llama.cpp 700 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 60
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_QWEN2MOE,
  188. LLM_ARCH_PHI2,
  189. LLM_ARCH_PHI3,
  190. LLM_ARCH_PLAMO,
  191. LLM_ARCH_CODESHELL,
  192. LLM_ARCH_ORION,
  193. LLM_ARCH_INTERNLM2,
  194. LLM_ARCH_MINICPM,
  195. LLM_ARCH_GEMMA,
  196. LLM_ARCH_STARCODER2,
  197. LLM_ARCH_MAMBA,
  198. LLM_ARCH_XVERSE,
  199. LLM_ARCH_COMMAND_R,
  200. LLM_ARCH_DBRX,
  201. LLM_ARCH_OLMO,
  202. LLM_ARCH_UNKNOWN,
  203. };
  204. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  205. { LLM_ARCH_LLAMA, "llama" },
  206. { LLM_ARCH_FALCON, "falcon" },
  207. { LLM_ARCH_GROK, "grok" },
  208. { LLM_ARCH_GPT2, "gpt2" },
  209. { LLM_ARCH_GPTJ, "gptj" },
  210. { LLM_ARCH_GPTNEOX, "gptneox" },
  211. { LLM_ARCH_MPT, "mpt" },
  212. { LLM_ARCH_BAICHUAN, "baichuan" },
  213. { LLM_ARCH_STARCODER, "starcoder" },
  214. { LLM_ARCH_PERSIMMON, "persimmon" },
  215. { LLM_ARCH_REFACT, "refact" },
  216. { LLM_ARCH_BERT, "bert" },
  217. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  218. { LLM_ARCH_BLOOM, "bloom" },
  219. { LLM_ARCH_STABLELM, "stablelm" },
  220. { LLM_ARCH_QWEN, "qwen" },
  221. { LLM_ARCH_QWEN2, "qwen2" },
  222. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  223. { LLM_ARCH_PHI2, "phi2" },
  224. { LLM_ARCH_PHI3, "phi3" },
  225. { LLM_ARCH_PLAMO, "plamo" },
  226. { LLM_ARCH_CODESHELL, "codeshell" },
  227. { LLM_ARCH_ORION, "orion" },
  228. { LLM_ARCH_INTERNLM2, "internlm2" },
  229. { LLM_ARCH_MINICPM, "minicpm" },
  230. { LLM_ARCH_GEMMA, "gemma" },
  231. { LLM_ARCH_STARCODER2, "starcoder2" },
  232. { LLM_ARCH_MAMBA, "mamba" },
  233. { LLM_ARCH_XVERSE, "xverse" },
  234. { LLM_ARCH_COMMAND_R, "command-r" },
  235. { LLM_ARCH_DBRX, "dbrx" },
  236. { LLM_ARCH_OLMO, "olmo" },
  237. { LLM_ARCH_UNKNOWN, "(unknown)" },
  238. };
  239. enum llm_kv {
  240. LLM_KV_GENERAL_ARCHITECTURE,
  241. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  242. LLM_KV_GENERAL_ALIGNMENT,
  243. LLM_KV_GENERAL_NAME,
  244. LLM_KV_GENERAL_AUTHOR,
  245. LLM_KV_GENERAL_VERSION,
  246. LLM_KV_GENERAL_URL,
  247. LLM_KV_GENERAL_DESCRIPTION,
  248. LLM_KV_GENERAL_LICENSE,
  249. LLM_KV_GENERAL_SOURCE_URL,
  250. LLM_KV_GENERAL_SOURCE_HF_REPO,
  251. LLM_KV_VOCAB_SIZE,
  252. LLM_KV_CONTEXT_LENGTH,
  253. LLM_KV_EMBEDDING_LENGTH,
  254. LLM_KV_BLOCK_COUNT,
  255. LLM_KV_FEED_FORWARD_LENGTH,
  256. LLM_KV_USE_PARALLEL_RESIDUAL,
  257. LLM_KV_TENSOR_DATA_LAYOUT,
  258. LLM_KV_EXPERT_COUNT,
  259. LLM_KV_EXPERT_USED_COUNT,
  260. LLM_KV_POOLING_TYPE,
  261. LLM_KV_LOGIT_SCALE,
  262. LLM_KV_ATTENTION_HEAD_COUNT,
  263. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  264. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  265. LLM_KV_ATTENTION_CLAMP_KQV,
  266. LLM_KV_ATTENTION_KEY_LENGTH,
  267. LLM_KV_ATTENTION_VALUE_LENGTH,
  268. LLM_KV_ATTENTION_LAYERNORM_EPS,
  269. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  270. LLM_KV_ATTENTION_CAUSAL,
  271. LLM_KV_ROPE_DIMENSION_COUNT,
  272. LLM_KV_ROPE_FREQ_BASE,
  273. LLM_KV_ROPE_SCALE_LINEAR,
  274. LLM_KV_ROPE_SCALING_TYPE,
  275. LLM_KV_ROPE_SCALING_FACTOR,
  276. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  277. LLM_KV_ROPE_SCALING_FINETUNED,
  278. LLM_KV_SPLIT_NO,
  279. LLM_KV_SPLIT_COUNT,
  280. LLM_KV_SPLIT_TENSORS_COUNT,
  281. LLM_KV_SSM_INNER_SIZE,
  282. LLM_KV_SSM_CONV_KERNEL,
  283. LLM_KV_SSM_STATE_SIZE,
  284. LLM_KV_SSM_TIME_STEP_RANK,
  285. LLM_KV_TOKENIZER_MODEL,
  286. LLM_KV_TOKENIZER_LIST,
  287. LLM_KV_TOKENIZER_TOKEN_TYPE,
  288. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  289. LLM_KV_TOKENIZER_SCORES,
  290. LLM_KV_TOKENIZER_MERGES,
  291. LLM_KV_TOKENIZER_BOS_ID,
  292. LLM_KV_TOKENIZER_EOS_ID,
  293. LLM_KV_TOKENIZER_UNK_ID,
  294. LLM_KV_TOKENIZER_SEP_ID,
  295. LLM_KV_TOKENIZER_PAD_ID,
  296. LLM_KV_TOKENIZER_CLS_ID,
  297. LLM_KV_TOKENIZER_MASK_ID,
  298. LLM_KV_TOKENIZER_ADD_BOS,
  299. LLM_KV_TOKENIZER_ADD_EOS,
  300. LLM_KV_TOKENIZER_ADD_PREFIX,
  301. LLM_KV_TOKENIZER_HF_JSON,
  302. LLM_KV_TOKENIZER_RWKV,
  303. LLM_KV_TOKENIZER_PREFIX_ID,
  304. LLM_KV_TOKENIZER_SUFFIX_ID,
  305. LLM_KV_TOKENIZER_MIDDLE_ID,
  306. LLM_KV_TOKENIZER_EOT_ID,
  307. };
  308. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  309. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  310. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  311. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  312. { LLM_KV_GENERAL_NAME, "general.name" },
  313. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  314. { LLM_KV_GENERAL_VERSION, "general.version" },
  315. { LLM_KV_GENERAL_URL, "general.url" },
  316. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  317. { LLM_KV_GENERAL_LICENSE, "general.license" },
  318. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  319. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  320. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  321. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  322. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  323. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  324. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  325. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  326. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  327. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  328. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  329. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  330. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  331. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  332. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  333. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  334. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  335. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  336. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  337. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  338. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  339. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  340. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  341. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  342. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  343. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  344. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  345. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  346. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  347. { LLM_KV_SPLIT_NO, "split.no" },
  348. { LLM_KV_SPLIT_COUNT, "split.count" },
  349. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  350. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  351. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  352. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  353. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  354. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  355. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  356. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  357. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  358. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  359. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  360. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  361. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  362. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  363. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  364. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  365. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  366. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  367. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  368. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  369. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  370. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  371. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  372. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  373. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  374. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  375. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  376. };
  377. struct LLM_KV {
  378. LLM_KV(llm_arch arch) : arch(arch) {}
  379. llm_arch arch;
  380. std::string operator()(llm_kv kv) const {
  381. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  382. }
  383. };
  384. enum llm_tensor {
  385. LLM_TENSOR_TOKEN_EMBD,
  386. LLM_TENSOR_TOKEN_EMBD_NORM,
  387. LLM_TENSOR_TOKEN_TYPES,
  388. LLM_TENSOR_POS_EMBD,
  389. LLM_TENSOR_OUTPUT,
  390. LLM_TENSOR_OUTPUT_NORM,
  391. LLM_TENSOR_ROPE_FREQS,
  392. LLM_TENSOR_ATTN_Q,
  393. LLM_TENSOR_ATTN_K,
  394. LLM_TENSOR_ATTN_V,
  395. LLM_TENSOR_ATTN_QKV,
  396. LLM_TENSOR_ATTN_OUT,
  397. LLM_TENSOR_ATTN_NORM,
  398. LLM_TENSOR_ATTN_NORM_2,
  399. LLM_TENSOR_ATTN_OUT_NORM,
  400. LLM_TENSOR_ATTN_ROT_EMBD,
  401. LLM_TENSOR_FFN_GATE_INP,
  402. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  403. LLM_TENSOR_FFN_NORM,
  404. LLM_TENSOR_FFN_GATE,
  405. LLM_TENSOR_FFN_DOWN,
  406. LLM_TENSOR_FFN_UP,
  407. LLM_TENSOR_FFN_ACT,
  408. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  409. LLM_TENSOR_FFN_GATE_EXP,
  410. LLM_TENSOR_FFN_UP_EXP,
  411. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  412. LLM_TENSOR_FFN_GATE_EXPS,
  413. LLM_TENSOR_FFN_UP_EXPS,
  414. LLM_TENSOR_FFN_DOWN_SHEXP,
  415. LLM_TENSOR_FFN_GATE_SHEXP,
  416. LLM_TENSOR_FFN_UP_SHEXP,
  417. LLM_TENSOR_ATTN_Q_NORM,
  418. LLM_TENSOR_ATTN_K_NORM,
  419. LLM_TENSOR_LAYER_OUT_NORM,
  420. LLM_TENSOR_SSM_IN,
  421. LLM_TENSOR_SSM_CONV1D,
  422. LLM_TENSOR_SSM_X,
  423. LLM_TENSOR_SSM_DT,
  424. LLM_TENSOR_SSM_A,
  425. LLM_TENSOR_SSM_D,
  426. LLM_TENSOR_SSM_OUT,
  427. };
  428. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  429. {
  430. LLM_ARCH_LLAMA,
  431. {
  432. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  433. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  434. { LLM_TENSOR_OUTPUT, "output" },
  435. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  436. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  437. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  438. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  439. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  440. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  441. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  442. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  443. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  444. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  445. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  446. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  447. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  448. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  449. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  450. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  451. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  452. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  453. },
  454. },
  455. {
  456. LLM_ARCH_BAICHUAN,
  457. {
  458. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  459. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  460. { LLM_TENSOR_OUTPUT, "output" },
  461. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  462. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  463. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  464. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  465. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  466. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  467. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  468. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  469. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  470. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  471. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  472. },
  473. },
  474. {
  475. LLM_ARCH_FALCON,
  476. {
  477. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  478. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  479. { LLM_TENSOR_OUTPUT, "output" },
  480. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  481. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  482. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  483. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  484. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  485. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  486. },
  487. },
  488. {
  489. LLM_ARCH_GROK,
  490. {
  491. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  492. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  493. { LLM_TENSOR_OUTPUT, "output" },
  494. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  495. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  496. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  497. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  498. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  499. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  500. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  501. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  502. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  503. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  504. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  505. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  506. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  507. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  508. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  509. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  510. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  511. },
  512. },
  513. {
  514. LLM_ARCH_GPT2,
  515. {
  516. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  517. { LLM_TENSOR_POS_EMBD, "position_embd" },
  518. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  519. { LLM_TENSOR_OUTPUT, "output" },
  520. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  521. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  522. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  523. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  524. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  525. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  526. },
  527. },
  528. {
  529. LLM_ARCH_GPTJ,
  530. {
  531. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  532. },
  533. },
  534. {
  535. LLM_ARCH_GPTNEOX,
  536. {
  537. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  538. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  539. { LLM_TENSOR_OUTPUT, "output" },
  540. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  541. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  542. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  543. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  544. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  545. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  546. },
  547. },
  548. {
  549. LLM_ARCH_PERSIMMON,
  550. {
  551. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  552. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  553. { LLM_TENSOR_OUTPUT, "output"},
  554. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  555. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  556. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  557. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  558. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  559. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  560. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  561. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  562. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  563. },
  564. },
  565. {
  566. LLM_ARCH_MPT,
  567. {
  568. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  569. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  570. { LLM_TENSOR_OUTPUT, "output"},
  571. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  572. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  573. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  574. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  575. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  576. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  577. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  578. { LLM_TENSOR_POS_EMBD, "position_embd" },
  579. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  580. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  581. },
  582. },
  583. {
  584. LLM_ARCH_STARCODER,
  585. {
  586. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  587. { LLM_TENSOR_POS_EMBD, "position_embd" },
  588. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  589. { LLM_TENSOR_OUTPUT, "output" },
  590. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  591. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  592. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  593. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  594. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  595. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  596. },
  597. },
  598. {
  599. LLM_ARCH_REFACT,
  600. {
  601. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  602. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  603. { LLM_TENSOR_OUTPUT, "output" },
  604. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  605. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  606. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  607. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  608. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  609. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  610. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  611. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  612. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  613. },
  614. },
  615. {
  616. LLM_ARCH_BERT,
  617. {
  618. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  619. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  620. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  621. { LLM_TENSOR_POS_EMBD, "position_embd" },
  622. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  623. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  624. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  625. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  626. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  627. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. },
  631. },
  632. {
  633. LLM_ARCH_NOMIC_BERT,
  634. {
  635. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  636. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  637. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  638. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  639. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  640. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  641. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  642. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  643. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  644. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  645. },
  646. },
  647. {
  648. LLM_ARCH_BLOOM,
  649. {
  650. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  651. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  652. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  653. { LLM_TENSOR_OUTPUT, "output" },
  654. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  655. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  656. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  657. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  658. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  659. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  660. },
  661. },
  662. {
  663. LLM_ARCH_STABLELM,
  664. {
  665. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  666. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  667. { LLM_TENSOR_OUTPUT, "output" },
  668. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  669. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  670. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  671. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  672. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  675. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  676. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  679. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  680. },
  681. },
  682. {
  683. LLM_ARCH_QWEN,
  684. {
  685. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  686. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  687. { LLM_TENSOR_OUTPUT, "output" },
  688. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  689. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  690. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  691. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  692. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  693. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  694. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  695. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  696. },
  697. },
  698. {
  699. LLM_ARCH_QWEN2,
  700. {
  701. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  702. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  703. { LLM_TENSOR_OUTPUT, "output" },
  704. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  705. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  706. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  707. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  708. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  709. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  710. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  711. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  712. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  713. },
  714. },
  715. {
  716. LLM_ARCH_QWEN2MOE,
  717. {
  718. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  719. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  720. { LLM_TENSOR_OUTPUT, "output" },
  721. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  722. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  723. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  724. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  725. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  726. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  727. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  728. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  729. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  730. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  731. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  732. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  733. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  734. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  735. },
  736. },
  737. {
  738. LLM_ARCH_PHI2,
  739. {
  740. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  741. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  742. { LLM_TENSOR_OUTPUT, "output" },
  743. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  744. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  745. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  746. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  747. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  748. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  749. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  750. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  751. },
  752. },
  753. {
  754. LLM_ARCH_PHI3,
  755. {
  756. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  757. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  758. { LLM_TENSOR_OUTPUT, "output" },
  759. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  760. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  761. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  762. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  763. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  764. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  765. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  766. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  767. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  768. },
  769. },
  770. {
  771. LLM_ARCH_PLAMO,
  772. {
  773. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  774. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  775. { LLM_TENSOR_OUTPUT, "output" },
  776. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  777. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  778. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  779. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  780. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  783. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  784. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  785. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  786. },
  787. },
  788. {
  789. LLM_ARCH_CODESHELL,
  790. {
  791. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  792. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  793. { LLM_TENSOR_OUTPUT, "output" },
  794. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  795. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  796. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  797. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  798. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  799. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  800. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  801. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  802. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  803. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  804. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  805. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  806. },
  807. },
  808. {
  809. LLM_ARCH_ORION,
  810. {
  811. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  812. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  813. { LLM_TENSOR_OUTPUT, "output" },
  814. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  815. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  816. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  817. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  818. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  819. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  820. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  821. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  822. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  823. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  824. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  825. },
  826. },
  827. {
  828. LLM_ARCH_INTERNLM2,
  829. {
  830. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  831. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  832. { LLM_TENSOR_OUTPUT, "output" },
  833. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  834. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  835. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  836. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  837. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  838. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  839. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  840. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  841. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  842. },
  843. },
  844. {
  845. LLM_ARCH_MINICPM,
  846. {
  847. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  848. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  849. { LLM_TENSOR_OUTPUT, "output" },
  850. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  851. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  852. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  853. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  854. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  855. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  856. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  857. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  858. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  859. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  860. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  861. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  862. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  863. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  864. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  865. },
  866. },
  867. {
  868. LLM_ARCH_GEMMA,
  869. {
  870. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  871. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  872. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  873. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  874. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  875. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  876. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  877. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  878. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  879. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  880. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  881. },
  882. },
  883. {
  884. LLM_ARCH_STARCODER2,
  885. {
  886. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  887. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  888. { LLM_TENSOR_OUTPUT, "output" },
  889. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  890. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  891. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  892. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  893. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  894. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  895. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  896. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  897. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  898. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  899. },
  900. },
  901. {
  902. LLM_ARCH_MAMBA,
  903. {
  904. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  905. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  906. { LLM_TENSOR_OUTPUT, "output" },
  907. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  908. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  909. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  910. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  911. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  912. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  913. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  914. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  915. },
  916. },
  917. {
  918. LLM_ARCH_XVERSE,
  919. {
  920. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  921. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  922. { LLM_TENSOR_OUTPUT, "output" },
  923. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  924. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  925. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  926. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  927. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  928. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  929. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  930. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  931. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  932. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  933. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  934. },
  935. },
  936. {
  937. LLM_ARCH_COMMAND_R,
  938. {
  939. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  940. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  941. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  942. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  943. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  944. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  945. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  946. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  947. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  948. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  949. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  950. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  951. },
  952. },
  953. {
  954. LLM_ARCH_DBRX,
  955. {
  956. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  957. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  958. { LLM_TENSOR_OUTPUT, "output" },
  959. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  960. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  961. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  962. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  963. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  964. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  965. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  966. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  967. },
  968. },
  969. {
  970. LLM_ARCH_OLMO,
  971. {
  972. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  973. { LLM_TENSOR_OUTPUT, "output" },
  974. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  975. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  976. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  977. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  978. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  979. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  980. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  981. },
  982. },
  983. {
  984. LLM_ARCH_UNKNOWN,
  985. {
  986. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  987. },
  988. },
  989. };
  990. static llm_arch llm_arch_from_string(const std::string & name) {
  991. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  992. if (kv.second == name) {
  993. return kv.first;
  994. }
  995. }
  996. return LLM_ARCH_UNKNOWN;
  997. }
  998. // helper to handle gguf constants
  999. // usage:
  1000. //
  1001. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1002. //
  1003. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1004. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1005. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1006. //
  1007. struct LLM_TN {
  1008. LLM_TN(llm_arch arch) : arch(arch) {}
  1009. llm_arch arch;
  1010. std::string operator()(llm_tensor tensor) const {
  1011. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1012. return "__missing__";
  1013. }
  1014. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1015. }
  1016. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1017. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1018. return "__missing__";
  1019. }
  1020. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1021. }
  1022. std::string operator()(llm_tensor tensor, int bid) const {
  1023. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1024. return "__missing__";
  1025. }
  1026. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1027. }
  1028. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1029. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1030. return "__missing__";
  1031. }
  1032. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1033. }
  1034. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1035. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1036. return "__missing__";
  1037. }
  1038. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1039. }
  1040. };
  1041. //
  1042. // gguf helpers
  1043. //
  1044. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1045. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1046. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1047. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1048. };
  1049. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1050. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1051. if (kv.second == name) {
  1052. return (llama_rope_scaling_type) kv.first;
  1053. }
  1054. }
  1055. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1056. }
  1057. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1058. switch (type) {
  1059. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1060. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1061. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1062. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1063. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1064. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1065. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1066. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1067. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1068. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1069. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1070. default: return format("unknown type %d", type);
  1071. }
  1072. }
  1073. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1074. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1075. switch (type) {
  1076. case GGUF_TYPE_STRING:
  1077. return gguf_get_val_str(ctx_gguf, i);
  1078. case GGUF_TYPE_ARRAY:
  1079. {
  1080. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1081. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1082. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1083. std::stringstream ss;
  1084. ss << "[";
  1085. for (int j = 0; j < arr_n; j++) {
  1086. if (arr_type == GGUF_TYPE_STRING) {
  1087. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1088. // escape quotes
  1089. replace_all(val, "\\", "\\\\");
  1090. replace_all(val, "\"", "\\\"");
  1091. ss << '"' << val << '"';
  1092. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1093. ss << "???";
  1094. } else {
  1095. ss << gguf_data_to_str(arr_type, data, j);
  1096. }
  1097. if (j < arr_n - 1) {
  1098. ss << ", ";
  1099. }
  1100. }
  1101. ss << "]";
  1102. return ss.str();
  1103. }
  1104. default:
  1105. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1106. }
  1107. }
  1108. //
  1109. // llama helpers
  1110. //
  1111. #if defined(_WIN32)
  1112. static std::string llama_format_win_err(DWORD err) {
  1113. LPSTR buf;
  1114. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1115. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1116. if (!size) {
  1117. return "FormatMessageA failed";
  1118. }
  1119. std::string ret(buf, size);
  1120. LocalFree(buf);
  1121. return ret;
  1122. }
  1123. #endif
  1124. template <typename T>
  1125. struct no_init {
  1126. T value;
  1127. no_init() { /* do nothing */ }
  1128. };
  1129. struct llama_file {
  1130. // use FILE * so we don't have to re-open the file to mmap
  1131. FILE * fp;
  1132. size_t size;
  1133. llama_file(const char * fname, const char * mode) {
  1134. fp = ggml_fopen(fname, mode);
  1135. if (fp == NULL) {
  1136. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1137. }
  1138. seek(0, SEEK_END);
  1139. size = tell();
  1140. seek(0, SEEK_SET);
  1141. }
  1142. size_t tell() const {
  1143. #ifdef _WIN32
  1144. __int64 ret = _ftelli64(fp);
  1145. #else
  1146. long ret = std::ftell(fp);
  1147. #endif
  1148. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1149. return (size_t) ret;
  1150. }
  1151. void seek(size_t offset, int whence) const {
  1152. #ifdef _WIN32
  1153. int ret = _fseeki64(fp, (__int64) offset, whence);
  1154. #else
  1155. int ret = std::fseek(fp, (long) offset, whence);
  1156. #endif
  1157. GGML_ASSERT(ret == 0); // same
  1158. }
  1159. void read_raw(void * ptr, size_t len) const {
  1160. if (len == 0) {
  1161. return;
  1162. }
  1163. errno = 0;
  1164. std::size_t ret = std::fread(ptr, len, 1, fp);
  1165. if (ferror(fp)) {
  1166. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1167. }
  1168. if (ret != 1) {
  1169. throw std::runtime_error("unexpectedly reached end of file");
  1170. }
  1171. }
  1172. uint32_t read_u32() const {
  1173. uint32_t ret;
  1174. read_raw(&ret, sizeof(ret));
  1175. return ret;
  1176. }
  1177. void write_raw(const void * ptr, size_t len) const {
  1178. if (len == 0) {
  1179. return;
  1180. }
  1181. errno = 0;
  1182. size_t ret = std::fwrite(ptr, len, 1, fp);
  1183. if (ret != 1) {
  1184. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1185. }
  1186. }
  1187. void write_u32(std::uint32_t val) const {
  1188. write_raw(&val, sizeof(val));
  1189. }
  1190. ~llama_file() {
  1191. if (fp) {
  1192. std::fclose(fp);
  1193. }
  1194. }
  1195. };
  1196. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1197. struct llama_mmap {
  1198. void * addr;
  1199. size_t size;
  1200. llama_mmap(const llama_mmap &) = delete;
  1201. #ifdef _POSIX_MAPPED_FILES
  1202. static constexpr bool SUPPORTED = true;
  1203. // list of mapped fragments (first_offset, last_offset)
  1204. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1205. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1206. size = file->size;
  1207. int fd = fileno(file->fp);
  1208. int flags = MAP_SHARED;
  1209. // prefetch/readahead impairs performance on NUMA systems
  1210. if (numa) { prefetch = 0; }
  1211. #ifdef __linux__
  1212. // advise the kernel to read the file sequentially (increases readahead)
  1213. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1214. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1215. strerror(errno));
  1216. }
  1217. if (prefetch) { flags |= MAP_POPULATE; }
  1218. #endif
  1219. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1220. if (addr == MAP_FAILED) { // NOLINT
  1221. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1222. }
  1223. if (prefetch > 0) {
  1224. // advise the kernel to preload the mapped memory
  1225. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1226. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1227. strerror(errno));
  1228. }
  1229. }
  1230. if (numa) {
  1231. // advise the kernel not to use readahead
  1232. // (because the next page might not belong on the same node)
  1233. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1234. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1235. strerror(errno));
  1236. }
  1237. }
  1238. // initialize list of mapped_fragments
  1239. mapped_fragments.emplace_back(0, file->size);
  1240. }
  1241. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1242. // align first to the next page
  1243. size_t offset_in_page = *first & (page_size - 1);
  1244. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1245. *first += offset_to_page;
  1246. // align last to the previous page
  1247. *last = *last & ~(page_size - 1);
  1248. if (*last <= *first) {
  1249. *last = *first;
  1250. }
  1251. }
  1252. // partially unmap the file in the range [first, last)
  1253. void unmap_fragment(size_t first, size_t last) {
  1254. // note: this function must not be called multiple times with overlapping ranges
  1255. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1256. int page_size = sysconf(_SC_PAGESIZE);
  1257. align_range(&first, &last, page_size);
  1258. size_t len = last - first;
  1259. if (len == 0) {
  1260. return;
  1261. }
  1262. GGML_ASSERT(first % page_size == 0);
  1263. GGML_ASSERT(last % page_size == 0);
  1264. GGML_ASSERT(last > first);
  1265. void * next_page_start = (uint8_t *) addr + first;
  1266. // unmap the range
  1267. if (munmap(next_page_start, len)) {
  1268. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1269. }
  1270. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1271. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1272. for (const auto & frag : mapped_fragments) {
  1273. if (frag.first < first && frag.second > last) {
  1274. // the range is in the middle of the fragment, split it
  1275. new_mapped_fragments.emplace_back(frag.first, first);
  1276. new_mapped_fragments.emplace_back(last, frag.second);
  1277. } else if (frag.first < first && frag.second > first) {
  1278. // the range starts in the middle of the fragment
  1279. new_mapped_fragments.emplace_back(frag.first, first);
  1280. } else if (frag.first < last && frag.second > last) {
  1281. // the range ends in the middle of the fragment
  1282. new_mapped_fragments.emplace_back(last, frag.second);
  1283. } else if (frag.first >= first && frag.second <= last) {
  1284. // the range covers the entire fragment
  1285. } else {
  1286. // the range is outside the fragment
  1287. new_mapped_fragments.push_back(frag);
  1288. }
  1289. }
  1290. mapped_fragments = std::move(new_mapped_fragments);
  1291. }
  1292. ~llama_mmap() {
  1293. for (const auto & frag : mapped_fragments) {
  1294. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1295. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1296. }
  1297. }
  1298. }
  1299. #elif defined(_WIN32)
  1300. static constexpr bool SUPPORTED = true;
  1301. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1302. GGML_UNUSED(numa);
  1303. size = file->size;
  1304. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1305. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1306. if (hMapping == NULL) {
  1307. DWORD error = GetLastError();
  1308. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1309. }
  1310. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1311. DWORD error = GetLastError();
  1312. CloseHandle(hMapping);
  1313. if (addr == NULL) {
  1314. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1315. }
  1316. if (prefetch > 0) {
  1317. #if _WIN32_WINNT >= 0x602
  1318. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1319. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1320. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1321. // may fail on pre-Windows 8 systems
  1322. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1323. if (pPrefetchVirtualMemory) {
  1324. // advise the kernel to preload the mapped memory
  1325. WIN32_MEMORY_RANGE_ENTRY range;
  1326. range.VirtualAddress = addr;
  1327. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1328. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1329. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1330. llama_format_win_err(GetLastError()).c_str());
  1331. }
  1332. }
  1333. #else
  1334. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1335. #endif
  1336. }
  1337. }
  1338. void unmap_fragment(size_t first, size_t last) {
  1339. // not supported
  1340. GGML_UNUSED(first);
  1341. GGML_UNUSED(last);
  1342. }
  1343. ~llama_mmap() {
  1344. if (!UnmapViewOfFile(addr)) {
  1345. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1346. llama_format_win_err(GetLastError()).c_str());
  1347. }
  1348. }
  1349. #else
  1350. static constexpr bool SUPPORTED = false;
  1351. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1352. GGML_UNUSED(file);
  1353. GGML_UNUSED(prefetch);
  1354. GGML_UNUSED(numa);
  1355. throw std::runtime_error("mmap not supported");
  1356. }
  1357. void unmap_fragment(size_t first, size_t last) {
  1358. GGML_UNUSED(first);
  1359. GGML_UNUSED(last);
  1360. throw std::runtime_error("mmap not supported");
  1361. }
  1362. #endif
  1363. };
  1364. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1365. // Represents some region of memory being locked using mlock or VirtualLock;
  1366. // will automatically unlock on destruction.
  1367. struct llama_mlock {
  1368. void * addr = NULL;
  1369. size_t size = 0;
  1370. bool failed_already = false;
  1371. llama_mlock() {}
  1372. llama_mlock(const llama_mlock &) = delete;
  1373. ~llama_mlock() {
  1374. if (size) {
  1375. raw_unlock(addr, size);
  1376. }
  1377. }
  1378. void init(void * ptr) {
  1379. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1380. addr = ptr;
  1381. }
  1382. void grow_to(size_t target_size) {
  1383. GGML_ASSERT(addr);
  1384. if (failed_already) {
  1385. return;
  1386. }
  1387. size_t granularity = lock_granularity();
  1388. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1389. if (target_size > size) {
  1390. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1391. size = target_size;
  1392. } else {
  1393. failed_already = true;
  1394. }
  1395. }
  1396. }
  1397. #ifdef _POSIX_MEMLOCK_RANGE
  1398. static constexpr bool SUPPORTED = true;
  1399. static size_t lock_granularity() {
  1400. return (size_t) sysconf(_SC_PAGESIZE);
  1401. }
  1402. #ifdef __APPLE__
  1403. #define MLOCK_SUGGESTION \
  1404. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1405. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1406. #else
  1407. #define MLOCK_SUGGESTION \
  1408. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1409. #endif
  1410. bool raw_lock(const void * addr, size_t size) const {
  1411. if (!mlock(addr, size)) {
  1412. return true;
  1413. }
  1414. char* errmsg = std::strerror(errno);
  1415. bool suggest = (errno == ENOMEM);
  1416. // Check if the resource limit is fine after all
  1417. struct rlimit lock_limit;
  1418. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1419. suggest = false;
  1420. }
  1421. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1422. suggest = false;
  1423. }
  1424. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1425. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1426. return false;
  1427. }
  1428. #undef MLOCK_SUGGESTION
  1429. static void raw_unlock(void * addr, size_t size) {
  1430. if (munlock(addr, size)) {
  1431. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1432. }
  1433. }
  1434. #elif defined(_WIN32)
  1435. static constexpr bool SUPPORTED = true;
  1436. static size_t lock_granularity() {
  1437. SYSTEM_INFO si;
  1438. GetSystemInfo(&si);
  1439. return (size_t) si.dwPageSize;
  1440. }
  1441. bool raw_lock(void * ptr, size_t len) const {
  1442. for (int tries = 1; ; tries++) {
  1443. if (VirtualLock(ptr, len)) {
  1444. return true;
  1445. }
  1446. if (tries == 2) {
  1447. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1448. len, size, llama_format_win_err(GetLastError()).c_str());
  1449. return false;
  1450. }
  1451. // It failed but this was only the first try; increase the working
  1452. // set size and try again.
  1453. SIZE_T min_ws_size, max_ws_size;
  1454. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1455. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1456. llama_format_win_err(GetLastError()).c_str());
  1457. return false;
  1458. }
  1459. // Per MSDN: "The maximum number of pages that a process can lock
  1460. // is equal to the number of pages in its minimum working set minus
  1461. // a small overhead."
  1462. // Hopefully a megabyte is enough overhead:
  1463. size_t increment = len + 1048576;
  1464. // The minimum must be <= the maximum, so we need to increase both:
  1465. min_ws_size += increment;
  1466. max_ws_size += increment;
  1467. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1468. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1469. llama_format_win_err(GetLastError()).c_str());
  1470. return false;
  1471. }
  1472. }
  1473. }
  1474. static void raw_unlock(void * ptr, size_t len) {
  1475. if (!VirtualUnlock(ptr, len)) {
  1476. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1477. llama_format_win_err(GetLastError()).c_str());
  1478. }
  1479. }
  1480. #else
  1481. static constexpr bool SUPPORTED = false;
  1482. static size_t lock_granularity() {
  1483. return (size_t) 65536;
  1484. }
  1485. bool raw_lock(const void * addr, size_t len) const {
  1486. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1487. return false;
  1488. }
  1489. static void raw_unlock(const void * addr, size_t len) {}
  1490. #endif
  1491. };
  1492. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1493. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1494. std::vector<char> result(8, 0);
  1495. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1496. if (n_tokens < 0) {
  1497. result.resize(-n_tokens);
  1498. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1499. GGML_ASSERT(check == -n_tokens);
  1500. }
  1501. else {
  1502. result.resize(n_tokens);
  1503. }
  1504. return std::string(result.data(), result.size());
  1505. }
  1506. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1507. ggml_backend_buffer_type_t buft = nullptr;
  1508. #if defined(GGML_USE_CUDA)
  1509. // host buffers should only be used when data is expected to be copied to/from the GPU
  1510. if (host_buffer) {
  1511. buft = ggml_backend_cuda_host_buffer_type();
  1512. }
  1513. #elif defined(GGML_USE_SYCL)
  1514. if (host_buffer) {
  1515. buft = ggml_backend_sycl_host_buffer_type();
  1516. }
  1517. #elif defined(GGML_USE_CPU_HBM)
  1518. buft = ggml_backend_cpu_hbm_buffer_type();
  1519. #elif defined(GGML_USE_VULKAN)
  1520. if (host_buffer) {
  1521. buft = ggml_backend_vk_host_buffer_type();
  1522. }
  1523. #endif
  1524. if (buft == nullptr) {
  1525. buft = ggml_backend_cpu_buffer_type();
  1526. }
  1527. return buft;
  1528. GGML_UNUSED(host_buffer);
  1529. }
  1530. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1531. ggml_backend_buffer_type_t buft = nullptr;
  1532. #ifdef GGML_USE_METAL
  1533. buft = ggml_backend_metal_buffer_type();
  1534. #elif defined(GGML_USE_CUDA)
  1535. buft = ggml_backend_cuda_buffer_type(gpu);
  1536. #elif defined(GGML_USE_VULKAN)
  1537. buft = ggml_backend_vk_buffer_type(gpu);
  1538. #elif defined(GGML_USE_SYCL)
  1539. buft = ggml_backend_sycl_buffer_type(gpu);
  1540. #elif defined(GGML_USE_CLBLAST)
  1541. buft = ggml_backend_opencl_buffer_type();
  1542. #elif defined(GGML_USE_KOMPUTE)
  1543. buft = ggml_backend_kompute_buffer_type(gpu);
  1544. if (buft == nullptr) {
  1545. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1546. }
  1547. #endif
  1548. if (buft == nullptr) {
  1549. buft = llama_default_buffer_type_cpu(true);
  1550. }
  1551. return buft;
  1552. GGML_UNUSED(gpu);
  1553. }
  1554. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1555. ggml_backend_buffer_type_t buft = nullptr;
  1556. #ifdef GGML_USE_CUDA
  1557. if (ggml_backend_cuda_get_device_count() > 1) {
  1558. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1559. }
  1560. #endif
  1561. #ifdef GGML_USE_SYCL
  1562. if (ggml_backend_sycl_get_device_count() > 1) {
  1563. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1564. }
  1565. #endif
  1566. if (buft == nullptr) {
  1567. buft = llama_default_buffer_type_offload(fallback_gpu);
  1568. }
  1569. return buft;
  1570. GGML_UNUSED(tensor_split);
  1571. }
  1572. static size_t llama_get_device_count() {
  1573. #if defined(GGML_USE_CUDA)
  1574. return ggml_backend_cuda_get_device_count();
  1575. #elif defined(GGML_USE_SYCL)
  1576. return ggml_backend_sycl_get_device_count();
  1577. #elif defined(GGML_USE_VULKAN)
  1578. return ggml_backend_vk_get_device_count();
  1579. #else
  1580. return 1;
  1581. #endif
  1582. }
  1583. static size_t llama_get_device_memory(int device) {
  1584. #if defined(GGML_USE_CUDA)
  1585. size_t total;
  1586. size_t free;
  1587. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1588. return free;
  1589. #elif defined(GGML_USE_SYCL)
  1590. size_t total;
  1591. size_t free;
  1592. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1593. return free;
  1594. #elif defined(GGML_USE_VULKAN)
  1595. size_t total;
  1596. size_t free;
  1597. ggml_backend_vk_get_device_memory(device, &free, &total);
  1598. return free;
  1599. #else
  1600. return 1;
  1601. GGML_UNUSED(device);
  1602. #endif
  1603. }
  1604. //
  1605. // globals
  1606. //
  1607. struct llama_state {
  1608. llama_state() {
  1609. #ifdef GGML_USE_METAL
  1610. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1611. #endif
  1612. }
  1613. // We save the log callback globally
  1614. ggml_log_callback log_callback = llama_log_callback_default;
  1615. void * log_callback_user_data = nullptr;
  1616. };
  1617. static llama_state g_state;
  1618. // available llama models
  1619. enum e_model {
  1620. MODEL_UNKNOWN,
  1621. MODEL_17M,
  1622. MODEL_22M,
  1623. MODEL_33M,
  1624. MODEL_109M,
  1625. MODEL_137M,
  1626. MODEL_335M,
  1627. MODEL_0_5B,
  1628. MODEL_1B,
  1629. MODEL_2B,
  1630. MODEL_3B,
  1631. MODEL_4B,
  1632. MODEL_7B,
  1633. MODEL_8B,
  1634. MODEL_12B,
  1635. MODEL_13B,
  1636. MODEL_14B,
  1637. MODEL_15B,
  1638. MODEL_20B,
  1639. MODEL_30B,
  1640. MODEL_34B,
  1641. MODEL_35B,
  1642. MODEL_40B,
  1643. MODEL_65B,
  1644. MODEL_70B,
  1645. MODEL_314B,
  1646. MODEL_SMALL,
  1647. MODEL_MEDIUM,
  1648. MODEL_LARGE,
  1649. MODEL_XL,
  1650. MODEL_A2_7B,
  1651. MODEL_8x7B,
  1652. MODEL_8x22B,
  1653. MODEL_16x12B,
  1654. };
  1655. static const size_t kiB = 1024;
  1656. static const size_t MiB = 1024*kiB;
  1657. static const size_t GiB = 1024*MiB;
  1658. struct llama_hparams {
  1659. bool vocab_only;
  1660. bool rope_finetuned;
  1661. uint32_t n_vocab;
  1662. uint32_t n_ctx_train; // context size the model was trained on
  1663. uint32_t n_embd;
  1664. uint32_t n_head;
  1665. uint32_t n_head_kv;
  1666. uint32_t n_layer;
  1667. uint32_t n_rot;
  1668. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1669. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1670. uint32_t n_ff;
  1671. uint32_t n_expert = 0;
  1672. uint32_t n_expert_used = 0;
  1673. uint32_t n_vocab_type = 0; // for BERT-style token types
  1674. float f_norm_eps;
  1675. float f_norm_rms_eps;
  1676. float rope_freq_base_train;
  1677. float rope_freq_scale_train;
  1678. uint32_t n_yarn_orig_ctx;
  1679. // for State Space Models
  1680. uint32_t ssm_d_conv = 0;
  1681. uint32_t ssm_d_inner = 0;
  1682. uint32_t ssm_d_state = 0;
  1683. uint32_t ssm_dt_rank = 0;
  1684. float f_clamp_kqv = 0.0f;
  1685. float f_max_alibi_bias = 0.0f;
  1686. float f_logit_scale = 0.0f;
  1687. bool causal_attn = true;
  1688. bool need_kq_pos = false;
  1689. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1690. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1691. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1692. bool operator!=(const llama_hparams & other) const {
  1693. if (this->vocab_only != other.vocab_only) return true;
  1694. if (this->n_vocab != other.n_vocab) return true;
  1695. if (this->n_ctx_train != other.n_ctx_train) return true;
  1696. if (this->n_embd != other.n_embd) return true;
  1697. if (this->n_head != other.n_head) return true;
  1698. if (this->n_head_kv != other.n_head_kv) return true;
  1699. if (this->n_layer != other.n_layer) return true;
  1700. if (this->n_rot != other.n_rot) return true;
  1701. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1702. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1703. if (this->n_ff != other.n_ff) return true;
  1704. if (this->n_expert != other.n_expert) return true;
  1705. if (this->n_expert_used != other.n_expert_used) return true;
  1706. if (this->rope_finetuned != other.rope_finetuned) return true;
  1707. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1708. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1709. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1710. if (this->ssm_d_state != other.ssm_d_state) return true;
  1711. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1712. const float EPSILON = 1e-9f;
  1713. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1714. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1715. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1716. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1717. return false;
  1718. }
  1719. uint32_t n_gqa() const {
  1720. if (n_head_kv == 0) {
  1721. return 0;
  1722. }
  1723. return n_head/n_head_kv;
  1724. }
  1725. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1726. return n_embd_head_k * n_head_kv;
  1727. }
  1728. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1729. return n_embd_head_v * n_head_kv;
  1730. }
  1731. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1732. // corresponds to Mamba's conv_states size
  1733. // TODO: maybe support other convolution strides than 1
  1734. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1735. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1736. }
  1737. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1738. // corresponds to Mamba's ssm_states size
  1739. return ssm_d_state * ssm_d_inner;
  1740. }
  1741. };
  1742. struct llama_cparams {
  1743. uint32_t n_ctx; // context size used during inference
  1744. uint32_t n_batch;
  1745. uint32_t n_ubatch;
  1746. uint32_t n_seq_max;
  1747. uint32_t n_threads; // number of threads to use for generation
  1748. uint32_t n_threads_batch; // number of threads to use for batch processing
  1749. float rope_freq_base;
  1750. float rope_freq_scale;
  1751. uint32_t n_yarn_orig_ctx;
  1752. // These hyperparameters are not exposed in GGUF, because all
  1753. // existing YaRN models use the same values for them.
  1754. float yarn_ext_factor;
  1755. float yarn_attn_factor;
  1756. float yarn_beta_fast;
  1757. float yarn_beta_slow;
  1758. float defrag_thold;
  1759. bool embeddings;
  1760. bool causal_attn;
  1761. bool offload_kqv;
  1762. enum llama_pooling_type pooling_type;
  1763. ggml_backend_sched_eval_callback cb_eval;
  1764. void * cb_eval_user_data;
  1765. };
  1766. struct llama_layer {
  1767. // normalization
  1768. struct ggml_tensor * attn_norm;
  1769. struct ggml_tensor * attn_norm_b;
  1770. struct ggml_tensor * attn_norm_2;
  1771. struct ggml_tensor * attn_norm_2_b;
  1772. struct ggml_tensor * attn_q_norm;
  1773. struct ggml_tensor * attn_q_norm_b;
  1774. struct ggml_tensor * attn_k_norm;
  1775. struct ggml_tensor * attn_k_norm_b;
  1776. struct ggml_tensor * attn_out_norm;
  1777. struct ggml_tensor * attn_out_norm_b;
  1778. // attention
  1779. struct ggml_tensor * wq;
  1780. struct ggml_tensor * wk;
  1781. struct ggml_tensor * wv;
  1782. struct ggml_tensor * wo;
  1783. struct ggml_tensor * wqkv;
  1784. // attention bias
  1785. struct ggml_tensor * bq;
  1786. struct ggml_tensor * bk;
  1787. struct ggml_tensor * bv;
  1788. struct ggml_tensor * bo;
  1789. struct ggml_tensor * bqkv;
  1790. // normalization
  1791. struct ggml_tensor * ffn_norm;
  1792. struct ggml_tensor * ffn_norm_b;
  1793. struct ggml_tensor * layer_out_norm;
  1794. struct ggml_tensor * layer_out_norm_b;
  1795. // ff
  1796. struct ggml_tensor * ffn_gate; // w1
  1797. struct ggml_tensor * ffn_down; // w2
  1798. struct ggml_tensor * ffn_up; // w3
  1799. // ff MoE
  1800. struct ggml_tensor * ffn_gate_inp;
  1801. struct ggml_tensor * ffn_gate_exps;
  1802. struct ggml_tensor * ffn_down_exps;
  1803. struct ggml_tensor * ffn_up_exps ;
  1804. // ff shared expert (shexp)
  1805. struct ggml_tensor * ffn_gate_inp_shexp;
  1806. struct ggml_tensor * ffn_gate_shexp;
  1807. struct ggml_tensor * ffn_down_shexp;
  1808. struct ggml_tensor * ffn_up_shexp;
  1809. // ff bias
  1810. struct ggml_tensor * ffn_down_b; // b2
  1811. struct ggml_tensor * ffn_up_b; // b3
  1812. struct ggml_tensor * ffn_act;
  1813. // mamba proj
  1814. struct ggml_tensor * ssm_in;
  1815. struct ggml_tensor * ssm_x;
  1816. struct ggml_tensor * ssm_dt;
  1817. struct ggml_tensor * ssm_out;
  1818. // mamba
  1819. struct ggml_tensor * ssm_conv1d;
  1820. struct ggml_tensor * ssm_a;
  1821. struct ggml_tensor * ssm_d;
  1822. // mamba bias
  1823. struct ggml_tensor * ssm_conv1d_b;
  1824. struct ggml_tensor * ssm_dt_b;
  1825. };
  1826. struct llama_kv_cell {
  1827. llama_pos pos = -1;
  1828. llama_pos delta = 0;
  1829. int32_t src = 0; // used by recurrent state models to copy states
  1830. std::set<llama_seq_id> seq_id;
  1831. bool has_seq_id(const llama_seq_id & id) const {
  1832. return seq_id.find(id) != seq_id.end();
  1833. }
  1834. bool is_empty() const {
  1835. return seq_id.empty();
  1836. }
  1837. bool is_same_seq(const llama_kv_cell & other) const {
  1838. return seq_id == other.seq_id;
  1839. }
  1840. };
  1841. // ring-buffer of cached KV data
  1842. struct llama_kv_cache {
  1843. bool has_shift = false;
  1844. bool do_defrag = false;
  1845. bool do_copy = false;
  1846. // with recurrent state models, a cell can hold the state for more than one past token
  1847. bool recurrent = false;
  1848. // Note: The value of head isn't only used to optimize searching
  1849. // for a free KV slot. llama_decode_internal also uses it, so it
  1850. // cannot be freely changed after a slot has been allocated.
  1851. uint32_t head = 0;
  1852. uint32_t size = 0;
  1853. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1854. // computed before each graph build
  1855. uint32_t n = 0;
  1856. ggml_type type_k = GGML_TYPE_F16;
  1857. ggml_type type_v = GGML_TYPE_F16;
  1858. std::vector<llama_kv_cell> cells;
  1859. std::vector<struct ggml_tensor *> k_l; // per layer
  1860. std::vector<struct ggml_tensor *> v_l;
  1861. std::vector<struct ggml_context *> ctxs;
  1862. std::vector<ggml_backend_buffer_t> bufs;
  1863. size_t total_size() const {
  1864. size_t size = 0;
  1865. for (ggml_backend_buffer_t buf : bufs) {
  1866. size += ggml_backend_buffer_get_size(buf);
  1867. }
  1868. return size;
  1869. }
  1870. ~llama_kv_cache() {
  1871. for (struct ggml_context * ctx : ctxs) {
  1872. ggml_free(ctx);
  1873. }
  1874. for (ggml_backend_buffer_t buf : bufs) {
  1875. ggml_backend_buffer_free(buf);
  1876. }
  1877. }
  1878. };
  1879. struct llama_control_vector {
  1880. std::vector<struct ggml_tensor *> tensors; // per layer
  1881. std::vector<struct ggml_context *> ctxs;
  1882. std::vector<ggml_backend_buffer_t> bufs;
  1883. int32_t layer_start = -1;
  1884. int32_t layer_end = -1;
  1885. ggml_tensor * tensor_for(int il) const {
  1886. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1887. return nullptr;
  1888. }
  1889. return tensors[il];
  1890. }
  1891. ~llama_control_vector() {
  1892. for (struct ggml_context * ctx : ctxs) {
  1893. ggml_free(ctx);
  1894. }
  1895. for (ggml_backend_buffer_t buf : bufs) {
  1896. ggml_backend_buffer_free(buf);
  1897. }
  1898. }
  1899. };
  1900. struct llama_vocab {
  1901. using id = int32_t;
  1902. using token = std::string;
  1903. using ttype = llama_token_type;
  1904. struct token_data {
  1905. token text;
  1906. float score;
  1907. ttype type;
  1908. };
  1909. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1910. std::unordered_map<token, id> token_to_id;
  1911. std::vector<token_data> id_to_token;
  1912. std::unordered_map<token, id> special_tokens_cache;
  1913. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1914. // default LLaMA special tokens
  1915. id special_bos_id = 1;
  1916. id special_eos_id = 2;
  1917. id special_unk_id = 0;
  1918. id special_sep_id = -1;
  1919. id special_pad_id = -1;
  1920. id special_cls_id = -1;
  1921. id special_mask_id = -1;
  1922. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1923. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1924. id linefeed_id = 13;
  1925. id special_prefix_id = -1;
  1926. id special_suffix_id = -1;
  1927. id special_middle_id = -1;
  1928. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1929. bool add_space_prefix = true;
  1930. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1931. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1932. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1933. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1934. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1935. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1936. if (it == bpe_ranks.end()) {
  1937. return -1;
  1938. }
  1939. return it->second;
  1940. }
  1941. };
  1942. struct llama_model {
  1943. e_model type = MODEL_UNKNOWN;
  1944. llm_arch arch = LLM_ARCH_UNKNOWN;
  1945. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1946. std::string name = "n/a";
  1947. llama_hparams hparams = {};
  1948. llama_vocab vocab;
  1949. struct ggml_tensor * tok_embd;
  1950. struct ggml_tensor * type_embd;
  1951. struct ggml_tensor * pos_embd;
  1952. struct ggml_tensor * tok_norm;
  1953. struct ggml_tensor * tok_norm_b;
  1954. struct ggml_tensor * output_norm;
  1955. struct ggml_tensor * output_norm_b;
  1956. struct ggml_tensor * output;
  1957. struct ggml_tensor * output_b;
  1958. std::vector<llama_layer> layers;
  1959. llama_split_mode split_mode;
  1960. int main_gpu;
  1961. int n_gpu_layers;
  1962. // gguf metadata
  1963. std::unordered_map<std::string, std::string> gguf_kv;
  1964. // layer -> buffer type mapping
  1965. struct layer_buft {
  1966. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1967. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1968. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1969. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1970. ggml_backend_buffer_type_t buft; // everything else
  1971. };
  1972. layer_buft buft_input;
  1973. layer_buft buft_output;
  1974. std::vector<layer_buft> buft_layer;
  1975. // contexts where the model tensors metadata is stored
  1976. std::vector<struct ggml_context *> ctxs;
  1977. // the model memory buffers for the tensor data
  1978. std::vector<ggml_backend_buffer_t> bufs;
  1979. // model memory mapped files
  1980. llama_mmaps mappings;
  1981. // objects representing data potentially being locked in memory
  1982. llama_mlocks mlock_bufs;
  1983. llama_mlocks mlock_mmaps;
  1984. // for quantize-stats only
  1985. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1986. int64_t t_load_us = 0;
  1987. int64_t t_start_us = 0;
  1988. ~llama_model() {
  1989. for (struct ggml_context * ctx : ctxs) {
  1990. ggml_free(ctx);
  1991. }
  1992. for (ggml_backend_buffer_t buf : bufs) {
  1993. #ifdef GGML_USE_CUDA
  1994. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1995. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1996. }
  1997. #endif
  1998. ggml_backend_buffer_free(buf);
  1999. }
  2000. }
  2001. };
  2002. struct llama_context {
  2003. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2004. ~llama_context() {
  2005. ggml_backend_sched_free(sched);
  2006. for (ggml_backend_t backend : backends) {
  2007. ggml_backend_free(backend);
  2008. }
  2009. ggml_backend_buffer_free(buf_output);
  2010. }
  2011. llama_cparams cparams;
  2012. std::vector<ggml_backend_t> backends;
  2013. #ifdef GGML_USE_METAL
  2014. ggml_backend_t backend_metal = nullptr;
  2015. #endif
  2016. ggml_backend_t backend_cpu = nullptr;
  2017. const llama_model & model;
  2018. // key + value cache for the self attention
  2019. struct llama_kv_cache kv_self;
  2020. std::mt19937 rng;
  2021. bool has_evaluated_once = false;
  2022. int64_t t_start_us;
  2023. int64_t t_load_us;
  2024. int64_t t_sample_us = 0;
  2025. int64_t t_p_eval_us = 0;
  2026. int64_t t_eval_us = 0;
  2027. int64_t t_compute_start_us = 0;
  2028. int64_t n_queued_tokens = 0;
  2029. int32_t n_sample = 0; // number of tokens sampled
  2030. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2031. int32_t n_eval = 0; // number of eval calls
  2032. // host buffer for the model output (logits and embeddings)
  2033. ggml_backend_buffer_t buf_output = nullptr;
  2034. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2035. size_t logits_size = 0; // capacity (of floats) for logits
  2036. float * logits = nullptr;
  2037. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2038. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2039. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2040. bool logits_all = false;
  2041. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2042. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2043. size_t embd_size = 0; // capacity (of floats) for embeddings
  2044. float * embd = nullptr;
  2045. // sequence embeddings output (map of [n_embd] vectors)
  2046. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2047. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2048. // memory buffers used to evaluate the model
  2049. std::vector<uint8_t> buf_compute_meta;
  2050. ggml_backend_sched_t sched = nullptr;
  2051. ggml_abort_callback abort_callback = nullptr;
  2052. void * abort_callback_data = nullptr;
  2053. // input tensors
  2054. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2055. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2056. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2057. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2058. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2059. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2060. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2061. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2062. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2063. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2064. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2065. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2066. // control vectors
  2067. struct llama_control_vector cvec;
  2068. #ifdef GGML_USE_MPI
  2069. ggml_mpi_context * ctx_mpi = NULL;
  2070. #endif
  2071. };
  2072. //
  2073. // kv cache helpers
  2074. //
  2075. static bool llama_kv_cache_init(
  2076. struct llama_kv_cache & cache,
  2077. const llama_model & model,
  2078. ggml_type type_k,
  2079. ggml_type type_v,
  2080. uint32_t kv_size,
  2081. bool offload) {
  2082. const struct llama_hparams & hparams = model.hparams;
  2083. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2084. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2085. const int64_t n_layer = hparams.n_layer;
  2086. cache.has_shift = false;
  2087. // TODO: find a nicer way to add other recurrent model architectures
  2088. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2089. // TODO: support mixed reccurent Transformer architectues
  2090. // NOTE: (!a || b) is a logical implication (a -> b)
  2091. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2092. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2093. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2094. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2095. cache.head = 0;
  2096. cache.size = kv_size;
  2097. cache.used = 0;
  2098. cache.type_k = type_k;
  2099. cache.type_v = type_v;
  2100. cache.cells.clear();
  2101. cache.cells.resize(kv_size);
  2102. if (cache.recurrent) {
  2103. // init state copy sources
  2104. for (uint32_t i = 0; i < cache.size; ++i) {
  2105. cache.cells[i].src = i;
  2106. }
  2107. }
  2108. #ifdef GGML_USE_CLBLAST
  2109. offload = false;
  2110. #endif
  2111. // count used buffer types
  2112. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2113. if (offload) {
  2114. for (int64_t i = 0; i < n_layer; ++i) {
  2115. buft_layer_count[model.buft_layer[i].buft]++;
  2116. }
  2117. } else {
  2118. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2119. }
  2120. // create a context for each buffer type
  2121. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2122. for (auto & it : buft_layer_count) {
  2123. int n_layers = it.second;
  2124. struct ggml_init_params params = {
  2125. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2126. /*.mem_buffer =*/ NULL,
  2127. /*.no_alloc =*/ true,
  2128. };
  2129. ggml_context * ctx = ggml_init(params);
  2130. if (!ctx) {
  2131. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2132. return false;
  2133. }
  2134. ctx_map[it.first] = ctx;
  2135. cache.ctxs.push_back(ctx);
  2136. }
  2137. cache.k_l.reserve(n_layer);
  2138. cache.v_l.reserve(n_layer);
  2139. for (int i = 0; i < (int) n_layer; i++) {
  2140. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2141. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2142. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2143. ggml_format_name(k, "cache_k_l%d", i);
  2144. ggml_format_name(v, "cache_v_l%d", i);
  2145. cache.k_l.push_back(k);
  2146. cache.v_l.push_back(v);
  2147. }
  2148. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2149. for (auto it : ctx_map) {
  2150. ggml_backend_buffer_type_t buft = it.first;
  2151. ggml_context * ctx = it.second;
  2152. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2153. if (!buf) {
  2154. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2155. return false;
  2156. }
  2157. ggml_backend_buffer_clear(buf, 0);
  2158. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2159. cache.bufs.push_back(buf);
  2160. }
  2161. return true;
  2162. }
  2163. // find an empty slot of size "n_tokens" in the cache
  2164. // updates the cache head
  2165. // Note: On success, it's important that cache.head points
  2166. // to the first cell of the slot.
