1)/nth;
  9635. // row range for this thread
  9636. const int ir0 = dr*ith;
  9637. const int ir1 = MIN(ir0 + dr, nr);
  9638. for (int64_t i = ir0; i < ir1; ++i) {
  9639. const int64_t i12 = i/(ne11*ne10);
  9640. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9641. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9642. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9643. ggml_vec_cpy_f32(nc,
  9644. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9645. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9646. }
  9647. }
  9648. static void ggml_compute_forward_get_rows(
  9649. const struct ggml_compute_params * params,
  9650. struct ggml_tensor * dst) {
  9651. const struct ggml_tensor * src0 = dst->src[0];
  9652. switch (src0->type) {
  9653. case GGML_TYPE_Q4_0:
  9654. case GGML_TYPE_Q4_1:
  9655. case GGML_TYPE_Q5_0:
  9656. case GGML_TYPE_Q5_1:
  9657. case GGML_TYPE_Q8_0:
  9658. case GGML_TYPE_Q8_1:
  9659. case GGML_TYPE_Q2_K:
  9660. case GGML_TYPE_Q3_K:
  9661. case GGML_TYPE_Q4_K:
  9662. case GGML_TYPE_Q5_K:
  9663. case GGML_TYPE_Q6_K:
  9664. case GGML_TYPE_IQ2_XXS:
  9665. case GGML_TYPE_IQ2_XS:
  9666. case GGML_TYPE_IQ3_XXS:
  9667. case GGML_TYPE_IQ1_S:
  9668. case GGML_TYPE_IQ1_M:
  9669. case GGML_TYPE_IQ4_NL:
  9670. case GGML_TYPE_IQ4_XS:
  9671. case GGML_TYPE_IQ3_S:
  9672. case GGML_TYPE_IQ2_S:
  9673. {
  9674. ggml_compute_forward_get_rows_q(params, dst);
  9675. } break;
  9676. case GGML_TYPE_F16:
  9677. {
  9678. ggml_compute_forward_get_rows_f16(params, dst);
  9679. } break;
  9680. case GGML_TYPE_F32:
  9681. case GGML_TYPE_I32:
  9682. {
  9683. ggml_compute_forward_get_rows_f32(params, dst);
  9684. } break;
  9685. default:
  9686. {
  9687. GGML_ASSERT(false);
  9688. } break;
  9689. }
  9690. //static bool first = true;
  9691. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9692. //if (first) {
  9693. // first = false;
  9694. //} else {
  9695. // for (int k = 0; k < dst->ne[1]; ++k) {
  9696. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9697. // for (int i = 0; i < 16; ++i) {
  9698. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9699. // }
  9700. // printf("\n");
  9701. // }
  9702. // printf("\n");
  9703. // }
  9704. // printf("\n");
  9705. // exit(0);
  9706. //}
  9707. }
  9708. // ggml_compute_forward_get_rows_back
  9709. static void ggml_compute_forward_get_rows_back_f32_f16(
  9710. const struct ggml_compute_params * params,
  9711. struct ggml_tensor * dst) {
  9712. const struct ggml_tensor * src0 = dst->src[0];
  9713. const struct ggml_tensor * src1 = dst->src[1];
  9714. GGML_ASSERT(params->ith == 0);
  9715. GGML_ASSERT(ggml_is_contiguous(dst));
  9716. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9717. if (params->type == GGML_TASK_TYPE_INIT) {
  9718. if (params->ith != 0) {
  9719. return;
  9720. }
  9721. memset(dst->data, 0, ggml_nbytes(dst));
  9722. }
  9723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9724. return;
  9725. }
  9726. const int nc = src0->ne[0];
  9727. const int nr = ggml_nelements(src1);
  9728. GGML_ASSERT( dst->ne[0] == nc);
  9729. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9730. for (int i = 0; i < nr; ++i) {
  9731. const int r = ((int32_t *) src1->data)[i];
  9732. for (int j = 0; j < nc; ++j) {
  9733. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9734. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9735. }
  9736. }
  9737. }
  9738. static void ggml_compute_forward_get_rows_back_f32(
  9739. const struct ggml_compute_params * params,
  9740. struct ggml_tensor * dst) {
  9741. const struct ggml_tensor * src0 = dst->src[0];
  9742. const struct ggml_tensor * src1 = dst->src[1];
  9743. GGML_ASSERT(params->ith == 0);
  9744. GGML_ASSERT(ggml_is_contiguous(dst));
  9745. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9746. if (params->type == GGML_TASK_TYPE_INIT) {
  9747. if (params->ith != 0) {
  9748. return;
  9749. }
  9750. memset(dst->data, 0, ggml_nbytes(dst));
  9751. }
  9752. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9753. return;
  9754. }
  9755. const int nc = src0->ne[0];
  9756. const int nr = ggml_nelements(src1);
  9757. GGML_ASSERT( dst->ne[0] == nc);
  9758. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9759. for (int i = 0; i < nr; ++i) {
  9760. const int r = ((int32_t *) src1->data)[i];
  9761. ggml_vec_add_f32(nc,
  9762. (float *) ((char *) dst->data + r*dst->nb[1]),
  9763. (float *) ((char *) dst->data + r*dst->nb[1]),
  9764. (float *) ((char *) src0->data + i*src0->nb[1]));
  9765. }
  9766. }
  9767. static void ggml_compute_forward_get_rows_back(
  9768. const struct ggml_compute_params * params,
  9769. struct ggml_tensor * dst) {
  9770. const struct ggml_tensor * src0 = dst->src[0];
  9771. switch (src0->type) {
  9772. case GGML_TYPE_F16:
  9773. {
  9774. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9775. } break;
  9776. case GGML_TYPE_F32:
  9777. {
  9778. ggml_compute_forward_get_rows_back_f32(params, dst);
  9779. } break;
  9780. default:
  9781. {
  9782. GGML_ASSERT(false);
  9783. } break;
  9784. }
  9785. //static bool first = true;
  9786. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9787. //if (first) {
  9788. // first = false;
  9789. //} else {
  9790. // for (int k = 0; k < dst->ne[1]; ++k) {
  9791. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9792. // for (int i = 0; i < 16; ++i) {
  9793. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9794. // }
  9795. // printf("\n");
  9796. // }
  9797. // printf("\n");
  9798. // }
  9799. // printf("\n");
  9800. // exit(0);
  9801. //}
  9802. }
  9803. // ggml_compute_forward_diag
  9804. static void ggml_compute_forward_diag_f32(
  9805. const struct ggml_compute_params * params,
  9806. struct ggml_tensor * dst) {
  9807. const struct ggml_tensor * src0 = dst->src[0];
  9808. GGML_ASSERT(params->ith == 0);
  9809. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9810. return;
  9811. }
  9812. // TODO: handle transposed/permuted matrices
  9813. GGML_TENSOR_UNARY_OP_LOCALS
  9814. GGML_ASSERT(ne00 == ne0);
  9815. GGML_ASSERT(ne00 == ne1);
  9816. GGML_ASSERT(ne01 == 1);
  9817. GGML_ASSERT(ne02 == ne2);
  9818. GGML_ASSERT(ne03 == ne3);
  9819. GGML_ASSERT(nb00 == sizeof(float));
  9820. GGML_ASSERT(nb0 == sizeof(float));
  9821. for (int i3 = 0; i3 < ne3; i3++) {
  9822. for (int i2 = 0; i2 < ne2; i2++) {
  9823. for (int i1 = 0; i1 < ne1; i1++) {
  9824. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9825. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9826. for (int i0 = 0; i0 < i1; i0++) {
  9827. d[i0] = 0;
  9828. }
  9829. d[i1] = s[i1];
  9830. for (int i0 = i1+1; i0 < ne0; i0++) {
  9831. d[i0] = 0;
  9832. }
  9833. }
  9834. }
  9835. }
  9836. }
  9837. static void ggml_compute_forward_diag(
  9838. const struct ggml_compute_params * params,
  9839. struct ggml_tensor * dst) {
  9840. const struct ggml_tensor * src0 = dst->src[0];
  9841. switch (src0->type) {
  9842. case GGML_TYPE_F32:
  9843. {
  9844. ggml_compute_forward_diag_f32(params, dst);
  9845. } break;
  9846. default:
  9847. {
  9848. GGML_ASSERT(false);
  9849. } break;
  9850. }
  9851. }
  9852. // ggml_compute_forward_diag_mask_inf
  9853. static void ggml_compute_forward_diag_mask_f32(
  9854. const struct ggml_compute_params * params,
  9855. struct ggml_tensor * dst,
  9856. const float value) {
  9857. const struct ggml_tensor * src0 = dst->src[0];
  9858. const int ith = params->ith;
  9859. const int nth = params->nth;
  9860. const int n_past = ((int32_t *) dst->op_params)[0];
  9861. const bool inplace = src0->data == dst->data;
  9862. GGML_ASSERT(n_past >= 0);
  9863. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9864. if (ith != 0) {
  9865. return;
  9866. }
  9867. // memcpy needs to be synchronized across threads to avoid race conditions.
  9868. // => do it in INIT phase
  9869. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9870. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9871. memcpy(
  9872. ((char *) dst->data),
  9873. ((char *) src0->data),
  9874. ggml_nbytes(dst));
  9875. }
  9876. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9877. return;
  9878. }
  9879. // TODO: handle transposed/permuted matrices
  9880. const int n = ggml_nrows(src0);
  9881. const int nc = src0->ne[0];
  9882. const int nr = src0->ne[1];
  9883. const int nz = n/nr;
  9884. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9885. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9886. for (int k = 0; k < nz; k++) {
  9887. for (int j = ith; j < nr; j += nth) {
  9888. for (int i = n_past; i < nc; i++) {
  9889. if (i > n_past + j) {
  9890. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9891. }
  9892. }
  9893. }
  9894. }
  9895. }
  9896. static void ggml_compute_forward_diag_mask_inf(
  9897. const struct ggml_compute_params * params,
  9898. struct ggml_tensor * dst) {
  9899. const struct ggml_tensor * src0 = dst->src[0];
  9900. switch (src0->type) {
  9901. case GGML_TYPE_F32:
  9902. {
  9903. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9904. } break;
  9905. default:
  9906. {
  9907. GGML_ASSERT(false);
  9908. } break;
  9909. }
  9910. }
  9911. static void ggml_compute_forward_diag_mask_zero(
  9912. const struct ggml_compute_params * params,
  9913. struct ggml_tensor * dst) {
  9914. const struct ggml_tensor * src0 = dst->src[0];
  9915. switch (src0->type) {
  9916. case GGML_TYPE_F32:
  9917. {
  9918. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9919. } break;
  9920. default:
  9921. {
  9922. GGML_ASSERT(false);
  9923. } break;
  9924. }
  9925. }
  9926. // ggml_compute_forward_soft_max
  9927. static void ggml_compute_forward_soft_max_f32(
  9928. const struct ggml_compute_params * params,
  9929. struct ggml_tensor * dst) {
  9930. const struct ggml_tensor * src0 = dst->src[0];
  9931. const struct ggml_tensor * src1 = dst->src[1];
  9932. const struct ggml_tensor * src2 = dst->src[2];
  9933. assert(ggml_is_contiguous(dst));
  9934. assert(ggml_are_same_shape(src0, dst));
  9935. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9936. return;
  9937. }
  9938. float scale = 1.0f;
  9939. float max_bias = 0.0f;
  9940. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9941. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9942. // TODO: handle transposed/permuted matrices
  9943. const int ith = params->ith;
  9944. const int nth = params->nth;
  9945. GGML_TENSOR_UNARY_OP_LOCALS
  9946. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9947. // TODO: is this supposed to be ceil instead of floor?
  9948. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9949. const uint32_t n_head_kv = ne02;
  9950. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9951. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9952. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9953. const int nc = src0->ne[0];
  9954. const int nr = ggml_nrows(src0);
  9955. // rows per thread
  9956. const int dr = (nr + nth - 1)/nth;
  9957. // row range for this thread
  9958. const int ir0 = dr*ith;
  9959. const int ir1 = MIN(ir0 + dr, nr);
  9960. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9961. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9962. float * pos = src2 ? (float *) src2->data : src0->data;
  9963. for (int i1 = ir0; i1 < ir1; i1++) {
  9964. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9965. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9966. // broadcast the mask across rows
  9967. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9968. ggml_vec_cpy_f32 (nc, wp, sp);
  9969. ggml_vec_scale_f32(nc, wp, scale);
  9970. if (mp) {
  9971. ggml_vec_acc_f32(nc, wp, mp);
  9972. }
  9973. // ALiBi bias
  9974. if (max_bias > 0.0f) {
  9975. const uint32_t h = (i1/ne01)%ne02; // head
  9976. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9977. for (int i = 0; i < nc; i++) {
  9978. wp[i] = wp[i] + slope*pos[i];
  9979. }
  9980. }
  9981. #ifndef NDEBUG
  9982. for (int i = 0; i < nc; ++i) {
  9983. //printf("p[%d] = %f\n", i, p[i]);
  9984. assert(!isnan(wp[i]));
  9985. }
  9986. #endif
  9987. float max = -INFINITY;
  9988. ggml_vec_max_f32(nc, &max, wp);
  9989. ggml_float sum = 0.0;
  9990. uint16_t scvt;
  9991. for (int i = 0; i < nc; i++) {
  9992. if (wp[i] == -INFINITY) {
  9993. dp[i] = 0.0f;
  9994. } else {
  9995. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9996. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9997. memcpy(&scvt, &s, sizeof(scvt));
  9998. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9999. sum += (ggml_float)val;
  10000. dp[i] = val;
  10001. }
  10002. }
  10003. assert(sum > 0.0);
  10004. sum = 1.0/sum;
  10005. ggml_vec_scale_f32(nc, dp, sum);
  10006. #ifndef NDEBUG
  10007. for (int i = 0; i < nc; ++i) {
  10008. assert(!isnan(dp[i]));
  10009. assert(!isinf(dp[i]));
  10010. }
  10011. #endif
  10012. }
  10013. }
  10014. static void ggml_compute_forward_soft_max(
  10015. const struct ggml_compute_params * params,
  10016. struct ggml_tensor * dst) {
  10017. const struct ggml_tensor * src0 = dst->src[0];
  10018. switch (src0->type) {
  10019. case GGML_TYPE_F32:
  10020. {
  10021. ggml_compute_forward_soft_max_f32(params, dst);
  10022. } break;
  10023. default:
  10024. {
  10025. GGML_ASSERT(false);
  10026. } break;
  10027. }
  10028. }
  10029. // ggml_compute_forward_soft_max_back
  10030. static void ggml_compute_forward_soft_max_back_f32(
  10031. const struct ggml_compute_params * params,
  10032. struct ggml_tensor * dst) {
  10033. const struct ggml_tensor * src0 = dst->src[0];
  10034. const struct ggml_tensor * src1 = dst->src[1];
  10035. GGML_ASSERT(ggml_is_contiguous(src0));
  10036. GGML_ASSERT(ggml_is_contiguous(src1));
  10037. GGML_ASSERT(ggml_is_contiguous(dst));
  10038. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10039. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10040. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10041. return;
  10042. }
  10043. // TODO: handle transposed/permuted matrices
  10044. const int ith = params->ith;
  10045. const int nth = params->nth;
  10046. const int nc = src0->ne[0];
  10047. const int nr = ggml_nrows(src0);
  10048. // rows per thread
  10049. const int dr = (nr + nth - 1)/nth;
  10050. // row range for this thread
  10051. const int ir0 = dr*ith;
  10052. const int ir1 = MIN(ir0 + dr, nr);
  10053. for (int i1 = ir0; i1 < ir1; i1++) {
  10054. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10055. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10056. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10057. #ifndef NDEBUG
  10058. for (int i = 0; i < nc; ++i) {
  10059. //printf("p[%d] = %f\n", i, p[i]);
  10060. assert(!isnan(dy[i]));
  10061. assert(!isnan(y[i]));
  10062. }
  10063. #endif
  10064. // Jii = yi - yi*yi
  10065. // Jij = -yi*yj
  10066. // J = diag(y)-y.T*y
  10067. // dx = J * dy
  10068. // dxk = sum_i(Jki * dyi)
  10069. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10070. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10071. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10072. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10073. // dxk = -yk * dot(y, dy) + yk*dyk
  10074. // dxk = yk * (- dot(y, dy) + dyk)
  10075. // dxk = yk * (dyk - dot(y, dy))
  10076. //
  10077. // post-order:
  10078. // dot_y_dy := dot(y, dy)
  10079. // dx := dy
  10080. // dx := dx - dot_y_dy
  10081. // dx := dx * y
  10082. // linear runtime, no additional memory
  10083. float dot_y_dy = 0;
  10084. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10085. ggml_vec_cpy_f32 (nc, dx, dy);
  10086. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10087. ggml_vec_mul_f32 (nc, dx, dx, y);
  10088. #ifndef NDEBUG
  10089. for (int i = 0; i < nc; ++i) {
  10090. assert(!isnan(dx[i]));
  10091. assert(!isinf(dx[i]));
  10092. }
  10093. #endif
  10094. }
  10095. }
  10096. static void ggml_compute_forward_soft_max_back(
  10097. const struct ggml_compute_params * params,
  10098. struct ggml_tensor * dst) {
  10099. const struct ggml_tensor * src0 = dst->src[0];
  10100. switch (src0->type) {
  10101. case GGML_TYPE_F32:
  10102. {
  10103. ggml_compute_forward_soft_max_back_f32(params, dst);
  10104. } break;
  10105. default:
  10106. {
  10107. GGML_ASSERT(false);
  10108. } break;
  10109. }
  10110. }
  10111. // ggml_compute_forward_alibi
  10112. static void ggml_compute_forward_alibi_f32(
  10113. const struct ggml_compute_params * params,
  10114. struct ggml_tensor * dst) {
  10115. const struct ggml_tensor * src0 = dst->src[0];
  10116. assert(params->ith == 0);
  10117. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10118. return;
  10119. }
  10120. //const int n_past = ((int32_t *) dst->op_params)[0];
  10121. const int n_head = ((int32_t *) dst->op_params)[1];
  10122. float max_bias;
  10123. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10124. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10125. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10126. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10127. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10128. const int64_t n = ggml_nrows(src0);
  10129. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10130. const size_t nb0 = src0->nb[0];
  10131. const size_t nb1 = src0->nb[1];
  10132. const size_t nb2 = src0->nb[2];
  10133. //const int nb3 = src0->nb[3];
  10134. GGML_ASSERT(nb0 == sizeof(float));
  10135. GGML_ASSERT(n_head == ne2);
  10136. // add alibi to src0 (KQ_scaled)
  10137. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10138. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10139. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10140. for (int64_t k = 0; k < ne2_ne3; k++) {
  10141. // TODO: k*nb2 or k*nb3
  10142. float m_k;
  10143. if (k < n_heads_log2_floor) {
  10144. m_k = powf(m0, k + 1);
  10145. } else {
  10146. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10147. }
  10148. for (int64_t i = 0; i < ne0; i++) {
  10149. for (int64_t j = 0; j < ne1; j++) {
  10150. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10151. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10152. pdst[0] = i * m_k + src[0];
  10153. }
  10154. }
  10155. }
  10156. }
  10157. static void ggml_compute_forward_alibi_f16(
  10158. const struct ggml_compute_params * params,
  10159. struct ggml_tensor * dst) {
  10160. const struct ggml_tensor * src0 = dst->src[0];
  10161. assert(params->ith == 0);
  10162. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10163. return;
  10164. }
  10165. //const int n_past = ((int32_t *) dst->op_params)[0];
  10166. const int n_head = ((int32_t *) dst->op_params)[1];
  10167. float max_bias;
  10168. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10169. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10170. const int ne1 = src0->ne[1]; // seq_len_without_past
  10171. const int ne2 = src0->ne[2]; // n_head -> this is k
  10172. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10173. const int n = ggml_nrows(src0);
  10174. const int ne2_ne3 = n/ne1; // ne2*ne3
  10175. const int nb0 = src0->nb[0];
  10176. const int nb1 = src0->nb[1];
  10177. const int nb2 = src0->nb[2];
  10178. //const int nb3 = src0->nb[3];
  10179. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10180. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10181. GGML_ASSERT(n_head == ne2);
  10182. // add alibi to src0 (KQ_scaled)
  10183. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10184. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10185. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10186. for (int k = 0; k < ne2_ne3; k++) {
  10187. // TODO: k*nb2 or k*nb3
  10188. float m_k;
  10189. if (k < n_heads_log2_floor) {
  10190. m_k = powf(m0, k + 1);
  10191. } else {
  10192. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10193. }
  10194. for (int i = 0; i < ne0; i++) {
  10195. for (int j = 0; j < ne1; j++) {
  10196. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10197. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10198. // we return F32
  10199. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10200. }
  10201. }
  10202. }
  10203. }
  10204. static void ggml_compute_forward_alibi(
  10205. const struct ggml_compute_params * params,
  10206. struct ggml_tensor * dst) {
  10207. const struct ggml_tensor * src0 = dst->src[0];
  10208. switch (src0->type) {
  10209. case GGML_TYPE_F16:
  10210. {
  10211. ggml_compute_forward_alibi_f16(params, dst);
  10212. } break;
  10213. case GGML_TYPE_F32:
  10214. {
  10215. ggml_compute_forward_alibi_f32(params, dst);
  10216. } break;
  10217. case GGML_TYPE_Q4_0:
  10218. case GGML_TYPE_Q4_1:
  10219. case GGML_TYPE_Q5_0:
  10220. case GGML_TYPE_Q5_1:
  10221. case GGML_TYPE_Q8_0:
  10222. case GGML_TYPE_Q8_1:
  10223. case GGML_TYPE_Q2_K:
  10224. case GGML_TYPE_Q3_K:
  10225. case GGML_TYPE_Q4_K:
  10226. case GGML_TYPE_Q5_K:
  10227. case GGML_TYPE_Q6_K:
  10228. case GGML_TYPE_IQ2_XXS:
  10229. case GGML_TYPE_IQ2_XS:
  10230. case GGML_TYPE_IQ3_XXS:
  10231. case GGML_TYPE_IQ1_S:
  10232. case GGML_TYPE_IQ1_M:
  10233. case GGML_TYPE_IQ4_NL:
  10234. case GGML_TYPE_IQ4_XS:
  10235. case GGML_TYPE_IQ3_S:
  10236. case GGML_TYPE_IQ2_S:
  10237. case GGML_TYPE_Q8_K:
  10238. case GGML_TYPE_I8:
  10239. case GGML_TYPE_I16:
  10240. case GGML_TYPE_I32:
  10241. case GGML_TYPE_I64:
  10242. case GGML_TYPE_F64:
  10243. case GGML_TYPE_COUNT:
  10244. {
  10245. GGML_ASSERT(false);
  10246. } break;
  10247. }
  10248. }
  10249. // ggml_compute_forward_clamp
  10250. static void ggml_compute_forward_clamp_f32(
  10251. const struct ggml_compute_params * params,
  10252. struct ggml_tensor * dst) {
  10253. const struct ggml_tensor * src0 = dst->src[0];
  10254. assert(params->ith == 0);
  10255. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10256. return;
  10257. }
  10258. float min;
  10259. float max;
  10260. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10261. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10262. const int ith = params->ith;
  10263. const int nth = params->nth;
  10264. const int n = ggml_nrows(src0);
  10265. const int nc = src0->ne[0];
  10266. const size_t nb00 = src0->nb[0];
  10267. const size_t nb01 = src0->nb[1];
  10268. const size_t nb0 = dst->nb[0];
  10269. const size_t nb1 = dst->nb[1];
  10270. GGML_ASSERT( nb0 == sizeof(float));
  10271. GGML_ASSERT(nb00 == sizeof(float));
  10272. for (int j = ith; j < n; j += nth) {
  10273. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10274. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10275. for (int i = 0; i < nc; i++) {
  10276. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10277. }
  10278. }
  10279. }
  10280. static void ggml_compute_forward_clamp(
  10281. const struct ggml_compute_params * params,
  10282. struct ggml_tensor * dst) {
  10283. const struct ggml_tensor * src0 = dst->src[0];
  10284. switch (src0->type) {
  10285. case GGML_TYPE_F32:
  10286. {
  10287. ggml_compute_forward_clamp_f32(params, dst);
  10288. } break;
  10289. case GGML_TYPE_F16:
  10290. case GGML_TYPE_Q4_0:
  10291. case GGML_TYPE_Q4_1:
  10292. case GGML_TYPE_Q5_0:
  10293. case GGML_TYPE_Q5_1:
  10294. case GGML_TYPE_Q8_0:
  10295. case GGML_TYPE_Q8_1:
  10296. case GGML_TYPE_Q2_K:
  10297. case GGML_TYPE_Q3_K:
  10298. case GGML_TYPE_Q4_K:
  10299. case GGML_TYPE_Q5_K:
  10300. case GGML_TYPE_Q6_K:
  10301. case GGML_TYPE_IQ2_XXS:
  10302. case GGML_TYPE_IQ2_XS:
  10303. case GGML_TYPE_IQ3_XXS:
  10304. case GGML_TYPE_IQ1_S:
  10305. case GGML_TYPE_IQ1_M:
  10306. case GGML_TYPE_IQ4_NL:
  10307. case GGML_TYPE_IQ4_XS:
  10308. case GGML_TYPE_IQ3_S:
  10309. case GGML_TYPE_IQ2_S:
  10310. case GGML_TYPE_Q8_K:
  10311. case GGML_TYPE_I8:
  10312. case GGML_TYPE_I16:
  10313. case GGML_TYPE_I32:
  10314. case GGML_TYPE_I64:
  10315. case GGML_TYPE_F64:
  10316. case GGML_TYPE_COUNT:
  10317. {
  10318. GGML_ASSERT(false);
  10319. } break;
  10320. }
  10321. }
  10322. // ggml_compute_forward_rope
  10323. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10324. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10325. return 1 - MIN(1, MAX(0, y));
  10326. }
  10327. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10328. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10329. static void rope_yarn(
  10330. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10331. float * cos_theta, float * sin_theta
  10332. ) {
  10333. // Get n-d rotational scaling corrected for extrapolation
  10334. float theta_interp = freq_scale * theta_extrap;
  10335. float theta = theta_interp;
  10336. if (ext_factor != 0.0f) {
  10337. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10338. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10339. // Get n-d magnitude scaling corrected for interpolation
  10340. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10341. }
  10342. *cos_theta = cosf(theta) * mscale;
  10343. *sin_theta = sinf(theta) * mscale;
  10344. }
  10345. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10346. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10347. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10348. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10349. }
  10350. static void ggml_rope_cache_init(
  10351. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10352. float * cache, float sin_sign, float theta_scale
  10353. ) {
  10354. float theta = theta_base;
  10355. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10356. rope_yarn(
  10357. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10358. );
  10359. cache[i0 + 1] *= sin_sign;
  10360. theta *= theta_scale;
  10361. }
  10362. }
  10363. GGML_CALL void ggml_rope_yarn_corr_dims(
  10364. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10365. ) {
  10366. // start and end correction dims
  10367. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10368. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10369. dims[0] = MAX(0, start);
  10370. dims[1] = MIN(n_dims - 1, end);
  10371. }
  10372. static void ggml_compute_forward_rope_f32(
  10373. const struct ggml_compute_params * params,
  10374. struct ggml_tensor * dst,
  10375. const bool forward) {
  10376. const struct ggml_tensor * src0 = dst->src[0];
  10377. const struct ggml_tensor * src1 = dst->src[1];
  10378. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10379. return;
  10380. }
  10381. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10382. // these two only relevant for xPos RoPE:
  10383. float xpos_base;
  10384. bool xpos_down;
  10385. //const int n_past = ((int32_t *) dst->op_params)[0];
  10386. const int n_dims = ((int32_t *) dst->op_params)[1];
  10387. const int mode = ((int32_t *) dst->op_params)[2];
  10388. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10389. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10390. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10391. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10392. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10393. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10394. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10395. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10396. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10397. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10398. GGML_TENSOR_UNARY_OP_LOCALS
  10399. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10400. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10401. GGML_ASSERT(nb00 == sizeof(float));
  10402. const int ith = params->ith;
  10403. const int nth = params->nth;
  10404. const int nr = ggml_nrows(dst);
  10405. GGML_ASSERT(n_dims <= ne0);
  10406. GGML_ASSERT(n_dims % 2 == 0);
  10407. // rows per thread
  10408. const int dr = (nr + nth - 1)/nth;
  10409. // row range for this thread
  10410. const int ir0 = dr*ith;
  10411. const int ir1 = MIN(ir0 + dr, nr);
  10412. // row index used to determine which thread to use
  10413. int ir = 0;
  10414. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10415. const float inv_ndims = -1.f/n_dims;
  10416. float corr_dims[2];
  10417. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10418. const bool is_neox = mode & 2;
  10419. const bool is_glm = mode & 4;
  10420. // backward process uses inverse rotation by cos and sin.
  10421. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10422. // this essentially just switches the sign of sin.
  10423. const float sin_sign = forward ? 1.0f : -1.0f;
  10424. const int32_t * pos = (const int32_t *) src1->data;
  10425. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10426. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10427. const int64_t p = pos[i2];
  10428. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10429. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10430. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10431. }
  10432. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10433. if (ir++ < ir0) continue;
  10434. if (ir > ir1) break;
  10435. float theta_base = (float)p;
  10436. if (is_glm) {
  10437. theta_base = MIN(p, n_ctx - 2);
  10438. float block_theta = MAX(p - (n_ctx - 2), 0);
  10439. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10440. const float cos_theta = cosf(theta_base);
  10441. const float sin_theta = sinf(theta_base) * sin_sign;
  10442. const float cos_block_theta = cosf(block_theta);
  10443. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10444. theta_base *= theta_scale;
  10445. block_theta *= theta_scale;
  10446. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10447. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10448. const float x0 = src[0];
  10449. const float x1 = src[n_dims/2];
  10450. const float x2 = src[n_dims];
  10451. const float x3 = src[n_dims/2*3];
  10452. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10453. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10454. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10455. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10456. }
  10457. } else if (!is_neox) {
  10458. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10459. const float cos_theta = cache[i0 + 0];
  10460. const float sin_theta = cache[i0 + 1];
  10461. // zeta scaling for xPos only:
  10462. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10463. if (xpos_down) zeta = 1.0f / zeta;
  10464. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10465. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10466. const float x0 = src[0];
  10467. const float x1 = src[1];
  10468. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10469. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10470. }
  10471. } else {
  10472. // TODO: this might be wrong for ne0 != n_dims - need double check
  10473. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10474. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10475. theta_base *= freq_scale;
  10476. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10477. if (ic < n_dims) {
  10478. const int64_t ib = 0;
  10479. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10480. float cur_rot = inv_ndims * ic - ib;
  10481. float cos_theta, sin_theta;
  10482. rope_yarn(
  10483. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10484. &cos_theta, &sin_theta
  10485. );
  10486. sin_theta *= sin_sign;
  10487. theta_base *= theta_scale;
  10488. const int64_t i0 = ib*n_dims + ic/2;
  10489. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10490. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10491. const float x0 = src[0];
  10492. const float x1 = src[n_dims/2];
  10493. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10494. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10495. } else {
  10496. const int64_t i0 = ic;
  10497. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10498. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10499. dst_data[0] = src[0];
  10500. dst_data[1] = src[1];
  10501. }
  10502. }
  10503. }
  10504. }
  10505. }
  10506. }
  10507. }
  10508. static void ggml_compute_forward_rope_f16(
  10509. const struct ggml_compute_params * params,
  10510. struct ggml_tensor * dst,
  10511. const bool forward) {
  10512. const struct ggml_tensor * src0 = dst->src[0];
  10513. const struct ggml_tensor * src1 = dst->src[1];
  10514. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10515. return;
  10516. }
  10517. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10518. //const int n_past = ((int32_t *) dst->op_params)[0];
  10519. const int n_dims = ((int32_t *) dst->op_params)[1];
  10520. const int mode = ((int32_t *) dst->op_params)[2];
  10521. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10522. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10523. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10524. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10525. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10526. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10527. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10528. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10529. GGML_TENSOR_UNARY_OP_LOCALS
  10530. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10531. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10532. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10533. const int ith = params->ith;
  10534. const int nth = params->nth;
  10535. const int nr = ggml_nrows(dst);
  10536. GGML_ASSERT(n_dims <= ne0);
  10537. GGML_ASSERT(n_dims % 2 == 0);
  10538. // rows per thread
  10539. const int dr = (nr + nth - 1)/nth;
  10540. // row range for this thread
  10541. const int ir0 = dr*ith;
  10542. const int ir1 = MIN(ir0 + dr, nr);
  10543. // row index used to determine which thread to use
  10544. int ir = 0;
  10545. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10546. const float inv_ndims = -1.f/n_dims;
  10547. float corr_dims[2];
  10548. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10549. const bool is_neox = mode & 2;
  10550. const bool is_glm = mode & 4;
  10551. // backward process uses inverse rotation by cos and sin.
  10552. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10553. // this essentially just switches the sign of sin.