  2167. static bool llama_kv_cache_find_slot(
  2168. struct llama_kv_cache & cache,
  2169. const struct llama_batch & batch) {
  2170. const uint32_t n_ctx = cache.size;
  2171. const uint32_t n_tokens = batch.n_tokens;
  2172. if (cache.recurrent) {
  2173. // For recurrent state architectures (like Mamba),
  2174. // each KV cache cell can store the state for a whole sequence.
  2175. llama_seq_id min = cache.size - 1;
  2176. llama_seq_id max = 0;
  2177. for (uint32_t i = 0; i < n_tokens; ++i) {
  2178. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2179. llama_seq_id seq_id = batch.seq_id[i][j];
  2180. // make sure it's a valid seq_id
  2181. if ((uint32_t) seq_id < cache.size) {
  2182. if (seq_id > max) {
  2183. max = seq_id;
  2184. }
  2185. if (seq_id < min) {
  2186. min = seq_id;
  2187. }
  2188. // Assuming the tokens are in-order
  2189. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2190. // What should happen when the pos backtracks or skips a value?
  2191. // Clearing the state mid-batch would require special-casing which isn't done.
  2192. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2193. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2194. }
  2195. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2196. cache.used += 1;
  2197. }
  2198. cache.cells[seq_id].pos = batch.pos[i];
  2199. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2200. } else {
  2201. // too big seq_id
  2202. // TODO: would it be possible to resize the KV cache size instead?
  2203. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2204. return false;
  2205. }
  2206. }
  2207. }
  2208. // allow getting the range of used cells, from head to head + n
  2209. cache.head = min;
  2210. cache.n = max - min + 1;
  2211. // sanity check
  2212. return max >= min;
  2213. }
  2214. // otherwise, one cell per token.
  2215. if (n_tokens > n_ctx) {
  2216. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2217. return false;
  2218. }
  2219. uint32_t n_tested = 0;
  2220. while (true) {
  2221. if (cache.head + n_tokens > n_ctx) {
  2222. n_tested += n_ctx - cache.head;
  2223. cache.head = 0;
  2224. continue;
  2225. }
  2226. bool found = true;
  2227. for (uint32_t i = 0; i < n_tokens; i++) {
  2228. if (cache.cells[cache.head + i].pos >= 0) {
  2229. found = false;
  2230. cache.head += i + 1;
  2231. n_tested += i + 1;
  2232. break;
  2233. }
  2234. }
  2235. if (found) {
  2236. break;
  2237. }
  2238. if (n_tested >= n_ctx) {
  2239. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2240. return false;
  2241. }
  2242. }
  2243. for (uint32_t i = 0; i < n_tokens; i++) {
  2244. cache.cells[cache.head + i].pos = batch.pos[i];
  2245. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2246. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2247. }
  2248. }
  2249. cache.used += n_tokens;
  2250. return true;
  2251. }
  2252. // find how many cells are currently in use
  2253. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2254. for (uint32_t i = cache.size; i > 0; --i) {
  2255. const llama_kv_cell & cell = cache.cells[i - 1];
  2256. if (cell.pos >= 0 && !cell.is_empty()) {
  2257. return i;
  2258. }
  2259. }
  2260. return 0;
  2261. }
  2262. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2263. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2264. cache.cells[i].pos = -1;
  2265. cache.cells[i].seq_id.clear();
  2266. }
  2267. cache.head = 0;
  2268. cache.used = 0;
  2269. }
  2270. static bool llama_kv_cache_seq_rm(
  2271. struct llama_kv_cache & cache,
  2272. llama_seq_id seq_id,
  2273. llama_pos p0,
  2274. llama_pos p1) {
  2275. uint32_t new_head = cache.size;
  2276. if (p0 < 0) p0 = 0;
  2277. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2278. // models like Mamba can't have a state partially erased
  2279. if (cache.recurrent) {
  2280. if (seq_id >= (int64_t) cache.size) {
  2281. // could be fatal
  2282. return false;
  2283. }
  2284. if (0 <= seq_id) {
  2285. // partial intersection is invalid
  2286. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2287. return false;
  2288. }
  2289. } else {
  2290. // seq_id is negative, then the range should include everything or nothing
  2291. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2292. return false;
  2293. }
  2294. }
  2295. }
  2296. for (uint32_t i = 0; i < cache.size; ++i) {
  2297. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2298. if (seq_id < 0) {
  2299. cache.cells[i].seq_id.clear();
  2300. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2301. cache.cells[i].seq_id.erase(seq_id);
  2302. } else {
  2303. continue;
  2304. }
  2305. if (cache.cells[i].is_empty()) {
  2306. // keep count of the number of used cells
  2307. if (cache.cells[i].pos >= 0) cache.used--;
  2308. cache.cells[i].pos = -1;
  2309. if (new_head == cache.size) new_head = i;
  2310. }
  2311. }
  2312. }
  2313. // If we freed up a slot, set head to it so searching can start there.
  2314. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2315. return true;
  2316. }
  2317. static void llama_kv_cache_seq_cp(
  2318. struct llama_kv_cache & cache,
  2319. llama_seq_id seq_id_src,
  2320. llama_seq_id seq_id_dst,
  2321. llama_pos p0,
  2322. llama_pos p1) {
  2323. if (p0 < 0) p0 = 0;
  2324. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2325. if (cache.recurrent) {
  2326. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2327. seq_id_src = cache.cells[seq_id_src].src;
  2328. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2329. // intent to "copy from"
  2330. // supports copy chains thanks to taking the source of the source
  2331. cache.cells[seq_id_dst].src = seq_id_src;
  2332. // preserve the "keep or clear" status of the copied sequence
  2333. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2334. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2335. } else {
  2336. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2337. }
  2338. cache.do_copy = true;
  2339. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2340. }
  2341. return;
  2342. }
  2343. // otherwise, this is the KV cache of a Transformer-like model
  2344. cache.head = 0;
  2345. for (uint32_t i = 0; i < cache.size; ++i) {
  2346. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2347. cache.cells[i].seq_id.insert(seq_id_dst);
  2348. }
  2349. }
  2350. }
  2351. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2352. uint32_t new_head = cache.size;
  2353. for (uint32_t i = 0; i < cache.size; ++i) {
  2354. if (!cache.cells[i].has_seq_id(seq_id)) {
  2355. if (cache.cells[i].pos >= 0) cache.used--;
  2356. cache.cells[i].pos = -1;
  2357. cache.cells[i].seq_id.clear();
  2358. if (new_head == cache.size) new_head = i;
  2359. } else {
  2360. cache.cells[i].seq_id.clear();
  2361. cache.cells[i].seq_id.insert(seq_id);
  2362. }
  2363. }
  2364. // If we freed up a slot, set head to it so searching can start there.
  2365. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2366. }
  2367. static void llama_kv_cache_seq_add(
  2368. struct llama_kv_cache & cache,
  2369. llama_seq_id seq_id,
  2370. llama_pos p0,
  2371. llama_pos p1,
  2372. llama_pos delta) {
  2373. uint32_t new_head = cache.size;
  2374. if (p0 < 0) p0 = 0;
  2375. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2376. if (cache.recurrent) {
  2377. // for Mamba-like models, only the pos needs to be shifted
  2378. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2379. llama_kv_cell & cell = cache.cells[seq_id];
  2380. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2381. cell.pos += delta;
  2382. }
  2383. }
  2384. return;
  2385. }
  2386. for (uint32_t i = 0; i < cache.size; ++i) {
  2387. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2388. cache.has_shift = true;
  2389. cache.cells[i].pos += delta;
  2390. cache.cells[i].delta += delta;
  2391. if (cache.cells[i].pos < 0) {
  2392. if (!cache.cells[i].is_empty()) {
  2393. cache.used--;
  2394. }
  2395. cache.cells[i].pos = -1;
  2396. cache.cells[i].seq_id.clear();
  2397. if (new_head == cache.size) {
  2398. new_head = i;
  2399. }
  2400. }
  2401. }
  2402. }
  2403. // If we freed up a slot, set head to it so searching can start there.
  2404. // Otherwise we just start the next search from the beginning.
  2405. cache.head = new_head != cache.size ? new_head : 0;
  2406. }
  2407. static void llama_kv_cache_seq_div(
  2408. struct llama_kv_cache & cache,
  2409. llama_seq_id seq_id,
  2410. llama_pos p0,
  2411. llama_pos p1,
  2412. int d) {
  2413. if (p0 < 0) p0 = 0;
  2414. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2415. if (cache.recurrent) {
  2416. // for Mamba-like models, only the pos needs to be changed
  2417. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2418. llama_kv_cell & cell = cache.cells[seq_id];
  2419. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2420. cell.pos /= d;
  2421. }
  2422. }
  2423. return;
  2424. }
  2425. for (uint32_t i = 0; i < cache.size; ++i) {
  2426. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2427. cache.has_shift = true;
  2428. {
  2429. llama_pos p_old = cache.cells[i].pos;
  2430. cache.cells[i].pos /= d;
  2431. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2432. }
  2433. }
  2434. }
  2435. }
  2436. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2437. llama_pos result = 0;
  2438. for (uint32_t i = 0; i < cache.size; ++i) {
  2439. if (cache.cells[i].has_seq_id(seq_id)) {
  2440. result = std::max(result, cache.cells[i].pos);
  2441. }
  2442. }
  2443. return result;
  2444. }
  2445. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2446. cache.do_defrag = true;
  2447. }
  2448. //
  2449. // model loading and saving
  2450. //
  2451. enum llama_fver {
  2452. GGUF_FILE_VERSION_V1 = 1,
  2453. GGUF_FILE_VERSION_V2 = 2,
  2454. GGUF_FILE_VERSION_V3 = 3,
  2455. };
  2456. static const char * llama_file_version_name(llama_fver version) {
  2457. switch (version) {
  2458. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2459. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2460. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2461. }
  2462. return "unknown";
  2463. }
  2464. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2465. char buf[256];
  2466. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2467. for (size_t i = 1; i < ne.size(); i++) {
  2468. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2469. }
  2470. return buf;
  2471. }
  2472. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2473. char buf[256];
  2474. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2475. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2476. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2477. }
  2478. return buf;
  2479. }
  2480. namespace GGUFMeta {
  2481. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2482. struct GKV_Base_Type {
  2483. static constexpr gguf_type gt = gt_;
  2484. static T getter(const gguf_context * ctx, const int kid) {
  2485. return gfun(ctx, kid);
  2486. }
  2487. };
  2488. template<typename T> struct GKV_Base;
  2489. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2490. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2491. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2492. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2493. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2494. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2495. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2496. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2497. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2498. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2499. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2500. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2501. template<> struct GKV_Base<std::string> {
  2502. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2503. static std::string getter(const gguf_context * ctx, const int kid) {
  2504. return gguf_get_val_str(ctx, kid);
  2505. }
  2506. };
  2507. struct ArrayInfo {
  2508. const gguf_type gt;
  2509. const size_t length;
  2510. const void * data;
  2511. };
  2512. template<> struct GKV_Base<ArrayInfo> {
  2513. public:
  2514. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2515. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2516. return ArrayInfo {
  2517. gguf_get_arr_type(ctx, k),
  2518. size_t(gguf_get_arr_n(ctx, k)),
  2519. gguf_get_arr_data(ctx, k),
  2520. };
  2521. }
  2522. };
  2523. template<typename T>
  2524. class GKV : public GKV_Base<T> {
  2525. GKV() = delete;
  2526. public:
  2527. static T get_kv(const gguf_context * ctx, const int k) {
  2528. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2529. if (kt != GKV::gt) {
  2530. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2531. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2532. }
  2533. return GKV::getter(ctx, k);
  2534. }
  2535. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2536. switch (ty) {
  2537. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2538. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2539. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2540. }
  2541. return "unknown";
  2542. }
  2543. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2544. if (!ovrd) { return false; }
  2545. if (ovrd->tag == expected_type) {
  2546. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2547. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2548. switch (ovrd->tag) {
  2549. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2550. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2551. } break;
  2552. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2553. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2554. } break;
  2555. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2556. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2557. } break;
  2558. default:
  2559. // Shouldn't be possible to end up here, but just in case...
  2560. throw std::runtime_error(
  2561. format("Unsupported attempt to override %s type for metadata key %s\n",
  2562. override_type_to_str(ovrd->tag), ovrd->key));
  2563. }
  2564. return true;
  2565. }
  2566. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2567. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2568. return false;
  2569. }
  2570. template<typename OT>
  2571. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2572. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2573. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2574. target = ovrd->bool_value;
  2575. return true;
  2576. }
  2577. return false;
  2578. }
  2579. template<typename OT>
  2580. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2581. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2582. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2583. target = ovrd->int_value;
  2584. return true;
  2585. }
  2586. return false;
  2587. }
  2588. template<typename OT>
  2589. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2590. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2591. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2592. target = ovrd->float_value;
  2593. return true;
  2594. }
  2595. return false;
  2596. }
  2597. template<typename OT>
  2598. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2599. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2600. (void)target;
  2601. (void)ovrd;
  2602. if (!ovrd) { return false; }
  2603. // Currently, we should never end up here so it would be a bug if we do.
  2604. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2605. ovrd ? ovrd->key : "NULL"));
  2606. }
  2607. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2608. if (try_override<T>(target, ovrd)) {
  2609. return true;
  2610. }
  2611. if (k < 0) { return false; }
  2612. target = get_kv(ctx, k);
  2613. return true;
  2614. }
  2615. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2616. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2617. }
  2618. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2619. return set(ctx, key.c_str(), target, ovrd);
  2620. }
  2621. };
  2622. }
  2623. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2624. struct llama_model_loader {
  2625. int n_kv = 0;
  2626. int n_tensors = 0;
  2627. int n_created = 0;
  2628. int64_t n_elements = 0;
  2629. size_t n_bytes = 0;
  2630. bool use_mmap = false;
  2631. llama_files files;
  2632. llama_ftype ftype;
  2633. llama_fver fver;
  2634. llama_mmaps mappings;
  2635. // Holds information on a model weight
  2636. struct llama_tensor_weight {
  2637. uint16_t idx; // source file index
  2638. size_t offs; // tensor data offset in the original file
  2639. ggml_tensor * tensor;
  2640. llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2641. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2642. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2643. }
  2644. };
  2645. std::vector<llama_tensor_weight> weights;
  2646. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2647. struct gguf_context * meta = NULL;
  2648. std::vector<ggml_context *> contexts;
  2649. std::string arch_name;
  2650. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2651. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2652. int trace = 0;
  2653. if (getenv("LLAMA_TRACE")) {
  2654. trace = atoi(getenv("LLAMA_TRACE"));
  2655. }
  2656. if (param_overrides_p != nullptr) {
  2657. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2658. kv_overrides.insert({std::string(p->key), *p});
  2659. }
  2660. }
  2661. struct ggml_context * ctx = NULL;
  2662. struct gguf_init_params params = {
  2663. /*.no_alloc = */ true,
  2664. /*.ctx = */ &ctx,
  2665. };
  2666. meta = gguf_init_from_file(fname.c_str(), params);
  2667. if (!meta) {
  2668. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2669. }
  2670. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2671. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2672. // Save tensors data offset of the main file.
  2673. // For subsidiary files, `meta` tensor data offset must not be used,
  2674. // so we build a unified tensors index for weights.
  2675. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2676. weights.emplace_back(0, cur->name, meta, cur);
  2677. }
  2678. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2679. contexts.emplace_back(ctx);
  2680. uint16_t n_split = 0;
  2681. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2682. // Load additional GGML contexts
  2683. if (n_split > 1) {
  2684. uint16_t idx = 0;
  2685. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2686. if (idx != 0) {
  2687. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2688. }
  2689. char split_prefix[PATH_MAX] = {0};
  2690. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2691. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2692. }
  2693. if (trace > 0) {
  2694. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2695. }
  2696. char split_path[PATH_MAX] = {0};
  2697. for (idx = 1; idx < n_split; idx++) {
  2698. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2699. struct gguf_init_params split_params = {
  2700. /*.no_alloc = */ true,
  2701. /*.ctx = */ &ctx,
  2702. };
  2703. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2704. if (!ctx_gguf) {
  2705. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2706. }
  2707. // Save tensors data offset info of the shard.
  2708. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2709. weights.emplace_back(idx, cur->name, ctx_gguf, cur);
  2710. }
  2711. files.emplace_back(new llama_file(split_path, "rb"));
  2712. contexts.emplace_back(ctx);
  2713. gguf_free(ctx_gguf);
  2714. }
  2715. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2716. // sanity check
  2717. {
  2718. const int n_tensors_loaded = (int) weights.size();
  2719. if (n_tensors != n_tensors_loaded) {
  2720. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2721. }
  2722. }
  2723. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2724. }
  2725. n_kv = gguf_get_n_kv(meta);
  2726. n_tensors = weights.size();
  2727. fver = (enum llama_fver) gguf_get_version(meta);
  2728. for (auto & w : weights) {
  2729. n_elements += ggml_nelements(w.tensor);
  2730. n_bytes += ggml_nbytes(w.tensor);
  2731. }
  2732. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2733. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2734. // determine file type based on the number of tensors for each quantization and print meta data
  2735. // TODO: make optional
  2736. {
  2737. std::map<enum ggml_type, uint32_t> n_type;
  2738. uint32_t n_type_max = 0;
  2739. enum ggml_type type_max = GGML_TYPE_F32;
  2740. for (int i = 0; i < n_tensors; i++) {
  2741. const ggml_tensor * tensor = weights.at(i).tensor;
  2742. enum ggml_type type = tensor->type;
  2743. n_type[type]++;
  2744. if (n_type_max < n_type[type]) {
  2745. n_type_max = n_type[type];
  2746. type_max = type;
  2747. }
  2748. if (trace > 0) {
  2749. const uint16_t sid = weights.at(i).idx;
  2750. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2751. }
  2752. }
  2753. switch (type_max) {
  2754. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2755. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2756. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2757. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2758. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2759. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2760. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2761. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2762. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2763. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2764. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2765. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2766. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2767. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2768. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2769. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2770. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2771. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2772. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2773. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2774. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2775. default:
  2776. {
  2777. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2778. ftype = LLAMA_FTYPE_ALL_F32;
  2779. } break;
  2780. }
  2781. // this is a way to mark that we have "guessed" the file type
  2782. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2783. {
  2784. const int kid = gguf_find_key(meta, "general.file_type");
  2785. if (kid >= 0) {
  2786. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2787. }
  2788. }
  2789. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2790. for (int i = 0; i < n_kv; i++) {
  2791. const char * name = gguf_get_key(meta, i);
  2792. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2793. const std::string type_name =
  2794. type == GGUF_TYPE_ARRAY
  2795. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2796. : gguf_type_name(type);
  2797. std::string value = gguf_kv_to_str(meta, i);
  2798. const size_t MAX_VALUE_LEN = 40;
  2799. if (value.size() > MAX_VALUE_LEN) {
  2800. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2801. }
  2802. replace_all(value, "\n", "\\n");
  2803. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2804. }
  2805. // print type counts
  2806. for (auto & kv : n_type) {
  2807. if (kv.second == 0) {
  2808. continue;
  2809. }
  2810. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2811. }
  2812. }
  2813. if (!llama_mmap::SUPPORTED) {
  2814. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2815. use_mmap = false;
  2816. }
  2817. this->use_mmap = use_mmap;
  2818. }
  2819. ~llama_model_loader() {
  2820. if (meta) {
  2821. gguf_free(meta);
  2822. }
  2823. for (auto * ctx : contexts) {
  2824. ggml_free(ctx);
  2825. }
  2826. }
  2827. template<typename T>
  2828. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2829. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2830. const int kid = gguf_find_key(meta, key.c_str());
  2831. if (kid < 0) {
  2832. if (required) {
  2833. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2834. }
  2835. return false;
  2836. }
  2837. struct GGUFMeta::ArrayInfo arr_info =
  2838. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2839. result = arr_info.length;
  2840. return true;
  2841. }
  2842. template<typename T>
  2843. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2844. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2845. return get_arr_n(llm_kv(kid), result, required);
  2846. }
  2847. template<typename T>
  2848. bool get_key(const std::string & key, T & result, const bool required = true) {
  2849. auto it = kv_overrides.find(key);
  2850. const struct llama_model_kv_override * override =
  2851. it != kv_overrides.end() ? &it->second : nullptr;
  2852. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2853. if (required && !found) {
  2854. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2855. }
  2856. return found;
  2857. }
  2858. template<typename T>
  2859. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2860. return get_key(llm_kv(kid), result, required);
  2861. }
  2862. std::string get_arch_name() const {
  2863. return arch_name;
  2864. }
  2865. enum llm_arch get_arch() const {
  2866. return llm_kv.arch;
  2867. }
  2868. const char * get_tensor_name(int i) const {
  2869. return weights.at(i).tensor->name;
  2870. }
  2871. const llama_tensor_weight * get_weight(const char * name) const {
  2872. for (const auto & weight : weights) {
  2873. if (strcmp(name, weight.tensor->name) == 0) {
  2874. return &weight;
  2875. }
  2876. }
  2877. return nullptr;
  2878. }
  2879. const llama_tensor_weight & require_weight(const char * name) const {
  2880. const llama_tensor_weight * weight = get_weight(name);
  2881. if (!weight) {
  2882. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2883. }
  2884. return *weight;
  2885. }
  2886. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2887. const auto * weight = get_weight(name);
  2888. if (!weight) {
  2889. return nullptr;
  2890. }
  2891. return weight->tensor;
  2892. }
  2893. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2894. struct ggml_tensor * tensor = get_tensor_meta(name);
  2895. if (!tensor) {
  2896. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2897. }
  2898. return tensor;
  2899. }
  2900. struct ggml_tensor * get_tensor_meta(int i) const {
  2901. return get_tensor_meta(get_tensor_name(i));
  2902. }
  2903. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2904. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2905. ggml_set_name(tensor, ggml_get_name(cur));
  2906. n_created++;
  2907. return tensor;
  2908. }
  2909. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2910. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2911. if (cur == NULL) {
  2912. if (!required) {
  2913. return NULL;
  2914. }
  2915. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2916. }
  2917. {
  2918. bool is_ok = true;
  2919. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2920. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2921. is_ok = false;
  2922. break;
  2923. }
  2924. }
  2925. if (!is_ok) {
  2926. throw std::runtime_error(
  2927. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2928. __func__, name.c_str(),
  2929. llama_format_tensor_shape(ne).c_str(),
  2930. llama_format_tensor_shape(cur).c_str()));
  2931. }
  2932. }
  2933. return cur;
  2934. }
  2935. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2936. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2937. if (cur == NULL) {
  2938. return NULL;
  2939. }
  2940. return create_tensor_for(ctx, cur);
  2941. }
  2942. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2943. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2944. if (cur == NULL) {
  2945. return NULL;
  2946. }
  2947. if (cur->type != base->type) {
  2948. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2949. }
  2950. std::array<int64_t, GGML_MAX_DIMS> dims;
  2951. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2952. dims[i] = i < ne.size() ? ne[i] : 1;
  2953. }
  2954. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2955. dims[0], dims[1], dims[2], dims[3],
  2956. cur->nb[1], cur->nb[2], cur->nb[3],
  2957. offset);
  2958. ggml_set_name(tensor, name.c_str());
  2959. n_created++;
  2960. return tensor;
  2961. }
  2962. void done_getting_tensors() const {
  2963. if (n_created != n_tensors) {
  2964. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2965. }
  2966. }
  2967. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2968. if (use_mmap) {
  2969. mappings.reserve(files.size());
  2970. mmaps_used.reserve(files.size());
  2971. for (const auto & file : files) {
  2972. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2973. mmaps_used.emplace_back(mapping->size, 0);
  2974. if (mlock_mmaps) {
  2975. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2976. mlock_mmap->init(mapping->addr);
  2977. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2978. }
  2979. mappings.emplace_back(std::move(mapping));
  2980. }
  2981. }
  2982. // compute the total size of all tensors for progress reporting
  2983. for (auto & w : weights) {
  2984. size_data += ggml_nbytes(w.tensor);
  2985. }
  2986. }
  2987. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2988. GGML_ASSERT(!mappings.empty());
  2989. const auto & mapping = mappings.at(idx);
  2990. *first = mapping->size;
  2991. *last = 0;
  2992. *addr = mapping->addr;
  2993. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2994. try {
  2995. const auto * weight = get_weight(ggml_get_name(tensor));
  2996. if (!weight) {
  2997. continue;
  2998. }
  2999. if (weight->idx != idx) {
  3000. continue;
  3001. }
  3002. *first = std::min(*first, weight->offs);
  3003. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3004. } catch(...) {
  3005. // the tensor is not in the model
  3006. }
  3007. }
  3008. }
  3009. // for backwards compatibility, does not support ggml-backend
  3010. void load_data_for(struct ggml_tensor * cur) const {
  3011. const auto & w = require_weight(ggml_get_name(cur));
  3012. if (use_mmap) {
  3013. const auto & mapping = mappings.at(w.idx);
  3014. if (cur->data == nullptr) {
  3015. cur->data = (uint8_t *)mapping->addr + w.offs;
  3016. } else {
  3017. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3018. }
  3019. } else {
  3020. GGML_ASSERT(cur->data != nullptr);
  3021. GGML_ASSERT(w.idx < files.size());
  3022. const auto & file = files.at(w.idx);
  3023. file->seek(w.offs, SEEK_SET);
  3024. file->read_raw(cur->data, ggml_nbytes(cur));
  3025. }
  3026. }
  3027. size_t size_done = 0;
  3028. size_t size_data = 0;
  3029. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3030. // Returns false if cancelled by progress_callback
  3031. bool load_all_data(
  3032. struct ggml_context * ctx,
  3033. llama_buf_map & bufs_mmap,
  3034. llama_mlocks * lmlocks,
  3035. llama_progress_callback progress_callback,
  3036. void * progress_callback_user_data) {
  3037. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3038. std::vector<no_init<uint8_t>> read_buf;
  3039. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3040. const auto * weight = get_weight(ggml_get_name(cur));
  3041. if (weight == nullptr) {
  3042. // this can happen with split experts models
  3043. continue;
  3044. }
  3045. if (progress_callback) {
  3046. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3047. return false;
  3048. }
  3049. }
  3050. size_t n_size = ggml_nbytes(cur);
  3051. if (use_mmap) {
  3052. const auto & mapping = mappings.at(weight->idx);
  3053. ggml_backend_buffer_t buf_mmap = nullptr;
  3054. if (bufs_mmap.count(weight->idx)) {
  3055. buf_mmap = bufs_mmap.at(weight->idx);
  3056. }
  3057. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3058. if (buf_mmap && cur->data == nullptr) {
  3059. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  3060. if (lmlocks) {
  3061. const auto & lmlock = lmlocks->at(weight->idx);
  3062. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  3063. }
  3064. auto & mmap_used = mmaps_used[weight->idx];
  3065. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3066. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3067. } else {
  3068. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  3069. }
  3070. } else {
  3071. GGML_ASSERT(weight->idx < files.size());
  3072. const auto & file = files.at(weight->idx);
  3073. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3074. file->seek(weight->offs, SEEK_SET);
  3075. file->read_raw(cur->data, ggml_nbytes(cur));
  3076. } else {
  3077. read_buf.resize(ggml_nbytes(cur));
  3078. file->seek(weight->offs, SEEK_SET);
  3079. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  3080. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3081. }
  3082. }
  3083. size_done += n_size;
  3084. }
  3085. // check if this is the last call and do final cleanup
  3086. if (size_done >= size_data) {
  3087. // unmap offloaded tensors and metadata
  3088. if (use_mmap) {
  3089. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3090. const auto & mmap_used = mmaps_used.at(idx);
  3091. auto & mapping = mappings.at(idx);
  3092. mapping->unmap_fragment(0, mmap_used.first);
  3093. if (mmap_used.second != 0) {
  3094. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3095. }
  3096. }
  3097. }
  3098. if (progress_callback) {
  3099. // Even though the model is done loading, we still honor
  3100. // cancellation since we need to free allocations.
  3101. return progress_callback(1.0f, progress_callback_user_data);
  3102. }
  3103. }
  3104. return true;
  3105. }
  3106. };
  3107. template<>
  3108. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3109. uint32_t tmp;
  3110. const bool found = get_key(kid, tmp, required);
  3111. if (found) {
  3112. result = (enum llama_pooling_type) tmp;
  3113. } else {
  3114. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3115. }
  3116. return found;
  3117. }
  3118. //
  3119. // load LLaMA models
  3120. //
  3121. static const char * llama_model_arch_name(llm_arch arch) {
  3122. auto it = LLM_ARCH_NAMES.find(arch);
  3123. if (it == LLM_ARCH_NAMES.end()) {
  3124. return "unknown";
  3125. }
  3126. return it->second;
  3127. }
  3128. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3129. if (ftype & LLAMA_FTYPE_GUESSED) {
  3130. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3131. }
  3132. switch (ftype) {
  3133. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3134. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3135. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3136. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3137. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3138. return "Q4_1, some F16";
  3139. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3140. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3141. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3142. // K-quants
  3143. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3144. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3145. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3146. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3147. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3148. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3149. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3150. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3151. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3152. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3153. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3154. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3155. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3156. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3157. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3158. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3159. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3160. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3161. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3162. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3163. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3164. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3165. default: return "unknown, may not work";
  3166. }
  3167. }
  3168. static const char * llama_model_type_name(e_model type) {
  3169. switch (type) {
  3170. case MODEL_22M: return "22M";
  3171. case MODEL_33M: return "33M";
  3172. case MODEL_109M: return "109M";
  3173. case MODEL_137M: return "137M";
  3174. case MODEL_0_5B: return "0.5B";
  3175. case MODEL_1B: return "1B";
  3176. case MODEL_2B: return "2B";
  3177. case MODEL_3B: return "3B";
  3178. case MODEL_7B: return "7B";
  3179. case MODEL_8B: return "8B";
  3180. case MODEL_12B: return "12B";
  3181. case MODEL_13B: return "13B";
  3182. case MODEL_14B: return "14B";
  3183. case MODEL_15B: return "15B";
  3184. case MODEL_20B: return "20B";
  3185. case MODEL_30B: return "30B";
  3186. case MODEL_34B: return "34B";
  3187. case MODEL_35B: return "35B";
  3188. case MODEL_40B: return "40B";
  3189. case MODEL_65B: return "65B";
  3190. case MODEL_70B: return "70B";
  3191. case MODEL_314B: return "314B";
  3192. case MODEL_SMALL: return "0.1B";
  3193. case MODEL_MEDIUM: return "0.4B";
  3194. case MODEL_LARGE: return "0.8B";
  3195. case MODEL_XL: return "1.5B";
  3196. case MODEL_A2_7B: return "A2.7B";
  3197. case MODEL_8x7B: return "8x7B";
  3198. case MODEL_8x22B: return "8x22B";
  3199. case MODEL_16x12B: return "16x12B";
  3200. default: return "?B";
  3201. }
  3202. }
  3203. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3204. switch (type) {
  3205. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3206. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3207. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3208. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3209. default: return "unknown";
  3210. }
  3211. }
  3212. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3213. model.arch = ml.get_arch();
  3214. if (model.arch == LLM_ARCH_UNKNOWN) {
  3215. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3216. }
  3217. }
  3218. static void llm_load_hparams(
  3219. llama_model_loader & ml,
  3220. llama_model & model) {
  3221. auto & hparams = model.hparams;
  3222. const gguf_context * ctx = ml.meta;
  3223. // get metadata as string
  3224. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3225. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3226. if (type == GGUF_TYPE_ARRAY) {
  3227. continue;
  3228. }
  3229. const char * name = gguf_get_key(ctx, i);
  3230. const std::string value = gguf_kv_to_str(ctx, i);
  3231. model.gguf_kv.emplace(name, value);
  3232. }
  3233. // get general kv
  3234. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3235. // get hparams kv
  3236. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3237. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3238. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3239. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3240. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3241. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3242. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3243. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3244. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3245. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3246. if (hparams.n_expert > 0) {
  3247. GGML_ASSERT(hparams.n_expert_used > 0);
  3248. } else {
  3249. GGML_ASSERT(hparams.n_expert_used == 0);
  3250. }
  3251. // n_head_kv is optional, default to n_head
  3252. hparams.n_head_kv = hparams.n_head;
  3253. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3254. bool rope_finetuned = false;
  3255. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3256. hparams.rope_finetuned = rope_finetuned;
  3257. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3258. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3259. // rope_freq_base (optional)
  3260. hparams.rope_freq_base_train = 10000.0f;
  3261. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3262. std::string rope_scaling("linear");
  3263. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3264. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3265. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3266. // rope_freq_scale (inverse of the kv) is optional
  3267. float ropescale = 0.0f;
  3268. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3269. // try the old key name
  3270. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3271. }
  3272. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3273. // sanity check for n_rot (optional)
  3274. {
  3275. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3276. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3277. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3278. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3279. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3280. }
  3281. }
  3282. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3283. // gpt-j n_rot = rotary_dim
  3284. }
  3285. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3286. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3287. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3288. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3289. // arch-specific KVs
  3290. switch (model.arch) {
  3291. case LLM_ARCH_LLAMA:
  3292. {
  3293. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3294. if (hparams.n_expert == 8) {
  3295. switch (hparams.n_layer) {
  3296. case 32: model.type = e_model::MODEL_8x7B; break;
  3297. case 56: model.type = e_model::MODEL_8x22B; break;
  3298. default: model.type = e_model::MODEL_UNKNOWN;
  3299. }
  3300. } else {
  3301. switch (hparams.n_layer) {
  3302. case 22: model.type = e_model::MODEL_1B; break;
  3303. case 26: model.type = e_model::MODEL_3B; break;
  3304. case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
  3305. case 40: model.type = e_model::MODEL_13B; break;
  3306. case 48: model.type = e_model::MODEL_34B; break;
  3307. case 60: model.type = e_model::MODEL_30B; break;
  3308. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3309. default: model.type = e_model::MODEL_UNKNOWN;
  3310. }
  3311. }
  3312. } break;
  3313. case LLM_ARCH_MINICPM:
  3314. {
  3315. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3316. switch (hparams.n_layer) {
  3317. case 40: model.type = e_model::MODEL_2B; break;
  3318. default: model.type = e_model::MODEL_UNKNOWN;
  3319. }
  3320. } break;
  3321. case LLM_ARCH_GROK:
  3322. {
  3323. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3324. switch (hparams.n_layer) {
  3325. case 64: model.type = e_model::MODEL_314B; break;
  3326. default: model.type = e_model::MODEL_UNKNOWN;
  3327. }
  3328. } break;
  3329. case LLM_ARCH_FALCON:
  3330. {
  3331. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3332. switch (hparams.n_layer) {
  3333. case 32: model.type = e_model::MODEL_7B; break;
  3334. case 60: model.type = e_model::MODEL_40B; break;
  3335. default: model.type = e_model::MODEL_UNKNOWN;
  3336. }
  3337. } break;
  3338. case LLM_ARCH_BAICHUAN:
  3339. {
  3340. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3341. switch (hparams.n_layer) {
  3342. case 32: model.type = e_model::MODEL_7B; break;
  3343. case 40: model.type = e_model::MODEL_13B; break;
  3344. default: model.type = e_model::MODEL_UNKNOWN;
  3345. }
  3346. if (model.type == e_model::MODEL_13B) {
  3347. // TODO: become GGUF KV parameter
  3348. hparams.f_max_alibi_bias = 8.0f;
  3349. }
  3350. } break;
  3351. case LLM_ARCH_STARCODER:
  3352. {
  3353. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3354. switch (hparams.n_layer) {
  3355. case 24: model.type = e_model::MODEL_1B; break;
  3356. case 36: model.type = e_model::MODEL_3B; break;
  3357. case 42: model.type = e_model::MODEL_7B; break;
  3358. case 40: model.type = e_model::MODEL_15B; break;
  3359. default: model.type = e_model::MODEL_UNKNOWN;
  3360. }
  3361. } break;
  3362. case LLM_ARCH_PERSIMMON:
  3363. {
  3364. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3365. switch (hparams.n_layer) {
  3366. case 36: model.type = e_model::MODEL_8B; break;
  3367. default: model.type = e_model::MODEL_UNKNOWN;
  3368. }
  3369. } break;
  3370. case LLM_ARCH_REFACT:
  3371. {
  3372. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3373. switch (hparams.n_layer) {
  3374. case 32: model.type = e_model::MODEL_1B; break;
  3375. default: model.type = e_model::MODEL_UNKNOWN;
  3376. }
  3377. // TODO: become GGUF KV parameter
  3378. hparams.f_max_alibi_bias = 8.0f;
  3379. } break;
  3380. case LLM_ARCH_BERT:
  3381. {
  3382. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3383. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3384. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3385. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3386. switch (hparams.n_layer) {
  3387. case 3:
  3388. model.type = e_model::MODEL_17M; break; // bge-micro
  3389. case 6:
  3390. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3391. case 12:
  3392. switch (hparams.n_embd) {
  3393. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3394. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3395. } break;
  3396. case 24:
  3397. model.type = e_model::MODEL_335M; break; // bge-large
  3398. }
  3399. } break;
  3400. case LLM_ARCH_NOMIC_BERT:
  3401. {
  3402. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3403. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3404. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3405. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3406. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3407. model.type = e_model::MODEL_137M;
  3408. }
  3409. } break;
  3410. case LLM_ARCH_BLOOM:
  3411. {
  3412. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3413. switch (hparams.n_layer) {
  3414. case 24: model.type = e_model::MODEL_1B; break;
  3415. case 30:
  3416. switch (hparams.n_embd) {
  3417. case 2560: model.type = e_model::MODEL_3B; break;
  3418. case 4096: model.type = e_model::MODEL_7B; break;
  3419. } break;
  3420. }
  3421. // TODO: become GGUF KV parameter
  3422. hparams.f_max_alibi_bias = 8.0f;
  3423. } break;
  3424. case LLM_ARCH_MPT:
  3425. {
  3426. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3427. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3428. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3429. switch (hparams.n_layer) {
  3430. case 32: model.type = e_model::MODEL_7B; break;
  3431. case 48: model.type = e_model::MODEL_30B; break;
  3432. default: model.type = e_model::MODEL_UNKNOWN;
  3433. }
  3434. } break;
  3435. case LLM_ARCH_STABLELM:
  3436. {
  3437. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3438. switch (hparams.n_layer) {
  3439. case 24: model.type = e_model::MODEL_1B; break;
  3440. case 32: model.type = e_model::MODEL_3B; break;
  3441. case 40: model.type = e_model::MODEL_12B; break;
  3442. default: model.type = e_model::MODEL_UNKNOWN;
  3443. }
  3444. } break;
  3445. case LLM_ARCH_QWEN:
  3446. {
  3447. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3448. switch (hparams.n_layer) {
  3449. case 32: model.type = e_model::MODEL_7B; break;
  3450. case 40: model.type = e_model::MODEL_13B; break;
  3451. default: model.type = e_model::MODEL_UNKNOWN;
  3452. }
  3453. } break;
  3454. case LLM_ARCH_QWEN2:
  3455. {
  3456. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3457. switch (hparams.n_layer) {
  3458. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3459. case 32: model.type = e_model::MODEL_7B; break;
  3460. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3461. case 80: model.type = e_model::MODEL_70B; break;
  3462. default: model.type = e_model::MODEL_UNKNOWN;
  3463. }
  3464. } break;
  3465. case LLM_ARCH_QWEN2MOE:
  3466. {
  3467. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3468. switch (hparams.n_layer) {
  3469. case 24: model.type = e_model::MODEL_A2_7B; break;
  3470. default: model.type = e_model::MODEL_UNKNOWN;
  3471. }
  3472. } break;
  3473. case LLM_ARCH_PHI2:
  3474. {
  3475. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3476. switch (hparams.n_layer) {
  3477. case 24: model.type = e_model::MODEL_1B; break;
  3478. case 32: model.type = e_model::MODEL_3B; break;
  3479. default: model.type = e_model::MODEL_UNKNOWN;
  3480. }
  3481. } break;
  3482. case LLM_ARCH_PHI3:
  3483. {
  3484. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3485. switch (hparams.n_layer) {
  3486. case 24: model.type = e_model::MODEL_1B; break;
  3487. case 32: model.type = e_model::MODEL_3B; break;
  3488. default: model.type = e_model::MODEL_UNKNOWN;
  3489. }
  3490. } break;
  3491. case LLM_ARCH_PLAMO:
  3492. {
  3493. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3494. switch (hparams.n_layer) {
  3495. case 40: model.type = e_model::MODEL_13B; break;
  3496. default: model.type = e_model::MODEL_UNKNOWN;
  3497. }
  3498. } break;
  3499. case LLM_ARCH_GPT2:
  3500. {
  3501. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3502. switch (hparams.n_layer) {
  3503. case 12: model.type = e_model::MODEL_SMALL; break;
  3504. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3505. case 36: model.type = e_model::MODEL_LARGE; break;
  3506. case 48: model.type = e_model::MODEL_XL; break;
  3507. default: model.type = e_model::MODEL_UNKNOWN;
  3508. }
  3509. } break;
  3510. case LLM_ARCH_CODESHELL:
  3511. {
  3512. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3513. switch (hparams.n_layer) {
  3514. case 42: model.type = e_model::MODEL_SMALL; break;
  3515. default: model.type = e_model::MODEL_UNKNOWN;
  3516. }
  3517. } break;
  3518. case LLM_ARCH_ORION:
  3519. {
  3520. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3521. switch (hparams.n_layer) {
  3522. case 40: model.type = e_model::MODEL_14B; break;
  3523. default: model.type = e_model::MODEL_UNKNOWN;
  3524. }
  3525. } break;
  3526. case LLM_ARCH_INTERNLM2:
  3527. {
  3528. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3529. switch (hparams.n_layer) {
  3530. case 32: model.type = e_model::MODEL_7B; break;
  3531. case 48: model.type = e_model::MODEL_20B; break;
  3532. default: model.type = e_model::MODEL_UNKNOWN;
  3533. }
  3534. } break;
  3535. case LLM_ARCH_GEMMA:
  3536. {
  3537. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3538. switch (hparams.n_layer) {
  3539. case 18: model.type = e_model::MODEL_2B; break;
  3540. case 28: model.type = e_model::MODEL_7B; break;
  3541. default: model.type = e_model::MODEL_UNKNOWN;
  3542. }
  3543. } break;
  3544. case LLM_ARCH_STARCODER2:
  3545. {
  3546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3547. switch (hparams.n_layer) {
  3548. case 30: model.type = e_model::MODEL_3B; break;
  3549. case 32: model.type = e_model::MODEL_7B; break;
  3550. case 40: model.type = e_model::MODEL_15B; break;
  3551. default: model.type = e_model::MODEL_UNKNOWN;
  3552. }
  3553. } break;
  3554. case LLM_ARCH_MAMBA:
  3555. {
  3556. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3557. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3558. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3559. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3560. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3561. switch (hparams.n_layer) {
  3562. case 24:
  3563. switch (hparams.n_embd) {
  3564. case 768: model.type = e_model::MODEL_SMALL; break;
  3565. default: model.type = e_model::MODEL_UNKNOWN;
  3566. } break;
  3567. case 48:
  3568. switch (hparams.n_embd) {
  3569. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3570. case 1536: model.type = e_model::MODEL_LARGE; break;
  3571. case 2048: model.type = e_model::MODEL_XL; break;
  3572. default: model.type = e_model::MODEL_UNKNOWN;
  3573. } break;
  3574. case 64:
  3575. switch (hparams.n_embd) {
  3576. case 2560: model.type = e_model::MODEL_3B; break;
  3577. default: model.type = e_model::MODEL_UNKNOWN;
  3578. } break;
  3579. default: model.type = e_model::MODEL_UNKNOWN;
  3580. }
  3581. } break;
  3582. case LLM_ARCH_XVERSE:
  3583. {
  3584. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3585. switch (hparams.n_layer) {
  3586. case 32: model.type = e_model::MODEL_7B; break;
  3587. case 40: model.type = e_model::MODEL_13B; break;
  3588. case 80: model.type = e_model::MODEL_65B; break;
  3589. default: model.type = e_model::MODEL_UNKNOWN;
  3590. }
  3591. } break;
  3592. case LLM_ARCH_COMMAND_R:
  3593. {
  3594. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3595. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3596. switch (hparams.n_layer) {
  3597. case 40: model.type = e_model::MODEL_35B; break;
  3598. default: model.type = e_model::MODEL_UNKNOWN;
  3599. }
  3600. } break;
  3601. case LLM_ARCH_DBRX:
  3602. {
  3603. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3604. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3605. switch (hparams.n_layer) {
  3606. case 40: model.type = e_model::MODEL_16x12B; break;
  3607. default: model.type = e_model::MODEL_UNKNOWN;
  3608. }
  3609. } break;
  3610. case LLM_ARCH_OLMO:
  3611. {
  3612. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3613. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3614. switch (hparams.n_layer) {
  3615. case 22: model.type = e_model::MODEL_1B; break;
  3616. case 32: model.type = e_model::MODEL_7B; break;
  3617. case 80: model.type = e_model::MODEL_70B; break;
  3618. default: model.type = e_model::MODEL_UNKNOWN;
  3619. }
  3620. } break;
  3621. default: (void)0;
  3622. }
  3623. model.ftype = ml.ftype;
  3624. if (hparams.f_max_alibi_bias > 0.0f) {
  3625. hparams.need_kq_pos = true;
  3626. }
  3627. hparams.rope_type = llama_rope_type(&model);
  3628. }
  3629. // TODO: This should probably be in llama.h
  3630. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3631. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3632. );
  3633. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3634. static void llm_load_vocab(
  3635. llama_model_loader & ml,
  3636. llama_model & model) {
  3637. auto & vocab = model.vocab;
  3638. struct gguf_context * ctx = ml.meta;
  3639. const auto kv = LLM_KV(model.arch);
  3640. // determine vocab type
  3641. {
  3642. std::string tokenizer_name;
  3643. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3644. if (tokenizer_name == "no_vocab") {
  3645. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3646. // default special tokens
  3647. vocab.special_bos_id = -1;
  3648. vocab.special_eos_id = -1;
  3649. vocab.special_unk_id = -1;
  3650. vocab.special_sep_id = -1;
  3651. vocab.special_pad_id = -1;
  3652. vocab.special_cls_id = -1;
  3653. vocab.special_mask_id = -1;
  3654. vocab.linefeed_id = -1;
  3655. return;
  3656. } else if (tokenizer_name == "llama") {
  3657. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3658. // default special tokens
  3659. vocab.special_bos_id = 1;
  3660. vocab.special_eos_id = 2;
  3661. vocab.special_unk_id = 0;
  3662. vocab.special_sep_id = -1;
  3663. vocab.special_pad_id = -1;
  3664. vocab.special_cls_id = -1;
  3665. vocab.special_mask_id = -1;
  3666. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3667. // prior to support of FIM special tokens in GGUF, the following
  3668. // will allow those models to continue to work. The general names
  3669. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3670. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3671. // new versions of these models have been published.
  3672. std::string gen_name;
  3673. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3674. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3675. [](unsigned char c){ return std::tolower(c); });
  3676. if (gen_name.find("code") != std::string::npos) {
  3677. if (model.arch == LLM_ARCH_LLAMA) {
  3678. vocab.special_prefix_id = 32007;
  3679. vocab.special_suffix_id = 32008;
  3680. vocab.special_middle_id = 32009;
  3681. vocab.special_eot_id = 32010;
  3682. } else if (model.arch == LLM_ARCH_GEMMA) {
  3683. vocab.special_prefix_id = 67;
  3684. vocab.special_suffix_id = 69;
  3685. vocab.special_middle_id = 68;
  3686. // TODO: this is not EOT, it is "file separator" token, needs fix
  3687. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3688. //vocab.special_eot_id = 70;
  3689. vocab.special_eot_id = 107;
  3690. }
  3691. }
  3692. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3693. if (add_space_prefix_keyidx != -1) {
  3694. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3695. } // The default value of add_space_prefix is true.
  3696. } else if (tokenizer_name == "gpt2") {
  3697. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3698. // read bpe merges and populate bpe ranks
  3699. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3700. if (merges_keyidx == -1) {
  3701. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3702. }
  3703. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3704. for (int i = 0; i < n_merges; i++) {
  3705. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3706. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3707. std::string first;
  3708. std::string second;
  3709. const size_t pos = word.find(' ', 1);
  3710. if (pos != std::string::npos) {
  3711. first = word.substr(0, pos);
  3712. second = word.substr(pos + 1);
  3713. }
  3714. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3715. }
  3716. // default special tokens
  3717. vocab.special_bos_id = 11;
  3718. vocab.special_eos_id = 11;
  3719. vocab.special_unk_id = -1;
  3720. vocab.special_sep_id = -1;
  3721. vocab.special_pad_id = -1;
  3722. vocab.special_cls_id = -1;
  3723. vocab.special_mask_id = -1;
  3724. } else if (tokenizer_name == "bert") {
  3725. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3726. // default special tokens
  3727. vocab.special_bos_id = -1;
  3728. vocab.special_eos_id = -1;
  3729. vocab.special_unk_id = 100;
  3730. vocab.special_sep_id = 102;
  3731. vocab.special_pad_id = 0;
  3732. vocab.special_cls_id = 101;
  3733. vocab.special_mask_id = 103;
  3734. vocab.add_space_prefix = false;
  3735. } else {
  3736. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3737. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3738. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3739. }
  3740. }
  3741. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3742. if (token_idx == -1) {
  3743. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3744. }
  3745. const float * scores = nullptr;
  3746. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3747. if (score_idx != -1) {
  3748. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3749. }
  3750. const int * toktypes = nullptr;
  3751. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3752. if (toktype_idx != -1) {
  3753. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3754. }
  3755. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3756. vocab.id_to_token.resize(n_vocab);
  3757. for (uint32_t i = 0; i < n_vocab; i++) {
  3758. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3759. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3760. vocab.token_to_id[word] = i;
  3761. auto & token_data = vocab.id_to_token[i];
  3762. token_data.text = std::move(word);
  3763. token_data.score = scores ? scores[i] : 0.0f;
  3764. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3765. }
  3766. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3767. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3768. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3769. try {
  3770. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3771. } catch (const std::exception & e) {
  3772. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3773. vocab.linefeed_id = vocab.special_pad_id;
  3774. }
  3775. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3776. vocab.linefeed_id = vocab.special_pad_id;
  3777. } else {
  3778. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3779. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3780. vocab.linefeed_id = ids[0];
  3781. }
  3782. // special tokens
  3783. {
  3784. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3785. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3786. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3787. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3788. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3789. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3790. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3791. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3792. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3793. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3794. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3795. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3796. };
  3797. for (const auto & it : special_token_types) {
  3798. const std::string & key = kv(std::get<0>(it));
  3799. int32_t & id = std::get<1>(it);
  3800. uint32_t new_id;
  3801. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3802. continue;
  3803. }
  3804. if (new_id >= vocab.id_to_token.size()) {
  3805. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3806. __func__, key.c_str(), new_id, id);
  3807. } else {
  3808. id = new_id;
  3809. }
  3810. }
  3811. // Handle add_bos_token and add_eos_token
  3812. {
  3813. bool temp = true;
  3814. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3815. vocab.special_add_bos = int(temp);
  3816. }
  3817. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3818. vocab.special_add_eos = int(temp);
  3819. }
  3820. }
  3821. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  3822. //
  3823. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  3824. // for now, we apply this workaround to find the EOT token based on its text
  3825. if (vocab.special_eot_id == -1) {
  3826. for (const auto & t : vocab.token_to_id) {
  3827. if (
  3828. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  3829. // need to fix convert script
  3830. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  3831. (t.first == "<|eot_id|>" ||
  3832. t.first == "<|im_end|>" ||
  3833. t.first == "<|end|>" ||
  3834. t.first == "<end_of_turn>"
  3835. )
  3836. ) {
  3837. vocab.special_eot_id = t.second;
  3838. break;
  3839. }
  3840. }
  3841. }
  3842. }
  3843. // build special tokens cache
  3844. {
  3845. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3846. // and will always be correctly labeled in 'added_tokens.json' etc.
  3847. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3848. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3849. // are special tokens.
  3850. // From testing, this appears to correlate 1:1 with special tokens.
  3851. //
  3852. // Counting special tokens and verifying in only one direction
  3853. // is sufficient to detect difference in those two sets.
  3854. //
  3855. uint32_t special_tokens_count_by_type = 0;
  3856. uint32_t special_tokens_count_from_verification = 0;
  3857. bool special_tokens_definition_mismatch = false;
  3858. for (const auto & t : vocab.token_to_id) {
  3859. const auto & token = t.first;
  3860. const auto & id = t.second;
  3861. // Count all non-normal tokens in the vocab while iterating
  3862. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3863. special_tokens_count_by_type++;
  3864. }
  3865. // Skip single character tokens
  3866. if (token.length() > 1) {
  3867. bool is_tokenizable = false;
  3868. // Split token string representation in two, in all possible ways
  3869. // and check if both halves can be matched to a valid token
  3870. for (unsigned i = 1; i < token.length();) {
  3871. const auto left = token.substr(0, i);
  3872. const auto right = token.substr(i);
  3873. // check if we didnt partition in the middle of a utf sequence
  3874. auto utf = utf8_len(left.at(left.length() - 1));
  3875. if (utf == 1) {
  3876. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3877. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3878. is_tokenizable = true;
  3879. break;
  3880. }
  3881. i++;
  3882. } else {
  3883. // skip over the rest of multibyte utf sequence
  3884. i += utf - 1;
  3885. }
  3886. }
  3887. if (!is_tokenizable) {
  3888. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3889. // it's faster to re-filter them here, since there are way less candidates now
  3890. // Calculate a total "utf" length of a token string representation
  3891. size_t utf8_str_len = 0;
  3892. for (unsigned i = 0; i < token.length();) {
  3893. utf8_str_len++;
  3894. i += utf8_len(token.at(i));
  3895. }
  3896. // And skip the ones which are one character
  3897. if (utf8_str_len > 1) {
  3898. // At this point what we have left are special tokens only
  3899. vocab.special_tokens_cache[token] = id;
  3900. // Count manually found special tokens
  3901. special_tokens_count_from_verification++;
  3902. // If this manually found special token is not marked as such, flag a mismatch
  3903. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3904. special_tokens_definition_mismatch = true;
  3905. }
  3906. }
  3907. }
  3908. }
  3909. }
  3910. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3911. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3912. __func__,
  3913. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3914. special_tokens_count_by_type, vocab.id_to_token.size()
  3915. );
  3916. } else {
  3917. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3918. __func__,
  3919. special_tokens_count_from_verification, vocab.id_to_token.size()
  3920. );
  3921. }
  3922. }
  3923. }
  3924. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3925. const auto & hparams = model.hparams;
  3926. const auto & vocab = model.vocab;
  3927. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3928. // hparams
  3929. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3930. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3931. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3932. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3933. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3934. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3935. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3936. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3937. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3938. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3939. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3940. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3941. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3942. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3943. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3944. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3945. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3946. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3947. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3948. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3949. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3950. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3951. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3952. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3953. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3954. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3955. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3956. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3957. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3958. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3959. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3960. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3961. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3962. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3963. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3964. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3965. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3966. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3967. if (ml.n_elements >= 1e12) {
  3968. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3969. } else if (ml.n_elements >= 1e9) {
  3970. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3971. } else if (ml.n_elements >= 1e6) {
  3972. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3973. } else {
  3974. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3975. }
  3976. if (ml.n_bytes < GiB) {
  3977. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3978. } else {
  3979. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3980. }
  3981. // general kv
  3982. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3983. // special tokens
  3984. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3985. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3986. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3987. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3988. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3989. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  3990. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  3991. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3992. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  3993. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  3994. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  3995. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  3996. }
  3997. // Returns false if cancelled by progress_callback
  3998. static bool llm_load_tensors(
  3999. llama_model_loader & ml,
  4000. llama_model & model,
  4001. int n_gpu_layers,
  4002. enum llama_split_mode split_mode,
  4003. int main_gpu,
  4004. const float * tensor_split,
  4005. bool use_mlock,
  4006. llama_progress_callback progress_callback,
  4007. void * progress_callback_user_data) {
  4008. model.t_start_us = ggml_time_us();
  4009. auto & hparams = model.hparams;
  4010. #ifdef GGML_USE_SYCL
  4011. // disable MoE with SYCL until mul_mat_id is updated
  4012. if (hparams.n_expert > 0) {
  4013. n_gpu_layers = 0;
  4014. }
  4015. #endif
  4016. model.split_mode = split_mode;
  4017. model.main_gpu = main_gpu;
  4018. model.n_gpu_layers = n_gpu_layers;
  4019. const int64_t n_layer = hparams.n_layer;
  4020. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4021. bool use_mmap_buffer = true;
  4022. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4023. model.buft_input = llama_default_buffer_type_cpu(true);
  4024. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4025. model.buft_layer.resize(n_layer);
  4026. // assign cpu layers
  4027. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4028. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4029. }
  4030. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4031. // calculate the split points
  4032. int device_count = llama_get_device_count();
  4033. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4034. std::vector<float> splits(device_count);
  4035. if (all_zero) {
  4036. // default split, by free memory
  4037. for (int i = 0; i < device_count; ++i) {
  4038. splits[i] = llama_get_device_memory(i);
  4039. }
  4040. } else {
  4041. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4042. }
  4043. // sum and normalize the splits to get the split points
  4044. float split_sum = 0.0f;
  4045. for (int i = 0; i < device_count; ++i) {
  4046. split_sum += splits[i];
  4047. splits[i] = split_sum;
  4048. }
  4049. for (int i = 0; i < device_count; ++i) {
  4050. splits[i] /= split_sum;
  4051. }
  4052. // assign the repeating layers to the devices according to the splits
  4053. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4054. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4055. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4056. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4057. }
  4058. // assign the output layer
  4059. if (n_gpu_layers > n_layer) {
  4060. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4061. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4062. } else {
  4063. model.buft_output = llama_default_buffer_type_cpu(true);
  4064. }
  4065. } else {
  4066. ggml_backend_buffer_type_t split_buft;
  4067. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4068. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4069. } else {
  4070. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4071. split_buft = llama_default_buffer_type_offload(main_gpu);
  4072. }
  4073. // assign the repeating layers
  4074. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4075. model.buft_layer[i] = {
  4076. split_buft,
  4077. llama_default_buffer_type_offload(main_gpu)
  4078. };
  4079. }
  4080. // assign the output layer
  4081. if (n_gpu_layers > n_layer) {
  4082. model.buft_output = {
  4083. split_buft,
  4084. llama_default_buffer_type_offload(main_gpu)
  4085. };
  4086. } else {
  4087. model.buft_output = llama_default_buffer_type_cpu(true);
  4088. }
  4089. }
  4090. // count used buffer types
  4091. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4092. buft_layer_count[model.buft_input.buft]++;
  4093. buft_layer_count[model.buft_input.buft_matrix]++;
  4094. buft_layer_count[model.buft_output.buft]++;
  4095. buft_layer_count[model.buft_output.buft_matrix]++;
  4096. for (int64_t i = 0; i < n_layer; ++i) {
  4097. buft_layer_count[model.buft_layer[i].buft]++;
  4098. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4099. }
  4100. // create one context per buffer type
  4101. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4102. // for moe merged tensors
  4103. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4104. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4105. for (auto & it : buft_layer_count) {
  4106. struct ggml_init_params params = {
  4107. /*.mem_size =*/ ctx_size,
  4108. /*.mem_buffer =*/ NULL,
  4109. /*.no_alloc =*/ true,
  4110. };
  4111. ggml_context * ctx = ggml_init(params);
  4112. if (!ctx) {
  4113. throw std::runtime_error(format("failed to create context"));
  4114. }
  4115. ctx_map[it.first] = ctx;
  4116. model.ctxs.push_back(ctx);
  4117. }
  4118. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4119. // create tensors for the weights
  4120. {
  4121. const int64_t n_embd = hparams.n_embd;
  4122. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4123. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4124. const int64_t n_embd_gqa = n_embd_v_gqa;
  4125. const int64_t n_vocab = hparams.n_vocab;
  4126. const int64_t n_vocab_type = hparams.n_vocab_type;
  4127. const int64_t n_ff = hparams.n_ff;
  4128. const int64_t n_expert = hparams.n_expert;
  4129. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4130. throw std::runtime_error("model has expert layers but no expert layers are used");
  4131. }
  4132. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4133. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4134. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4135. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4136. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4137. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4138. model.layers.resize(n_layer);
  4139. const auto tn = LLM_TN(model.arch);
  4140. switch (model.arch) {
  4141. case LLM_ARCH_LLAMA:
  4142. case LLM_ARCH_REFACT:
  4143. case LLM_ARCH_MINICPM:
  4144. {
  4145. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4146. // output
  4147. {
  4148. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4149. if (model.arch != LLM_ARCH_MINICPM){
  4150. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4151. // if output is NULL, init from the input tok embed
  4152. if (model.output == NULL) {
  4153. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4154. ml.n_created--; // artificial tensor
  4155. ml.size_data += ggml_nbytes(model.output);
  4156. }
  4157. }
  4158. }
  4159. for (int i = 0; i < n_layer; ++i) {
  4160. ggml_context * ctx_layer = ctx_for_layer(i);
  4161. ggml_context * ctx_split = ctx_for_layer_split(i);
  4162. auto & layer = model.layers[i];
  4163. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4164. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4165. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4166. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4167. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4168. // optional bias tensors
  4169. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4170. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4171. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4172. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4173. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4174. if (n_expert == 0) {
  4175. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4176. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4177. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4178. } else {
  4179. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4180. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4181. if (layer.ffn_gate_exps) {
  4182. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4183. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4184. } else {
  4185. // merge split expert into a single tensor for compatibility with older models
  4186. // requires disabling mmap
  4187. use_mmap_buffer = false;
  4188. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4189. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4190. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4191. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4192. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4193. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4194. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4195. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4196. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4197. for (uint32_t x = 0; x < n_expert; ++x) {
  4198. // the individual experts are loaded into a view of the merged tensor
  4199. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4200. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4201. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4202. }
  4203. }
  4204. }
  4205. }
  4206. } break;
  4207. case LLM_ARCH_GROK:
  4208. {
  4209. if (n_expert == 0) {
  4210. throw std::runtime_error("Grok model cannot have zero experts");
  4211. }
  4212. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4213. // output
  4214. {
  4215. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4216. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4217. // if output is NULL, init from the input tok embed
  4218. if (model.output == NULL) {
  4219. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4220. ml.n_created--; // artificial tensor
  4221. ml.size_data += ggml_nbytes(model.output);
  4222. }
  4223. }
  4224. for (int i = 0; i < n_layer; ++i) {
  4225. ggml_context * ctx_layer = ctx_for_layer(i);
  4226. ggml_context * ctx_split = ctx_for_layer_split(i);
  4227. auto & layer = model.layers[i];
  4228. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4229. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4230. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4231. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4232. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4233. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4234. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4235. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4236. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4237. if (layer.ffn_gate_exps) {
  4238. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4239. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4240. } else {
  4241. // merge split expert into a single tensor for compatibility with older models
  4242. // requires disabling mmap
  4243. use_mmap_buffer = false;
  4244. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4245. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4246. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4247. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4248. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4249. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4250. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4251. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4252. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4253. for (uint32_t x = 0; x < n_expert; ++x) {
  4254. // the individual experts are loaded into a view of the merged tensor
  4255. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4256. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4257. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4258. }
  4259. }
  4260. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4261. }
  4262. } break;
  4263. case LLM_ARCH_DBRX:
  4264. {
  4265. if (n_expert == 0) {
  4266. throw std::runtime_error("DBRX model cannot have zero experts");
  4267. }
  4268. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4269. // output
  4270. {
  4271. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4272. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4273. }
  4274. for (int i = 0; i < n_layer; ++i) {
  4275. ggml_context * ctx_layer = ctx_for_layer(i);
  4276. ggml_context * ctx_split = ctx_for_layer_split(i);
  4277. auto & layer = model.layers[i];
  4278. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4279. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4280. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4281. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4282. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4283. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4284. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4285. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4286. }
  4287. } break;
  4288. case LLM_ARCH_BAICHUAN:
  4289. {
  4290. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4291. {
  4292. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4293. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4294. }
  4295. for (int i = 0; i < n_layer; ++i) {
  4296. ggml_context * ctx_layer = ctx_for_layer(i);
  4297. ggml_context * ctx_split = ctx_for_layer_split(i);
  4298. auto & layer = model.layers[i];
  4299. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4300. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4301. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4302. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4303. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4304. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4305. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4306. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4307. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4308. }
  4309. } break;
  4310. case LLM_ARCH_FALCON:
  4311. {
  4312. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4313. // output
  4314. {
  4315. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4316. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4317. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4318. if (!model.output) {
  4319. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4320. ml.n_created--; // artificial tensor
  4321. ml.size_data += ggml_nbytes(model.output);
  4322. }
  4323. }
  4324. for (int i = 0; i < n_layer; ++i) {
  4325. ggml_context * ctx_layer = ctx_for_layer(i);
  4326. ggml_context * ctx_split = ctx_for_layer_split(i);
  4327. auto & layer = model.layers[i];
  4328. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4329. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4330. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4331. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4332. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4333. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4334. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4335. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4336. }
  4337. } break;
  4338. case LLM_ARCH_STARCODER:
  4339. {
  4340. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4341. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4342. // output
  4343. {
  4344. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4345. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4346. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4347. }
  4348. for (int i = 0; i < n_layer; ++i) {
  4349. ggml_context * ctx_layer = ctx_for_layer(i);
  4350. ggml_context * ctx_split = ctx_for_layer_split(i);
  4351. auto & layer = model.layers[i];
  4352. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4353. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4354. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4355. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4356. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4357. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4358. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4359. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4360. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4361. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4362. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4363. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4364. }
  4365. } break;
  4366. case LLM_ARCH_PERSIMMON:
  4367. {
  4368. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4369. {
  4370. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4371. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4372. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4373. }
  4374. for (int i = 0; i < n_layer; ++i) {
  4375. ggml_context * ctx_layer = ctx_for_layer(i);
  4376. ggml_context * ctx_split = ctx_for_layer_split(i);
  4377. auto & layer = model.layers[i];
  4378. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4379. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4380. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4381. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4382. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4383. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4384. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4385. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4386. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4387. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4388. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4389. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4390. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4391. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4392. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4393. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4394. }
  4395. } break;
  4396. case LLM_ARCH_BERT:
  4397. case LLM_ARCH_NOMIC_BERT:
  4398. {
  4399. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4400. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4401. if (model.arch == LLM_ARCH_BERT) {
  4402. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4403. }
  4404. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4405. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4406. for (int i = 0; i < n_layer; ++i) {
  4407. ggml_context * ctx_layer = ctx_for_layer(i);
  4408. ggml_context * ctx_split = ctx_for_layer_split(i);
  4409. auto & layer = model.layers[i];
  4410. if (model.arch == LLM_ARCH_BERT) {
  4411. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4412. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4413. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4414. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4415. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4416. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4417. } else {
  4418. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4419. }
  4420. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4421. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4422. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4423. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4424. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4425. if (model.arch == LLM_ARCH_BERT) {
  4426. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4427. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4428. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4429. } else {
  4430. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4431. }
  4432. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4433. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4434. }
  4435. } break;
  4436. case LLM_ARCH_BLOOM:
  4437. {
  4438. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4439. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4440. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4441. // output
  4442. {
  4443. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4444. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4445. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4446. }
  4447. for (int i = 0; i < n_layer; ++i) {
  4448. ggml_context * ctx_layer = ctx_for_layer(i);
  4449. ggml_context * ctx_split = ctx_for_layer_split(i);
  4450. auto & layer = model.layers[i];
  4451. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4452. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4453. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4454. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4455. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4456. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4457. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4458. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4459. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4460. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4461. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4462. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4463. }
  4464. } break;
  4465. case LLM_ARCH_MPT:
  4466. {
  4467. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4468. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4469. // output
  4470. {
  4471. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4472. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4473. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4474. if (!model.output) {
  4475. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4476. ml.n_created--; // artificial tensor
  4477. ml.size_data += ggml_nbytes(model.output);
  4478. }
  4479. }
  4480. for (int i = 0; i < n_layer; ++i) {
  4481. ggml_context * ctx_layer = ctx_for_layer(i);
  4482. ggml_context * ctx_split = ctx_for_layer_split(i);
  4483. auto & layer = model.layers[i];
  4484. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4485. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4486. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4487. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4488. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4489. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4490. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4491. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4492. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4493. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4494. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4495. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4496. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4497. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4498. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4499. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4500. // AWQ ScaleActivation layer
  4501. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4502. }
  4503. } break;
  4504. case LLM_ARCH_STABLELM:
  4505. {
  4506. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4507. // output
  4508. {
  4509. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4510. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4511. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4512. }
  4513. for (int i = 0; i < n_layer; ++i) {
  4514. ggml_context * ctx_layer = ctx_for_layer(i);
  4515. ggml_context * ctx_split = ctx_for_layer_split(i);
  4516. auto & layer = model.layers[i];
  4517. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4518. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4519. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4520. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4521. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4522. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4523. // optional bias tensors, present in Stable LM 2 1.6B
  4524. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4525. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4526. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4527. // optional q and k layernorms, present in StableLM 2 12B
  4528. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4529. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4530. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4531. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4532. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4533. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4534. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4535. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4536. }
  4537. } break;
  4538. case LLM_ARCH_QWEN:
  4539. {
  4540. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4541. // output
  4542. {
  4543. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4544. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4545. }
  4546. for (int i = 0; i < n_layer; ++i) {
  4547. ggml_context * ctx_layer = ctx_for_layer(i);
  4548. ggml_context * ctx_split = ctx_for_layer_split(i);
  4549. auto & layer = model.layers[i];
  4550. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4551. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4552. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4553. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4554. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4555. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4556. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4557. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4558. }
  4559. } break;
  4560. case LLM_ARCH_QWEN2:
  4561. {
  4562. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4563. // output
  4564. {
  4565. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4566. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4567. // if output is NULL, init from the input tok embed
  4568. if (model.output == NULL) {
  4569. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4570. ml.n_created--; // artificial tensor
  4571. ml.size_data += ggml_nbytes(model.output);
  4572. }
  4573. }
  4574. for (int i = 0; i < n_layer; ++i) {
  4575. ggml_context * ctx_layer = ctx_for_layer(i);
  4576. ggml_context * ctx_split = ctx_for_layer_split(i);
  4577. auto & layer = model.layers[i];
  4578. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4579. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4580. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4581. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4582. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4583. // optional bias tensors
  4584. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4585. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4586. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4587. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4588. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4589. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4590. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4591. }
  4592. } break;
  4593. case LLM_ARCH_QWEN2MOE:
  4594. {
  4595. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4596. // output
  4597. {
  4598. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4599. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4600. }
  4601. for (int i = 0; i < n_layer; ++i) {
  4602. ggml_context * ctx_layer = ctx_for_layer(i);
  4603. ggml_context * ctx_split = ctx_for_layer_split(i);
  4604. auto & layer = model.layers[i];
  4605. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4606. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4607. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4608. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4609. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4610. // optional bias tensors
  4611. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4612. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4613. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4614. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4615. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4616. GGML_ASSERT(hparams.n_expert > 0);
  4617. GGML_ASSERT(hparams.n_expert_used > 0);
  4618. // MoE branch
  4619. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4620. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4621. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4622. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4623. // Shared expert branch
  4624. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4625. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4626. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4627. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4628. }
  4629. } break;
  4630. case LLM_ARCH_PHI2:
  4631. {
  4632. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4633. // output
  4634. {
  4635. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4636. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4637. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4638. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4639. }
  4640. for (int i = 0; i < n_layer; ++i) {
  4641. ggml_context * ctx_layer = ctx_for_layer(i);
  4642. ggml_context * ctx_split = ctx_for_layer_split(i);
  4643. auto & layer = model.layers[i];
  4644. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4645. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4646. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4647. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4648. if (layer.wqkv == nullptr) {
  4649. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4650. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4651. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4652. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4653. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4654. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4655. }
  4656. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4657. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4658. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4659. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4660. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4661. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4662. }
  4663. } break;
  4664. case LLM_ARCH_PHI3:
  4665. {
  4666. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4667. // output
  4668. {
  4669. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4670. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4671. }
  4672. for (int i = 0; i < n_layer; ++i) {
  4673. ggml_context* ctx_layer = ctx_for_layer(i);
  4674. ggml_context* ctx_split = ctx_for_layer_split(i);
  4675. auto& layer = model.layers[i];
  4676. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4677. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4678. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4679. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4680. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4681. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4682. }
  4683. } break;
  4684. case LLM_ARCH_PLAMO:
  4685. {
  4686. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4687. // output
  4688. {
  4689. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4690. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4691. }
  4692. for (int i = 0; i < n_layer; ++i) {
  4693. ggml_context * ctx_layer = ctx_for_layer(i);
  4694. ggml_context * ctx_split = ctx_for_layer_split(i);
  4695. auto & layer = model.layers[i];
  4696. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4697. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4698. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4699. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4700. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4701. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4702. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4703. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4704. }
  4705. } break;
  4706. case LLM_ARCH_GPT2:
  4707. {
  4708. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4709. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4710. // output
  4711. {
  4712. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4713. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4714. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4715. }
  4716. for (int i = 0; i < n_layer; ++i) {
  4717. ggml_context * ctx_layer = ctx_for_layer(i);
  4718. ggml_context * ctx_split = ctx_for_layer_split(i);
  4719. auto & layer = model.layers[i];
  4720. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4721. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4722. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4723. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4724. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4725. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4726. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4727. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4728. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4729. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4730. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4731. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4732. }
  4733. } break;
  4734. case LLM_ARCH_CODESHELL:
  4735. {
  4736. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4737. // output
  4738. {
  4739. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4740. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4741. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4742. }
  4743. for (int i = 0; i < n_layer; ++i) {
  4744. ggml_context * ctx_layer = ctx_for_layer(i);
  4745. ggml_context * ctx_split = ctx_for_layer_split(i);
  4746. auto & layer = model.layers[i];
  4747. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4748. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4749. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4750. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4751. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4752. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4753. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4754. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4755. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4756. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4757. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4758. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4759. }
  4760. } break;
  4761. case LLM_ARCH_ORION:
  4762. {
  4763. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4764. {
  4765. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4766. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4767. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4768. }
  4769. for (int i = 0; i < n_layer; ++i) {
  4770. ggml_context * ctx_layer = ctx_for_layer(i);
  4771. ggml_context * ctx_split = ctx_for_layer_split(i);
  4772. auto & layer = model.layers[i];
  4773. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4774. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4775. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4776. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4777. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4778. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4779. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4780. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4781. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4782. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4783. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4784. }
  4785. } break;
  4786. case LLM_ARCH_INTERNLM2:
  4787. {
  4788. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4789. // output
  4790. {
  4791. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4792. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4793. }
  4794. for (int i = 0; i < n_layer; ++i) {
  4795. ggml_context * ctx_layer = ctx_for_layer(i);
  4796. ggml_context * ctx_split = ctx_for_layer_split(i);
  4797. auto & layer = model.layers[i];
  4798. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4799. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4800. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4801. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4802. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4803. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4804. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4805. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4806. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4807. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4808. }
  4809. } break;
  4810. case LLM_ARCH_GEMMA:
  4811. {
  4812. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4813. // output
  4814. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4815. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4816. ml.n_created--; // artificial tensor
  4817. ml.size_data += ggml_nbytes(model.output);
  4818. const int64_t n_ff = hparams.n_ff;
  4819. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4820. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4821. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4822. for (uint32_t i = 0; i < n_layer; ++i) {
  4823. ggml_context * ctx_layer = ctx_for_layer(i);
  4824. ggml_context * ctx_split = ctx_for_layer_split(i);
  4825. auto & layer = model.layers[i];
  4826. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4827. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4828. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4829. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4830. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4831. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4832. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4833. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4834. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4835. }
  4836. } break;
  4837. case LLM_ARCH_STARCODER2:
  4838. {
  4839. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4840. // output
  4841. {
  4842. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4843. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4844. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4845. // if output is NULL, init from the input tok embed
  4846. if (model.output == NULL) {
  4847. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4848. ml.n_created--; // artificial tensor
  4849. ml.size_data += ggml_nbytes(model.output);
  4850. }
  4851. }
  4852. for (int i = 0; i < n_layer; ++i) {
  4853. ggml_context * ctx_layer = ctx_for_layer(i);
  4854. ggml_context * ctx_split = ctx_for_layer_split(i);
  4855. auto & layer = model.layers[i];
  4856. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4857. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4858. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4859. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4860. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4861. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4862. // optional bias tensors
  4863. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4864. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4865. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4866. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4867. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4868. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4869. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4870. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4871. // optional bias tensors
  4872. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4873. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4874. }
  4875. } break;
  4876. case LLM_ARCH_MAMBA:
  4877. {
  4878. const int64_t d_conv = hparams.ssm_d_conv;
  4879. const int64_t d_inner = hparams.ssm_d_inner;
  4880. const int64_t d_state = hparams.ssm_d_state;
  4881. const int64_t dt_rank = hparams.ssm_dt_rank;
  4882. // only an expansion factor of 2 is supported for now
  4883. GGML_ASSERT(2 * n_embd == d_inner);
  4884. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4885. // output
  4886. {
  4887. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4888. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4889. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4890. if (model.output == NULL) {
  4891. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4892. ml.n_created--; // artificial tensor
  4893. ml.size_data += ggml_nbytes(model.output);
  4894. }
  4895. }
  4896. for (int i = 0; i < n_layer; ++i) {
  4897. ggml_context * ctx_layer = ctx_for_layer(i);
  4898. ggml_context * ctx_split = ctx_for_layer_split(i);
  4899. auto & layer = model.layers[i];
  4900. // norm
  4901. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4902. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4903. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4904. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4905. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4906. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4907. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4908. // no "weight" suffix for these
  4909. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4910. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4911. // out_proj
  4912. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4913. }
  4914. } break;
  4915. case LLM_ARCH_XVERSE:
  4916. {
  4917. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4918. {
  4919. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4920. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4921. }
  4922. for (int i = 0; i < n_layer; ++i) {
  4923. ggml_context * ctx_layer = ctx_for_layer(i);
  4924. ggml_context * ctx_split = ctx_for_layer_split(i);
  4925. auto & layer = model.layers[i];
  4926. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4927. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4928. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4929. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4930. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4931. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4932. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4933. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4934. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4935. }
  4936. } break;
  4937. case LLM_ARCH_COMMAND_R:
  4938. {
  4939. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4940. // output
  4941. {
  4942. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4943. // init output from the input tok embed
  4944. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4945. ml.n_created--; // artificial tensor
  4946. ml.size_data += ggml_nbytes(model.output);
  4947. }
  4948. for (int i = 0; i < n_layer; ++i) {
  4949. ggml_context * ctx_layer = ctx_for_layer(i);
  4950. ggml_context * ctx_split = ctx_for_layer_split(i);
  4951. auto & layer = model.layers[i];
  4952. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4953. if (n_layer >= 64){
  4954. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  4955. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  4956. }
  4957. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4958. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4959. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4960. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4961. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4962. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4963. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4964. }
  4965. } break;
  4966. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  4967. {
  4968. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4969. // output
  4970. {
  4971. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4972. // if output is NULL, init from the input tok embed
  4973. if (model.output == NULL) {
  4974. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4975. ml.n_created--; // artificial tensor
  4976. ml.size_data += ggml_nbytes(model.output);
  4977. }
  4978. }
  4979. for (int i = 0; i < n_layer; ++i) {
  4980. ggml_context * ctx_split = ctx_for_layer_split(i);
  4981. auto & layer = model.layers[i];
  4982. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4983. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4984. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4985. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4986. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4987. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4988. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4989. }
  4990. } break;
  4991. default:
  4992. throw std::runtime_error("unknown architecture");
  4993. }
  4994. }
  4995. ml.done_getting_tensors();
  4996. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  4997. model.mappings.reserve(ml.mappings.size());
  4998. // create the backend buffers
  4999. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5000. ctx_bufs.reserve(ctx_map.size());
  5001. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5002. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5003. model.bufs.reserve(n_max_backend_buffer);
  5004. for (auto & it : ctx_map) {
  5005. ggml_backend_buffer_type_t buft = it.first;
  5006. ggml_context * ctx = it.second;
  5007. llama_buf_map bufs;
  5008. bufs.reserve(n_max_backend_buffer);
  5009. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5010. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5011. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5012. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5013. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5014. void * addr = nullptr;
  5015. size_t first, last;
  5016. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5017. if (first >= last) {
  5018. continue;
  5019. }
  5020. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5021. if (buf == nullptr) {
  5022. throw std::runtime_error("unable to allocate backend CPU buffer");
  5023. }
  5024. model.bufs.push_back(buf);
  5025. bufs.emplace(idx, buf);
  5026. #ifdef GGML_USE_CUDA
  5027. if (n_layer >= n_gpu_layers) {
  5028. ggml_backend_cuda_register_host_buffer(
  5029. ggml_backend_buffer_get_base(buf),
  5030. ggml_backend_buffer_get_size(buf));
  5031. }
  5032. #endif
  5033. }
  5034. }
  5035. #ifdef GGML_USE_METAL
  5036. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5037. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5038. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5039. void * addr = nullptr;
  5040. size_t first, last;
  5041. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5042. if (first >= last) {
  5043. continue;
  5044. }
  5045. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5046. if (buf == nullptr) {
  5047. throw std::runtime_error("unable to allocate backend metal buffer");
  5048. }
  5049. model.bufs.push_back(buf);
  5050. bufs.emplace(idx, buf);
  5051. }
  5052. }
  5053. #endif
  5054. else {
  5055. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5056. if (buf == nullptr) {
  5057. throw std::runtime_error("unable to allocate backend buffer");
  5058. }
  5059. model.bufs.push_back(buf);
  5060. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5061. model.mlock_bufs.emplace_back(new llama_mlock);
  5062. auto & mlock_buf = model.mlock_bufs.back();
  5063. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5064. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5065. }
  5066. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5067. bufs.emplace(idx, buf);
  5068. }
  5069. }
  5070. if (bufs.empty()) {
  5071. throw std::runtime_error("failed to allocate buffer");
  5072. }
  5073. for (auto & buf : bufs) {
  5074. // indicate that this buffer contains weights
  5075. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5076. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5077. }
  5078. ctx_bufs.emplace_back(ctx, bufs);
  5079. }
  5080. if (llama_supports_gpu_offload()) {
  5081. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5082. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5083. if (n_gpu_layers > (int) hparams.n_layer) {
  5084. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5085. }
  5086. const int max_backend_supported_layers = hparams.n_layer + 1;
  5087. const int max_offloadable_layers = hparams.n_layer + 1;
  5088. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5089. }
  5090. // print memory requirements
  5091. for (ggml_backend_buffer_t buf : model.bufs) {
  5092. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5093. }
  5094. // populate tensors_by_name
  5095. for (ggml_context * ctx : model.ctxs) {
  5096. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5097. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5098. }
  5099. }
  5100. // load tensor data
  5101. for (auto & it : ctx_bufs) {
  5102. ggml_context * ctx = it.first;
  5103. auto & bufs = it.second;
  5104. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5105. return false;
  5106. }
  5107. }
  5108. if (use_mmap_buffer) {
  5109. for (auto & mapping : ml.mappings) {
  5110. model.mappings.emplace_back(std::move(mapping));
  5111. }
  5112. }
  5113. // loading time will be recalculate after the first eval, so
  5114. // we take page faults deferred by mmap() into consideration
  5115. model.t_load_us = ggml_time_us() - model.t_start_us;
  5116. return true;
  5117. }
  5118. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5119. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5120. try {
  5121. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  5122. model.hparams.vocab_only = params.vocab_only;
  5123. try {
  5124. llm_load_arch(ml, model);
  5125. } catch(const std::exception & e) {
  5126. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5127. }
  5128. try {
  5129. llm_load_hparams(ml, model);
  5130. } catch(const std::exception & e) {
  5131. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5132. }
  5133. try {
  5134. llm_load_vocab(ml, model);
  5135. } catch(const std::exception & e) {
  5136. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5137. }
  5138. llm_load_print_meta(ml, model);
  5139. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5140. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5141. throw std::runtime_error("vocab size mismatch");
  5142. }
  5143. if (params.vocab_only) {
  5144. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5145. return 0;
  5146. }
  5147. #ifdef GGML_USE_KOMPUTE
  5148. if (params.n_gpu_layers > 0 && (
  5149. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5150. || !(
  5151. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5152. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5153. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5154. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5155. )
  5156. )) {
  5157. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5158. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5159. params.n_gpu_layers = 0;
  5160. }
  5161. #endif
  5162. #ifdef GGML_USE_SYCL
  5163. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5164. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5165. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5166. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5167. } else {
  5168. ggml_backend_sycl_set_mul_device_mode();
  5169. }
  5170. #endif
  5171. if (!llm_load_tensors(
  5172. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5173. params.progress_callback, params.progress_callback_user_data
  5174. )) {
  5175. return -2;
  5176. }
  5177. } catch (const std::exception & err) {
  5178. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5179. return -1;
  5180. }
  5181. return 0;
  5182. }
  5183. //
  5184. // llm_build
  5185. //
  5186. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5187. enum llm_ffn_op_type {
  5188. LLM_FFN_SILU,
  5189. LLM_FFN_GELU,
  5190. LLM_FFN_RELU,
  5191. LLM_FFN_RELU_SQR,
  5192. };
  5193. enum llm_ffn_gate_type {
  5194. LLM_FFN_SEQ,
  5195. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5196. };
  5197. enum llm_norm_type {
  5198. LLM_NORM,
  5199. LLM_NORM_RMS,
  5200. };
  5201. static struct ggml_tensor * llm_build_inp_embd(
  5202. struct ggml_context * ctx,
  5203. struct llama_context & lctx,
  5204. const llama_hparams & hparams,
  5205. const llama_batch & batch,
  5206. struct ggml_tensor * tok_embd,
  5207. const llm_build_cb & cb) {
  5208. const int64_t n_embd = hparams.n_embd;
  5209. struct ggml_tensor * inpL;
  5210. if (batch.token) {
  5211. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5212. cb(lctx.inp_tokens, "inp_tokens", -1);
  5213. ggml_set_input(lctx.inp_tokens);
  5214. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5215. } else {
  5216. #ifdef GGML_USE_MPI
  5217. GGML_ASSERT(false && "not implemented");
  5218. #endif
  5219. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5220. inpL = lctx.inp_embd;
  5221. ggml_set_input(lctx.inp_embd);
  5222. }
  5223. cb(inpL, "inp_embd", -1);
  5224. return inpL;
  5225. }
  5226. static void llm_build_kv_store(
  5227. struct ggml_context * ctx,
  5228. const llama_hparams & hparams,
  5229. const llama_kv_cache & kv,
  5230. struct ggml_cgraph * graph,
  5231. struct ggml_tensor * k_cur,
  5232. struct ggml_tensor * v_cur,
  5233. int64_t n_ctx,
  5234. int32_t n_tokens,
  5235. int32_t kv_head,
  5236. const llm_build_cb & cb,
  5237. int64_t il) {
  5238. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5239. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5240. GGML_ASSERT(kv.size == n_ctx);
  5241. // compute the transposed [n_tokens, n_embd] V matrix
  5242. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5243. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5244. cb(v_cur_t, "v_cur_t", il);
  5245. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5246. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5247. cb(k_cache_view, "k_cache_view", il);
  5248. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5249. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5250. (kv_head)*ggml_element_size(kv.v_l[il]));
  5251. cb(v_cache_view, "v_cache_view", il);
  5252. // important: storing RoPE-ed version of K in the KV cache!
  5253. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5254. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5255. }
  5256. static struct ggml_tensor * llm_build_norm(
  5257. struct ggml_context * ctx,
  5258. struct ggml_tensor * cur,
  5259. const llama_hparams & hparams,
  5260. struct ggml_tensor * mw,
  5261. struct ggml_tensor * mb,
  5262. llm_norm_type type,
  5263. const llm_build_cb & cb,
  5264. int il) {
  5265. switch (type) {
  5266. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5267. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5268. }
  5269. if (mw || mb) {
  5270. cb(cur, "norm", il);
  5271. }
  5272. if (mw) {
  5273. cur = ggml_mul(ctx, cur, mw);
  5274. if (mb) {
  5275. cb(cur, "norm_w", il);
  5276. }
  5277. }
  5278. if (mb) {
  5279. cur = ggml_add(ctx, cur, mb);
  5280. }
  5281. return cur;
  5282. }
  5283. static struct ggml_tensor * llm_build_ffn(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * cur,
  5286. struct ggml_tensor * up,
  5287. struct ggml_tensor * up_b,
  5288. struct ggml_tensor * gate,
  5289. struct ggml_tensor * gate_b,
  5290. struct ggml_tensor * down,
  5291. struct ggml_tensor * down_b,
  5292. struct ggml_tensor * act_scales,
  5293. llm_ffn_op_type type_op,
  5294. llm_ffn_gate_type type_gate,
  5295. const llm_build_cb & cb,
  5296. int il) {
  5297. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5298. cb(tmp, "ffn_up", il);
  5299. if (up_b) {
  5300. tmp = ggml_add(ctx, tmp, up_b);
  5301. cb(tmp, "ffn_up_b", il);
  5302. }
  5303. if (gate) {
  5304. switch (type_gate) {
  5305. case LLM_FFN_SEQ:
  5306. {
  5307. cur = ggml_mul_mat(ctx, gate, tmp);
  5308. cb(cur, "ffn_gate", il);
  5309. } break;
  5310. case LLM_FFN_PAR:
  5311. {
  5312. cur = ggml_mul_mat(ctx, gate, cur);
  5313. cb(cur, "ffn_gate", il);
  5314. } break;
  5315. }
  5316. if (gate_b) {
  5317. cur = ggml_add(ctx, cur, gate_b);
  5318. cb(cur, "ffn_gate_b", il);
  5319. }
  5320. } else {
  5321. cur = tmp;
  5322. }
  5323. switch (type_op) {
  5324. case LLM_FFN_SILU:
  5325. {
  5326. cur = ggml_silu(ctx, cur);
  5327. cb(cur, "ffn_silu", il);
  5328. } break;
  5329. case LLM_FFN_GELU:
  5330. {
  5331. cur = ggml_gelu(ctx, cur);
  5332. cb(cur, "ffn_gelu", il);
  5333. if (act_scales != NULL) {
  5334. cur = ggml_div(ctx, cur, act_scales);
  5335. cb(cur, "ffn_act", il);
  5336. }
  5337. } break;
  5338. case LLM_FFN_RELU:
  5339. {
  5340. cur = ggml_relu(ctx, cur);
  5341. cb(cur, "ffn_relu", il);
  5342. } break;
  5343. case LLM_FFN_RELU_SQR:
  5344. {
  5345. cur = ggml_relu(ctx, cur);
  5346. cb(cur, "ffn_relu", il);
  5347. cur = ggml_sqr(ctx, cur);
  5348. cb(cur, "ffn_sqr(relu)", il);
  5349. } break;
  5350. }
  5351. if (type_gate == LLM_FFN_PAR) {
  5352. cur = ggml_mul(ctx, cur, tmp);
  5353. cb(cur, "ffn_gate_par", il);
  5354. }
  5355. cur = ggml_mul_mat(ctx, down, cur);
  5356. if (down_b) {
  5357. cb(cur, "ffn_down", il);
  5358. }
  5359. if (down_b) {
  5360. cur = ggml_add(ctx, cur, down_b);
  5361. }
  5362. return cur;
  5363. }
  5364. static struct ggml_tensor * llm_build_moe_ffn(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * cur,
  5367. struct ggml_tensor * gate_inp,
  5368. struct ggml_tensor * up_exps,
  5369. struct ggml_tensor * gate_exps,
  5370. struct ggml_tensor * down_exps,
  5371. int64_t n_expert,
  5372. int64_t n_expert_used,
  5373. llm_ffn_op_type type_op,
  5374. bool norm_w,
  5375. const llm_build_cb & cb,
  5376. int il) {
  5377. int64_t n_embd = cur->ne[0];
  5378. int64_t n_tokens = cur->ne[1];
  5379. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5380. cb(logits, "ffn_moe_logits", il);
  5381. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5382. cb(probs, "ffn_moe_probs", il);
  5383. // select experts
  5384. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5385. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5386. cb(selected_experts, "ffn_moe_topk", il);
  5387. ggml_tensor * weights = ggml_get_rows(ctx,
  5388. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5389. cb(weights, "ffn_moe_weights", il);
  5390. if (norm_w) {
  5391. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5392. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5393. cb(weights_sum, "ffn_moe_weights_sum", il);
  5394. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5395. cb(weights, "ffn_moe_weights_norm", il);
  5396. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5397. }
  5398. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5399. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5400. cb(up, "ffn_moe_up", il);
  5401. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5402. cb(gate, "ffn_moe_gate", il);
  5403. switch (type_op) {
  5404. case LLM_FFN_SILU:
  5405. {
  5406. gate = ggml_silu(ctx, gate);
  5407. cb(gate, "ffn_moe_silu", il);
  5408. } break;
  5409. case LLM_FFN_GELU:
  5410. {
  5411. gate = ggml_gelu(ctx, gate);
  5412. cb(gate, "ffn_moe_gelu", il);
  5413. } break;
  5414. default:
  5415. GGML_ASSERT(false);
  5416. }
  5417. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5418. cb(par, "ffn_moe_gate_par", il);
  5419. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5420. cb(experts, "ffn_moe_down", il);
  5421. experts = ggml_mul(ctx, experts, weights);
  5422. // aggregate experts
  5423. ggml_tensor * moe_out = nullptr;
  5424. for (int i = 0; i < n_expert_used; ++i) {
  5425. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5426. experts->nb[2], i*experts->nb[1]);
  5427. if (i == 0) {
  5428. moe_out = cur_expert;
  5429. } else {
  5430. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5431. }
  5432. }
  5433. if (n_expert_used == 1) {
  5434. // avoid returning a non-contiguous tensor
  5435. moe_out = ggml_cont(ctx, moe_out);
  5436. }
  5437. return moe_out;
  5438. }
  5439. // if max_alibi_bias > 0 then apply ALiBi
  5440. static struct ggml_tensor * llm_build_kqv(
  5441. struct ggml_context * ctx,
  5442. const llama_model & model,
  5443. const llama_hparams & hparams,
  5444. const llama_kv_cache & kv,
  5445. struct ggml_cgraph * graph,
  5446. struct ggml_tensor * wo,
  5447. struct ggml_tensor * wo_b,
  5448. struct ggml_tensor * q_cur,
  5449. struct ggml_tensor * kq_mask,
  5450. struct ggml_tensor * kq_pos,
  5451. int64_t n_ctx,
  5452. int32_t n_tokens,
  5453. int32_t n_kv,
  5454. float kq_scale,
  5455. const llm_build_cb & cb,
  5456. int il) {
  5457. const int64_t n_head = hparams.n_head;
  5458. const int64_t n_head_kv = hparams.n_head_kv;
  5459. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5460. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5461. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5462. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5463. cb(q, "q", il);
  5464. struct ggml_tensor * k =
  5465. ggml_view_3d(ctx, kv.k_l[il],
  5466. n_embd_head_k, n_kv, n_head_kv,
  5467. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5468. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5469. 0);
  5470. cb(k, "k", il);
  5471. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5472. cb(kq, "kq", il);