  10554. const float sin_sign = forward ? 1.0f : -1.0f;
  10555. const int32_t * pos = (const int32_t *) src1->data;
  10556. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10557. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10558. const int64_t p = pos[i2];
  10559. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10560. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10561. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10562. }
  10563. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10564. if (ir++ < ir0) continue;
  10565. if (ir > ir1) break;
  10566. float theta_base = (float)p;
  10567. if (is_glm) {
  10568. theta_base = MIN(p, n_ctx - 2);
  10569. float block_theta = MAX(p - (n_ctx - 2), 0);
  10570. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10571. const float cos_theta = cosf(theta_base);
  10572. const float sin_theta = sinf(theta_base) * sin_sign;
  10573. const float cos_block_theta = cosf(block_theta);
  10574. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10575. theta_base *= theta_scale;
  10576. block_theta *= theta_scale;
  10577. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10578. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10579. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10580. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10581. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10582. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10583. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10584. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10585. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10586. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10587. }
  10588. } else if (!is_neox) {
  10589. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10590. const float cos_theta = cache[i0 + 0];
  10591. const float sin_theta = cache[i0 + 1];
  10592. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10593. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10594. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10595. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10596. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10597. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10598. }
  10599. } else {
  10600. // TODO: this might be wrong for ne0 != n_dims - need double check
  10601. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10602. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10603. theta_base *= freq_scale;
  10604. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10605. if (ic < n_dims) {
  10606. const int64_t ib = 0;
  10607. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10608. float cur_rot = inv_ndims * ic - ib;
  10609. float cos_theta, sin_theta;
  10610. rope_yarn(
  10611. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10612. &cos_theta, &sin_theta
  10613. );
  10614. sin_theta *= sin_sign;
  10615. theta_base *= theta_scale;
  10616. const int64_t i0 = ib*n_dims + ic/2;
  10617. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10618. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10619. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10620. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10621. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10622. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10623. } else {
  10624. const int64_t i0 = ic;
  10625. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10626. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10627. dst_data[0] = src[0];
  10628. dst_data[1] = src[1];
  10629. }
  10630. }
  10631. }
  10632. }
  10633. }
  10634. }
  10635. }
  10636. static void ggml_compute_forward_rope(
  10637. const struct ggml_compute_params * params,
  10638. struct ggml_tensor * dst) {
  10639. const struct ggml_tensor * src0 = dst->src[0];
  10640. switch (src0->type) {
  10641. case GGML_TYPE_F16:
  10642. {
  10643. ggml_compute_forward_rope_f16(params, dst, true);
  10644. } break;
  10645. case GGML_TYPE_F32:
  10646. {
  10647. ggml_compute_forward_rope_f32(params, dst, true);
  10648. } break;
  10649. default:
  10650. {
  10651. GGML_ASSERT(false);
  10652. } break;
  10653. }
  10654. }
  10655. // ggml_compute_forward_rope_back
  10656. static void ggml_compute_forward_rope_back(
  10657. const struct ggml_compute_params * params,
  10658. struct ggml_tensor * dst) {
  10659. const struct ggml_tensor * src0 = dst->src[0];
  10660. switch (src0->type) {
  10661. case GGML_TYPE_F16:
  10662. {
  10663. ggml_compute_forward_rope_f16(params, dst, false);
  10664. } break;
  10665. case GGML_TYPE_F32:
  10666. {
  10667. ggml_compute_forward_rope_f32(params, dst, false);
  10668. } break;
  10669. default:
  10670. {
  10671. GGML_ASSERT(false);
  10672. } break;
  10673. }
  10674. }
  10675. // ggml_compute_forward_conv_transpose_1d
  10676. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10677. const struct ggml_compute_params * params,
  10678. struct ggml_tensor * dst) {
  10679. const struct ggml_tensor * src0 = dst->src[0];
  10680. const struct ggml_tensor * src1 = dst->src[1];
  10681. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10682. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10683. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10684. int64_t t0 = ggml_perf_time_us();
  10685. UNUSED(t0);
  10686. GGML_TENSOR_BINARY_OP_LOCALS
  10687. const int ith = params->ith;
  10688. const int nth = params->nth;
  10689. const int nk = ne00*ne01*ne02;
  10690. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10691. GGML_ASSERT(nb10 == sizeof(float));
  10692. if (params->type == GGML_TASK_TYPE_INIT) {
  10693. if (ith != 0) {
  10694. return;
  10695. }
  10696. memset(params->wdata, 0, params->wsize);
  10697. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10698. {
  10699. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10700. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10701. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10702. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10703. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10704. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10705. dst_data[i00*ne02 + i02] = src[i00];
  10706. }
  10707. }
  10708. }
  10709. }
  10710. // permute source data (src1) from (L x Cin) to (Cin x L)
  10711. {
  10712. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10713. ggml_fp16_t * dst_data = wdata;
  10714. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10715. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10716. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10717. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10718. }
  10719. }
  10720. }
  10721. // need to zero dst since we are accumulating into it
  10722. memset(dst->data, 0, ggml_nbytes(dst));
  10723. return;
  10724. }
  10725. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10726. return;
  10727. }
  10728. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10729. // total rows in dst
  10730. const int nr = ne1;
  10731. // rows per thread
  10732. const int dr = (nr + nth - 1)/nth;
  10733. // row range for this thread
  10734. const int ir0 = dr*ith;
  10735. const int ir1 = MIN(ir0 + dr, nr);
  10736. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10737. ggml_fp16_t * const wdata_src = wdata + nk;
  10738. for (int i1 = ir0; i1 < ir1; i1++) {
  10739. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10740. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10741. for (int i10 = 0; i10 < ne10; i10++) {
  10742. const int i1n = i10*ne11;
  10743. for (int i00 = 0; i00 < ne00; i00++) {
  10744. float v = 0;
  10745. ggml_vec_dot_f16(ne02, &v, 0,
  10746. (ggml_fp16_t *) wdata_src + i1n, 0,
  10747. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10748. dst_data[i10*s0 + i00] += v;
  10749. }
  10750. }
  10751. }
  10752. }
  10753. static void ggml_compute_forward_conv_transpose_1d_f32(
  10754. const struct ggml_compute_params * params,
  10755. struct ggml_tensor * dst) {
  10756. const struct ggml_tensor * src0 = dst->src[0];
  10757. const struct ggml_tensor * src1 = dst->src[1];
  10758. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10759. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10760. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10761. int64_t t0 = ggml_perf_time_us();
  10762. UNUSED(t0);
  10763. GGML_TENSOR_BINARY_OP_LOCALS
  10764. const int ith = params->ith;
  10765. const int nth = params->nth;
  10766. const int nk = ne00*ne01*ne02;
  10767. GGML_ASSERT(nb00 == sizeof(float));
  10768. GGML_ASSERT(nb10 == sizeof(float));
  10769. if (params->type == GGML_TASK_TYPE_INIT) {
  10770. if (ith != 0) {
  10771. return;
  10772. }
  10773. memset(params->wdata, 0, params->wsize);
  10774. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10775. {
  10776. float * const wdata = (float *) params->wdata + 0;
  10777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10778. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10779. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10780. float * dst_data = wdata + i01*ne00*ne02;
  10781. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10782. dst_data[i00*ne02 + i02] = src[i00];
  10783. }
  10784. }
  10785. }
  10786. }
  10787. // prepare source data (src1)
  10788. {
  10789. float * const wdata = (float *) params->wdata + nk;
  10790. float * dst_data = wdata;
  10791. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10792. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10793. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10794. dst_data[i10*ne11 + i11] = src[i10];
  10795. }
  10796. }
  10797. }
  10798. // need to zero dst since we are accumulating into it
  10799. memset(dst->data, 0, ggml_nbytes(dst));
  10800. return;
  10801. }
  10802. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10803. return;
  10804. }
  10805. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10806. // total rows in dst
  10807. const int nr = ne1;
  10808. // rows per thread
  10809. const int dr = (nr + nth - 1)/nth;
  10810. // row range for this thread
  10811. const int ir0 = dr*ith;
  10812. const int ir1 = MIN(ir0 + dr, nr);
  10813. float * const wdata = (float *) params->wdata + 0;
  10814. float * const wdata_src = wdata + nk;
  10815. for (int i1 = ir0; i1 < ir1; i1++) {
  10816. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10817. float * wdata_kernel = wdata + i1*ne02*ne00;
  10818. for (int i10 = 0; i10 < ne10; i10++) {
  10819. const int i1n = i10*ne11;
  10820. for (int i00 = 0; i00 < ne00; i00++) {
  10821. float v = 0;
  10822. ggml_vec_dot_f32(ne02, &v, 0,
  10823. wdata_src + i1n, 0,
  10824. wdata_kernel + i00*ne02, 0, 1);
  10825. dst_data[i10*s0 + i00] += v;
  10826. }
  10827. }
  10828. }
  10829. }
  10830. static void ggml_compute_forward_conv_transpose_1d(
  10831. const struct ggml_compute_params * params,
  10832. struct ggml_tensor * dst) {
  10833. const struct ggml_tensor * src0 = dst->src[0];
  10834. switch (src0->type) {
  10835. case GGML_TYPE_F16:
  10836. {
  10837. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10838. } break;
  10839. case GGML_TYPE_F32:
  10840. {
  10841. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10842. } break;
  10843. default:
  10844. {
  10845. GGML_ASSERT(false);
  10846. } break;
  10847. }
  10848. }
  10849. // src0: kernel [OC, IC, KH, KW]
  10850. // src1: image [N, IC, IH, IW]
  10851. // dst: result [N, OH, OW, IC*KH*KW]
  10852. static void ggml_compute_forward_im2col_f32(
  10853. const struct ggml_compute_params * params,
  10854. struct ggml_tensor * dst) {
  10855. const struct ggml_tensor * src0 = dst->src[0];
  10856. const struct ggml_tensor * src1 = dst->src[1];
  10857. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10858. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10859. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10860. int64_t t0 = ggml_perf_time_us();
  10861. UNUSED(t0);
  10862. GGML_TENSOR_BINARY_OP_LOCALS;
  10863. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10864. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10865. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10866. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10867. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10868. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10869. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10870. const int ith = params->ith;
  10871. const int nth = params->nth;
  10872. const int64_t N = is_2D ? ne13 : ne12;
  10873. const int64_t IC = is_2D ? ne12 : ne11;
  10874. const int64_t IH = is_2D ? ne11 : 1;
  10875. const int64_t IW = ne10;
  10876. const int64_t KH = is_2D ? ne01 : 1;
  10877. const int64_t KW = ne00;
  10878. const int64_t OH = is_2D ? ne2 : 1;
  10879. const int64_t OW = ne1;
  10880. int ofs0 = is_2D ? nb13 : nb12;
  10881. int ofs1 = is_2D ? nb12 : nb11;
  10882. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10883. GGML_ASSERT(nb10 == sizeof(float));
  10884. if (params->type == GGML_TASK_TYPE_INIT) {
  10885. return;
  10886. }
  10887. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10888. return;
  10889. }
  10890. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10891. {
  10892. float * const wdata = (float *) dst->data;
  10893. for (int64_t in = 0; in < N; in++) {
  10894. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10895. for (int64_t iow = 0; iow < OW; iow++) {
  10896. for (int64_t iic = ith; iic < IC; iic += nth) {
  10897. // micro kernel
  10898. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10899. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10900. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10901. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10902. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10903. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10904. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10905. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10906. } else {
  10907. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10908. }
  10909. }
  10910. }
  10911. }
  10912. }
  10913. }
  10914. }
  10915. }
  10916. }
  10917. // src0: kernel [OC, IC, KH, KW]
  10918. // src1: image [N, IC, IH, IW]
  10919. // dst: result [N, OH, OW, IC*KH*KW]
  10920. static void ggml_compute_forward_im2col_f16(
  10921. const struct ggml_compute_params * params,
  10922. struct ggml_tensor * dst) {
  10923. const struct ggml_tensor * src0 = dst->src[0];
  10924. const struct ggml_tensor * src1 = dst->src[1];
  10925. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10926. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10927. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10928. int64_t t0 = ggml_perf_time_us();
  10929. UNUSED(t0);
  10930. GGML_TENSOR_BINARY_OP_LOCALS;
  10931. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10932. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10933. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10934. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10935. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10936. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10937. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10938. const int ith = params->ith;
  10939. const int nth = params->nth;
  10940. const int64_t N = is_2D ? ne13 : ne12;
  10941. const int64_t IC = is_2D ? ne12 : ne11;
  10942. const int64_t IH = is_2D ? ne11 : 1;
  10943. const int64_t IW = ne10;
  10944. const int64_t KH = is_2D ? ne01 : 1;
  10945. const int64_t KW = ne00;
  10946. const int64_t OH = is_2D ? ne2 : 1;
  10947. const int64_t OW = ne1;
  10948. int ofs0 = is_2D ? nb13 : nb12;
  10949. int ofs1 = is_2D ? nb12 : nb11;
  10950. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10951. GGML_ASSERT(nb10 == sizeof(float));
  10952. if (params->type == GGML_TASK_TYPE_INIT) {
  10953. return;
  10954. }
  10955. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10956. return;
  10957. }
  10958. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10959. {
  10960. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10961. for (int64_t in = 0; in < N; in++) {
  10962. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10963. for (int64_t iow = 0; iow < OW; iow++) {
  10964. for (int64_t iic = ith; iic < IC; iic += nth) {
  10965. // micro kernel
  10966. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10967. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10968. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10969. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10970. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10971. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10972. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10973. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10974. } else {
  10975. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10976. }
  10977. }
  10978. }
  10979. }
  10980. }
  10981. }
  10982. }
  10983. }
  10984. }
  10985. static void ggml_compute_forward_im2col(
  10986. const struct ggml_compute_params * params,
  10987. struct ggml_tensor * dst) {
  10988. switch (dst->type) {
  10989. case GGML_TYPE_F16:
  10990. {
  10991. ggml_compute_forward_im2col_f16(params, dst);
  10992. } break;
  10993. case GGML_TYPE_F32:
  10994. {
  10995. ggml_compute_forward_im2col_f32(params, dst);
  10996. } break;
  10997. default:
  10998. {
  10999. GGML_ASSERT(false);
  11000. } break;
  11001. }
  11002. }
  11003. // ggml_compute_forward_conv_transpose_2d
  11004. static void ggml_compute_forward_conv_transpose_2d(
  11005. const struct ggml_compute_params * params,
  11006. struct ggml_tensor * dst) {
  11007. const struct ggml_tensor * src0 = dst->src[0];
  11008. const struct ggml_tensor * src1 = dst->src[1];
  11009. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11010. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11011. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11012. int64_t t0 = ggml_perf_time_us();
  11013. UNUSED(t0);
  11014. GGML_TENSOR_BINARY_OP_LOCALS
  11015. const int ith = params->ith;
  11016. const int nth = params->nth;
  11017. const int nk = ne00*ne01*ne02*ne03;
  11018. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11019. GGML_ASSERT(nb10 == sizeof(float));
  11020. if (params->type == GGML_TASK_TYPE_INIT) {
  11021. if (ith != 0) {
  11022. return;
  11023. }
  11024. memset(params->wdata, 0, params->wsize);
  11025. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11026. {
  11027. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11028. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11029. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11030. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11031. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11032. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11033. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11034. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11035. }
  11036. }
  11037. }
  11038. }
  11039. }
  11040. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11041. {
  11042. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11043. for (int i12 = 0; i12 < ne12; i12++) {
  11044. for (int i11 = 0; i11 < ne11; i11++) {
  11045. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11046. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11047. for (int i10 = 0; i10 < ne10; i10++) {
  11048. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11049. }
  11050. }
  11051. }
  11052. }
  11053. memset(dst->data, 0, ggml_nbytes(dst));
  11054. return;
  11055. }
  11056. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11057. return;
  11058. }
  11059. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11060. // total patches in dst
  11061. const int np = ne2;
  11062. // patches per thread
  11063. const int dp = (np + nth - 1)/nth;
  11064. // patch range for this thread
  11065. const int ip0 = dp*ith;
  11066. const int ip1 = MIN(ip0 + dp, np);
  11067. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11068. ggml_fp16_t * const wdata_src = wdata + nk;
  11069. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11070. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11071. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11072. for (int i11 = 0; i11 < ne11; i11++) {
  11073. for (int i10 = 0; i10 < ne10; i10++) {
  11074. const int i1n = i11*ne10*ne12 + i10*ne12;
  11075. for (int i01 = 0; i01 < ne01; i01++) {
  11076. for (int i00 = 0; i00 < ne00; i00++) {
  11077. float v = 0;
  11078. ggml_vec_dot_f16(ne03, &v, 0,
  11079. wdata_src + i1n, 0,
  11080. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11081. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11082. }
  11083. }
  11084. }
  11085. }
  11086. }
  11087. }
  11088. // ggml_compute_forward_pool_1d_sk_p0
  11089. static void ggml_compute_forward_pool_1d_sk_p0(
  11090. const struct ggml_compute_params * params,
  11091. const enum ggml_op_pool op,
  11092. const int k,
  11093. struct ggml_tensor * dst) {
  11094. const struct ggml_tensor * src = dst->src[0];
  11095. assert(src->type == GGML_TYPE_F32);
  11096. assert(params->ith == 0);
  11097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11098. return;
  11099. }
  11100. const char * cdata = (const char *)src->data;
  11101. const char * const data_end = cdata + ggml_nbytes(src);
  11102. float * drow = (float *)dst->data;
  11103. const int64_t rs = dst->ne[0];
  11104. while (cdata < data_end) {
  11105. const float * const srow = (const float *)cdata;
  11106. int j = 0;
  11107. for (int64_t i = 0; i < rs; ++i) {
  11108. switch (op) {
  11109. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11110. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11111. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11112. }
  11113. for (int ki = 0; ki < k; ++ki) {
  11114. switch (op) {
  11115. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11116. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11117. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11118. }
  11119. ++j;
  11120. }
  11121. switch (op) {
  11122. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11123. case GGML_OP_POOL_MAX: break;
  11124. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11125. }
  11126. }
  11127. cdata += src->nb[1];
  11128. drow += rs;
  11129. }
  11130. }
  11131. // ggml_compute_forward_pool_1d
  11132. static void ggml_compute_forward_pool_1d(
  11133. const struct ggml_compute_params * params,
  11134. struct ggml_tensor * dst) {
  11135. const int32_t * opts = (const int32_t *)dst->op_params;
  11136. enum ggml_op_pool op = opts[0];
  11137. const int k0 = opts[1];
  11138. const int s0 = opts[2];
  11139. const int p0 = opts[3];
  11140. GGML_ASSERT(p0 == 0); // padding not supported
  11141. GGML_ASSERT(k0 == s0); // only s = k supported
  11142. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11143. }
  11144. // ggml_compute_forward_pool_2d
  11145. static void ggml_compute_forward_pool_2d(
  11146. const struct ggml_compute_params * params,
  11147. struct ggml_tensor * dst) {
  11148. const struct ggml_tensor * src = dst->src[0];
  11149. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11150. GGML_ASSERT(params->ith == 0);
  11151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11152. return;
  11153. }
  11154. const int32_t * opts = (const int32_t *)dst->op_params;
  11155. enum ggml_op_pool op = opts[0];
  11156. const int k0 = opts[1];
  11157. const int k1 = opts[2];
  11158. const int s0 = opts[3];
  11159. const int s1 = opts[4];
  11160. const int p0 = opts[5];
  11161. const int p1 = opts[6];
  11162. const char * cdata = (const char*)src->data;
  11163. const char * const data_end = cdata + ggml_nbytes(src);
  11164. const int64_t px = dst->ne[0];
  11165. const int64_t py = dst->ne[1];
  11166. const int64_t pa = px * py;
  11167. float * dplane = (float *)dst->data;
  11168. const int ka = k0 * k1;
  11169. const int offset0 = -p0;
  11170. const int offset1 = -p1;
  11171. while (cdata < data_end) {
  11172. for (int oy = 0; oy < py; ++oy) {
  11173. float * const drow = dplane + oy * px;
  11174. for (int ox = 0; ox < px; ++ox) {
  11175. float * const out = drow + ox;
  11176. switch (op) {
  11177. case GGML_OP_POOL_AVG: *out = 0; break;
  11178. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11179. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11180. }
  11181. const int ix = offset0 + ox * s0;
  11182. const int iy = offset1 + oy * s1;
  11183. for (int ky = 0; ky < k1; ++ky) {
  11184. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11185. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11186. for (int kx = 0; kx < k0; ++kx) {
  11187. int j = ix + kx;
  11188. if (j < 0 || j >= src->ne[0]) continue;
  11189. switch (op) {
  11190. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11191. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11192. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11193. }
  11194. }
  11195. }
  11196. switch (op) {
  11197. case GGML_OP_POOL_AVG: *out /= ka; break;
  11198. case GGML_OP_POOL_MAX: break;
  11199. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11200. }
  11201. }
  11202. }
  11203. cdata += src->nb[2];
  11204. dplane += pa;
  11205. }
  11206. }
  11207. // ggml_compute_forward_upscale
  11208. static void ggml_compute_forward_upscale_f32(
  11209. const struct ggml_compute_params * params,
  11210. struct ggml_tensor * dst) {
  11211. const struct ggml_tensor * src0 = dst->src[0];
  11212. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11213. return;
  11214. }
  11215. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11216. const int ith = params->ith;
  11217. const int nth = params->nth;
  11218. GGML_TENSOR_UNARY_OP_LOCALS
  11219. const int scale_factor = dst->op_params[0];
  11220. // TODO: optimize
  11221. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11222. const int64_t i03 = i3;
  11223. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11224. const int64_t i02 = i2;
  11225. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11226. const int64_t i01 = i1 / scale_factor;
  11227. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11228. const int64_t i00 = i0 / scale_factor;
  11229. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11230. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11231. *y = *x;
  11232. }
  11233. }
  11234. }
  11235. }
  11236. }
  11237. static void ggml_compute_forward_upscale(
  11238. const struct ggml_compute_params * params,
  11239. struct ggml_tensor * dst) {
  11240. const struct ggml_tensor * src0 = dst->src[0];
  11241. switch (src0->type) {
  11242. case GGML_TYPE_F32:
  11243. {
  11244. ggml_compute_forward_upscale_f32(params, dst);
  11245. } break;
  11246. default:
  11247. {
  11248. GGML_ASSERT(false);
  11249. } break;
  11250. }
  11251. }
  11252. // ggml_compute_forward_pad
  11253. static void ggml_compute_forward_pad_f32(
  11254. const struct ggml_compute_params * params,
  11255. struct ggml_tensor * dst) {
  11256. const struct ggml_tensor * src0 = dst->src[0];
  11257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11258. return;
  11259. }
  11260. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11261. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11262. const int ith = params->ith;
  11263. const int nth = params->nth;
  11264. GGML_TENSOR_UNARY_OP_LOCALS
  11265. float * dst_ptr = (float *) dst->data;
  11266. // TODO: optimize
  11267. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11268. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11269. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11270. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11271. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11272. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11273. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11274. dst_ptr[dst_idx] = *src_ptr;
  11275. } else {
  11276. dst_ptr[dst_idx] = 0;
  11277. }
  11278. }
  11279. }
  11280. }
  11281. }
  11282. }
  11283. static void ggml_compute_forward_pad(
  11284. const struct ggml_compute_params * params,
  11285. struct ggml_tensor * dst) {
  11286. const struct ggml_tensor * src0 = dst->src[0];
  11287. switch (src0->type) {
  11288. case GGML_TYPE_F32:
  11289. {
  11290. ggml_compute_forward_pad_f32(params, dst);
  11291. } break;
  11292. default:
  11293. {
  11294. GGML_ASSERT(false);
  11295. } break;
  11296. }
  11297. }
  11298. // ggml_compute_forward_arange
  11299. static void ggml_compute_forward_arange_f32(
  11300. const struct ggml_compute_params * params,
  11301. struct ggml_tensor * dst) {
  11302. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11303. return;
  11304. }
  11305. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11306. const int ith = params->ith;
  11307. const int nth = params->nth;
  11308. const float start = ggml_get_op_params_f32(dst, 0);
  11309. const float stop = ggml_get_op_params_f32(dst, 1);
  11310. const float step = ggml_get_op_params_f32(dst, 2);
  11311. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11312. GGML_ASSERT(ggml_nelements(dst) == steps);
  11313. for (int64_t i = ith; i < steps; i+= nth) {
  11314. float value = start + step * i;
  11315. ((float *)dst->data)[i] = value;
  11316. }
  11317. }
  11318. static void ggml_compute_forward_arange(
  11319. const struct ggml_compute_params * params,
  11320. struct ggml_tensor * dst) {
  11321. switch (dst->type) {
  11322. case GGML_TYPE_F32:
  11323. {
  11324. ggml_compute_forward_arange_f32(params, dst);
  11325. } break;
  11326. default:
  11327. {
  11328. GGML_ASSERT(false);
  11329. } break;
  11330. }
  11331. }
  11332. static void ggml_compute_forward_timestep_embedding_f32(
  11333. const struct ggml_compute_params * params,
  11334. struct ggml_tensor * dst) {
  11335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11336. return;
  11337. }
  11338. const struct ggml_tensor * src0 = dst->src[0];
  11339. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11340. const int ith = params->ith;
  11341. const int nth = params->nth;
  11342. GGML_TENSOR_UNARY_OP_LOCALS
  11343. const int dim = ggml_get_op_params_i32(dst, 0);
  11344. const int max_period = ggml_get_op_params_i32(dst, 1);
  11345. int half = dim / 2;
  11346. for (int64_t i = 0; i < ne00; i++) {
  11347. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11348. for (int64_t j = ith; j < half; j += nth) {
  11349. float timestep = ((float *)src0->data)[i];
  11350. float freq = (float)expf(-logf(max_period) * j / half);
  11351. float arg = timestep * freq;
  11352. embed_data[j] = cosf(arg);
  11353. embed_data[j + half] = sinf(arg);
  11354. }
  11355. if (dim % 2 != 0 && ith == 0) {
  11356. embed_data[dim] = 0.f;
  11357. }
  11358. }
  11359. }
  11360. static void ggml_compute_forward_timestep_embedding(
  11361. const struct ggml_compute_params * params,
  11362. struct ggml_tensor * dst) {
  11363. const struct ggml_tensor * src0 = dst->src[0];
  11364. switch (src0->type) {
  11365. case GGML_TYPE_F32:
  11366. {
  11367. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11368. } break;
  11369. default:
  11370. {
  11371. GGML_ASSERT(false);
  11372. } break;
  11373. }
  11374. }
  11375. // ggml_compute_forward_argsort
  11376. static void ggml_compute_forward_argsort_f32(
  11377. const struct ggml_compute_params * params,
  11378. struct ggml_tensor * dst) {
  11379. const struct ggml_tensor * src0 = dst->src[0];
  11380. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11381. return;
  11382. }
  11383. GGML_TENSOR_UNARY_OP_LOCALS
  11384. GGML_ASSERT(nb0 == sizeof(float));
  11385. const int ith = params->ith;
  11386. const int nth = params->nth;
  11387. const int64_t nr = ggml_nrows(src0);
  11388. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11389. for (int64_t i = ith; i < nr; i += nth) {
  11390. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11391. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11392. for (int64_t j = 0; j < ne0; j++) {
  11393. dst_data[j] = j;
  11394. }
  11395. // C doesn't have a functional sort, so we do a bubble sort instead
  11396. for (int64_t j = 0; j < ne0; j++) {
  11397. for (int64_t k = j + 1; k < ne0; k++) {
  11398. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11399. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11400. int32_t tmp = dst_data[j];
  11401. dst_data[j] = dst_data[k];
  11402. dst_data[k] = tmp;
  11403. }
  11404. }
  11405. }
  11406. }
  11407. }
  11408. static void ggml_compute_forward_argsort(
  11409. const struct ggml_compute_params * params,
  11410. struct ggml_tensor * dst) {
  11411. const struct ggml_tensor * src0 = dst->src[0];
  11412. switch (src0->type) {
  11413. case GGML_TYPE_F32:
  11414. {
  11415. ggml_compute_forward_argsort_f32(params, dst);
  11416. } break;
  11417. default:
  11418. {
  11419. GGML_ASSERT(false);
  11420. } break;
  11421. }
  11422. }
  11423. // ggml_compute_forward_flash_attn
  11424. static void ggml_compute_forward_flash_attn_f32(
  11425. const struct ggml_compute_params * params,
  11426. const bool masked,
  11427. struct ggml_tensor * dst) {
  11428. const struct ggml_tensor * q = dst->src[0];
  11429. const struct ggml_tensor * k = dst->src[1];
  11430. const struct ggml_tensor * v = dst->src[2];
  11431. int64_t t0 = ggml_perf_time_us();
  11432. UNUSED(t0);
  11433. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11434. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11435. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11436. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11437. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11438. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11439. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11440. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11441. const int ith = params->ith;
  11442. const int nth = params->nth;
  11443. const int64_t D = neq0;
  11444. const int64_t N = neq1;
  11445. const int64_t P = nek1 - N;
  11446. const int64_t M = P + N;
  11447. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11448. GGML_ASSERT(ne0 == D);
  11449. GGML_ASSERT(ne1 == N);
  11450. GGML_ASSERT(P >= 0);
  11451. GGML_ASSERT(nbq0 == sizeof(float));
  11452. GGML_ASSERT(nbk0 == sizeof(float));
  11453. GGML_ASSERT(nbv0 == sizeof(float));
  11454. GGML_ASSERT(neq0 == D);
  11455. GGML_ASSERT(nek0 == D);
  11456. GGML_ASSERT(nev1 == D);
  11457. GGML_ASSERT(neq1 == N);
  11458. GGML_ASSERT(nek1 == N + P);
  11459. GGML_ASSERT(nev1 == D);
  11460. // dst cannot be transposed or permuted
  11461. GGML_ASSERT(nb0 == sizeof(float));
  11462. GGML_ASSERT(nb0 <= nb1);