  5473. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5474. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5475. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5476. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5477. }
  5478. if (model.arch == LLM_ARCH_GROK) {
  5479. // need to do the following:
  5480. // multiply by attn_output_multiplyer of 0.08838834764831845
  5481. // and then :
  5482. // kq = 30 * tanh(kq / 30)
  5483. // before the softmax below
  5484. //try from phi2
  5485. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5486. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5487. kq = ggml_scale(ctx, kq, 30);
  5488. }
  5489. #if defined(GGML_USE_KOMPUTE)
  5490. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5491. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5492. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5493. if (hparams.f_max_alibi_bias > 0.0f) {
  5494. kq = ggml_scale(ctx, kq, kq_scale);
  5495. cb(kq, "kq_scaled", il);
  5496. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5497. cb(kq, "kq_scaled_alibi", il);
  5498. kq = ggml_add(ctx, kq, kq_mask);
  5499. cb(kq, "kq_masked", il);
  5500. kq = ggml_soft_max(ctx, kq);
  5501. cb(kq, "kq_soft_max", il);
  5502. } else
  5503. #endif
  5504. {
  5505. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5506. cb(kq, "kq_soft_max_ext", il);
  5507. }
  5508. GGML_ASSERT(kv.size == n_ctx);
  5509. // split cached v into n_head heads
  5510. struct ggml_tensor * v =
  5511. ggml_view_3d(ctx, kv.v_l[il],
  5512. n_kv, n_embd_head_v, n_head_kv,
  5513. ggml_element_size(kv.v_l[il])*n_ctx,
  5514. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5515. 0);
  5516. cb(v, "v", il);
  5517. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5518. cb(kqv, "kqv", il);
  5519. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5520. cb(kqv_merged, "kqv_merged", il);
  5521. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5522. cb(cur, "kqv_merged_cont", il);
  5523. ggml_build_forward_expand(graph, cur);
  5524. cur = ggml_mul_mat(ctx, wo, cur);
  5525. if (wo_b) {
  5526. cb(cur, "kqv_wo", il);
  5527. }
  5528. if (wo_b) {
  5529. cur = ggml_add(ctx, cur, wo_b);
  5530. }
  5531. return cur;
  5532. }
  5533. static struct ggml_tensor * llm_build_kv(
  5534. struct ggml_context * ctx,
  5535. const llama_model & model,
  5536. const llama_hparams & hparams,
  5537. const llama_kv_cache & kv,
  5538. struct ggml_cgraph * graph,
  5539. struct ggml_tensor * wo,
  5540. struct ggml_tensor * wo_b,
  5541. struct ggml_tensor * k_cur,
  5542. struct ggml_tensor * v_cur,
  5543. struct ggml_tensor * q_cur,
  5544. struct ggml_tensor * kq_mask,
  5545. struct ggml_tensor * kq_pos,
  5546. int64_t n_ctx,
  5547. int32_t n_tokens,
  5548. int32_t kv_head,
  5549. int32_t n_kv,
  5550. float kq_scale,
  5551. const llm_build_cb & cb,
  5552. int il) {
  5553. // these nodes are added to the graph together so that they are not reordered
  5554. // by doing so, the number of splits in the graph is reduced
  5555. ggml_build_forward_expand(graph, q_cur);
  5556. ggml_build_forward_expand(graph, k_cur);
  5557. ggml_build_forward_expand(graph, v_cur);
  5558. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5559. struct ggml_tensor * cur;
  5560. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5561. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5562. cb(cur, "kqv_out", il);
  5563. return cur;
  5564. }
  5565. struct llm_build_context {
  5566. const llama_model & model;
  5567. llama_context & lctx;
  5568. const llama_hparams & hparams;
  5569. const llama_cparams & cparams;
  5570. const llama_batch & batch;
  5571. const llama_kv_cache & kv_self;
  5572. const int64_t n_embd;
  5573. const int64_t n_layer;
  5574. const int64_t n_rot;
  5575. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5576. const int64_t n_head;
  5577. const int64_t n_head_kv;
  5578. const int64_t n_embd_head_k;
  5579. const int64_t n_embd_k_gqa;
  5580. const int64_t n_embd_head_v;
  5581. const int64_t n_embd_v_gqa;
  5582. const int64_t n_expert;
  5583. const int64_t n_expert_used;
  5584. const float freq_base;
  5585. const float freq_scale;
  5586. const float ext_factor;
  5587. const float attn_factor;
  5588. const float beta_fast;
  5589. const float beta_slow;
  5590. const float norm_eps;
  5591. const float norm_rms_eps;
  5592. const int32_t n_tokens;
  5593. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5594. const int32_t n_outputs;
  5595. const int32_t kv_head; // index of where we store new KV data in the cache
  5596. const int32_t n_orig_ctx;
  5597. const enum llama_pooling_type pooling_type;
  5598. const enum llama_rope_type rope_type;
  5599. const llm_build_cb & cb;
  5600. std::vector<uint8_t> & buf_compute_meta;
  5601. struct ggml_context * ctx0 = nullptr;
  5602. // TODO: consider making the entire interface noexcept
  5603. llm_build_context(
  5604. llama_context & lctx,
  5605. const llama_batch & batch,
  5606. const llm_build_cb & cb,
  5607. bool worst_case) :
  5608. model (lctx.model),
  5609. lctx (lctx),
  5610. hparams (model.hparams),
  5611. cparams (lctx.cparams),
  5612. batch (batch),
  5613. kv_self (lctx.kv_self),
  5614. n_embd (hparams.n_embd),
  5615. n_layer (hparams.n_layer),
  5616. n_rot (hparams.n_rot),
  5617. n_ctx (cparams.n_ctx),
  5618. n_head (hparams.n_head),
  5619. n_head_kv (hparams.n_head_kv),
  5620. n_embd_head_k (hparams.n_embd_head_k),
  5621. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5622. n_embd_head_v (hparams.n_embd_head_v),
  5623. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5624. n_expert (hparams.n_expert),
  5625. n_expert_used (hparams.n_expert_used),
  5626. freq_base (cparams.rope_freq_base),
  5627. freq_scale (cparams.rope_freq_scale),
  5628. ext_factor (cparams.yarn_ext_factor),
  5629. attn_factor (cparams.yarn_attn_factor),
  5630. beta_fast (cparams.yarn_beta_fast),
  5631. beta_slow (cparams.yarn_beta_slow),
  5632. norm_eps (hparams.f_norm_eps),
  5633. norm_rms_eps (hparams.f_norm_rms_eps),
  5634. n_tokens (batch.n_tokens),
  5635. n_kv (worst_case ? kv_self.size : kv_self.n),
  5636. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5637. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5638. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5639. pooling_type (cparams.pooling_type),
  5640. rope_type (hparams.rope_type),
  5641. cb (cb),
  5642. buf_compute_meta (lctx.buf_compute_meta) {
  5643. // all initializations should be done in init()
  5644. }
  5645. void init() {
  5646. struct ggml_init_params params = {
  5647. /*.mem_size =*/ buf_compute_meta.size(),
  5648. /*.mem_buffer =*/ buf_compute_meta.data(),
  5649. /*.no_alloc =*/ true,
  5650. };
  5651. ctx0 = ggml_init(params);
  5652. lctx.inp_tokens = nullptr;
  5653. lctx.inp_embd = nullptr;
  5654. lctx.inp_pos = nullptr;
  5655. lctx.inp_out_ids = nullptr;
  5656. lctx.inp_KQ_mask = nullptr;
  5657. lctx.inp_KQ_pos = nullptr;
  5658. lctx.inp_K_shift = nullptr;
  5659. lctx.inp_mean = nullptr;
  5660. lctx.inp_cls = nullptr;
  5661. lctx.inp_s_copy = nullptr;
  5662. lctx.inp_s_mask = nullptr;
  5663. lctx.inp_s_seq = nullptr;
  5664. }
  5665. void free() {
  5666. if (ctx0) {
  5667. ggml_free(ctx0);
  5668. ctx0 = nullptr;
  5669. }
  5670. }
  5671. struct ggml_cgraph * build_k_shift() {
  5672. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5673. GGML_ASSERT(kv_self.size == n_ctx);
  5674. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5675. cb(lctx.inp_K_shift, "K_shift", -1);
  5676. ggml_set_input(lctx.inp_K_shift);
  5677. for (int il = 0; il < n_layer; ++il) {
  5678. struct ggml_tensor * tmp =
  5679. // we rotate only the first n_rot dimensions
  5680. ggml_rope_custom_inplace(ctx0,
  5681. ggml_view_3d(ctx0, kv_self.k_l[il],
  5682. n_embd_head_k, n_head_kv, n_ctx,
  5683. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5684. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5685. 0),
  5686. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5687. ext_factor, attn_factor, beta_fast, beta_slow);
  5688. cb(tmp, "K_shifted", il);
  5689. ggml_build_forward_expand(gf, tmp);
  5690. }
  5691. return gf;
  5692. }
  5693. struct ggml_cgraph * build_s_copy() {
  5694. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5695. GGML_ASSERT(kv_self.recurrent);
  5696. struct ggml_tensor * state_copy = build_inp_s_copy();
  5697. for (int il = 0; il < n_layer; ++il) {
  5698. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5699. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5700. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5701. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5702. // TODO: name the intermediate tensors with cb()
  5703. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5704. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5705. }
  5706. return gf;
  5707. }
  5708. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5709. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5710. for (uint32_t i = 0; i < ids.size(); ++i) {
  5711. const uint32_t id = ids[i];
  5712. if (i == id || id == ids.size()) {
  5713. continue;
  5714. }
  5715. uint32_t nm = 1;
  5716. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5717. nm++;
  5718. }
  5719. for (int il = 0; il < n_layer; ++il) {
  5720. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5721. n_embd_k_gqa, nm,
  5722. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5723. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5724. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5725. n_embd_k_gqa, nm,
  5726. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5727. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5728. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5729. nm, n_embd_v_gqa,
  5730. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5731. ggml_row_size(kv_self.v_l[il]->type, i));
  5732. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5733. nm, n_embd_v_gqa,
  5734. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5735. ggml_row_size(kv_self.v_l[il]->type, id));
  5736. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5737. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5738. }
  5739. i += nm - 1;
  5740. }
  5741. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5742. return gf;
  5743. }
  5744. struct ggml_tensor * build_inp_pos() {
  5745. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5746. cb(lctx.inp_pos, "inp_pos", -1);
  5747. ggml_set_input(lctx.inp_pos);
  5748. return lctx.inp_pos;
  5749. }
  5750. struct ggml_tensor * build_inp_out_ids() {
  5751. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5752. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5753. ggml_set_input(lctx.inp_out_ids);
  5754. return lctx.inp_out_ids;
  5755. }
  5756. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5757. if (causal) {
  5758. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5759. } else {
  5760. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5761. }
  5762. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5763. ggml_set_input(lctx.inp_KQ_mask);
  5764. return lctx.inp_KQ_mask;
  5765. }
  5766. struct ggml_tensor * build_inp_KQ_pos() {
  5767. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5768. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5769. ggml_set_input(lctx.inp_KQ_pos);
  5770. return lctx.inp_KQ_pos;
  5771. }
  5772. struct ggml_tensor * build_inp_mean() {
  5773. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5774. cb(lctx.inp_mean, "inp_mean", -1);
  5775. ggml_set_input(lctx.inp_mean);
  5776. return lctx.inp_mean;
  5777. }
  5778. struct ggml_tensor * build_inp_cls() {
  5779. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5780. cb(lctx.inp_cls, "inp_cls", -1);
  5781. ggml_set_input(lctx.inp_cls);
  5782. return lctx.inp_cls;
  5783. }
  5784. struct ggml_tensor * build_inp_s_copy() {
  5785. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5786. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5787. ggml_set_input(lctx.inp_s_copy);
  5788. return lctx.inp_s_copy;
  5789. }
  5790. struct ggml_tensor * build_inp_s_mask() {
  5791. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5792. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5793. ggml_set_input(lctx.inp_s_mask);
  5794. return lctx.inp_s_mask;
  5795. }
  5796. struct ggml_tensor * build_inp_s_seq() {
  5797. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5798. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5799. ggml_set_input(lctx.inp_s_seq);
  5800. return lctx.inp_s_seq;
  5801. }
  5802. struct ggml_cgraph * build_llama() {
  5803. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5804. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5805. int32_t n_tokens = this->n_tokens;
  5806. const int64_t n_embd_head = hparams.n_embd_head_v;
  5807. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5808. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5809. struct ggml_tensor * cur;
  5810. struct ggml_tensor * inpL;
  5811. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5812. // inp_pos - contains the positions
  5813. struct ggml_tensor * inp_pos = build_inp_pos();
  5814. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5815. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5816. for (int il = 0; il < n_layer; ++il) {
  5817. struct ggml_tensor * inpSA = inpL;
  5818. // norm
  5819. cur = llm_build_norm(ctx0, inpL, hparams,
  5820. model.layers[il].attn_norm, NULL,
  5821. LLM_NORM_RMS, cb, il);
  5822. cb(cur, "attn_norm", il);
  5823. // self-attention
  5824. {
  5825. // compute Q and K and RoPE them
  5826. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5827. cb(Qcur, "Qcur", il);
  5828. if (model.layers[il].bq) {
  5829. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5830. cb(Qcur, "Qcur", il);
  5831. }
  5832. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5833. cb(Kcur, "Kcur", il);
  5834. if (model.layers[il].bk) {
  5835. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5836. cb(Kcur, "Kcur", il);
  5837. }
  5838. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5839. cb(Vcur, "Vcur", il);
  5840. if (model.layers[il].bv) {
  5841. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5842. cb(Vcur, "Vcur", il);
  5843. }
  5844. Qcur = ggml_rope_custom(
  5845. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5846. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5847. ext_factor, attn_factor, beta_fast, beta_slow
  5848. );
  5849. cb(Qcur, "Qcur", il);
  5850. Kcur = ggml_rope_custom(
  5851. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5852. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5853. ext_factor, attn_factor, beta_fast, beta_slow
  5854. );
  5855. cb(Kcur, "Kcur", il);
  5856. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5857. model.layers[il].wo, model.layers[il].bo,
  5858. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5859. }
  5860. if (il == n_layer - 1) {
  5861. // skip computing output for unused tokens
  5862. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5863. n_tokens = n_outputs;
  5864. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5865. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5866. }
  5867. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5868. cb(ffn_inp, "ffn_inp", il);
  5869. // feed-forward network
  5870. if (model.layers[il].ffn_gate_inp == nullptr) {
  5871. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5872. model.layers[il].ffn_norm, NULL,
  5873. LLM_NORM_RMS, cb, il);
  5874. cb(cur, "ffn_norm", il);
  5875. cur = llm_build_ffn(ctx0, cur,
  5876. model.layers[il].ffn_up, NULL,
  5877. model.layers[il].ffn_gate, NULL,
  5878. model.layers[il].ffn_down, NULL,
  5879. NULL,
  5880. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5881. cb(cur, "ffn_out", il);
  5882. } else {
  5883. // MoE branch
  5884. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5885. model.layers[il].ffn_norm, NULL,
  5886. LLM_NORM_RMS, cb, il);
  5887. cb(cur, "ffn_norm", il);
  5888. cur = llm_build_moe_ffn(ctx0, cur,
  5889. model.layers[il].ffn_gate_inp,
  5890. model.layers[il].ffn_up_exps,
  5891. model.layers[il].ffn_gate_exps,
  5892. model.layers[il].ffn_down_exps,
  5893. n_expert, n_expert_used,
  5894. LLM_FFN_SILU, true,
  5895. cb, il);
  5896. cb(cur, "ffn_moe_out", il);
  5897. }
  5898. cur = ggml_add(ctx0, cur, ffn_inp);
  5899. cb(cur, "ffn_out", il);
  5900. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5901. if (layer_dir != nullptr) {
  5902. cur = ggml_add(ctx0, cur, layer_dir);
  5903. }
  5904. cb(cur, "l_out", il);
  5905. // input for next layer
  5906. inpL = cur;
  5907. }
  5908. cur = inpL;
  5909. cur = llm_build_norm(ctx0, cur, hparams,
  5910. model.output_norm, NULL,
  5911. LLM_NORM_RMS, cb, -1);
  5912. cb(cur, "result_norm", -1);
  5913. // lm_head
  5914. cur = ggml_mul_mat(ctx0, model.output, cur);
  5915. cb(cur, "result_output", -1);
  5916. ggml_build_forward_expand(gf, cur);
  5917. return gf;
  5918. }
  5919. struct ggml_cgraph * build_baichuan() {
  5920. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5921. const int64_t n_embd_head = hparams.n_embd_head_v;
  5922. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5923. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5924. struct ggml_tensor * cur;
  5925. struct ggml_tensor * inpL;
  5926. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5927. // inp_pos - contains the positions
  5928. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5929. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5930. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5931. // positions of the tokens in the KV cache
  5932. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5933. for (int il = 0; il < n_layer; ++il) {
  5934. struct ggml_tensor * inpSA = inpL;
  5935. cur = llm_build_norm(ctx0, inpL, hparams,
  5936. model.layers[il].attn_norm, NULL,
  5937. LLM_NORM_RMS, cb, il);
  5938. cb(cur, "attn_norm", il);
  5939. // self-attention
  5940. {
  5941. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5942. cb(Qcur, "Qcur", il);
  5943. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5944. cb(Kcur, "Kcur", il);
  5945. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5946. cb(Vcur, "Vcur", il);
  5947. switch (model.type) {
  5948. case MODEL_7B:
  5949. Qcur = ggml_rope_custom(
  5950. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5951. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5952. ext_factor, attn_factor, beta_fast, beta_slow
  5953. );
  5954. Kcur = ggml_rope_custom(
  5955. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5956. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5957. ext_factor, attn_factor, beta_fast, beta_slow
  5958. );
  5959. break;
  5960. case MODEL_13B:
  5961. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5962. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5963. break;
  5964. default:
  5965. GGML_ASSERT(false);
  5966. }
  5967. cb(Qcur, "Qcur", il);
  5968. cb(Kcur, "Kcur", il);
  5969. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5970. model.layers[il].wo, NULL,
  5971. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5972. }
  5973. if (il == n_layer - 1) {
  5974. // skip computing output for unused tokens
  5975. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5976. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5977. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5978. }
  5979. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5980. cb(ffn_inp, "ffn_inp", il);
  5981. // feed-forward network
  5982. {
  5983. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5984. model.layers[il].ffn_norm, NULL,
  5985. LLM_NORM_RMS, cb, il);
  5986. cb(cur, "ffn_norm", il);
  5987. cur = llm_build_ffn(ctx0, cur,
  5988. model.layers[il].ffn_up, NULL,
  5989. model.layers[il].ffn_gate, NULL,
  5990. model.layers[il].ffn_down, NULL,
  5991. NULL,
  5992. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5993. cb(cur, "ffn_out", il);
  5994. }
  5995. cur = ggml_add(ctx0, cur, ffn_inp);
  5996. cb(cur, "l_out", il);
  5997. // input for next layer
  5998. inpL = cur;
  5999. }
  6000. cur = inpL;
  6001. cur = llm_build_norm(ctx0, cur, hparams,
  6002. model.output_norm, NULL,
  6003. LLM_NORM_RMS, cb, -1);
  6004. cb(cur, "result_norm", -1);
  6005. // lm_head
  6006. cur = ggml_mul_mat(ctx0, model.output, cur);
  6007. cb(cur, "result_output", -1);
  6008. ggml_build_forward_expand(gf, cur);
  6009. return gf;
  6010. }
  6011. struct ggml_cgraph * build_xverse() {
  6012. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6013. const int64_t n_embd_head = hparams.n_embd_head_v;
  6014. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6015. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6016. struct ggml_tensor * cur;
  6017. struct ggml_tensor * inpL;
  6018. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6019. // inp_pos - contains the positions
  6020. struct ggml_tensor * inp_pos = build_inp_pos();
  6021. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6022. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6023. // positions of the tokens in the KV cache
  6024. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6025. for (int il = 0; il < n_layer; ++il) {
  6026. struct ggml_tensor * inpSA = inpL;
  6027. cur = llm_build_norm(ctx0, inpL, hparams,
  6028. model.layers[il].attn_norm, NULL,
  6029. LLM_NORM_RMS, cb, il);
  6030. cb(cur, "attn_norm", il);
  6031. // self-attention
  6032. {
  6033. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6034. cb(Qcur, "Qcur", il);
  6035. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6036. cb(Kcur, "Kcur", il);
  6037. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6038. cb(Vcur, "Vcur", il);
  6039. Qcur = ggml_rope_custom(
  6040. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6041. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6042. ext_factor, attn_factor, beta_fast, beta_slow
  6043. );
  6044. cb(Qcur, "Qcur", il);
  6045. Kcur = ggml_rope_custom(
  6046. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6047. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6048. ext_factor, attn_factor, beta_fast, beta_slow
  6049. );
  6050. cb(Kcur, "Kcur", il);
  6051. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6052. model.layers[il].wo, NULL,
  6053. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6054. }
  6055. if (il == n_layer - 1) {
  6056. // skip computing output for unused tokens
  6057. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6058. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6059. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6060. }
  6061. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6062. cb(ffn_inp, "ffn_inp", il);
  6063. // feed-forward network
  6064. {
  6065. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6066. model.layers[il].ffn_norm, NULL,
  6067. LLM_NORM_RMS, cb, il);
  6068. cb(cur, "ffn_norm", il);
  6069. cur = llm_build_ffn(ctx0, cur,
  6070. model.layers[il].ffn_up, NULL,
  6071. model.layers[il].ffn_gate, NULL,
  6072. model.layers[il].ffn_down, NULL,
  6073. NULL,
  6074. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6075. cb(cur, "ffn_out", il);
  6076. }
  6077. cur = ggml_add(ctx0, cur, ffn_inp);
  6078. cb(cur, "l_out", il);
  6079. // input for next layer
  6080. inpL = cur;
  6081. }
  6082. cur = inpL;
  6083. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6084. cb(cur, "result_norm", -1);
  6085. // lm_head
  6086. cur = ggml_mul_mat(ctx0, model.output, cur);
  6087. cb(cur, "result_output", -1);
  6088. ggml_build_forward_expand(gf, cur);
  6089. return gf;
  6090. }
  6091. struct ggml_cgraph * build_falcon() {
  6092. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6093. const int64_t n_embd_head = hparams.n_embd_head_v;
  6094. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6095. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6096. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6097. struct ggml_tensor * cur;
  6098. struct ggml_tensor * inpL;
  6099. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6100. // inp_pos - contains the positions
  6101. struct ggml_tensor * inp_pos = build_inp_pos();
  6102. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6103. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6104. for (int il = 0; il < n_layer; ++il) {
  6105. struct ggml_tensor * attn_norm;
  6106. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6107. model.layers[il].attn_norm,
  6108. model.layers[il].attn_norm_b,
  6109. LLM_NORM, cb, il);
  6110. cb(attn_norm, "attn_norm", il);
  6111. // self-attention
  6112. {
  6113. if (model.layers[il].attn_norm_2) {
  6114. // Falcon-40B
  6115. cur = llm_build_norm(ctx0, inpL, hparams,
  6116. model.layers[il].attn_norm_2,
  6117. model.layers[il].attn_norm_2_b,
  6118. LLM_NORM, cb, il);
  6119. cb(cur, "attn_norm_2", il);
  6120. } else {
  6121. cur = attn_norm;
  6122. }
  6123. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6124. cb(cur, "wqkv", il);
  6125. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6126. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6127. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6128. cb(Qcur, "Qcur", il);
  6129. cb(Kcur, "Kcur", il);
  6130. cb(Vcur, "Vcur", il);
  6131. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6132. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6133. // using mode = 2 for neox mode
  6134. Qcur = ggml_rope_custom(
  6135. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6136. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6137. );
  6138. cb(Qcur, "Qcur", il);
  6139. Kcur = ggml_rope_custom(
  6140. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6141. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6142. );
  6143. cb(Kcur, "Kcur", il);
  6144. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6145. model.layers[il].wo, NULL,
  6146. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6147. }
  6148. if (il == n_layer - 1) {
  6149. // skip computing output for unused tokens
  6150. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6151. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6152. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6153. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6154. }
  6155. struct ggml_tensor * ffn_inp = cur;
  6156. // feed forward
  6157. {
  6158. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6159. model.layers[il].ffn_up, NULL,
  6160. NULL, NULL,
  6161. model.layers[il].ffn_down, NULL,
  6162. NULL,
  6163. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6164. cb(cur, "ffn_out", il);
  6165. }
  6166. cur = ggml_add(ctx0, cur, ffn_inp);
  6167. cb(cur, "l_out", il);
  6168. cur = ggml_add(ctx0, cur, inpL);
  6169. cb(cur, "l_out", il);
  6170. // input for next layer
  6171. inpL = cur;
  6172. }
  6173. cur = inpL;
  6174. // norm
  6175. cur = llm_build_norm(ctx0, cur, hparams,
  6176. model.output_norm,
  6177. model.output_norm_b,
  6178. LLM_NORM, cb, -1);
  6179. cb(cur, "result_norm", -1);
  6180. cur = ggml_mul_mat(ctx0, model.output, cur);
  6181. cb(cur, "result_output", -1);
  6182. ggml_build_forward_expand(gf, cur);
  6183. return gf;
  6184. }
  6185. struct ggml_cgraph * build_grok() {
  6186. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6187. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6188. int32_t n_tokens = this->n_tokens;
  6189. const int64_t n_embd_head = hparams.n_embd_head_v;
  6190. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6191. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6192. struct ggml_tensor * cur;
  6193. struct ggml_tensor * inpL;
  6194. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6195. // multiply by embedding_multiplier_scale of 78.38367176906169
  6196. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6197. // inp_pos - contains the positions
  6198. struct ggml_tensor * inp_pos = build_inp_pos();
  6199. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6200. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6201. for (int il = 0; il < n_layer; ++il) {
  6202. struct ggml_tensor * inpSA = inpL;
  6203. // norm
  6204. cur = llm_build_norm(ctx0, inpL, hparams,
  6205. model.layers[il].attn_norm, NULL,
  6206. LLM_NORM_RMS, cb, il);
  6207. cb(cur, "attn_norm", il);
  6208. // self-attention
  6209. {
  6210. // compute Q and K and RoPE them
  6211. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6212. cb(Qcur, "Qcur", il);
  6213. if (model.layers[il].bq) {
  6214. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6215. cb(Qcur, "Qcur", il);
  6216. }
  6217. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6218. cb(Kcur, "Kcur", il);
  6219. if (model.layers[il].bk) {
  6220. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6221. cb(Kcur, "Kcur", il);
  6222. }
  6223. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6224. cb(Vcur, "Vcur", il);
  6225. if (model.layers[il].bv) {
  6226. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6227. cb(Vcur, "Vcur", il);
  6228. }
  6229. Qcur = ggml_rope_custom(
  6230. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6231. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6232. ext_factor, attn_factor, beta_fast, beta_slow
  6233. );
  6234. cb(Qcur, "Qcur", il);
  6235. Kcur = ggml_rope_custom(
  6236. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6237. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6238. ext_factor, attn_factor, beta_fast, beta_slow
  6239. );
  6240. cb(Kcur, "Kcur", il);
  6241. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6242. model.layers[il].wo, model.layers[il].bo,
  6243. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6244. }
  6245. if (il == n_layer - 1) {
  6246. // skip computing output for unused tokens
  6247. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6248. n_tokens = n_outputs;
  6249. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6250. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6251. }
  6252. // Grok
  6253. // if attn_out_norm is present then apply it before adding the input
  6254. if (model.layers[il].attn_out_norm) {
  6255. cur = llm_build_norm(ctx0, cur, hparams,
  6256. model.layers[il].attn_out_norm, NULL,
  6257. LLM_NORM_RMS, cb, il);
  6258. cb(cur, "attn_out_norm", il);
  6259. }
  6260. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6261. cb(ffn_inp, "ffn_inp", il);
  6262. // feed-forward network
  6263. // MoE branch
  6264. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6265. model.layers[il].ffn_norm, NULL,
  6266. LLM_NORM_RMS, cb, il);
  6267. cb(cur, "ffn_norm", il);
  6268. cur = llm_build_moe_ffn(ctx0, cur,
  6269. model.layers[il].ffn_gate_inp,
  6270. model.layers[il].ffn_up_exps,
  6271. model.layers[il].ffn_gate_exps,
  6272. model.layers[il].ffn_down_exps,
  6273. n_expert, n_expert_used,
  6274. LLM_FFN_GELU, true,
  6275. cb, il);
  6276. cb(cur, "ffn_moe_out", il);
  6277. // Grok
  6278. // if layer_out_norm is present then apply it before adding the input
  6279. // Idea: maybe ffn_out_norm is a better name
  6280. if (model.layers[il].layer_out_norm) {
  6281. cur = llm_build_norm(ctx0, cur, hparams,
  6282. model.layers[il].layer_out_norm, NULL,
  6283. LLM_NORM_RMS, cb, il);
  6284. cb(cur, "layer_out_norm", il);
  6285. }
  6286. cur = ggml_add(ctx0, cur, ffn_inp);
  6287. cb(cur, "ffn_out", il);
  6288. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6289. if (layer_dir != nullptr) {
  6290. cur = ggml_add(ctx0, cur, layer_dir);
  6291. }
  6292. cb(cur, "l_out", il);
  6293. // input for next layer
  6294. inpL = cur;
  6295. }
  6296. cur = inpL;
  6297. cur = llm_build_norm(ctx0, cur, hparams,
  6298. model.output_norm, NULL,
  6299. LLM_NORM_RMS, cb, -1);
  6300. cb(cur, "result_norm", -1);
  6301. // lm_head
  6302. cur = ggml_mul_mat(ctx0, model.output, cur);
  6303. // Grok
  6304. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6305. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6306. cb(cur, "result_output", -1);
  6307. ggml_build_forward_expand(gf, cur);
  6308. return gf;
  6309. }
  6310. struct ggml_cgraph * build_dbrx() {
  6311. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6312. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6313. int32_t n_tokens = this->n_tokens;
  6314. const int64_t n_embd_head = hparams.n_embd_head_v;
  6315. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6316. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6317. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6318. struct ggml_tensor * cur;
  6319. struct ggml_tensor * inpL;
  6320. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6321. // inp_pos - contains the positions
  6322. struct ggml_tensor * inp_pos = build_inp_pos();
  6323. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6324. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6325. for (int il = 0; il < n_layer; ++il) {
  6326. struct ggml_tensor * inpSA = inpL;
  6327. // norm
  6328. cur = llm_build_norm(ctx0, inpL, hparams,
  6329. model.layers[il].attn_norm, NULL,
  6330. LLM_NORM, cb, il);
  6331. cb(cur, "attn_norm", il);
  6332. // self-attention
  6333. {
  6334. struct ggml_tensor * Qcur = nullptr;
  6335. struct ggml_tensor * Kcur = nullptr;
  6336. struct ggml_tensor * Vcur = nullptr;
  6337. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6338. cb(cur, "wqkv", il);
  6339. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6340. cb(cur, "wqkv_clamped", il);
  6341. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6342. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6343. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6344. cb(Qcur, "Qcur", il);
  6345. cb(Kcur, "Kcur", il);
  6346. cb(Vcur, "Vcur", il);
  6347. Qcur = ggml_rope_custom(
  6348. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6349. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6350. ext_factor, attn_factor, beta_fast, beta_slow
  6351. );
  6352. cb(Qcur, "Qcur", il);
  6353. Kcur = ggml_rope_custom(
  6354. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6355. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6356. ext_factor, attn_factor, beta_fast, beta_slow
  6357. );
  6358. cb(Kcur, "Kcur", il);
  6359. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6360. model.layers[il].wo, NULL,
  6361. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6362. }
  6363. if (il == n_layer - 1) {
  6364. // skip computing output for unused tokens
  6365. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6366. n_tokens = n_outputs;
  6367. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6368. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6369. }
  6370. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6371. cb(ffn_inp, "ffn_inp", il);
  6372. // feed-forward network
  6373. // MoE branch
  6374. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6375. model.layers[il].attn_out_norm, NULL,
  6376. LLM_NORM, cb, il);
  6377. cb(cur, "attn_out_norm", il);
  6378. cur = llm_build_moe_ffn(ctx0, cur,
  6379. model.layers[il].ffn_gate_inp,
  6380. model.layers[il].ffn_up_exps,
  6381. model.layers[il].ffn_gate_exps,
  6382. model.layers[il].ffn_down_exps,
  6383. n_expert, n_expert_used,
  6384. LLM_FFN_SILU, true,
  6385. cb, il);
  6386. cb(cur, "ffn_moe_out", il);
  6387. cur = ggml_add(ctx0, cur, ffn_inp);
  6388. cb(cur, "ffn_out", il);
  6389. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6390. if (layer_dir != nullptr) {
  6391. cur = ggml_add(ctx0, cur, layer_dir);
  6392. }
  6393. cb(cur, "l_out", il);
  6394. // input for next layer
  6395. inpL = cur;
  6396. }
  6397. cur = inpL;
  6398. cur = llm_build_norm(ctx0, cur, hparams,
  6399. model.output_norm, NULL,
  6400. LLM_NORM, cb, -1);
  6401. cb(cur, "result_norm", -1);
  6402. // lm_head
  6403. cur = ggml_mul_mat(ctx0, model.output, cur);
  6404. cb(cur, "result_output", -1);
  6405. ggml_build_forward_expand(gf, cur);
  6406. return gf;
  6407. }
  6408. struct ggml_cgraph * build_starcoder() {
  6409. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6410. const int64_t n_embd_head = hparams.n_embd_head_v;
  6411. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6412. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6413. struct ggml_tensor * cur;
  6414. struct ggml_tensor * inpL;
  6415. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6416. // inp_pos - contains the positions
  6417. struct ggml_tensor * inp_pos = build_inp_pos();
  6418. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6419. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6420. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6421. cb(pos, "pos_embd", -1);
  6422. inpL = ggml_add(ctx0, inpL, pos);
  6423. cb(inpL, "inpL", -1);
  6424. for (int il = 0; il < n_layer; ++il) {
  6425. cur = llm_build_norm(ctx0, inpL, hparams,
  6426. model.layers[il].attn_norm,
  6427. model.layers[il].attn_norm_b,
  6428. LLM_NORM, cb, il);
  6429. cb(cur, "attn_norm", il);
  6430. // self-attention
  6431. {
  6432. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6433. cb(cur, "wqkv", il);
  6434. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6435. cb(cur, "bqkv", il);
  6436. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6437. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6438. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6439. cb(Qcur, "Qcur", il);
  6440. cb(Kcur, "Kcur", il);
  6441. cb(Vcur, "Vcur", il);
  6442. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6443. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6444. model.layers[il].wo, model.layers[il].bo,
  6445. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6446. }
  6447. if (il == n_layer - 1) {
  6448. // skip computing output for unused tokens
  6449. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6450. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6451. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6452. }
  6453. // add the input
  6454. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6455. cb(ffn_inp, "ffn_inp", il);
  6456. // FF
  6457. {
  6458. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6459. model.layers[il].ffn_norm,
  6460. model.layers[il].ffn_norm_b,
  6461. LLM_NORM, cb, il);
  6462. cb(cur, "ffn_norm", il);
  6463. cur = llm_build_ffn(ctx0, cur,
  6464. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6465. NULL, NULL,
  6466. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6467. NULL,
  6468. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6469. cb(cur, "ffn_out", il);
  6470. }
  6471. inpL = ggml_add(ctx0, cur, ffn_inp);
  6472. cb(inpL, "l_out", il);
  6473. }
  6474. cur = llm_build_norm(ctx0, inpL, hparams,
  6475. model.output_norm,
  6476. model.output_norm_b,
  6477. LLM_NORM, cb, -1);
  6478. cb(cur, "result_norm", -1);
  6479. cur = ggml_mul_mat(ctx0, model.output, cur);
  6480. cb(cur, "result_output", -1);
  6481. ggml_build_forward_expand(gf, cur);
  6482. return gf;
  6483. }
  6484. struct ggml_cgraph * build_persimmon() {
  6485. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6486. const int64_t n_embd_head = hparams.n_embd_head_v;
  6487. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6488. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6489. struct ggml_tensor * cur;
  6490. struct ggml_tensor * inpL;
  6491. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6492. // inp_pos - contains the positions
  6493. struct ggml_tensor * inp_pos = build_inp_pos();
  6494. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6495. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6496. for (int il = 0; il < n_layer; ++il) {
  6497. struct ggml_tensor * residual = inpL;
  6498. cur = llm_build_norm(ctx0, inpL, hparams,
  6499. model.layers[il].attn_norm,
  6500. model.layers[il].attn_norm_b,
  6501. LLM_NORM, cb, il);
  6502. cb(cur, "attn_norm", il);
  6503. // self attention
  6504. {
  6505. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6506. cb(cur, "wqkv", il);
  6507. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6508. cb(cur, "bqkv", il);
  6509. // split qkv
  6510. GGML_ASSERT(n_head_kv == n_head);
  6511. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6512. cb(tmpqkv, "tmpqkv", il);
  6513. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6514. cb(tmpqkv_perm, "tmpqkv", il);
  6515. struct ggml_tensor * tmpq = ggml_view_3d(
  6516. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6517. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6518. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6519. 0
  6520. );
  6521. cb(tmpq, "tmpq", il);
  6522. struct ggml_tensor * tmpk = ggml_view_3d(
  6523. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6524. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6525. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6526. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6527. );
  6528. cb(tmpk, "tmpk", il);
  6529. // Q/K Layernorm
  6530. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6531. model.layers[il].attn_q_norm,
  6532. model.layers[il].attn_q_norm_b,
  6533. LLM_NORM, cb, il);
  6534. cb(tmpq, "tmpq", il);
  6535. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6536. model.layers[il].attn_k_norm,
  6537. model.layers[il].attn_k_norm_b,
  6538. LLM_NORM, cb, il);
  6539. cb(tmpk, "tmpk", il);
  6540. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6541. struct ggml_tensor * qrot = ggml_view_3d(
  6542. ctx0, tmpq, n_rot, n_head, n_tokens,
  6543. ggml_element_size(tmpq) * n_embd_head,
  6544. ggml_element_size(tmpq) * n_embd_head * n_head,
  6545. 0
  6546. );
  6547. cb(qrot, "qrot", il);
  6548. struct ggml_tensor * krot = ggml_view_3d(
  6549. ctx0, tmpk, n_rot, n_head, n_tokens,
  6550. ggml_element_size(tmpk) * n_embd_head,
  6551. ggml_element_size(tmpk) * n_embd_head * n_head,
  6552. 0
  6553. );
  6554. cb(krot, "krot", il);
  6555. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6556. struct ggml_tensor * qpass = ggml_view_3d(
  6557. ctx0, tmpq, n_rot, n_head, n_tokens,
  6558. ggml_element_size(tmpq) * n_embd_head,
  6559. ggml_element_size(tmpq) * n_embd_head * n_head,
  6560. ggml_element_size(tmpq) * n_rot
  6561. );
  6562. cb(qpass, "qpass", il);
  6563. struct ggml_tensor * kpass = ggml_view_3d(
  6564. ctx0, tmpk, n_rot, n_head, n_tokens,
  6565. ggml_element_size(tmpk) * n_embd_head,
  6566. ggml_element_size(tmpk) * n_embd_head * n_head,
  6567. ggml_element_size(tmpk) * n_rot
  6568. );
  6569. cb(kpass, "kpass", il);
  6570. struct ggml_tensor * qrotated = ggml_rope_custom(
  6571. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6572. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6573. );
  6574. cb(qrotated, "qrotated", il);
  6575. struct ggml_tensor * krotated = ggml_rope_custom(
  6576. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6577. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6578. );
  6579. cb(krotated, "krotated", il);
  6580. // ggml currently only supports concatenation on dim=2
  6581. // so we need to permute qrot, qpass, concat, then permute back.
  6582. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6583. cb(qrotated, "qrotated", il);
  6584. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6585. cb(krotated, "krotated", il);
  6586. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6587. cb(qpass, "qpass", il);
  6588. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6589. cb(kpass, "kpass", il);
  6590. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6591. cb(Qcur, "Qcur", il);
  6592. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6593. cb(Kcur, "Kcur", il);
  6594. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6595. cb(Q, "Q", il);
  6596. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6597. cb(Kcur, "Kcur", il);
  6598. struct ggml_tensor * Vcur = ggml_view_3d(
  6599. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6600. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6601. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6602. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6603. );
  6604. cb(Vcur, "Vcur", il);
  6605. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6606. model.layers[il].wo, model.layers[il].bo,
  6607. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6608. }
  6609. if (il == n_layer - 1) {
  6610. // skip computing output for unused tokens
  6611. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6612. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6613. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6614. }
  6615. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6616. cb(ffn_inp, "ffn_inp", il);
  6617. // feed-forward network
  6618. {
  6619. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6620. model.layers[il].ffn_norm,
  6621. model.layers[il].ffn_norm_b,
  6622. LLM_NORM, cb, il);
  6623. cb(cur, "ffn_norm", il);
  6624. cur = llm_build_ffn(ctx0, cur,
  6625. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6626. NULL, NULL,
  6627. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6628. NULL,
  6629. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6630. cb(cur, "ffn_out", il);
  6631. }
  6632. cur = ggml_add(ctx0, cur, ffn_inp);
  6633. cb(cur, "l_out", il);
  6634. inpL = cur;
  6635. }
  6636. cur = inpL;
  6637. cur = llm_build_norm(ctx0, cur, hparams,
  6638. model.output_norm,
  6639. model.output_norm_b,
  6640. LLM_NORM, cb, -1);
  6641. cb(cur, "result_norm", -1);
  6642. cur = ggml_mul_mat(ctx0, model.output, cur);
  6643. cb(cur, "result_output", -1);
  6644. ggml_build_forward_expand(gf, cur);
  6645. return gf;
  6646. }
  6647. struct ggml_cgraph * build_refact() {
  6648. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6649. const int64_t n_embd_head = hparams.n_embd_head_v;
  6650. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6651. struct ggml_tensor * cur;
  6652. struct ggml_tensor * inpL;
  6653. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6654. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6655. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6656. // positions of the tokens in the KV cache
  6657. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6658. for (int il = 0; il < n_layer; ++il) {
  6659. struct ggml_tensor * inpSA = inpL;
  6660. cur = llm_build_norm(ctx0, inpL, hparams,
  6661. model.layers[il].attn_norm, NULL,
  6662. LLM_NORM_RMS, cb, il);
  6663. cb(cur, "attn_norm", il);
  6664. // self-attention
  6665. {
  6666. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6667. cb(Qcur, "Qcur", il);
  6668. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6669. cb(Kcur, "Kcur", il);
  6670. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6671. cb(Vcur, "Vcur", il);
  6672. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6673. cb(Kcur, "Kcur", il);
  6674. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6675. cb(Qcur, "Qcur", il);
  6676. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6677. model.layers[il].wo, NULL,
  6678. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6679. }
  6680. if (il == n_layer - 1) {
  6681. // skip computing output for unused tokens
  6682. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6683. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6684. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6685. }
  6686. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6687. cb(ffn_inp, "ffn_inp", il);
  6688. // feed-forward network
  6689. {
  6690. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6691. model.layers[il].ffn_norm, NULL,
  6692. LLM_NORM_RMS, cb, il);
  6693. cb(cur, "ffn_norm", il);
  6694. cur = llm_build_ffn(ctx0, cur,
  6695. model.layers[il].ffn_up, NULL,
  6696. model.layers[il].ffn_gate, NULL,
  6697. model.layers[il].ffn_down, NULL,
  6698. NULL,
  6699. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6700. cb(cur, "ffn_out", il);
  6701. }
  6702. cur = ggml_add(ctx0, cur, ffn_inp);
  6703. cb(cur, "l_out", il);
  6704. // input for next layer
  6705. inpL = cur;
  6706. }
  6707. cur = inpL;
  6708. cur = llm_build_norm(ctx0, cur, hparams,
  6709. model.output_norm, NULL,
  6710. LLM_NORM_RMS, cb, -1);
  6711. cb(cur, "result_norm", -1);
  6712. // lm_head
  6713. cur = ggml_mul_mat(ctx0, model.output, cur);
  6714. cb(cur, "result_output", -1);
  6715. ggml_build_forward_expand(gf, cur);
  6716. return gf;
  6717. }
  6718. struct ggml_cgraph * build_bert() {
  6719. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6720. const int64_t n_embd_head = hparams.n_embd_head_v;
  6721. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6722. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6723. struct ggml_tensor * cur;
  6724. struct ggml_tensor * inpL;
  6725. struct ggml_tensor * inp_pos = build_inp_pos();
  6726. struct ggml_tensor * inp_mean = build_inp_mean();
  6727. struct ggml_tensor * inp_cls = build_inp_cls();
  6728. // construct input embeddings (token, type, position)
  6729. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6730. // token types are hardcoded to zero ("Sentence A")
  6731. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6732. inpL = ggml_add(ctx0, inpL, type_row0);
  6733. if (model.arch == LLM_ARCH_BERT) {
  6734. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6735. }
  6736. cb(inpL, "inp_embd", -1);
  6737. // embed layer norm
  6738. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6739. cb(inpL, "inp_norm", -1);
  6740. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6741. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6742. // iterate layers
  6743. for (int il = 0; il < n_layer; ++il) {
  6744. struct ggml_tensor * cur = inpL;
  6745. struct ggml_tensor * Qcur;
  6746. struct ggml_tensor * Kcur;
  6747. struct ggml_tensor * Vcur;
  6748. // self-attention
  6749. if (model.arch == LLM_ARCH_BERT) {
  6750. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6751. cb(Qcur, "Qcur", il);
  6752. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6753. cb(Kcur, "Kcur", il);
  6754. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6755. cb(Vcur, "Vcur", il);
  6756. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6757. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6758. } else {
  6759. // compute Q and K and RoPE them
  6760. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6761. cb(cur, "wqkv", il);
  6762. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6763. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6764. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6765. cb(Qcur, "Qcur", il);
  6766. cb(Kcur, "Kcur", il);
  6767. cb(Vcur, "Vcur", il);
  6768. Qcur = ggml_rope_custom(
  6769. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6770. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6771. ext_factor, attn_factor, beta_fast, beta_slow
  6772. );
  6773. cb(Qcur, "Qcur", il);
  6774. Kcur = ggml_rope_custom(
  6775. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6776. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6777. ext_factor, attn_factor, beta_fast, beta_slow
  6778. );
  6779. cb(Kcur, "Kcur", il);
  6780. }
  6781. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6782. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6783. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6784. cb(kq, "kq", il);
  6785. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6786. cb(kq, "kq_soft_max_ext", il);
  6787. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6788. cb(v, "v", il);
  6789. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6790. cb(kqv, "kqv", il);
  6791. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6792. cb(kqv_merged, "kqv_merged", il);
  6793. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6794. cb(cur, "kqv_merged_cont", il);
  6795. ggml_build_forward_expand(gf, cur);
  6796. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6797. if (model.layers[il].bo) {
  6798. cb(cur, "kqv_wo", il);
  6799. }
  6800. if (model.layers[il].bo) {
  6801. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6802. }
  6803. cb(cur, "kqv_out", il);
  6804. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6805. // skip computing output for unused tokens
  6806. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6807. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6808. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6809. }
  6810. // re-add the layer input
  6811. cur = ggml_add(ctx0, cur, inpL);
  6812. // attention layer norm
  6813. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6814. struct ggml_tensor * ffn_inp = cur;
  6815. cb(ffn_inp, "ffn_inp", il);
  6816. // feed-forward network
  6817. if (model.arch == LLM_ARCH_BERT) {
  6818. cur = llm_build_ffn(ctx0, cur,
  6819. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6820. NULL, NULL,
  6821. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6822. NULL,
  6823. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6824. } else {
  6825. cur = llm_build_ffn(ctx0, cur,
  6826. model.layers[il].ffn_up, NULL,
  6827. model.layers[il].ffn_gate, NULL,
  6828. model.layers[il].ffn_down, NULL,
  6829. NULL,
  6830. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6831. }
  6832. cb(cur, "ffn_out", il);
  6833. // attentions bypass the intermediate layer
  6834. cur = ggml_add(ctx0, cur, ffn_inp);
  6835. // output layer norm
  6836. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6837. // input for next layer
  6838. inpL = cur;
  6839. }
  6840. // final output
  6841. cur = inpL;
  6842. cb(cur, "result_embd", -1);
  6843. // pooling layer
  6844. switch (pooling_type) {
  6845. case LLAMA_POOLING_TYPE_NONE:
  6846. {
  6847. // nop
  6848. } break;
  6849. case LLAMA_POOLING_TYPE_MEAN:
  6850. {
  6851. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6852. cb(cur, "result_embd_pooled", -1);
  6853. } break;
  6854. case LLAMA_POOLING_TYPE_CLS:
  6855. {
  6856. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6857. cb(cur, "result_embd_pooled", -1);
  6858. } break;
  6859. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6860. {
  6861. GGML_ASSERT(false && "Invalid pooling type");
  6862. } break;
  6863. }
  6864. ggml_build_forward_expand(gf, cur);
  6865. return gf;
  6866. }
  6867. struct ggml_cgraph * build_bloom() {
  6868. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6869. const int64_t n_embd_head = hparams.n_embd_head_v;
  6870. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6871. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6872. struct ggml_tensor * cur;
  6873. struct ggml_tensor * inpL;
  6874. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6875. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6876. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6877. // positions of the tokens in the KV cache
  6878. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6879. inpL = llm_build_norm(ctx0, inpL, hparams,
  6880. model.tok_norm,
  6881. model.tok_norm_b,
  6882. LLM_NORM, cb, -1);
  6883. cb(inpL, "inp_norm", -1);
  6884. for (int il = 0; il < n_layer; ++il) {
  6885. cur = llm_build_norm(ctx0, inpL, hparams,
  6886. model.layers[il].attn_norm,
  6887. model.layers[il].attn_norm_b,
  6888. LLM_NORM, cb, il);
  6889. cb(cur, "attn_norm", il);
  6890. // self-attention
  6891. {
  6892. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6893. cb(cur, "wqkv", il);
  6894. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6895. cb(cur, "bqkv", il);
  6896. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6897. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6898. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6899. cb(Qcur, "Qcur", il);
  6900. cb(Kcur, "Kcur", il);
  6901. cb(Vcur, "Vcur", il);
  6902. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6903. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6904. model.layers[il].wo, model.layers[il].bo,
  6905. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6906. }
  6907. if (il == n_layer - 1) {
  6908. // skip computing output for unused tokens
  6909. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6910. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6911. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6912. }
  6913. // Add the input
  6914. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6915. cb(ffn_inp, "ffn_inp", il);
  6916. // FF
  6917. {
  6918. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6919. model.layers[il].ffn_norm,
  6920. model.layers[il].ffn_norm_b,
  6921. LLM_NORM, cb, il);
  6922. cb(cur, "ffn_norm", il);
  6923. cur = llm_build_ffn(ctx0, cur,
  6924. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6925. NULL, NULL,
  6926. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6927. NULL,
  6928. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6929. cb(cur, "ffn_out", il);
  6930. }
  6931. inpL = ggml_add(ctx0, cur, ffn_inp);
  6932. cb(inpL, "l_out", il);
  6933. }
  6934. cur = llm_build_norm(ctx0, inpL, hparams,
  6935. model.output_norm,
  6936. model.output_norm_b,
  6937. LLM_NORM, cb, -1);
  6938. cb(cur, "result_norm", -1);
  6939. cur = ggml_mul_mat(ctx0, model.output, cur);
  6940. cb(cur, "result_output", -1);
  6941. ggml_build_forward_expand(gf, cur);
  6942. return gf;
  6943. }
  6944. struct ggml_cgraph * build_mpt() {
  6945. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6946. const int64_t n_embd_head = hparams.n_embd_head_v;
  6947. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6948. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6949. struct ggml_tensor * cur;
  6950. struct ggml_tensor * pos;
  6951. struct ggml_tensor * inpL;
  6952. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6953. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6954. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6955. // positions of the tokens in the KV cache
  6956. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6957. if (model.pos_embd) {
  6958. // inp_pos - contains the positions
  6959. struct ggml_tensor * inp_pos = build_inp_pos();
  6960. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6961. cb(pos, "pos_embd", -1);
  6962. inpL = ggml_add(ctx0, inpL, pos);
  6963. cb(inpL, "inpL", -1);
  6964. }
  6965. for (int il = 0; il < n_layer; ++il) {
  6966. struct ggml_tensor * attn_norm;
  6967. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6968. model.layers[il].attn_norm,
  6969. model.layers[il].attn_norm_b,
  6970. LLM_NORM, cb, il);
  6971. cb(attn_norm, "attn_norm", il);
  6972. // self-attention
  6973. {
  6974. cur = attn_norm;
  6975. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6976. cb(cur, "wqkv", il);
  6977. if (model.layers[il].bqkv){
  6978. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6979. cb(cur, "bqkv", il);
  6980. }
  6981. if (hparams.f_clamp_kqv > 0.0f) {
  6982. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6983. cb(cur, "wqkv_clamped", il);
  6984. }
  6985. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6986. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6987. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6988. cb(Qcur, "Qcur", il);
  6989. cb(Kcur, "Kcur", il);
  6990. cb(Vcur, "Vcur", il);
  6991. // Q/K Layernorm
  6992. if (model.layers[il].attn_q_norm) {
  6993. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6994. model.layers[il].attn_q_norm,
  6995. model.layers[il].attn_q_norm_b,
  6996. LLM_NORM, cb, il);
  6997. cb(Qcur, "Qcur", il);
  6998. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6999. model.layers[il].attn_k_norm,
  7000. model.layers[il].attn_k_norm_b,
  7001. LLM_NORM, cb, il);
  7002. cb(Kcur, "Kcur", il);
  7003. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7004. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7005. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7006. model.layers[il].wo, model.layers[il].bo,
  7007. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7008. } else {
  7009. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7010. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7011. model.layers[il].wo, model.layers[il].bo,
  7012. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7013. }
  7014. }
  7015. if (il == n_layer - 1) {
  7016. // skip computing output for unused tokens
  7017. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7018. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7019. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7020. }
  7021. // Add the input
  7022. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7023. cb(ffn_inp, "ffn_inp", il);
  7024. // feed forward
  7025. {
  7026. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7027. model.layers[il].ffn_norm,
  7028. model.layers[il].ffn_norm_b,
  7029. LLM_NORM, cb, il);
  7030. cb(cur, "ffn_norm", il);
  7031. cur = llm_build_ffn(ctx0, cur,
  7032. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7033. NULL, NULL,
  7034. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7035. model.layers[il].ffn_act,
  7036. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7037. cb(cur, "ffn_out", il);
  7038. }
  7039. cur = ggml_add(ctx0, cur, ffn_inp);
  7040. cb(cur, "l_out", il);
  7041. // input for next layer
  7042. inpL = cur;
  7043. }
  7044. cur = inpL;
  7045. cur = llm_build_norm(ctx0, cur, hparams,
  7046. model.output_norm,
  7047. model.output_norm_b,
  7048. LLM_NORM, cb, -1);
  7049. cb(cur, "result_norm", -1);
  7050. cur = ggml_mul_mat(ctx0, model.output, cur);
  7051. cb(cur, "result_output", -1);
  7052. ggml_build_forward_expand(gf, cur);
  7053. return gf;
  7054. }
  7055. struct ggml_cgraph * build_stablelm() {
  7056. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7057. const int64_t n_embd_head = hparams.n_embd_head_v;
  7058. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7059. struct ggml_tensor * cur;
  7060. struct ggml_tensor * inpL;
  7061. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7062. // inp_pos - contains the positions
  7063. struct ggml_tensor * inp_pos = build_inp_pos();
  7064. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7065. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7066. for (int il = 0; il < n_layer; ++il) {
  7067. // norm
  7068. cur = llm_build_norm(ctx0, inpL, hparams,
  7069. model.layers[il].attn_norm,
  7070. model.layers[il].attn_norm_b,
  7071. LLM_NORM, cb, il);
  7072. cb(cur, "attn_norm", il);
  7073. struct ggml_tensor * inpSA = cur;
  7074. // self-attention
  7075. {
  7076. // compute Q and K and RoPE them
  7077. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7078. cb(Qcur, "Qcur", il);
  7079. if (model.layers[il].bq) {
  7080. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7081. cb(Qcur, "Qcur", il);
  7082. }
  7083. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7084. cb(Kcur, "Kcur", il);
  7085. if (model.layers[il].bk) {
  7086. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7087. cb(Kcur, "Kcur", il);
  7088. }
  7089. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7090. cb(Vcur, "Vcur", il);
  7091. if (model.layers[il].bv) {
  7092. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7093. cb(Vcur, "Vcur", il);
  7094. }
  7095. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7096. cb(Qcur, "Qcur", il);
  7097. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7098. cb(Kcur, "Kcur", il);
  7099. if (model.layers[il].attn_q_norm) {
  7100. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7101. model.layers[il].attn_q_norm,
  7102. NULL,
  7103. LLM_NORM, cb, il);
  7104. cb(Qcur, "Qcur", il);
  7105. }
  7106. if (model.layers[il].attn_k_norm) {
  7107. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7108. model.layers[il].attn_k_norm,
  7109. NULL,
  7110. LLM_NORM, cb, il);
  7111. cb(Kcur, "Kcur", il);
  7112. }
  7113. Qcur = ggml_rope_custom(
  7114. ctx0, Qcur, inp_pos,
  7115. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7116. ext_factor, attn_factor, beta_fast, beta_slow
  7117. );
  7118. cb(Qcur, "Qcur", il);
  7119. Kcur = ggml_rope_custom(
  7120. ctx0, Kcur, inp_pos,
  7121. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7122. ext_factor, attn_factor, beta_fast, beta_slow
  7123. );
  7124. cb(Kcur, "Kcur", il);
  7125. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7126. model.layers[il].wo, NULL,
  7127. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7128. }
  7129. if (il == n_layer - 1) {
  7130. // skip computing output for unused tokens
  7131. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7132. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7133. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7134. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7135. }
  7136. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7137. cb(ffn_inp, "ffn_inp", il);
  7138. // feed-forward network
  7139. {
  7140. if (model.layers[il].ffn_norm) {
  7141. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7142. model.layers[il].ffn_norm,
  7143. model.layers[il].ffn_norm_b,
  7144. LLM_NORM, cb, il);
  7145. cb(cur, "ffn_norm", il);
  7146. } else {
  7147. // parallel residual
  7148. cur = inpSA;
  7149. }
  7150. cur = llm_build_ffn(ctx0, cur,
  7151. model.layers[il].ffn_up, NULL,
  7152. model.layers[il].ffn_gate, NULL,
  7153. model.layers[il].ffn_down, NULL,
  7154. NULL,
  7155. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7156. cb(cur, "ffn_out", il);
  7157. }
  7158. cur = ggml_add(ctx0, cur, ffn_inp);
  7159. cb(cur, "l_out", il);
  7160. // input for next layer
  7161. inpL = cur;
  7162. }
  7163. cur = inpL;
  7164. cur = llm_build_norm(ctx0, cur, hparams,
  7165. model.output_norm,
  7166. model.output_norm_b,
  7167. LLM_NORM, cb, -1);
  7168. cb(cur, "result_norm", -1);
  7169. // lm_head
  7170. cur = ggml_mul_mat(ctx0, model.output, cur);
  7171. cb(cur, "result_output", -1);
  7172. ggml_build_forward_expand(gf, cur);
  7173. return gf;
  7174. }
  7175. struct ggml_cgraph * build_qwen() {
  7176. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7177. const int64_t n_embd_head = hparams.n_embd_head_v;
  7178. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7179. struct ggml_tensor * cur;
  7180. struct ggml_tensor * inpL;
  7181. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7182. // inp_pos - contains the positions
  7183. struct ggml_tensor * inp_pos = build_inp_pos();
  7184. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7185. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7186. for (int il = 0; il < n_layer; ++il) {
  7187. struct ggml_tensor * inpSA = inpL;
  7188. cur = llm_build_norm(ctx0, inpL, hparams,
  7189. model.layers[il].attn_norm, NULL,
  7190. LLM_NORM_RMS, cb, il);
  7191. cb(cur, "attn_norm", il);
  7192. // self-attention
  7193. {
  7194. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7195. cb(cur, "wqkv", il);
  7196. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7197. cb(cur, "bqkv", il);
  7198. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7199. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7200. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7201. cb(Qcur, "Qcur", il);
  7202. cb(Kcur, "Kcur", il);
  7203. cb(Vcur, "Vcur", il);
  7204. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7205. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7206. // using mode = 2 for neox mode
  7207. Qcur = ggml_rope_custom(
  7208. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7209. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7210. );
  7211. cb(Qcur, "Qcur", il);
  7212. Kcur = ggml_rope_custom(