  11463. GGML_ASSERT(nb1 <= nb2);
  11464. GGML_ASSERT(nb2 <= nb3);
  11465. if (params->type == GGML_TASK_TYPE_INIT) {
  11466. return;
  11467. }
  11468. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11469. return;
  11470. }
  11471. // parallelize by q rows using ggml_vec_dot_f32
  11472. // total rows in q
  11473. const int nr = neq1*neq2*neq3;
  11474. // rows per thread
  11475. const int dr = (nr + nth - 1)/nth;
  11476. // row range for this thread
  11477. const int ir0 = dr*ith;
  11478. const int ir1 = MIN(ir0 + dr, nr);
  11479. const float scale = 1.0f/sqrtf(D);
  11480. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11481. for (int ir = ir0; ir < ir1; ++ir) {
  11482. // q indices
  11483. const int iq3 = ir/(neq2*neq1);
  11484. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11485. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11486. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11487. for (int i = M; i < Mup; ++i) {
  11488. S[i] = -INFINITY;
  11489. }
  11490. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11491. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11492. // k indices
  11493. const int ik3 = iq3;
  11494. const int ik2 = iq2 % nek2;
  11495. const int ik1 = ic;
  11496. // S indices
  11497. const int i1 = ik1;
  11498. ggml_vec_dot_f32(neq0,
  11499. S + i1, 0,
  11500. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11501. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11502. }
  11503. // scale
  11504. ggml_vec_scale_f32(masked_begin, S, scale);
  11505. for (int64_t i = masked_begin; i < M; i++) {
  11506. S[i] = -INFINITY;
  11507. }
  11508. // softmax
  11509. // exclude known -INF S[..] values from max and loop
  11510. // dont forget to set their SW values to zero
  11511. {
  11512. float max = -INFINITY;
  11513. ggml_vec_max_f32(masked_begin, &max, S);
  11514. ggml_float sum = 0.0;
  11515. {
  11516. #ifdef GGML_SOFT_MAX_ACCELERATE
  11517. max = -max;
  11518. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11519. vvexpf(S, S, &Mup);
  11520. ggml_vec_sum_f32(Mup, &sum, S);
  11521. #else
  11522. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11523. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11524. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11525. if (i >= masked_begin) {
  11526. break;
  11527. }
  11528. float * SS = S + i;
  11529. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11530. if (i + j >= masked_begin) {
  11531. break;
  11532. } else if (SS[j] == -INFINITY) {
  11533. SS[j] = 0.0f;
  11534. } else {
  11535. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11536. const float val = expf(SS[j] - max);
  11537. #else
  11538. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11539. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11540. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11541. #endif
  11542. sump[j] += (ggml_float)val;
  11543. SS[j] = val;
  11544. }
  11545. }
  11546. }
  11547. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11548. sum += sump[i];
  11549. }
  11550. #endif
  11551. }
  11552. assert(sum > 0.0);
  11553. sum = 1.0/sum;
  11554. ggml_vec_scale_f32(masked_begin, S, sum);
  11555. #ifndef NDEBUG
  11556. for (int i = 0; i < masked_begin; ++i) {
  11557. assert(!isnan(S[i]));
  11558. assert(!isinf(S[i]));
  11559. }
  11560. #endif
  11561. }
  11562. for (int64_t ic = 0; ic < nev1; ++ic) {
  11563. // dst indices
  11564. const int i1 = iq1;
  11565. const int i2 = iq2;
  11566. const int i3 = iq3;
  11567. // v indices
  11568. const int iv2 = iq2 % nev2;
  11569. const int iv3 = iq3;
  11570. ggml_vec_dot_f32(masked_begin,
  11571. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11572. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11573. S, 0, 1);
  11574. }
  11575. }
  11576. }
  11577. static void ggml_compute_forward_flash_attn_f16(
  11578. const struct ggml_compute_params * params,
  11579. const bool masked,
  11580. struct ggml_tensor * dst) {
  11581. const struct ggml_tensor * q = dst->src[0];
  11582. const struct ggml_tensor * k = dst->src[1];
  11583. const struct ggml_tensor * v = dst->src[2];
  11584. int64_t t0 = ggml_perf_time_us();
  11585. UNUSED(t0);
  11586. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11587. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11588. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11589. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11590. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11591. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11592. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11593. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11594. const int ith = params->ith;
  11595. const int nth = params->nth;
  11596. const int64_t D = neq0;
  11597. const int64_t N = neq1;
  11598. const int64_t P = nek1 - N;
  11599. const int64_t M = P + N;
  11600. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11601. GGML_ASSERT(ne0 == D);
  11602. GGML_ASSERT(ne1 == N);
  11603. GGML_ASSERT(P >= 0);
  11604. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11605. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11606. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11607. GGML_ASSERT(neq0 == D);
  11608. GGML_ASSERT(nek0 == D);
  11609. GGML_ASSERT(nev1 == D);
  11610. GGML_ASSERT(neq1 == N);
  11611. GGML_ASSERT(nek1 == N + P);
  11612. GGML_ASSERT(nev1 == D);
  11613. // dst cannot be transposed or permuted
  11614. GGML_ASSERT(nb0 == sizeof(float));
  11615. GGML_ASSERT(nb0 <= nb1);
  11616. GGML_ASSERT(nb1 <= nb2);
  11617. GGML_ASSERT(nb2 <= nb3);
  11618. if (params->type == GGML_TASK_TYPE_INIT) {
  11619. return;
  11620. }
  11621. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11622. return;
  11623. }
  11624. // parallelize by q rows using ggml_vec_dot_f32
  11625. // total rows in q
  11626. const int nr = neq1*neq2*neq3;
  11627. // rows per thread
  11628. const int dr = (nr + nth - 1)/nth;
  11629. // row range for this thread
  11630. const int ir0 = dr*ith;
  11631. const int ir1 = MIN(ir0 + dr, nr);
  11632. const float scale = 1.0f/sqrtf(D);
  11633. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11634. for (int ir = ir0; ir < ir1; ++ir) {
  11635. // q indices
  11636. const int iq3 = ir/(neq2*neq1);
  11637. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11638. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11639. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11640. for (int i = M; i < Mup; ++i) {
  11641. S[i] = -INFINITY;
  11642. }
  11643. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11644. for (int64_t ic = 0; ic < nek1; ++ic) {
  11645. // k indices
  11646. const int ik3 = iq3;
  11647. const int ik2 = iq2 % nek2;
  11648. const int ik1 = ic;
  11649. // S indices
  11650. const int i1 = ik1;
  11651. ggml_vec_dot_f16(neq0,
  11652. S + i1, 0,
  11653. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11654. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11655. }
  11656. } else {
  11657. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11658. // k indices
  11659. const int ik3 = iq3;
  11660. const int ik2 = iq2 % nek2;
  11661. const int ik1 = ic;
  11662. // S indices
  11663. const int i1 = ik1;
  11664. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11665. S + i1,
  11666. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11667. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11668. }
  11669. }
  11670. // scale
  11671. ggml_vec_scale_f32(nek1, S, scale);
  11672. if (masked) {
  11673. for (int64_t i = P; i < M; i++) {
  11674. if (i > P + iq1) {
  11675. S[i] = -INFINITY;
  11676. }
  11677. }
  11678. }
  11679. // softmax
  11680. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11681. // dont forget to set their S values to zero
  11682. {
  11683. float max = -INFINITY;
  11684. ggml_vec_max_f32(M, &max, S);
  11685. ggml_float sum = 0.0;
  11686. {
  11687. #ifdef GGML_SOFT_MAX_ACCELERATE
  11688. max = -max;
  11689. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11690. vvexpf(S, S, &Mup);
  11691. ggml_vec_sum_f32(Mup, &sum, S);
  11692. #else
  11693. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11694. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11695. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11696. float * SS = S + i;
  11697. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11698. if (SS[j] == -INFINITY) {
  11699. SS[j] = 0.0f;
  11700. } else {
  11701. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11702. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11703. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11704. sump[j] += (ggml_float)val;
  11705. SS[j] = val;
  11706. }
  11707. }
  11708. }
  11709. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11710. sum += sump[i];
  11711. }
  11712. #endif
  11713. }
  11714. assert(sum > 0.0);
  11715. sum = 1.0/sum;
  11716. ggml_vec_scale_f32(M, S, sum);
  11717. #ifndef NDEBUG
  11718. for (int i = 0; i < M; ++i) {
  11719. assert(!isnan(S[i]));
  11720. assert(!isinf(S[i]));
  11721. }
  11722. #endif
  11723. }
  11724. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11725. for (int64_t i = 0; i < M; i++) {
  11726. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11727. }
  11728. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11729. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11730. for (int64_t ic = 0; ic < nev1; ++ic) {
  11731. // dst indices
  11732. const int i1 = iq1;
  11733. const int i2 = iq2;
  11734. const int i3 = iq3;
  11735. // v indices
  11736. const int iv2 = iq2 % nev2;
  11737. const int iv3 = iq3;
  11738. ggml_vec_dot_f16(nev0,
  11739. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11740. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11741. S16, 0, 1);
  11742. }
  11743. } else {
  11744. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11745. // dst indices
  11746. const int i1 = iq1;
  11747. const int i2 = iq2;
  11748. const int i3 = iq3;
  11749. // v indices
  11750. const int iv2 = iq2 % nev2;
  11751. const int iv3 = iq3;
  11752. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11753. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11754. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11755. S16);
  11756. }
  11757. }
  11758. }
  11759. }
  11760. static void ggml_compute_forward_flash_attn(
  11761. const struct ggml_compute_params * params,
  11762. const bool masked,
  11763. struct ggml_tensor * dst) {
  11764. const struct ggml_tensor * q = dst->src[0];
  11765. switch (q->type) {
  11766. case GGML_TYPE_F16:
  11767. {
  11768. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11769. } break;
  11770. case GGML_TYPE_F32:
  11771. {
  11772. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11773. } break;
  11774. default:
  11775. {
  11776. GGML_ASSERT(false);
  11777. } break;
  11778. }
  11779. }
  11780. // ggml_compute_forward_flash_ff
  11781. static void ggml_compute_forward_flash_ff_f16(
  11782. const struct ggml_compute_params * params,
  11783. struct ggml_tensor * dst) {
  11784. const struct ggml_tensor * a = dst->src[0]; // F16
  11785. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11786. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11787. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11788. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11789. int64_t t0 = ggml_perf_time_us();
  11790. UNUSED(t0);
  11791. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11792. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11793. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11794. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11795. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11796. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11797. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11798. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11799. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11800. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11801. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11802. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11803. const int ith = params->ith;
  11804. const int nth = params->nth;
  11805. const int64_t D = nea0;
  11806. //const int64_t N = nea1;
  11807. const int64_t M = neb01;
  11808. GGML_ASSERT(ne0 == nea0);
  11809. GGML_ASSERT(ne1 == nea1);
  11810. GGML_ASSERT(ne2 == nea2);
  11811. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11812. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11813. GGML_ASSERT(nbb10 == sizeof(float));
  11814. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11815. GGML_ASSERT(nbc10 == sizeof(float));
  11816. GGML_ASSERT(neb00 == D);
  11817. GGML_ASSERT(neb01 == M);
  11818. GGML_ASSERT(neb10 == M);
  11819. GGML_ASSERT(neb11 == 1);
  11820. GGML_ASSERT(nec00 == M);
  11821. GGML_ASSERT(nec01 == D);
  11822. GGML_ASSERT(nec10 == D);
  11823. GGML_ASSERT(nec11 == 1);
  11824. // dst cannot be transposed or permuted
  11825. GGML_ASSERT(nb0 == sizeof(float));
  11826. GGML_ASSERT(nb0 <= nb1);
  11827. GGML_ASSERT(nb1 <= nb2);
  11828. GGML_ASSERT(nb2 <= nb3);
  11829. if (params->type == GGML_TASK_TYPE_INIT) {
  11830. return;
  11831. }
  11832. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11833. return;
  11834. }
  11835. // parallelize by a rows using ggml_vec_dot_f32
  11836. // total rows in a
  11837. const int nr = nea1*nea2*nea3;
  11838. // rows per thread
  11839. const int dr = (nr + nth - 1)/nth;
  11840. // row range for this thread
  11841. const int ir0 = dr*ith;
  11842. const int ir1 = MIN(ir0 + dr, nr);
  11843. for (int ir = ir0; ir < ir1; ++ir) {
  11844. // a indices
  11845. const int ia3 = ir/(nea2*nea1);
  11846. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11847. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11848. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11849. for (int64_t ic = 0; ic < neb01; ++ic) {
  11850. // b0 indices
  11851. const int ib03 = ia3;
  11852. const int ib02 = ia2;
  11853. const int ib01 = ic;
  11854. // S indices
  11855. const int i1 = ib01;
  11856. ggml_vec_dot_f16(nea0,
  11857. S + i1, 0,
  11858. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11859. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11860. }
  11861. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11862. //ggml_vec_gelu_f32(neb01, S, S);
  11863. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11864. for (int64_t i = 0; i < M; i++) {
  11865. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11866. }
  11867. ggml_vec_gelu_f16(neb01, S16, S16);
  11868. {
  11869. // dst indices
  11870. const int i1 = ia1;
  11871. const int i2 = ia2;
  11872. const int i3 = ia3;
  11873. for (int64_t ic = 0; ic < nec01; ++ic) {
  11874. ggml_vec_dot_f16(neb01,
  11875. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11876. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11877. S16, 0, 1);
  11878. }
  11879. ggml_vec_add_f32(nec01,
  11880. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11881. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11882. (float *) c1->data);
  11883. }
  11884. }
  11885. }
  11886. static void ggml_compute_forward_flash_ff(
  11887. const struct ggml_compute_params * params,
  11888. struct ggml_tensor * dst) {
  11889. const struct ggml_tensor * b0 = dst->src[1];
  11890. switch (b0->type) {
  11891. case GGML_TYPE_F16:
  11892. {
  11893. ggml_compute_forward_flash_ff_f16(params, dst);
  11894. } break;
  11895. case GGML_TYPE_F32:
  11896. {
  11897. GGML_ASSERT(false); // TODO
  11898. } break;
  11899. default:
  11900. {
  11901. GGML_ASSERT(false);
  11902. } break;
  11903. }
  11904. }
  11905. // ggml_compute_forward_flash_attn_back
  11906. static void ggml_compute_forward_flash_attn_back_f32(
  11907. const struct ggml_compute_params * params,
  11908. const bool masked,
  11909. struct ggml_tensor * dst) {
  11910. const struct ggml_tensor * q = dst->src[0];
  11911. const struct ggml_tensor * k = dst->src[1];
  11912. const struct ggml_tensor * v = dst->src[2];
  11913. const struct ggml_tensor * d = dst->src[3];
  11914. int64_t t0 = ggml_perf_time_us();
  11915. UNUSED(t0);
  11916. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11917. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11918. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11919. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11920. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11921. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11922. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11923. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11924. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11925. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11926. const int ith = params->ith;
  11927. const int nth = params->nth;
  11928. const int64_t D = neq0;
  11929. const int64_t N = neq1;
  11930. const int64_t P = nek1 - N;
  11931. const int64_t M = P + N;
  11932. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11933. const int mxDM = MAX(D, Mup);
  11934. // GGML_ASSERT(ne0 == D);
  11935. // GGML_ASSERT(ne1 == N);
  11936. GGML_ASSERT(P >= 0);
  11937. GGML_ASSERT(nbq0 == sizeof(float));
  11938. GGML_ASSERT(nbk0 == sizeof(float));
  11939. GGML_ASSERT(nbv0 == sizeof(float));
  11940. GGML_ASSERT(neq0 == D);
  11941. GGML_ASSERT(nek0 == D);
  11942. GGML_ASSERT(nev1 == D);
  11943. GGML_ASSERT(ned0 == D);
  11944. GGML_ASSERT(neq1 == N);
  11945. GGML_ASSERT(nek1 == N + P);
  11946. GGML_ASSERT(nev1 == D);
  11947. GGML_ASSERT(ned1 == N);
  11948. // dst cannot be transposed or permuted
  11949. GGML_ASSERT(nb0 == sizeof(float));
  11950. GGML_ASSERT(nb0 <= nb1);
  11951. GGML_ASSERT(nb1 <= nb2);
  11952. GGML_ASSERT(nb2 <= nb3);
  11953. if (params->type == GGML_TASK_TYPE_INIT) {
  11954. if (ith == 0) {
  11955. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11956. }
  11957. return;
  11958. }
  11959. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11960. return;
  11961. }
  11962. const int64_t elem_q = ggml_nelements(q);
  11963. const int64_t elem_k = ggml_nelements(k);
  11964. enum ggml_type result_type = dst->type;
  11965. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11966. const size_t tsize = ggml_type_size(result_type);
  11967. const size_t offs_q = 0;
  11968. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11969. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11970. void * grad_q = (char *) dst->data;
  11971. void * grad_k = (char *) dst->data + offs_k;
  11972. void * grad_v = (char *) dst->data + offs_v;
  11973. const size_t nbgq1 = nb0*neq0;
  11974. const size_t nbgq2 = nb0*neq0*neq1;
  11975. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11976. const size_t nbgk1 = nb0*nek0;
  11977. const size_t nbgk2 = nb0*nek0*nek1;
  11978. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11979. const size_t nbgv1 = nb0*nev0;
  11980. const size_t nbgv2 = nb0*nev0*nev1;
  11981. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11982. // parallelize by k rows using ggml_vec_dot_f32
  11983. // total rows in k
  11984. const int nr = nek2*nek3;
  11985. // rows per thread
  11986. const int dr = (nr + nth - 1)/nth;
  11987. // row range for this thread
  11988. const int ir0 = dr*ith;
  11989. const int ir1 = MIN(ir0 + dr, nr);
  11990. const float scale = 1.0f/sqrtf(D);
  11991. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11992. // how often k2 (and v2) is repeated in q2
  11993. int nrep = neq2/nek2;
  11994. for (int ir = ir0; ir < ir1; ++ir) {
  11995. // q indices
  11996. const int ik3 = ir/(nek2);
  11997. const int ik2 = ir - ik3*nek2;
  11998. const int iq3 = ik3;
  11999. const int id3 = ik3;
  12000. const int iv3 = ik3;
  12001. const int iv2 = ik2;
  12002. for (int irep = 0; irep < nrep; ++irep) {
  12003. const int iq2 = ik2 + irep*nek2;
  12004. const int id2 = iq2;
  12005. // (ik2 + irep*nek2) % nek2 == ik2
  12006. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12007. const int id1 = iq1;
  12008. // not sure about CACHE_LINE_SIZE_F32..
  12009. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12010. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12011. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12012. for (int i = M; i < Mup; ++i) {
  12013. S[i] = -INFINITY;
  12014. }
  12015. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12016. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12017. // k indices
  12018. const int ik1 = ic;
  12019. // S indices
  12020. const int i1 = ik1;
  12021. ggml_vec_dot_f32(neq0,
  12022. S + i1, 0,
  12023. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12024. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12025. }
  12026. // scale
  12027. ggml_vec_scale_f32(masked_begin, S, scale);
  12028. for (int64_t i = masked_begin; i < M; i++) {
  12029. S[i] = -INFINITY;
  12030. }
  12031. // softmax
  12032. // exclude known -INF S[..] values from max and loop
  12033. // dont forget to set their SM values to zero
  12034. {
  12035. float max = -INFINITY;
  12036. ggml_vec_max_f32(masked_begin, &max, S);
  12037. ggml_float sum = 0.0;
  12038. {
  12039. #ifdef GGML_SOFT_MAX_ACCELERATE
  12040. max = -max;
  12041. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12042. vvexpf(SM, SM, &Mup);
  12043. ggml_vec_sum_f32(Mup, &sum, SM);
  12044. #else
  12045. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12046. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12047. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12048. if (i >= masked_begin) {
  12049. break;
  12050. }
  12051. float * SR = S + i;
  12052. float * SW = SM + i;
  12053. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12054. if (i + j >= masked_begin) {
  12055. break;
  12056. } else if (SR[j] == -INFINITY) {
  12057. SW[j] = 0.0f;
  12058. } else {
  12059. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12060. const float val = expf(SR[j] - max);
  12061. #else
  12062. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12063. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12064. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12065. #endif
  12066. sump[j] += (ggml_float)val;
  12067. SW[j] = val;
  12068. }
  12069. }
  12070. }
  12071. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12072. sum += sump[i];
  12073. }
  12074. #endif
  12075. }
  12076. assert(sum > 0.0);
  12077. sum = 1.0/sum;
  12078. ggml_vec_scale_f32(masked_begin, SM, sum);
  12079. }
  12080. // step-by-step explanation
  12081. {
  12082. // forward-process shape grads from backward process
  12083. // parallel_for ik2,ik3:
  12084. // for irep:
  12085. // iq2 = ik2 + irep*nek2
  12086. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12087. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12088. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12089. // for iq1:
  12090. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12091. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12092. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12093. // S0 = -Inf [D,1,1,1]
  12094. // ~S1[i] = dot(kcur[:D,i], qcur)
  12095. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12096. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12097. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12098. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12099. // ~S5[i] = dot(vcur[:,i], S4)
  12100. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12101. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12102. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12103. // dst backward-/ grad[dst] = d
  12104. //
  12105. // output gradients with their dependencies:
  12106. //
  12107. // grad[kcur] = grad[S1].T @ qcur
  12108. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12109. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12110. // grad[S4] = grad[S5] @ vcur
  12111. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12112. // grad[qcur] = grad[S1] @ kcur
  12113. // grad[vcur] = grad[S5].T @ S4
  12114. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12115. //
  12116. // in post-order:
  12117. //
  12118. // S1 = qcur @ kcur.T
  12119. // S2 = S1 * scale
  12120. // S3 = diag_mask_inf(S2, P)
  12121. // S4 = softmax(S3)
  12122. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12123. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12124. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12125. // grad[qcur] = grad[S1] @ kcur
  12126. // grad[kcur] = grad[S1].T @ qcur
  12127. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12128. //
  12129. // using less variables (SM=S4):
  12130. //
  12131. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12132. // SM = softmax(S)
  12133. // S = d[:D,iq1,iq2,iq3] @ vcur
  12134. // dot_SM_gradSM = dot(SM, S)
  12135. // S = SM * (S - dot(SM, S))
  12136. // S = diag_mask_zero(S, P) * scale
  12137. //
  12138. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12139. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12140. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12141. }
  12142. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12143. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12144. // for ic:
  12145. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12146. // exclude known future zero S[..] values from operation
  12147. ggml_vec_set_f32(masked_begin, S, 0);
  12148. for (int64_t ic = 0; ic < D; ++ic) {
  12149. ggml_vec_mad_f32(masked_begin,
  12150. S,
  12151. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12152. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12153. }
  12154. // S = SM * (S - dot(SM, S))
  12155. float dot_SM_gradSM = 0;
  12156. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12157. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12158. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12159. // S = diag_mask_zero(S, P) * scale
  12160. // already done by above ggml_vec_set_f32
  12161. // exclude known zero S[..] values from operation
  12162. ggml_vec_scale_f32(masked_begin, S, scale);
  12163. // S shape [M,1]
  12164. // SM shape [M,1]
  12165. // kcur shape [D,M]
  12166. // qcur shape [D,1]
  12167. // vcur shape [M,D]
  12168. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12169. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12170. // for ic:
  12171. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12172. // exclude known zero S[..] values from loop
  12173. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12174. ggml_vec_mad_f32(D,
  12175. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12176. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12177. S[ic]);
  12178. }
  12179. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12180. // for ic:
  12181. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12182. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12183. // exclude known zero S[..] values from loop
  12184. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12185. ggml_vec_mad_f32(D,
  12186. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12187. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12188. S[ic]);
  12189. }
  12190. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12191. // for ic:
  12192. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12193. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12194. // exclude known zero SM[..] values from mad
  12195. for (int64_t ic = 0; ic < D; ++ic) {
  12196. ggml_vec_mad_f32(masked_begin,
  12197. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12198. SM,
  12199. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12200. }
  12201. }
  12202. }
  12203. }
  12204. }
  12205. static void ggml_compute_forward_flash_attn_back(
  12206. const struct ggml_compute_params * params,
  12207. const bool masked,
  12208. struct ggml_tensor * dst) {
  12209. const struct ggml_tensor * q = dst->src[0];
  12210. switch (q->type) {
  12211. case GGML_TYPE_F32:
  12212. {
  12213. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12214. } break;
  12215. default:
  12216. {
  12217. GGML_ASSERT(false);
  12218. } break;
  12219. }
  12220. }
  12221. // ggml_compute_forward_ssm_conv
  12222. static void ggml_compute_forward_ssm_conv_f32(
  12223. const struct ggml_compute_params * params,
  12224. struct ggml_tensor * dst) {
  12225. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12226. return;
  12227. }
  12228. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12229. const struct ggml_tensor * src1 = dst->src[1]; // x
  12230. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12231. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12232. const int ith = params->ith;
  12233. const int nth = params->nth;
  12234. const int nc = src2->ne[0]; // d_conv
  12235. const int nr = src0->ne[1]; // d_inner
  12236. const int n_t = src1->ne[1]; // n_tokens
  12237. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12238. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12239. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12240. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12241. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12242. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12243. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12244. // for use with the destination state offset between sequences
  12245. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12246. // rows per thread
  12247. const int dr = (nr + nth - 1)/nth;
  12248. // row range for this thread
  12249. const int ir0 = dr*ith;
  12250. const int ir1 = MIN(ir0 + dr, nr);
  12251. const int ir = ir1 - ir0;
  12252. if (n_kv > 1) {
  12253. // multiple sequences means it's hard to know when it's the first time a state is read,
  12254. // so copy them all over to the destination, just to be sure.
  12255. for (int i3 = 0; i3 < n_kv; ++i3) {
  12256. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12257. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12258. // can't use memcpy because of d_conv vs d_conv - 1
  12259. for (int i1 = 0; i1 < ir; ++i1) {
  12260. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12261. // copy s0 to last (d_conv - 1) columns of s
  12262. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12263. }
  12264. }
  12265. }
  12266. }
  12267. for (int i2 = 0; i2 < n_t; ++i2) {
  12268. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12269. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12270. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12271. float * s0; // {d_conv - 1, d_inner, n_kv}
  12272. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12273. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12274. int ne0s0;
  12275. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12276. // avoid needing to copy the state for the first token
  12277. if (i2 == 0) {
  12278. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12279. ne0s0 = src0->ne[0];
  12280. } else {
  12281. // the source is the last (d_conv - 1) columns of the destination
  12282. s0 = s + 1;
  12283. ne0s0 = nc;
  12284. }
  12285. // d_inner
  12286. for (int i1 = 0; i1 < ir; ++i1) {
  12287. // shift state left
  12288. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12289. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12290. }
  12291. // insert x on the last column
  12292. s[(nc - 1) + i1*nc] = x0[i1];
  12293. }
  12294. // handle copies when there are multiple output states
  12295. for (int i3 = 1; i3 < n_kv; ++i3) {
  12296. int32_t seq = sq[i3];
  12297. if (0 <= seq && seq < n_kv) {
  12298. float * s1 = s + (seq - sq[0])*nc*nr;
  12299. memcpy(s1, s, nc*ir*sizeof(float));
  12300. } else {
  12301. // stop at negative or too big seq_ids
  12302. break;
  12303. }
  12304. }
  12305. // it seems a little faster when this is separate from the state shift
  12306. for (int i1 = 0; i1 < ir; ++i1) {
  12307. // rowwise dot product
  12308. float sumf = 0.0f;
  12309. for (int i0 = 0; i0 < nc; ++i0) {
  12310. int i = i0 + i1*nc;
  12311. sumf += s[i] * c[i];
  12312. }
  12313. x[i1] = sumf;
  12314. }
  12315. }
  12316. }
  12317. static void ggml_compute_forward_ssm_conv(
  12318. const struct ggml_compute_params * params,
  12319. struct ggml_tensor * dst) {
  12320. switch (dst->src[0]->type) {
  12321. case GGML_TYPE_F32:
  12322. {
  12323. ggml_compute_forward_ssm_conv_f32(params, dst);
  12324. } break;
  12325. default:
  12326. {
  12327. GGML_ASSERT(false);
  12328. } break;
  12329. }
  12330. }
  12331. // ggml_compute_forward_ssm_scan
  12332. static void ggml_compute_forward_ssm_scan_f32(
  12333. const struct ggml_compute_params * params,
  12334. struct ggml_tensor * dst) {
  12335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12336. return;
  12337. }
  12338. const struct ggml_tensor * src0 = dst->src[0]; // s
  12339. const struct ggml_tensor * src1 = dst->src[1]; // x
  12340. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12341. const struct ggml_tensor * src3 = dst->src[3]; // A
  12342. const struct ggml_tensor * src4 = dst->src[4]; // B
  12343. const struct ggml_tensor * src5 = dst->src[5]; // C
  12344. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12345. const int ith = params->ith;
  12346. const int nth = params->nth;
  12347. const int64_t nc = src0->ne[0]; // d_state
  12348. const int64_t nr = src0->ne[1]; // d_inner
  12349. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12350. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12351. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12352. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12353. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12354. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12355. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12356. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12357. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12358. // required for the dot product between s and C, and when copying the states
  12359. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12360. // required for per-sequence offsets for states
  12361. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12362. // required to get correct offset for state destination (i.e. src1->nb[2])
  12363. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12364. // rows per thread
  12365. const int dr = (nr + nth - 1)/nth;
  12366. // row range for this thread
  12367. const int ir0 = dr*ith;
  12368. const int ir1 = MIN(ir0 + dr, nr);
  12369. const int ir = ir1 - ir0;
  12370. if (n_kv > 1) {
  12371. // it's hard to know if the source states have already been copied
  12372. // when there are multiple, so copy them already.