  7213. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7214. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7215. );
  7216. cb(Kcur, "Kcur", il);
  7217. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7218. model.layers[il].wo, NULL,
  7219. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7220. }
  7221. if (il == n_layer - 1) {
  7222. // skip computing output for unused tokens
  7223. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7224. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7225. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7226. }
  7227. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7228. cb(ffn_inp, "ffn_inp", il);
  7229. // feed-forward forward
  7230. {
  7231. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7232. model.layers[il].ffn_norm, NULL,
  7233. LLM_NORM_RMS, cb, il);
  7234. cb(cur, "ffn_norm", il);
  7235. cur = llm_build_ffn(ctx0, cur,
  7236. model.layers[il].ffn_up, NULL,
  7237. model.layers[il].ffn_gate, NULL,
  7238. model.layers[il].ffn_down, NULL,
  7239. NULL,
  7240. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7241. cb(cur, "ffn_out", il);
  7242. }
  7243. cur = ggml_add(ctx0, cur, ffn_inp);
  7244. cb(cur, "l_out", il);
  7245. // input for next layer
  7246. inpL = cur;
  7247. }
  7248. cur = inpL;
  7249. cur = llm_build_norm(ctx0, cur, hparams,
  7250. model.output_norm, NULL,
  7251. LLM_NORM_RMS, cb, -1);
  7252. cb(cur, "result_norm", -1);
  7253. // lm_head
  7254. cur = ggml_mul_mat(ctx0, model.output, cur);
  7255. cb(cur, "result_output", -1);
  7256. ggml_build_forward_expand(gf, cur);
  7257. return gf;
  7258. }
  7259. struct ggml_cgraph * build_qwen2() {
  7260. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7261. const int64_t n_embd_head = hparams.n_embd_head_v;
  7262. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7263. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7264. struct ggml_tensor * cur;
  7265. struct ggml_tensor * inpL;
  7266. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7267. // inp_pos - contains the positions
  7268. struct ggml_tensor * inp_pos = build_inp_pos();
  7269. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7270. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7271. for (int il = 0; il < n_layer; ++il) {
  7272. struct ggml_tensor * inpSA = inpL;
  7273. // norm
  7274. cur = llm_build_norm(ctx0, inpL, hparams,
  7275. model.layers[il].attn_norm, NULL,
  7276. LLM_NORM_RMS, cb, il);
  7277. cb(cur, "attn_norm", il);
  7278. // self-attention
  7279. {
  7280. // compute Q and K and RoPE them
  7281. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7282. cb(Qcur, "Qcur", il);
  7283. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7284. cb(Qcur, "Qcur", il);
  7285. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7286. cb(Kcur, "Kcur", il);
  7287. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7288. cb(Kcur, "Kcur", il);
  7289. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7290. cb(Vcur, "Vcur", il);
  7291. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7292. cb(Vcur, "Vcur", il);
  7293. Qcur = ggml_rope_custom(
  7294. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7295. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7296. ext_factor, attn_factor, beta_fast, beta_slow
  7297. );
  7298. cb(Qcur, "Qcur", il);
  7299. Kcur = ggml_rope_custom(
  7300. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7301. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7302. ext_factor, attn_factor, beta_fast, beta_slow
  7303. );
  7304. cb(Kcur, "Kcur", il);
  7305. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7306. model.layers[il].wo, model.layers[il].bo,
  7307. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7308. }
  7309. if (il == n_layer - 1) {
  7310. // skip computing output for unused tokens
  7311. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7312. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7313. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7314. }
  7315. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7316. cb(ffn_inp, "ffn_inp", il);
  7317. // feed-forward network
  7318. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7319. model.layers[il].ffn_norm, NULL,
  7320. LLM_NORM_RMS, cb, il);
  7321. cb(cur, "ffn_norm", il);
  7322. cur = llm_build_ffn(ctx0, cur,
  7323. model.layers[il].ffn_up, NULL,
  7324. model.layers[il].ffn_gate, NULL,
  7325. model.layers[il].ffn_down, NULL,
  7326. NULL,
  7327. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7328. cb(cur, "ffn_out", il);
  7329. cur = ggml_add(ctx0, cur, ffn_inp);
  7330. cb(cur, "l_out", il);
  7331. // input for next layer
  7332. inpL = cur;
  7333. }
  7334. cur = inpL;
  7335. cur = llm_build_norm(ctx0, cur, hparams,
  7336. model.output_norm, NULL,
  7337. LLM_NORM_RMS, cb, -1);
  7338. cb(cur, "result_norm", -1);
  7339. // lm_head
  7340. cur = ggml_mul_mat(ctx0, model.output, cur);
  7341. cb(cur, "result_output", -1);
  7342. ggml_build_forward_expand(gf, cur);
  7343. return gf;
  7344. }
  7345. struct ggml_cgraph * build_qwen2moe() {
  7346. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7347. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7348. int32_t n_tokens = this->n_tokens;
  7349. const int64_t n_embd_head = hparams.n_embd_head_v;
  7350. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7351. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7352. struct ggml_tensor * cur;
  7353. struct ggml_tensor * inpL;
  7354. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7355. // inp_pos - contains the positions
  7356. struct ggml_tensor * inp_pos = build_inp_pos();
  7357. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7358. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7359. for (int il = 0; il < n_layer; ++il) {
  7360. struct ggml_tensor * inpSA = inpL;
  7361. // norm
  7362. cur = llm_build_norm(ctx0, inpL, hparams,
  7363. model.layers[il].attn_norm, NULL,
  7364. LLM_NORM_RMS, cb, il);
  7365. cb(cur, "attn_norm", il);
  7366. // self_attention
  7367. {
  7368. // compute Q and K and RoPE them
  7369. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7370. cb(Qcur, "Qcur", il);
  7371. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7372. cb(Qcur, "Qcur", il);
  7373. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7374. cb(Kcur, "Kcur", il);
  7375. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7376. cb(Kcur, "Kcur", il);
  7377. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7378. cb(Vcur, "Vcur", il);
  7379. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7380. cb(Vcur, "Vcur", il);
  7381. Qcur = ggml_rope_custom(
  7382. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7383. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7384. ext_factor, attn_factor, beta_fast, beta_slow
  7385. );
  7386. cb(Qcur, "Qcur", il);
  7387. Kcur = ggml_rope_custom(
  7388. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7389. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7390. ext_factor, attn_factor, beta_fast, beta_slow
  7391. );
  7392. cb(Kcur, "Kcur", il);
  7393. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7394. model.layers[il].wo, model.layers[il].bo,
  7395. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7396. }
  7397. if (il == n_layer - 1) {
  7398. // skip computing output for unused tokens
  7399. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7400. n_tokens = n_outputs;
  7401. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7402. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7403. }
  7404. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7405. cb(ffn_inp, "ffn_inp", il);
  7406. // MoE branch
  7407. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7408. model.layers[il].ffn_norm, NULL,
  7409. LLM_NORM_RMS, cb, il);
  7410. cb(cur, "ffn_norm", il);
  7411. ggml_tensor * moe_out =
  7412. llm_build_moe_ffn(ctx0, cur,
  7413. model.layers[il].ffn_gate_inp,
  7414. model.layers[il].ffn_up_exps,
  7415. model.layers[il].ffn_gate_exps,
  7416. model.layers[il].ffn_down_exps,
  7417. n_expert, n_expert_used,
  7418. LLM_FFN_SILU, false,
  7419. cb, il);
  7420. cb(cur, "ffn_moe_out", il);
  7421. // FFN shared expert
  7422. {
  7423. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7424. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7425. // sigmoid
  7426. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7427. cb(cur_gate, "ffn_shexp_gate", il);
  7428. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7429. model.layers[il].ffn_up_shexp, NULL,
  7430. model.layers[il].ffn_gate_shexp, NULL,
  7431. model.layers[il].ffn_down_shexp, NULL,
  7432. NULL,
  7433. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7434. cb(cur_ffn, "ffn_shexp", il);
  7435. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7436. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7437. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7438. cb(moe_out, "ffn_out", il);
  7439. cur = moe_out;
  7440. }
  7441. cur = ggml_add(ctx0, cur, ffn_inp);
  7442. cb(cur, "l_out", il);
  7443. // input for next layer
  7444. inpL = cur;
  7445. }
  7446. cur = inpL;
  7447. cur = llm_build_norm(ctx0, cur, hparams,
  7448. model.output_norm, NULL,
  7449. LLM_NORM_RMS, cb, -1);
  7450. cb(cur, "result_norm", -1);
  7451. // lm_head
  7452. cur = ggml_mul_mat(ctx0, model.output, cur);
  7453. cb(cur, "result_output", -1);
  7454. ggml_build_forward_expand(gf, cur);
  7455. return gf;
  7456. }
  7457. struct ggml_cgraph * build_phi2() {
  7458. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7459. const int64_t n_embd_head = hparams.n_embd_head_v;
  7460. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7461. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7462. struct ggml_tensor * cur;
  7463. struct ggml_tensor * attn_norm_output;
  7464. struct ggml_tensor * ffn_output;
  7465. struct ggml_tensor * inpL;
  7466. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7467. // inp_pos - contains the positions
  7468. struct ggml_tensor * inp_pos = build_inp_pos();
  7469. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7470. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7471. for (int il = 0; il < n_layer; ++il) {
  7472. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7473. model.layers[il].attn_norm,
  7474. model.layers[il].attn_norm_b,
  7475. LLM_NORM, cb, il);
  7476. cb(attn_norm_output, "attn_norm", il);
  7477. // self-attention
  7478. {
  7479. struct ggml_tensor * Qcur = nullptr;
  7480. struct ggml_tensor * Kcur = nullptr;
  7481. struct ggml_tensor * Vcur = nullptr;
  7482. if (model.layers[il].wqkv) {
  7483. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7484. cb(cur, "wqkv", il);
  7485. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7486. cb(cur, "bqkv", il);
  7487. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7488. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7489. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7490. } else {
  7491. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7492. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7493. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7494. }
  7495. cb(Qcur, "Qcur", il);
  7496. cb(Kcur, "Kcur", il);
  7497. cb(Vcur, "Vcur", il);
  7498. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7499. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7500. Qcur = ggml_rope_custom(
  7501. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7502. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7503. );
  7504. cb(Qcur, "Qcur", il);
  7505. // with phi2, we scale the Q to avoid precision issues
  7506. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7507. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7508. cb(Qcur, "Qcur", il);
  7509. Kcur = ggml_rope_custom(
  7510. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7511. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7512. );
  7513. cb(Kcur, "Kcur", il);
  7514. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7515. model.layers[il].wo, model.layers[il].bo,
  7516. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7517. }
  7518. if (il == n_layer - 1) {
  7519. // skip computing output for unused tokens
  7520. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7521. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7522. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7523. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7524. }
  7525. // FF
  7526. {
  7527. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7528. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7529. NULL, NULL,
  7530. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7531. NULL,
  7532. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7533. cb(ffn_output, "ffn_out", il);
  7534. }
  7535. cur = ggml_add(ctx0, cur, ffn_output);
  7536. cb(cur, "l_out", il);
  7537. cur = ggml_add(ctx0, cur, inpL);
  7538. cb(cur, "l_out", il);
  7539. inpL = cur;
  7540. }
  7541. cur = llm_build_norm(ctx0, inpL, hparams,
  7542. model.output_norm,
  7543. model.output_norm_b,
  7544. LLM_NORM, cb, -1);
  7545. cb(cur, "result_norm", -1);
  7546. cur = ggml_mul_mat(ctx0, model.output, cur);
  7547. cb(cur, "result_output_no_bias", -1);
  7548. cur = ggml_add(ctx0, cur, model.output_b);
  7549. cb(cur, "result_output", -1);
  7550. ggml_build_forward_expand(gf, cur);
  7551. return gf;
  7552. }
  7553. struct ggml_cgraph * build_phi3() {
  7554. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7555. const int64_t n_embd_head = hparams.n_embd_head_v;
  7556. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7557. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7558. struct ggml_tensor * cur;
  7559. struct ggml_tensor * inpL;
  7560. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7561. // inp_pos - contains the positions
  7562. struct ggml_tensor * inp_pos = build_inp_pos();
  7563. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7564. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7565. for (int il = 0; il < n_layer; ++il) {
  7566. auto residual = inpL;
  7567. // self-attention
  7568. {
  7569. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7570. model.layers[il].attn_norm,
  7571. NULL,
  7572. LLM_NORM_RMS, cb, il);
  7573. cb(attn_norm_output, "attn_norm", il);
  7574. struct ggml_tensor * Qcur = nullptr;
  7575. struct ggml_tensor * Kcur = nullptr;
  7576. struct ggml_tensor * Vcur = nullptr;
  7577. if (model.layers[il].wqkv) {
  7578. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7579. cb(cur, "wqkv", il);
  7580. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7581. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7582. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7583. }
  7584. else {
  7585. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7586. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7587. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7588. }
  7589. cb(Qcur, "Qcur", il);
  7590. cb(Kcur, "Kcur", il);
  7591. cb(Vcur, "Vcur", il);
  7592. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7593. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7594. Qcur = ggml_rope_custom(
  7595. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7596. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7597. );
  7598. cb(Qcur, "Qcur", il);
  7599. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7600. cb(Qcur, "Qcur", il);
  7601. Kcur = ggml_rope_custom(
  7602. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7603. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7604. );
  7605. cb(Kcur, "Kcur", il);
  7606. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7607. model.layers[il].wo, NULL,
  7608. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7609. }
  7610. if (il == n_layer - 1) {
  7611. // skip computing output for unused tokens
  7612. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7613. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7614. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7615. }
  7616. cur = ggml_add(ctx0, cur, residual);
  7617. residual = cur;
  7618. cur = llm_build_norm(ctx0, cur, hparams,
  7619. model.layers[il].ffn_norm, NULL,
  7620. LLM_NORM_RMS, cb, il);
  7621. cb(cur, "ffn_norm", il);
  7622. // FF
  7623. // special-case: the up and gate tensors are merged into a single tensor
  7624. // TOOD: support into llm_build_ffn
  7625. {
  7626. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7627. cb(up, "ffn_up", il);
  7628. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7629. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7630. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7631. cb(y, "ffn_gate", il);
  7632. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7633. cb(down, "ffn_down", il);
  7634. cur = down;
  7635. cb(cur, "ffn_out", il);
  7636. }
  7637. cur = ggml_add(ctx0, residual, cur);
  7638. cb(cur, "l_out", il);
  7639. inpL = cur;
  7640. }
  7641. cur = llm_build_norm(ctx0, inpL, hparams,
  7642. model.output_norm,
  7643. NULL,
  7644. LLM_NORM_RMS, cb, -1);
  7645. cb(cur, "result_norm", -1);
  7646. cur = ggml_mul_mat(ctx0, model.output, cur);
  7647. cb(cur, "result_output", -1);
  7648. ggml_build_forward_expand(gf, cur);
  7649. return gf;
  7650. }
  7651. struct ggml_cgraph * build_plamo() {
  7652. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7653. const int64_t n_embd_head = hparams.n_embd_head_v;
  7654. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7655. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7656. struct ggml_tensor * cur;
  7657. struct ggml_tensor * inpL;
  7658. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7659. // inp_pos - contains the positions
  7660. struct ggml_tensor * inp_pos = build_inp_pos();
  7661. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7662. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7663. for (int il = 0; il < n_layer; ++il) {
  7664. // norm
  7665. cur = llm_build_norm(ctx0, inpL, hparams,
  7666. model.layers[il].attn_norm, NULL,
  7667. LLM_NORM_RMS, cb, il);
  7668. cb(cur, "attn_norm", il);
  7669. struct ggml_tensor * attention_norm = cur;
  7670. // self-attention
  7671. {
  7672. // compute Q and K and RoPE them
  7673. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7674. cb(Qcur, "Qcur", il);
  7675. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7676. cb(Kcur, "Kcur", il);
  7677. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7678. cb(Vcur, "Vcur", il);
  7679. Qcur = ggml_rope_custom(
  7680. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7681. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7682. ext_factor, attn_factor, beta_fast, beta_slow);
  7683. cb(Qcur, "Qcur", il);
  7684. Kcur = ggml_rope_custom(
  7685. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7686. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7687. ext_factor, attn_factor, beta_fast, beta_slow);
  7688. cb(Kcur, "Kcur", il);
  7689. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7690. model.layers[il].wo, NULL,
  7691. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7692. }
  7693. struct ggml_tensor * sa_out = cur;
  7694. cur = attention_norm;
  7695. if (il == n_layer - 1) {
  7696. // skip computing output for unused tokens
  7697. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7698. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7699. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7700. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7701. }
  7702. // feed-forward network
  7703. {
  7704. cur = llm_build_ffn(ctx0, cur,
  7705. model.layers[il].ffn_up, NULL,
  7706. model.layers[il].ffn_gate, NULL,
  7707. model.layers[il].ffn_down, NULL,
  7708. NULL,
  7709. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7710. cb(cur, "ffn_out", il);
  7711. }
  7712. cur = ggml_add(ctx0, cur, sa_out);
  7713. cb(cur, "l_out", il);
  7714. cur = ggml_add(ctx0, cur, inpL);
  7715. cb(cur, "l_out", il);
  7716. // input for next layer
  7717. inpL = cur;
  7718. }
  7719. cur = inpL;
  7720. cur = llm_build_norm(ctx0, cur, hparams,
  7721. model.output_norm, NULL,
  7722. LLM_NORM_RMS, cb, -1);
  7723. cb(cur, "result_norm", -1);
  7724. // lm_head
  7725. cur = ggml_mul_mat(ctx0, model.output, cur);
  7726. cb(cur, "result_output", -1);
  7727. ggml_build_forward_expand(gf, cur);
  7728. return gf;
  7729. }
  7730. struct ggml_cgraph * build_gpt2() {
  7731. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7732. const int64_t n_embd_head = hparams.n_embd_head_v;
  7733. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7734. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7735. struct ggml_tensor * cur;
  7736. struct ggml_tensor * pos;
  7737. struct ggml_tensor * inpL;
  7738. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7739. // inp_pos - contains the positions
  7740. struct ggml_tensor * inp_pos = build_inp_pos();
  7741. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7742. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7743. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7744. cb(pos, "pos_embd", -1);
  7745. inpL = ggml_add(ctx0, inpL, pos);
  7746. cb(inpL, "inpL", -1);
  7747. for (int il = 0; il < n_layer; ++il) {
  7748. cur = llm_build_norm(ctx0, inpL, hparams,
  7749. model.layers[il].attn_norm,
  7750. model.layers[il].attn_norm_b,
  7751. LLM_NORM, cb, il);
  7752. cb(cur, "attn_norm", il);
  7753. // self-attention
  7754. {
  7755. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7756. cb(cur, "wqkv", il);
  7757. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7758. cb(cur, "bqkv", il);
  7759. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7760. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7761. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7762. cb(Qcur, "Qcur", il);
  7763. cb(Kcur, "Kcur", il);
  7764. cb(Vcur, "Vcur", il);
  7765. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7766. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7767. model.layers[il].wo, model.layers[il].bo,
  7768. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7769. }
  7770. if (il == n_layer - 1) {
  7771. // skip computing output for unused tokens
  7772. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7773. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7774. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7775. }
  7776. // add the input
  7777. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7778. cb(ffn_inp, "ffn_inp", il);
  7779. // FF
  7780. {
  7781. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7782. model.layers[il].ffn_norm,
  7783. model.layers[il].ffn_norm_b,
  7784. LLM_NORM, cb, il);
  7785. cb(cur, "ffn_norm", il);
  7786. cur = llm_build_ffn(ctx0, cur,
  7787. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7788. NULL, NULL,
  7789. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7790. NULL,
  7791. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7792. cb(cur, "ffn_out", il);
  7793. }
  7794. inpL = ggml_add(ctx0, cur, ffn_inp);
  7795. cb(inpL, "l_out", il);
  7796. }
  7797. cur = llm_build_norm(ctx0, inpL, hparams,
  7798. model.output_norm,
  7799. model.output_norm_b,
  7800. LLM_NORM, cb, -1);
  7801. cb(cur, "result_norm", -1);
  7802. cur = ggml_mul_mat(ctx0, model.output, cur);
  7803. cb(cur, "result_output", -1);
  7804. ggml_build_forward_expand(gf, cur);
  7805. return gf;
  7806. }
  7807. struct ggml_cgraph * build_codeshell() {
  7808. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7809. const int64_t n_embd_head = hparams.n_embd_head_v;
  7810. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7811. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7812. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7813. struct ggml_tensor * cur;
  7814. struct ggml_tensor * inpL;
  7815. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7816. // inp_pos - contains the positions
  7817. struct ggml_tensor * inp_pos = build_inp_pos();
  7818. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7819. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7820. for (int il = 0; il < n_layer; ++il) {
  7821. cur = llm_build_norm(ctx0, inpL, hparams,
  7822. model.layers[il].attn_norm,
  7823. model.layers[il].attn_norm_b,
  7824. LLM_NORM, cb, il);
  7825. cb(cur, "attn_norm", il);
  7826. // self-attention
  7827. {
  7828. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7829. cb(cur, "wqkv", il);
  7830. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7831. cb(cur, "bqkv", il);
  7832. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7833. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7834. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7835. cb(tmpq, "tmpq", il);
  7836. cb(tmpk, "tmpk", il);
  7837. cb(Vcur, "Vcur", il);
  7838. struct ggml_tensor * Qcur = ggml_rope_custom(
  7839. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7840. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7841. ext_factor, attn_factor, beta_fast, beta_slow
  7842. );
  7843. cb(Qcur, "Qcur", il);
  7844. struct ggml_tensor * Kcur = ggml_rope_custom(
  7845. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7846. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7847. ext_factor, attn_factor, beta_fast, beta_slow
  7848. );
  7849. cb(Kcur, "Kcur", il);
  7850. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7851. model.layers[il].wo, model.layers[il].bo,
  7852. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7853. }
  7854. if (il == n_layer - 1) {
  7855. // skip computing output for unused tokens
  7856. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7857. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7858. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7859. }
  7860. // add the input
  7861. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7862. cb(ffn_inp, "ffn_inp", il);
  7863. // FF
  7864. {
  7865. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7866. model.layers[il].ffn_norm,
  7867. model.layers[il].ffn_norm_b,
  7868. LLM_NORM, cb, il);
  7869. cb(cur, "ffn_norm", il);
  7870. cur = llm_build_ffn(ctx0, cur,
  7871. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7872. NULL, NULL,
  7873. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7874. NULL,
  7875. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7876. cb(cur, "ffn_out", il);
  7877. }
  7878. inpL = ggml_add(ctx0, cur, ffn_inp);
  7879. cb(inpL, "l_out", il);
  7880. }
  7881. cur = llm_build_norm(ctx0, inpL, hparams,
  7882. model.output_norm,
  7883. model.output_norm_b,
  7884. LLM_NORM, cb, -1);
  7885. cb(cur, "result_norm", -1);
  7886. cur = ggml_mul_mat(ctx0, model.output, cur);
  7887. cb(cur, "result_output", -1);
  7888. ggml_build_forward_expand(gf, cur);
  7889. return gf;
  7890. }
  7891. struct ggml_cgraph * build_orion() {
  7892. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7893. const int64_t n_embd_head = hparams.n_embd_head_v;
  7894. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7895. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7896. struct ggml_tensor * cur;
  7897. struct ggml_tensor * inpL;
  7898. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7899. // inp_pos - contains the positions
  7900. struct ggml_tensor * inp_pos = build_inp_pos();
  7901. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7902. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7903. for (int il = 0; il < n_layer; ++il) {
  7904. struct ggml_tensor * inpSA = inpL;
  7905. // norm
  7906. cur = llm_build_norm(ctx0, inpL, hparams,
  7907. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7908. LLM_NORM, cb, il);
  7909. cb(cur, "attn_norm", il);
  7910. // self-attention
  7911. {
  7912. // compute Q and K and RoPE them
  7913. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7914. cb(Qcur, "Qcur", il);
  7915. // if (model.layers[il].bq) {
  7916. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7917. // cb(Qcur, "Qcur", il);
  7918. // }
  7919. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7920. cb(Kcur, "Kcur", il);
  7921. // if (model.layers[il].bk) {
  7922. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7923. // cb(Kcur, "Kcur", il);
  7924. // }
  7925. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7926. cb(Vcur, "Vcur", il);
  7927. // if (model.layers[il].bv) {
  7928. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7929. // cb(Vcur, "Vcur", il);
  7930. // }
  7931. Qcur = ggml_rope_custom(
  7932. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7933. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7934. ext_factor, attn_factor, beta_fast, beta_slow
  7935. );
  7936. cb(Qcur, "Qcur", il);
  7937. Kcur = ggml_rope_custom(
  7938. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7939. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7940. ext_factor, attn_factor, beta_fast, beta_slow
  7941. );
  7942. cb(Kcur, "Kcur", il);
  7943. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7944. model.layers[il].wo, NULL,
  7945. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7946. }
  7947. if (il == n_layer - 1) {
  7948. // skip computing output for unused tokens
  7949. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7950. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7951. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7952. }
  7953. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7954. cb(ffn_inp, "ffn_inp", il);
  7955. // feed-forward network
  7956. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7957. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7958. LLM_NORM, cb, il);
  7959. cb(cur, "ffn_norm", il);
  7960. cur = llm_build_ffn(ctx0, cur,
  7961. model.layers[il].ffn_up, NULL,
  7962. model.layers[il].ffn_gate, NULL,
  7963. model.layers[il].ffn_down, NULL,
  7964. NULL,
  7965. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7966. cb(cur, "ffn_out", il);
  7967. cur = ggml_add(ctx0, cur, ffn_inp);
  7968. cb(cur, "l_out", il);
  7969. // input for next layer
  7970. inpL = cur;
  7971. }
  7972. cur = inpL;
  7973. cur = llm_build_norm(ctx0, cur, hparams,
  7974. model.output_norm, model.output_norm_b,
  7975. LLM_NORM, cb, -1);
  7976. cb(cur, "result_norm", -1);
  7977. // lm_head
  7978. cur = ggml_mul_mat(ctx0, model.output, cur);
  7979. cb(cur, "result_output", -1);
  7980. ggml_build_forward_expand(gf, cur);
  7981. return gf;
  7982. }
  7983. struct ggml_cgraph * build_internlm2() {
  7984. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7985. const int64_t n_embd_head = hparams.n_embd_head_v;
  7986. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7987. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7988. struct ggml_tensor * cur;
  7989. struct ggml_tensor * inpL;
  7990. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7991. // inp_pos - contains the positions
  7992. struct ggml_tensor * inp_pos = build_inp_pos();
  7993. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7994. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7995. for (int il = 0; il < n_layer; ++il) {
  7996. struct ggml_tensor * inpSA = inpL;
  7997. // norm
  7998. cur = llm_build_norm(ctx0, inpL, hparams,
  7999. model.layers[il].attn_norm, NULL,
  8000. LLM_NORM_RMS, cb, il);
  8001. cb(cur, "attn_norm", il);
  8002. // self-attention
  8003. {
  8004. // compute Q and K and RoPE them
  8005. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8006. cb(Qcur, "Qcur", il);
  8007. if (model.layers[il].bq) {
  8008. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8009. cb(Qcur, "Qcur", il);
  8010. }
  8011. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8012. cb(Kcur, "Kcur", il);
  8013. if (model.layers[il].bk) {
  8014. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8015. cb(Kcur, "Kcur", il);
  8016. }
  8017. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8018. cb(Vcur, "Vcur", il);
  8019. if (model.layers[il].bv) {
  8020. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8021. cb(Vcur, "Vcur", il);
  8022. }
  8023. Qcur = ggml_rope_custom(
  8024. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8025. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8026. ext_factor, attn_factor, beta_fast, beta_slow
  8027. );
  8028. cb(Qcur, "Qcur", il);
  8029. Kcur = ggml_rope_custom(
  8030. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8031. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8032. ext_factor, attn_factor, beta_fast, beta_slow
  8033. );
  8034. cb(Kcur, "Kcur", il);
  8035. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8036. model.layers[il].wo, model.layers[il].bo,
  8037. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8038. }
  8039. if (il == n_layer - 1) {
  8040. // skip computing output for unused tokens
  8041. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8042. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8043. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8044. }
  8045. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8046. cb(ffn_inp, "ffn_inp", il);
  8047. // feed-forward network
  8048. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8049. model.layers[il].ffn_norm, NULL,
  8050. LLM_NORM_RMS, cb, il);
  8051. cb(cur, "ffn_norm", il);
  8052. cur = llm_build_ffn(ctx0, cur,
  8053. model.layers[il].ffn_up, NULL,
  8054. model.layers[il].ffn_gate, NULL,
  8055. model.layers[il].ffn_down, NULL,
  8056. NULL,
  8057. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8058. cb(cur, "ffn_out", il);
  8059. cur = ggml_add(ctx0, cur, ffn_inp);
  8060. cb(cur, "l_out", il);
  8061. // input for next layer
  8062. inpL = cur;
  8063. }
  8064. cur = inpL;
  8065. cur = llm_build_norm(ctx0, cur, hparams,
  8066. model.output_norm, NULL,
  8067. LLM_NORM_RMS, cb, -1);
  8068. cb(cur, "result_norm", -1);
  8069. // lm_head
  8070. cur = ggml_mul_mat(ctx0, model.output, cur);
  8071. cb(cur, "result_output", -1);
  8072. ggml_build_forward_expand(gf, cur);
  8073. return gf;
  8074. }
  8075. // ref: https://arxiv.org/abs/2203.03466
  8076. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8077. // based on the original build_llama() function
  8078. struct ggml_cgraph * build_minicpm() {
  8079. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8080. const int64_t n_embd_head = hparams.n_embd_head_v;
  8081. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8082. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8083. const int64_t n_embd = hparams.n_embd;
  8084. //TODO: if the model varies, these parameters need to be read from the model
  8085. const int64_t n_embd_base = 256;
  8086. const float scale_embd = 12.0f;
  8087. const float scale_depth = 1.4f;
  8088. struct ggml_tensor * cur;
  8089. struct ggml_tensor * inpL;
  8090. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8091. // scale the input embeddings
  8092. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8093. cb(inpL, "inp_scaled", -1);
  8094. // inp_pos - contains the positions
  8095. struct ggml_tensor * inp_pos = build_inp_pos();
  8096. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8097. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8098. for (int il = 0; il < n_layer; ++il) {
  8099. struct ggml_tensor * inpSA = inpL;
  8100. // norm
  8101. cur = llm_build_norm(ctx0, inpL, hparams,
  8102. model.layers[il].attn_norm, NULL,
  8103. LLM_NORM_RMS, cb, il);
  8104. cb(cur, "attn_norm", il);
  8105. // self-attention
  8106. {
  8107. // compute Q and K and RoPE them
  8108. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8109. cb(Qcur, "Qcur", il);
  8110. if (model.layers[il].bq) {
  8111. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8112. cb(Qcur, "Qcur", il);
  8113. }
  8114. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8115. cb(Kcur, "Kcur", il);
  8116. if (model.layers[il].bk) {
  8117. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8118. cb(Kcur, "Kcur", il);
  8119. }
  8120. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8121. cb(Vcur, "Vcur", il);
  8122. if (model.layers[il].bv) {
  8123. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8124. cb(Vcur, "Vcur", il);
  8125. }
  8126. Qcur = ggml_rope_custom(
  8127. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8128. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8129. ext_factor, attn_factor, beta_fast, beta_slow
  8130. );
  8131. cb(Qcur, "Qcur", il);
  8132. Kcur = ggml_rope_custom(
  8133. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8134. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8135. ext_factor, attn_factor, beta_fast, beta_slow
  8136. );
  8137. cb(Kcur, "Kcur", il);
  8138. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8139. model.layers[il].wo, model.layers[il].bo,
  8140. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8141. }
  8142. if (il == n_layer - 1) {
  8143. // skip computing output for unused tokens
  8144. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8145. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8146. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8147. }
  8148. // scale_res - scale the hidden states for residual connection
  8149. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8150. cur = ggml_scale(ctx0, cur, scale_res);
  8151. cb(cur, "hidden_scaled", -1);
  8152. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8153. cb(ffn_inp, "ffn_inp", il);
  8154. // feed-forward network
  8155. {
  8156. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8157. model.layers[il].ffn_norm, NULL,
  8158. LLM_NORM_RMS, cb, il);
  8159. cb(cur, "ffn_norm", il);
  8160. cur = llm_build_ffn(ctx0, cur,
  8161. model.layers[il].ffn_up, NULL,
  8162. model.layers[il].ffn_gate, NULL,
  8163. model.layers[il].ffn_down, NULL,
  8164. NULL,
  8165. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8166. cb(cur, "ffn_out", il);
  8167. }
  8168. // scale the hidden states for residual connection
  8169. cur = ggml_scale(ctx0, cur, scale_res);
  8170. cb(cur, "hidden_scaled_ffn", -1);
  8171. cur = ggml_add(ctx0, cur, ffn_inp);
  8172. cb(cur, "l_out", il);
  8173. // input for next layer
  8174. inpL = cur;
  8175. }
  8176. cur = inpL;
  8177. cur = llm_build_norm(ctx0, cur, hparams,
  8178. model.output_norm, NULL,
  8179. LLM_NORM_RMS, cb, -1);
  8180. cb(cur, "result_norm", -1);
  8181. // lm_head scaling
  8182. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8183. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8184. cb(cur, "lmhead_scaling", -1);
  8185. // lm_head
  8186. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8187. cb(cur, "result_output", -1);
  8188. ggml_build_forward_expand(gf, cur);
  8189. return gf;
  8190. }
  8191. struct ggml_cgraph * build_gemma() {
  8192. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8193. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8194. struct ggml_tensor * cur;
  8195. struct ggml_tensor * inpL;
  8196. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8197. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8198. cb(inpL, "inp_scaled", -1);
  8199. // inp_pos - contains the positions
  8200. struct ggml_tensor * inp_pos = build_inp_pos();
  8201. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8202. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8203. for (int il = 0; il < n_layer; ++il) {
  8204. // norm
  8205. cur = llm_build_norm(ctx0, inpL, hparams,
  8206. model.layers[il].attn_norm, NULL,
  8207. LLM_NORM_RMS, cb, il);
  8208. cb(cur, "attn_norm", il);
  8209. // self-attention
  8210. {
  8211. // compute Q and K and RoPE them
  8212. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8213. cb(Qcur, "Qcur", il);
  8214. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8215. cb(Kcur, "Kcur", il);
  8216. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8217. cb(Vcur, "Vcur", il);
  8218. Qcur = ggml_rope_custom(
  8219. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8220. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8221. ext_factor, attn_factor, beta_fast, beta_slow);
  8222. cb(Qcur, "Qcur", il);
  8223. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8224. cb(Qcur, "Qcur_scaled", il);
  8225. Kcur = ggml_rope_custom(
  8226. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8227. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8228. ext_factor, attn_factor, beta_fast, beta_slow);
  8229. cb(Kcur, "Kcur", il);
  8230. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8231. model.layers[il].wo, NULL,
  8232. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8233. }
  8234. if (il == n_layer - 1) {
  8235. // skip computing output for unused tokens
  8236. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8237. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8238. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8239. }
  8240. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8241. cb(sa_out, "sa_out", il);
  8242. cur = llm_build_norm(ctx0, sa_out, hparams,
  8243. model.layers[il].ffn_norm, NULL,
  8244. LLM_NORM_RMS, cb, il);
  8245. cb(cur, "ffn_norm", il);
  8246. // feed-forward network
  8247. {
  8248. cur = llm_build_ffn(ctx0, cur,
  8249. model.layers[il].ffn_up, NULL,
  8250. model.layers[il].ffn_gate, NULL,
  8251. model.layers[il].ffn_down, NULL,
  8252. NULL,
  8253. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8254. cb(cur, "ffn_out", il);
  8255. }
  8256. cur = ggml_add(ctx0, cur, sa_out);
  8257. cb(cur, "l_out", il);
  8258. // input for next layer
  8259. inpL = cur;
  8260. }
  8261. cur = inpL;
  8262. cur = llm_build_norm(ctx0, cur, hparams,
  8263. model.output_norm, NULL,
  8264. LLM_NORM_RMS, cb, -1);
  8265. cb(cur, "result_norm", -1);
  8266. // lm_head
  8267. cur = ggml_mul_mat(ctx0, model.output, cur);
  8268. cb(cur, "result_output", -1);
  8269. ggml_build_forward_expand(gf, cur);
  8270. return gf;
  8271. }
  8272. struct ggml_cgraph * build_starcoder2() {
  8273. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8274. const int64_t n_embd_head = hparams.n_embd_head_v;
  8275. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8276. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8277. struct ggml_tensor * cur;
  8278. struct ggml_tensor * inpL;
  8279. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8280. // inp_pos - contains the positions
  8281. struct ggml_tensor * inp_pos = build_inp_pos();
  8282. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8283. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8284. for (int il = 0; il < n_layer; ++il) {
  8285. struct ggml_tensor * inpSA = inpL;
  8286. // norm
  8287. cur = llm_build_norm(ctx0, inpL, hparams,
  8288. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8289. LLM_NORM, cb, il);
  8290. cb(cur, "attn_norm", il);
  8291. // self-attention
  8292. {
  8293. // compute Q and K and RoPE them
  8294. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8295. cb(Qcur, "Qcur", il);
  8296. if (model.layers[il].bq) {
  8297. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8298. cb(Qcur, "Qcur", il);
  8299. }
  8300. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8301. cb(Kcur, "Kcur", il);
  8302. if (model.layers[il].bk) {
  8303. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8304. cb(Kcur, "Kcur", il);
  8305. }
  8306. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8307. cb(Vcur, "Vcur", il);
  8308. if (model.layers[il].bv) {
  8309. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8310. cb(Vcur, "Vcur", il);
  8311. }
  8312. Qcur = ggml_rope_custom(
  8313. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8314. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8315. ext_factor, attn_factor, beta_fast, beta_slow
  8316. );
  8317. cb(Qcur, "Qcur", il);
  8318. Kcur = ggml_rope_custom(
  8319. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8320. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8321. ext_factor, attn_factor, beta_fast, beta_slow
  8322. );
  8323. cb(Kcur, "Kcur", il);
  8324. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8325. model.layers[il].wo, model.layers[il].bo,
  8326. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8327. }
  8328. if (il == n_layer - 1) {
  8329. // skip computing output for unused tokens
  8330. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8331. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8332. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8333. }
  8334. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8335. cb(ffn_inp, "ffn_inp", il);
  8336. // feed-forward network
  8337. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8338. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8339. LLM_NORM, cb, il);
  8340. cb(cur, "ffn_norm", il);
  8341. cur = llm_build_ffn(ctx0, cur,
  8342. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8343. NULL, NULL,
  8344. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8345. NULL,
  8346. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8347. cb(cur, "ffn_out", il);
  8348. cur = ggml_add(ctx0, cur, ffn_inp);
  8349. cb(cur, "l_out", il);
  8350. // input for next layer
  8351. inpL = cur;
  8352. }
  8353. cur = inpL;
  8354. cur = llm_build_norm(ctx0, cur, hparams,
  8355. model.output_norm, model.output_norm_b,
  8356. LLM_NORM, cb, -1);
  8357. cb(cur, "result_norm", -1);
  8358. // lm_head
  8359. cur = ggml_mul_mat(ctx0, model.output, cur);
  8360. cb(cur, "result_output", -1);
  8361. ggml_build_forward_expand(gf, cur);
  8362. return gf;
  8363. }
  8364. struct ggml_cgraph * build_mamba() {
  8365. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8366. const int64_t d_model = n_embd;
  8367. const int64_t d_conv = hparams.ssm_d_conv;
  8368. const int64_t d_inner = hparams.ssm_d_inner;
  8369. GGML_ASSERT(2 * d_model == d_inner);
  8370. const int64_t d_state = hparams.ssm_d_state;
  8371. const int64_t dt_rank = hparams.ssm_dt_rank;
  8372. struct ggml_tensor * cur;
  8373. struct ggml_tensor * inpL;
  8374. // {n_embd, n_tokens}
  8375. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8376. struct ggml_tensor * state_mask = build_inp_s_mask();
  8377. struct ggml_tensor * state_seq = build_inp_s_seq();
  8378. for (int il = 0; il < n_layer; ++il) {
  8379. // (ab)using the KV cache to store the states
  8380. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8381. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8382. // clear states of sequences which are starting at the beginning of this batch
  8383. {
  8384. conv_states = ggml_mul(ctx0,
  8385. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8386. state_mask);
  8387. ssm_states = ggml_mul(ctx0,
  8388. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8389. state_mask);
  8390. }
  8391. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8392. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8393. // norm
  8394. cur = llm_build_norm(ctx0, inpL, hparams,
  8395. model.layers[il].attn_norm, NULL,
  8396. LLM_NORM_RMS, cb, il);
  8397. cb(cur, "attn_norm", il);
  8398. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8399. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8400. // split the above in two
  8401. // => {d_inner, n_tokens}
  8402. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8403. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8404. // conv
  8405. {
  8406. // Custom operator which is needed only to ease simultaneous sequence processing.
  8407. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8408. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8409. // then element-wise multiply that with the conv1d weigth,
  8410. // then sum the elements of each row,
  8411. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8412. // then permute away the ne[0] dimension,
  8413. // and then you're left with the resulting x tensor.
  8414. // The new conv_states is the last (d_conv - 1) columns
  8415. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8416. // For simultaneous sequences, it's more complicated.
  8417. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8418. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8419. ggml_build_forward_expand(gf,
  8420. ggml_cpy(ctx0,
  8421. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8422. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8423. // extract x from x_conv
  8424. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8425. // bias
  8426. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8427. x = ggml_silu(ctx0, x);
  8428. }
  8429. // ssm
  8430. {
  8431. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8432. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8433. // split
  8434. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8435. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8436. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8437. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8438. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8439. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8440. // Custom operator to optimize the parallel associative scan
  8441. // as described in the Annex D of the Mamba paper.
  8442. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8443. // because only a single tensor can be returned.
  8444. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8445. // store last states (the second part of y_ssm_states)
  8446. ggml_build_forward_expand(gf,
  8447. ggml_cpy(ctx0,
  8448. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8449. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8450. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8451. if (il == n_layer - 1) {
  8452. // skip computing output for unused tokens
  8453. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8454. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8455. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8456. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8457. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8458. }
  8459. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8460. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8461. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8462. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8463. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8464. }
  8465. // residual
  8466. cur = ggml_add(ctx0, cur, inpL);
  8467. cb(cur, "l_out", il);
  8468. // input for next layer
  8469. inpL = cur;
  8470. }
  8471. // final rmsnorm
  8472. cur = llm_build_norm(ctx0, inpL, hparams,
  8473. model.output_norm, NULL,
  8474. LLM_NORM_RMS, cb, -1);
  8475. cb(cur, "result_norm", -1);
  8476. // lm_head
  8477. cur = ggml_mul_mat(ctx0, model.output, cur);
  8478. cb(cur, "result_output", -1);
  8479. ggml_build_forward_expand(gf, cur);
  8480. return gf;
  8481. }
  8482. struct ggml_cgraph * build_command_r() {
  8483. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8484. const int64_t n_embd_head = hparams.n_embd_head_v;
  8485. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8486. const float f_logit_scale = hparams.f_logit_scale;
  8487. struct ggml_tensor * cur;
  8488. struct ggml_tensor * inpL;
  8489. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8490. // inp_pos - contains the positions
  8491. struct ggml_tensor * inp_pos = build_inp_pos();
  8492. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8493. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8494. for (int il = 0; il < n_layer; ++il) {
  8495. // norm
  8496. cur = llm_build_norm(ctx0, inpL, hparams,
  8497. model.layers[il].attn_norm, NULL,
  8498. LLM_NORM, cb, il);
  8499. cb(cur, "attn_norm", il);
  8500. struct ggml_tensor * ffn_inp = cur;
  8501. // self-attention
  8502. {
  8503. // compute Q and K and RoPE them
  8504. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8505. cb(Qcur, "Qcur", il);
  8506. if (model.layers[il].bq) {
  8507. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8508. cb(Qcur, "Qcur", il);
  8509. }
  8510. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8511. cb(Kcur, "Kcur", il);
  8512. if (model.layers[il].bk) {
  8513. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8514. cb(Kcur, "Kcur", il);
  8515. }
  8516. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8517. cb(Vcur, "Vcur", il);
  8518. if (model.layers[il].bv) {
  8519. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8520. cb(Vcur, "Vcur", il);
  8521. }
  8522. if (model.layers[il].attn_q_norm) {
  8523. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8524. ggml_element_size(Qcur) * n_embd_head,
  8525. ggml_element_size(Qcur) * n_embd_head * n_head,
  8526. 0);
  8527. cb(Qcur, "Qcur", il);
  8528. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8529. ggml_element_size(Kcur) * n_embd_head,
  8530. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8531. 0);
  8532. cb(Kcur, "Kcur", il);
  8533. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8534. model.layers[il].attn_q_norm,
  8535. NULL,
  8536. LLM_NORM, cb, il);
  8537. cb(Qcur, "Qcur", il);
  8538. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8539. model.layers[il].attn_k_norm,
  8540. NULL,
  8541. LLM_NORM, cb, il);
  8542. cb(Kcur, "Kcur", il);
  8543. }
  8544. Qcur = ggml_rope_custom(
  8545. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8546. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8547. ext_factor, attn_factor, beta_fast, beta_slow
  8548. );
  8549. cb(Qcur, "Qcur", il);
  8550. Kcur = ggml_rope_custom(
  8551. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8552. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8553. ext_factor, attn_factor, beta_fast, beta_slow
  8554. );
  8555. cb(Kcur, "Kcur", il);
  8556. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8557. model.layers[il].wo, model.layers[il].bo,
  8558. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8559. }
  8560. if (il == n_layer - 1) {
  8561. // skip computing output for unused tokens
  8562. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8563. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8564. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8565. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8566. }
  8567. struct ggml_tensor * attn_out = cur;
  8568. // feed-forward network
  8569. {
  8570. cur = llm_build_ffn(ctx0, ffn_inp,
  8571. model.layers[il].ffn_up, NULL,
  8572. model.layers[il].ffn_gate, NULL,
  8573. model.layers[il].ffn_down, NULL,
  8574. NULL,
  8575. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8576. cb(cur, "ffn_out", il);
  8577. }
  8578. // add together residual + FFN + self-attention
  8579. cur = ggml_add(ctx0, cur, inpL);
  8580. cur = ggml_add(ctx0, cur, attn_out);
  8581. cb(cur, "l_out", il);
  8582. // input for next layer
  8583. inpL = cur;
  8584. }
  8585. cur = inpL;
  8586. cur = llm_build_norm(ctx0, cur, hparams,
  8587. model.output_norm, NULL,
  8588. LLM_NORM, cb, -1);
  8589. cb(cur, "result_norm", -1);
  8590. // lm_head
  8591. cur = ggml_mul_mat(ctx0, model.output, cur);
  8592. if (f_logit_scale) {
  8593. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8594. }
  8595. cb(cur, "result_output", -1);
  8596. ggml_build_forward_expand(gf, cur);
  8597. return gf;
  8598. }
  8599. // ref: https://allenai.org/olmo
  8600. // based on the original build_llama() function, changes:
  8601. // * non-parametric layer norm
  8602. // * clamp qkv
  8603. // * removed bias
  8604. // * removed MoE
  8605. struct ggml_cgraph * build_olmo() {
  8606. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8607. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8608. int32_t n_tokens = this->n_tokens;
  8609. const int64_t n_embd_head = hparams.n_embd_head_v;
  8610. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8611. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8612. struct ggml_tensor * cur;
  8613. struct ggml_tensor * inpL;
  8614. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8615. // inp_pos - contains the positions
  8616. struct ggml_tensor * inp_pos = build_inp_pos();
  8617. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8618. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8619. for (int il = 0; il < n_layer; ++il) {
  8620. struct ggml_tensor * inpSA = inpL;
  8621. // norm
  8622. cur = llm_build_norm(ctx0, inpL, hparams,
  8623. NULL, NULL,
  8624. LLM_NORM, cb, il);
  8625. cb(cur, "attn_norm", il);
  8626. // self-attention
  8627. {
  8628. // compute Q and K and RoPE them
  8629. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8630. cb(Qcur, "Qcur", il);
  8631. if (hparams.f_clamp_kqv > 0.0f) {
  8632. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8633. cb(Qcur, "Qcur", il);
  8634. }
  8635. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8636. cb(Kcur, "Kcur", il);
  8637. if (hparams.f_clamp_kqv > 0.0f) {
  8638. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8639. cb(Kcur, "Kcur", il);
  8640. }
  8641. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8642. cb(Vcur, "Vcur", il);
  8643. if (hparams.f_clamp_kqv > 0.0f) {
  8644. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8645. cb(Vcur, "Vcur", il);
  8646. }
  8647. Qcur = ggml_rope_custom(
  8648. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8649. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8650. ext_factor, attn_factor, beta_fast, beta_slow
  8651. );
  8652. cb(Qcur, "Qcur", il);
  8653. Kcur = ggml_rope_custom(
  8654. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8655. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8656. ext_factor, attn_factor, beta_fast, beta_slow
  8657. );
  8658. cb(Kcur, "Kcur", il);
  8659. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8660. model.layers[il].wo, nullptr,
  8661. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8662. }
  8663. if (il == n_layer - 1) {
  8664. // skip computing output for unused tokens
  8665. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8666. n_tokens = n_outputs;
  8667. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8668. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8669. }
  8670. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8671. cb(ffn_inp, "ffn_inp", il);
  8672. // feed-forward network
  8673. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8674. NULL, NULL,
  8675. LLM_NORM, cb, il);
  8676. cb(cur, "ffn_norm", il);
  8677. cur = llm_build_ffn(ctx0, cur,
  8678. model.layers[il].ffn_up, NULL,
  8679. model.layers[il].ffn_gate, NULL,
  8680. model.layers[il].ffn_down, NULL,
  8681. NULL,
  8682. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8683. cb(cur, "ffn_out", il);
  8684. cur = ggml_add(ctx0, cur, ffn_inp);
  8685. cb(cur, "ffn_out", il);
  8686. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8687. if (layer_dir != nullptr) {
  8688. cur = ggml_add(ctx0, cur, layer_dir);
  8689. }
  8690. cb(cur, "l_out", il);
  8691. // input for next layer
  8692. inpL = cur;
  8693. }
  8694. cur = inpL;
  8695. cur = llm_build_norm(ctx0, cur, hparams,
  8696. NULL, NULL,
  8697. LLM_NORM, cb, -1);
  8698. cb(cur, "result_norm", -1);
  8699. // lm_head
  8700. cur = ggml_mul_mat(ctx0, model.output, cur);
  8701. cb(cur, "result_output", -1);
  8702. ggml_build_forward_expand(gf, cur);
  8703. return gf;
  8704. }
  8705. };
  8706. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8707. llama_batch dummy;
  8708. dummy.n_tokens = 0;
  8709. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8710. struct llm_build_context llm(lctx, dummy, cb, false);
  8711. llm.init();
  8712. struct ggml_cgraph * result = llm.build_defrag(ids);
  8713. llm.free();
  8714. return result;
  8715. }
  8716. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8717. llama_batch dummy;
  8718. dummy.n_tokens = 0;
  8719. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8720. struct llm_build_context llm(lctx, dummy, cb, false);
  8721. llm.init();
  8722. struct ggml_cgraph * result = llm.build_k_shift();
  8723. llm.free();
  8724. return result;
  8725. }
  8726. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8727. llama_batch dummy;
  8728. dummy.n_tokens = 0;
  8729. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8730. struct llm_build_context llm(lctx, dummy, cb, false);
  8731. llm.init();
  8732. struct ggml_cgraph * result = llm.build_s_copy();
  8733. llm.free();
  8734. return result;
  8735. }
  8736. static struct ggml_cgraph * llama_build_graph(
  8737. llama_context & lctx,
  8738. const llama_batch & batch,
  8739. bool worst_case) {
  8740. const auto & model = lctx.model;
  8741. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8742. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8743. if (il >= 0) {
  8744. ggml_format_name(cur, "%s-%d", name, il);
  8745. } else {
  8746. ggml_set_name(cur, name);
  8747. }
  8748. if (!lctx.cparams.offload_kqv) {
  8749. if (strcmp(name, "kqv_merged_cont") == 0) {
  8750. // all nodes between the KV store and the attention output are run on the CPU
  8751. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8752. }
  8753. }
  8754. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8755. // FIXME: fix in ggml_backend_sched
  8756. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8757. if (batch.n_tokens < 32 || full_offload) {
  8758. if (il != -1 && strcmp(name, "norm") == 0) {
  8759. for (auto * backend : lctx.backends) {
  8760. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8761. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8762. break;
  8763. }
  8764. }
  8765. }
  8766. }
  8767. };
  8768. struct ggml_cgraph * result = NULL;
  8769. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8770. llm.init();
  8771. switch (model.arch) {
  8772. case LLM_ARCH_LLAMA:
  8773. {
  8774. result = llm.build_llama();
  8775. } break;
  8776. case LLM_ARCH_BAICHUAN:
  8777. {
  8778. result = llm.build_baichuan();
  8779. } break;
  8780. case LLM_ARCH_FALCON:
  8781. {
  8782. result = llm.build_falcon();
  8783. } break;
  8784. case LLM_ARCH_GROK:
  8785. {
  8786. result = llm.build_grok();
  8787. } break;
  8788. case LLM_ARCH_STARCODER:
  8789. {
  8790. result = llm.build_starcoder();
  8791. } break;
  8792. case LLM_ARCH_PERSIMMON:
  8793. {
  8794. result = llm.build_persimmon();
  8795. } break;
  8796. case LLM_ARCH_REFACT:
  8797. {
  8798. result = llm.build_refact();
  8799. } break;
  8800. case LLM_ARCH_BERT:
  8801. case LLM_ARCH_NOMIC_BERT:
  8802. {
  8803. result = llm.build_bert();
  8804. } break;
  8805. case LLM_ARCH_BLOOM:
  8806. {
  8807. result = llm.build_bloom();
  8808. } break;
  8809. case LLM_ARCH_MPT:
  8810. {
  8811. result = llm.build_mpt();
  8812. } break;
  8813. case LLM_ARCH_STABLELM:
  8814. {
  8815. result = llm.build_stablelm();
  8816. } break;
  8817. case LLM_ARCH_QWEN:
  8818. {
  8819. result = llm.build_qwen();
  8820. } break;
  8821. case LLM_ARCH_QWEN2:
  8822. {
  8823. result = llm.build_qwen2();
  8824. } break;
  8825. case LLM_ARCH_QWEN2MOE:
  8826. {
  8827. result = llm.build_qwen2moe();
  8828. } break;
  8829. case LLM_ARCH_PHI2:
  8830. {
  8831. result = llm.build_phi2();
  8832. } break;
  8833. case LLM_ARCH_PHI3:
  8834. {
  8835. result = llm.build_phi3();
  8836. } break;
  8837. case LLM_ARCH_PLAMO:
  8838. {
  8839. result = llm.build_plamo();
  8840. } break;
  8841. case LLM_ARCH_GPT2:
  8842. {
  8843. result = llm.build_gpt2();
  8844. } break;
  8845. case LLM_ARCH_CODESHELL:
  8846. {
  8847. result = llm.build_codeshell();
  8848. } break;
  8849. case LLM_ARCH_ORION:
  8850. {
  8851. result = llm.build_orion();
  8852. } break;
  8853. case LLM_ARCH_INTERNLM2:
  8854. {
  8855. result = llm.build_internlm2();
  8856. } break;
  8857. case LLM_ARCH_MINICPM:
  8858. {
  8859. result = llm.build_minicpm();
  8860. } break;
  8861. case LLM_ARCH_GEMMA:
  8862. {
  8863. result = llm.build_gemma();
  8864. } break;
  8865. case LLM_ARCH_STARCODER2:
  8866. {
  8867. result = llm.build_starcoder2();
  8868. } break;
  8869. case LLM_ARCH_MAMBA:
  8870. {
  8871. result = llm.build_mamba();
  8872. } break;
  8873. case LLM_ARCH_XVERSE:
  8874. {
  8875. result = llm.build_xverse();
  8876. } break;
  8877. case LLM_ARCH_COMMAND_R:
  8878. {
  8879. result = llm.build_command_r();
  8880. } break;
  8881. case LLM_ARCH_DBRX:
  8882. {
  8883. result = llm.build_dbrx();
  8884. } break;
  8885. case LLM_ARCH_OLMO:
  8886. {
  8887. result = llm.build_olmo();
  8888. } break;
  8889. default:
  8890. GGML_ASSERT(false);
  8891. }
  8892. llm.free();
  8893. return result;
  8894. }
  8895. static void llama_set_k_shift(llama_context & lctx) {
  8896. const int64_t kv_size = lctx.kv_self.size;
  8897. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8898. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8899. for (int i = 0; i < kv_size; ++i) {
  8900. data[i] = lctx.kv_self.cells[i].delta;
  8901. }
  8902. }
  8903. static void llama_set_s_copy(llama_context & lctx) {
  8904. const int64_t kv_size = lctx.kv_self.size;
  8905. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8906. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8907. for (int i = 0; i < kv_size; ++i) {
  8908. data[i] = lctx.kv_self.cells[i].src;
  8909. }
  8910. }
  8911. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8912. //
  8913. // set input data
  8914. //
  8915. const auto & hparams = lctx.model.hparams;
  8916. const auto & cparams = lctx.cparams;
  8917. const auto & kv_self = lctx.kv_self;
  8918. if (batch.token) {
  8919. const int64_t n_tokens = batch.n_tokens;
  8920. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8921. }
  8922. if (batch.embd) {
  8923. const int64_t n_embd = hparams.n_embd;
  8924. const int64_t n_tokens = batch.n_tokens;
  8925. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8926. }
  8927. if (batch.pos && lctx.inp_pos) {
  8928. const int64_t n_tokens = batch.n_tokens;
  8929. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8930. }
  8931. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8932. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8933. const int64_t n_tokens = batch.n_tokens;
  8934. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8935. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8936. if (lctx.n_outputs == n_tokens) {
  8937. for (int i = 0; i < n_tokens; ++i) {
  8938. data[i] = i;
  8939. }
  8940. } else if (batch.logits) {
  8941. int32_t n_outputs = 0;
  8942. for (int i = 0; i < n_tokens; ++i) {
  8943. if (batch.logits[i]) {
  8944. data[n_outputs++] = i;
  8945. }
  8946. }
  8947. // the graph needs to have been passed the correct number of outputs
  8948. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8949. } else if (lctx.n_outputs == 1) {
  8950. // only keep last output
  8951. data[0] = n_tokens - 1;
  8952. } else {
  8953. GGML_ASSERT(lctx.n_outputs == 0);
  8954. }
  8955. }
  8956. GGML_ASSERT(
  8957. // (!a || b) is a logical implication (a -> b)
  8958. // !hparams.causal_attn -> !cparams.causal_attn
  8959. (hparams.causal_attn || !cparams.causal_attn) &&
  8960. "causal attention with embedding models is not supported"
  8961. );
  8962. if (lctx.inp_KQ_mask) {
  8963. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8964. if (cparams.causal_attn) {
  8965. const int64_t n_kv = kv_self.n;
  8966. const int64_t n_tokens = batch.n_tokens;
  8967. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8968. float * data = (float *) lctx.inp_KQ_mask->data;
  8969. // For causal attention, use only the previous KV cells
  8970. // of the correct sequence for each token of the batch.
  8971. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8972. for (int h = 0; h < 1; ++h) {
  8973. for (int j = 0; j < n_tokens; ++j) {
  8974. const llama_pos pos = batch.pos[j];
  8975. const llama_seq_id seq_id = batch.seq_id[j][0];
  8976. for (int i = 0; i < n_kv; ++i) {
  8977. float f;
  8978. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8979. f = -INFINITY;
  8980. } else {
  8981. f = 0.0f;
  8982. }
  8983. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8984. }
  8985. }
  8986. }
  8987. } else {
  8988. // when using kv cache, the mask needs to match the kv cache size
  8989. const int64_t n_tokens = batch.n_tokens;
  8990. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8991. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8992. float * data = (float *) lctx.inp_KQ_mask->data;
  8993. for (int h = 0; h < 1; ++h) {
  8994. for (int j = 0; j < n_tokens; ++j) {
  8995. const llama_seq_id seq_id = batch.seq_id[j][0];
  8996. for (int i = 0; i < n_tokens; ++i) {
  8997. float f = -INFINITY;
  8998. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  8999. if (batch.seq_id[i][s] == seq_id) {
  9000. f = 0.0f;
  9001. break;
  9002. }
  9003. }
  9004. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9005. }
  9006. for (int i = n_tokens; i < n_stride; ++i) {
  9007. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9008. }
  9009. }
  9010. }
  9011. }
  9012. }
  9013. if (hparams.need_kq_pos) {
  9014. const int64_t n_kv = kv_self.n;
  9015. GGML_ASSERT(lctx.inp_KQ_pos);
  9016. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  9017. float * data = (float *) lctx.inp_KQ_pos->data;
  9018. for (int i = 0; i < n_kv; ++i) {
  9019. data[i] = float(lctx.kv_self.cells[i].pos);
  9020. }
  9021. }
  9022. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9023. const int64_t n_tokens = batch.n_tokens;
  9024. GGML_ASSERT(lctx.inp_mean);
  9025. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9026. float * data = (float *) lctx.inp_mean->data;
  9027. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9028. std::vector<uint64_t> sum(n_tokens, 0);
  9029. for (int i = 0; i < n_tokens; ++i) {
  9030. const llama_seq_id seq_id = batch.seq_id[i][0];
  9031. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9032. sum[seq_id] += 1;
  9033. }
  9034. std::vector<float> div(n_tokens, 0.0f);
  9035. for (int i = 0; i < n_tokens; ++i) {
  9036. const uint64_t s = sum[i];
  9037. if (s > 0) {
  9038. div[i] = 1.0f/float(s);
  9039. }
  9040. }
  9041. for (int i = 0; i < n_tokens; ++i) {
  9042. const llama_seq_id seq_id = batch.seq_id[i][0];
  9043. data[seq_id*n_tokens + i] = div[seq_id];
  9044. }
  9045. }
  9046. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9047. const int64_t n_tokens = batch.n_tokens;
  9048. GGML_ASSERT(lctx.inp_cls);
  9049. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9050. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9051. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9052. for (int i = 0; i < n_tokens; ++i) {
  9053. const llama_seq_id seq_id = batch.seq_id[i][0];
  9054. const llama_pos pos = batch.pos[i];
  9055. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9056. if (pos == 0) {
  9057. data[seq_id] = i;
  9058. }
  9059. }
  9060. }
  9061. if (kv_self.recurrent) {
  9062. const int64_t n_kv = kv_self.n;
  9063. if (lctx.inp_s_mask) {
  9064. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9065. float * data = (float *) lctx.inp_s_mask->data;
  9066. // states which are not affected by the current batch are left untouched
  9067. for (int i = 0; i < n_kv; ++i) {
  9068. llama_seq_id seq_id = i + lctx.kv_self.head;
  9069. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9070. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9071. data[i] = (float) has_self_seq;
  9072. // ensure current sequences will be kept
  9073. if (!has_self_seq && kv_cell.pos >= 0) {
  9074. kv_cell.seq_id.insert(seq_id);
  9075. }
  9076. }
  9077. }
  9078. // For Mamba (and other recurrent architectures),
  9079. // update the correct state(s)/sequence(s) for each token of the batch.
  9080. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9081. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9082. if (lctx.inp_s_seq) {
  9083. const int64_t n_tokens = batch.n_tokens;
  9084. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9085. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9086. for (int j = 0; j < n_tokens; ++j) {
  9087. const int32_t n_seq = batch.n_seq_id[j];
  9088. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9089. for (int i = 0; i < n_kv; ++i) {
  9090. if (i < n_seq) {
  9091. // for this type of model, the head is the minimum seq_id of the batch
  9092. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9093. } else {
  9094. data[j*n_kv + i] = -1;
  9095. }
  9096. }
  9097. }
  9098. }
  9099. }
  9100. }
  9101. // Make sure enough space is available for outputs.
  9102. // Returns max number of outputs for which space was reserved.
  9103. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9104. const auto & cparams = lctx.cparams;
  9105. const auto & hparams = lctx.model.hparams;
  9106. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9107. const auto n_batch = cparams.n_batch;
  9108. const auto n_vocab = hparams.n_vocab;
  9109. const auto n_embd = hparams.n_embd;
  9110. // TODO: use a per-batch flag for logits presence instead
  9111. const bool has_logits = cparams.causal_attn;
  9112. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9113. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9114. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9115. if (lctx.output_ids.empty()) {
  9116. // init, never resized afterwards
  9117. lctx.output_ids.resize(n_batch);
  9118. }
  9119. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9120. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9121. // alloc only when more than the current capacity is required
  9122. // TODO: also consider shrinking the buffer
  9123. if (!lctx.buf_output || prev_size < new_size) {
  9124. if (lctx.buf_output) {
  9125. #ifndef NDEBUG
  9126. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9127. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9128. #endif
  9129. ggml_backend_buffer_free(lctx.buf_output);
  9130. lctx.buf_output = nullptr;
  9131. lctx.logits = nullptr;
  9132. lctx.embd = nullptr;
  9133. }
  9134. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9135. if (lctx.buf_output == nullptr) {
  9136. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9137. return 0;
  9138. }
  9139. }
  9140. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9141. lctx.logits = has_logits ? output_base : nullptr;
  9142. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9143. lctx.output_size = n_outputs_max;
  9144. lctx.logits_size = logits_size;
  9145. lctx.embd_size = embd_size;
  9146. // set all ids as invalid (negative)
  9147. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9148. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9149. lctx.n_outputs = 0;
  9150. return n_outputs_max;
  9151. }
  9152. static void llama_graph_compute(
  9153. llama_context & lctx,
  9154. ggml_cgraph * gf,
  9155. int n_threads) {
  9156. #ifdef GGML_USE_MPI
  9157. const int64_t n_layer = lctx.model.hparams.n_layer;
  9158. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9159. #endif
  9160. #ifdef GGML_USE_METAL
  9161. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9162. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9163. }
  9164. #endif
  9165. if (lctx.backend_cpu != nullptr) {
  9166. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9167. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9168. }
  9169. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9170. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9171. #ifdef GGML_USE_MPI
  9172. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9173. #endif
  9174. }
  9175. // decode a batch of tokens by evaluating the transformer
  9176. //
  9177. // - lctx: llama context
  9178. // - batch: batch to evaluate
  9179. //
  9180. // return 0 on success
  9181. // return positive int on warning
  9182. // return negative int on error
  9183. //
  9184. static int llama_decode_internal(
  9185. llama_context & lctx,
  9186. llama_batch batch_all) { // TODO: rename back to batch
  9187. const uint32_t n_tokens_all = batch_all.n_tokens;
  9188. if (n_tokens_all == 0) {
  9189. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9190. return -1;
  9191. }
  9192. const auto & model = lctx.model;
  9193. const auto & hparams = model.hparams;
  9194. const auto & cparams = lctx.cparams;
  9195. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9196. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9197. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9198. if (lctx.t_compute_start_us == 0) {
  9199. lctx.t_compute_start_us = ggml_time_us();
  9200. }
  9201. lctx.n_queued_tokens += n_tokens_all;
  9202. #ifdef GGML_USE_MPI
  9203. // TODO: needs fix after #3228
  9204. GGML_ASSERT(false && "not implemented");
  9205. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9206. #endif
  9207. auto & kv_self = lctx.kv_self;
  9208. const int64_t n_embd = hparams.n_embd;
  9209. const int64_t n_vocab = hparams.n_vocab;
  9210. uint32_t n_outputs = 0;
  9211. uint32_t n_outputs_prev = 0;
  9212. const auto n_ubatch = cparams.n_ubatch;
  9213. std::vector<llama_pos> pos;
  9214. std::vector<int32_t> n_seq_id;
  9215. std::vector<llama_seq_id *> seq_id_arr;
  9216. std::vector<std::vector<llama_seq_id>> seq_id;
  9217. // count outputs
  9218. if (batch_all.logits) {
  9219. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9220. n_outputs += batch_all.logits[i] != 0;
  9221. }
  9222. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9223. n_outputs = n_tokens_all;
  9224. } else {
  9225. // keep last output only
  9226. n_outputs = 1;
  9227. }
  9228. // reserve output buffer
  9229. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9230. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9231. return -2;
  9232. };
  9233. // set output mappings
  9234. if (batch_all.logits) {
  9235. int32_t i_logits = 0;
  9236. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9237. if (batch_all.logits[i]) {
  9238. lctx.output_ids[i] = i_logits++;
  9239. }
  9240. }
  9241. } else {
  9242. for (uint32_t i = 0; i < n_outputs; ++i) {
  9243. lctx.output_ids[i] = i;
  9244. }
  9245. }
  9246. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9247. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9248. llama_batch u_batch = {
  9249. /* .n_tokens = */ (int32_t) n_tokens,
  9250. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9251. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9252. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9253. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9254. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9255. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9256. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9257. /* .all_pos_1 = */ batch_all.all_pos_1,
  9258. /* .all_seq_id = */ batch_all.all_seq_id,
  9259. };
  9260. // count the outputs in this u_batch
  9261. {
  9262. int32_t n_outputs_new = 0;
  9263. if (u_batch.logits) {
  9264. for (uint32_t i = 0; i < n_tokens; i++) {
  9265. n_outputs_new += u_batch.logits[i] != 0;
  9266. }
  9267. } else if (n_outputs == n_tokens_all) {
  9268. n_outputs_new = n_tokens;
  9269. } else {
  9270. // keep last output only
  9271. if (cur_token + n_tokens >= n_tokens_all) {
  9272. n_outputs_new = 1;
  9273. }
  9274. }
  9275. // needs to happen before the graph is built
  9276. lctx.n_outputs = n_outputs_new;
  9277. }
  9278. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9279. GGML_ASSERT(n_threads > 0);
  9280. // helpers for smoother batch API transition
  9281. // after deprecating the llama_eval calls, these will be removed
  9282. if (u_batch.pos == nullptr) {
  9283. pos.resize(n_tokens);
  9284. for (uint32_t i = 0; i < n_tokens; i++) {
  9285. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9286. }
  9287. u_batch.pos = pos.data();
  9288. }
  9289. if (u_batch.seq_id == nullptr) {
  9290. n_seq_id.resize(n_tokens);
  9291. seq_id.resize(n_tokens);
  9292. seq_id_arr.resize(n_tokens);
  9293. for (uint32_t i = 0; i < n_tokens; i++) {
  9294. n_seq_id[i] = 1;
  9295. seq_id[i].resize(1);
  9296. seq_id[i][0] = u_batch.all_seq_id;
  9297. seq_id_arr[i] = seq_id[i].data();
  9298. }
  9299. u_batch.n_seq_id = n_seq_id.data();
  9300. u_batch.seq_id = seq_id_arr.data();
  9301. }
  9302. // non-causal masks do not use the KV cache
  9303. if (hparams.causal_attn) {
  9304. llama_kv_cache_update(&lctx);
  9305. // if we have enough unused cells before the current head ->
  9306. // better to start searching from the beginning of the cache, hoping to fill it
  9307. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9308. kv_self.head = 0;
  9309. }
  9310. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9311. return 1;
  9312. }
  9313. if (!kv_self.recurrent) {
  9314. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9315. // after enough generations, the benefit from this heuristic disappears
  9316. // if we start defragmenting the cache, the benefit from this will be more important
  9317. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  9318. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9319. }
  9320. }
  9321. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9322. ggml_backend_sched_reset(lctx.sched);
  9323. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9324. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9325. // the output is always the last tensor in the graph
  9326. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9327. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9328. if (lctx.n_outputs == 0) {
  9329. // no output
  9330. res = nullptr;
  9331. embd = nullptr;
  9332. } else if (!hparams.causal_attn) {
  9333. res = nullptr; // do not extract logits for embedding models such as BERT
  9334. // token or sequence embeddings
  9335. embd = gf->nodes[gf->n_nodes - 1];
  9336. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9337. } else if (cparams.embeddings) {
  9338. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9339. int i_embd = gf->n_nodes - 2;
  9340. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9341. i_embd = gf->n_nodes - i;
  9342. if (i_embd < 0) { break; }
  9343. embd = gf->nodes[i_embd];
  9344. }
  9345. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9346. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9347. if (!cparams.causal_attn) {
  9348. res = nullptr; // do not extract logits when not needed
  9349. // skip computing logits
  9350. // TODO: is this safe?
  9351. gf->n_nodes = i_embd + 1;
  9352. }
  9353. } else {
  9354. embd = nullptr; // do not extract embeddings when not needed
  9355. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9356. }
  9357. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9358. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9359. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9360. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9361. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9362. // with the BLAS calls. need a better solution
  9363. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9364. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9365. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9366. n_threads = std::min(4, n_threads);
  9367. }
  9368. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9369. llama_set_inputs(lctx, u_batch);
  9370. llama_graph_compute(lctx, gf, n_threads);
  9371. // update the kv ring buffer
  9372. {
  9373. kv_self.head += n_tokens;
  9374. // Ensure kv cache head points to a valid index.
  9375. if (kv_self.head >= kv_self.size) {
  9376. kv_self.head = 0;
  9377. }
  9378. }
  9379. #ifdef GGML_PERF
  9380. // print timing information per ggml operation (for debugging purposes)
  9381. // requires GGML_PERF to be defined
  9382. ggml_graph_print(gf);
  9383. #endif
  9384. // plot the computation graph in dot format (for debugging purposes)
  9385. //if (n_past%100 == 0) {
  9386. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9387. //}
  9388. // extract logits
  9389. if (res) {
  9390. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9391. GGML_ASSERT(backend_res != nullptr);
  9392. GGML_ASSERT(lctx.logits != nullptr);
  9393. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9394. const int32_t n_outputs_new = lctx.n_outputs;
  9395. if (n_outputs_new) {
  9396. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9397. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9398. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9399. }
  9400. }
  9401. // extract embeddings
  9402. if (embd) {
  9403. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9404. GGML_ASSERT(backend_embd != nullptr);
  9405. switch (cparams.pooling_type) {
  9406. case LLAMA_POOLING_TYPE_NONE:
  9407. {
  9408. // extract token embeddings
  9409. GGML_ASSERT(lctx.embd != nullptr);
  9410. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9411. const int32_t n_outputs_new = lctx.n_outputs;
  9412. if (n_outputs_new) {
  9413. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9414. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9415. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9416. }
  9417. } break;
  9418. case LLAMA_POOLING_TYPE_CLS:
  9419. case LLAMA_POOLING_TYPE_MEAN:
  9420. {
  9421. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9422. // extract sequence embeddings
  9423. auto & embd_seq_out = lctx.embd_seq;
  9424. embd_seq_out.clear();
  9425. for (uint32_t i = 0; i < n_tokens; i++) {
  9426. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9427. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9428. continue;
  9429. }
  9430. embd_seq_out[seq_id].resize(n_embd);
  9431. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9432. }
  9433. } break;
  9434. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9435. {
  9436. GGML_ASSERT(false && "unknown pooling type");
  9437. } break;
  9438. }
  9439. }
  9440. n_outputs_prev += lctx.n_outputs;
  9441. }
  9442. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9443. lctx.n_outputs = n_outputs;
  9444. // wait for the computation to finish (automatically done when obtaining the model output)
  9445. //llama_synchronize(&lctx);
  9446. // decide if we need to defrag the kv cache
  9447. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9448. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9449. // queue defragmentation for next llama_kv_cache_update
  9450. if (fragmentation > cparams.defrag_thold) {
  9451. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9452. llama_kv_cache_defrag(kv_self);
  9453. }
  9454. }
  9455. return 0;
  9456. }
  9457. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9458. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9459. auto & kv_self = lctx.kv_self;
  9460. const auto & hparams = lctx.model.hparams;
  9461. const uint32_t n_layer = hparams.n_layer;
  9462. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9463. const uint32_t n_used = kv_self.used;
  9464. assert(n_used <= n_kv);
  9465. //const int64_t t_start = ggml_time_us();
  9466. // number of cells moved
  9467. uint32_t n_moves = 0;
  9468. // each move requires 6*n_layer tensors (see build_defrag)
  9469. // - source view, destination view, copy operation
  9470. // - x2 for keys and values
  9471. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9472. // determine which KV cells to move where
  9473. //
  9474. // cell i moves to ids[i]
  9475. //
  9476. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9477. //
  9478. std::vector<uint32_t> ids(n_kv, n_kv);
  9479. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9480. const auto & cell0 = kv_self.cells[i0];
  9481. if (!cell0.is_empty()) {
  9482. ids[i0] = i0;
  9483. continue;
  9484. }
  9485. // found a hole - fill it with data from the end of the cache
  9486. uint32_t nh = 1;
  9487. // determine the size of the hole
  9488. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9489. nh++;
  9490. }
  9491. uint32_t nf = 0;
  9492. uint32_t is = n_kv - 1;
  9493. // starting from the end, find nh non-empty cells
  9494. for (; is > i0; --is) {
  9495. const auto & cell1 = kv_self.cells[is];
  9496. if (cell1.is_empty() || ids[is] != n_kv) {
  9497. continue;
  9498. }
  9499. // non-empty cell which is not yet moved
  9500. nf++;
  9501. if (nf == nh) {
  9502. break;
  9503. }
  9504. }
  9505. // this can only happen if `n_used` is not accurate, which would be a bug
  9506. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9507. nf = 0;
  9508. uint32_t i1 = is;
  9509. // are we moving a continuous block of memory?
  9510. bool cont = false;
  9511. // should we stop searching for the next move?
  9512. bool stop = false;
  9513. // go back and move the nf cells to the hole
  9514. for (; i1 < n_kv; ++i1) {
  9515. auto & cell1 = kv_self.cells[i1];
  9516. if (cell1.is_empty() || ids[i1] != n_kv) {
  9517. if (n_moves == max_moves) {
  9518. stop = true;
  9519. break;
  9520. }
  9521. cont = false;
  9522. continue;
  9523. }
  9524. // this cell goes to (i0 + nf)
  9525. ids[i1] = i0 + nf;
  9526. // move the cell meta data
  9527. kv_self.cells[i0 + nf] = cell1;
  9528. // clear the old cell and move the head there
  9529. cell1 = llama_kv_cell();
  9530. kv_self.head = n_used;
  9531. if (!cont) {
  9532. n_moves++;
  9533. cont = true;
  9534. }
  9535. nf++;
  9536. if (nf == nh) {
  9537. break;
  9538. }
  9539. }
  9540. if (stop || n_moves == max_moves) {
  9541. break;
  9542. }
  9543. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9544. i0 += nh - 1;
  9545. }
  9546. if (n_moves == 0) {
  9547. return;
  9548. }
  9549. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9550. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9551. #if 0
  9552. // CPU defrag
  9553. //
  9554. // TODO: optimizations are possible:
  9555. // - multiple threads
  9556. // - avoid copying to the host memory when already there
  9557. //
  9558. // likely not worth the effort, as we have ggml_graph based defrag
  9559. //
  9560. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9561. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9562. const uint32_t kv_size = kv_self.size;
  9563. std::vector<uint8_t> buf_k;
  9564. std::vector<uint8_t> buf_v;
  9565. for (uint32_t il = 0; il < n_layer; ++il) {
  9566. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9567. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9568. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9569. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9570. buf_k.resize(k_size);
  9571. buf_v.resize(v_size);
  9572. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9573. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9574. // batch move [i, i+nm) to [id, id+nm)
  9575. // note: cells can move only to a lower index
  9576. for (uint32_t i = 0; i < n_kv; ++i) {
  9577. const uint32_t id = ids[i];
  9578. if (i == id || id == n_kv) {
  9579. continue;
  9580. }
  9581. uint32_t nm = 1;
  9582. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9583. nm++;
  9584. }
  9585. // move keys
  9586. {
  9587. const int64_t os = i*k_size_row;
  9588. const int64_t od = id*k_size_row;
  9589. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9590. }
  9591. // move values (note: they are transposed)
  9592. {
  9593. const int64_t os = i;
  9594. const int64_t od = id;
  9595. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9596. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9597. }
  9598. }
  9599. i += nm - 1;
  9600. }
  9601. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9602. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9603. }
  9604. #else
  9605. // ggml_graph defrag
  9606. ggml_backend_sched_reset(lctx.sched);
  9607. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9608. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9609. #endif
  9610. //const int64_t t_end = ggml_time_us();
  9611. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9612. }
  9613. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9614. bool need_reserve = false;
  9615. // apply K-shift if needed
  9616. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9617. {
  9618. ggml_backend_sched_reset(lctx.sched);
  9619. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9620. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9621. llama_set_k_shift(lctx);
  9622. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9623. need_reserve = true;
  9624. }
  9625. {
  9626. auto & kv_self = lctx.kv_self;
  9627. kv_self.has_shift = false;
  9628. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9629. kv_self.cells[i].delta = 0;
  9630. }
  9631. }
  9632. }
  9633. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9634. {
  9635. ggml_backend_sched_reset(lctx.sched);
  9636. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9637. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9638. llama_set_s_copy(lctx);
  9639. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9640. need_reserve = true;
  9641. }
  9642. {
  9643. auto & kv_self = lctx.kv_self;
  9644. kv_self.do_copy = false;
  9645. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9646. kv_self.cells[i].src = i;
  9647. }
  9648. }
  9649. }
  9650. // defragment the KV cache if needed
  9651. if (lctx.kv_self.do_defrag) {
  9652. llama_kv_cache_defrag_internal(lctx);
  9653. need_reserve = true;
  9654. lctx.kv_self.do_defrag = false;
  9655. }
  9656. // reserve a worst case graph again
  9657. if (need_reserve) {
  9658. // TODO: extract to a function
  9659. // build worst-case graph
  9660. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9661. int n_past = lctx.cparams.n_ctx - n_tokens;
  9662. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9663. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9664. // initialize scheduler with the worst-case graph
  9665. ggml_backend_sched_reset(lctx.sched);
  9666. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9667. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9668. }
  9669. }
  9670. }
  9671. //
  9672. // tokenizer
  9673. //
  9674. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9675. return vocab.type;
  9676. }
  9677. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9678. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9679. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9680. }
  9681. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9682. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9683. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9684. }
  9685. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9686. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9687. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9688. }
  9689. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9690. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9691. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9692. }
  9693. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9694. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9695. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9696. }
  9697. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9698. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9699. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9700. const auto& token_data = vocab.id_to_token.at(id);
  9701. switch (llama_vocab_get_type(vocab)) {
  9702. case LLAMA_VOCAB_TYPE_SPM: {
  9703. auto buf = token_data.text.substr(3, 2);
  9704. return strtol(buf.c_str(), NULL, 16);
  9705. }
  9706. case LLAMA_VOCAB_TYPE_BPE: {
  9707. GGML_ASSERT(false);
  9708. return unicode_utf8_to_byte(token_data.text);
  9709. }
  9710. case LLAMA_VOCAB_TYPE_WPM: {
  9711. GGML_ASSERT(false);
  9712. }
  9713. default:
  9714. GGML_ASSERT(false);
  9715. }
  9716. }
  9717. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9718. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9719. static const char * hex = "0123456789ABCDEF";
  9720. switch (llama_vocab_get_type(vocab)) {
  9721. case LLAMA_VOCAB_TYPE_SPM: {
  9722. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9723. auto token = vocab.token_to_id.find(buf);
  9724. if (token != vocab.token_to_id.end()) {
  9725. return (*token).second;
  9726. }
  9727. // Try to fall back to just the byte as a string
  9728. const char buf2[2] = { (char)ch, 0 };
  9729. return vocab.token_to_id.at(buf2);
  9730. }
  9731. case LLAMA_VOCAB_TYPE_WPM:
  9732. case LLAMA_VOCAB_TYPE_BPE: {
  9733. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9734. }
  9735. default:
  9736. GGML_ASSERT(false);
  9737. }
  9738. }
  9739. static void llama_escape_whitespace(std::string & text) {
  9740. replace_all(text, " ", "\xe2\x96\x81");
  9741. }
  9742. static void llama_unescape_whitespace(std::string & word) {
  9743. replace_all(word, "\xe2\x96\x81", " ");
  9744. }
  9745. struct llm_symbol {
  9746. using index = int;
  9747. index prev;
  9748. index next;
  9749. const char * text;
  9750. size_t n;
  9751. };
  9752. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9753. // SPM tokenizer
  9754. // original implementation:
  9755. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9756. struct llm_bigram_spm {
  9757. struct comparator {
  9758. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9759. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9760. }
  9761. };
  9762. using queue_storage = std::vector<llm_bigram_spm>;
  9763. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9764. llm_symbol::index left;
  9765. llm_symbol::index right;
  9766. float score;
  9767. size_t size;
  9768. };
  9769. struct llm_tokenizer_spm {
  9770. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9771. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9772. // split string into utf8 chars
  9773. int index = 0;
  9774. size_t offs = 0;
  9775. while (offs < text.size()) {
  9776. llm_symbol sym;
  9777. size_t len = utf8_len(text[offs]);
  9778. sym.text = text.c_str() + offs;
  9779. sym.n = std::min(len, text.size() - offs);
  9780. offs += sym.n;
  9781. sym.prev = index - 1;
  9782. sym.next = offs == text.size() ? -1 : index + 1;
  9783. index++;
  9784. symbols.emplace_back(sym);
  9785. }
  9786. // seed the work queue with all possible 2-character tokens.
  9787. for (size_t i = 1; i < symbols.size(); ++i) {
  9788. try_add_bigram(i - 1, i);
  9789. }
  9790. // keep substituting the highest frequency pairs for as long as we can.
  9791. while (!work_queue.empty()) {
  9792. auto bigram = work_queue.top();
  9793. work_queue.pop();
  9794. auto & left_sym = symbols[bigram.left];
  9795. auto & right_sym = symbols[bigram.right];
  9796. // if one of the symbols already got merged, skip it.
  9797. if (left_sym.n == 0 || right_sym.n == 0 ||
  9798. left_sym.n + right_sym.n != bigram.size) {
  9799. continue;
  9800. }
  9801. // merge the right sym into the left one
  9802. left_sym.n += right_sym.n;
  9803. right_sym.n = 0;
  9804. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9805. // remove the right sym from the chain
  9806. left_sym.next = right_sym.next;
  9807. if (right_sym.next >= 0) {
  9808. symbols[right_sym.next].prev = bigram.left;
  9809. }
  9810. // find more substitutions
  9811. try_add_bigram(left_sym.prev, bigram.left);
  9812. try_add_bigram(bigram.left, left_sym.next);
  9813. }
  9814. for (int i = 0; i != -1; i = symbols[i].next) {
  9815. auto & symbol = symbols[i];
  9816. resegment(symbol, output);
  9817. }
  9818. }
  9819. private:
  9820. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9821. auto text = std::string(symbol.text, symbol.n);
  9822. auto token = vocab.token_to_id.find(text);
  9823. // Do we need to support is_unused?
  9824. if (token != vocab.token_to_id.end()) {
  9825. output.push_back((*token).second);
  9826. return;
  9827. }
  9828. const auto p = rev_merge.find(text);
  9829. if (p == rev_merge.end()) {
  9830. // output any symbols that did not form tokens as bytes.
  9831. output.reserve(output.size() + symbol.n);
  9832. for (int j = 0; j < (int)symbol.n; ++j) {
  9833. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9834. output.push_back(token_id);
  9835. }
  9836. return;
  9837. }
  9838. resegment(symbols[p->second.first], output);
  9839. resegment(symbols[p->second.second], output);
  9840. }
  9841. void try_add_bigram(int left, int right) {
  9842. if (left == -1 || right == -1) {
  9843. return;
  9844. }
  9845. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9846. auto token = vocab.token_to_id.find(text);
  9847. if (token == vocab.token_to_id.end()) {
  9848. return;
  9849. }
  9850. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9851. return;
  9852. }
  9853. const auto & tok_data = vocab.id_to_token[(*token).second];
  9854. llm_bigram_spm bigram;
  9855. bigram.left = left;
  9856. bigram.right = right;
  9857. bigram.score = tok_data.score;
  9858. bigram.size = text.size();
  9859. work_queue.push(bigram);
  9860. // Do we need to support is_unused?
  9861. rev_merge[text] = std::make_pair(left, right);
  9862. }
  9863. const llama_vocab & vocab;
  9864. std::vector<llm_symbol> symbols;
  9865. llm_bigram_spm::queue work_queue;
  9866. std::map<std::string, std::pair<int, int>> rev_merge;
  9867. };
  9868. // BPE tokenizer
  9869. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9870. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9871. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9872. struct llm_bigram_bpe {
  9873. struct comparator {
  9874. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9875. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9876. }
  9877. };
  9878. using queue_storage = std::vector<llm_bigram_bpe>;
  9879. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9880. llm_symbol::index left;
  9881. llm_symbol::index right;
  9882. std::string text;
  9883. int rank;
  9884. size_t size;
  9885. };
  9886. struct llm_tokenizer_bpe {
  9887. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9888. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9889. int final_prev_index = -1;
  9890. auto word_collection = bpe_gpt2_preprocess(text);
  9891. symbols_final.clear();
  9892. for (auto & word : word_collection) {
  9893. work_queue = llm_bigram_bpe::queue();
  9894. symbols.clear();
  9895. int index = 0;
  9896. size_t offset = 0;
  9897. while (offset < word.size()) {
  9898. llm_symbol sym;
  9899. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9900. sym.text = word.c_str() + offset;
  9901. sym.n = char_len;
  9902. offset += sym.n;
  9903. sym.prev = index - 1;
  9904. sym.next = offset == word.size() ? -1 : index + 1;
  9905. index++;
  9906. symbols.emplace_back(sym);
  9907. }
  9908. for (size_t i = 1; i < symbols.size(); ++i) {
  9909. add_new_bigram(i - 1, i);
  9910. }
  9911. // build token(s)
  9912. while (!work_queue.empty()) {
  9913. auto bigram = work_queue.top();
  9914. work_queue.pop();
  9915. auto & left_symbol = symbols[bigram.left];
  9916. auto & right_symbol = symbols[bigram.right];
  9917. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9918. continue;
  9919. }
  9920. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9921. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9922. if (left_token + right_token != bigram.text) {
  9923. continue; // Skip this bigram if it's outdated
  9924. }
  9925. // merge the right sym into the left one
  9926. left_symbol.n += right_symbol.n;
  9927. right_symbol.n = 0;
  9928. // remove the right sym from the chain
  9929. left_symbol.next = right_symbol.next;
  9930. if (right_symbol.next >= 0) {
  9931. symbols[right_symbol.next].prev = bigram.left;
  9932. }
  9933. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9934. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9935. }
  9936. // add the finished tokens to the final list keeping correct order for next and prev
  9937. for (auto & sym : symbols) {
  9938. if (sym.n > 0) {
  9939. sym.prev = final_prev_index;
  9940. sym.next = -1;
  9941. if (final_prev_index != -1) {
  9942. symbols_final[final_prev_index].next = symbols_final.size();
  9943. }
  9944. symbols_final.emplace_back(sym);
  9945. final_prev_index = symbols_final.size() - 1;
  9946. }
  9947. }
  9948. }
  9949. symbols = symbols_final;
  9950. if (!symbols.empty()) {
  9951. for (int i = 0; i != -1; i = symbols[i].next) {
  9952. auto & symbol = symbols[i];
  9953. if (symbol.n == 0) {
  9954. continue;
  9955. }
  9956. const std::string str = std::string(symbol.text, symbol.n);
  9957. const auto token = vocab.token_to_id.find(str);
  9958. if (token == vocab.token_to_id.end()) {
  9959. for (auto j = str.begin(); j != str.end(); ++j) {
  9960. std::string byte_str(1, *j);
  9961. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9962. if (token_multibyte == vocab.token_to_id.end()) {
  9963. throw std::runtime_error("ERROR: byte not found in vocab");
  9964. }
  9965. output.push_back((*token_multibyte).second);
  9966. }
  9967. } else {
  9968. output.push_back((*token).second);
  9969. }
  9970. }
  9971. }
  9972. }
  9973. private:
  9974. void add_new_bigram(int left, int right) {
  9975. if (left == -1 || right == -1) {
  9976. return;
  9977. }
  9978. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9979. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9980. int rank_found = -1;
  9981. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9982. if (rank_found < 0) {
  9983. return;
  9984. }
  9985. llm_bigram_bpe bigram;
  9986. bigram.left = left;
  9987. bigram.right = right;
  9988. bigram.text = left_token + right_token;
  9989. bigram.size = left_token.size() + right_token.size();
  9990. bigram.rank = rank_found;
  9991. work_queue.push(bigram);
  9992. }
  9993. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  9994. std::vector<std::string> bpe_words;
  9995. std::vector<std::string> bpe_encoded_words;
  9996. std::string token = "";
  9997. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  9998. bool collecting_numeric = false;
  9999. bool collecting_letter = false;
  10000. bool collecting_special = false;
  10001. bool collecting_whitespace_lookahead = false;
  10002. bool collecting = false;
  10003. std::vector<std::string> text_utf;
  10004. text_utf.reserve(text.size());
  10005. bpe_words.reserve(text.size());
  10006. bpe_encoded_words.reserve(text.size());
  10007. const auto cpts = unicode_cpts_from_utf8(text);
  10008. for (size_t i = 0; i < cpts.size(); ++i)
  10009. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  10010. for (int i = 0; i < (int)text_utf.size(); i++) {
  10011. const std::string & utf_char = text_utf[i];
  10012. bool split_condition = false;
  10013. int bytes_remain = text_utf.size() - i;
  10014. // forward backward lookups
  10015. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  10016. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  10017. // handling contractions
  10018. if (!split_condition && bytes_remain >= 2) {
  10019. // 's|'t|'m|'d
  10020. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  10021. split_condition = true;
  10022. }
  10023. if (split_condition) {
  10024. if (token.size()) {
  10025. bpe_words.emplace_back(token); // push previous content as token
  10026. }
  10027. token = utf_char + utf_char_next;
  10028. bpe_words.emplace_back(token);
  10029. token = "";
  10030. i++;
  10031. continue;
  10032. }
  10033. }
  10034. if (!split_condition && bytes_remain >= 3) {
  10035. // 're|'ve|'ll
  10036. if (utf_char == "\'" && (
  10037. (utf_char_next == "r" && utf_char_next_next == "e") ||
  10038. (utf_char_next == "v" && utf_char_next_next == "e") ||
  10039. (utf_char_next == "l" && utf_char_next_next == "l"))
  10040. ) {
  10041. split_condition = true;
  10042. }
  10043. if (split_condition) {
  10044. // current token + next token can be defined
  10045. if (token.size()) {
  10046. bpe_words.emplace_back(token); // push previous content as token
  10047. }
  10048. token = utf_char + utf_char_next + utf_char_next_next;
  10049. bpe_words.emplace_back(token); // the contraction
  10050. token = "";
  10051. i += 2;
  10052. continue;
  10053. }
  10054. }
  10055. if (!split_condition && !collecting) {
  10056. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  10057. collecting_letter = true;
  10058. collecting = true;
  10059. }
  10060. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10061. collecting_numeric = true;
  10062. collecting = true;
  10063. }
  10064. else if (
  10065. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  10066. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  10067. ) {
  10068. collecting_special = true;
  10069. collecting = true;
  10070. }
  10071. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  10072. collecting_whitespace_lookahead = true;
  10073. collecting = true;
  10074. }
  10075. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  10076. split_condition = true;
  10077. }
  10078. }
  10079. else if (!split_condition && collecting) {
  10080. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  10081. split_condition = true;
  10082. }
  10083. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  10084. split_condition = true;
  10085. }
  10086. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  10087. split_condition = true;
  10088. }
  10089. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10090. split_condition = true;
  10091. }
  10092. }
  10093. if (utf_char_next == "") {
  10094. split_condition = true; // final
  10095. token += utf_char;
  10096. }
  10097. if (split_condition) {
  10098. if (token.size()) {
  10099. bpe_words.emplace_back(token);
  10100. }
  10101. token = utf_char;
  10102. collecting = false;
  10103. collecting_letter = false;
  10104. collecting_numeric = false;
  10105. collecting_special = false;
  10106. collecting_whitespace_lookahead = false;
  10107. }
  10108. else {
  10109. token += utf_char;
  10110. }
  10111. }
  10112. for (std::string & word : bpe_words) {
  10113. std::string encoded_token = "";
  10114. for (char & c : word) {
  10115. encoded_token += unicode_byte_to_utf8(c);
  10116. }
  10117. bpe_encoded_words.emplace_back(encoded_token);
  10118. }
  10119. return bpe_encoded_words;
  10120. }
  10121. const llama_vocab & vocab;
  10122. std::vector<llm_symbol> symbols;
  10123. std::vector<llm_symbol> symbols_final;
  10124. llm_bigram_bpe::queue work_queue;
  10125. };
  10126. struct llm_tokenizer_wpm {
  10127. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10128. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10129. auto * token_map = &vocab.token_to_id;
  10130. // normalize and split by whitespace
  10131. std::vector<std::string> words = preprocess(text);
  10132. // bos token prepended already
  10133. // find the longest tokens that form the words
  10134. for (const std::string &word : words) {
  10135. // skip empty words
  10136. if (word.size() == 0) {
  10137. continue;
  10138. }
  10139. // prepend phantom space
  10140. std::string word1 = "\xe2\x96\x81" + word;
  10141. int n = word1.size();
  10142. // we're at the start of a new word
  10143. int i = 0;
  10144. bool match_any = false;
  10145. // move through character position in word
  10146. while (i < n) {
  10147. // loop through possible match length
  10148. bool match = false;
  10149. for (int j = n; j > i; j--) {
  10150. auto it = token_map->find(word1.substr(i, j - i));
  10151. if (it != token_map->end()) {
  10152. output.push_back(it->second);
  10153. match = true;
  10154. match_any = true;
  10155. i = j;
  10156. break;
  10157. }
  10158. }
  10159. // must be an unknown character
  10160. if (!match) {
  10161. i++;
  10162. }
  10163. }
  10164. // we didn't find any matches for this word
  10165. if (!match_any) {
  10166. output.push_back(vocab.special_unk_id);
  10167. }
  10168. }
  10169. }
  10170. std::vector<std::string> preprocess(const std::string & text) {
  10171. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10172. // strip accents, strip control, uniformize whitespace,
  10173. // to lowercase, pad chinese characters, pad punctuation
  10174. std::string new_str = "";
  10175. for (uint32_t code : cpts_nfd) {
  10176. int type = unicode_cpt_type(code);
  10177. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10178. continue;
  10179. }
  10180. code = unicode_tolower(code);
  10181. if (type == CODEPOINT_TYPE_WHITESPACE) {
  10182. code = ' ';
  10183. }
  10184. std::string s = unicode_cpt_to_utf8(code);
  10185. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10186. new_str += " ";
  10187. new_str += s;
  10188. new_str += " ";
  10189. } else {
  10190. new_str += s;
  10191. }
  10192. }
  10193. // split by whitespace
  10194. uint64_t l = 0;
  10195. uint64_t r = 0;
  10196. std::vector<std::string> words;
  10197. while (r < new_str.size()) {
  10198. // if is whitespace
  10199. if (isspace(new_str[r], std::locale::classic())) {
  10200. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10201. l = r + 1;
  10202. r = l;
  10203. } else {
  10204. r += 1;
  10205. }
  10206. }
  10207. if (r > l) {
  10208. words.push_back(new_str.substr(l, (r - l)));
  10209. }
  10210. return words;
  10211. }
  10212. bool is_ascii_punct(uint32_t code) {
  10213. if (code > 0xFF) {
  10214. return false;
  10215. }
  10216. auto c = char(static_cast<unsigned char>(code));
  10217. return ispunct(c, std::locale::classic());
  10218. }
  10219. bool is_chinese_char(uint32_t cpt) {
  10220. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10221. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10222. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10223. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10224. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10225. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10226. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10227. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10228. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10229. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10230. return true; // NOLINT
  10231. }
  10232. return false;
  10233. }
  10234. const llama_vocab & vocab;
  10235. };
  10236. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10237. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10238. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10239. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10240. struct fragment_buffer_variant {
  10241. fragment_buffer_variant(llama_vocab::id _token)
  10242. :
  10243. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10244. token(_token),
  10245. raw_text(_dummy),
  10246. offset(0),
  10247. length(0) {}
  10248. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10249. :
  10250. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10251. token((llama_vocab::id) - 1),
  10252. raw_text(_raw_text),
  10253. offset(_offset),
  10254. length(_length){
  10255. GGML_ASSERT(_offset >= 0);
  10256. GGML_ASSERT(_length >= 1);
  10257. GGML_ASSERT(offset + length <= raw_text.length());
  10258. }
  10259. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10260. const llama_vocab::id token;
  10261. const std::string _dummy;
  10262. const std::string & raw_text;
  10263. const uint64_t offset;
  10264. const uint64_t length;
  10265. };
  10266. // #define PRETOKENIZERDEBUG
  10267. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10268. // for each special token
  10269. for (const auto & st: vocab.special_tokens_cache) {
  10270. const auto & special_token = st.first;
  10271. const auto & special_id = st.second;
  10272. // for each text fragment
  10273. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10274. while (it != buffer.end()) {
  10275. auto & fragment = (*it);
  10276. // if a fragment is text ( not yet processed )
  10277. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10278. auto * raw_text = &(fragment.raw_text);
  10279. auto raw_text_base_offset = fragment.offset;
  10280. auto raw_text_base_length = fragment.length;
  10281. // loop over the text
  10282. while (true) {
  10283. // find the first occurrence of a given special token in this fragment
  10284. // passing offset argument only limit the "search area" but match coordinates
  10285. // are still relative to the source full raw_text
  10286. auto match = raw_text->find(special_token, raw_text_base_offset);
  10287. // no occurrences found, stop processing this fragment for a given special token
  10288. if (match == std::string::npos) break;
  10289. // check if match is within bounds of offset <-> length
  10290. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10291. #ifdef PRETOKENIZERDEBUG
  10292. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10293. #endif
  10294. auto source = std::distance(buffer.begin(), it);
  10295. // if match is further than base offset
  10296. // then we have some text to the left of it
  10297. if (match > raw_text_base_offset) {
  10298. // left
  10299. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10300. const int64_t left_reminder_length = match - raw_text_base_offset;
  10301. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10302. #ifdef PRETOKENIZERDEBUG
  10303. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10304. #endif
  10305. it++;
  10306. }
  10307. // special token
  10308. buffer.emplace_after(it, special_id);
  10309. it++;
  10310. // right
  10311. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10312. const int64_t right_reminder_offset = match + special_token.length();
  10313. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10314. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10315. #ifdef PRETOKENIZERDEBUG
  10316. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10317. #endif
  10318. it++;
  10319. if (source == 0) {
  10320. buffer.erase_after(buffer.before_begin());
  10321. } else {
  10322. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10323. }
  10324. // repeat for the right side
  10325. raw_text_base_offset = right_reminder_offset;
  10326. raw_text_base_length = right_reminder_length;
  10327. #ifdef PRETOKENIZERDEBUG
  10328. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10329. #endif
  10330. } else {
  10331. if (source == 0) {
  10332. buffer.erase_after(buffer.before_begin());
  10333. } else {
  10334. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10335. }
  10336. break;
  10337. }
  10338. }
  10339. }
  10340. it++;
  10341. }
  10342. }
  10343. }
  10344. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10345. std::vector<llama_vocab::id> output;
  10346. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10347. if (!raw_text.empty()) {
  10348. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10349. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10350. }
  10351. switch (vocab.type) {
  10352. case LLAMA_VOCAB_TYPE_SPM:
  10353. {
  10354. // OG tokenizer behavior:
  10355. //
  10356. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10357. // tokenizer.encode('', add_special_tokens=False) returns []
  10358. if (add_special && vocab.special_add_bos != 0) {
  10359. GGML_ASSERT(vocab.special_bos_id != -1);
  10360. output.push_back(vocab.special_bos_id);
  10361. }
  10362. for (const auto & fragment : fragment_buffer) {
  10363. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10364. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10365. // TODO: It's likely possible to get rid of this string copy entirely
  10366. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10367. // and passing 'add space prefix' as bool argument
  10368. //
  10369. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10370. if (&fragment == &fragment_buffer.front()) {
  10371. if (vocab.add_space_prefix) {
  10372. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10373. }
  10374. }
  10375. #ifdef PRETOKENIZERDEBUG
  10376. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10377. #endif
  10378. llm_tokenizer_spm tokenizer(vocab);
  10379. llama_escape_whitespace(raw_text);
  10380. tokenizer.tokenize(raw_text, output);
  10381. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10382. output.push_back(fragment.token);
  10383. }
  10384. }
  10385. if (add_special && vocab.special_add_eos == 1) {
  10386. GGML_ASSERT(vocab.special_eos_id != -1);
  10387. output.push_back(vocab.special_eos_id);
  10388. }
  10389. } break;
  10390. case LLAMA_VOCAB_TYPE_BPE:
  10391. {
  10392. if (add_special && vocab.special_add_bos == 1) {
  10393. GGML_ASSERT(vocab.special_bos_id != -1);
  10394. output.push_back(vocab.special_bos_id);
  10395. }
  10396. for (const auto & fragment : fragment_buffer) {
  10397. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10398. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10399. #ifdef PRETOKENIZERDEBUG
  10400. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10401. #endif
  10402. llm_tokenizer_bpe tokenizer(vocab);
  10403. tokenizer.tokenize(raw_text, output);
  10404. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10405. output.push_back(fragment.token);
  10406. }
  10407. }
  10408. GGML_ASSERT(vocab.special_add_eos != 1);
  10409. } break;
  10410. case LLAMA_VOCAB_TYPE_WPM:
  10411. {
  10412. if (add_special) {
  10413. GGML_ASSERT(vocab.special_cls_id != -1);
  10414. output.push_back(vocab.special_cls_id);
  10415. }
  10416. for (const auto & fragment : fragment_buffer) {
  10417. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10418. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10419. #ifdef PRETOKENIZERDEBUG
  10420. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10421. #endif
  10422. llm_tokenizer_wpm tokenizer(vocab);
  10423. tokenizer.tokenize(raw_text, output);
  10424. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10425. output.push_back(fragment.token);
  10426. }
  10427. }
  10428. if (add_special) {
  10429. GGML_ASSERT(vocab.special_sep_id != -1);
  10430. output.push_back(vocab.special_sep_id);
  10431. }
  10432. } break;
  10433. case LLAMA_VOCAB_TYPE_NONE:
  10434. GGML_ASSERT(false);
  10435. }
  10436. return output;
  10437. }
  10438. //
  10439. // grammar - internal
  10440. //
  10441. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10442. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10443. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10444. const std::string & src,
  10445. llama_partial_utf8 partial_start) {
  10446. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10447. const char * pos = src.c_str();
  10448. std::vector<uint32_t> code_points;
  10449. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10450. code_points.reserve(src.size() + 1);
  10451. uint32_t value = partial_start.value;
  10452. int n_remain = partial_start.n_remain;
  10453. // continue previous decode, if applicable
  10454. while (*pos != 0 && n_remain > 0) {
  10455. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10456. if ((next_byte >> 6) != 2) {
  10457. // invalid sequence, abort
  10458. code_points.push_back(0);
  10459. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10460. }
  10461. value = (value << 6) + (next_byte & 0x3F);
  10462. ++pos;
  10463. --n_remain;
  10464. }
  10465. if (partial_start.n_remain > 0 && n_remain == 0) {
  10466. code_points.push_back(value);
  10467. }
  10468. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10469. while (*pos != 0) {
  10470. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10471. uint8_t highbits = first_byte >> 4;
  10472. n_remain = lookup[highbits] - 1;
  10473. if (n_remain < 0) {
  10474. // invalid sequence, abort
  10475. code_points.clear();
  10476. code_points.push_back(0);
  10477. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10478. }
  10479. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10480. value = first_byte & mask;
  10481. ++pos;
  10482. while (*pos != 0 && n_remain > 0) {
  10483. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10484. ++pos;
  10485. --n_remain;
  10486. }
  10487. if (n_remain == 0) {
  10488. code_points.push_back(value);
  10489. }
  10490. }
  10491. code_points.push_back(0);
  10492. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10493. }
  10494. // returns true iff pos points to the end of one of the definitions of a rule
  10495. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10496. switch (pos->type) {
  10497. case LLAMA_GRETYPE_END: return true; // NOLINT
  10498. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10499. default: return false;
  10500. }
  10501. }
  10502. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10503. // asserts that pos is pointing to a char range element
  10504. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10505. const llama_grammar_element * pos,
  10506. const uint32_t chr) {
  10507. bool found = false;
  10508. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10509. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10510. do {
  10511. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10512. // inclusive range, e.g. [a-z]
  10513. found = found || (pos->value <= chr && chr <= pos[1].value);
  10514. pos += 2;
  10515. } else {
  10516. // exact char match, e.g. [a] or "a"
  10517. found = found || pos->value == chr;
  10518. pos += 1;
  10519. }
  10520. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10521. return std::make_pair(found == is_positive_char, pos);
  10522. }
  10523. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10524. // range at pos (regular or inverse range)
  10525. // asserts that pos is pointing to a char range element
  10526. static bool llama_grammar_match_partial_char(
  10527. const llama_grammar_element * pos,
  10528. const llama_partial_utf8 partial_utf8) {
  10529. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10530. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10531. uint32_t partial_value = partial_utf8.value;
  10532. int n_remain = partial_utf8.n_remain;
  10533. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10534. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10535. return false;
  10536. }
  10537. // range of possible code points this partial UTF-8 sequence could complete to
  10538. uint32_t low = partial_value << (n_remain * 6);
  10539. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10540. if (low == 0) {
  10541. if (n_remain == 2) {
  10542. low = 1 << 11;
  10543. } else if (n_remain == 3) {
  10544. low = 1 << 16;
  10545. }
  10546. }
  10547. do {
  10548. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10549. // inclusive range, e.g. [a-z]
  10550. if (pos->value <= high && low <= pos[1].value) {
  10551. return is_positive_char;
  10552. }
  10553. pos += 2;
  10554. } else {
  10555. // exact char match, e.g. [a] or "a"
  10556. if (low <= pos->value && pos->value <= high) {
  10557. return is_positive_char;
  10558. }
  10559. pos += 1;
  10560. }
  10561. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10562. return !is_positive_char;
  10563. }
  10564. // transforms a grammar pushdown stack into N possible stacks, all ending
  10565. // at a character range (terminal element)
  10566. static void llama_grammar_advance_stack(
  10567. const std::vector<std::vector<llama_grammar_element>> & rules,
  10568. const std::vector<const llama_grammar_element *> & stack,
  10569. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10570. if (stack.empty()) {
  10571. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10572. new_stacks.emplace_back(stack);
  10573. }
  10574. return;
  10575. }
  10576. const llama_grammar_element * pos = stack.back();
  10577. switch (pos->type) {
  10578. case LLAMA_GRETYPE_RULE_REF: {
  10579. const size_t rule_id = static_cast<size_t>(pos->value);
  10580. const llama_grammar_element * subpos = rules[rule_id].data();
  10581. do {
  10582. // init new stack without the top (pos)
  10583. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10584. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10585. // if this rule ref is followed by another element, add that to stack
  10586. new_stack.push_back(pos + 1);
  10587. }
  10588. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10589. // if alternate is nonempty, add to stack
  10590. new_stack.push_back(subpos);
  10591. }
  10592. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10593. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10594. // scan to end of alternate def
  10595. subpos++;
  10596. }
  10597. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10598. // there's another alternate def of this rule to process
  10599. subpos++;
  10600. } else {
  10601. break;
  10602. }
  10603. } while (true);
  10604. break;
  10605. }
  10606. case LLAMA_GRETYPE_CHAR:
  10607. case LLAMA_GRETYPE_CHAR_NOT:
  10608. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10609. // only add the stack if it's not a duplicate of one we already have
  10610. new_stacks.emplace_back(stack);
  10611. }
  10612. break;
  10613. default:
  10614. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10615. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10616. // those
  10617. GGML_ASSERT(false);
  10618. }
  10619. }
  10620. // takes a set of possible pushdown stacks on a grammar, which are required to
  10621. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10622. // produces the N possible stacks if the given char is accepted at those
  10623. // positions
  10624. void llama_grammar_accept(
  10625. const std::vector<std::vector<llama_grammar_element>> & rules,
  10626. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10627. const uint32_t chr,