  12373. for (int i3 = 0; i3 < n_kv; ++i3) {
  12374. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12375. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12376. memcpy(s, s0, nc*ir*sizeof(float));
  12377. }
  12378. }
  12379. for (int i2 = 0; i2 < n_t; ++i2) {
  12380. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12381. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12382. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12383. float * s0;
  12384. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12385. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12386. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12387. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12388. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12389. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12390. // avoid needing to copy the state for the first token
  12391. if (i2 == 0) {
  12392. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12393. } else {
  12394. // otherwise the source is the same as the destination
  12395. s0 = s;
  12396. }
  12397. // d_inner
  12398. for (int i1 = 0; i1 < ir; ++i1) {
  12399. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12400. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12401. float x_dt = x[i1] * dt_soft_plus;
  12402. float sumf = 0.0f;
  12403. // d_state
  12404. for (int i0 = 0; i0 < nc; ++i0) {
  12405. int i = i0 + i1*nc;
  12406. // state = prev_state * dA + dB * x
  12407. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12408. // y = rowwise_dotprod(state, C)
  12409. sumf += state * C[i0];
  12410. s[i] = state;
  12411. }
  12412. y[i1] = sumf;
  12413. }
  12414. // handle copies when there are multiple output states
  12415. for (int i3 = 1; i3 < n_kv; ++i3) {
  12416. int32_t seq = sq[i3];
  12417. if (0 <= seq && seq < n_kv) {
  12418. float * s1 = s + (seq - sq[0])*nc*nr;
  12419. memcpy(s1, s, nc*ir*sizeof(float));
  12420. } else {
  12421. // stop at negative or too big seq_ids
  12422. break;
  12423. }
  12424. }
  12425. }
  12426. }
  12427. static void ggml_compute_forward_ssm_scan(
  12428. const struct ggml_compute_params * params,
  12429. struct ggml_tensor * dst) {
  12430. switch (dst->src[0]->type) {
  12431. case GGML_TYPE_F32:
  12432. {
  12433. ggml_compute_forward_ssm_scan_f32(params, dst);
  12434. } break;
  12435. default:
  12436. {
  12437. GGML_ASSERT(false);
  12438. } break;
  12439. }
  12440. }
  12441. // ggml_compute_forward_win_part
  12442. static void ggml_compute_forward_win_part_f32(
  12443. const struct ggml_compute_params * params,
  12444. struct ggml_tensor * dst) {
  12445. const struct ggml_tensor * src0 = dst->src[0];
  12446. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12447. return;
  12448. }
  12449. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12450. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12451. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12452. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12453. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12454. assert(ne00 == ne0);
  12455. assert(ne3 == nep0*nep1);
  12456. // TODO: optimize / multi-thread
  12457. for (int py = 0; py < nep1; ++py) {
  12458. for (int px = 0; px < nep0; ++px) {
  12459. const int64_t i3 = py*nep0 + px;
  12460. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12461. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12462. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12463. const int64_t i02 = py*w + i2;
  12464. const int64_t i01 = px*w + i1;
  12465. const int64_t i00 = i0;
  12466. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12467. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12468. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12469. ((float *) dst->data)[i] = 0.0f;
  12470. } else {
  12471. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12472. }
  12473. }
  12474. }
  12475. }
  12476. }
  12477. }
  12478. }
  12479. static void ggml_compute_forward_win_part(
  12480. const struct ggml_compute_params * params,
  12481. struct ggml_tensor * dst) {
  12482. const struct ggml_tensor * src0 = dst->src[0];
  12483. switch (src0->type) {
  12484. case GGML_TYPE_F32:
  12485. {
  12486. ggml_compute_forward_win_part_f32(params, dst);
  12487. } break;
  12488. default:
  12489. {
  12490. GGML_ASSERT(false);
  12491. } break;
  12492. }
  12493. }
  12494. // ggml_compute_forward_win_unpart
  12495. static void ggml_compute_forward_win_unpart_f32(
  12496. const struct ggml_compute_params * params,
  12497. struct ggml_tensor * dst) {
  12498. const struct ggml_tensor * src0 = dst->src[0];
  12499. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12500. return;
  12501. }
  12502. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12503. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12504. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12505. // padding
  12506. const int px = (w - ne1%w)%w;
  12507. //const int py = (w - ne2%w)%w;
  12508. const int npx = (px + ne1)/w;
  12509. //const int npy = (py + ne2)/w;
  12510. assert(ne0 == ne00);
  12511. // TODO: optimize / multi-thread
  12512. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12513. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12514. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12515. const int ip2 = i2/w;
  12516. const int ip1 = i1/w;
  12517. const int64_t i02 = i2%w;
  12518. const int64_t i01 = i1%w;
  12519. const int64_t i00 = i0;
  12520. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12521. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12522. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12523. }
  12524. }
  12525. }
  12526. }
  12527. static void ggml_compute_forward_win_unpart(
  12528. const struct ggml_compute_params * params,
  12529. struct ggml_tensor * dst) {
  12530. const struct ggml_tensor * src0 = dst->src[0];
  12531. switch (src0->type) {
  12532. case GGML_TYPE_F32:
  12533. {
  12534. ggml_compute_forward_win_unpart_f32(params, dst);
  12535. } break;
  12536. default:
  12537. {
  12538. GGML_ASSERT(false);
  12539. } break;
  12540. }
  12541. }
  12542. //gmml_compute_forward_unary
  12543. static void ggml_compute_forward_unary(
  12544. const struct ggml_compute_params * params,
  12545. struct ggml_tensor * dst) {
  12546. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12547. switch (op) {
  12548. case GGML_UNARY_OP_ABS:
  12549. {
  12550. ggml_compute_forward_abs(params, dst);
  12551. } break;
  12552. case GGML_UNARY_OP_SGN:
  12553. {
  12554. ggml_compute_forward_sgn(params, dst);
  12555. } break;
  12556. case GGML_UNARY_OP_NEG:
  12557. {
  12558. ggml_compute_forward_neg(params, dst);
  12559. } break;
  12560. case GGML_UNARY_OP_STEP:
  12561. {
  12562. ggml_compute_forward_step(params, dst);
  12563. } break;
  12564. case GGML_UNARY_OP_TANH:
  12565. {
  12566. ggml_compute_forward_tanh(params, dst);
  12567. } break;
  12568. case GGML_UNARY_OP_ELU:
  12569. {
  12570. ggml_compute_forward_elu(params, dst);
  12571. } break;
  12572. case GGML_UNARY_OP_RELU:
  12573. {
  12574. ggml_compute_forward_relu(params, dst);
  12575. } break;
  12576. case GGML_UNARY_OP_GELU:
  12577. {
  12578. ggml_compute_forward_gelu(params, dst);
  12579. } break;
  12580. case GGML_UNARY_OP_GELU_QUICK:
  12581. {
  12582. ggml_compute_forward_gelu_quick(params, dst);
  12583. } break;
  12584. case GGML_UNARY_OP_SILU:
  12585. {
  12586. ggml_compute_forward_silu(params, dst);
  12587. } break;
  12588. case GGML_UNARY_OP_HARDSWISH:
  12589. {
  12590. ggml_compute_forward_hardswish(params, dst);
  12591. } break;
  12592. case GGML_UNARY_OP_HARDSIGMOID:
  12593. {
  12594. ggml_compute_forward_hardsigmoid(params, dst);
  12595. } break;
  12596. default:
  12597. {
  12598. GGML_ASSERT(false);
  12599. } break;
  12600. }
  12601. }
  12602. // ggml_compute_forward_get_rel_pos
  12603. static void ggml_compute_forward_get_rel_pos_f16(
  12604. const struct ggml_compute_params * params,
  12605. struct ggml_tensor * dst) {
  12606. const struct ggml_tensor * src0 = dst->src[0];
  12607. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12608. return;
  12609. }
  12610. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12611. GGML_TENSOR_UNARY_OP_LOCALS
  12612. const int64_t w = ne1;
  12613. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12614. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12615. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12616. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12617. const int64_t pos = (w - i1 - 1) + i2;
  12618. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12619. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12620. }
  12621. }
  12622. }
  12623. }
  12624. static void ggml_compute_forward_get_rel_pos(
  12625. const struct ggml_compute_params * params,
  12626. struct ggml_tensor * dst) {
  12627. const struct ggml_tensor * src0 = dst->src[0];
  12628. switch (src0->type) {
  12629. case GGML_TYPE_F16:
  12630. {
  12631. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12632. } break;
  12633. default:
  12634. {
  12635. GGML_ASSERT(false);
  12636. } break;
  12637. }
  12638. }
  12639. // ggml_compute_forward_add_rel_pos
  12640. static void ggml_compute_forward_add_rel_pos_f32(
  12641. const struct ggml_compute_params * params,
  12642. struct ggml_tensor * dst) {
  12643. const struct ggml_tensor * src0 = dst->src[0];
  12644. const struct ggml_tensor * src1 = dst->src[1];
  12645. const struct ggml_tensor * src2 = dst->src[2];
  12646. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12647. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12648. if (params->ith != 0) {
  12649. return;
  12650. }
  12651. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12652. return;
  12653. }
  12654. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12655. return;
  12656. }
  12657. int64_t t0 = ggml_perf_time_us();
  12658. UNUSED(t0);
  12659. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12660. float * src1_data = (float *) src1->data;
  12661. float * src2_data = (float *) src2->data;
  12662. float * dst_data = (float *) dst->data;
  12663. const int64_t ne10 = src1->ne[0];
  12664. const int64_t ne11 = src1->ne[1];
  12665. const int64_t ne12 = src1->ne[2];
  12666. const int64_t ne13 = src1->ne[3];
  12667. const int ith = params->ith;
  12668. const int nth = params->nth;
  12669. // total patches in dst
  12670. const int np = ne13;
  12671. // patches per thread
  12672. const int dp = (np + nth - 1)/nth;
  12673. // patch range for this thread
  12674. const int ip0 = dp*ith;
  12675. const int ip1 = MIN(ip0 + dp, np);
  12676. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12677. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12678. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12679. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12680. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12681. const int64_t jp0 = jp1 + i10;
  12682. const float src1_e = src1_data[jp0];
  12683. const float src2_e = src2_data[jp0];
  12684. const int64_t jdh = jp0 * ne10;
  12685. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12686. for (int64_t j = 0; j < ne10; ++j) {
  12687. dst_data[jdh + j ] += src2_e;
  12688. dst_data[jdw + j*ne10] += src1_e;
  12689. }
  12690. }
  12691. }
  12692. }
  12693. }
  12694. }
  12695. static void ggml_compute_forward_add_rel_pos(
  12696. const struct ggml_compute_params * params,
  12697. struct ggml_tensor * dst) {
  12698. const struct ggml_tensor * src0 = dst->src[0];
  12699. switch (src0->type) {
  12700. case GGML_TYPE_F32:
  12701. {
  12702. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12703. } break;
  12704. default:
  12705. {
  12706. GGML_ASSERT(false);
  12707. } break;
  12708. }
  12709. }
  12710. // ggml_compute_forward_map_unary
  12711. static void ggml_compute_forward_map_unary_f32(
  12712. const struct ggml_compute_params * params,
  12713. struct ggml_tensor * dst,
  12714. const ggml_unary_op_f32_t fun) {
  12715. const struct ggml_tensor * src0 = dst->src[0];
  12716. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12717. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12718. return;
  12719. }
  12720. const int n = ggml_nrows(src0);
  12721. const int nc = src0->ne[0];
  12722. assert( dst->nb[0] == sizeof(float));
  12723. assert(src0->nb[0] == sizeof(float));
  12724. for (int i = 0; i < n; i++) {
  12725. fun(nc,
  12726. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12727. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12728. }
  12729. }
  12730. static void ggml_compute_forward_map_unary(
  12731. const struct ggml_compute_params * params,
  12732. struct ggml_tensor * dst,
  12733. const ggml_unary_op_f32_t fun) {
  12734. const struct ggml_tensor * src0 = dst->src[0];
  12735. switch (src0->type) {
  12736. case GGML_TYPE_F32:
  12737. {
  12738. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12739. } break;
  12740. default:
  12741. {
  12742. GGML_ASSERT(false);
  12743. } break;
  12744. }
  12745. }
  12746. // ggml_compute_forward_map_binary
  12747. static void ggml_compute_forward_map_binary_f32(
  12748. const struct ggml_compute_params * params,
  12749. struct ggml_tensor * dst,
  12750. const ggml_binary_op_f32_t fun) {
  12751. const struct ggml_tensor * src0 = dst->src[0];
  12752. const struct ggml_tensor * src1 = dst->src[1];
  12753. assert(params->ith == 0);
  12754. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12755. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12756. return;
  12757. }
  12758. const int n = ggml_nrows(src0);
  12759. const int nc = src0->ne[0];
  12760. assert( dst->nb[0] == sizeof(float));
  12761. assert(src0->nb[0] == sizeof(float));
  12762. assert(src1->nb[0] == sizeof(float));
  12763. for (int i = 0; i < n; i++) {
  12764. fun(nc,
  12765. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12766. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12767. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12768. }
  12769. }
  12770. static void ggml_compute_forward_map_binary(
  12771. const struct ggml_compute_params * params,
  12772. struct ggml_tensor * dst,
  12773. const ggml_binary_op_f32_t fun) {
  12774. const struct ggml_tensor * src0 = dst->src[0];
  12775. switch (src0->type) {
  12776. case GGML_TYPE_F32:
  12777. {
  12778. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12779. } break;
  12780. default:
  12781. {
  12782. GGML_ASSERT(false);
  12783. } break;
  12784. }
  12785. }
  12786. // ggml_compute_forward_map_custom1
  12787. static void ggml_compute_forward_map_custom1_f32(
  12788. const struct ggml_compute_params * params,
  12789. struct ggml_tensor * dst,
  12790. const ggml_custom1_op_f32_t fun) {
  12791. const struct ggml_tensor * a = dst->src[0];
  12792. assert(params->ith == 0);
  12793. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12794. return;
  12795. }
  12796. fun(dst, a);
  12797. }
  12798. // ggml_compute_forward_map_custom2
  12799. static void ggml_compute_forward_map_custom2_f32(
  12800. const struct ggml_compute_params * params,
  12801. struct ggml_tensor * dst,
  12802. const ggml_custom2_op_f32_t fun) {
  12803. const struct ggml_tensor * a = dst->src[0];
  12804. const struct ggml_tensor * b = dst->src[1];
  12805. assert(params->ith == 0);
  12806. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12807. return;
  12808. }
  12809. fun(dst, a, b);
  12810. }
  12811. // ggml_compute_forward_map_custom3
  12812. static void ggml_compute_forward_map_custom3_f32(
  12813. const struct ggml_compute_params * params,
  12814. struct ggml_tensor * dst,
  12815. const ggml_custom3_op_f32_t fun) {
  12816. const struct ggml_tensor * a = dst->src[0];
  12817. const struct ggml_tensor * b = dst->src[1];
  12818. const struct ggml_tensor * c = dst->src[1];
  12819. assert(params->ith == 0);
  12820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12821. return;
  12822. }
  12823. fun(dst, a, b, c);
  12824. }
  12825. // ggml_compute_forward_map_custom1
  12826. static void ggml_compute_forward_map_custom1(
  12827. const struct ggml_compute_params * params,
  12828. struct ggml_tensor * dst) {
  12829. const struct ggml_tensor * a = dst->src[0];
  12830. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12831. return;
  12832. }
  12833. struct ggml_map_custom1_op_params p;
  12834. memcpy(&p, dst->op_params, sizeof(p));
  12835. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12836. }
  12837. // ggml_compute_forward_map_custom2
  12838. static void ggml_compute_forward_map_custom2(
  12839. const struct ggml_compute_params * params,
  12840. struct ggml_tensor * dst) {
  12841. const struct ggml_tensor * a = dst->src[0];
  12842. const struct ggml_tensor * b = dst->src[1];
  12843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12844. return;
  12845. }
  12846. struct ggml_map_custom2_op_params p;
  12847. memcpy(&p, dst->op_params, sizeof(p));
  12848. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12849. }
  12850. // ggml_compute_forward_map_custom3
  12851. static void ggml_compute_forward_map_custom3(
  12852. const struct ggml_compute_params * params,
  12853. struct ggml_tensor * dst) {
  12854. const struct ggml_tensor * a = dst->src[0];
  12855. const struct ggml_tensor * b = dst->src[1];
  12856. const struct ggml_tensor * c = dst->src[2];
  12857. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12858. return;
  12859. }
  12860. struct ggml_map_custom3_op_params p;
  12861. memcpy(&p, dst->op_params, sizeof(p));
  12862. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12863. }
  12864. // ggml_compute_forward_cross_entropy_loss
  12865. static void ggml_compute_forward_cross_entropy_loss_f32(
  12866. const struct ggml_compute_params * params,
  12867. struct ggml_tensor * dst) {
  12868. const struct ggml_tensor * src0 = dst->src[0];
  12869. const struct ggml_tensor * src1 = dst->src[1];
  12870. GGML_ASSERT(ggml_is_contiguous(src0));
  12871. GGML_ASSERT(ggml_is_contiguous(src1));
  12872. GGML_ASSERT(ggml_is_scalar(dst));
  12873. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12874. const int ith = params->ith;
  12875. const int nth = params->nth;
  12876. float * sums = (float *) params->wdata;
  12877. // TODO: handle transposed/permuted matrices
  12878. const int nc = src0->ne[0];
  12879. const int nr = ggml_nrows(src0);
  12880. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12881. if (params->type == GGML_TASK_TYPE_INIT) {
  12882. if (ith == 0) {
  12883. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12884. }
  12885. return;
  12886. }
  12887. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12888. if (ith == 0) {
  12889. float * dp = (float *) dst->data;
  12890. ggml_vec_sum_f32(nth, dp, sums);
  12891. dp[0] *= -1.0f / (float) nr;
  12892. }
  12893. return;
  12894. }
  12895. const double eps = 1e-9;
  12896. // rows per thread
  12897. const int dr = (nr + nth - 1)/nth;
  12898. // row range for this thread
  12899. const int ir0 = dr*ith;
  12900. const int ir1 = MIN(ir0 + dr, nr);
  12901. for (int i1 = ir0; i1 < ir1; i1++) {
  12902. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12903. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12904. float * st = ((float *) params->wdata) + nth + ith*nc;
  12905. #ifndef NDEBUG
  12906. for (int i = 0; i < nc; ++i) {
  12907. //printf("p[%d] = %f\n", i, p[i]);
  12908. assert(!isnan(s0[i]));
  12909. assert(!isnan(s1[i]));
  12910. }
  12911. #endif
  12912. // soft_max
  12913. ggml_float sum = 0.0;
  12914. {
  12915. float max = -INFINITY;
  12916. ggml_vec_max_f32(nc, &max, s0);
  12917. uint16_t scvt; UNUSED(scvt);
  12918. for (int i = 0; i < nc; i++) {
  12919. if (s0[i] == -INFINITY) {
  12920. st[i] = 0.0f;
  12921. } else {
  12922. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12923. const float s = s0[i] - max;
  12924. const float val = expf(s);
  12925. #else
  12926. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12927. memcpy(&scvt, &s, sizeof(scvt));
  12928. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12929. #endif
  12930. sum += (ggml_float)val;
  12931. st[i] = val;
  12932. }
  12933. }
  12934. assert(sum > 0.0);
  12935. // sum = 1.0/sum;
  12936. }
  12937. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12938. sum = (1.0 - eps) / sum;
  12939. ggml_vec_scale_f32(nc, st, sum);
  12940. ggml_vec_add1_f32(nc, st, st, eps);
  12941. ggml_vec_log_f32(nc, st, st);
  12942. ggml_vec_mul_f32(nc, st, st, s1);
  12943. float st_sum = 0;
  12944. ggml_vec_sum_f32(nc, &st_sum, st);
  12945. sums[ith] += st_sum;
  12946. #ifndef NDEBUG
  12947. for (int i = 0; i < nc; ++i) {
  12948. assert(!isnan(st[i]));
  12949. assert(!isinf(st[i]));
  12950. }
  12951. #endif
  12952. }
  12953. }
  12954. static void ggml_compute_forward_cross_entropy_loss(
  12955. const struct ggml_compute_params * params,
  12956. struct ggml_tensor * dst) {
  12957. const struct ggml_tensor * src0 = dst->src[0];
  12958. switch (src0->type) {
  12959. case GGML_TYPE_F32:
  12960. {
  12961. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12962. } break;
  12963. default:
  12964. {
  12965. GGML_ASSERT(false);
  12966. } break;
  12967. }
  12968. }
  12969. // ggml_compute_forward_cross_entropy_loss_back
  12970. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12971. const struct ggml_compute_params * params,
  12972. struct ggml_tensor * dst) {
  12973. const struct ggml_tensor * src0 = dst->src[0];
  12974. const struct ggml_tensor * src1 = dst->src[1];
  12975. const struct ggml_tensor * opt0 = dst->src[2];
  12976. GGML_ASSERT(ggml_is_contiguous(dst));
  12977. GGML_ASSERT(ggml_is_contiguous(src0));
  12978. GGML_ASSERT(ggml_is_contiguous(src1));
  12979. GGML_ASSERT(ggml_is_contiguous(opt0));
  12980. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12981. const int64_t ith = params->ith;
  12982. const int64_t nth = params->nth;
  12983. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12984. return;
  12985. }
  12986. const double eps = 1e-9;
  12987. // TODO: handle transposed/permuted matrices
  12988. const int64_t nc = src0->ne[0];
  12989. const int64_t nr = ggml_nrows(src0);
  12990. // rows per thread
  12991. const int64_t dr = (nr + nth - 1)/nth;
  12992. // row range for this thread
  12993. const int64_t ir0 = dr*ith;
  12994. const int64_t ir1 = MIN(ir0 + dr, nr);
  12995. float * d = (float *) opt0->data;
  12996. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12997. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12998. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12999. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13000. #ifndef NDEBUG
  13001. for (int i = 0; i < nc; ++i) {
  13002. //printf("p[%d] = %f\n", i, p[i]);
  13003. assert(!isnan(s0[i]));
  13004. assert(!isnan(s1[i]));
  13005. }
  13006. #endif
  13007. // soft_max
  13008. ggml_float sum = 0.0;
  13009. {
  13010. float max = -INFINITY;
  13011. ggml_vec_max_f32(nc, &max, s0);
  13012. uint16_t scvt; UNUSED(scvt);
  13013. for (int i = 0; i < nc; i++) {
  13014. if (s0[i] == -INFINITY) {
  13015. ds0[i] = 0.0f;
  13016. } else {
  13017. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13018. const float s = s0[i] - max;
  13019. const float val = expf(s);
  13020. #else
  13021. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13022. memcpy(&scvt, &s, sizeof(scvt));
  13023. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13024. #endif
  13025. sum += (ggml_float)val;
  13026. ds0[i] = val;
  13027. }
  13028. }
  13029. assert(sum > 0.0);
  13030. sum = (1.0 - eps)/sum;
  13031. }
  13032. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13033. ggml_vec_scale_f32(nc, ds0, sum);
  13034. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13035. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13036. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13037. #ifndef NDEBUG
  13038. for (int i = 0; i < nc; ++i) {
  13039. assert(!isnan(ds0[i]));
  13040. assert(!isinf(ds0[i]));
  13041. }
  13042. #endif
  13043. }
  13044. }
  13045. static void ggml_compute_forward_cross_entropy_loss_back(
  13046. const struct ggml_compute_params * params,
  13047. struct ggml_tensor * dst) {
  13048. const struct ggml_tensor * src0 = dst->src[0];
  13049. switch (src0->type) {
  13050. case GGML_TYPE_F32:
  13051. {
  13052. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13053. } break;
  13054. default:
  13055. {
  13056. GGML_ASSERT(false);
  13057. } break;
  13058. }
  13059. }
  13060. /////////////////////////////////
  13061. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13062. GGML_ASSERT(params);
  13063. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13064. return;
  13065. }
  13066. switch (tensor->op) {
  13067. case GGML_OP_DUP:
  13068. {
  13069. ggml_compute_forward_dup(params, tensor);
  13070. } break;
  13071. case GGML_OP_ADD:
  13072. {
  13073. ggml_compute_forward_add(params, tensor);
  13074. } break;
  13075. case GGML_OP_ADD1:
  13076. {
  13077. ggml_compute_forward_add1(params, tensor);
  13078. } break;
  13079. case GGML_OP_ACC:
  13080. {
  13081. ggml_compute_forward_acc(params, tensor);
  13082. } break;
  13083. case GGML_OP_SUB:
  13084. {
  13085. ggml_compute_forward_sub(params, tensor);
  13086. } break;
  13087. case GGML_OP_MUL:
  13088. {
  13089. ggml_compute_forward_mul(params, tensor);
  13090. } break;
  13091. case GGML_OP_DIV:
  13092. {
  13093. ggml_compute_forward_div(params, tensor);
  13094. } break;
  13095. case GGML_OP_SQR:
  13096. {
  13097. ggml_compute_forward_sqr(params, tensor);
  13098. } break;
  13099. case GGML_OP_SQRT:
  13100. {
  13101. ggml_compute_forward_sqrt(params, tensor);
  13102. } break;
  13103. case GGML_OP_LOG:
  13104. {
  13105. ggml_compute_forward_log(params, tensor);
  13106. } break;
  13107. case GGML_OP_SUM:
  13108. {
  13109. ggml_compute_forward_sum(params, tensor);
  13110. } break;
  13111. case GGML_OP_SUM_ROWS:
  13112. {
  13113. ggml_compute_forward_sum_rows(params, tensor);
  13114. } break;
  13115. case GGML_OP_MEAN:
  13116. {
  13117. ggml_compute_forward_mean(params, tensor);
  13118. } break;
  13119. case GGML_OP_ARGMAX:
  13120. {
  13121. ggml_compute_forward_argmax(params, tensor);
  13122. } break;
  13123. case GGML_OP_REPEAT:
  13124. {
  13125. ggml_compute_forward_repeat(params, tensor);
  13126. } break;
  13127. case GGML_OP_REPEAT_BACK:
  13128. {
  13129. ggml_compute_forward_repeat_back(params, tensor);
  13130. } break;
  13131. case GGML_OP_CONCAT:
  13132. {
  13133. ggml_compute_forward_concat(params, tensor);
  13134. } break;
  13135. case GGML_OP_SILU_BACK:
  13136. {
  13137. ggml_compute_forward_silu_back(params, tensor);
  13138. } break;
  13139. case GGML_OP_NORM:
  13140. {
  13141. ggml_compute_forward_norm(params, tensor);
  13142. } break;
  13143. case GGML_OP_RMS_NORM:
  13144. {
  13145. ggml_compute_forward_rms_norm(params, tensor);
  13146. } break;
  13147. case GGML_OP_RMS_NORM_BACK:
  13148. {
  13149. ggml_compute_forward_rms_norm_back(params, tensor);
  13150. } break;
  13151. case GGML_OP_GROUP_NORM:
  13152. {
  13153. ggml_compute_forward_group_norm(params, tensor);
  13154. } break;
  13155. case GGML_OP_MUL_MAT:
  13156. {
  13157. ggml_compute_forward_mul_mat(params, tensor);
  13158. } break;
  13159. case GGML_OP_MUL_MAT_ID:
  13160. {
  13161. ggml_compute_forward_mul_mat_id(params, tensor);
  13162. } break;
  13163. case GGML_OP_OUT_PROD:
  13164. {
  13165. ggml_compute_forward_out_prod(params, tensor);
  13166. } break;
  13167. case GGML_OP_SCALE:
  13168. {
  13169. ggml_compute_forward_scale(params, tensor);
  13170. } break;
  13171. case GGML_OP_SET:
  13172. {
  13173. ggml_compute_forward_set(params, tensor);
  13174. } break;
  13175. case GGML_OP_CPY:
  13176. {
  13177. ggml_compute_forward_cpy(params, tensor);
  13178. } break;
  13179. case GGML_OP_CONT:
  13180. {
  13181. ggml_compute_forward_cont(params, tensor);
  13182. } break;
  13183. case GGML_OP_RESHAPE:
  13184. {
  13185. ggml_compute_forward_reshape(params, tensor);
  13186. } break;
  13187. case GGML_OP_VIEW:
  13188. {
  13189. ggml_compute_forward_view(params, tensor);
  13190. } break;
  13191. case GGML_OP_PERMUTE:
  13192. {
  13193. ggml_compute_forward_permute(params, tensor);
  13194. } break;
  13195. case GGML_OP_TRANSPOSE:
  13196. {
  13197. ggml_compute_forward_transpose(params, tensor);
  13198. } break;
  13199. case GGML_OP_GET_ROWS:
  13200. {
  13201. ggml_compute_forward_get_rows(params, tensor);
  13202. } break;
  13203. case GGML_OP_GET_ROWS_BACK:
  13204. {
  13205. ggml_compute_forward_get_rows_back(params, tensor);
  13206. } break;
  13207. case GGML_OP_DIAG:
  13208. {
  13209. ggml_compute_forward_diag(params, tensor);
  13210. } break;
  13211. case GGML_OP_DIAG_MASK_INF:
  13212. {
  13213. ggml_compute_forward_diag_mask_inf(params, tensor);
  13214. } break;
  13215. case GGML_OP_DIAG_MASK_ZERO:
  13216. {
  13217. ggml_compute_forward_diag_mask_zero(params, tensor);
  13218. } break;
  13219. case GGML_OP_SOFT_MAX:
  13220. {
  13221. ggml_compute_forward_soft_max(params, tensor);
  13222. } break;
  13223. case GGML_OP_SOFT_MAX_BACK:
  13224. {
  13225. ggml_compute_forward_soft_max_back(params, tensor);
  13226. } break;
  13227. case GGML_OP_ROPE:
  13228. {
  13229. ggml_compute_forward_rope(params, tensor);
  13230. } break;
  13231. case GGML_OP_ROPE_BACK:
  13232. {
  13233. ggml_compute_forward_rope_back(params, tensor);
  13234. } break;
  13235. case GGML_OP_ALIBI:
  13236. {
  13237. ggml_compute_forward_alibi(params, tensor);
  13238. } break;
  13239. case GGML_OP_CLAMP:
  13240. {
  13241. ggml_compute_forward_clamp(params, tensor);
  13242. } break;
  13243. case GGML_OP_CONV_TRANSPOSE_1D:
  13244. {
  13245. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13246. } break;
  13247. case GGML_OP_IM2COL:
  13248. {
  13249. ggml_compute_forward_im2col(params, tensor);
  13250. } break;
  13251. case GGML_OP_CONV_TRANSPOSE_2D:
  13252. {
  13253. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13254. } break;
  13255. case GGML_OP_POOL_1D:
  13256. {
  13257. ggml_compute_forward_pool_1d(params, tensor);
  13258. } break;
  13259. case GGML_OP_POOL_2D:
  13260. {
  13261. ggml_compute_forward_pool_2d(params, tensor);
  13262. } break;
  13263. case GGML_OP_UPSCALE:
  13264. {
  13265. ggml_compute_forward_upscale(params, tensor);
  13266. } break;
  13267. case GGML_OP_PAD:
  13268. {
  13269. ggml_compute_forward_pad(params, tensor);
  13270. } break;
  13271. case GGML_OP_ARANGE:
  13272. {
  13273. ggml_compute_forward_arange(params, tensor);
  13274. } break;
  13275. case GGML_OP_TIMESTEP_EMBEDDING:
  13276. {
  13277. ggml_compute_forward_timestep_embedding(params, tensor);
  13278. } break;
  13279. case GGML_OP_ARGSORT:
  13280. {
  13281. ggml_compute_forward_argsort(params, tensor);
  13282. } break;
  13283. case GGML_OP_LEAKY_RELU:
  13284. {
  13285. ggml_compute_forward_leaky_relu(params, tensor);
  13286. } break;
  13287. case GGML_OP_FLASH_ATTN:
  13288. {
  13289. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13290. GGML_ASSERT(t == 0 || t == 1);
  13291. const bool masked = t != 0;
  13292. ggml_compute_forward_flash_attn(params, masked, tensor);
  13293. } break;
  13294. case GGML_OP_FLASH_FF:
  13295. {
  13296. ggml_compute_forward_flash_ff(params, tensor);
  13297. } break;
  13298. case GGML_OP_FLASH_ATTN_BACK:
  13299. {
  13300. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13301. GGML_ASSERT(t == 0 || t == 1);
  13302. bool masked = t != 0;
  13303. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13304. } break;
  13305. case GGML_OP_SSM_CONV:
  13306. {
  13307. ggml_compute_forward_ssm_conv(params, tensor);
  13308. } break;
  13309. case GGML_OP_SSM_SCAN:
  13310. {
  13311. ggml_compute_forward_ssm_scan(params, tensor);
  13312. } break;
  13313. case GGML_OP_WIN_PART:
  13314. {
  13315. ggml_compute_forward_win_part(params, tensor);
  13316. } break;
  13317. case GGML_OP_WIN_UNPART:
  13318. {
  13319. ggml_compute_forward_win_unpart(params, tensor);
  13320. } break;
  13321. case GGML_OP_UNARY:
  13322. {
  13323. ggml_compute_forward_unary(params, tensor);
  13324. } break;
  13325. case GGML_OP_GET_REL_POS:
  13326. {
  13327. ggml_compute_forward_get_rel_pos(params, tensor);
  13328. } break;
  13329. case GGML_OP_ADD_REL_POS:
  13330. {
  13331. ggml_compute_forward_add_rel_pos(params, tensor);
  13332. } break;
  13333. case GGML_OP_MAP_UNARY:
  13334. {
  13335. ggml_unary_op_f32_t fun;
  13336. memcpy(&fun, tensor->op_params, sizeof(fun));
  13337. ggml_compute_forward_map_unary(params, tensor, fun);
  13338. }
  13339. break;
  13340. case GGML_OP_MAP_BINARY:
  13341. {
  13342. ggml_binary_op_f32_t fun;
  13343. memcpy(&fun, tensor->op_params, sizeof(fun));
  13344. ggml_compute_forward_map_binary(params, tensor, fun);
  13345. }
  13346. break;
  13347. case GGML_OP_MAP_CUSTOM1_F32:
  13348. {
  13349. ggml_custom1_op_f32_t fun;
  13350. memcpy(&fun, tensor->op_params, sizeof(fun));
  13351. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13352. }
  13353. break;
  13354. case GGML_OP_MAP_CUSTOM2_F32:
  13355. {
  13356. ggml_custom2_op_f32_t fun;
  13357. memcpy(&fun, tensor->op_params, sizeof(fun));
  13358. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13359. }
  13360. break;
  13361. case GGML_OP_MAP_CUSTOM3_F32:
  13362. {
  13363. ggml_custom3_op_f32_t fun;
  13364. memcpy(&fun, tensor->op_params, sizeof(fun));
  13365. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13366. }
  13367. break;
  13368. case GGML_OP_MAP_CUSTOM1:
  13369. {
  13370. ggml_compute_forward_map_custom1(params, tensor);
  13371. }
  13372. break;
  13373. case GGML_OP_MAP_CUSTOM2:
  13374. {
  13375. ggml_compute_forward_map_custom2(params, tensor);
  13376. }
  13377. break;
  13378. case GGML_OP_MAP_CUSTOM3:
  13379. {
  13380. ggml_compute_forward_map_custom3(params, tensor);
  13381. }
  13382. break;
  13383. case GGML_OP_CROSS_ENTROPY_LOSS:
  13384. {
  13385. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13386. }
  13387. break;
  13388. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13389. {
  13390. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13391. }
  13392. break;
  13393. case GGML_OP_NONE:
  13394. {
  13395. // nop
  13396. } break;
  13397. case GGML_OP_COUNT:
  13398. {
  13399. GGML_ASSERT(false);
  13400. } break;
  13401. }
  13402. }
  13403. ////////////////////////////////////////////////////////////////////////////////
  13404. static size_t ggml_hash_size(size_t min_sz) {
  13405. // next primes after powers of two
  13406. static const size_t primes[] = {
  13407. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13408. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13409. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13410. 16777259, 33554467, 67108879, 134217757, 268435459,
  13411. 536870923, 1073741827, 2147483659
  13412. };
  13413. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13414. // find the smallest prime that is larger or equal to min_sz
  13415. size_t l = 0;
  13416. size_t r = n_primes;
  13417. while (l < r) {
  13418. size_t m = (l + r)/2;
  13419. if (primes[m] < min_sz) {
  13420. l = m + 1;
  13421. } else {
  13422. r = m;
  13423. }
  13424. }
  13425. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13426. return sz;
  13427. }
  13428. static size_t ggml_hash(const void * p) {
  13429. return (size_t)p;
  13430. }
  13431. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13432. size_t h = ggml_hash(key) % hash_set.size;
  13433. // linear probing
  13434. size_t i = h;
  13435. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13436. i = (i + 1) % hash_set.size;
  13437. if (i == h) {
  13438. // visited all hash table entries -> not found
  13439. return GGML_HASHTABLE_FULL;
  13440. }
  13441. }
  13442. return i;
  13443. }
  13444. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13445. size_t i = ggml_hash_find(hash_set, key);
  13446. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13447. }
  13448. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13449. size_t i = ggml_hash_find(hash_set, key);
  13450. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13451. if (hash_set.keys[i] == key) {
  13452. return GGML_HASHTABLE_ALREADY_EXISTS;
  13453. }
  13454. // insert
  13455. GGML_ASSERT(hash_set.keys[i] == NULL);
  13456. hash_set.keys[i] = key;
  13457. return i;
  13458. }
  13459. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13460. size_t i = ggml_hash_find(hash_set, key);
  13461. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13462. hash_set.keys[i] = key;
  13463. return i;
  13464. }
  13465. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13466. size = ggml_hash_size(size);
  13467. struct ggml_hash_set result;
  13468. result.size = size;
  13469. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13470. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13471. return result;
  13472. }
  13473. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13474. GGML_FREE(hash_set.keys);
  13475. }
  13476. struct hash_map {
  13477. struct ggml_hash_set set;
  13478. struct ggml_tensor ** vals;
  13479. };
  13480. static struct hash_map * ggml_new_hash_map(size_t size) {
  13481. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13482. result->set = ggml_hash_set_new(size);
  13483. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13484. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13485. return result;
  13486. }
  13487. static void ggml_hash_map_free(struct hash_map * map) {
  13488. ggml_hash_set_free(map->set);
  13489. GGML_FREE(map->vals);
  13490. GGML_FREE(map);
  13491. }
  13492. // gradient checkpointing
  13493. static struct ggml_tensor * ggml_recompute_graph_node(
  13494. struct ggml_context * ctx,
  13495. struct ggml_cgraph * graph,
  13496. struct hash_map * replacements,
  13497. struct ggml_tensor * node) {
  13498. if (node == NULL) {
  13499. return NULL;
  13500. }
  13501. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13502. return node;
  13503. }
  13504. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13505. return node;
  13506. }
  13507. int count_children = 0;
  13508. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13509. if (node->src[k]) {
  13510. ++count_children;
  13511. }
  13512. }
  13513. if (count_children == 0) {
  13514. return node;
  13515. }
  13516. size_t i = ggml_hash_find(replacements->set, node);
  13517. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13518. if (replacements->set.keys[i] == node) {
  13519. return replacements->vals[i];
  13520. }
  13521. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13522. // insert clone into replacements
  13523. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13524. replacements->set.keys[i] = node;
  13525. replacements->vals[i] = clone;
  13526. clone->op = node->op;
  13527. clone->grad = node->grad;
  13528. clone->flags = node->flags;
  13529. clone->extra = node->extra;