  10628. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10629. new_stacks.clear();
  10630. for (const auto & stack : stacks) {
  10631. if (stack.empty()) {
  10632. continue;
  10633. }
  10634. auto match = llama_grammar_match_char(stack.back(), chr);
  10635. if (match.first) {
  10636. const llama_grammar_element * pos = match.second;
  10637. // update top of stack to next element, if any
  10638. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10639. if (!llama_grammar_is_end_of_sequence(pos)) {
  10640. new_stack.push_back(pos);
  10641. }
  10642. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10643. }
  10644. }
  10645. }
  10646. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10647. const std::vector<std::vector<llama_grammar_element>> & rules,
  10648. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10649. const std::vector<llama_grammar_candidate> & candidates);
  10650. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10651. const std::vector<std::vector<llama_grammar_element>> & rules,
  10652. const std::vector<const llama_grammar_element *> & stack,
  10653. const std::vector<llama_grammar_candidate> & candidates) {
  10654. std::vector<llama_grammar_candidate> rejects;
  10655. rejects.reserve(candidates.size());
  10656. if (stack.empty()) {
  10657. for (const auto & tok : candidates) {
  10658. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10659. rejects.push_back(tok);
  10660. }
  10661. }
  10662. return rejects;
  10663. }
  10664. const llama_grammar_element * stack_pos = stack.back();
  10665. std::vector<llama_grammar_candidate> next_candidates;
  10666. next_candidates.reserve(candidates.size());
  10667. for (const auto & tok : candidates) {
  10668. if (*tok.code_points == 0) {
  10669. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10670. // that cannot satisfy this position in grammar
  10671. if (tok.partial_utf8.n_remain != 0 &&
  10672. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10673. rejects.push_back(tok);
  10674. }
  10675. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10676. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10677. } else {
  10678. rejects.push_back(tok);
  10679. }
  10680. }
  10681. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10682. // update top of stack to next element, if any
  10683. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10684. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10685. stack_after.push_back(stack_pos_after);
  10686. }
  10687. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10688. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10689. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10690. for (const auto & tok : next_rejects) {
  10691. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10692. }
  10693. return rejects;
  10694. }
  10695. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10696. const std::vector<std::vector<llama_grammar_element>> & rules,
  10697. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10698. const std::vector<llama_grammar_candidate> & candidates) {
  10699. GGML_ASSERT(!stacks.empty()); // REVIEW
  10700. if (candidates.empty()) {
  10701. return std::vector<llama_grammar_candidate>();
  10702. }
  10703. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10704. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10705. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10706. }
  10707. return rejects;
  10708. }
  10709. //
  10710. // grammar - external
  10711. //
  10712. struct llama_grammar * llama_grammar_init(
  10713. const llama_grammar_element ** rules,
  10714. size_t n_rules,
  10715. size_t start_rule_index) {
  10716. const llama_grammar_element * pos;
  10717. // copy rule definitions into vectors
  10718. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10719. for (size_t i = 0; i < n_rules; i++) {
  10720. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10721. vec_rules[i].push_back(*pos);
  10722. }
  10723. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10724. }
  10725. // loop over alternates of start rule to build initial stacks
  10726. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10727. pos = vec_rules[start_rule_index].data();
  10728. do {
  10729. std::vector<const llama_grammar_element *> stack;
  10730. if (!llama_grammar_is_end_of_sequence(pos)) {
  10731. // if alternate is nonempty, add to stack
  10732. stack.push_back(pos);
  10733. }
  10734. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10735. while (!llama_grammar_is_end_of_sequence(pos)) {
  10736. // scan to end of alternate def
  10737. pos++;
  10738. }
  10739. if (pos->type == LLAMA_GRETYPE_ALT) {
  10740. // there's another alternate def of this rule to process
  10741. pos++;
  10742. } else {
  10743. break;
  10744. }
  10745. } while (true);
  10746. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10747. }
  10748. void llama_grammar_free(struct llama_grammar * grammar) {
  10749. delete grammar;
  10750. }
  10751. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10752. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10753. // redirect elements in stacks to point to new rules
  10754. for (size_t is = 0; is < result->stacks.size(); is++) {
  10755. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10756. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10757. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10758. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10759. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10760. }
  10761. }
  10762. }
  10763. }
  10764. }
  10765. return result;
  10766. }
  10767. //
  10768. // sampling
  10769. //
  10770. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10771. if (seed == LLAMA_DEFAULT_SEED) {
  10772. seed = time(NULL);
  10773. }
  10774. ctx->rng.seed(seed);
  10775. }
  10776. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10777. GGML_ASSERT(candidates->size > 0);
  10778. const int64_t t_start_sample_us = ggml_time_us();
  10779. // Sort the logits in descending order
  10780. if (!candidates->sorted) {
  10781. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10782. return a.logit > b.logit;
  10783. });
  10784. candidates->sorted = true;
  10785. }
  10786. float max_l = candidates->data[0].logit;
  10787. float cum_sum = 0.0f;
  10788. for (size_t i = 0; i < candidates->size; ++i) {
  10789. float p = expf(candidates->data[i].logit - max_l);
  10790. candidates->data[i].p = p;
  10791. cum_sum += p;
  10792. }
  10793. for (size_t i = 0; i < candidates->size; ++i) {
  10794. candidates->data[i].p /= cum_sum;
  10795. }
  10796. if (ctx) {
  10797. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10798. }
  10799. }
  10800. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10801. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10802. // if (k >= (int32_t)candidates->size) {
  10803. // return;
  10804. // }
  10805. const int64_t t_start_sample_us = ggml_time_us();
  10806. if (k <= 0) {
  10807. k = candidates->size;
  10808. }
  10809. k = std::max(k, (int) min_keep);
  10810. k = std::min(k, (int) candidates->size);
  10811. // Sort scores in descending order
  10812. if (!candidates->sorted) {
  10813. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10814. return a.logit > b.logit;
  10815. };
  10816. if (k <= 128) {
  10817. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10818. } else {
  10819. constexpr int nbuckets = 128;
  10820. constexpr float bucket_low = -10.0f;
  10821. constexpr float bucket_high = 10.0f;
  10822. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10823. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10824. std::vector<int> bucket_idx(candidates->size);
  10825. std::vector<int> histo(nbuckets, 0);
  10826. for (int i = 0; i < (int)candidates->size; ++i) {
  10827. const float val = candidates->data[i].logit;
  10828. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10829. ib = std::max(0, std::min(nbuckets-1, ib));
  10830. bucket_idx[i] = ib;
  10831. ++histo[ib];
  10832. }
  10833. int nhave = 0;
  10834. int ib = nbuckets - 1;
  10835. for ( ; ib >= 0; --ib) {
  10836. nhave += histo[ib];
  10837. if (nhave >= k) break;
  10838. }
  10839. std::vector<llama_token_data> tmp_tokens(nhave);
  10840. auto ptr = tmp_tokens.data();
  10841. std::vector<llama_token_data*> bucket_ptrs;
  10842. bucket_ptrs.reserve(nbuckets - ib);
  10843. for (int j = nbuckets - 1; j >= ib; --j) {
  10844. bucket_ptrs.push_back(ptr);
  10845. ptr += histo[j];
  10846. }
  10847. for (int i = 0; i < (int)candidates->size; ++i) {
  10848. int j = bucket_idx[i];
  10849. if (j >= ib) {
  10850. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10851. }
  10852. }
  10853. ptr = tmp_tokens.data();
  10854. int ndone = 0;
  10855. for (int j = nbuckets-1; j > ib; --j) {
  10856. std::sort(ptr, ptr + histo[j], comp);
  10857. ptr += histo[j];
  10858. ndone += histo[j];
  10859. }
  10860. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10861. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10862. }
  10863. candidates->sorted = true;
  10864. }
  10865. candidates->size = k;
  10866. if (ctx) {
  10867. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10868. }
  10869. }
  10870. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10871. if (p >= 1.0f) {
  10872. return;
  10873. }
  10874. llama_sample_softmax(ctx, candidates);
  10875. const int64_t t_start_sample_us = ggml_time_us();
  10876. // Compute the cumulative probabilities
  10877. float cum_sum = 0.0f;
  10878. size_t last_idx = candidates->size;
  10879. for (size_t i = 0; i < candidates->size; ++i) {
  10880. cum_sum += candidates->data[i].p;
  10881. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10882. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10883. if (cum_sum >= p && i + 1 >= min_keep) {
  10884. last_idx = i + 1;
  10885. break;
  10886. }
  10887. }
  10888. // Resize the output vector to keep only the top-p tokens
  10889. candidates->size = last_idx;
  10890. if (ctx) {
  10891. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10892. }
  10893. }
  10894. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10895. if (p <= 0.0f || !candidates->size) {
  10896. return;
  10897. }
  10898. const int64_t t_start_sample_us = ggml_time_us();
  10899. bool min_p_applied = false;
  10900. // if the candidates aren't sorted, try the unsorted implementation first
  10901. if (!candidates->sorted) {
  10902. std::vector<llama_token_data> filtered_tokens;
  10903. float max_logit = -FLT_MAX;
  10904. for (size_t i = 0; i < candidates->size; ++i) {
  10905. max_logit = std::max(max_logit, candidates->data[i].logit);
  10906. }
  10907. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10908. for (size_t i = 0; i < candidates->size; ++i) {
  10909. if (candidates->data[i].logit >= min_logit) {
  10910. filtered_tokens.push_back(candidates->data[i]);
  10911. }
  10912. }
  10913. // if we have enough values the operation was a success
  10914. if (filtered_tokens.size() >= min_keep) {
  10915. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10916. candidates->size = filtered_tokens.size();
  10917. min_p_applied = true;
  10918. }
  10919. }
  10920. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10921. if (!min_p_applied) {
  10922. // Sort the logits in descending order
  10923. if (!candidates->sorted) {
  10924. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10925. return a.logit > b.logit;
  10926. });
  10927. candidates->sorted = true;
  10928. }
  10929. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10930. size_t i = 1; // first token always matches
  10931. for (; i < candidates->size; ++i) {
  10932. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10933. break; // prob too small
  10934. }
  10935. }
  10936. // Resize the output vector to keep only the matching tokens
  10937. candidates->size = i;
  10938. }
  10939. if (ctx) {
  10940. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10941. }
  10942. }
  10943. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10944. if (z >= 1.0f || candidates->size <= 2) {
  10945. return;
  10946. }
  10947. llama_sample_softmax(nullptr, candidates);
  10948. const int64_t t_start_sample_us = ggml_time_us();
  10949. // Compute the first and second derivatives
  10950. std::vector<float> first_derivatives(candidates->size - 1);
  10951. std::vector<float> second_derivatives(candidates->size - 2);
  10952. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10953. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10954. }
  10955. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10956. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10957. }
  10958. // Calculate absolute value of second derivatives
  10959. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10960. second_derivatives[i] = std::abs(second_derivatives[i]);
  10961. }
  10962. // Normalize the second derivatives
  10963. {
  10964. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10965. if (second_derivatives_sum > 1e-6f) {
  10966. for (float & value : second_derivatives) {
  10967. value /= second_derivatives_sum;
  10968. }
  10969. } else {
  10970. for (float & value : second_derivatives) {
  10971. value = 1.0f / second_derivatives.size();
  10972. }
  10973. }
  10974. }
  10975. float cum_sum = 0.0f;
  10976. size_t last_idx = candidates->size;
  10977. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10978. cum_sum += second_derivatives[i];
  10979. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10980. if (cum_sum > z && i >= min_keep) {
  10981. last_idx = i;
  10982. break;
  10983. }
  10984. }
  10985. // Resize the output vector to keep only the tokens above the tail location
  10986. candidates->size = last_idx;
  10987. if (ctx) {
  10988. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10989. }
  10990. }
  10991. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10992. // Reference implementation:
  10993. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  10994. if (p >= 1.0f) {
  10995. return;
  10996. }
  10997. // Compute the softmax of logits and calculate entropy
  10998. llama_sample_softmax(nullptr, candidates);
  10999. const int64_t t_start_sample_us = ggml_time_us();
  11000. float entropy = 0.0f;
  11001. for (size_t i = 0; i < candidates->size; ++i) {
  11002. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11003. }
  11004. // Compute the absolute difference between negative log probability and entropy for each candidate
  11005. std::vector<float> shifted_scores;
  11006. for (size_t i = 0; i < candidates->size; ++i) {
  11007. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11008. shifted_scores.push_back(shifted_score);
  11009. }
  11010. // Sort tokens based on the shifted_scores and their corresponding indices
  11011. std::vector<size_t> indices(candidates->size);
  11012. std::iota(indices.begin(), indices.end(), 0);
  11013. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11014. return shifted_scores[a] < shifted_scores[b];
  11015. });
  11016. // Compute the cumulative probabilities
  11017. float cum_sum = 0.0f;
  11018. size_t last_idx = indices.size();
  11019. for (size_t i = 0; i < indices.size(); ++i) {
  11020. size_t idx = indices[i];
  11021. cum_sum += candidates->data[idx].p;
  11022. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11023. if (cum_sum > p && i >= min_keep - 1) {
  11024. last_idx = i + 1;
  11025. break;
  11026. }
  11027. }
  11028. // Resize the output vector to keep only the locally typical tokens
  11029. std::vector<llama_token_data> new_candidates;
  11030. for (size_t i = 0; i < last_idx; ++i) {
  11031. size_t idx = indices[i];
  11032. new_candidates.push_back(candidates->data[idx]);
  11033. }
  11034. // Replace the data in candidates with the new_candidates data
  11035. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11036. candidates->size = new_candidates.size();
  11037. candidates->sorted = false;
  11038. if (ctx) {
  11039. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11040. }
  11041. }
  11042. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11043. const int64_t t_start_sample_us = ggml_time_us();
  11044. // no need to do anything if there is only one (or zero) candidates
  11045. if(candidates_p->size <= 1) {
  11046. return;
  11047. }
  11048. // Calculate maximum possible entropy
  11049. float max_entropy = -logf(1.0f / candidates_p->size);
  11050. llama_sample_softmax(nullptr, candidates_p);
  11051. // Calculate entropy of the softmax probabilities
  11052. float entropy = 0.0f;
  11053. for (size_t i = 0; i < candidates_p->size; ++i) {
  11054. float prob = candidates_p->data[i].p;
  11055. if (prob > 0.0f) { // Ensure no log(0)
  11056. entropy -= prob * logf(prob);
  11057. }
  11058. }
  11059. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11060. float normalized_entropy = entropy / max_entropy;
  11061. // Map the normalized entropy to the desired temperature range using the power function
  11062. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11063. #ifdef DEBUG
  11064. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11065. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11066. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11067. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11068. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11069. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11070. #endif
  11071. // Apply the dynamically calculated temperature scaling
  11072. for (size_t i = 0; i < candidates_p->size; ++i) {
  11073. candidates_p->data[i].logit /= dyn_temp;
  11074. }
  11075. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11076. double max_l_double = candidates_p->data[0].logit;
  11077. double cum_sum_double = 0.0;
  11078. for (size_t i = 0; i < candidates_p->size; ++i) {
  11079. double p = exp(candidates_p->data[i].logit - max_l_double);
  11080. candidates_p->data[i].p = p; // Store the scaled probability
  11081. cum_sum_double += p;
  11082. }
  11083. for (size_t i = 0; i < candidates_p->size; ++i) {
  11084. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11085. }
  11086. #ifdef DEBUG
  11087. // Print the updated top 25 probabilities after temperature scaling
  11088. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11089. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11090. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11091. }
  11092. #endif
  11093. if (ctx) {
  11094. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11095. }
  11096. }
  11097. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11098. const int64_t t_start_sample_us = ggml_time_us();
  11099. for (size_t i = 0; i < candidates_p->size; ++i) {
  11100. candidates_p->data[i].logit /= temp;
  11101. }
  11102. if (ctx) {
  11103. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11104. }
  11105. }
  11106. void llama_sample_repetition_penalties(
  11107. struct llama_context * ctx,
  11108. llama_token_data_array * candidates,
  11109. const llama_token * last_tokens,
  11110. size_t penalty_last_n,
  11111. float penalty_repeat,
  11112. float penalty_freq,
  11113. float penalty_present) {
  11114. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11115. return;
  11116. }
  11117. const int64_t t_start_sample_us = ggml_time_us();
  11118. // Create a frequency map to count occurrences of each token in last_tokens
  11119. std::unordered_map<llama_token, int> token_count;
  11120. for (size_t i = 0; i < penalty_last_n; ++i) {
  11121. token_count[last_tokens[i]]++;
  11122. }
  11123. // Apply frequency and presence penalties to the candidates
  11124. for (size_t i = 0; i < candidates->size; ++i) {
  11125. const auto token_iter = token_count.find(candidates->data[i].id);
  11126. if (token_iter == token_count.end()) {
  11127. continue;
  11128. }
  11129. const int count = token_iter->second;
  11130. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11131. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11132. if (candidates->data[i].logit <= 0) {
  11133. candidates->data[i].logit *= penalty_repeat;
  11134. } else {
  11135. candidates->data[i].logit /= penalty_repeat;
  11136. }
  11137. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11138. }
  11139. candidates->sorted = false;
  11140. if (ctx) {
  11141. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11142. }
  11143. }
  11144. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11145. GGML_ASSERT(ctx);
  11146. const int64_t t_start_sample_us = ggml_time_us();
  11147. bool allow_eog = false;
  11148. for (const auto & stack : grammar->stacks) {
  11149. if (stack.empty()) {
  11150. allow_eog = true;
  11151. break;
  11152. }
  11153. }
  11154. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11155. candidates_decoded.reserve(candidates->size);
  11156. std::vector<llama_grammar_candidate> candidates_grammar;
  11157. candidates_grammar.reserve(candidates->size);
  11158. for (size_t i = 0; i < candidates->size; ++i) {
  11159. const llama_token id = candidates->data[i].id;
  11160. const std::string piece = llama_token_to_piece(ctx, id, false);
  11161. if (llama_token_is_eog(&ctx->model, id)) {
  11162. if (!allow_eog) {
  11163. candidates->data[i].logit = -INFINITY;
  11164. }
  11165. } else if (piece.empty() || piece[0] == 0) {
  11166. candidates->data[i].logit = -INFINITY;
  11167. } else {
  11168. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11169. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11170. }
  11171. }
  11172. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11173. for (const auto & reject : rejects) {
  11174. candidates->data[reject.index].logit = -INFINITY;
  11175. }
  11176. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11177. }
  11178. static void llama_log_softmax(float * array, size_t size) {
  11179. float max_l = *std::max_element(array, array + size);
  11180. float sum = 0.f;
  11181. for (size_t i = 0; i < size; ++i) {
  11182. float p = expf(array[i] - max_l);
  11183. sum += p;
  11184. array[i] = p;
  11185. }
  11186. for (size_t i = 0; i < size; ++i) {
  11187. array[i] = logf(array[i] / sum);
  11188. }
  11189. }
  11190. void llama_sample_apply_guidance(
  11191. struct llama_context * ctx,
  11192. float * logits,
  11193. float * logits_guidance,
  11194. float scale) {
  11195. GGML_ASSERT(ctx);
  11196. const auto t_start_sample_us = ggml_time_us();
  11197. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11198. llama_log_softmax(logits, n_vocab);
  11199. llama_log_softmax(logits_guidance, n_vocab);
  11200. for (int i = 0; i < n_vocab; ++i) {
  11201. auto & l = logits[i];
  11202. const auto & g = logits_guidance[i];
  11203. l = scale * (l - g) + g;
  11204. }
  11205. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11206. }
  11207. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11208. GGML_ASSERT(ctx);
  11209. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11210. int64_t t_start_sample_us;
  11211. t_start_sample_us = ggml_time_us();
  11212. llama_sample_softmax(nullptr, candidates);
  11213. // Estimate s_hat using the most probable m tokens
  11214. float s_hat = 0.0;
  11215. float sum_ti_bi = 0.0;
  11216. float sum_ti_sq = 0.0;
  11217. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11218. float t_i = logf(float(i + 2) / float(i + 1));
  11219. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11220. sum_ti_bi += t_i * b_i;
  11221. sum_ti_sq += t_i * t_i;
  11222. }
  11223. s_hat = sum_ti_bi / sum_ti_sq;
  11224. // Compute k from the estimated s_hat and target surprise value
  11225. float epsilon_hat = s_hat - 1;
  11226. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11227. // Sample the next word X using top-k sampling
  11228. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11229. if (ctx) {
  11230. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11231. }
  11232. llama_token X = llama_sample_token(ctx, candidates);
  11233. t_start_sample_us = ggml_time_us();
  11234. // Compute error as the difference between observed surprise and target surprise value
  11235. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11236. return candidate.id == X;
  11237. }));
  11238. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11239. float e = observed_surprise - tau;
  11240. // Update mu using the learning rate and error
  11241. *mu = *mu - eta * e;
  11242. if (ctx) {
  11243. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11244. }
  11245. return X;
  11246. }
  11247. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11248. int64_t t_start_sample_us;
  11249. t_start_sample_us = ggml_time_us();
  11250. llama_sample_softmax(ctx, candidates);
  11251. // Truncate the words with surprise values greater than mu
  11252. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11253. return -log2f(candidate.p) > *mu;
  11254. }));
  11255. if (candidates->size == 0) {
  11256. candidates->size = 1;
  11257. }
  11258. if (ctx) {
  11259. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11260. }
  11261. // Normalize the probabilities of the remaining words
  11262. llama_sample_softmax(ctx, candidates);
  11263. // Sample the next word X from the remaining words
  11264. llama_token X = llama_sample_token(ctx, candidates);
  11265. t_start_sample_us = ggml_time_us();
  11266. // Compute error as the difference between observed surprise and target surprise value
  11267. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11268. return candidate.id == X;
  11269. }));
  11270. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11271. float e = observed_surprise - tau;
  11272. // Update mu using the learning rate and error
  11273. *mu = *mu - eta * e;
  11274. if (ctx) {
  11275. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11276. }
  11277. return X;
  11278. }
  11279. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11280. const int64_t t_start_sample_us = ggml_time_us();
  11281. // Find max element
  11282. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11283. return a.logit < b.logit;
  11284. });
  11285. llama_token result = max_iter->id;
  11286. if (ctx) {
  11287. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11288. ctx->n_sample++;
  11289. }
  11290. return result;
  11291. }
  11292. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11293. GGML_ASSERT(ctx);
  11294. const int64_t t_start_sample_us = ggml_time_us();
  11295. llama_sample_softmax(nullptr, candidates);
  11296. std::vector<float> probs;
  11297. probs.reserve(candidates->size);
  11298. for (size_t i = 0; i < candidates->size; ++i) {
  11299. probs.push_back(candidates->data[i].p);
  11300. }
  11301. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11302. auto & rng = ctx->rng;
  11303. int idx = dist(rng);
  11304. llama_token result = candidates->data[idx].id;
  11305. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11306. ctx->n_sample++;
  11307. return result;
  11308. }
  11309. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11310. const int64_t t_start_sample_us = ggml_time_us();
  11311. if (llama_token_is_eog(&ctx->model, token)) {
  11312. for (const auto & stack : grammar->stacks) {
  11313. if (stack.empty()) {
  11314. return;
  11315. }
  11316. }
  11317. GGML_ASSERT(false);
  11318. }
  11319. const std::string piece = llama_token_to_piece(ctx, token, false);
  11320. // Note terminating 0 in decoded string
  11321. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11322. const auto & code_points = decoded.first;
  11323. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11324. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11325. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11326. grammar->stacks = tmp_new_stacks;
  11327. }
  11328. grammar->partial_utf8 = decoded.second;
  11329. GGML_ASSERT(!grammar->stacks.empty());
  11330. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11331. }
  11332. //
  11333. // Beam search
  11334. //
  11335. struct llama_beam {
  11336. std::vector<llama_token> tokens;
  11337. float p; // Cumulative beam probability (renormalized relative to all beams)
  11338. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11339. // Sort beams by probability. In case of ties, prefer beams at eob.
  11340. bool operator<(const llama_beam & rhs) const {
  11341. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11342. }
  11343. // Shift off first n tokens and discard them.
  11344. void shift_tokens(const size_t n) {
  11345. if (n) {
  11346. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11347. tokens.resize(tokens.size() - n);
  11348. }
  11349. }
  11350. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11351. };
  11352. // A struct for calculating logit-related info.
  11353. struct llama_logit_info {
  11354. const float * const logits;
  11355. const int n_vocab;
  11356. const float max_l;
  11357. const float normalizer;
  11358. struct sum_exp {
  11359. float max_l;
  11360. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11361. };
  11362. llama_logit_info(llama_context * ctx)
  11363. : logits(llama_get_logits(ctx))
  11364. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11365. , max_l(*std::max_element(logits, logits + n_vocab))
  11366. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11367. { }
  11368. llama_token_data get_token_data(const llama_token token_id) const {
  11369. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11370. return {token_id, logits[token_id], p};
  11371. }
  11372. // Return top k token_data by logit.
  11373. std::vector<llama_token_data> top_k(size_t k) {
  11374. std::vector<llama_token_data> min_heap; // min-heap by logit
  11375. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11376. min_heap.reserve(k_min);
  11377. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11378. min_heap.push_back(get_token_data(token_id));
  11379. }
  11380. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11381. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11382. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11383. if (min_heap.front().logit < logits[token_id]) {
  11384. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11385. min_heap.back().id = token_id;
  11386. min_heap.back().logit = logits[token_id];
  11387. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11388. }
  11389. }
  11390. return min_heap;
  11391. }
  11392. float probability_from_logit(float logit) const {
  11393. return normalizer * std::exp(logit - max_l);
  11394. }
  11395. };
  11396. struct llama_beam_search_data {
  11397. llama_context * ctx;
  11398. size_t n_beams;
  11399. int n_past;
  11400. int n_predict;
  11401. std::vector<llama_beam> beams;
  11402. std::vector<llama_beam> next_beams;
  11403. // Re-calculated on each loop iteration
  11404. size_t common_prefix_length;
  11405. // Used to communicate to/from callback on beams state.
  11406. std::vector<llama_beam_view> beam_views;
  11407. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11408. : ctx(ctx)
  11409. , n_beams(n_beams)
  11410. , n_past(n_past)
  11411. , n_predict(n_predict)
  11412. , beam_views(n_beams) {
  11413. beams.reserve(n_beams);
  11414. next_beams.reserve(n_beams);
  11415. }
  11416. // Collapse beams to a single beam given by index.
  11417. void collapse_beams(const size_t beam_idx) {
  11418. if (0u < beam_idx) {
  11419. std::swap(beams[0], beams[beam_idx]);
  11420. }
  11421. beams.resize(1);
  11422. }
  11423. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11424. // The repetitive patterns below reflect the 2 stages of heaps:
  11425. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11426. // * If the heap is full and a new element is found that should be included, pop the
  11427. // least element to the back(), replace it with the new, then push it into the heap.
  11428. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11429. // Min-heaps use a greater-than comparator.
  11430. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11431. if (beam.eob) {
  11432. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11433. if (next_beams.size() < n_beams) {
  11434. next_beams.push_back(std::move(beam));
  11435. if (next_beams.size() == n_beams) {
  11436. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11437. }
  11438. } else if (next_beams.front().p < beam.p) {
  11439. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11440. next_beams.back() = std::move(beam);
  11441. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11442. }
  11443. } else {
  11444. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11445. if (!beam.tokens.empty()) {
  11446. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11447. }
  11448. llama_logit_info logit_info(ctx);
  11449. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11450. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11451. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11452. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11453. size_t i=0;
  11454. if (next_beams.size() < n_beams) {
  11455. for (; next_beams.size() < n_beams ; ++i) {
  11456. llama_beam next_beam = beam;
  11457. next_beam.tokens.push_back(next_tokens[i].id);
  11458. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11459. next_beams.push_back(std::move(next_beam));
  11460. }
  11461. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11462. } else {
  11463. for (; next_beams.front().p == 0.0f ; ++i) {
  11464. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11465. next_beams.back() = beam;
  11466. next_beams.back().tokens.push_back(next_tokens[i].id);
  11467. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11468. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11469. }
  11470. }
  11471. for (; i < n_beams ; ++i) {
  11472. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11473. if (next_beams.front().p < next_p) {
  11474. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11475. next_beams.back() = beam;
  11476. next_beams.back().tokens.push_back(next_tokens[i].id);
  11477. next_beams.back().p = next_p;
  11478. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11479. }
  11480. }
  11481. }
  11482. }
  11483. // Find common_prefix_length based on beams.
  11484. // Requires beams is not empty.
  11485. size_t find_common_prefix_length() {
  11486. size_t common_prefix_length = beams[0].tokens.size();
  11487. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11488. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11489. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11490. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11491. common_prefix_length = j;
  11492. break;
  11493. }
  11494. }
  11495. }
  11496. return common_prefix_length;
  11497. }
  11498. // Construct beams_state to send back to caller via the callback function.
  11499. // Side effect: set common_prefix_length = find_common_prefix_length();
  11500. llama_beams_state get_beams_state(const bool last_call) {
  11501. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11502. beam_views[i] = beams[i].view();
  11503. }
  11504. common_prefix_length = find_common_prefix_length();
  11505. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11506. }
  11507. // Loop:
  11508. // * while i < n_predict, AND
  11509. // * any of the beams have not yet reached end-of-beam (eob), AND
  11510. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11511. // (since all other beam probabilities can only decrease)
  11512. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11513. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11514. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11515. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11516. !beams[top_beam_index()].eob ; ++i) {
  11517. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11518. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11519. if (common_prefix_length) {
  11520. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11521. n_past += common_prefix_length;
  11522. }
  11523. // Zero-out next_beam probabilities to place them last in following min-heap.
  11524. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11525. for (llama_beam & beam : beams) {
  11526. beam.shift_tokens(common_prefix_length);
  11527. fill_next_beams_by_top_probabilities(beam);
  11528. }
  11529. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11530. beams.swap(next_beams);
  11531. renormalize_beam_probabilities(beams);
  11532. }
  11533. collapse_beams(top_beam_index());
  11534. callback(callback_data, get_beams_state(true));
  11535. }
  11536. // As beams grow, the cumulative probabilities decrease.
  11537. // Renormalize them to avoid floating point underflow.
  11538. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11539. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11540. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11541. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11542. }
  11543. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11544. size_t top_beam_index() {
  11545. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11546. }
  11547. // Copy (p,eob) for each beam which may have been changed by the callback.
  11548. void update_beams_from_beam_views() {
  11549. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11550. beams[i].p = beam_views[i].p;
  11551. beams[i].eob = beam_views[i].eob;
  11552. }
  11553. }
  11554. };
  11555. void llama_beam_search(llama_context * ctx,
  11556. llama_beam_search_callback_fn_t callback, void * callback_data,
  11557. size_t n_beams, int n_past, int n_predict) {
  11558. assert(ctx);
  11559. const int64_t t_start_sample_us = ggml_time_us();
  11560. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11561. beam_search_data.loop(callback, callback_data);
  11562. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11563. ctx->n_sample++;
  11564. }
  11565. //
  11566. // quantization
  11567. //
  11568. struct quantize_state_internal {
  11569. const llama_model & model;
  11570. const llama_model_quantize_params * params;
  11571. int n_attention_wv = 0;
  11572. int n_ffn_down = 0;
  11573. int n_ffn_gate = 0;
  11574. int n_ffn_up = 0;
  11575. int i_attention_wv = 0;
  11576. int i_ffn_down = 0;
  11577. int i_ffn_gate = 0;
  11578. int i_ffn_up = 0;
  11579. int n_k_quantized = 0;
  11580. int n_fallback = 0;
  11581. bool has_imatrix = false;
  11582. // used to figure out if a model shares tok_embd with the output weight
  11583. bool has_output = false;
  11584. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11585. : model(model)
  11586. , params(params)
  11587. {}
  11588. };
  11589. static void llama_tensor_dequantize_internal(
  11590. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11591. const size_t nelements, const int nthread
  11592. ) {
  11593. if (output.size() < nelements) {
  11594. output.resize(nelements);
  11595. }
  11596. float * f32_output = (float *) output.data();
  11597. ggml_type_traits_t qtype;
  11598. if (ggml_is_quantized(tensor->type)) {
  11599. qtype = ggml_internal_get_type_traits(tensor->type);
  11600. if (qtype.to_float == NULL) {
  11601. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11602. }
  11603. } else if (tensor->type != GGML_TYPE_F16) {
  11604. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11605. }
  11606. if (nthread < 2) {
  11607. if (tensor->type == GGML_TYPE_F16) {
  11608. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11609. } else if (ggml_is_quantized(tensor->type)) {
  11610. qtype.to_float(tensor->data, f32_output, nelements);
  11611. } else {
  11612. GGML_ASSERT(false); // unreachable
  11613. }
  11614. return;
  11615. }
  11616. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11617. size_t block_size_bytes = ggml_type_size(tensor->type);
  11618. GGML_ASSERT(nelements % block_size == 0);
  11619. size_t nblocks = nelements / block_size;
  11620. size_t blocks_per_thread = nblocks / nthread;
  11621. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11622. size_t in_buff_offs = 0;
  11623. size_t out_buff_offs = 0;
  11624. for (int tnum = 0; tnum < nthread; tnum++) {
  11625. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11626. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11627. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11628. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11629. if (typ == GGML_TYPE_F16) {
  11630. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11631. } else {
  11632. qtype.to_float(inbuf, outbuf, nels);
  11633. }
  11634. };
  11635. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11636. in_buff_offs += thr_block_bytes;
  11637. out_buff_offs += thr_elems;
  11638. }
  11639. for (auto & w : workers) { w.join(); }
  11640. workers.clear();
  11641. }
  11642. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11643. const std::string name = ggml_get_name(tensor);
  11644. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11645. const llm_arch arch = qs.model.arch;
  11646. const auto tn = LLM_TN(arch);
  11647. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11648. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11649. };
  11650. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11651. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11652. if (n_expert > 1) {
  11653. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11654. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11655. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11656. // tensor name.
  11657. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11658. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11659. }
  11660. if (i_layer < 0 || i_layer >= n_layer) {
  11661. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11662. }
  11663. }
  11664. return std::make_pair(i_layer, n_layer);
  11665. };
  11666. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11667. // with the quantization of the output tensor
  11668. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11669. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11670. new_type = qs.params->output_tensor_type;
  11671. } else {
  11672. int nx = tensor->ne[0];
  11673. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11674. new_type = GGML_TYPE_Q8_0;
  11675. }
  11676. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11677. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11678. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11679. new_type = GGML_TYPE_Q5_K;
  11680. }
  11681. else if (new_type != GGML_TYPE_Q8_0) {
  11682. new_type = GGML_TYPE_Q6_K;
  11683. }
  11684. }
  11685. } else if (name == "token_embd.weight") {
  11686. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11687. new_type = qs.params->token_embedding_type;
  11688. } else {
  11689. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11690. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11691. new_type = GGML_TYPE_Q2_K;
  11692. }
  11693. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11694. new_type = GGML_TYPE_IQ3_S;
  11695. }
  11696. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11697. new_type = GGML_TYPE_IQ3_S;
  11698. }
  11699. }
  11700. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11701. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11702. if (name.find("attn_v.weight") != std::string::npos) {
  11703. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11704. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11705. ++qs.i_attention_wv;
  11706. }
  11707. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11708. new_type = GGML_TYPE_Q4_K;
  11709. }
  11710. else if (name.find("ffn_down") != std::string::npos) {
  11711. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11712. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11713. }
  11714. ++qs.i_ffn_down;
  11715. }
  11716. else if (name.find("attn_output.weight") != std::string::npos) {
  11717. if (qs.model.hparams.n_expert == 8) {
  11718. new_type = GGML_TYPE_Q5_K;
  11719. } else {
  11720. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11721. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11722. }
  11723. }
  11724. } else if (name.find("attn_v.weight") != std::string::npos) {
  11725. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11726. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11727. }
  11728. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11729. new_type = GGML_TYPE_Q4_K;
  11730. }
  11731. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11732. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11733. }
  11734. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11735. new_type = GGML_TYPE_Q4_K;
  11736. }
  11737. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11738. new_type = GGML_TYPE_Q4_K;
  11739. }
  11740. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11741. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11742. }
  11743. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11744. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11745. new_type = GGML_TYPE_Q5_K;
  11746. }
  11747. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11748. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11749. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11750. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11751. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11752. if (qs.model.type == MODEL_70B) {
  11753. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11754. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11755. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11756. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11757. }
  11758. if (qs.model.hparams.n_expert == 8) {
  11759. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11760. // TODO: explore better strategies
  11761. new_type = GGML_TYPE_Q8_0;
  11762. }
  11763. ++qs.i_attention_wv;
  11764. } else if (name.find("attn_k.weight") != std::string::npos) {
  11765. if (qs.model.hparams.n_expert == 8) {
  11766. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11767. // TODO: explore better strategies
  11768. new_type = GGML_TYPE_Q8_0;
  11769. }
  11770. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11771. new_type = GGML_TYPE_IQ3_XXS;
  11772. }
  11773. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11774. new_type = GGML_TYPE_IQ2_S;
  11775. }
  11776. } else if (name.find("attn_q.weight") != std::string::npos) {
  11777. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11778. new_type = GGML_TYPE_IQ3_XXS;
  11779. }
  11780. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11781. new_type = GGML_TYPE_IQ2_S;
  11782. }
  11783. } else if (name.find("ffn_down") != std::string::npos) {
  11784. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11785. int i_layer = info.first, n_layer = info.second;
  11786. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11787. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11788. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11789. }
  11790. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11791. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11792. }
  11793. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11794. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11795. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11796. : GGML_TYPE_Q3_K;
  11797. }
  11798. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11799. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11800. new_type = GGML_TYPE_Q4_K;
  11801. }
  11802. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11803. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11804. }
  11805. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11806. if (arch == LLM_ARCH_FALCON) {
  11807. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11808. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11809. } else {
  11810. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11811. }
  11812. }
  11813. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11814. new_type = GGML_TYPE_Q5_K;
  11815. }
  11816. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11817. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11818. new_type = GGML_TYPE_Q5_K;
  11819. }
  11820. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11821. && qs.has_imatrix && i_layer < n_layer/8) {
  11822. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11823. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11824. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11825. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11826. }
  11827. ++qs.i_ffn_down;
  11828. } else if (name.find("attn_output.weight") != std::string::npos) {
  11829. if (arch != LLM_ARCH_FALCON) {
  11830. if (qs.model.hparams.n_expert == 8) {
  11831. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11832. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11833. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11834. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11835. new_type = GGML_TYPE_Q5_K;
  11836. }
  11837. } else {
  11838. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11839. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11840. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11841. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11842. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11843. }
  11844. } else {
  11845. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11846. }
  11847. }
  11848. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11849. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11850. new_type = GGML_TYPE_Q4_K;
  11851. }
  11852. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11853. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11854. }
  11855. else if (name.find("ffn_gate") != std::string::npos) {
  11856. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11857. int i_layer = info.first, n_layer = info.second;
  11858. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11859. new_type = GGML_TYPE_IQ3_XXS;
  11860. }
  11861. ++qs.i_ffn_gate;
  11862. }
  11863. else if (name.find("ffn_up") != std::string::npos) {
  11864. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11865. int i_layer = info.first, n_layer = info.second;
  11866. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11867. new_type = GGML_TYPE_IQ3_XXS;
  11868. }
  11869. ++qs.i_ffn_up;
  11870. }
  11871. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11872. //}
  11873. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11874. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11875. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11876. //}
  11877. // This can be used to reduce the size of the Q5_K_S model.
  11878. // The associated PPL increase is fully in line with the size reduction
  11879. //else {
  11880. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11881. //}
  11882. bool convert_incompatible_tensor = false;
  11883. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11884. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11885. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11886. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11887. new_type == GGML_TYPE_IQ1_M) {
  11888. int nx = tensor->ne[0];
  11889. int ny = tensor->ne[1];
  11890. if (nx % QK_K != 0) {
  11891. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11892. convert_incompatible_tensor = true;
  11893. } else {
  11894. ++qs.n_k_quantized;
  11895. }
  11896. }
  11897. if (convert_incompatible_tensor) {
  11898. switch (new_type) {
  11899. case GGML_TYPE_IQ2_XXS:
  11900. case GGML_TYPE_IQ2_XS:
  11901. case GGML_TYPE_IQ2_S:
  11902. case GGML_TYPE_IQ3_XXS:
  11903. case GGML_TYPE_IQ3_S:
  11904. case GGML_TYPE_IQ1_S:
  11905. case GGML_TYPE_IQ1_M:
  11906. case GGML_TYPE_Q2_K:
  11907. case GGML_TYPE_Q3_K:
  11908. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11909. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11910. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11911. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11912. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11913. }
  11914. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11915. ++qs.n_fallback;
  11916. }
  11917. return new_type;
  11918. }
  11919. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11920. std::mutex mutex;
  11921. int64_t counter = 0;
  11922. size_t new_size = 0;
  11923. if (nthread < 2) {
  11924. // single-thread
  11925. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11926. }
  11927. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11928. nrows, n_per_row, imatrix]() {
  11929. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11930. size_t local_size = 0;
  11931. while (true) {
  11932. std::unique_lock<std::mutex> lock(mutex);
  11933. int64_t first_row = counter; counter += nrows_per_chunk;
  11934. if (first_row >= nrows) {
  11935. if (local_size > 0) {
  11936. new_size += local_size;
  11937. }
  11938. break;
  11939. }
  11940. lock.unlock();
  11941. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11942. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11943. }
  11944. };
  11945. for (int it = 0; it < nthread - 1; ++it) {
  11946. workers.emplace_back(compute);
  11947. }
  11948. compute();
  11949. for (auto & w : workers) { w.join(); }
  11950. workers.clear();
  11951. return new_size;
  11952. }
  11953. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11954. ggml_type default_type;
  11955. llama_ftype ftype = params->ftype;
  11956. switch (params->ftype) {
  11957. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11958. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11959. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11960. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11961. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11962. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11963. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11964. // K-quants
  11965. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11966. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11967. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11968. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11969. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11970. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11971. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11972. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11973. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11974. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11975. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11976. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11977. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11978. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11979. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11980. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11981. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11982. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11983. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11984. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11985. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11986. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11987. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11988. }
  11989. int nthread = params->nthread;
  11990. if (nthread <= 0) {
  11991. nthread = std::thread::hardware_concurrency();
  11992. }
  11993. // mmap consistently increases speed Linux, and also increases speed on Windows with
  11994. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  11995. #if defined(__linux__) || defined(_WIN32)
  11996. constexpr bool use_mmap = true;
  11997. #else
  11998. constexpr bool use_mmap = false;
  11999. #endif
  12000. llama_model_kv_override * kv_overrides = nullptr;
  12001. if (params->kv_overrides) {
  12002. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12003. kv_overrides = v->data();
  12004. }
  12005. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  12006. ml.init_mappings(false); // no prefetching
  12007. llama_model model;
  12008. llm_load_arch(ml, model);
  12009. llm_load_hparams(ml, model);
  12010. struct quantize_state_internal qs(model, params);
  12011. if (params->only_copy) {
  12012. ftype = model.ftype;
  12013. }
  12014. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12015. if (params->imatrix) {
  12016. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12017. if (imatrix_data) {
  12018. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12019. qs.has_imatrix = true;
  12020. }
  12021. }
  12022. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12023. struct gguf_context * ctx_out = gguf_init_empty();
  12024. // copy the KV pairs from the input file
  12025. gguf_set_kv (ctx_out, ml.meta);
  12026. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12027. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12028. // Remove split metadata
  12029. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12030. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12031. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12032. if (params->kv_overrides) {
  12033. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12034. for (auto & o : overrides) {
  12035. if (o.key[0] == 0) break;
  12036. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12037. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  12038. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12039. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  12040. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12041. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  12042. } else {
  12043. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12044. }
  12045. }
  12046. }
  12047. for (int i = 0; i < ml.n_tensors; ++i) {
  12048. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12049. const std::string name = ggml_get_name(meta);
  12050. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12051. if (name.find("attn_v.weight") != std::string::npos ||
  12052. name.find("attn_qkv.weight") != std::string::npos) {
  12053. ++qs.n_attention_wv;
  12054. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12055. qs.has_output = true;
  12056. }
  12057. }
  12058. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12059. // sanity checks
  12060. //
  12061. // - qs.n_attention_wv == 0 for Mamba models
  12062. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12063. //
  12064. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12065. size_t total_size_org = 0;
  12066. size_t total_size_new = 0;
  12067. std::vector<std::thread> workers;
  12068. workers.reserve(nthread);
  12069. int idx = 0;
  12070. std::vector<no_init<uint8_t>> read_data;
  12071. std::vector<no_init<uint8_t>> work;
  12072. std::vector<no_init<float>> f32_conv_buf;
  12073. // populate the original tensors so we get an initial meta data
  12074. for (int i = 0; i < ml.n_tensors; ++i) {
  12075. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12076. gguf_add_tensor(ctx_out, meta);
  12077. }
  12078. std::ofstream fout(fname_out, std::ios::binary);
  12079. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12080. const size_t meta_size = gguf_get_meta_size(ctx_out);
  12081. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  12082. // placeholder for the meta data
  12083. ::zeros(fout, meta_size);
  12084. const auto tn = LLM_TN(model.arch);
  12085. for (int i = 0; i < ml.n_tensors; ++i) {
  12086. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  12087. const std::string name = ggml_get_name(tensor);
  12088. if (!ml.use_mmap) {
  12089. if (read_data.size() < ggml_nbytes(tensor)) {
  12090. read_data.resize(ggml_nbytes(tensor));
  12091. }
  12092. tensor->data = read_data.data();
  12093. }
  12094. ml.load_data_for(tensor);
  12095. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12096. ++idx, ml.n_tensors,
  12097. ggml_get_name(tensor),
  12098. llama_format_tensor_shape(tensor).c_str(),
  12099. ggml_type_name(tensor->type));
  12100. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12101. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12102. // quantize only 2D and 3D tensors (experts)
  12103. quantize &= (ggml_n_dims(tensor) >= 2);
  12104. // do not quantize norm tensors
  12105. quantize &= name.find("_norm.weight") == std::string::npos;
  12106. quantize &= params->quantize_output_tensor || name != "output.weight";
  12107. quantize &= !params->only_copy;
  12108. // do not quantize expert gating tensors
  12109. // NOTE: can't use LLM_TN here because the layer number is not known
  12110. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12111. // do not quantize positional embeddings and token types (BERT)
  12112. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12113. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12114. // do not quantize Mamba's small yet 2D weights
  12115. // NOTE: can't use LLM_TN here because the layer number is not known
  12116. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12117. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12118. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12119. enum ggml_type new_type;
  12120. void * new_data;
  12121. size_t new_size;
  12122. if (quantize) {
  12123. new_type = default_type;
  12124. // get more optimal quantization type based on the tensor shape, layer, etc.
  12125. if (!params->pure && ggml_is_quantized(default_type)) {
  12126. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12127. }
  12128. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12129. new_type = params->token_embedding_type;
  12130. }
  12131. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12132. new_type = params->output_tensor_type;
  12133. }
  12134. // If we've decided to quantize to the same type the tensor is already
  12135. // in then there's nothing to do.