  13530. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13531. clone->nb[k] = node->nb[k];
  13532. }
  13533. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13534. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13535. }
  13536. if (node->view_src != NULL) {
  13537. clone->data = (node->view_src->data == NULL)
  13538. ? NULL // view_src not yet allocated
  13539. : (char *) node->view_src->data // view_src already allocated
  13540. + node->view_offs;
  13541. clone->view_src = node->view_src;
  13542. clone->view_offs = node->view_offs;
  13543. }
  13544. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13545. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13546. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13547. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13548. return clone;
  13549. }
  13550. void ggml_build_backward_gradient_checkpointing(
  13551. struct ggml_context * ctx,
  13552. struct ggml_cgraph * gf,
  13553. struct ggml_cgraph * gb,
  13554. struct ggml_cgraph * gb_tmp,
  13555. struct ggml_tensor * * checkpoints,
  13556. int n_checkpoints) {
  13557. ggml_graph_cpy(gf, gb_tmp);
  13558. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13559. if (n_checkpoints <= 0) {
  13560. ggml_graph_cpy(gb_tmp, gb);
  13561. return;
  13562. }
  13563. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13564. // insert checkpoints in replacements
  13565. for (int i = 0; i < n_checkpoints; ++i) {
  13566. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13567. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13568. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13569. replacements->set.keys[k] = checkpoints[i];
  13570. replacements->vals[k] = checkpoints[i];
  13571. }
  13572. ggml_graph_cpy(gf, gb);
  13573. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13574. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13575. // by recomputing them from checkpoints
  13576. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13577. struct ggml_tensor * node = gb_tmp->nodes[i];
  13578. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13579. // insert new tensors recomputing src, reusing already made replacements,
  13580. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13581. // recurse for input tensors,
  13582. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13583. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13584. }
  13585. // insert rewritten backward node with replacements made into resulting backward graph gb
  13586. ggml_build_forward_expand(gb, node);
  13587. }
  13588. ggml_hash_map_free(replacements);
  13589. }
  13590. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13591. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13592. if (ggml_hash_contains(zero_table, a)) {
  13593. return b;
  13594. } else {
  13595. return ggml_add_impl(ctx, a, b, false);
  13596. }
  13597. }
  13598. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13599. if (ggml_hash_contains(zero_table, a)) {
  13600. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13601. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13602. } else {
  13603. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13604. }
  13605. }
  13606. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13607. if (ggml_hash_contains(zero_table, a)) {
  13608. return ggml_repeat(ctx, b, a);
  13609. } else {
  13610. return ggml_add1_impl(ctx, a, b, false);
  13611. }
  13612. }
  13613. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13614. if (ggml_hash_contains(zero_table, a)) {
  13615. return ggml_neg(ctx, b);
  13616. } else {
  13617. return ggml_sub_impl(ctx, a, b, false);
  13618. }
  13619. }
  13620. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13621. struct ggml_tensor * src0 = tensor->src[0];
  13622. struct ggml_tensor * src1 = tensor->src[1];
  13623. switch (tensor->op) {
  13624. case GGML_OP_DUP:
  13625. {
  13626. if (src0->grad) {
  13627. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13628. }
  13629. } break;
  13630. case GGML_OP_ADD:
  13631. {
  13632. if (src0->grad) {
  13633. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13634. }
  13635. if (src1->grad) {
  13636. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13637. }
  13638. } break;
  13639. case GGML_OP_ADD1:
  13640. {
  13641. if (src0->grad) {
  13642. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13643. }
  13644. if (src1->grad) {
  13645. src1->grad = ggml_add_or_set(ctx,
  13646. src1->grad,
  13647. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13648. zero_table);
  13649. }
  13650. } break;
  13651. case GGML_OP_ACC:
  13652. {
  13653. if (src0->grad) {
  13654. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13655. }
  13656. if (src1->grad) {
  13657. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13658. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13659. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13660. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13661. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13662. tensor->grad,
  13663. src1->grad->ne[0],
  13664. src1->grad->ne[1],
  13665. src1->grad->ne[2],
  13666. src1->grad->ne[3],
  13667. nb1, nb2, nb3, offset);
  13668. src1->grad =
  13669. ggml_add_or_set(ctx,
  13670. src1->grad,
  13671. ggml_reshape(ctx,
  13672. ggml_cont(ctx, tensor_grad_view),
  13673. src1->grad),
  13674. zero_table);
  13675. }
  13676. } break;
  13677. case GGML_OP_SUB:
  13678. {
  13679. if (src0->grad) {
  13680. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13681. }
  13682. if (src1->grad) {
  13683. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13684. }
  13685. } break;
  13686. case GGML_OP_MUL:
  13687. {
  13688. if (src0->grad) {
  13689. src0->grad =
  13690. ggml_add_or_set(ctx,
  13691. src0->grad,
  13692. ggml_mul(ctx, src1, tensor->grad),
  13693. zero_table);
  13694. }
  13695. if (src1->grad) {
  13696. src1->grad =
  13697. ggml_add_or_set(ctx,
  13698. src1->grad,
  13699. ggml_mul(ctx, src0, tensor->grad),
  13700. zero_table);
  13701. }
  13702. } break;
  13703. case GGML_OP_DIV:
  13704. {
  13705. if (src0->grad) {
  13706. src0->grad =
  13707. ggml_add_or_set(ctx,
  13708. src0->grad,
  13709. ggml_div(ctx, tensor->grad, src1),
  13710. zero_table);
  13711. }
  13712. if (src1->grad) {
  13713. src1->grad =
  13714. ggml_sub_or_set(ctx,
  13715. src1->grad,
  13716. ggml_mul(ctx,
  13717. tensor->grad,
  13718. ggml_div(ctx, tensor, src1)),
  13719. zero_table);
  13720. }
  13721. } break;
  13722. case GGML_OP_SQR:
  13723. {
  13724. if (src0->grad) {
  13725. src0->grad =
  13726. ggml_add_or_set(ctx,
  13727. src0->grad,
  13728. ggml_scale(ctx,
  13729. ggml_mul(ctx, src0, tensor->grad),
  13730. 2.0f),
  13731. zero_table);
  13732. }
  13733. } break;
  13734. case GGML_OP_SQRT:
  13735. {
  13736. if (src0->grad) {
  13737. src0->grad =
  13738. ggml_add_or_set(ctx,
  13739. src0->grad,
  13740. ggml_scale(ctx,
  13741. ggml_div(ctx,
  13742. tensor->grad,
  13743. tensor),
  13744. 0.5f),
  13745. zero_table);
  13746. }
  13747. } break;
  13748. case GGML_OP_LOG:
  13749. {
  13750. if (src0->grad) {
  13751. src0->grad =
  13752. ggml_add_or_set(ctx,
  13753. src0->grad,
  13754. ggml_div(ctx,
  13755. tensor->grad,
  13756. src0),
  13757. zero_table);
  13758. }
  13759. } break;
  13760. case GGML_OP_SUM:
  13761. {
  13762. if (src0->grad) {
  13763. src0->grad =
  13764. ggml_add1_or_set(ctx,
  13765. src0->grad,
  13766. tensor->grad,
  13767. zero_table);
  13768. }
  13769. } break;
  13770. case GGML_OP_SUM_ROWS:
  13771. {
  13772. if (src0->grad) {
  13773. src0->grad =
  13774. ggml_add_or_set(ctx,
  13775. src0->grad,
  13776. ggml_repeat(ctx,
  13777. tensor->grad,
  13778. src0->grad),
  13779. zero_table);
  13780. }
  13781. } break;
  13782. case GGML_OP_MEAN:
  13783. case GGML_OP_ARGMAX:
  13784. {
  13785. GGML_ASSERT(false); // TODO: implement
  13786. } break;
  13787. case GGML_OP_REPEAT:
  13788. {
  13789. // necessary for llama
  13790. if (src0->grad) {
  13791. src0->grad = ggml_add_or_set(ctx,
  13792. src0->grad,
  13793. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13794. zero_table);
  13795. }
  13796. } break;
  13797. case GGML_OP_REPEAT_BACK:
  13798. {
  13799. if (src0->grad) {
  13800. // TODO: test this
  13801. src0->grad = ggml_add_or_set(ctx,
  13802. src0->grad,
  13803. ggml_repeat(ctx, tensor->grad, src0->grad),
  13804. zero_table);
  13805. }
  13806. } break;
  13807. case GGML_OP_CONCAT:
  13808. {
  13809. GGML_ASSERT(false); // TODO: implement
  13810. } break;
  13811. case GGML_OP_SILU_BACK:
  13812. {
  13813. GGML_ASSERT(false); // TODO: not implemented
  13814. } break;
  13815. case GGML_OP_NORM:
  13816. {
  13817. GGML_ASSERT(false); // TODO: not implemented
  13818. } break;
  13819. case GGML_OP_RMS_NORM:
  13820. {
  13821. // necessary for llama
  13822. if (src0->grad) {
  13823. float eps;
  13824. memcpy(&eps, tensor->op_params, sizeof(float));
  13825. src0->grad = ggml_add_or_set(ctx,
  13826. src0->grad,
  13827. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13828. zero_table);
  13829. }
  13830. } break;
  13831. case GGML_OP_RMS_NORM_BACK:
  13832. {
  13833. GGML_ASSERT(false); // TODO: not implemented
  13834. } break;
  13835. case GGML_OP_GROUP_NORM:
  13836. {
  13837. GGML_ASSERT(false); // TODO: not implemented
  13838. } break;
  13839. case GGML_OP_MUL_MAT:
  13840. {
  13841. // https://cs231n.github.io/optimization-2/#staged
  13842. // # forward pass
  13843. // s0 = np.random.randn(5, 10)
  13844. // s1 = np.random.randn(10, 3)
  13845. // t = s0.dot(s1)
  13846. // # now suppose we had the gradient on t from above in the circuit
  13847. // dt = np.random.randn(*t.shape) # same shape as t
  13848. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13849. // ds1 = t.T.dot(dt)
  13850. // tensor.shape [m,p,qq,rr]
  13851. // src0.shape [n,m,q1,r1]
  13852. // src1.shape [n,p,qq,rr]
  13853. // necessary for llama
  13854. if (src0->grad) {
  13855. struct ggml_tensor * s1_tg =
  13856. ggml_out_prod(ctx, // [n,m,qq,rr]
  13857. src1, // [n,p,qq,rr]
  13858. tensor->grad); // [m,p,qq,rr]
  13859. const int64_t qq = s1_tg->ne[2];
  13860. const int64_t rr = s1_tg->ne[3];
  13861. const int64_t q1 = src0->ne[2];
  13862. const int64_t r1 = src0->ne[3];
  13863. const bool ne2_broadcasted = qq > q1;
  13864. const bool ne3_broadcasted = rr > r1;
  13865. if (ne2_broadcasted || ne3_broadcasted) {
  13866. // sum broadcast repetitions of s1_tg into shape of src0
  13867. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13868. }
  13869. src0->grad =
  13870. ggml_add_or_set(ctx,
  13871. src0->grad, // [n,m,q1,r1]
  13872. s1_tg, // [n,m,q1,r1]
  13873. zero_table);
  13874. }
  13875. if (src1->grad) {
  13876. src1->grad =
  13877. ggml_add_or_set(ctx,
  13878. src1->grad, // [n,p,qq,rr]
  13879. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13880. // ggml_cont(ctx, // [m,n,q1,r1]
  13881. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13882. // tensor->grad), // [m,p,qq,rr]
  13883. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13884. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13885. // // and then use ggml_out_prod
  13886. ggml_out_prod(ctx, // [n,p,qq,rr]
  13887. src0, // [n,m,q1,r1]
  13888. ggml_transpose(ctx, // [p,m,qq,rr]
  13889. tensor->grad)), // [m,p,qq,rr]
  13890. zero_table);
  13891. }
  13892. } break;
  13893. case GGML_OP_MUL_MAT_ID:
  13894. {
  13895. GGML_ASSERT(false); // TODO: not implemented
  13896. } break;
  13897. case GGML_OP_OUT_PROD:
  13898. {
  13899. GGML_ASSERT(false); // TODO: not implemented
  13900. } break;
  13901. case GGML_OP_SCALE:
  13902. {
  13903. // necessary for llama
  13904. if (src0->grad) {
  13905. float s;
  13906. memcpy(&s, tensor->op_params, sizeof(float));
  13907. src0->grad =
  13908. ggml_add_or_set(ctx,
  13909. src0->grad,
  13910. ggml_scale_impl(ctx, tensor->grad, s, false),
  13911. zero_table);
  13912. }
  13913. } break;
  13914. case GGML_OP_SET:
  13915. {
  13916. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13917. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13918. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13919. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13920. struct ggml_tensor * tensor_grad_view = NULL;
  13921. if (src0->grad || src1->grad) {
  13922. GGML_ASSERT(src0->type == tensor->type);
  13923. GGML_ASSERT(tensor->grad->type == tensor->type);
  13924. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13925. tensor_grad_view = ggml_view_4d(ctx,
  13926. tensor->grad,
  13927. src1->grad->ne[0],
  13928. src1->grad->ne[1],
  13929. src1->grad->ne[2],
  13930. src1->grad->ne[3],
  13931. nb1, nb2, nb3, offset);
  13932. }
  13933. if (src0->grad) {
  13934. src0->grad = ggml_add_or_set(ctx,
  13935. src0->grad,
  13936. ggml_acc_impl(ctx,
  13937. tensor->grad,
  13938. ggml_neg(ctx, tensor_grad_view),
  13939. nb1, nb2, nb3, offset, false),
  13940. zero_table);
  13941. }
  13942. if (src1->grad) {
  13943. src1->grad =
  13944. ggml_add_or_set(ctx,
  13945. src1->grad,
  13946. ggml_reshape(ctx,
  13947. ggml_cont(ctx, tensor_grad_view),
  13948. src1->grad),
  13949. zero_table);
  13950. }
  13951. } break;
  13952. case GGML_OP_CPY:
  13953. {
  13954. // necessary for llama
  13955. // cpy overwrites value of src1 by src0 and returns view(src1)
  13956. // the overwriting is mathematically equivalent to:
  13957. // tensor = src0 * 1 + src1 * 0
  13958. if (src0->grad) {
  13959. // dsrc0 = dtensor * 1
  13960. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13961. }
  13962. if (src1->grad) {
  13963. // dsrc1 = dtensor * 0 -> noop
  13964. }
  13965. } break;
  13966. case GGML_OP_CONT:
  13967. {
  13968. // same as cpy
  13969. if (src0->grad) {
  13970. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13971. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13972. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13973. }
  13974. } break;
  13975. case GGML_OP_RESHAPE:
  13976. {
  13977. // necessary for llama
  13978. if (src0->grad) {
  13979. src0->grad =
  13980. ggml_add_or_set(ctx, src0->grad,
  13981. ggml_reshape(ctx,
  13982. ggml_is_contiguous(tensor->grad)
  13983. ? tensor->grad
  13984. : ggml_cont(ctx, tensor->grad),
  13985. src0->grad),
  13986. zero_table);
  13987. }
  13988. } break;
  13989. case GGML_OP_VIEW:
  13990. {
  13991. // necessary for llama
  13992. if (src0->grad) {
  13993. size_t offset;
  13994. memcpy(&offset, tensor->op_params, sizeof(offset));
  13995. size_t nb1 = tensor->nb[1];
  13996. size_t nb2 = tensor->nb[2];
  13997. size_t nb3 = tensor->nb[3];
  13998. if (src0->type != src0->grad->type) {
  13999. // gradient is typically F32, but src0 could be other type
  14000. size_t ng = ggml_element_size(src0->grad);
  14001. size_t n0 = ggml_element_size(src0);
  14002. GGML_ASSERT(offset % n0 == 0);
  14003. GGML_ASSERT(nb1 % n0 == 0);
  14004. GGML_ASSERT(nb2 % n0 == 0);
  14005. GGML_ASSERT(nb3 % n0 == 0);
  14006. offset = (offset / n0) * ng;
  14007. nb1 = (nb1 / n0) * ng;
  14008. nb2 = (nb2 / n0) * ng;
  14009. nb3 = (nb3 / n0) * ng;
  14010. }
  14011. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14012. }
  14013. } break;
  14014. case GGML_OP_PERMUTE:
  14015. {
  14016. // necessary for llama
  14017. if (src0->grad) {
  14018. int32_t * axes = (int32_t *) tensor->op_params;
  14019. int axis0 = axes[0] & 0x3;
  14020. int axis1 = axes[1] & 0x3;
  14021. int axis2 = axes[2] & 0x3;
  14022. int axis3 = axes[3] & 0x3;
  14023. int axes_backward[4] = {0,0,0,0};
  14024. axes_backward[axis0] = 0;
  14025. axes_backward[axis1] = 1;
  14026. axes_backward[axis2] = 2;
  14027. axes_backward[axis3] = 3;
  14028. src0->grad =
  14029. ggml_add_or_set(ctx, src0->grad,
  14030. ggml_permute(ctx,
  14031. tensor->grad,
  14032. axes_backward[0],
  14033. axes_backward[1],
  14034. axes_backward[2],
  14035. axes_backward[3]),
  14036. zero_table);
  14037. }
  14038. } break;
  14039. case GGML_OP_TRANSPOSE:
  14040. {
  14041. // necessary for llama
  14042. if (src0->grad) {
  14043. src0->grad =
  14044. ggml_add_or_set(ctx, src0->grad,
  14045. ggml_transpose(ctx, tensor->grad),
  14046. zero_table);
  14047. }
  14048. } break;
  14049. case GGML_OP_GET_ROWS:
  14050. {
  14051. // necessary for llama (only for tokenizer)
  14052. if (src0->grad) {
  14053. src0->grad =
  14054. ggml_add_or_set(ctx, src0->grad,
  14055. // last ggml_get_rows_back argument src0->grad is only
  14056. // necessary to setup correct output shape
  14057. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14058. zero_table);
  14059. }
  14060. if (src1->grad) {
  14061. // noop
  14062. }
  14063. } break;
  14064. case GGML_OP_GET_ROWS_BACK:
  14065. {
  14066. GGML_ASSERT(false); // TODO: not implemented
  14067. } break;
  14068. case GGML_OP_DIAG:
  14069. {
  14070. GGML_ASSERT(false); // TODO: not implemented
  14071. } break;
  14072. case GGML_OP_DIAG_MASK_INF:
  14073. {
  14074. // necessary for llama
  14075. if (src0->grad) {
  14076. const int n_past = ((int32_t *) tensor->op_params)[0];
  14077. src0->grad =
  14078. ggml_add_or_set(ctx, src0->grad,
  14079. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14080. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14081. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14082. zero_table);
  14083. }
  14084. } break;
  14085. case GGML_OP_DIAG_MASK_ZERO:
  14086. {
  14087. // necessary for llama
  14088. if (src0->grad) {
  14089. const int n_past = ((int32_t *) tensor->op_params)[0];
  14090. src0->grad =
  14091. ggml_add_or_set(ctx, src0->grad,
  14092. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14093. zero_table);
  14094. }
  14095. } break;
  14096. case GGML_OP_SOFT_MAX:
  14097. {
  14098. // necessary for llama
  14099. if (src0->grad) {
  14100. src0->grad =
  14101. ggml_add_or_set(ctx, src0->grad,
  14102. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14103. zero_table);
  14104. }
  14105. } break;
  14106. case GGML_OP_SOFT_MAX_BACK:
  14107. {
  14108. GGML_ASSERT(false); // TODO: not implemented
  14109. } break;
  14110. case GGML_OP_ROPE:
  14111. {
  14112. // necessary for llama
  14113. if (src0->grad) {
  14114. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14115. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14116. const int mode = ((int32_t *) tensor->op_params)[2];
  14117. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14118. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14119. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14120. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14121. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14122. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14123. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14124. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14125. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14126. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14127. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14128. src0->grad = ggml_add_or_set(ctx,
  14129. src0->grad,
  14130. ggml_rope_back(ctx,
  14131. tensor->grad,
  14132. src1,
  14133. n_dims,
  14134. mode,
  14135. n_ctx,
  14136. n_orig_ctx,
  14137. freq_base,
  14138. freq_scale,
  14139. ext_factor,
  14140. attn_factor,
  14141. beta_fast,
  14142. beta_slow,
  14143. xpos_base,
  14144. xpos_down),
  14145. zero_table);
  14146. }
  14147. } break;
  14148. case GGML_OP_ROPE_BACK:
  14149. {
  14150. if (src0->grad) {
  14151. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14152. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14153. const int mode = ((int32_t *) tensor->op_params)[2];
  14154. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14155. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14156. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14157. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14158. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14159. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14160. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14161. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14162. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14163. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14164. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14165. src0->grad = ggml_add_or_set(ctx,
  14166. src0->grad,
  14167. ggml_rope_impl(ctx,
  14168. tensor->grad,
  14169. src1,
  14170. n_dims,
  14171. mode,
  14172. n_ctx,
  14173. n_orig_ctx,
  14174. freq_base,
  14175. freq_scale,
  14176. ext_factor,
  14177. attn_factor,
  14178. beta_fast,
  14179. beta_slow,
  14180. xpos_base,
  14181. xpos_down,
  14182. false),
  14183. zero_table);
  14184. }
  14185. } break;
  14186. case GGML_OP_ALIBI:
  14187. {
  14188. GGML_ASSERT(false); // TODO: not implemented
  14189. } break;
  14190. case GGML_OP_CLAMP:
  14191. {
  14192. GGML_ASSERT(false); // TODO: not implemented
  14193. } break;
  14194. case GGML_OP_CONV_TRANSPOSE_1D:
  14195. {
  14196. GGML_ASSERT(false); // TODO: not implemented
  14197. } break;
  14198. case GGML_OP_IM2COL:
  14199. {
  14200. GGML_ASSERT(false); // TODO: not implemented
  14201. } break;
  14202. case GGML_OP_CONV_TRANSPOSE_2D:
  14203. {
  14204. GGML_ASSERT(false); // TODO: not implemented
  14205. } break;
  14206. case GGML_OP_POOL_1D:
  14207. {
  14208. GGML_ASSERT(false); // TODO: not implemented
  14209. } break;
  14210. case GGML_OP_POOL_2D:
  14211. {
  14212. GGML_ASSERT(false); // TODO: not implemented
  14213. } break;
  14214. case GGML_OP_UPSCALE:
  14215. {
  14216. GGML_ASSERT(false); // TODO: not implemented
  14217. } break;
  14218. case GGML_OP_PAD:
  14219. {
  14220. GGML_ASSERT(false); // TODO: not implemented
  14221. } break;
  14222. case GGML_OP_ARANGE:
  14223. {
  14224. GGML_ASSERT(false); // TODO: not implemented
  14225. } break;
  14226. case GGML_OP_TIMESTEP_EMBEDDING:
  14227. {
  14228. GGML_ASSERT(false); // TODO: not implemented
  14229. } break;
  14230. case GGML_OP_ARGSORT:
  14231. {
  14232. GGML_ASSERT(false); // TODO: not implemented
  14233. } break;
  14234. case GGML_OP_LEAKY_RELU:
  14235. {
  14236. GGML_ASSERT(false); // TODO: not implemented
  14237. } break;
  14238. case GGML_OP_FLASH_ATTN:
  14239. {
  14240. struct ggml_tensor * flash_grad = NULL;
  14241. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14242. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14243. GGML_ASSERT(t == 0 || t == 1);
  14244. bool masked = t != 0;
  14245. flash_grad =
  14246. ggml_flash_attn_back(ctx,
  14247. src0,
  14248. src1,
  14249. tensor->src[2],
  14250. tensor->grad,
  14251. masked);
  14252. }
  14253. struct ggml_tensor * src2 = tensor->src[2];
  14254. const int64_t elem_q = ggml_nelements(src0);
  14255. const int64_t elem_k = ggml_nelements(src1);
  14256. const int64_t elem_v = ggml_nelements(src2);
  14257. enum ggml_type result_type = flash_grad->type;
  14258. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14259. const size_t tsize = ggml_type_size(result_type);
  14260. const size_t offs_q = 0;
  14261. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14262. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14263. if (src0->grad) {
  14264. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14265. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14266. src0->grad = ggml_add_or_set(ctx,
  14267. src0->grad,
  14268. grad_q,
  14269. zero_table);
  14270. }
  14271. if (src1->grad) {
  14272. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14273. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14274. src1->grad = ggml_add_or_set(ctx,
  14275. src1->grad,
  14276. grad_k,
  14277. zero_table);
  14278. }
  14279. if (src2->grad) {
  14280. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14281. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14282. src2->grad = ggml_add_or_set(ctx,
  14283. src2->grad,
  14284. grad_v,
  14285. zero_table);
  14286. }
  14287. } break;
  14288. case GGML_OP_FLASH_FF:
  14289. {
  14290. GGML_ASSERT(false); // not supported
  14291. } break;
  14292. case GGML_OP_FLASH_ATTN_BACK:
  14293. {
  14294. GGML_ASSERT(false); // not supported
  14295. } break;
  14296. case GGML_OP_SSM_CONV:
  14297. case GGML_OP_SSM_SCAN:
  14298. {
  14299. GGML_ASSERT(false); // TODO: not implemented
  14300. } break;
  14301. case GGML_OP_WIN_PART:
  14302. case GGML_OP_WIN_UNPART:
  14303. case GGML_OP_UNARY:
  14304. {
  14305. switch (ggml_get_unary_op(tensor)) {
  14306. case GGML_UNARY_OP_ABS:
  14307. {
  14308. if (src0->grad) {
  14309. src0->grad =
  14310. ggml_add_or_set(ctx,
  14311. src0->grad,
  14312. ggml_mul(ctx,
  14313. ggml_sgn(ctx, src0),
  14314. tensor->grad),
  14315. zero_table);
  14316. }
  14317. } break;
  14318. case GGML_UNARY_OP_SGN:
  14319. {
  14320. if (src0->grad) {
  14321. // noop
  14322. }
  14323. } break;
  14324. case GGML_UNARY_OP_NEG:
  14325. {
  14326. if (src0->grad) {
  14327. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14328. }
  14329. } break;
  14330. case GGML_UNARY_OP_STEP:
  14331. {
  14332. if (src0->grad) {
  14333. // noop
  14334. }
  14335. } break;
  14336. case GGML_UNARY_OP_TANH:
  14337. {
  14338. GGML_ASSERT(false); // TODO: not implemented
  14339. } break;
  14340. case GGML_UNARY_OP_ELU:
  14341. {
  14342. GGML_ASSERT(false); // TODO: not implemented
  14343. } break;
  14344. case GGML_UNARY_OP_RELU:
  14345. {
  14346. if (src0->grad) {
  14347. src0->grad = ggml_add_or_set(ctx,
  14348. src0->grad,
  14349. ggml_mul(ctx,
  14350. ggml_step(ctx, src0),
  14351. tensor->grad),
  14352. zero_table);
  14353. }
  14354. } break;
  14355. case GGML_UNARY_OP_GELU:
  14356. {
  14357. GGML_ASSERT(false); // TODO: not implemented
  14358. } break;
  14359. case GGML_UNARY_OP_GELU_QUICK:
  14360. {
  14361. GGML_ASSERT(false); // TODO: not implemented
  14362. } break;
  14363. case GGML_UNARY_OP_SILU:
  14364. {
  14365. // necessary for llama
  14366. if (src0->grad) {
  14367. src0->grad = ggml_add_or_set(ctx,
  14368. src0->grad,
  14369. ggml_silu_back(ctx, src0, tensor->grad),
  14370. zero_table);
  14371. }
  14372. } break;
  14373. default:
  14374. GGML_ASSERT(false);
  14375. }
  14376. } break;
  14377. case GGML_OP_GET_REL_POS:
  14378. case GGML_OP_ADD_REL_POS:
  14379. case GGML_OP_MAP_UNARY:
  14380. case GGML_OP_MAP_BINARY:
  14381. case GGML_OP_MAP_CUSTOM1_F32:
  14382. case GGML_OP_MAP_CUSTOM2_F32:
  14383. case GGML_OP_MAP_CUSTOM3_F32:
  14384. case GGML_OP_MAP_CUSTOM1:
  14385. case GGML_OP_MAP_CUSTOM2:
  14386. case GGML_OP_MAP_CUSTOM3:
  14387. {
  14388. GGML_ASSERT(false); // not supported
  14389. } break;
  14390. case GGML_OP_CROSS_ENTROPY_LOSS:
  14391. {
  14392. if (src0->grad) {
  14393. src0->grad = ggml_add_or_set(ctx,
  14394. src0->grad,
  14395. ggml_cross_entropy_loss_back(ctx,
  14396. src0,
  14397. src1,
  14398. tensor->grad),
  14399. zero_table);
  14400. }
  14401. } break;
  14402. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14403. {
  14404. GGML_ASSERT(false); // not supported
  14405. } break;
  14406. case GGML_OP_NONE:
  14407. {
  14408. // nop
  14409. } break;
  14410. case GGML_OP_COUNT:
  14411. {
  14412. GGML_ASSERT(false);
  14413. } break;
  14414. }
  14415. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14416. if (tensor->src[i] && tensor->src[i]->grad) {
  14417. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14418. }
  14419. }
  14420. }
  14421. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14422. if (node->grad == NULL) {
  14423. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14424. // it can also happen during forward pass, if the user performs computations with constants
  14425. if (node->op != GGML_OP_NONE) {
  14426. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14427. }
  14428. }
  14429. // check if already visited
  14430. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14431. return;
  14432. }
  14433. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14434. const int k =
  14435. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14436. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14437. /* unknown order, just fall back to using i*/ i;
  14438. if (node->src[k]) {
  14439. ggml_visit_parents(cgraph, node->src[k]);
  14440. }
  14441. }
  14442. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14443. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14444. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14445. if (strlen(node->name) == 0) {
  14446. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14447. }
  14448. cgraph->leafs[cgraph->n_leafs] = node;
  14449. cgraph->n_leafs++;
  14450. } else {
  14451. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14452. if (strlen(node->name) == 0) {
  14453. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14454. }
  14455. cgraph->nodes[cgraph->n_nodes] = node;
  14456. if (cgraph->grads) {
  14457. cgraph->grads[cgraph->n_nodes] = node->grad;
  14458. }
  14459. cgraph->n_nodes++;
  14460. }
  14461. }
  14462. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14463. if (!expand) {
  14464. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14465. ggml_graph_clear(cgraph);
  14466. }
  14467. const int n0 = cgraph->n_nodes;
  14468. UNUSED(n0);
  14469. ggml_visit_parents(cgraph, tensor);
  14470. const int n_new = cgraph->n_nodes - n0;
  14471. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14472. if (n_new > 0) {
  14473. // the last added node should always be starting point
  14474. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14475. }
  14476. }
  14477. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14478. ggml_build_forward_impl(cgraph, tensor, true);
  14479. }
  14480. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14481. GGML_ASSERT(gf->n_nodes > 0);
  14482. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14483. if (keep) {
  14484. for (int i = 0; i < gf->n_nodes; i++) {
  14485. struct ggml_tensor * node = gf->nodes[i];
  14486. if (node->grad) {
  14487. node->grad = ggml_dup_tensor(ctx, node);
  14488. gf->grads[i] = node->grad;
  14489. }
  14490. }
  14491. }
  14492. // remember original gradients which start with zero values
  14493. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14494. for (int i = 0; i < gf->n_nodes; i++) {
  14495. if (gf->grads[i]) {
  14496. ggml_hash_insert(zero_table, gf->grads[i]);
  14497. }
  14498. }
  14499. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14500. struct ggml_tensor * node = gf->nodes[i];
  14501. // inplace operations to add gradients are not created by ggml_compute_backward
  14502. // use allocator to automatically make inplace operations
  14503. if (node->grad) {
  14504. ggml_compute_backward(ctx, node, zero_table);
  14505. }
  14506. }
  14507. for (int i = 0; i < gf->n_nodes; i++) {
  14508. struct ggml_tensor * node = gf->nodes[i];
  14509. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14510. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14511. ggml_build_forward_expand(gb, node->grad);
  14512. }
  14513. }
  14514. ggml_hash_set_free(zero_table);
  14515. }
  14516. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14517. size_t nbytes = sizeof(struct ggml_cgraph);
  14518. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14519. if (grads) {
  14520. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14521. }
  14522. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14523. return nbytes;
  14524. }
  14525. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14526. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14527. }
  14528. size_t ggml_graph_overhead(void) {
  14529. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14530. }
  14531. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14532. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14533. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14534. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14535. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14536. size_t hash_size = ggml_hash_size(size * 2);
  14537. struct ggml_tensor ** nodes_ptr = data_start;
  14538. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14539. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14540. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14541. // check that we allocated the correct amount of memory
  14542. assert(obj_size == (size_t) (
  14543. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14544. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14545. *cgraph = (struct ggml_cgraph) {
  14546. /*.size =*/ size,
  14547. /*.n_nodes =*/ 0,
  14548. /*.n_leafs =*/ 0,
  14549. /*.nodes =*/ nodes_ptr,
  14550. /*.grads =*/ grads_ptr,
  14551. /*.leafs =*/ leafs_ptr,
  14552. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14553. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14554. /*.perf_runs =*/ 0,
  14555. /*.perf_cycles =*/ 0,
  14556. /*.perf_time_us =*/ 0,
  14557. };
  14558. return cgraph;
  14559. }
  14560. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14561. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14562. }
  14563. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14564. struct ggml_cgraph cgraph = {
  14565. /*.size =*/ 0,
  14566. /*.n_nodes =*/ i1 - i0,
  14567. /*.n_leafs =*/ 0,
  14568. /*.nodes =*/ cgraph0->nodes + i0,
  14569. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14570. /*.leafs =*/ NULL,
  14571. /*.hash_table =*/ { 0, NULL },
  14572. /*.order =*/ cgraph0->order,
  14573. /*.perf_runs =*/ 0,
  14574. /*.perf_cycles =*/ 0,
  14575. /*.perf_time_us =*/ 0,
  14576. };
  14577. return cgraph;
  14578. }
  14579. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14580. GGML_ASSERT(dst->size >= src->n_leafs);
  14581. GGML_ASSERT(dst->size >= src->n_nodes);
  14582. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14583. dst->n_leafs = src->n_leafs;
  14584. dst->n_nodes = src->n_nodes;
  14585. dst->order = src->order;
  14586. for (int i = 0; i < src->n_leafs; ++i) {
  14587. dst->leafs[i] = src->leafs[i];
  14588. }
  14589. for (int i = 0; i < src->n_nodes; ++i) {
  14590. dst->nodes[i] = src->nodes[i];
  14591. }
  14592. if (src->grads) {
  14593. GGML_ASSERT(dst->grads != NULL);
  14594. for (int i = 0; i < src->n_nodes; ++i) {
  14595. dst->grads[i] = src->grads[i];
  14596. }
  14597. }
  14598. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14599. if (src->visited_hash_table.keys[i]) {
  14600. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14601. }
  14602. }
  14603. }
  14604. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14605. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14606. ggml_graph_cpy(cgraph, result);
  14607. return result;
  14608. }
  14609. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14610. GGML_ASSERT(cgraph->grads != NULL);
  14611. for (int i = 0; i < cgraph->n_nodes; i++) {
  14612. struct ggml_tensor * grad = cgraph->grads[i];
  14613. if (grad) {
  14614. ggml_set_zero(grad);
  14615. }
  14616. }
  14617. }
  14618. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14619. cgraph->n_leafs = 0;
  14620. cgraph->n_nodes = 0;
  14621. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14622. }
  14623. //
  14624. // thread data
  14625. //
  14626. // synchronization is done via busy loops
  14627. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14628. //
  14629. #ifdef __APPLE__
  14630. //#include <os/lock.h>
  14631. //
  14632. //typedef os_unfair_lock ggml_lock_t;
  14633. //
  14634. //#define ggml_lock_init(x) UNUSED(x)
  14635. //#define ggml_lock_destroy(x) UNUSED(x)
  14636. //#define ggml_lock_lock os_unfair_lock_lock
  14637. //#define ggml_lock_unlock os_unfair_lock_unlock
  14638. //
  14639. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14640. typedef int ggml_lock_t;
  14641. #define ggml_lock_init(x) UNUSED(x)
  14642. #define ggml_lock_destroy(x) UNUSED(x)
  14643. #define ggml_lock_lock(x) UNUSED(x)
  14644. #define ggml_lock_unlock(x) UNUSED(x)
  14645. #define GGML_LOCK_INITIALIZER 0
  14646. typedef pthread_t ggml_thread_t;
  14647. #define ggml_thread_create pthread_create
  14648. #define ggml_thread_join pthread_join
  14649. #else
  14650. //typedef pthread_spinlock_t ggml_lock_t;
  14651. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14652. //#define ggml_lock_destroy pthread_spin_destroy
  14653. //#define ggml_lock_lock pthread_spin_lock
  14654. //#define ggml_lock_unlock pthread_spin_unlock
  14655. typedef int ggml_lock_t;
  14656. #define ggml_lock_init(x) UNUSED(x)
  14657. #define ggml_lock_destroy(x) UNUSED(x)
  14658. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14659. #define ggml_lock_lock(x) _mm_pause()
  14660. #else
  14661. #define ggml_lock_lock(x) UNUSED(x)
  14662. #endif
  14663. #define ggml_lock_unlock(x) UNUSED(x)
  14664. #define GGML_LOCK_INITIALIZER 0
  14665. typedef pthread_t ggml_thread_t;
  14666. #define ggml_thread_create pthread_create
  14667. #define ggml_thread_join pthread_join
  14668. #endif
  14669. // Android's libc implementation "bionic" does not support setting affinity
  14670. #if defined(__gnu_linux__)
  14671. static void set_numa_thread_affinity(int thread_n) {
  14672. if (!ggml_is_numa()) {
  14673. return;
  14674. }
  14675. int node_num;
  14676. int rv;
  14677. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14678. switch(g_state.numa.numa_strategy) {
  14679. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14680. // run thread on node_num thread_n / (threads per node)
  14681. node_num = thread_n % g_state.numa.n_nodes;
  14682. break;
  14683. case GGML_NUMA_STRATEGY_ISOLATE:
  14684. // run thread on current_node
  14685. node_num = g_state.numa.current_node;
  14686. break;
  14687. case GGML_NUMA_STRATEGY_NUMACTL:
  14688. // use the cpuset that numactl gave us
  14689. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14690. if (rv) {
  14691. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14692. }
  14693. return;
  14694. default:
  14695. return;
  14696. }
  14697. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14698. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14699. CPU_ZERO_S(setsize, cpus);
  14700. for (size_t i = 0; i < node->n_cpus; ++i) {
  14701. CPU_SET_S(node->cpus[i], setsize, cpus);
  14702. }
  14703. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14704. if (rv) {
  14705. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14706. }
  14707. CPU_FREE(cpus);
  14708. }
  14709. static void clear_numa_thread_affinity(void) {
  14710. if (!ggml_is_numa()) {
  14711. return;
  14712. }
  14713. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14714. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14715. CPU_ZERO_S(setsize, cpus);
  14716. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14717. CPU_SET_S(i, setsize, cpus);
  14718. }
  14719. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14720. if (rv) {
  14721. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14722. }
  14723. CPU_FREE(cpus);
  14724. }
  14725. #else
  14726. // TODO: Windows etc.
  14727. // (the linux implementation may also work on BSD, someone should test)
  14728. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14729. static void clear_numa_thread_affinity(void) {}
  14730. #endif
  14731. struct ggml_compute_state_shared {
  14732. const struct ggml_cgraph * cgraph;
  14733. const struct ggml_cplan * cplan;
  14734. int64_t perf_node_start_cycles;
  14735. int64_t perf_node_start_time_us;
  14736. const int n_threads;
  14737. // synchronization primitives
  14738. atomic_int n_active; // num active threads
  14739. atomic_int node_n; // active graph node
  14740. atomic_int node_task; // active graph node task phase
  14741. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14742. void * abort_callback_data;
  14743. };
  14744. struct ggml_compute_state {
  14745. ggml_thread_t thrd;
  14746. int ith;
  14747. struct ggml_compute_state_shared * shared;
  14748. enum ggml_status ec;
  14749. };
  14750. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14751. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14752. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14753. node->perf_runs++;
  14754. node->perf_cycles += cycles_cur;
  14755. node->perf_time_us += time_us_cur;
  14756. }
  14757. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14758. int n_tasks = 0;
  14759. if (ggml_is_empty(node)) {
  14760. // no need to multi-thread a no-op
  14761. n_tasks = 1;
  14762. return n_tasks;
  14763. }
  14764. switch (node->op) {
  14765. case GGML_OP_CPY:
  14766. case GGML_OP_DUP:
  14767. case GGML_OP_ADD:
  14768. case GGML_OP_ADD1:
  14769. case GGML_OP_ACC:
  14770. {
  14771. n_tasks = n_threads;
  14772. } break;
  14773. case GGML_OP_SUB:
  14774. case GGML_OP_SQR:
  14775. case GGML_OP_SQRT:
  14776. case GGML_OP_LOG:
  14777. case GGML_OP_SUM:
  14778. case GGML_OP_SUM_ROWS:
  14779. case GGML_OP_MEAN:
  14780. case GGML_OP_ARGMAX:
  14781. case GGML_OP_REPEAT:
  14782. case GGML_OP_REPEAT_BACK:
  14783. case GGML_OP_LEAKY_RELU:
  14784. {
  14785. n_tasks = 1;
  14786. } break;
  14787. case GGML_OP_UNARY:
  14788. switch (ggml_get_unary_op(node)) {
  14789. case GGML_UNARY_OP_ABS:
  14790. case GGML_UNARY_OP_SGN:
  14791. case GGML_UNARY_OP_NEG:
  14792. case GGML_UNARY_OP_STEP:
  14793. case GGML_UNARY_OP_TANH:
  14794. case GGML_UNARY_OP_ELU:
  14795. case GGML_UNARY_OP_RELU:
  14796. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14797. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14798. {
  14799. n_tasks = 1;
  14800. } break;
  14801. case GGML_UNARY_OP_GELU:
  14802. case GGML_UNARY_OP_GELU_QUICK:
  14803. case GGML_UNARY_OP_SILU:
  14804. {
  14805. n_tasks = n_threads;
  14806. } break;
  14807. default:
  14808. GGML_ASSERT(false);
  14809. }
  14810. break;
  14811. case GGML_OP_SILU_BACK:
  14812. case GGML_OP_MUL:
  14813. case GGML_OP_DIV:
  14814. case GGML_OP_NORM:
  14815. case GGML_OP_RMS_NORM:
  14816. case GGML_OP_RMS_NORM_BACK:
  14817. case GGML_OP_GROUP_NORM:
  14818. case GGML_OP_CONCAT:
  14819. {
  14820. n_tasks = n_threads;
  14821. } break;
  14822. case GGML_OP_MUL_MAT:
  14823. {
  14824. n_tasks = n_threads;
  14825. // TODO: use different scheduling for different matrix sizes
  14826. //const int nr0 = ggml_nrows(node->src[0]);
  14827. //const int nr1 = ggml_nrows(node->src[1]);
  14828. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14829. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14830. } break;
  14831. case GGML_OP_MUL_MAT_ID:
  14832. {
  14833. n_tasks = n_threads;
  14834. } break;
  14835. case GGML_OP_OUT_PROD:
  14836. {
  14837. n_tasks = n_threads;
  14838. } break;
  14839. case GGML_OP_GET_ROWS:
  14840. {
  14841. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14842. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14843. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14844. } break;
  14845. case GGML_OP_SCALE:
  14846. case GGML_OP_SET:
  14847. case GGML_OP_CONT:
  14848. case GGML_OP_RESHAPE:
  14849. case GGML_OP_VIEW:
  14850. case GGML_OP_PERMUTE:
  14851. case GGML_OP_TRANSPOSE:
  14852. case GGML_OP_GET_ROWS_BACK:
  14853. case GGML_OP_DIAG:
  14854. {
  14855. n_tasks = 1;
  14856. } break;
  14857. case GGML_OP_DIAG_MASK_ZERO:
  14858. case GGML_OP_DIAG_MASK_INF:
  14859. case GGML_OP_SOFT_MAX_BACK:
  14860. case GGML_OP_ROPE:
  14861. case GGML_OP_ROPE_BACK:
  14862. case GGML_OP_ADD_REL_POS:
  14863. {
  14864. n_tasks = n_threads;
  14865. } break;
  14866. case GGML_OP_ALIBI:
  14867. {
  14868. n_tasks = 1; //TODO
  14869. } break;
  14870. case GGML_OP_CLAMP:
  14871. {
  14872. n_tasks = 1; //TODO
  14873. } break;
  14874. case GGML_OP_SOFT_MAX:
  14875. {
  14876. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14877. } break;
  14878. case GGML_OP_CONV_TRANSPOSE_1D:
  14879. {
  14880. n_tasks = n_threads;
  14881. } break;
  14882. case GGML_OP_IM2COL:
  14883. {
  14884. n_tasks = n_threads;
  14885. } break;
  14886. case GGML_OP_CONV_TRANSPOSE_2D:
  14887. {
  14888. n_tasks = n_threads;
  14889. } break;
  14890. case GGML_OP_POOL_1D:
  14891. case GGML_OP_POOL_2D:
  14892. {
  14893. n_tasks = 1;
  14894. } break;
  14895. case GGML_OP_UPSCALE:
  14896. {
  14897. n_tasks = n_threads;
  14898. } break;
  14899. case GGML_OP_PAD:
  14900. {
  14901. n_tasks = n_threads;
  14902. } break;
  14903. case GGML_OP_ARANGE:
  14904. {
  14905. n_tasks = n_threads;
  14906. } break;
  14907. case GGML_OP_TIMESTEP_EMBEDDING:
  14908. {
  14909. n_tasks = n_threads;
  14910. } break;
  14911. case GGML_OP_ARGSORT:
  14912. {
  14913. n_tasks = n_threads;
  14914. } break;
  14915. case GGML_OP_FLASH_ATTN:
  14916. {
  14917. n_tasks = n_threads;
  14918. } break;
  14919. case GGML_OP_FLASH_FF:
  14920. {
  14921. n_tasks = n_threads;
  14922. } break;
  14923. case GGML_OP_FLASH_ATTN_BACK:
  14924. {
  14925. n_tasks = n_threads;
  14926. } break;
  14927. case GGML_OP_SSM_CONV:
  14928. case GGML_OP_SSM_SCAN:
  14929. {
  14930. n_tasks = n_threads;
  14931. } break;
  14932. case GGML_OP_WIN_PART:
  14933. case GGML_OP_WIN_UNPART:
  14934. case GGML_OP_GET_REL_POS:
  14935. case GGML_OP_MAP_UNARY:
  14936. case GGML_OP_MAP_BINARY:
  14937. case GGML_OP_MAP_CUSTOM1_F32:
  14938. case GGML_OP_MAP_CUSTOM2_F32:
  14939. case GGML_OP_MAP_CUSTOM3_F32:
  14940. {
  14941. n_tasks = 1;
  14942. } break;
  14943. case GGML_OP_MAP_CUSTOM1:
  14944. {
  14945. struct ggml_map_custom1_op_params p;
  14946. memcpy(&p, node->op_params, sizeof(p));
  14947. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14948. n_tasks = n_threads;
  14949. } else {
  14950. n_tasks = MIN(p.n_tasks, n_threads);
  14951. }
  14952. } break;
  14953. case GGML_OP_MAP_CUSTOM2:
  14954. {
  14955. struct ggml_map_custom2_op_params p;
  14956. memcpy(&p, node->op_params, sizeof(p));
  14957. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14958. n_tasks = n_threads;
  14959. } else {
  14960. n_tasks = MIN(p.n_tasks, n_threads);
  14961. }
  14962. } break;
  14963. case GGML_OP_MAP_CUSTOM3:
  14964. {
  14965. struct ggml_map_custom3_op_params p;
  14966. memcpy(&p, node->op_params, sizeof(p));
  14967. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14968. n_tasks = n_threads;
  14969. } else {
  14970. n_tasks = MIN(p.n_tasks, n_threads);
  14971. }
  14972. } break;
  14973. case GGML_OP_CROSS_ENTROPY_LOSS:
  14974. {
  14975. n_tasks = n_threads;
  14976. } break;
  14977. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14978. {
  14979. n_tasks = n_threads;
  14980. } break;
  14981. case GGML_OP_NONE:
  14982. {
  14983. n_tasks = 1;
  14984. } break;
  14985. case GGML_OP_COUNT:
  14986. {
  14987. GGML_ASSERT(false);
  14988. } break;
  14989. default:
  14990. {
  14991. fprintf(stderr, "%s: op not implemented: ", __func__);
  14992. if (node->op < GGML_OP_COUNT) {
  14993. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14994. } else {
  14995. fprintf(stderr, "%d\n", node->op);
  14996. }
  14997. GGML_ASSERT(false);
  14998. } break;
  14999. }
  15000. assert(n_tasks > 0);
  15001. return n_tasks;
  15002. }
  15003. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15004. // wait for other threads to finish
  15005. const int last_node_n = * node_n;
  15006. while (true) {
  15007. if (do_yield) {
  15008. sched_yield();
  15009. }
  15010. * node_n = atomic_load(&state->shared->node_n);
  15011. if (* node_n != last_node_n) break;
  15012. }
  15013. }
  15014. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15015. // wait for other threads to finish
  15016. const int last_task_phase = * task_phase;
  15017. while (true) {
  15018. if (do_yield) {
  15019. sched_yield();
  15020. }
  15021. * task_phase = atomic_load(&state->shared->node_task);
  15022. if (* task_phase != last_task_phase) break;
  15023. }
  15024. }
  15025. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15026. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15027. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15028. const struct ggml_cplan * cplan = state->shared->cplan;
  15029. const int n_threads = state->shared->n_threads;
  15030. set_numa_thread_affinity(state->ith);
  15031. int node_n = -1;
  15032. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15033. while (true) {
  15034. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15035. state->shared->node_n += 1;
  15036. state->ec = GGML_STATUS_ABORTED;
  15037. return 0;
  15038. }
  15039. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15040. // all other threads are finished and spinning
  15041. // do finalize and init here so we don't have synchronize again
  15042. struct ggml_compute_params params = {
  15043. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15044. /*.ith =*/ 0,
  15045. /*.nth =*/ 0,
  15046. /*.wsize =*/ cplan->work_size,
  15047. /*.wdata =*/ cplan->work_data,
  15048. };
  15049. if (node_n != -1) {
  15050. /* FINALIZE */
  15051. struct ggml_tensor * node = cgraph->nodes[node_n];
  15052. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15053. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15054. ggml_compute_forward(&params, node);
  15055. }
  15056. ggml_graph_compute_perf_stats_node(node, state->shared);
  15057. }
  15058. // distribute new work or execute it direct if 1T
  15059. while (++node_n < cgraph->n_nodes) {
  15060. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15061. struct ggml_tensor * node = cgraph->nodes[node_n];
  15062. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15063. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15064. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15065. params.nth = n_tasks;
  15066. if (n_tasks == 1) {
  15067. /* INIT */
  15068. if (GGML_OP_HAS_INIT[node->op]) {
  15069. params.type = GGML_TASK_TYPE_INIT;
  15070. ggml_compute_forward(&params, node);
  15071. }
  15072. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15073. // they do something more efficient than spinning (?)
  15074. params.type = GGML_TASK_TYPE_COMPUTE;
  15075. ggml_compute_forward(&params, node);
  15076. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15077. params.type = GGML_TASK_TYPE_FINALIZE;
  15078. ggml_compute_forward(&params, node);
  15079. }
  15080. ggml_graph_compute_perf_stats_node(node, state->shared);
  15081. } else {
  15082. break;
  15083. }
  15084. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15085. break;
  15086. }
  15087. }
  15088. task_phase = GGML_TASK_TYPE_INIT;
  15089. atomic_store(&state->shared->n_active, n_threads);
  15090. atomic_store(&state->shared->node_n, node_n);
  15091. atomic_store(&state->shared->node_task, task_phase);
  15092. } else {
  15093. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15094. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15095. }
  15096. // check if we should stop
  15097. if (node_n >= cgraph->n_nodes) break;
  15098. /* INIT & COMPUTE */
  15099. struct ggml_tensor * node = cgraph->nodes[node_n];
  15100. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15101. struct ggml_compute_params params = {
  15102. /*.type =*/ GGML_TASK_TYPE_INIT,
  15103. /*.ith =*/ state->ith,
  15104. /*.nth =*/ n_tasks,
  15105. /*.wsize =*/ cplan->work_size,
  15106. /*.wdata =*/ cplan->work_data,
  15107. };
  15108. if (state->ith < n_tasks) {
  15109. if (GGML_OP_HAS_INIT[node->op]) {
  15110. ggml_compute_forward(&params, node);
  15111. }
  15112. }
  15113. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15114. task_phase = GGML_TASK_TYPE_COMPUTE;
  15115. atomic_store(&state->shared->n_active, n_threads);
  15116. atomic_store(&state->shared->node_task, task_phase);
  15117. }
  15118. else {
  15119. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15120. // depending on the workload and the operating system.
  15121. // since it is not clear what is the best approach, it should potentially become user-configurable
  15122. // ref: https://github.com/ggerganov/ggml/issues/291
  15123. // UPD: adding the do_yield flag seems to resolve the issue universally
  15124. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15125. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15126. }
  15127. if (state->ith < n_tasks) {
  15128. params.type = GGML_TASK_TYPE_COMPUTE;
  15129. ggml_compute_forward(&params, node);
  15130. }
  15131. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15132. task_phase = GGML_TASK_TYPE_FINALIZE;
  15133. atomic_store(&state->shared->n_active, n_threads);
  15134. atomic_store(&state->shared->node_task, task_phase);
  15135. }
  15136. else {
  15137. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15138. }
  15139. }
  15140. return 0;
  15141. }
  15142. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15143. if (n_threads <= 0) {
  15144. n_threads = GGML_DEFAULT_N_THREADS;
  15145. }
  15146. size_t work_size = 0;
  15147. struct ggml_cplan cplan;
  15148. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15149. int max_tasks = 1;
  15150. // thread scheduling for the different operations + work buffer size estimation
  15151. for (int i = 0; i < cgraph->n_nodes; i++) {
  15152. struct ggml_tensor * node = cgraph->nodes[i];
  15153. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15154. max_tasks = MAX(max_tasks, n_tasks);
  15155. size_t cur = 0;
  15156. switch (node->op) {
  15157. case GGML_OP_CPY:
  15158. case GGML_OP_DUP:
  15159. {
  15160. if (ggml_is_quantized(node->type)) {
  15161. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15162. }
  15163. } break;
  15164. case GGML_OP_ADD:
  15165. case GGML_OP_ADD1:
  15166. {
  15167. if (ggml_is_quantized(node->src[0]->type)) {
  15168. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15169. }
  15170. } break;
  15171. case GGML_OP_ACC:
  15172. {
  15173. if (ggml_is_quantized(node->src[0]->type)) {
  15174. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15175. }
  15176. } break;
  15177. case GGML_OP_MUL_MAT:
  15178. {
  15179. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15180. #if defined(GGML_USE_CLBLAST)
  15181. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15182. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15183. } else
  15184. #endif
  15185. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15186. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15187. if (node->src[0]->type != GGML_TYPE_F32) {
  15188. // here we need memory for fully dequantized matrix from src0
  15189. // take into account that src0 can be broadcasted into src1[2,3]
  15190. cur = ggml_type_size(GGML_TYPE_F32)
  15191. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15192. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15193. }
  15194. } else
  15195. #endif
  15196. if (node->src[1]->type != vec_dot_type) {
  15197. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15198. }
  15199. } break;
  15200. case GGML_OP_MUL_MAT_ID:
  15201. {
  15202. cur = 0;
  15203. const struct ggml_tensor * src0 = node->src[0];
  15204. const struct ggml_tensor * src1 = node->src[1];
  15205. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15206. if (src1->type != vec_dot_type) {
  15207. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15208. }
  15209. const int n_as = src0->ne[2];
  15210. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15211. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15212. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15213. } break;
  15214. case GGML_OP_OUT_PROD:
  15215. {
  15216. if (ggml_is_quantized(node->src[0]->type)) {
  15217. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15218. }
  15219. } break;
  15220. case GGML_OP_SOFT_MAX:
  15221. case GGML_OP_ROPE:
  15222. {
  15223. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15224. } break;
  15225. case GGML_OP_CONV_TRANSPOSE_1D:
  15226. {
  15227. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15228. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15229. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15230. const int64_t ne00 = node->src[0]->ne[0]; // K
  15231. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15232. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15233. const int64_t ne10 = node->src[1]->ne[0]; // L
  15234. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15235. if (node->src[0]->type == GGML_TYPE_F16 &&
  15236. node->src[1]->type == GGML_TYPE_F32) {
  15237. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15238. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15239. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15240. node->src[1]->type == GGML_TYPE_F32) {
  15241. cur += sizeof(float)*ne00*ne01*ne02;
  15242. cur += sizeof(float)*ne10*ne11;
  15243. } else {
  15244. GGML_ASSERT(false);
  15245. }
  15246. } break;
  15247. case GGML_OP_CONV_TRANSPOSE_2D:
  15248. {
  15249. const int64_t ne00 = node->src[0]->ne[0]; // W
  15250. const int64_t ne01 = node->src[0]->ne[1]; // H
  15251. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15252. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15253. const int64_t ne10 = node->src[1]->ne[0]; // W
  15254. const int64_t ne11 = node->src[1]->ne[1]; // H
  15255. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15256. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15257. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15258. } break;
  15259. case GGML_OP_FLASH_ATTN:
  15260. {
  15261. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15262. if (node->src[1]->type == GGML_TYPE_F32) {
  15263. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15264. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15265. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15266. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15267. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15268. }
  15269. } break;
  15270. case GGML_OP_FLASH_FF:
  15271. {
  15272. if (node->src[1]->type == GGML_TYPE_F32) {
  15273. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15274. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15275. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15276. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15277. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15278. }
  15279. } break;
  15280. case GGML_OP_FLASH_ATTN_BACK:
  15281. {
  15282. const int64_t D = node->src[0]->ne[0];
  15283. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15284. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15285. if (node->src[1]->type == GGML_TYPE_F32) {
  15286. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15287. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15288. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15289. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15290. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15291. }
  15292. } break;
  15293. case GGML_OP_CROSS_ENTROPY_LOSS:
  15294. {
  15295. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15296. } break;
  15297. case GGML_OP_COUNT:
  15298. {
  15299. GGML_ASSERT(false);
  15300. } break;
  15301. default:
  15302. break;
  15303. }
  15304. work_size = MAX(work_size, cur);
  15305. }
  15306. if (work_size > 0) {
  15307. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15308. }
  15309. cplan.n_threads = MIN(max_tasks, n_threads);
  15310. cplan.work_size = work_size;
  15311. cplan.work_data = NULL;
  15312. return cplan;
  15313. }
  15314. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15315. {
  15316. GGML_ASSERT(cplan);
  15317. GGML_ASSERT(cplan->n_threads > 0);
  15318. if (cplan->work_size > 0) {
  15319. GGML_ASSERT(cplan->work_data);
  15320. }
  15321. }
  15322. const int n_threads = cplan->n_threads;
  15323. struct ggml_compute_state_shared state_shared = {
  15324. /*.cgraph =*/ cgraph,
  15325. /*.cgraph_plan =*/ cplan,
  15326. /*.perf_node_start_cycles =*/ 0,
  15327. /*.perf_node_start_time_us =*/ 0,
  15328. /*.n_threads =*/ n_threads,
  15329. /*.n_active =*/ n_threads,
  15330. /*.node_n =*/ -1,
  15331. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15332. /*.abort_callback =*/ NULL,
  15333. /*.abort_callback_data =*/ NULL,
  15334. };
  15335. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15336. // create thread pool
  15337. if (n_threads > 1) {
  15338. for (int j = 1; j < n_threads; ++j) {
  15339. workers[j] = (struct ggml_compute_state) {
  15340. .thrd = 0,
  15341. .ith = j,
  15342. .shared = &state_shared,
  15343. .ec = GGML_STATUS_SUCCESS,
  15344. };
  15345. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15346. GGML_ASSERT(rc == 0);
  15347. UNUSED(rc);
  15348. }
  15349. }
  15350. workers[0].ith = 0;
  15351. workers[0].shared = &state_shared;
  15352. workers[0].ec = GGML_STATUS_SUCCESS;
  15353. const int64_t perf_start_cycles = ggml_perf_cycles();
  15354. const int64_t perf_start_time_us = ggml_perf_time_us();
  15355. // this is a work thread too
  15356. ggml_graph_compute_thread(&workers[0]);
  15357. enum ggml_status compute_status = workers[0].ec;
  15358. // don't leave affinity set on the main thread
  15359. clear_numa_thread_affinity();
  15360. // join or kill thread pool
  15361. if (n_threads > 1) {
  15362. for (int j = 1; j < n_threads; j++) {
  15363. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15364. GGML_ASSERT(rc == 0);
  15365. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15366. compute_status = workers[j].ec;
  15367. }
  15368. }
  15369. // performance stats (graph)
  15370. {
  15371. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15372. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15373. cgraph->perf_runs++;
  15374. cgraph->perf_cycles += perf_cycles_cur;
  15375. cgraph->perf_time_us += perf_time_us_cur;
  15376. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15377. __func__, cgraph->perf_runs,
  15378. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15379. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15380. (double) perf_time_us_cur / 1000.0,
  15381. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15382. }
  15383. return compute_status;
  15384. }
  15385. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15386. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15387. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15388. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15389. return ggml_graph_compute(cgraph, &cplan);
  15390. }
  15391. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15392. for (int i = 0; i < cgraph->n_leafs; i++) {
  15393. struct ggml_tensor * leaf = cgraph->leafs[i];
  15394. if (strcmp(leaf->name, name) == 0) {
  15395. return leaf;
  15396. }
  15397. }
  15398. for (int i = 0; i < cgraph->n_nodes; i++) {
  15399. struct ggml_tensor * node = cgraph->nodes[i];
  15400. if (strcmp(node->name, name) == 0) {
  15401. return node;
  15402. }
  15403. }
  15404. return NULL;
  15405. }
  15406. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15407. const int64_t * ne = tensor->ne;
  15408. const size_t * nb = tensor->nb;
  15409. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15410. ggml_type_name(tensor->type),
  15411. ggml_op_name (tensor->op),
  15412. ggml_n_dims(tensor),
  15413. ne[0], ne[1], ne[2], ne[3],
  15414. nb[0], nb[1], nb[2], nb[3],
  15415. tensor->data,
  15416. tensor->name);
  15417. }
  15418. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15419. const int64_t * ne = tensor->ne;
  15420. const size_t * nb = tensor->nb;
  15421. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15422. arg,
  15423. ggml_type_name(tensor->type),
  15424. ggml_op_name (tensor->op),
  15425. ggml_n_dims(tensor),
  15426. ne[0], ne[1], ne[2], ne[3],
  15427. nb[0], nb[1], nb[2], nb[3],
  15428. tensor->data,
  15429. tensor->name);
  15430. }
  15431. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15432. uint64_t size_eval = 0;
  15433. // compute size of intermediate results
  15434. // TODO: does not take into account scratch buffers !!!!
  15435. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15436. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15437. }
  15438. // print
  15439. {
  15440. FILE * fout = stdout;
  15441. fprintf(fout, "\n");
  15442. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15443. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15444. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15445. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15446. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15447. // header
  15448. fprintf(fout, "\n");
  15449. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15450. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15451. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15452. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15453. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15454. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15455. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15456. }
  15457. // header
  15458. fprintf(fout, "\n");
  15459. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15460. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15461. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15462. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15463. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15464. if (cgraph->nodes[i]->src[j]) {
  15465. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15466. }
  15467. }
  15468. fprintf(fout, "\n");
  15469. }
  15470. fprintf(fout, "\n");
  15471. }
  15472. // write binary data
  15473. {
  15474. FILE * fout = ggml_fopen(fname, "wb");
  15475. if (!fout) {
  15476. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15477. return;
  15478. }
  15479. // header
  15480. {
  15481. const uint32_t magic = GGML_FILE_MAGIC;
  15482. const uint32_t version = GGML_FILE_VERSION;
  15483. const uint32_t n_leafs = cgraph->n_leafs;
  15484. const uint32_t n_nodes = cgraph->n_nodes;
  15485. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15486. fwrite(&version, sizeof(uint32_t), 1, fout);
  15487. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15488. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15489. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15490. }
  15491. // leafs
  15492. {
  15493. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15494. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15495. const uint32_t type = tensor->type;
  15496. const uint32_t op = tensor->op;
  15497. fwrite(&type, sizeof(uint32_t), 1, fout);
  15498. fwrite(&op, sizeof(uint32_t), 1, fout);
  15499. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15500. const uint64_t ne = tensor->ne[j];
  15501. const uint64_t nb = tensor->nb[j];
  15502. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15503. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15504. }
  15505. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15506. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15507. // dump the data
  15508. // TODO: pad this to 32 byte boundary
  15509. {
  15510. const size_t size = ggml_nbytes(tensor);
  15511. fwrite(tensor->data, sizeof(char), size, fout);
  15512. }
  15513. }
  15514. }
  15515. // nodes
  15516. {
  15517. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15518. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15519. const uint32_t type = tensor->type;
  15520. const uint32_t op = tensor->op;
  15521. fwrite(&type, sizeof(uint32_t), 1, fout);
  15522. fwrite(&op, sizeof(uint32_t), 1, fout);
  15523. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15524. const uint64_t ne = tensor->ne[j];
  15525. const uint64_t nb = tensor->nb[j];
  15526. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15527. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15528. }
  15529. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15530. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15531. // output the op arguments
  15532. {
  15533. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15534. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15535. args[j] = tensor->src[j];
  15536. }
  15537. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15538. if (args[j]) {
  15539. int32_t idx = -1;
  15540. // check if leaf
  15541. {
  15542. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15543. if (args[j] == cgraph->leafs[k]) {
  15544. idx = k;
  15545. break;
  15546. }
  15547. }
  15548. }
  15549. // check if node
  15550. if (idx == -1) {
  15551. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15552. if (args[j] == cgraph->nodes[k]) {
  15553. idx = cgraph->n_leafs + k;
  15554. break;
  15555. }
  15556. }
  15557. }
  15558. if (idx == -1) {
  15559. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15560. fclose(fout);
  15561. return;
  15562. }
  15563. fwrite(&idx, sizeof(int32_t), 1, fout);
  15564. } else {
  15565. const int32_t nul = -1;
  15566. fwrite(&nul, sizeof(int32_t), 1, fout);
  15567. }
  15568. }
  15569. }
  15570. }
  15571. }
  15572. fclose(fout);
  15573. }
  15574. }
  15575. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15576. assert(*ctx_data == NULL);
  15577. assert(*ctx_eval == NULL);
  15578. struct ggml_cgraph * result = NULL;
  15579. struct ggml_tensor * data = NULL;
  15580. // read file into data
  15581. {
  15582. FILE * fin = ggml_fopen(fname, "rb");
  15583. if (!fin) {
  15584. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15585. return result;
  15586. }
  15587. size_t fsize = 0;
  15588. fseek(fin, 0, SEEK_END);
  15589. fsize = ftell(fin);
  15590. fseek(fin, 0, SEEK_SET);
  15591. // create the data context
  15592. {
  15593. const size_t overhead = 1*ggml_tensor_overhead();
  15594. struct ggml_init_params params = {
  15595. .mem_size = fsize + overhead,
  15596. .mem_buffer = NULL,
  15597. .no_alloc = false,
  15598. };
  15599. *ctx_data = ggml_init(params);
  15600. if (!*ctx_data) {
  15601. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15602. fclose(fin);
  15603. return result;
  15604. }
  15605. }
  15606. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15607. {
  15608. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15609. if (ret != fsize) {
  15610. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15611. fclose(fin);
  15612. return result;
  15613. }
  15614. }
  15615. fclose(fin);
  15616. }
  15617. // populate result
  15618. {
  15619. char * ptr = (char *) data->data;
  15620. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15621. if (magic != GGML_FILE_MAGIC) {
  15622. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15623. return result;
  15624. }
  15625. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15626. if (version != GGML_FILE_VERSION) {
  15627. fprintf(stderr, "%s: invalid version number\n", __func__);
  15628. return result;
  15629. }
  15630. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15631. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15632. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15633. const int graph_size = MAX(n_leafs, n_nodes);
  15634. // create the data context
  15635. {
  15636. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15637. struct ggml_init_params params = {
  15638. .mem_size = size_eval + overhead,
  15639. .mem_buffer = NULL,
  15640. .no_alloc = true,
  15641. };
  15642. *ctx_eval = ggml_init(params);
  15643. if (!*ctx_eval) {
  15644. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15645. return result;
  15646. }
  15647. }
  15648. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15649. result->n_leafs = n_leafs;
  15650. result->n_nodes = n_nodes;
  15651. // leafs
  15652. {
  15653. uint32_t type;
  15654. uint32_t op;
  15655. for (uint32_t i = 0; i < n_leafs; ++i) {
  15656. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15657. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15658. int64_t ne[GGML_MAX_DIMS];
  15659. size_t nb[GGML_MAX_DIMS];
  15660. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15661. uint64_t ne_cur;
  15662. uint64_t nb_cur;
  15663. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15664. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15665. ne[j] = ne_cur;
  15666. nb[j] = nb_cur;
  15667. }
  15668. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15669. tensor->op = (enum ggml_op) op;
  15670. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15671. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15672. tensor->data = (void *) ptr;
  15673. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15674. tensor->nb[j] = nb[j];
  15675. }
  15676. result->leafs[i] = tensor;
  15677. ptr += ggml_nbytes(tensor);
  15678. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15679. }
  15680. }
  15681. ggml_set_no_alloc(*ctx_eval, false);
  15682. // nodes
  15683. {
  15684. uint32_t type;
  15685. uint32_t op;
  15686. for (uint32_t i = 0; i < n_nodes; ++i) {
  15687. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15688. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15689. enum ggml_op eop = (enum ggml_op) op;
  15690. int64_t ne[GGML_MAX_DIMS];
  15691. size_t nb[GGML_MAX_DIMS];
  15692. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15693. uint64_t ne_cur;
  15694. uint64_t nb_cur;
  15695. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15696. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15697. ne[j] = ne_cur;
  15698. nb[j] = nb_cur;
  15699. }
  15700. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15701. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15702. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15703. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15704. // parse args
  15705. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15706. const int32_t arg_idx = ptr_arg_idx[j];
  15707. if (arg_idx == -1) {
  15708. continue;
  15709. }
  15710. if (arg_idx < result->n_leafs) {
  15711. args[j] = result->leafs[arg_idx];
  15712. } else {
  15713. args[j] = result->nodes[arg_idx - result->n_leafs];
  15714. }
  15715. }
  15716. // create the tensor
  15717. // "view" operations are handled differently
  15718. // TODO: handle inplace ops - currently a copy is always made
  15719. struct ggml_tensor * tensor = NULL;
  15720. switch (eop) {
  15721. // TODO: implement other view ops
  15722. case GGML_OP_RESHAPE:
  15723. {
  15724. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15725. } break;
  15726. case GGML_OP_VIEW:
  15727. {
  15728. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15729. size_t offs;
  15730. memcpy(&offs, ptr_op_params, sizeof(offs));
  15731. tensor->data = ((char *) tensor->data) + offs;
  15732. } break;
  15733. case GGML_OP_TRANSPOSE:
  15734. {
  15735. tensor = ggml_transpose(*ctx_eval, args[0]);
  15736. } break;
  15737. case GGML_OP_PERMUTE:
  15738. {
  15739. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15740. } break;
  15741. default:
  15742. {
  15743. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15744. tensor->op = eop;
  15745. } break;
  15746. }
  15747. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15748. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15749. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15750. tensor->nb[j] = nb[j];
  15751. }
  15752. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15753. tensor->src[j] = args[j];
  15754. }
  15755. result->nodes[i] = tensor;
  15756. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15757. }
  15758. }
  15759. }
  15760. return result;
  15761. }
  15762. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15763. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15764. GGML_PRINT("=== GRAPH ===\n");
  15765. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15766. for (int i = 0; i < cgraph->n_nodes; i++) {
  15767. struct ggml_tensor * node = cgraph->nodes[i];
  15768. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15769. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15770. i,
  15771. node->ne[0], node->ne[1], node->ne[2],
  15772. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15773. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15774. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15775. (double) node->perf_time_us / 1000.0,
  15776. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15777. }
  15778. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15779. for (int i = 0; i < cgraph->n_leafs; i++) {
  15780. struct ggml_tensor * node = cgraph->leafs[i];
  15781. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15782. i,
  15783. node->ne[0], node->ne[1],
  15784. ggml_op_name(node->op),
  15785. ggml_get_name(node));
  15786. }
  15787. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15788. if (perf_total_per_op_us[i] == 0) {
  15789. continue;
  15790. }
  15791. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15792. }
  15793. GGML_PRINT("========================================\n");
  15794. }
  15795. // check if node is part of the graph
  15796. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15797. if (cgraph == NULL) {
  15798. return true;
  15799. }
  15800. for (int i = 0; i < cgraph->n_nodes; i++) {
  15801. if (cgraph->nodes[i] == node) {
  15802. return true;
  15803. }
  15804. }
  15805. return false;
  15806. }
  15807. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15808. for (int i = 0; i < cgraph->n_nodes; i++) {
  15809. struct ggml_tensor * parent = cgraph->nodes[i];
  15810. if (parent->grad == node) {
  15811. return parent;
  15812. }
  15813. }
  15814. return NULL;
  15815. }
  15816. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15817. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15818. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15819. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15820. gparent0 ? (void *) gparent0 : (void *) parent,
  15821. gparent0 ? "g" : "x",
  15822. gparent ? (void *) gparent : (void *) node,
  15823. gparent ? "g" : "x",
  15824. gparent ? "empty" : "vee",
  15825. gparent ? "dashed" : "solid",
  15826. label);
  15827. }
  15828. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15829. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15830. (void *) parent, "x",
  15831. (void *) node, "x",
  15832. label);
  15833. }
  15834. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15835. char color[16];
  15836. FILE * fp = ggml_fopen(filename, "w");
  15837. GGML_ASSERT(fp);
  15838. fprintf(fp, "digraph G {\n");
  15839. fprintf(fp, " newrank = true;\n");
  15840. fprintf(fp, " rankdir = LR;\n");
  15841. for (int i = 0; i < gb->n_nodes; i++) {
  15842. struct ggml_tensor * node = gb->nodes[i];
  15843. if (ggml_graph_get_parent(gb, node) != NULL) {
  15844. continue;
  15845. }
  15846. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15847. snprintf(color, sizeof(color), "yellow");
  15848. } else if (node->grad) {
  15849. if (ggml_graph_find(gf, node)) {
  15850. snprintf(color, sizeof(color), "green");
  15851. } else {
  15852. snprintf(color, sizeof(color), "lightblue");
  15853. }
  15854. } else {
  15855. snprintf(color, sizeof(color), "white");
  15856. }
  15857. fprintf(fp, " \"%p\" [ "
  15858. "style = filled; fillcolor = %s; shape = record; "
  15859. "label=\"",
  15860. (void *) node, color);
  15861. if (strlen(node->name) > 0) {
  15862. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15863. } else {
  15864. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15865. }
  15866. if (ggml_is_matrix(node)) {
  15867. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15868. } else {
  15869. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15870. }
  15871. if (node->grad) {
  15872. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15873. } else {
  15874. fprintf(fp, "\"; ]\n");
  15875. }
  15876. }
  15877. for (int i = 0; i < gb->n_leafs; i++) {
  15878. struct ggml_tensor * node = gb->leafs[i];
  15879. snprintf(color, sizeof(color), "pink");
  15880. fprintf(fp, " \"%p\" [ "
  15881. "style = filled; fillcolor = %s; shape = record; "
  15882. "label=\"<x>",
  15883. (void *) node, color);
  15884. if (strlen(node->name) > 0) {
  15885. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15886. } else {
  15887. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15888. }
  15889. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15890. if (ggml_nelements(node) < 5) {
  15891. fprintf(fp, " | (");
  15892. for (int j = 0; j < ggml_nelements(node); j++) {
  15893. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15894. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15895. }
  15896. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15897. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15898. }
  15899. else {
  15900. fprintf(fp, "#");
  15901. }
  15902. if (j < ggml_nelements(node) - 1) {
  15903. fprintf(fp, ", ");
  15904. }
  15905. }
  15906. fprintf(fp, ")");
  15907. }
  15908. fprintf(fp, "\"; ]\n");
  15909. }
  15910. for (int i = 0; i < gb->n_nodes; i++) {
  15911. struct ggml_tensor * node = gb->nodes[i];
  15912. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15913. if (node->src[j]) {
  15914. char label[16];
  15915. snprintf(label, sizeof(label), "src %d", j);
  15916. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15917. }
  15918. }
  15919. }
  15920. for (int i = 0; i < gb->n_leafs; i++) {
  15921. struct ggml_tensor * node = gb->leafs[i];
  15922. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15923. if (node->src[j]) {
  15924. char label[16];
  15925. snprintf(label, sizeof(label), "src %d", j);
  15926. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15927. }
  15928. }
  15929. }
  15930. fprintf(fp, "}\n");
  15931. fclose(fp);
  15932. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15933. }
  15934. ////////////////////////////////////////////////////////////////////////////////
  15935. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15936. int i = 0;
  15937. for (int p = 0; p < np; ++p) {
  15938. const int64_t ne = ggml_nelements(ps[p]) ;
  15939. // TODO: add function to set tensor from array
  15940. for (int64_t j = 0; j < ne; ++j) {
  15941. ggml_set_f32_1d(ps[p], j, x[i++]);
  15942. }
  15943. }
  15944. }
  15945. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15946. int i = 0;
  15947. for (int p = 0; p < np; ++p) {
  15948. const int64_t ne = ggml_nelements(ps[p]) ;
  15949. // TODO: add function to get all elements at once
  15950. for (int64_t j = 0; j < ne; ++j) {
  15951. x[i++] = ggml_get_f32_1d(ps[p], j);
  15952. }
  15953. }
  15954. }
  15955. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15956. int64_t i = 0;
  15957. for (int p = 0; p < np; ++p) {
  15958. const int64_t ne = ggml_nelements(ps[p]) ;
  15959. // TODO: add function to get all elements at once
  15960. for (int64_t j = 0; j < ne; ++j) {
  15961. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15962. }
  15963. }
  15964. }
  15965. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15966. int64_t i = 0;
  15967. for (int p = 0; p < np; ++p) {
  15968. const int64_t ne = ggml_nelements(ps[p]) ;
  15969. // TODO: add function to get all elements at once
  15970. for (int64_t j = 0; j < ne; ++j) {
  15971. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15972. }
  15973. }
  15974. }
  15975. //
  15976. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15977. //
  15978. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15979. //
  15980. static enum ggml_opt_result ggml_opt_adam(
  15981. struct ggml_context * ctx,
  15982. struct ggml_opt_context * opt,
  15983. struct ggml_opt_params params,
  15984. struct ggml_tensor * f,
  15985. struct ggml_cgraph * gf,
  15986. struct ggml_cgraph * gb,
  15987. ggml_opt_callback callback,
  15988. void * callback_data) {
  15989. GGML_ASSERT(ggml_is_scalar(f));
  15990. // these will store the parameters we want to optimize
  15991. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15992. int np = 0;
  15993. int64_t nx = 0;
  15994. for (int i = 0; i < gf->n_nodes; ++i) {
  15995. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15996. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15997. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15998. ps[np++] = gf->nodes[i];
  15999. nx += ggml_nelements(gf->nodes[i]);
  16000. }
  16001. }
  16002. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16003. int iter = opt->iter;
  16004. ggml_opt_init(opt->ctx, opt, params, nx);
  16005. opt->iter = iter;
  16006. }
  16007. // constants
  16008. float sched = params.adam.sched;
  16009. const float alpha = params.adam.alpha;
  16010. const float decay = params.adam.decay * alpha;
  16011. const float beta1 = params.adam.beta1;
  16012. const float beta2 = params.adam.beta2;
  16013. const float eps = params.adam.eps;
  16014. const float gclip = params.adam.gclip;
  16015. const int decay_min_ndim = params.adam.decay_min_ndim;
  16016. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16017. const float accum_norm = 1.0f / (float) n_accum;
  16018. float * g = opt->adam.g->data; // gradients
  16019. float * m = opt->adam.m->data; // first moment
  16020. float * v = opt->adam.v->data; // second moment
  16021. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16022. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16023. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16024. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16025. bool cancel = false;
  16026. // compute the function value
  16027. float fx = 0;
  16028. ggml_set_zero(opt->adam.g);
  16029. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16030. if (callback) {
  16031. callback(callback_data, accum_step, &sched, &cancel);
  16032. if (cancel) {
  16033. return GGML_OPT_RESULT_CANCEL;
  16034. }
  16035. }
  16036. // ggml_graph_reset (gf);
  16037. ggml_set_f32 (f->grad, 1.0f);
  16038. ggml_graph_compute(gb, &cplan);
  16039. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16040. fx += ggml_get_f32_1d(f, 0);
  16041. }
  16042. fx *= accum_norm;
  16043. opt->adam.fx_prev = fx;
  16044. opt->adam.fx_best = opt->adam.fx_prev;
  16045. if (pf) {
  16046. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16047. }
  16048. opt->loss_before = opt->adam.fx_prev;
  16049. opt->loss_after = opt->adam.fx_prev;
  16050. // initialize
  16051. if (opt->just_initialized) {
  16052. opt->adam.n_no_improvement = 0;
  16053. opt->just_initialized = false;
  16054. }
  16055. float * fx_best = &opt->adam.fx_best;
  16056. float * fx_prev = &opt->adam.fx_prev;
  16057. int * n_no_improvement = &opt->adam.n_no_improvement;
  16058. int iter0 = opt->iter;
  16059. // run the optimizer
  16060. for (int t = 0; t < params.adam.n_iter; ++t) {
  16061. opt->iter = iter0 + t + 1;
  16062. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16063. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16064. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16065. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16066. for (int i = 0; i < np; ++i) {
  16067. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16068. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16069. }
  16070. const int64_t t_start_wall = ggml_time_us();
  16071. const int64_t t_start_cpu = ggml_cycles();
  16072. UNUSED(t_start_wall);
  16073. UNUSED(t_start_cpu);
  16074. {
  16075. float gnorm = 1.0f;
  16076. if (gclip > 0.0f) {
  16077. // gradient clipping
  16078. ggml_float sum = 0.0;
  16079. for (int64_t i = 0; i < nx; ++i) {
  16080. sum += (ggml_float)(g[i]*g[i]);
  16081. }
  16082. ggml_float norm = sqrt(sum);
  16083. if (norm > (ggml_float) gclip) {
  16084. gnorm = (float) ((ggml_float) gclip / norm);
  16085. }
  16086. }
  16087. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16088. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16089. int64_t i = 0;
  16090. for (int p = 0; p < np; ++p) {
  16091. const int64_t ne = ggml_nelements(ps[p]);
  16092. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16093. for (int64_t j = 0; j < ne; ++j) {
  16094. float x = ggml_get_f32_1d(ps[p], j);
  16095. float g_ = g[i]*gnorm;
  16096. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16097. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16098. float mh = m[i]*beta1h;
  16099. float vh = v[i]*beta2h;
  16100. vh = sqrtf(vh) + eps;
  16101. x = x*(1.0f - p_decay) - mh/vh;
  16102. ggml_set_f32_1d(ps[p], j, x);
  16103. ++i;
  16104. }
  16105. }
  16106. }
  16107. fx = 0;
  16108. ggml_set_zero(opt->adam.g);
  16109. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16110. if (callback) {
  16111. callback(callback_data, accum_step, &sched, &cancel);
  16112. if (cancel) {
  16113. return GGML_OPT_RESULT_CANCEL;;
  16114. }
  16115. }
  16116. // ggml_graph_reset (gf);
  16117. ggml_set_f32 (f->grad, 1.0f);
  16118. ggml_graph_compute(gb, &cplan);
  16119. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16120. fx += ggml_get_f32_1d(f, 0);
  16121. }
  16122. fx *= accum_norm;
  16123. opt->loss_after = fx;
  16124. // check convergence
  16125. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16126. GGML_PRINT_DEBUG("converged\n");
  16127. return GGML_OPT_RESULT_OK;
  16128. }
  16129. // delta-based convergence test
  16130. if (pf != NULL) {
  16131. // need at least params.past iterations to start checking for convergence
  16132. if (params.past <= iter0 + t) {
  16133. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16134. if (fabsf(rate) < params.delta) {
  16135. return GGML_OPT_RESULT_OK;
  16136. }
  16137. }
  16138. pf[(iter0 + t)%params.past] = fx;
  16139. }
  16140. // check for improvement
  16141. if (params.max_no_improvement > 0) {
  16142. if (fx_best[0] > fx) {
  16143. fx_best[0] = fx;
  16144. n_no_improvement[0] = 0;
  16145. } else {
  16146. ++n_no_improvement[0];
  16147. if (n_no_improvement[0] >= params.max_no_improvement) {
  16148. return GGML_OPT_RESULT_OK;
  16149. }
  16150. }
  16151. }
  16152. fx_prev[0] = fx;
  16153. {
  16154. const int64_t t_end_cpu = ggml_cycles();
  16155. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16156. UNUSED(t_end_cpu);
  16157. const int64_t t_end_wall = ggml_time_us();
  16158. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16159. UNUSED(t_end_wall);
  16160. }
  16161. }
  16162. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16163. }
  16164. //
  16165. // L-BFGS
  16166. //
  16167. // the L-BFGS implementation below is based on the following implementation:
  16168. //
  16169. // https://github.com/chokkan/liblbfgs
  16170. //
  16171. struct ggml_lbfgs_iteration_data {
  16172. float alpha;
  16173. float ys;
  16174. float * s;
  16175. float * y;
  16176. };
  16177. static enum ggml_opt_result linesearch_backtracking(
  16178. const struct ggml_opt_params * params,
  16179. int nx,
  16180. float * x,
  16181. float * fx,
  16182. float * g,
  16183. float * d,
  16184. float * step,
  16185. const float * xp,
  16186. struct ggml_tensor * f,
  16187. struct ggml_cgraph * gb,
  16188. struct ggml_cplan * cplan,
  16189. const int np,
  16190. struct ggml_tensor * ps[],
  16191. bool * cancel,
  16192. ggml_opt_callback callback,
  16193. void * callback_data) {
  16194. int count = 0;
  16195. float width = 0.0f;
  16196. float dg = 0.0f;
  16197. float finit = 0.0f;
  16198. float dginit = 0.0f;
  16199. float dgtest = 0.0f;
  16200. const float dec = 0.5f;
  16201. const float inc = 2.1f;
  16202. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16203. const float accum_norm = 1.0f / (float) n_accum;
  16204. if (*step <= 0.f) {
  16205. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16206. }
  16207. // compute the initial gradient in the search direction
  16208. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16209. // make sure that d points to a descent direction
  16210. if (0 < dginit) {
  16211. return GGML_LINESEARCH_FAIL;
  16212. }
  16213. // initialize local variables
  16214. finit = *fx;
  16215. dgtest = params->lbfgs.ftol*dginit;
  16216. while (true) {
  16217. ggml_vec_cpy_f32(nx, x, xp);
  16218. ggml_vec_mad_f32(nx, x, d, *step);
  16219. // evaluate the function and gradient values
  16220. {
  16221. ggml_opt_set_params(np, ps, x);
  16222. *fx = 0;
  16223. memset(g, 0, sizeof(float)*nx);
  16224. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16225. if (callback) {
  16226. // LBFG-S does not support learning rate -> ignore learning schedule
  16227. float sched = 0;
  16228. callback(callback_data, accum_step, &sched, cancel);
  16229. if (*cancel) {
  16230. return GGML_OPT_RESULT_CANCEL;
  16231. }
  16232. }
  16233. // ggml_graph_reset (gf);
  16234. ggml_set_f32 (f->grad, 1.0f);
  16235. ggml_graph_compute(gb, cplan);
  16236. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16237. *fx += ggml_get_f32_1d(f, 0);
  16238. }
  16239. *fx *= accum_norm;
  16240. }
  16241. ++count;
  16242. if (*fx > finit + (*step)*dgtest) {
  16243. width = dec;
  16244. } else {
  16245. // Armijo condition is satisfied
  16246. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16247. return count;
  16248. }
  16249. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16250. // check the Wolfe condition
  16251. if (dg < params->lbfgs.wolfe * dginit) {
  16252. width = inc;
  16253. } else {
  16254. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16255. // regular Wolfe conditions
  16256. return count;
  16257. }
  16258. if(dg > -params->lbfgs.wolfe*dginit) {
  16259. width = dec;
  16260. } else {
  16261. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16262. return count;
  16263. }
  16264. }
  16265. }
  16266. if (*step < params->lbfgs.min_step) {
  16267. return GGML_LINESEARCH_MINIMUM_STEP;
  16268. }
  16269. if (*step > params->lbfgs.max_step) {
  16270. return GGML_LINESEARCH_MAXIMUM_STEP;
  16271. }
  16272. if (params->lbfgs.max_linesearch <= count) {
  16273. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16274. }
  16275. (*step) *= width;
  16276. }
  16277. GGML_ASSERT(false && "line search failed");
  16278. return GGML_LINESEARCH_FAIL;
  16279. }
  16280. static enum ggml_opt_result ggml_opt_lbfgs(
  16281. struct ggml_context * ctx,
  16282. struct ggml_opt_context * opt,
  16283. struct ggml_opt_params params,
  16284. struct ggml_tensor * f,
  16285. struct ggml_cgraph * gf,
  16286. struct ggml_cgraph * gb,
  16287. ggml_opt_callback callback,
  16288. void * callback_data) {
  16289. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16290. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16291. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16292. return GGML_OPT_RESULT_INVALID_WOLFE;
  16293. }
  16294. }
  16295. const int m = params.lbfgs.m;
  16296. // these will store the parameters we want to optimize
  16297. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16298. int np = 0;
  16299. int nx = 0;
  16300. for (int i = 0; i < gf->n_nodes; ++i) {
  16301. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16302. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16303. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16304. ps[np++] = gf->nodes[i];
  16305. nx += ggml_nelements(gf->nodes[i]);
  16306. }
  16307. }
  16308. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16309. int iter = opt->iter;
  16310. ggml_opt_init(ctx, opt, params, nx);
  16311. opt->iter = iter;
  16312. }
  16313. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16314. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16315. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16316. float * x = opt->lbfgs.x->data; // current parameters
  16317. float * xp = opt->lbfgs.xp->data; // previous parameters
  16318. float * g = opt->lbfgs.g->data; // current gradient
  16319. float * gp = opt->lbfgs.gp->data; // previous gradient
  16320. float * d = opt->lbfgs.d->data; // search direction
  16321. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16322. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16323. const float accum_norm = 1.0f / (float) n_accum;
  16324. float fx = 0.0f; // cost function value
  16325. float xnorm = 0.0f; // ||x||
  16326. float gnorm = 0.0f; // ||g||
  16327. // initialize x from the graph nodes
  16328. ggml_opt_get_params(np, ps, x);
  16329. // the L-BFGS memory
  16330. float * lm_alpha = opt->lbfgs.lmal->data;
  16331. float * lm_ys = opt->lbfgs.lmys->data;
  16332. float * lm_s = opt->lbfgs.lms->data;
  16333. float * lm_y = opt->lbfgs.lmy->data;
  16334. bool cancel = false;
  16335. // evaluate the function value and its gradient
  16336. {
  16337. ggml_opt_set_params(np, ps, x);
  16338. fx = 0;
  16339. memset(g, 0, sizeof(float)*nx);
  16340. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16341. if (callback) {
  16342. // LBFG-S does not support learning rate -> ignore learning schedule
  16343. float sched = 0;
  16344. callback(callback_data, accum_step, &sched, &cancel);
  16345. if (cancel) {
  16346. return GGML_OPT_RESULT_CANCEL;
  16347. }
  16348. }
  16349. // ggml_graph_reset (gf);
  16350. ggml_set_f32 (f->grad, 1.0f);
  16351. ggml_graph_compute(gb, &cplan);
  16352. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16353. fx += ggml_get_f32_1d(f, 0);
  16354. }
  16355. fx *= accum_norm;
  16356. opt->loss_before = fx;
  16357. opt->loss_after = fx;
  16358. }
  16359. // search direction = -gradient
  16360. ggml_vec_neg_f32(nx, d, g);
  16361. // ||x||, ||g||
  16362. ggml_vec_norm_f32(nx, &xnorm, x);
  16363. ggml_vec_norm_f32(nx, &gnorm, g);
  16364. if (xnorm < 1.0f) {
  16365. xnorm = 1.0f;
  16366. }
  16367. // already optimized
  16368. if (gnorm/xnorm <= params.lbfgs.eps) {
  16369. return GGML_OPT_RESULT_OK;
  16370. }
  16371. if (opt->just_initialized) {
  16372. if (pf) {
  16373. pf[0] = fx;
  16374. }
  16375. opt->lbfgs.fx_best = fx;
  16376. // initial step
  16377. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16378. opt->lbfgs.j = 0;
  16379. opt->lbfgs.k = 1;
  16380. opt->lbfgs.end = 0;
  16381. opt->lbfgs.n_no_improvement = 0;
  16382. opt->just_initialized = false;
  16383. }
  16384. float * fx_best = &opt->lbfgs.fx_best;
  16385. float * step = &opt->lbfgs.step;
  16386. int * j = &opt->lbfgs.j;
  16387. int * k = &opt->lbfgs.k;
  16388. int * end = &opt->lbfgs.end;
  16389. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16390. int ls = 0;
  16391. int bound = 0;
  16392. float ys = 0.0f;
  16393. float yy = 0.0f;
  16394. float beta = 0.0f;
  16395. int it = 0;
  16396. while (true) {
  16397. // store the current position and gradient vectors
  16398. ggml_vec_cpy_f32(nx, xp, x);
  16399. ggml_vec_cpy_f32(nx, gp, g);
  16400. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16401. // to determine if the optimization should be cancelled
  16402. // this is a simple change, but not doing this atm, since I don't have a nice
  16403. // way to test and don't want to break something with so many changes lined up
  16404. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16405. if (cancel) {
  16406. return GGML_OPT_RESULT_CANCEL;
  16407. }
  16408. if (ls < 0) {
  16409. // linesearch failed - go back to the previous point and return
  16410. ggml_vec_cpy_f32(nx, x, xp);
  16411. ggml_vec_cpy_f32(nx, g, gp);
  16412. return ls;
  16413. }
  16414. opt->loss_after = fx;
  16415. ggml_vec_norm_f32(nx, &xnorm, x);
  16416. ggml_vec_norm_f32(nx, &gnorm, g);
  16417. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16418. if (xnorm < 1.0f) {
  16419. xnorm = 1.0f;
  16420. }
  16421. if (gnorm/xnorm <= params.lbfgs.eps) {
  16422. // converged
  16423. return GGML_OPT_RESULT_OK;
  16424. }
  16425. // delta-based convergence test
  16426. if (pf != NULL) {
  16427. // need at least params.past iterations to start checking for convergence
  16428. if (params.past <= k[0]) {
  16429. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16430. if (fabsf(rate) < params.delta) {
  16431. return GGML_OPT_RESULT_OK;
  16432. }
  16433. }
  16434. pf[k[0]%params.past] = fx;
  16435. }
  16436. // check for improvement
  16437. if (params.max_no_improvement > 0) {
  16438. if (fx < fx_best[0]) {
  16439. fx_best[0] = fx;
  16440. n_no_improvement[0] = 0;
  16441. } else {
  16442. n_no_improvement[0]++;
  16443. if (n_no_improvement[0] >= params.max_no_improvement) {
  16444. return GGML_OPT_RESULT_OK;
  16445. }
  16446. }
  16447. }
  16448. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16449. // reached the maximum number of iterations
  16450. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16451. }
  16452. // update vectors s and y:
  16453. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16454. // y_{k+1} = g_{k+1} - g_{k}.
  16455. //
  16456. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16457. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16458. // compute scalars ys and yy:
  16459. // ys = y^t \cdot s -> 1 / \rho.
  16460. // yy = y^t \cdot y.
  16461. //
  16462. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16463. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16464. lm_ys[end[0]] = ys;
  16465. // find new search direction
  16466. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16467. bound = (m <= k[0]) ? m : k[0];
  16468. k[0]++;
  16469. it++;
  16470. end[0] = (end[0] + 1)%m;
  16471. // initialize search direction with -g
  16472. ggml_vec_neg_f32(nx, d, g);
  16473. j[0] = end[0];
  16474. for (int i = 0; i < bound; ++i) {
  16475. j[0] = (j[0] + m - 1) % m;
  16476. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16477. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16478. lm_alpha[j[0]] /= lm_ys[j[0]];
  16479. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16480. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16481. }
  16482. ggml_vec_scale_f32(nx, d, ys/yy);
  16483. for (int i = 0; i < bound; ++i) {
  16484. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16485. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16486. beta /= lm_ys[j[0]];
  16487. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16488. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16489. j[0] = (j[0] + 1)%m;
  16490. }
  16491. step[0] = 1.0;
  16492. }
  16493. GGML_ASSERT(false && "lbfgs failed");
  16494. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16495. }
  16496. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16497. struct ggml_opt_params result;
  16498. switch (type) {
  16499. case GGML_OPT_TYPE_ADAM:
  16500. {
  16501. result = (struct ggml_opt_params) {
  16502. .type = GGML_OPT_TYPE_ADAM,
  16503. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16504. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16505. .past = 0,
  16506. .delta = 1e-5f,
  16507. .max_no_improvement = 100,
  16508. .print_forward_graph = true,
  16509. .print_backward_graph = true,
  16510. .n_gradient_accumulation = 1,
  16511. .adam = {
  16512. .n_iter = 10000,
  16513. .sched = 1.000f,
  16514. .decay = 0.0f,
  16515. .decay_min_ndim = 2,
  16516. .alpha = 0.001f,
  16517. .beta1 = 0.9f,
  16518. .beta2 = 0.999f,
  16519. .eps = 1e-8f,
  16520. .eps_f = 1e-5f,
  16521. .eps_g = 1e-3f,
  16522. .gclip = 0.0f,
  16523. },
  16524. };
  16525. } break;
  16526. case GGML_OPT_TYPE_LBFGS:
  16527. {
  16528. result = (struct ggml_opt_params) {
  16529. .type = GGML_OPT_TYPE_LBFGS,
  16530. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16531. .n_threads = 1,
  16532. .past = 0,
  16533. .delta = 1e-5f,
  16534. .max_no_improvement = 0,
  16535. .print_forward_graph = true,
  16536. .print_backward_graph = true,
  16537. .n_gradient_accumulation = 1,
  16538. .lbfgs = {
  16539. .m = 6,
  16540. .n_iter = 100,
  16541. .max_linesearch = 20,
  16542. .eps = 1e-5f,
  16543. .ftol = 1e-4f,
  16544. .wolfe = 0.9f,
  16545. .min_step = 1e-20f,
  16546. .max_step = 1e+20f,
  16547. .linesearch = GGML_LINESEARCH_DEFAULT,
  16548. },
  16549. };
  16550. } break;
  16551. }
  16552. return result;
  16553. }
  16554. GGML_API void ggml_opt_init(
  16555. struct ggml_context * ctx,
  16556. struct ggml_opt_context * opt,
  16557. struct ggml_opt_params params,
  16558. int64_t nx) {
  16559. opt->ctx = ctx;
  16560. opt->params = params;
  16561. opt->iter = 0;
  16562. opt->nx = nx;
  16563. opt->just_initialized = true;
  16564. if (opt->ctx == NULL) {
  16565. struct ggml_init_params ctx_opt_params;
  16566. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16567. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16568. if (opt->params.past > 0) {
  16569. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16570. }
  16571. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16572. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16573. if (opt->params.past > 0) {
  16574. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16575. }
  16576. }
  16577. ctx_opt_params.mem_buffer = NULL;
  16578. ctx_opt_params.no_alloc = false;
  16579. opt->ctx = ggml_init(ctx_opt_params);
  16580. }
  16581. switch (opt->params.type) {
  16582. case GGML_OPT_TYPE_ADAM:
  16583. {
  16584. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16585. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16586. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16587. opt->adam.pf = params.past > 0
  16588. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16589. : NULL;
  16590. ggml_set_zero(opt->adam.m);
  16591. ggml_set_zero(opt->adam.v);
  16592. if (opt->adam.pf) {
  16593. ggml_set_zero(opt->adam.pf);
  16594. }
  16595. } break;
  16596. case GGML_OPT_TYPE_LBFGS:
  16597. {
  16598. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16599. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16600. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16601. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16602. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16603. opt->lbfgs.pf = params.past > 0
  16604. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16605. : NULL;
  16606. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16607. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16608. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16609. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16610. ggml_set_zero(opt->lbfgs.x);
  16611. ggml_set_zero(opt->lbfgs.xp);
  16612. ggml_set_zero(opt->lbfgs.g);
  16613. ggml_set_zero(opt->lbfgs.gp);
  16614. ggml_set_zero(opt->lbfgs.d);
  16615. if (opt->lbfgs.pf) {
  16616. ggml_set_zero(opt->lbfgs.pf);
  16617. }
  16618. ggml_set_zero(opt->lbfgs.lmal);
  16619. ggml_set_zero(opt->lbfgs.lmys);
  16620. ggml_set_zero(opt->lbfgs.lms);
  16621. ggml_set_zero(opt->lbfgs.lmy);
  16622. } break;
  16623. }
  16624. }
  16625. enum ggml_opt_result ggml_opt(
  16626. struct ggml_context * ctx,
  16627. struct ggml_opt_params params,
  16628. struct ggml_tensor * f) {
  16629. bool free_ctx = false;
  16630. if (ctx == NULL) {
  16631. struct ggml_init_params params_ctx = {
  16632. .mem_size = 16*1024*1024,
  16633. .mem_buffer = NULL,
  16634. .no_alloc = false,
  16635. };
  16636. ctx = ggml_init(params_ctx);
  16637. if (ctx == NULL) {
  16638. return GGML_OPT_RESULT_NO_CONTEXT;
  16639. }
  16640. free_ctx = true;
  16641. }
  16642. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16643. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16644. ggml_opt_init(ctx, opt, params, 0);
  16645. result = ggml_opt_resume(ctx, opt, f);
  16646. if (free_ctx) {
  16647. ggml_free(ctx);
  16648. }
  16649. return result;
  16650. }
  16651. enum ggml_opt_result ggml_opt_resume(
  16652. struct ggml_context * ctx,
  16653. struct ggml_opt_context * opt,
  16654. struct ggml_tensor * f) {
  16655. // build forward + backward compute graphs
  16656. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16657. ggml_build_forward_expand(gf, f);
  16658. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16659. ggml_build_backward_expand(ctx, gf, gb, true);
  16660. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16661. }
  16662. enum ggml_opt_result ggml_opt_resume_g(
  16663. struct ggml_context * ctx,
  16664. struct ggml_opt_context * opt,
  16665. struct ggml_tensor * f,
  16666. struct ggml_cgraph * gf,
  16667. struct ggml_cgraph * gb,
  16668. ggml_opt_callback callback,
  16669. void * callback_data) {
  16670. // build forward + backward compute graphs
  16671. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16672. switch (opt->params.type) {
  16673. case GGML_OPT_TYPE_ADAM:
  16674. {
  16675. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16676. } break;
  16677. case GGML_OPT_TYPE_LBFGS:
  16678. {
  16679. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16680. } break;
  16681. }
  16682. if (opt->params.print_forward_graph) {
  16683. ggml_graph_print (gf);
  16684. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16685. }
  16686. if (opt->params.print_backward_graph) {
  16687. ggml_graph_print (gb);
  16688. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16689. }
  16690. return result;
  16691. }
  16692. ////////////////////////////////////////////////////////////////////////////////
  16693. void ggml_set_input(struct ggml_tensor * tensor) {
  16694. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16695. }
  16696. void ggml_set_output(struct ggml_tensor * tensor) {
  16697. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16698. }
  16699. ////////////////////////////////////////////////////////////////////////////////
  16700. void ggml_quantize_init(enum ggml_type type) {
  16701. ggml_critical_section_start();
  16702. switch (type) {
  16703. case GGML_TYPE_IQ2_XXS:
  16704. case GGML_TYPE_IQ2_XS:
  16705. case GGML_TYPE_IQ2_S:
  16706. case GGML_TYPE_IQ1_S:
  16707. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16708. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16709. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16710. default: // nothing
  16711. break;
  16712. }
  16713. ggml_critical_section_end();
  16714. }
  16715. void ggml_quantize_free(void) {
  16716. ggml_critical_section_start();
  16717. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16718. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16719. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16720. iq3xs_free_impl(256);
  16721. ggml_critical_section_end();
  16722. }
  16723. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16724. return
  16725. type == GGML_TYPE_IQ2_XXS ||
  16726. type == GGML_TYPE_IQ2_XS ||
  16727. type == GGML_TYPE_IQ1_S;// ||
  16728. //type == GGML_TYPE_IQ1_M;
  16729. }
  16730. size_t ggml_quantize_chunk(
  16731. enum ggml_type type,
  16732. const float * src,
  16733. void * dst,
  16734. int64_t start,
  16735. int64_t nrows,
  16736. int64_t n_per_row,
  16737. const float * imatrix) {
  16738. const int64_t n = (int64_t) nrows * n_per_row;
  16739. if (ggml_quantize_requires_imatrix(type)) {
  16740. GGML_ASSERT(imatrix != NULL);
  16741. }
  16742. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16743. GGML_ASSERT(start % n_per_row == 0);
  16744. ggml_quantize_init(type); // this is noop if already initialized
  16745. const size_t start_row = start / n_per_row;
  16746. const size_t row_size = ggml_row_size(type, n_per_row);
  16747. size_t result = 0;
  16748. switch (type) {
  16749. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16750. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16751. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16752. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16753. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16754. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16755. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16756. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16757. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16758. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16759. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16760. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16761. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16762. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16763. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16764. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16765. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16766. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16767. #if QK_K == 64
  16768. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16769. #else
  16770. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16771. #endif
  16772. case GGML_TYPE_F16:
  16773. {
  16774. size_t elemsize = sizeof(ggml_fp16_t);
  16775. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16776. result = n * elemsize;
  16777. } break;
  16778. case GGML_TYPE_F32:
  16779. {
  16780. size_t elemsize = sizeof(float);
  16781. result = n * elemsize;
  16782. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16783. } break;
  16784. default:
  16785. assert(false);
  16786. }
  16787. GGML_ASSERT(result == nrows * row_size);
  16788. return result;
  16789. }
  16790. ////////////////////////////////////////////////////////////////////////////////
  16791. struct gguf_str {
  16792. uint64_t n; // GGUFv2
  16793. char * data;
  16794. };
  16795. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16796. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16797. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16798. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16799. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16800. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16801. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16802. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16803. [GGUF_TYPE_BOOL] = sizeof(bool),
  16804. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16805. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16806. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16807. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16808. [GGUF_TYPE_ARRAY] = 0, // undefined
  16809. };
  16810. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16811. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16812. [GGUF_TYPE_UINT8] = "u8",
  16813. [GGUF_TYPE_INT8] = "i8",
  16814. [GGUF_TYPE_UINT16] = "u16",
  16815. [GGUF_TYPE_INT16] = "i16",
  16816. [GGUF_TYPE_UINT32] = "u32",
  16817. [GGUF_TYPE_INT32] = "i32",
  16818. [GGUF_TYPE_FLOAT32] = "f32",
  16819. [GGUF_TYPE_BOOL] = "bool",
  16820. [GGUF_TYPE_STRING] = "str",
  16821. [GGUF_TYPE_ARRAY] = "arr",
  16822. [GGUF_TYPE_UINT64] = "u64",
  16823. [GGUF_TYPE_INT64] = "i64",
  16824. [GGUF_TYPE_FLOAT64] = "f64",
  16825. };
  16826. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16827. union gguf_value {
  16828. uint8_t uint8;
  16829. int8_t int8;
  16830. uint16_t uint16;
  16831. int16_t int16;
  16832. uint32_t uint32;
  16833. int32_t int32;
  16834. float float32;
  16835. uint64_t uint64;
  16836. int64_t int64;
  16837. double float64;
  16838. bool bool_;
  16839. struct gguf_str str;
  16840. struct {
  16841. enum gguf_type type;
  16842. uint64_t n; // GGUFv2
  16843. void * data;
  16844. } arr;
  16845. };
  16846. struct gguf_kv {
  16847. struct gguf_str key;
  16848. enum gguf_type type;
  16849. union gguf_value value;
  16850. };
  16851. struct gguf_header {
  16852. char magic[4];
  16853. uint32_t version;
  16854. uint64_t n_tensors; // GGUFv2
  16855. uint64_t n_kv; // GGUFv2
  16856. };
  16857. struct gguf_tensor_info {
  16858. struct gguf_str name;
  16859. uint32_t n_dims;
  16860. uint64_t ne[GGML_MAX_DIMS];
  16861. enum ggml_type type;
  16862. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16863. // for writing API
  16864. const void * data;
  16865. size_t size;
  16866. };
  16867. struct gguf_context {
  16868. struct gguf_header header;
  16869. struct gguf_kv * kv;
  16870. struct gguf_tensor_info * infos;
  16871. size_t alignment;
  16872. size_t offset; // offset of `data` from beginning of file
  16873. size_t size; // size of `data` in bytes
  16874. //uint8_t * padding;
  16875. void * data;
  16876. };
  16877. static size_t gguf_type_size(enum gguf_type type) {
  16878. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16879. return GGUF_TYPE_SIZE[type];
  16880. }
  16881. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16882. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16883. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16884. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16885. GGML_ASSERT(info->ne[i] > 0);
  16886. }
  16887. // prevent overflow for total number of elements
  16888. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16889. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16890. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16891. }
  16892. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16893. const size_t n = fread(dst, 1, size, file);
  16894. *offset += n;
  16895. return n == size;
  16896. }
  16897. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16898. p->n = 0;
  16899. p->data = NULL;
  16900. bool ok = true;
  16901. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16902. // early exit if string length is invalid, prevents from integer overflow
  16903. if (p->n == SIZE_MAX) {
  16904. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16905. return false;
  16906. }
  16907. p->data = GGML_CALLOC(p->n + 1, 1);
  16908. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16909. return ok;
  16910. }
  16911. static void gguf_free_kv(struct gguf_kv * kv) {
  16912. if (kv->key.data) {
  16913. GGML_FREE(kv->key.data);
  16914. }
  16915. if (kv->type == GGUF_TYPE_STRING) {
  16916. if (kv->value.str.data) {
  16917. GGML_FREE(kv->value.str.data);
  16918. }
  16919. }
  16920. if (kv->type == GGUF_TYPE_ARRAY) {
  16921. if (kv->value.arr.data) {
  16922. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16923. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16924. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16925. if (str->data) {
  16926. GGML_FREE(str->data);
  16927. }
  16928. }
  16929. }
  16930. GGML_FREE(kv->value.arr.data);
  16931. }
  16932. }
  16933. }
  16934. struct gguf_context * gguf_init_empty(void) {
  16935. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16936. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16937. ctx->header.version = GGUF_VERSION;
  16938. ctx->header.n_tensors = 0;
  16939. ctx->header.n_kv = 0;
  16940. ctx->kv = NULL;
  16941. ctx->infos = NULL;
  16942. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16943. ctx->offset = 0;
  16944. ctx->size = 0;
  16945. ctx->data = NULL;
  16946. return ctx;
  16947. }
  16948. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16949. FILE * file = ggml_fopen(fname, "rb");
  16950. if (!file) {
  16951. return NULL;
  16952. }
  16953. // offset from start of file
  16954. size_t offset = 0;
  16955. char magic[4];
  16956. // check the magic before making allocations
  16957. {
  16958. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16959. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16960. if (magic[i] != GGUF_MAGIC[i]) {
  16961. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16962. fclose(file);
  16963. return NULL;
  16964. }
  16965. }
  16966. }
  16967. bool ok = true;
  16968. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16969. // read the header
  16970. {
  16971. strncpy(ctx->header.magic, magic, 4);
  16972. ctx->kv = NULL;
  16973. ctx->infos = NULL;
  16974. ctx->data = NULL;
  16975. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16976. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16977. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16978. if (ctx->header.version == 1) {
  16979. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16980. fclose(file);
  16981. gguf_free(ctx);
  16982. return NULL;
  16983. }
  16984. // sanity-checks to prevent from integer/buffer overflows
  16985. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16986. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16987. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16988. if (!ok) {
  16989. fprintf(stderr, "%s: failed to read header\n", __func__);
  16990. fclose(file);
  16991. gguf_free(ctx);
  16992. return NULL;
  16993. }
  16994. }
  16995. // read the kv pairs
  16996. {
  16997. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16998. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16999. struct gguf_kv * kv = &ctx->kv[i];
  17000. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17001. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17002. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17003. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17004. switch (kv->type) {
  17005. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17006. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17007. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17008. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17009. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17010. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17011. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17012. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17013. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17014. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17015. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17016. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17017. case GGUF_TYPE_ARRAY:
  17018. {
  17019. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17020. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17021. switch (kv->value.arr.type) {
  17022. case GGUF_TYPE_UINT8:
  17023. case GGUF_TYPE_INT8:
  17024. case GGUF_TYPE_UINT16:
  17025. case GGUF_TYPE_INT16:
  17026. case GGUF_TYPE_UINT32:
  17027. case GGUF_TYPE_INT32:
  17028. case GGUF_TYPE_FLOAT32:
  17029. case GGUF_TYPE_UINT64:
  17030. case GGUF_TYPE_INT64:
  17031. case GGUF_TYPE_FLOAT64:
  17032. case GGUF_TYPE_BOOL:
  17033. {
  17034. // prevent from integer overflow in the malloc below
  17035. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17036. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17037. fclose(file);
  17038. gguf_free(ctx);
  17039. return NULL;
  17040. }
  17041. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17042. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17043. } break;
  17044. case GGUF_TYPE_STRING:
  17045. {
  17046. // prevent from integer overflow in the malloc below
  17047. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17048. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17049. fclose(file);
  17050. gguf_free(ctx);
  17051. return NULL;
  17052. }
  17053. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17054. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17055. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17056. }
  17057. } break;
  17058. case GGUF_TYPE_ARRAY:
  17059. default: GGML_ASSERT(false && "invalid type"); break;
  17060. }
  17061. } break;
  17062. default: GGML_ASSERT(false && "invalid type");
  17063. }
  17064. if (!ok) {
  17065. break;
  17066. }
  17067. }
  17068. if (!ok) {
  17069. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17070. fclose(file);
  17071. gguf_free(ctx);
  17072. return NULL;
  17073. }
  17074. }
  17075. // read the tensor infos
  17076. {
  17077. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17078. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17079. struct gguf_tensor_info * info = &ctx->infos[i];
  17080. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17081. info->ne[j] = 1;
  17082. }
  17083. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17084. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17085. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17086. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17087. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17088. }
  17089. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17090. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17091. gguf_tensor_info_sanitize(info);
  17092. if (!ok) {
  17093. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17094. fclose(file);
  17095. gguf_free(ctx);
  17096. return NULL;
  17097. }
  17098. }
  17099. }
  17100. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17101. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17102. if (alignment_idx != -1) {
  17103. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17104. }
  17105. // we require the data section to be aligned, so take into account any padding
  17106. {
  17107. const size_t offset_pad = offset % ctx->alignment;
  17108. if (offset_pad != 0) {
  17109. offset += ctx->alignment - offset_pad;
  17110. fseek(file, offset, SEEK_SET);
  17111. }
  17112. }
  17113. // store the current file offset - this is where the data section starts
  17114. ctx->offset = offset;
  17115. // compute the total size of the data section, taking into account the alignment
  17116. {
  17117. ctx->size = 0;
  17118. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17119. struct gguf_tensor_info * info = &ctx->infos[i];
  17120. const int64_t ne =
  17121. (int64_t) info->ne[0] *
  17122. (int64_t) info->ne[1] *
  17123. (int64_t) info->ne[2] *
  17124. (int64_t) info->ne[3];
  17125. if (ne % ggml_blck_size(info->type) != 0) {
  17126. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17127. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17128. fclose(file);
  17129. gguf_free(ctx);
  17130. return NULL;
  17131. }
  17132. const size_t size_cur = ggml_row_size(info->type, ne);
  17133. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17134. }
  17135. }
  17136. // load the tensor data only if requested
  17137. if (params.ctx != NULL) {
  17138. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17139. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17140. // the ggml_tensor structs to the appropriate locations in the binary blob
  17141. // compute the exact size needed for the new ggml_context
  17142. const size_t mem_size =
  17143. params.no_alloc ?
  17144. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17145. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17146. struct ggml_init_params pdata = {
  17147. .mem_size = mem_size,
  17148. .mem_buffer = NULL,
  17149. .no_alloc = params.no_alloc,
  17150. };
  17151. *params.ctx = ggml_init(pdata);
  17152. struct ggml_context * ctx_data = *params.ctx;
  17153. struct ggml_tensor * data = NULL;
  17154. if (!params.no_alloc) {
  17155. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17156. ok = ok && data != NULL;
  17157. // read the binary blob with the tensor data
  17158. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17159. if (!ok) {
  17160. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17161. fclose(file);
  17162. ggml_free(ctx_data);
  17163. gguf_free(ctx);
  17164. return NULL;
  17165. }
  17166. ctx->data = data->data;
  17167. }
  17168. ggml_set_no_alloc(ctx_data, true);
  17169. // create the tensors
  17170. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17171. const int64_t ne[GGML_MAX_DIMS] = {
  17172. ctx->infos[i].ne[0],
  17173. ctx->infos[i].ne[1],
  17174. ctx->infos[i].ne[2],
  17175. ctx->infos[i].ne[3],
  17176. };
  17177. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17178. ok = ok && cur != NULL;
  17179. if (!ok) {
  17180. break;
  17181. }
  17182. ggml_set_name(cur, ctx->infos[i].name.data);
  17183. // point the data member to the appropriate location in the binary blob using the tensor infos
  17184. if (!params.no_alloc) {
  17185. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17186. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17187. }
  17188. }
  17189. if (!ok) {
  17190. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17191. fclose(file);
  17192. ggml_free(ctx_data);
  17193. gguf_free(ctx);
  17194. return NULL;
  17195. }
  17196. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17197. }
  17198. fclose(file);
  17199. return ctx;
  17200. }
  17201. void gguf_free(struct gguf_context * ctx) {
  17202. if (ctx == NULL) {
  17203. return;
  17204. }
  17205. if (ctx->kv) {
  17206. // free string memory - not great..
  17207. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17208. gguf_free_kv(&ctx->kv[i]);
  17209. }
  17210. GGML_FREE(ctx->kv);
  17211. }
  17212. if (ctx->infos) {
  17213. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17214. struct gguf_tensor_info * info = &ctx->infos[i];
  17215. if (info->name.data) {
  17216. GGML_FREE(info->name.data);
  17217. }
  17218. }
  17219. GGML_FREE(ctx->infos);
  17220. }
  17221. GGML_ALIGNED_FREE(ctx);
  17222. }
  17223. const char * gguf_type_name(enum gguf_type type) {
  17224. return GGUF_TYPE_NAME[type];
  17225. }
  17226. int gguf_get_version(const struct gguf_context * ctx) {
  17227. return ctx->header.version;
  17228. }
  17229. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17230. return ctx->alignment;
  17231. }
  17232. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17233. return ctx->offset;
  17234. }
  17235. void * gguf_get_data(const struct gguf_context * ctx) {
  17236. return ctx->data;
  17237. }
  17238. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17239. return ctx->header.n_kv;
  17240. }
  17241. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17242. // return -1 if key not found
  17243. int keyfound = -1;
  17244. const int n_kv = gguf_get_n_kv(ctx);
  17245. for (int i = 0; i < n_kv; ++i) {
  17246. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17247. keyfound = i;
  17248. break;
  17249. }
  17250. }
  17251. return keyfound;
  17252. }
  17253. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17255. return ctx->kv[key_id].key.data;
  17256. }
  17257. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17258. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17259. return ctx->kv[key_id].type;
  17260. }
  17261. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17262. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17263. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17264. return ctx->kv[key_id].value.arr.type;
  17265. }
  17266. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17267. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17268. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17269. return ctx->kv[key_id].value.arr.data;
  17270. }
  17271. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17272. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17273. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17274. struct gguf_kv * kv = &ctx->kv[key_id];
  17275. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17276. return str->data;
  17277. }
  17278. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17280. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17281. return ctx->kv[key_id].value.arr.n;
  17282. }
  17283. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17284. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17285. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17286. return ctx->kv[key_id].value.uint8;
  17287. }
  17288. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17289. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17290. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17291. return ctx->kv[key_id].value.int8;
  17292. }
  17293. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17294. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17295. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17296. return ctx->kv[key_id].value.uint16;
  17297. }
  17298. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17299. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17300. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17301. return ctx->kv[key_id].value.int16;
  17302. }
  17303. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17304. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17305. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17306. return ctx->kv[key_id].value.uint32;
  17307. }
  17308. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17309. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17310. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17311. return ctx->kv[key_id].value.int32;
  17312. }
  17313. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17314. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17315. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17316. return ctx->kv[key_id].value.float32;
  17317. }
  17318. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17319. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17320. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17321. return ctx->kv[key_id].value.uint64;
  17322. }
  17323. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17324. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17325. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17326. return ctx->kv[key_id].value.int64;
  17327. }
  17328. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17329. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17330. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17331. return ctx->kv[key_id].value.float64;
  17332. }
  17333. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17334. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17335. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17336. return ctx->kv[key_id].value.bool_;
  17337. }
  17338. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17339. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17340. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17341. return ctx->kv[key_id].value.str.data;
  17342. }
  17343. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17344. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17345. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17346. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17347. return &ctx->kv[key_id].value;
  17348. }
  17349. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17350. return ctx->header.n_tensors;
  17351. }
  17352. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17353. // return -1 if tensor not found
  17354. int tensorfound = -1;
  17355. const int n_tensors = gguf_get_n_tensors(ctx);
  17356. for (int i = 0; i < n_tensors; ++i) {
  17357. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17358. tensorfound = i;
  17359. break;
  17360. }
  17361. }
  17362. return tensorfound;
  17363. }
  17364. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17365. return ctx->infos[i].offset;
  17366. }
  17367. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17368. return ctx->infos[i].name.data;
  17369. }
  17370. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17371. return ctx->infos[i].type;
  17372. }
  17373. // returns the index
  17374. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17375. const int idx = gguf_find_key(ctx, key);
  17376. if (idx >= 0) {
  17377. return idx;
  17378. }
  17379. const int n_kv = gguf_get_n_kv(ctx);
  17380. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17381. ctx->kv[n_kv].key.n = strlen(key);
  17382. ctx->kv[n_kv].key.data = strdup(key);
  17383. ctx->header.n_kv++;
  17384. return n_kv;
  17385. }
  17386. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17387. const int idx = gguf_find_key(ctx, key);
  17388. if (idx >= 0) {
  17389. const int n_kv = gguf_get_n_kv(ctx);
  17390. gguf_free_kv(&ctx->kv[idx]);
  17391. for (int i = idx; i < n_kv-1; ++i) {
  17392. ctx->kv[i] = ctx->kv[i+1];
  17393. }
  17394. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17395. ctx->header.n_kv--;
  17396. }
  17397. }
  17398. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17399. const int idx = gguf_get_or_add_key(ctx, key);
  17400. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17401. ctx->kv[idx].value.uint8 = val;
  17402. }
  17403. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17404. const int idx = gguf_get_or_add_key(ctx, key);
  17405. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17406. ctx->kv[idx].value.int8 = val;
  17407. }
  17408. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17409. const int idx = gguf_get_or_add_key(ctx, key);
  17410. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17411. ctx->kv[idx].value.uint16 = val;
  17412. }
  17413. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17414. const int idx = gguf_get_or_add_key(ctx, key);
  17415. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17416. ctx->kv[idx].value.int16 = val;
  17417. }
  17418. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17419. const int idx = gguf_get_or_add_key(ctx, key);
  17420. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17421. ctx->kv[idx].value.uint32 = val;
  17422. }
  17423. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17424. const int idx = gguf_get_or_add_key(ctx, key);
  17425. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17426. ctx->kv[idx].value.int32 = val;
  17427. }
  17428. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17429. const int idx = gguf_get_or_add_key(ctx, key);
  17430. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17431. ctx->kv[idx].value.float32 = val;
  17432. }
  17433. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17434. const int idx = gguf_get_or_add_key(ctx, key);
  17435. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17436. ctx->kv[idx].value.uint64 = val;
  17437. }
  17438. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17439. const int idx = gguf_get_or_add_key(ctx, key);
  17440. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17441. ctx->kv[idx].value.int64 = val;
  17442. }
  17443. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17444. const int idx = gguf_get_or_add_key(ctx, key);
  17445. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17446. ctx->kv[idx].value.float64 = val;
  17447. }
  17448. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17449. const int idx = gguf_get_or_add_key(ctx, key);
  17450. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17451. ctx->kv[idx].value.bool_ = val;
  17452. }
  17453. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17454. const int idx = gguf_get_or_add_key(ctx, key);
  17455. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17456. ctx->kv[idx].value.str.n = strlen(val);
  17457. ctx->kv[idx].value.str.data = strdup(val);
  17458. }
  17459. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17460. const int idx = gguf_get_or_add_key(ctx, key);
  17461. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17462. ctx->kv[idx].value.arr.type = type;
  17463. ctx->kv[idx].value.arr.n = n;
  17464. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17465. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17466. }
  17467. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17468. const int idx = gguf_get_or_add_key(ctx, key);
  17469. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17470. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17471. ctx->kv[idx].value.arr.n = n;
  17472. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17473. for (int i = 0; i < n; i++) {
  17474. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17475. str->n = strlen(data[i]);
  17476. str->data = strdup(data[i]);
  17477. }
  17478. }
  17479. // set or add KV pairs from another context
  17480. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17481. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17482. switch (src->kv[i].type) {
  17483. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17484. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17485. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17486. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17487. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17488. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17489. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17490. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17491. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17492. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17493. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17494. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17495. case GGUF_TYPE_ARRAY:
  17496. {
  17497. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17498. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17499. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17500. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17501. }
  17502. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17503. GGML_FREE((void *)data);
  17504. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17505. GGML_ASSERT(false && "nested arrays not supported");
  17506. } else {
  17507. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17508. }
  17509. } break;
  17510. default: GGML_ASSERT(false && "invalid type"); break;
  17511. }
  17512. }
  17513. }
  17514. void gguf_add_tensor(
  17515. struct gguf_context * ctx,
  17516. const struct ggml_tensor * tensor) {
  17517. const int idx = ctx->header.n_tensors;
  17518. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17519. ctx->infos[idx].name.n = strlen(tensor->name);
  17520. ctx->infos[idx].name.data = strdup(tensor->name);
  17521. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17522. ctx->infos[idx].ne[i] = 1;
  17523. }
  17524. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17525. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17526. ctx->infos[idx].ne[i] = tensor->ne[i];
  17527. }
  17528. ctx->infos[idx].type = tensor->type;
  17529. ctx->infos[idx].offset = 0;
  17530. ctx->infos[idx].data = tensor->data;
  17531. ctx->infos[idx].size = ggml_nbytes(tensor);
  17532. if (ctx->header.n_tensors > 0) {
  17533. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17534. }
  17535. ctx->header.n_tensors++;
  17536. }
  17537. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17538. const int idx = gguf_find_tensor(ctx, name);
  17539. if (idx < 0) {
  17540. GGML_ASSERT(false && "tensor not found");
  17541. }
  17542. ctx->infos[idx].type = type;
  17543. }
  17544. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17545. const int idx = gguf_find_tensor(ctx, name);
  17546. if (idx < 0) {
  17547. GGML_ASSERT(false && "tensor not found");
  17548. }
  17549. ctx->infos[idx].data = data;
  17550. ctx->infos[idx].size = size;
  17551. // update offsets
  17552. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17553. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17554. }
  17555. }
  17556. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17557. // fwrite(&val->n, sizeof(val->n), 1, file);
  17558. // fwrite(val->data, sizeof(char), val->n, file);
  17559. //}
  17560. //
  17561. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17562. // fwrite(val, sizeof(char), size, file);
  17563. //}
  17564. struct gguf_buf {
  17565. void * data;
  17566. size_t size;
  17567. size_t offset;
  17568. };
  17569. static struct gguf_buf gguf_buf_init(size_t size) {
  17570. struct gguf_buf buf = {
  17571. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17572. /*buf.size =*/ size,
  17573. /*buf.offset =*/ 0,
  17574. };
  17575. return buf;
  17576. }
  17577. static void gguf_buf_free(struct gguf_buf buf) {
  17578. if (buf.data) {
  17579. GGML_FREE(buf.data);
  17580. }
  17581. }
  17582. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17583. if (buf->offset + size > buf->size) {
  17584. buf->size = 1.5*(buf->offset + size);
  17585. if (buf->data) {
  17586. buf->data = realloc(buf->data, buf->size);
  17587. }
  17588. }
  17589. }
  17590. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17591. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17592. if (buf->data) {
  17593. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17594. }
  17595. buf->offset += sizeof(val->n);
  17596. if (buf->data) {
  17597. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17598. }
  17599. buf->offset += val->n;
  17600. }
  17601. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17602. gguf_buf_grow(buf, el_size);
  17603. if (buf->data) {
  17604. memcpy((char *) buf->data + buf->offset, val, el_size);
  17605. }
  17606. buf->offset += el_size;
  17607. }
  17608. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17609. // write header
  17610. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17611. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17612. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17613. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17614. // write key-value pairs
  17615. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17616. struct gguf_kv * kv = &ctx->kv[i];
  17617. gguf_bwrite_str(buf, &kv->key);
  17618. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17619. switch (kv->type) {
  17620. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17621. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17622. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17623. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17624. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17625. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17626. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17627. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17628. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17629. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17630. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17631. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17632. case GGUF_TYPE_ARRAY:
  17633. {
  17634. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17635. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17636. switch (kv->value.arr.type) {
  17637. case GGUF_TYPE_UINT8:
  17638. case GGUF_TYPE_INT8:
  17639. case GGUF_TYPE_UINT16:
  17640. case GGUF_TYPE_INT16:
  17641. case GGUF_TYPE_UINT32:
  17642. case GGUF_TYPE_INT32:
  17643. case GGUF_TYPE_FLOAT32:
  17644. case GGUF_TYPE_UINT64:
  17645. case GGUF_TYPE_INT64:
  17646. case GGUF_TYPE_FLOAT64:
  17647. case GGUF_TYPE_BOOL:
  17648. {
  17649. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17650. } break;
  17651. case GGUF_TYPE_STRING:
  17652. {
  17653. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17654. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17655. }
  17656. } break;
  17657. case GGUF_TYPE_ARRAY:
  17658. default: GGML_ASSERT(false && "invalid type"); break;
  17659. }
  17660. } break;
  17661. default: GGML_ASSERT(false && "invalid type");
  17662. }
  17663. }
  17664. // write tensor infos
  17665. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17666. struct gguf_tensor_info * info = &ctx->infos[i];
  17667. gguf_bwrite_str(buf, &info->name);
  17668. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17669. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17670. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17671. }
  17672. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17673. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17674. }
  17675. // we require the data section to be aligned, so take into account any padding
  17676. {
  17677. const size_t offset = buf->offset;
  17678. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17679. if (offset_pad != offset) {
  17680. uint8_t pad = 0;
  17681. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17682. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17683. }
  17684. }
  17685. }
  17686. if (only_meta) {
  17687. return;
  17688. }
  17689. size_t offset = 0;
  17690. // write tensor data
  17691. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17692. struct gguf_tensor_info * info = &ctx->infos[i];
  17693. const size_t size = info->size;
  17694. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17695. gguf_bwrite_el(buf, info->data, size);
  17696. if (size_pad != size) {
  17697. uint8_t pad = 0;
  17698. for (size_t j = 0; j < size_pad - size; ++j) {
  17699. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17700. }
  17701. }
  17702. GGML_ASSERT(offset == info->offset);
  17703. offset += size_pad;
  17704. }
  17705. }
  17706. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17707. FILE * file = ggml_fopen(fname, "wb");
  17708. if (!file) {
  17709. GGML_ASSERT(false && "failed to open file for writing");
  17710. }
  17711. struct gguf_buf buf = gguf_buf_init(16*1024);
  17712. gguf_write_to_buf(ctx, &buf, only_meta);
  17713. fwrite(buf.data, 1, buf.offset, file);
  17714. gguf_buf_free(buf);
  17715. fclose(file);
  17716. }
  17717. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17718. // no allocs - only compute size
  17719. struct gguf_buf buf = gguf_buf_init(0);
  17720. gguf_write_to_buf(ctx, &buf, true);
  17721. return buf.offset;
  17722. }
  17723. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17724. struct gguf_buf buf = gguf_buf_init(16*1024);
  17725. gguf_write_to_buf(ctx, &buf, true);
  17726. memcpy(data, buf.data, buf.offset);
  17727. gguf_buf_free(buf);
  17728. }
  17729. ////////////////////////////////////////////////////////////////////////////////
  17730. int ggml_cpu_has_avx(void) {
  17731. #if defined(__AVX__)
  17732. return 1;
  17733. #else
  17734. return 0;
  17735. #endif
  17736. }
  17737. int ggml_cpu_has_avx_vnni(void) {
  17738. #if defined(__AVXVNNI__)
  17739. return 1;
  17740. #else
  17741. return 0;
  17742. #endif
  17743. }
  17744. int ggml_cpu_has_avx2(void) {
  17745. #if defined(__AVX2__)
  17746. return 1;
  17747. #else
  17748. return 0;
  17749. #endif
  17750. }
  17751. int ggml_cpu_has_avx512(void) {
  17752. #if defined(__AVX512F__)
  17753. return 1;
  17754. #else
  17755. return 0;
  17756. #endif
  17757. }
  17758. int ggml_cpu_has_avx512_vbmi(void) {
  17759. #if defined(__AVX512VBMI__)
  17760. return 1;
  17761. #else
  17762. return 0;
  17763. #endif
  17764. }
  17765. int ggml_cpu_has_avx512_vnni(void) {
  17766. #if defined(__AVX512VNNI__)
  17767. return 1;
  17768. #else
  17769. return 0;
  17770. #endif
  17771. }
  17772. int ggml_cpu_has_fma(void) {
  17773. #if defined(__FMA__)
  17774. return 1;
  17775. #else
  17776. return 0;
  17777. #endif
  17778. }
  17779. int ggml_cpu_has_neon(void) {
  17780. #if defined(__ARM_NEON)
  17781. return 1;
  17782. #else
  17783. return 0;
  17784. #endif
  17785. }
  17786. int ggml_cpu_has_arm_fma(void) {
  17787. #if defined(__ARM_FEATURE_FMA)
  17788. return 1;
  17789. #else
  17790. return 0;
  17791. #endif
  17792. }
  17793. int ggml_cpu_has_metal(void) {
  17794. #if defined(GGML_USE_METAL)
  17795. return 1;
  17796. #else
  17797. return 0;
  17798. #endif
  17799. }
  17800. int ggml_cpu_has_f16c(void) {
  17801. #if defined(__F16C__)
  17802. return 1;
  17803. #else
  17804. return 0;
  17805. #endif
  17806. }
  17807. int ggml_cpu_has_fp16_va(void) {
  17808. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17809. return 1;
  17810. #else
  17811. return 0;
  17812. #endif
  17813. }
  17814. int ggml_cpu_has_wasm_simd(void) {
  17815. #if defined(__wasm_simd128__)
  17816. return 1;
  17817. #else
  17818. return 0;
  17819. #endif
  17820. }
  17821. int ggml_cpu_has_blas(void) {
  17822. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17823. return 1;
  17824. #else
  17825. return 0;
  17826. #endif
  17827. }
  17828. int ggml_cpu_has_cuda(void) {
  17829. #if defined(GGML_USE_CUDA)
  17830. return 1;
  17831. #else
  17832. return 0;
  17833. #endif
  17834. }
  17835. int ggml_cpu_has_clblast(void) {
  17836. #if defined(GGML_USE_CLBLAST)
  17837. return 1;
  17838. #else
  17839. return 0;
  17840. #endif
  17841. }
  17842. int ggml_cpu_has_vulkan(void) {
  17843. #if defined(GGML_USE_VULKAN)
  17844. return 1;
  17845. #else
  17846. return 0;
  17847. #endif
  17848. }
  17849. int ggml_cpu_has_kompute(void) {
  17850. #if defined(GGML_USE_KOMPUTE)
  17851. return 1;
  17852. #else
  17853. return 0;
  17854. #endif
  17855. }
  17856. int ggml_cpu_has_sycl(void) {
  17857. #if defined(GGML_USE_SYCL)
  17858. return 1;
  17859. #else
  17860. return 0;
  17861. #endif
  17862. }
  17863. int ggml_cpu_has_gpublas(void) {
  17864. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17865. ggml_cpu_has_sycl();
  17866. }
  17867. int ggml_cpu_has_sse3(void) {
  17868. #if defined(__SSE3__)
  17869. return 1;
  17870. #else
  17871. return 0;
  17872. #endif
  17873. }
  17874. int ggml_cpu_has_ssse3(void) {
  17875. #if defined(__SSSE3__)
  17876. return 1;
  17877. #else
  17878. return 0;
  17879. #endif
  17880. }
  17881. int ggml_cpu_has_vsx(void) {
  17882. #if defined(__POWER9_VECTOR__)
  17883. return 1;
  17884. #else
  17885. return 0;
  17886. #endif
  17887. }
  17888. int ggml_cpu_has_matmul_int8(void) {
  17889. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17890. return 1;
  17891. #else
  17892. return 0;
  17893. #endif
  17894. }
  17895. ////////////////////////////////////////////////////////////////////////////////