  12136. quantize = tensor->type != new_type;
  12137. }
  12138. if (!quantize) {
  12139. new_type = tensor->type;
  12140. new_data = tensor->data;
  12141. new_size = ggml_nbytes(tensor);
  12142. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12143. } else {
  12144. const int64_t nelements = ggml_nelements(tensor);
  12145. const float * imatrix = nullptr;
  12146. if (imatrix_data) {
  12147. auto it = imatrix_data->find(tensor->name);
  12148. if (it == imatrix_data->end()) {
  12149. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12150. } else {
  12151. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12152. imatrix = it->second.data();
  12153. } else {
  12154. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12155. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12156. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12157. // this is a significant error and it may be good idea to abort the process if this happens,
  12158. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12159. // tok_embd should be ignored in this case, since it always causes this warning
  12160. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12161. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12162. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12163. }
  12164. }
  12165. }
  12166. }
  12167. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12168. new_type == GGML_TYPE_IQ2_XS ||
  12169. new_type == GGML_TYPE_IQ2_S ||
  12170. new_type == GGML_TYPE_IQ1_S ||
  12171. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12172. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12173. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12174. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12175. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12176. LLAMA_LOG_ERROR("============================================================\n\n");
  12177. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12178. }
  12179. float * f32_data;
  12180. if (tensor->type == GGML_TYPE_F32) {
  12181. f32_data = (float *) tensor->data;
  12182. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12183. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12184. } else {
  12185. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12186. f32_data = (float *) f32_conv_buf.data();
  12187. }
  12188. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12189. fflush(stdout);
  12190. if (work.size() < (size_t)nelements * 4) {
  12191. work.resize(nelements * 4); // upper bound on size
  12192. }
  12193. new_data = work.data();
  12194. const int64_t n_per_row = tensor->ne[0];
  12195. const int64_t nrows = tensor->ne[1];
  12196. static const int64_t min_chunk_size = 32 * 512;
  12197. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12198. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12199. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12200. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12201. // quantize each expert separately since they have different importance matrices
  12202. new_size = 0;
  12203. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12204. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12205. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12206. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12207. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12208. }
  12209. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12210. }
  12211. total_size_org += ggml_nbytes(tensor);
  12212. total_size_new += new_size;
  12213. // update the gguf meta data as we go
  12214. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  12215. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  12216. // write tensor data + padding
  12217. fout.write((const char *) new_data, new_size);
  12218. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12219. }
  12220. // go back to beginning of file and write the updated meta data
  12221. {
  12222. fout.seekp(0);
  12223. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  12224. gguf_get_meta_data(ctx_out, data.data());
  12225. fout.write((const char *) data.data(), data.size());
  12226. }
  12227. fout.close();
  12228. gguf_free(ctx_out);
  12229. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12230. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12231. if (qs.n_fallback > 0) {
  12232. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12233. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12234. }
  12235. }
  12236. static int llama_apply_lora_from_file_internal(
  12237. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12238. ) {
  12239. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12240. const int64_t t_start_lora_us = ggml_time_us();
  12241. llama_file fin(path_lora, "rb");
  12242. // verify magic and version
  12243. {
  12244. uint32_t magic = fin.read_u32();
  12245. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12246. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12247. return 1;
  12248. }
  12249. uint32_t format_version = fin.read_u32();
  12250. if (format_version != 1) {
  12251. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12252. return 1;
  12253. }
  12254. }
  12255. int32_t lora_r = fin.read_u32();
  12256. int32_t lora_alpha = fin.read_u32();
  12257. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12258. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12259. // load base model
  12260. std::unique_ptr<llama_model_loader> ml;
  12261. if (path_base_model) {
  12262. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12263. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  12264. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12265. }
  12266. struct tensor_meta {
  12267. std::string name;
  12268. ggml_type type;
  12269. int32_t ne[2];
  12270. size_t offset;
  12271. };
  12272. std::map<std::string, tensor_meta> tensor_meta_map;
  12273. // load all tensor meta
  12274. while (true) {
  12275. if (fin.tell() == fin.size) {
  12276. // eof
  12277. break;
  12278. }
  12279. int32_t n_dims;
  12280. int32_t name_len;
  12281. int32_t ftype;
  12282. fin.read_raw(&n_dims, sizeof(n_dims));
  12283. fin.read_raw(&name_len, sizeof(name_len));
  12284. fin.read_raw(&ftype, sizeof(ftype));
  12285. if (n_dims != 1 && n_dims != 2) {
  12286. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12287. return 1;
  12288. }
  12289. int32_t ne[2] = { 1, 1 };
  12290. for (int i = 0; i < n_dims; ++i) {
  12291. fin.read_raw(&ne[i], sizeof(ne[i]));
  12292. }
  12293. std::string name;
  12294. {
  12295. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12296. char buf[GGML_MAX_NAME];
  12297. fin.read_raw(buf, name_len);
  12298. name = std::string(buf, name_len);
  12299. }
  12300. // check for lora suffix
  12301. std::string lora_suffix;
  12302. if (name.length() > 6) {
  12303. lora_suffix = name.substr(name.length() - 6);
  12304. }
  12305. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12306. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12307. return 1;
  12308. }
  12309. // tensor type
  12310. ggml_type wtype;
  12311. switch (ftype) {
  12312. case 0: wtype = GGML_TYPE_F32; break;
  12313. case 1: wtype = GGML_TYPE_F16; break;
  12314. default:
  12315. {
  12316. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12317. __func__, ftype);
  12318. return 1;
  12319. }
  12320. }
  12321. // data offset
  12322. size_t offset = fin.tell();
  12323. offset = (offset + 31) & -32;
  12324. // skip tensor data
  12325. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12326. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12327. }
  12328. bool warned = false;
  12329. int n_tensors = 0;
  12330. // apply
  12331. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12332. if (backend_cpu == nullptr) {
  12333. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12334. return 1;
  12335. }
  12336. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12337. std::vector<no_init<uint8_t>> read_buf;
  12338. for (const auto & it : model.tensors_by_name) {
  12339. const std::string & base_name = it.first;
  12340. ggml_tensor * model_t = it.second;
  12341. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12342. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12343. continue;
  12344. }
  12345. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12346. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12347. ggml_init_params lora_init_params = {
  12348. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12349. /* .mem_buffer */ nullptr,
  12350. /* .no_alloc */ true,
  12351. };
  12352. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12353. if (lora_ctx == nullptr) {
  12354. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12355. ggml_backend_free(backend_cpu);
  12356. return 1;
  12357. }
  12358. // create tensors
  12359. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12360. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12361. ggml_set_name(loraA, metaA.name.c_str());
  12362. ggml_set_name(loraB, metaB.name.c_str());
  12363. ggml_tensor * base_t;
  12364. if (ml) {
  12365. if (!ml->get_tensor_meta(base_name.c_str())) {
  12366. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12367. return 1;
  12368. }
  12369. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12370. } else {
  12371. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12372. }
  12373. ggml_set_name(base_t, base_name.c_str());
  12374. // allocate in backend buffer
  12375. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12376. if (lora_buf == nullptr) {
  12377. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12378. return 1;
  12379. }
  12380. // load tensor data
  12381. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12382. read_buf.resize(ggml_nbytes(tensor));
  12383. fin.seek(tensor_meta.offset, SEEK_SET);
  12384. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12385. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12386. };
  12387. load_tensor(metaA, loraA);
  12388. load_tensor(metaB, loraB);
  12389. // load base model tensor data
  12390. if (ml) {
  12391. ml->load_data_for(base_t);
  12392. } else {
  12393. ggml_backend_tensor_copy(model_t, base_t);
  12394. }
  12395. if (ggml_is_quantized(base_t->type) && !warned) {
  12396. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12397. "use a f16 or f32 base model with --lora-base\n", __func__);
  12398. warned = true;
  12399. }
  12400. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12401. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12402. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12403. ggml_free(lora_ctx);
  12404. ggml_backend_buffer_free(lora_buf);
  12405. ggml_backend_free(backend_cpu);
  12406. return 1;
  12407. }
  12408. auto build_lora_graph = [&]() {
  12409. // w = w + BA*s
  12410. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12411. ggml_set_name(BA, "BA");
  12412. if (scaling != 1.0f) {
  12413. BA = ggml_scale(lora_ctx, BA, scaling);
  12414. ggml_set_name(BA, "BA_scaled");
  12415. }
  12416. ggml_tensor * r;
  12417. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12418. ggml_set_name(r, "r_add");
  12419. if (base_t->type != model_t->type) {
  12420. // convert the result to the model type
  12421. r = ggml_cast(lora_ctx, r, model_t->type);
  12422. ggml_set_name(r, "r_cast");
  12423. }
  12424. return r;
  12425. };
  12426. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12427. ggml_tensor * r = build_lora_graph();
  12428. ggml_build_forward_expand(gf, r);
  12429. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12430. if (graph_buf == nullptr) {
  12431. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12432. ggml_free(lora_ctx);
  12433. ggml_backend_buffer_free(lora_buf);
  12434. ggml_backend_free(backend_cpu);
  12435. return 1;
  12436. }
  12437. ggml_backend_graph_compute(backend_cpu, gf);
  12438. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12439. #if 0
  12440. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12441. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12442. // sched compute
  12443. ggml_build_forward_expand(gf, build_graph());
  12444. ggml_backend_sched_init_measure(sched, gf);
  12445. // create the graph again, since the previous one was destroyed by the measure
  12446. ggml_graph_clear(gf);
  12447. ggml_build_forward_expand(gf, build_graph());
  12448. ggml_backend_sched_graph_compute(sched, gf);
  12449. ggml_backend_sched_free(sched);
  12450. #endif
  12451. ggml_backend_buffer_free(lora_buf);
  12452. ggml_backend_buffer_free(graph_buf);
  12453. ggml_free(lora_ctx);
  12454. n_tensors++;
  12455. if (n_tensors % 4 == 0) {
  12456. LLAMA_LOG_INFO(".");
  12457. }
  12458. }
  12459. ggml_backend_free(backend_cpu);
  12460. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12461. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12462. return 0;
  12463. }
  12464. //
  12465. // interface implementation
  12466. //
  12467. struct llama_model_params llama_model_default_params() {
  12468. struct llama_model_params result = {
  12469. /*.n_gpu_layers =*/ 0,
  12470. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12471. /*.main_gpu =*/ 0,
  12472. /*.tensor_split =*/ nullptr,
  12473. /*.progress_callback =*/ nullptr,
  12474. /*.progress_callback_user_data =*/ nullptr,
  12475. /*.kv_overrides =*/ nullptr,
  12476. /*.vocab_only =*/ false,
  12477. /*.use_mmap =*/ true,
  12478. /*.use_mlock =*/ false,
  12479. };
  12480. #ifdef GGML_USE_METAL
  12481. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12482. result.n_gpu_layers = 999;
  12483. #endif
  12484. return result;
  12485. }
  12486. struct llama_context_params llama_context_default_params() {
  12487. struct llama_context_params result = {
  12488. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12489. /*.n_ctx =*/ 512,
  12490. /*.n_batch =*/ 2048,
  12491. /*.n_ubatch =*/ 512,
  12492. /*.n_seq_max =*/ 1,
  12493. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12494. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12495. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12496. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12497. /*.rope_freq_base =*/ 0.0f,
  12498. /*.rope_freq_scale =*/ 0.0f,
  12499. /*.yarn_ext_factor =*/ -1.0f,
  12500. /*.yarn_attn_factor =*/ 1.0f,
  12501. /*.yarn_beta_fast =*/ 32.0f,
  12502. /*.yarn_beta_slow =*/ 1.0f,
  12503. /*.yarn_orig_ctx =*/ 0,
  12504. /*.defrag_thold =*/ -1.0f,
  12505. /*.cb_eval =*/ nullptr,
  12506. /*.cb_eval_user_data =*/ nullptr,
  12507. /*.type_k =*/ GGML_TYPE_F16,
  12508. /*.type_v =*/ GGML_TYPE_F16,
  12509. /*.logits_all =*/ false,
  12510. /*.embeddings =*/ false,
  12511. /*.offload_kqv =*/ true,
  12512. /*.abort_callback =*/ nullptr,
  12513. /*.abort_callback_data =*/ nullptr,
  12514. };
  12515. return result;
  12516. }
  12517. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12518. struct llama_model_quantize_params result = {
  12519. /*.nthread =*/ 0,
  12520. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12521. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12522. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12523. /*.allow_requantize =*/ false,
  12524. /*.quantize_output_tensor =*/ true,
  12525. /*.only_copy =*/ false,
  12526. /*.pure =*/ false,
  12527. /*.imatrix =*/ nullptr,
  12528. /*.kv_overrides =*/ nullptr,
  12529. };
  12530. return result;
  12531. }
  12532. size_t llama_max_devices(void) {
  12533. #if defined(GGML_USE_METAL)
  12534. return 1;
  12535. #elif defined(GGML_USE_CUDA)
  12536. return GGML_CUDA_MAX_DEVICES;
  12537. #elif defined(GGML_USE_SYCL)
  12538. return GGML_SYCL_MAX_DEVICES;
  12539. #elif defined(GGML_USE_VULKAN)
  12540. return GGML_VK_MAX_DEVICES;
  12541. #else
  12542. return 1;
  12543. #endif
  12544. }
  12545. bool llama_supports_mmap(void) {
  12546. return llama_mmap::SUPPORTED;
  12547. }
  12548. bool llama_supports_mlock(void) {
  12549. return llama_mlock::SUPPORTED;
  12550. }
  12551. bool llama_supports_gpu_offload(void) {
  12552. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12553. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12554. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12555. return true;
  12556. #else
  12557. return false;
  12558. #endif
  12559. }
  12560. void llama_backend_init(void) {
  12561. ggml_time_init();
  12562. // needed to initialize f16 tables
  12563. {
  12564. struct ggml_init_params params = { 0, NULL, false };
  12565. struct ggml_context * ctx = ggml_init(params);
  12566. ggml_free(ctx);
  12567. }
  12568. #ifdef GGML_USE_MPI
  12569. ggml_mpi_backend_init();
  12570. #endif
  12571. }
  12572. void llama_numa_init(enum ggml_numa_strategy numa) {
  12573. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12574. ggml_numa_init(numa);
  12575. }
  12576. }
  12577. void llama_backend_free(void) {
  12578. #ifdef GGML_USE_MPI
  12579. ggml_mpi_backend_free();
  12580. #endif
  12581. ggml_quantize_free();
  12582. }
  12583. int64_t llama_time_us(void) {
  12584. return ggml_time_us();
  12585. }
  12586. struct llama_model * llama_load_model_from_file(
  12587. const char * path_model,
  12588. struct llama_model_params params) {
  12589. ggml_time_init();
  12590. llama_model * model = new llama_model;
  12591. unsigned cur_percentage = 0;
  12592. if (params.progress_callback == NULL) {
  12593. params.progress_callback_user_data = &cur_percentage;
  12594. params.progress_callback = [](float progress, void * ctx) {
  12595. unsigned * cur_percentage_p = (unsigned *) ctx;
  12596. unsigned percentage = (unsigned) (100 * progress);
  12597. while (percentage > *cur_percentage_p) {
  12598. *cur_percentage_p = percentage;
  12599. LLAMA_LOG_INFO(".");
  12600. if (percentage >= 100) {
  12601. LLAMA_LOG_INFO("\n");
  12602. }
  12603. }
  12604. return true;
  12605. };
  12606. }
  12607. int status = llama_model_load(path_model, *model, params);
  12608. GGML_ASSERT(status <= 0);
  12609. if (status < 0) {
  12610. if (status == -1) {
  12611. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12612. } else if (status == -2) {
  12613. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12614. }
  12615. delete model;
  12616. return nullptr;
  12617. }
  12618. return model;
  12619. }
  12620. void llama_free_model(struct llama_model * model) {
  12621. delete model;
  12622. }
  12623. struct llama_context * llama_new_context_with_model(
  12624. struct llama_model * model,
  12625. struct llama_context_params params) {
  12626. if (!model) {
  12627. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12628. return nullptr;
  12629. }
  12630. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12631. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12632. return nullptr;
  12633. }
  12634. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12635. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12636. return nullptr;
  12637. }
  12638. llama_context * ctx = new llama_context(*model);
  12639. const auto & hparams = model->hparams;
  12640. auto & cparams = ctx->cparams;
  12641. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12642. cparams.n_threads = params.n_threads;
  12643. cparams.n_threads_batch = params.n_threads_batch;
  12644. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12645. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12646. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12647. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12648. cparams.defrag_thold = params.defrag_thold;
  12649. cparams.embeddings = params.embeddings;
  12650. cparams.offload_kqv = params.offload_kqv;
  12651. cparams.pooling_type = params.pooling_type;
  12652. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12653. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12654. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12655. // this is necessary due to kv_self.n being padded later during inference
  12656. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12657. // with causal attention, the batch size is limited by the context size
  12658. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12659. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12660. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12661. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12662. hparams.n_ctx_train;
  12663. cparams.cb_eval = params.cb_eval;
  12664. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12665. auto rope_scaling_type = params.rope_scaling_type;
  12666. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12667. rope_scaling_type = hparams.rope_scaling_type_train;
  12668. }
  12669. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12670. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12671. }
  12672. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12673. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12674. }
  12675. cparams.causal_attn = hparams.causal_attn;
  12676. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12677. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12678. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12679. } else {
  12680. cparams.pooling_type = hparams.pooling_type;
  12681. }
  12682. }
  12683. if (params.seed == LLAMA_DEFAULT_SEED) {
  12684. params.seed = time(NULL);
  12685. }
  12686. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12687. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12688. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12689. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12690. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12691. ctx->abort_callback = params.abort_callback;
  12692. ctx->abort_callback_data = params.abort_callback_data;
  12693. ctx->rng = std::mt19937(params.seed);
  12694. ctx->logits_all = params.logits_all;
  12695. uint32_t kv_size = cparams.n_ctx;
  12696. ggml_type type_k = params.type_k;
  12697. ggml_type type_v = params.type_v;
  12698. // Mamba only needs a constant number of KV cache cells per sequence
  12699. if (model->arch == LLM_ARCH_MAMBA) {
  12700. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12701. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12702. // it's probably best to keep as much precision as possible for the states
  12703. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12704. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12705. }
  12706. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12707. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12708. if (!hparams.vocab_only) {
  12709. // initialize backends
  12710. #ifdef GGML_USE_METAL
  12711. if (model->n_gpu_layers > 0) {
  12712. ctx->backend_metal = ggml_backend_metal_init();
  12713. if (ctx->backend_metal == nullptr) {
  12714. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12715. llama_free(ctx);
  12716. return nullptr;
  12717. }
  12718. ctx->backends.push_back(ctx->backend_metal);
  12719. }
  12720. #elif defined(GGML_USE_CUDA)
  12721. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12722. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12723. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12724. if (backend == nullptr) {
  12725. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12726. llama_free(ctx);
  12727. return nullptr;
  12728. }
  12729. ctx->backends.push_back(backend);
  12730. } else {
  12731. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12732. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12733. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12734. if (backend == nullptr) {
  12735. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12736. llama_free(ctx);
  12737. return nullptr;
  12738. }
  12739. ctx->backends.push_back(backend);
  12740. }
  12741. }
  12742. #elif defined(GGML_USE_VULKAN)
  12743. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12744. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12745. llama_free(ctx);
  12746. return nullptr;
  12747. }
  12748. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12749. ggml_backend_t backend = ggml_backend_vk_init(0);
  12750. if (backend == nullptr) {
  12751. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12752. llama_free(ctx);
  12753. return nullptr;
  12754. }
  12755. ctx->backends.push_back(backend);
  12756. } else {
  12757. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12758. ggml_backend_t backend = ggml_backend_vk_init(device);
  12759. if (backend == nullptr) {
  12760. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12761. llama_free(ctx);
  12762. return nullptr;
  12763. }
  12764. ctx->backends.push_back(backend);
  12765. }
  12766. }
  12767. #elif defined(GGML_USE_SYCL)
  12768. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12769. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12770. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12771. if (backend == nullptr) {
  12772. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12773. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12774. llama_free(ctx);
  12775. return nullptr;
  12776. }
  12777. ctx->backends.push_back(backend);
  12778. } else {
  12779. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12780. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12781. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12782. if (backend == nullptr) {
  12783. int id_list[GGML_SYCL_MAX_DEVICES];
  12784. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12785. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12786. llama_free(ctx);
  12787. return nullptr;
  12788. }
  12789. ctx->backends.push_back(backend);
  12790. }
  12791. }
  12792. #elif defined(GGML_USE_KOMPUTE)
  12793. if (model->n_gpu_layers > 0) {
  12794. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12795. if (backend == nullptr) {
  12796. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12797. llama_free(ctx);
  12798. return nullptr;
  12799. }
  12800. ctx->backends.push_back(backend);
  12801. }
  12802. #endif
  12803. ctx->backend_cpu = ggml_backend_cpu_init();
  12804. if (ctx->backend_cpu == nullptr) {
  12805. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12806. llama_free(ctx);
  12807. return nullptr;
  12808. }
  12809. ctx->backends.push_back(ctx->backend_cpu);
  12810. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12811. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12812. llama_free(ctx);
  12813. return nullptr;
  12814. }
  12815. {
  12816. size_t memory_size_k = 0;
  12817. size_t memory_size_v = 0;
  12818. for (auto & k : ctx->kv_self.k_l) {
  12819. memory_size_k += ggml_nbytes(k);
  12820. }
  12821. for (auto & v : ctx->kv_self.v_l) {
  12822. memory_size_v += ggml_nbytes(v);
  12823. }
  12824. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12825. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12826. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12827. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12828. }
  12829. // graph outputs buffer
  12830. {
  12831. // resized during inference when a batch uses more outputs
  12832. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12833. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12834. llama_free(ctx);
  12835. return nullptr;
  12836. }
  12837. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12838. ggml_backend_buffer_name(ctx->buf_output),
  12839. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12840. }
  12841. // scheduler and compute buffers
  12842. {
  12843. // buffer types used for the compute buffer of each backend
  12844. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12845. for (auto * backend : ctx->backends) {
  12846. if (ggml_backend_is_cpu(backend)) {
  12847. // use host buffers for the CPU backend compute buffer
  12848. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12849. } else {
  12850. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12851. }
  12852. }
  12853. // buffer used to store the computation graph and the tensor meta data
  12854. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12855. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12856. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12857. #ifndef GGML_USE_CUDA
  12858. // pipeline parallelism requires support for async compute and events
  12859. // currently this is only implemented in the CUDA backend
  12860. pipeline_parallel = false;
  12861. #endif
  12862. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12863. if (pipeline_parallel) {
  12864. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12865. }
  12866. // build worst-case graph
  12867. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12868. int n_past = cparams.n_ctx - n_tokens;
  12869. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12870. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12871. // initialize scheduler with the worst-case graph
  12872. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12873. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12874. llama_free(ctx);
  12875. return nullptr;
  12876. }
  12877. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12878. ggml_backend_t backend = ctx->backends[i];
  12879. ggml_backend_buffer_type_t buft = backend_buft[i];
  12880. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12881. if (size > 1) {
  12882. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12883. ggml_backend_buft_name(buft),
  12884. size / 1024.0 / 1024.0);
  12885. }
  12886. }
  12887. // note: the number of splits during measure is higher than during inference due to the kv shift
  12888. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  12889. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  12890. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  12891. }
  12892. }
  12893. #ifdef GGML_USE_MPI
  12894. ctx->ctx_mpi = ggml_mpi_init();
  12895. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  12896. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  12897. // TODO: needs fix after #3228
  12898. GGML_ASSERT(false && "not implemented");
  12899. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  12900. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12901. llama_backend_free();
  12902. exit(1);
  12903. }
  12904. #endif
  12905. return ctx;
  12906. }
  12907. void llama_free(struct llama_context * ctx) {
  12908. delete ctx;
  12909. }
  12910. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12911. return &ctx->model;
  12912. }
  12913. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12914. return ctx->cparams.n_ctx;
  12915. }
  12916. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12917. return ctx->cparams.n_batch;
  12918. }
  12919. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12920. return ctx->cparams.n_ubatch;
  12921. }
  12922. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12923. return ctx->kv_self.size;
  12924. }
  12925. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12926. return model->vocab.type;
  12927. }
  12928. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12929. switch (model->arch) {
  12930. // these models do not use RoPE
  12931. case LLM_ARCH_GPT2:
  12932. case LLM_ARCH_GPTJ:
  12933. case LLM_ARCH_GPTNEOX:
  12934. case LLM_ARCH_MPT:
  12935. case LLM_ARCH_REFACT:
  12936. case LLM_ARCH_BLOOM:
  12937. case LLM_ARCH_MAMBA:
  12938. return LLAMA_ROPE_TYPE_NONE;
  12939. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12940. case LLM_ARCH_LLAMA:
  12941. case LLM_ARCH_BAICHUAN:
  12942. case LLM_ARCH_STARCODER:
  12943. case LLM_ARCH_PLAMO:
  12944. case LLM_ARCH_CODESHELL:
  12945. case LLM_ARCH_ORION:
  12946. case LLM_ARCH_INTERNLM2:
  12947. case LLM_ARCH_MINICPM:
  12948. case LLM_ARCH_XVERSE:
  12949. case LLM_ARCH_COMMAND_R:
  12950. case LLM_ARCH_OLMO:
  12951. return LLAMA_ROPE_TYPE_NORM;
  12952. // the pairs of head values are offset by n_rot/2
  12953. case LLM_ARCH_FALCON:
  12954. case LLM_ARCH_GROK:
  12955. case LLM_ARCH_DBRX:
  12956. case LLM_ARCH_PERSIMMON:
  12957. case LLM_ARCH_BERT:
  12958. case LLM_ARCH_NOMIC_BERT:
  12959. case LLM_ARCH_STABLELM:
  12960. case LLM_ARCH_QWEN:
  12961. case LLM_ARCH_QWEN2:
  12962. case LLM_ARCH_QWEN2MOE:
  12963. case LLM_ARCH_PHI2:
  12964. case LLM_ARCH_PHI3:
  12965. case LLM_ARCH_GEMMA:
  12966. case LLM_ARCH_STARCODER2:
  12967. return LLAMA_ROPE_TYPE_NEOX;
  12968. // all model arches should be listed explicitly here
  12969. case LLM_ARCH_UNKNOWN:
  12970. GGML_ASSERT(false && "unknown architecture");
  12971. break;
  12972. }
  12973. return LLAMA_ROPE_TYPE_NONE;
  12974. }
  12975. int32_t llama_n_vocab(const struct llama_model * model) {
  12976. return model->hparams.n_vocab;
  12977. }
  12978. int32_t llama_n_ctx_train(const struct llama_model * model) {
  12979. return model->hparams.n_ctx_train;
  12980. }
  12981. int32_t llama_n_embd(const struct llama_model * model) {
  12982. return model->hparams.n_embd;
  12983. }
  12984. int32_t llama_n_layer(const struct llama_model * model) {
  12985. return model->hparams.n_layer;
  12986. }
  12987. float llama_rope_freq_scale_train(const struct llama_model * model) {
  12988. return model->hparams.rope_freq_scale_train;
  12989. }
  12990. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  12991. const auto & it = model->gguf_kv.find(key);
  12992. if (it == model->gguf_kv.end()) {
  12993. if (buf_size > 0) {
  12994. buf[0] = '\0';
  12995. }
  12996. return -1;
  12997. }
  12998. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12999. }
  13000. int32_t llama_model_meta_count(const struct llama_model * model) {
  13001. return (int)model->gguf_kv.size();
  13002. }
  13003. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13004. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13005. if (buf_size > 0) {
  13006. buf[0] = '\0';
  13007. }
  13008. return -1;
  13009. }
  13010. auto it = model->gguf_kv.begin();
  13011. std::advance(it, i);
  13012. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13013. }
  13014. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13015. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13016. if (buf_size > 0) {
  13017. buf[0] = '\0';
  13018. }
  13019. return -1;
  13020. }
  13021. auto it = model->gguf_kv.begin();
  13022. std::advance(it, i);
  13023. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13024. }
  13025. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13026. return snprintf(buf, buf_size, "%s %s %s",
  13027. llama_model_arch_name(model->arch),
  13028. llama_model_type_name(model->type),
  13029. llama_model_ftype_name(model->ftype).c_str());
  13030. }
  13031. uint64_t llama_model_size(const struct llama_model * model) {
  13032. uint64_t size = 0;
  13033. for (const auto & it : model->tensors_by_name) {
  13034. size += ggml_nbytes(it.second);
  13035. }
  13036. return size;
  13037. }
  13038. uint64_t llama_model_n_params(const struct llama_model * model) {
  13039. uint64_t nparams = 0;
  13040. for (const auto & it : model->tensors_by_name) {
  13041. nparams += ggml_nelements(it.second);
  13042. }
  13043. return nparams;
  13044. }
  13045. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13046. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13047. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13048. return it.first == name;
  13049. });
  13050. if (it == model->tensors_by_name.end()) {
  13051. return nullptr;
  13052. }
  13053. return it->second;
  13054. }
  13055. uint32_t llama_model_quantize(
  13056. const char * fname_inp,
  13057. const char * fname_out,
  13058. const llama_model_quantize_params * params) {
  13059. try {
  13060. llama_model_quantize_internal(fname_inp, fname_out, params);
  13061. return 0;
  13062. } catch (const std::exception & err) {
  13063. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13064. return 1;
  13065. }
  13066. }
  13067. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13068. try {
  13069. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13070. } catch (const std::exception & err) {
  13071. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13072. return 1;
  13073. }
  13074. }
  13075. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13076. GGML_ASSERT(cvec.tensors.empty());
  13077. GGML_ASSERT(cvec.ctxs.empty());
  13078. GGML_ASSERT(cvec.bufs.empty());
  13079. // count layer buffer types
  13080. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13081. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13082. buft_layer_count[model.buft_layer[i].buft]++;
  13083. }
  13084. // allocate contexts
  13085. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13086. for (auto & it : buft_layer_count) {
  13087. int n_layers = it.second;
  13088. struct ggml_init_params params = {
  13089. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13090. /*.mem_buffer =*/ NULL,
  13091. /*.no_alloc =*/ true,
  13092. };
  13093. ggml_context * ctx = ggml_init(params);
  13094. if (!ctx) {
  13095. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13096. return 1;
  13097. }
  13098. ctx_map[it.first] = ctx;
  13099. }
  13100. // make tensors
  13101. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13102. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13103. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13104. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13105. cvec.tensors.push_back(tensor);
  13106. }
  13107. // allocate tensors / buffers and zero
  13108. for (auto it : ctx_map) {
  13109. ggml_backend_buffer_type_t buft = it.first;
  13110. ggml_context * ctx = it.second;
  13111. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13112. if (!buf) {
  13113. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13114. return false;
  13115. }
  13116. ggml_backend_buffer_clear(buf, 0);
  13117. cvec.ctxs.push_back(ctx);
  13118. cvec.bufs.push_back(buf);
  13119. }
  13120. return true;
  13121. }
  13122. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13123. const llama_model & model = lctx->model;
  13124. llama_control_vector & cvec = lctx->cvec;
  13125. if (data == nullptr) {
  13126. // disable the current control vector (but leave allocated for later)
  13127. cvec.layer_start = -1;
  13128. cvec.layer_end = -1;
  13129. return 0;
  13130. }
  13131. if (n_embd != (int) model.hparams.n_embd) {
  13132. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13133. return 1;
  13134. }
  13135. if (cvec.tensors.empty()) {
  13136. if (!llama_control_vector_init(cvec, model)) {
  13137. return 1;
  13138. }
  13139. }
  13140. cvec.layer_start = il_start;
  13141. cvec.layer_end = il_end;
  13142. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13143. assert(cvec.tensors[il] != nullptr);
  13144. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13145. if (off + n_embd <= len) {
  13146. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13147. }
  13148. }
  13149. return 0;
  13150. }
  13151. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13152. struct llama_kv_cache_view result = {
  13153. /*.n_cells = */ 0,
  13154. /*.n_seq_max = */ n_seq_max,
  13155. /*.token_count = */ 0,
  13156. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13157. /*.max_contiguous = */ 0,
  13158. /*.max_contiguous_idx = */ -1,
  13159. /*.cells = */ nullptr,
  13160. /*.cells_sequences = */ nullptr,
  13161. };
  13162. return result;
  13163. }
  13164. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13165. if (view->cells != nullptr) {
  13166. free(view->cells);
  13167. view->cells = nullptr;
  13168. }
  13169. if (view->cells_sequences != nullptr) {
  13170. free(view->cells_sequences);
  13171. view->cells_sequences = nullptr;
  13172. }
  13173. }
  13174. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13175. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13176. view->n_cells = int32_t(ctx->kv_self.size);
  13177. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13178. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13179. view->cells = (struct llama_kv_cache_view_cell *)p;
  13180. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13181. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13182. view->cells_sequences = (llama_seq_id *)p;
  13183. }
  13184. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13185. llama_kv_cache_view_cell * c_curr = view->cells;
  13186. llama_seq_id * cs_curr = view->cells_sequences;
  13187. int32_t used_cells = 0;
  13188. int32_t token_count = 0;
  13189. int32_t curr_contig_idx = -1;
  13190. uint32_t max_contig = 0;
  13191. int32_t max_contig_idx = -1;
  13192. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13193. const size_t curr_size = kv_cells[i].seq_id.size();
  13194. token_count += curr_size;
  13195. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13196. if (curr_size > 0) {
  13197. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13198. max_contig = i - curr_contig_idx;
  13199. max_contig_idx = curr_contig_idx;
  13200. }
  13201. curr_contig_idx = -1;
  13202. } else if (curr_contig_idx < 0) {
  13203. curr_contig_idx = i;
  13204. }
  13205. int seq_idx = 0;
  13206. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13207. if (seq_idx >= view->n_seq_max) {
  13208. break;
  13209. }
  13210. cs_curr[seq_idx] = it;
  13211. seq_idx++;
  13212. }
  13213. if (seq_idx != 0) {
  13214. used_cells++;
  13215. }
  13216. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13217. cs_curr[seq_idx] = -1;
  13218. }
  13219. }
  13220. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13221. max_contig_idx = curr_contig_idx;
  13222. max_contig = kv_cells.size() - curr_contig_idx;
  13223. }
  13224. view->max_contiguous = max_contig;
  13225. view->max_contiguous_idx = max_contig_idx;
  13226. view->token_count = token_count;
  13227. view->used_cells = used_cells;
  13228. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13229. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13230. __func__, ctx->kv_self.used, used_cells);
  13231. }
  13232. }
  13233. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13234. int result = 0;
  13235. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13236. result += ctx->kv_self.cells[i].seq_id.size();
  13237. }
  13238. return result;
  13239. }
  13240. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13241. return ctx->kv_self.used;
  13242. }
  13243. void llama_kv_cache_clear(struct llama_context * ctx) {
  13244. llama_kv_cache_clear(ctx->kv_self);
  13245. }
  13246. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13247. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13248. }
  13249. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13250. if (seq_id_src == seq_id_dst) {
  13251. return;
  13252. }
  13253. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13254. }
  13255. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13256. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13257. }
  13258. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13259. if (delta == 0) {
  13260. return;
  13261. }
  13262. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13263. }
  13264. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13265. if (d == 1) {
  13266. return;
  13267. }
  13268. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13269. }
  13270. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13271. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13272. }
  13273. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13274. llama_kv_cache_defrag(ctx->kv_self);
  13275. }
  13276. void llama_kv_cache_update(struct llama_context * ctx) {
  13277. llama_kv_cache_update_internal(*ctx);
  13278. }
  13279. // deprecated
  13280. size_t llama_get_state_size(const struct llama_context * ctx) {
  13281. return llama_state_get_size(ctx);
  13282. }
  13283. // deprecated
  13284. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13285. return llama_state_get_data(ctx, dst);
  13286. }
  13287. // deprecated
  13288. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13289. return llama_state_set_data(ctx, src);
  13290. }
  13291. // deprecated
  13292. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13293. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13294. }
  13295. // deprecated
  13296. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13297. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13298. }
  13299. // Returns the *maximum* size of the state
  13300. size_t llama_state_get_size(const struct llama_context * ctx) {
  13301. const auto & cparams = ctx->cparams;
  13302. const auto & hparams = ctx->model.hparams;
  13303. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13304. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13305. const size_t s_rng_size = sizeof(size_t);
  13306. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13307. const size_t s_n_outputs = sizeof(size_t);
  13308. // assume worst case for outputs although only currently set ones are serialized
  13309. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13310. const size_t s_logits_size = sizeof(size_t);
  13311. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13312. const size_t s_embedding_size = sizeof(size_t);
  13313. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13314. const size_t s_kv_buf_size = sizeof(size_t);
  13315. const size_t s_kv_head = sizeof(uint32_t);
  13316. const size_t s_kv_size = sizeof(uint32_t);
  13317. const size_t s_kv_used = sizeof(uint32_t);
  13318. const size_t s_kv = ctx->kv_self.total_size();
  13319. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13320. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13321. const size_t s_total = (
  13322. + s_rng_size
  13323. + s_rng
  13324. + s_n_outputs
  13325. + s_output_pos
  13326. + s_logits_size
  13327. + s_logits
  13328. + s_embedding_size
  13329. + s_embedding
  13330. + s_kv_buf_size
  13331. + s_kv_head
  13332. + s_kv_size
  13333. + s_kv_used
  13334. + s_kv
  13335. + s_kv_cells
  13336. );
  13337. return s_total;
  13338. }
  13339. // llama_context_data
  13340. struct llama_data_context {
  13341. virtual void write(const void * src, size_t size) = 0;
  13342. virtual size_t get_size_written() = 0;
  13343. virtual ~llama_data_context() = default;
  13344. };
  13345. struct llama_data_buffer_context : llama_data_context {
  13346. uint8_t * ptr;
  13347. size_t size_written = 0;
  13348. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13349. void write(const void * src, size_t size) override {
  13350. memcpy(ptr, src, size);
  13351. ptr += size;
  13352. size_written += size;
  13353. }
  13354. size_t get_size_written() override {
  13355. return size_written;
  13356. }
  13357. };
  13358. struct llama_data_file_context : llama_data_context {
  13359. llama_file * file;
  13360. size_t size_written = 0;
  13361. llama_data_file_context(llama_file * f) : file(f) {}
  13362. void write(const void * src, size_t size) override {
  13363. file->write_raw(src, size);
  13364. size_written += size;
  13365. }
  13366. size_t get_size_written() override {
  13367. return size_written;
  13368. }
  13369. };
  13370. /** copy state data into either a buffer or file depending on the passed in context
  13371. *
  13372. * file context:
  13373. * llama_file file("/path", "wb");
  13374. * llama_data_file_context data_ctx(&file);
  13375. * llama_state_get_data(ctx, &data_ctx);
  13376. *
  13377. * buffer context:
  13378. * std::vector<uint8_t> buf(max_size, 0);
  13379. * llama_data_buffer_context data_ctx(&buf.data());
  13380. * llama_state_get_data(ctx, &data_ctx);
  13381. *
  13382. */
  13383. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13384. // copy rng
  13385. {
  13386. std::ostringstream rng_ss;
  13387. rng_ss << ctx->rng;
  13388. const std::string & rng_str = rng_ss.str();
  13389. const size_t rng_size = rng_str.size();
  13390. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13391. data_ctx->write(&rng_size, sizeof(rng_size));
  13392. data_ctx->write(rng_str.data(), rng_size);
  13393. }
  13394. // copy outputs
  13395. {
  13396. // Can't use ctx->n_outputs because it's not for the
  13397. // entire last batch when n_ubatch is smaller than n_batch
  13398. size_t n_outputs = 0;
  13399. // copy output ids
  13400. {
  13401. std::vector<int32_t> output_pos;
  13402. const size_t n_batch = ctx->cparams.n_batch;
  13403. const auto & output_ids = ctx->output_ids;
  13404. output_pos.resize(ctx->output_size);
  13405. // build a more compact representation of the output ids
  13406. for (size_t i = 0; i < n_batch; ++i) {
  13407. // map an output id to a position in the batch
  13408. int32_t pos = output_ids[i];
  13409. if (pos >= 0) {
  13410. if ((size_t) pos >= n_outputs) {
  13411. n_outputs = pos + 1;
  13412. }
  13413. GGML_ASSERT((size_t) pos < ctx->output_size);
  13414. output_pos[pos] = i;
  13415. }
  13416. }
  13417. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13418. if (n_outputs) {
  13419. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13420. }
  13421. }
  13422. // copy logits
  13423. {
  13424. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13425. data_ctx->write(&logits_size, sizeof(logits_size));
  13426. if (logits_size) {
  13427. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13428. }
  13429. }
  13430. // copy embeddings
  13431. {
  13432. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13433. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13434. if (embeddings_size) {
  13435. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13436. }
  13437. }
  13438. }
  13439. // copy kv cache
  13440. {
  13441. const auto & kv_self = ctx->kv_self;
  13442. const auto & hparams = ctx->model.hparams;
  13443. const uint32_t n_layer = hparams.n_layer;
  13444. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13445. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13446. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13447. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13448. const uint32_t kv_size = kv_self.size;
  13449. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13450. const uint32_t kv_used = kv_self.used;
  13451. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13452. data_ctx->write(&kv_head, sizeof(kv_head));
  13453. data_ctx->write(&kv_size, sizeof(kv_size));
  13454. data_ctx->write(&kv_used, sizeof(kv_used));
  13455. if (kv_buf_size) {
  13456. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13457. std::vector<uint8_t> tmp_buf;
  13458. for (int il = 0; il < (int) n_layer; ++il) {
  13459. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13460. tmp_buf.resize(k_size);
  13461. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13462. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13463. if (kv_self.recurrent) {
  13464. // v is contiguous for recurrent models
  13465. // TODO: use other tensors for state models than k and v
  13466. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13467. tmp_buf.resize(v_size);
  13468. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13469. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13470. continue;
  13471. }
  13472. // v is not contiguous, copy row by row
  13473. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13474. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13475. tmp_buf.resize(v_row_size);
  13476. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13477. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13478. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13479. }
  13480. }
  13481. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13482. }
  13483. for (uint32_t i = 0; i < kv_head; ++i) {
  13484. const auto & cell = kv_self.cells[i];
  13485. const llama_pos pos = cell.pos;
  13486. const size_t seq_id_size = cell.seq_id.size();
  13487. data_ctx->write(&pos, sizeof(pos));
  13488. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13489. for (auto seq_id : cell.seq_id) {
  13490. data_ctx->write(&seq_id, sizeof(seq_id));
  13491. }
  13492. }
  13493. }
  13494. }
  13495. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13496. llama_data_buffer_context data_ctx(dst);
  13497. llama_state_get_data_internal(ctx, &data_ctx);
  13498. return data_ctx.get_size_written();
  13499. }
  13500. // Sets the state reading from the specified source address
  13501. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13502. const uint8_t * inp = src;
  13503. // set rng
  13504. {
  13505. size_t rng_size;
  13506. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13507. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13508. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13509. std::istringstream rng_ss(rng_str);
  13510. rng_ss >> ctx->rng;
  13511. GGML_ASSERT(!rng_ss.fail());
  13512. }
  13513. // set output ids
  13514. {
  13515. size_t n_outputs;
  13516. std::vector<int32_t> output_pos;
  13517. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13518. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13519. if (n_outputs) {
  13520. output_pos.resize(n_outputs);
  13521. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13522. inp += n_outputs * sizeof(int32_t);
  13523. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13524. int32_t id = output_pos[i];
  13525. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13526. ctx->output_ids[id] = i;
  13527. }
  13528. ctx->n_outputs = n_outputs;
  13529. }
  13530. }
  13531. // set logits
  13532. {
  13533. size_t logits_size;
  13534. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13535. GGML_ASSERT(ctx->logits_size >= logits_size);
  13536. if (logits_size) {
  13537. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13538. inp += logits_size * sizeof(float);
  13539. }
  13540. }
  13541. // set embeddings
  13542. {
  13543. size_t embeddings_size;
  13544. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13545. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13546. if (embeddings_size) {
  13547. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13548. inp += embeddings_size * sizeof(float);
  13549. }
  13550. }
  13551. // set kv cache
  13552. {
  13553. const auto & kv_self = ctx->kv_self;
  13554. const auto & hparams = ctx->model.hparams;
  13555. const uint32_t n_layer = hparams.n_layer;
  13556. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13557. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13558. size_t kv_buf_size;
  13559. uint32_t kv_head;
  13560. uint32_t kv_size;
  13561. uint32_t kv_used;
  13562. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13563. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13564. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13565. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13566. if (kv_self.size != kv_size) {
  13567. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13568. GGML_ASSERT(kv_self.size >= kv_head);
  13569. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13570. __func__, kv_head, kv_size, kv_self.size);
  13571. }
  13572. if (kv_buf_size) {
  13573. const size_t pre_kv_buf_size = inp - src;
  13574. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13575. for (int il = 0; il < (int) n_layer; ++il) {
  13576. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13577. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13578. inp += k_size;
  13579. if (kv_self.recurrent) {
  13580. // v is contiguous for recurrent models
  13581. // TODO: use other tensors for state models than k and v
  13582. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13583. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13584. inp += v_size;
  13585. continue;
  13586. }
  13587. // v is not contiguous, copy row by row
  13588. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13589. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13590. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13591. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13592. inp += v_row_size;
  13593. }
  13594. }
  13595. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13596. }
  13597. llama_kv_cache_clear(ctx);
  13598. ctx->kv_self.head = kv_head;
  13599. ctx->kv_self.used = kv_used;
  13600. for (uint32_t i = 0; i < kv_head; ++i) {
  13601. llama_pos pos;
  13602. size_t seq_id_size;
  13603. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13604. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13605. ctx->kv_self.cells[i].pos = pos;
  13606. llama_seq_id seq_id;
  13607. for (size_t j = 0; j < seq_id_size; ++j) {
  13608. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13609. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13610. }
  13611. }
  13612. }
  13613. const size_t nread = inp - src;
  13614. const size_t max_size = llama_state_get_size(ctx);
  13615. GGML_ASSERT(nread <= max_size);
  13616. return nread;
  13617. }
  13618. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13619. llama_file file(path_session, "rb");
  13620. // sanity checks
  13621. {
  13622. const uint32_t magic = file.read_u32();
  13623. const uint32_t version = file.read_u32();
  13624. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13625. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13626. return false;
  13627. }
  13628. llama_hparams session_hparams;
  13629. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13630. if (session_hparams != ctx->model.hparams) {
  13631. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13632. return false;
  13633. }
  13634. }
  13635. // load the prompt
  13636. {
  13637. const uint32_t n_token_count = file.read_u32();
  13638. if (n_token_count > n_token_capacity) {
  13639. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13640. return false;
  13641. }
  13642. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13643. *n_token_count_out = n_token_count;
  13644. }
  13645. // restore the context state
  13646. {
  13647. const size_t n_state_size_cur = file.size - file.tell();
  13648. const size_t n_state_size_max = llama_state_get_size(ctx);
  13649. if (n_state_size_cur > n_state_size_max) {
  13650. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13651. return false;
  13652. }
  13653. std::vector<uint8_t> state_data(n_state_size_max);
  13654. file.read_raw(state_data.data(), n_state_size_cur);
  13655. llama_state_set_data(ctx, state_data.data());
  13656. }
  13657. return true;
  13658. }
  13659. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13660. try {
  13661. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13662. } catch (const std::exception & err) {
  13663. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13664. return false;
  13665. }
  13666. }
  13667. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13668. llama_file file(path_session, "wb");
  13669. file.write_u32(LLAMA_SESSION_MAGIC);
  13670. file.write_u32(LLAMA_SESSION_VERSION);
  13671. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13672. // save the prompt
  13673. file.write_u32((uint32_t) n_token_count);
  13674. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13675. // save the context state using stream saving
  13676. llama_data_file_context data_ctx(&file);
  13677. llama_state_get_data_internal(ctx, &data_ctx);
  13678. return true;
  13679. }
  13680. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13681. try {
  13682. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13683. } catch (const std::exception & err) {
  13684. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13685. return false;
  13686. }
  13687. }
  13688. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13689. // save the size of size_t as a uint32_t for safety check
  13690. const size_t size_t_size_size = sizeof(uint32_t);
  13691. // other values
  13692. const size_t s_cell_count_size = sizeof(uint32_t);
  13693. const size_t s_layer_count_size = sizeof(uint32_t);
  13694. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13695. size_t s_cell_count = 0;
  13696. size_t s_cell_data_size = 0;
  13697. const auto & kv_self = ctx->kv_self;
  13698. const auto & hparams = ctx->model.hparams;
  13699. const uint32_t n_layer = hparams.n_layer;
  13700. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13701. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13702. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13703. const auto & cell = kv_self.cells[i];
  13704. if (cell.seq_id.count(seq_id) > 0) {
  13705. ++s_cell_count;
  13706. s_cell_data_size += sizeof(llama_pos);
  13707. }
  13708. }
  13709. for (int il = 0; il < (int)n_layer; ++il) {
  13710. // types of keys and values
  13711. s_cell_data_size += sizeof(int32_t) * 2;
  13712. // k_size_row and v_size_el values of layer
  13713. s_cell_data_size += sizeof(size_t) * 2;
  13714. // keys
  13715. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13716. s_cell_data_size += k_size_row * s_cell_count;
  13717. // values (transposed)
  13718. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13719. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13720. }
  13721. const size_t s_total = (
  13722. size_t_size_size +
  13723. s_cell_count_size +
  13724. s_layer_count_size +
  13725. n_embd_v_gqa_size +
  13726. s_cell_data_size
  13727. );
  13728. return s_total;
  13729. }
  13730. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13731. const auto & kv_self = ctx->kv_self;
  13732. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13733. // Save the size of size_t as a uint32_t for safety check
  13734. const uint32_t size_t_size = sizeof(size_t);
  13735. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13736. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13737. uint32_t cell_count = 0;
  13738. // Count the number of cells with the specified seq_id
  13739. // Find all the ranges of cells with this seq id
  13740. {
  13741. uint32_t cell_range_begin = kv_self.size;
  13742. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13743. const auto & cell = kv_self.cells[i];
  13744. if (cell.has_seq_id(seq_id)) {
  13745. ++cell_count;
  13746. if (cell_range_begin == kv_self.size) {
  13747. cell_range_begin = i;
  13748. }
  13749. }
  13750. else {
  13751. if (cell_range_begin != kv_self.size) {
  13752. cell_ranges.push_back({ cell_range_begin, i });
  13753. cell_range_begin = kv_self.size;
  13754. }
  13755. }
  13756. }
  13757. if (cell_range_begin != kv_self.size) {
  13758. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13759. }
  13760. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13761. uint32_t cell_count_check = 0;
  13762. for (const auto & range : cell_ranges) {
  13763. cell_count_check += range.second - range.first;
  13764. }
  13765. GGML_ASSERT(cell_count == cell_count_check);
  13766. }
  13767. // Write the cell count
  13768. data_ctx.write(&cell_count, sizeof(cell_count));
  13769. const auto & hparams = ctx->model.hparams;
  13770. const uint32_t n_layer = hparams.n_layer;
  13771. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13772. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13773. // Write the layer count
  13774. data_ctx.write(&n_layer, sizeof(n_layer));
  13775. // Write n_embd_v_gqa
  13776. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13777. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13778. for (const auto & range : cell_ranges) {
  13779. for (uint32_t i = range.first; i < range.second; ++i) {
  13780. const auto & cell = kv_self.cells[i];
  13781. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13782. }
  13783. }
  13784. // Iterate and write all the keys first, each row is a cell
  13785. // Get whole range at a time
  13786. std::vector<uint8_t> tmp_buf;
  13787. for (int il = 0; il < (int)n_layer; ++il) {
  13788. // Write key type
  13789. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13790. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13791. // Write row size of key
  13792. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13793. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13794. // Read each range of cells of k_size length each into tmp_buf and write out
  13795. for (const auto & range : cell_ranges) {
  13796. const size_t range_size = range.second - range.first;
  13797. tmp_buf.resize(range_size * k_size_row);
  13798. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13799. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13800. }
  13801. }
  13802. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13803. const uint32_t kv_size = kv_self.size;
  13804. for (int il = 0; il < (int)n_layer; ++il) {
  13805. // Write value type
  13806. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13807. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13808. // Write element size
  13809. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13810. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13811. // For each row, we get the element values of each cell
  13812. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13813. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13814. for (const auto & range : cell_ranges) {
  13815. const size_t range_size = range.second - range.first;
  13816. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13817. tmp_buf.resize(range_size * v_size_el);
  13818. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13819. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13820. }
  13821. }
  13822. }
  13823. return data_ctx.get_size_written();
  13824. }
  13825. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13826. llama_data_buffer_context data_ctx(dst);
  13827. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13828. }
  13829. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13830. auto & kv_self = ctx->kv_self;
  13831. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13832. // Wipe the slot
  13833. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13834. const uint8_t * inp = src;
  13835. // Read size of size_t
  13836. uint32_t size_t_size;
  13837. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13838. inp += sizeof(size_t_size);
  13839. if (size_t_size != sizeof(size_t)) {
  13840. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13841. return 0;
  13842. }
  13843. // Read the cell count
  13844. uint32_t cell_count;
  13845. memcpy(&cell_count, inp, sizeof(cell_count));
  13846. inp += sizeof(cell_count);
  13847. // Read the layer count
  13848. uint32_t n_layer_ref;
  13849. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13850. inp += sizeof(n_layer_ref);
  13851. // Read n_embd_v_gqa
  13852. uint32_t n_embd_v_gqa_ref;
  13853. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13854. inp += sizeof(n_embd_v_gqa_ref);
  13855. // Sanity check model compatibility
  13856. const auto & hparams = ctx->model.hparams;
  13857. const uint32_t n_layer = hparams.n_layer;
  13858. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13859. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13860. if (n_layer != n_layer_ref) {
  13861. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13862. return 0;
  13863. }
  13864. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13865. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13866. return 0;
  13867. }
  13868. // Allocate the new cells for the slot
  13869. if (cell_count) {
  13870. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13871. batch.n_tokens = cell_count;
  13872. for (uint32_t i = 0; i < cell_count; ++i) {
  13873. llama_pos pos;
  13874. memcpy(&pos, inp, sizeof(pos));
  13875. inp += sizeof(pos);
  13876. batch.pos[i] = pos;
  13877. batch.n_seq_id[i] = 1;
  13878. batch.seq_id[i][0] = dest_seq_id;
  13879. }
  13880. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  13881. llama_batch_free(batch);
  13882. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  13883. return 0;
  13884. }
  13885. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  13886. // Assume that this is one contiguous block of cells
  13887. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  13888. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  13889. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  13890. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  13891. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  13892. // Cleanup
  13893. llama_batch_free(batch);
  13894. }
  13895. const uint32_t kv_size = kv_self.size;
  13896. const uint32_t kv_head = kv_self.head;
  13897. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  13898. for (int il = 0; il < (int)n_layer; ++il) {
  13899. // Read type of key
  13900. int32_t k_type_i_ref;
  13901. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  13902. inp += sizeof(k_type_i_ref);
  13903. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13904. if (k_type_i != k_type_i_ref) {
  13905. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13906. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  13907. return 0;
  13908. }
  13909. // Read row size of key
  13910. size_t k_size_row_ref;
  13911. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  13912. inp += sizeof(k_size_row_ref);
  13913. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13914. if (k_size_row != k_size_row_ref) {
  13915. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13916. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  13917. return 0;
  13918. }
  13919. if (cell_count) {
  13920. // Read and set the keys for the whole cell range
  13921. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  13922. inp += cell_count * k_size_row;
  13923. }
  13924. }
  13925. // For each layer, read the values for each cell (transposed)
  13926. for (int il = 0; il < (int)n_layer; ++il) {
  13927. // Read type of value
  13928. int32_t v_type_i_ref;
  13929. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  13930. inp += sizeof(v_type_i_ref);
  13931. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13932. if (v_type_i != v_type_i_ref) {
  13933. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13934. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  13935. return 0;
  13936. }
  13937. // Read element size of value
  13938. size_t v_size_el_ref;
  13939. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  13940. inp += sizeof(v_size_el_ref);
  13941. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13942. if (v_size_el != v_size_el_ref) {
  13943. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13944. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  13945. return 0;
  13946. }
  13947. if (cell_count) {
  13948. // For each row in the transposed matrix, read the values for the whole cell range
  13949. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13950. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  13951. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  13952. inp += cell_count * v_size_el;
  13953. }
  13954. }
  13955. }
  13956. const size_t nread = inp - src;
  13957. return nread;
  13958. }
  13959. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  13960. llama_file file(filepath, "wb");
  13961. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  13962. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  13963. // save the prompt
  13964. file.write_u32((uint32_t)n_token_count);
  13965. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13966. // save the context state using stream saving
  13967. llama_data_file_context data_ctx(&file);
  13968. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13969. const size_t res = file.tell();
  13970. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  13971. return res;
  13972. }
  13973. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13974. llama_file file(filepath, "rb");
  13975. // version checks
  13976. {
  13977. const uint32_t magic = file.read_u32();
  13978. const uint32_t version = file.read_u32();
  13979. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  13980. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  13981. return 0;
  13982. }
  13983. }
  13984. // load the prompt
  13985. {
  13986. const uint32_t n_token_count = file.read_u32();
  13987. if (n_token_count > n_token_capacity) {
  13988. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13989. return 0;
  13990. }
  13991. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13992. *n_token_count_out = n_token_count;
  13993. }
  13994. // restore the context state
  13995. {
  13996. const size_t state_size = file.size - file.tell();
  13997. std::vector<uint8_t> state_data(state_size);
  13998. file.read_raw(state_data.data(), state_size);
  13999. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14000. if (!nread) {
  14001. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14002. return 0;
  14003. }
  14004. GGML_ASSERT(nread <= state_size);
  14005. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14006. }
  14007. return file.tell();
  14008. }
  14009. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14010. try {
  14011. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14012. } catch (const std::exception & err) {
  14013. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14014. return 0;
  14015. }
  14016. }
  14017. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14018. try {
  14019. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14020. } catch (const std::exception & err) {
  14021. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14022. return 0;
  14023. }
  14024. }
  14025. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14026. ctx->cparams.n_threads = n_threads;
  14027. ctx->cparams.n_threads_batch = n_threads_batch;
  14028. }
  14029. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14030. ctx->abort_callback = abort_callback;
  14031. ctx->abort_callback_data = abort_callback_data;
  14032. }
  14033. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14034. ctx->cparams.causal_attn = causal_attn;
  14035. }
  14036. struct llama_batch llama_batch_get_one(
  14037. llama_token * tokens,
  14038. int32_t n_tokens,
  14039. llama_pos pos_0,
  14040. llama_seq_id seq_id) {
  14041. return {
  14042. /*n_tokens =*/ n_tokens,
  14043. /*tokens =*/ tokens,
  14044. /*embd =*/ nullptr,
  14045. /*pos =*/ nullptr,
  14046. /*n_seq_id =*/ nullptr,
  14047. /*seq_id =*/ nullptr,
  14048. /*logits =*/ nullptr,
  14049. /*all_pos_0 =*/ pos_0,
  14050. /*all_pos_1 =*/ 1,
  14051. /*all_seq_id =*/ seq_id,
  14052. };
  14053. }
  14054. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14055. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14056. if (embd) {
  14057. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14058. } else {
  14059. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14060. }
  14061. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14062. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14063. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14064. for (int i = 0; i < n_tokens_alloc; ++i) {
  14065. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14066. }
  14067. batch.seq_id[n_tokens_alloc] = nullptr;
  14068. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14069. return batch;
  14070. }
  14071. void llama_batch_free(struct llama_batch batch) {
  14072. if (batch.token) free(batch.token);
  14073. if (batch.embd) free(batch.embd);
  14074. if (batch.pos) free(batch.pos);
  14075. if (batch.n_seq_id) free(batch.n_seq_id);
  14076. if (batch.seq_id) {
  14077. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14078. free(batch.seq_id[i]);
  14079. }
  14080. free(batch.seq_id);
  14081. }
  14082. if (batch.logits) free(batch.logits);
  14083. }
  14084. int32_t llama_decode(
  14085. struct llama_context * ctx,
  14086. struct llama_batch batch) {
  14087. const int ret = llama_decode_internal(*ctx, batch);
  14088. if (ret < 0) {
  14089. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14090. }
  14091. return ret;
  14092. }
  14093. void llama_synchronize(struct llama_context * ctx) {
  14094. ggml_backend_sched_synchronize(ctx->sched);
  14095. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14096. // the stats will be added to the prompt evaluation stats
  14097. // this should only happen when using batch size 1 to evaluate a batch
  14098. // add the evaluation to the stats
  14099. if (ctx->n_queued_tokens == 1) {
  14100. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14101. ctx->n_eval++;
  14102. } else if (ctx->n_queued_tokens > 1) {
  14103. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14104. ctx->n_p_eval += ctx->n_queued_tokens;
  14105. }
  14106. // get a more accurate load time, upon first eval
  14107. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14108. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14109. ctx->has_evaluated_once = true;
  14110. }
  14111. ctx->n_queued_tokens = 0;
  14112. ctx->t_compute_start_us = 0;
  14113. }
  14114. float * llama_get_logits(struct llama_context * ctx) {
  14115. llama_synchronize(ctx);
  14116. return ctx->logits;
  14117. }
  14118. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14119. int32_t j = -1;
  14120. llama_synchronize(ctx);
  14121. try {
  14122. if (ctx->logits == nullptr) {
  14123. throw std::runtime_error("no logits");
  14124. }
  14125. if (i < 0) {
  14126. j = ctx->n_outputs + i;
  14127. if (j < 0) {
  14128. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14129. }
  14130. } else if ((size_t) i >= ctx->output_ids.size()) {
  14131. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14132. } else {
  14133. j = ctx->output_ids[i];
  14134. }
  14135. if (j < 0) {
  14136. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14137. }
  14138. if (j >= ctx->n_outputs) {
  14139. // This should not happen
  14140. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14141. }
  14142. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14143. } catch (const std::exception & err) {
  14144. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14145. #ifndef NDEBUG
  14146. GGML_ASSERT(false);
  14147. #endif
  14148. return nullptr;
  14149. }
  14150. }
  14151. float * llama_get_embeddings(struct llama_context * ctx) {
  14152. llama_synchronize(ctx);
  14153. return ctx->embd;
  14154. }
  14155. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14156. int32_t j = -1;
  14157. llama_synchronize(ctx);
  14158. try {
  14159. if (ctx->embd == nullptr) {
  14160. throw std::runtime_error("no embeddings");
  14161. }
  14162. if (i < 0) {
  14163. j = ctx->n_outputs + i;
  14164. if (j < 0) {
  14165. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14166. }
  14167. } else if ((size_t) i >= ctx->output_ids.size()) {
  14168. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14169. } else {
  14170. j = ctx->output_ids[i];
  14171. }
  14172. if (j < 0) {
  14173. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14174. }
  14175. if (j >= ctx->n_outputs) {
  14176. // This should not happen
  14177. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14178. }
  14179. return ctx->embd + j*ctx->model.hparams.n_embd;
  14180. } catch (const std::exception & err) {
  14181. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14182. #ifndef NDEBUG
  14183. GGML_ASSERT(false);
  14184. #endif
  14185. return nullptr;
  14186. }
  14187. }
  14188. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14189. llama_synchronize(ctx);
  14190. auto it = ctx->embd_seq.find(seq_id);
  14191. if (it == ctx->embd_seq.end()) {
  14192. return nullptr;
  14193. }
  14194. return it->second.data();
  14195. }
  14196. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14197. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14198. return model->vocab.id_to_token[token].text.c_str();
  14199. }
  14200. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14201. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14202. return model->vocab.id_to_token[token].score;
  14203. }
  14204. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14205. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14206. return model->vocab.id_to_token[token].type;
  14207. }
  14208. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14209. return token != -1 && (
  14210. token == llama_token_eos(model) ||
  14211. token == llama_token_eot(model)
  14212. );
  14213. }
  14214. llama_token llama_token_bos(const struct llama_model * model) {
  14215. return model->vocab.special_bos_id;
  14216. }
  14217. llama_token llama_token_eos(const struct llama_model * model) {
  14218. return model->vocab.special_eos_id;
  14219. }
  14220. llama_token llama_token_cls(const struct llama_model * model) {
  14221. return model->vocab.special_cls_id;
  14222. }
  14223. llama_token llama_token_sep(const struct llama_model * model) {
  14224. return model->vocab.special_sep_id;
  14225. }
  14226. llama_token llama_token_nl(const struct llama_model * model) {
  14227. return model->vocab.linefeed_id;
  14228. }
  14229. int32_t llama_add_bos_token(const struct llama_model * model) {
  14230. return model->vocab.special_add_bos;
  14231. }
  14232. int32_t llama_add_eos_token(const struct llama_model * model) {
  14233. return model->vocab.special_add_eos;
  14234. }
  14235. llama_token llama_token_prefix(const struct llama_model * model) {
  14236. return model->vocab.special_prefix_id;
  14237. }
  14238. llama_token llama_token_middle(const struct llama_model * model) {
  14239. return model->vocab.special_middle_id;
  14240. }
  14241. llama_token llama_token_suffix(const struct llama_model * model) {
  14242. return model->vocab.special_suffix_id;
  14243. }
  14244. llama_token llama_token_eot(const struct llama_model * model) {
  14245. return model->vocab.special_eot_id;
  14246. }
  14247. int32_t llama_tokenize(
  14248. const struct llama_model * model,
  14249. const char * text,
  14250. int32_t text_len,
  14251. llama_token * tokens,
  14252. int32_t n_tokens_max,
  14253. bool add_special,
  14254. bool parse_special) {
  14255. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14256. if (n_tokens_max < (int) res.size()) {
  14257. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14258. return -((int) res.size());
  14259. }
  14260. for (size_t i = 0; i < res.size(); i++) {
  14261. tokens[i] = res[i];
  14262. }
  14263. return res.size();
  14264. }
  14265. static std::string llama_decode_text(const std::string & text) {
  14266. std::string decoded_text;
  14267. auto unicode_sequences = unicode_cpts_from_utf8(text);
  14268. for (auto & unicode_sequence : unicode_sequences) {
  14269. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  14270. }
  14271. return decoded_text;
  14272. }
  14273. // does not write null-terminator to buf
  14274. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14275. if (0 <= token && token < llama_n_vocab(model)) {
  14276. switch (llama_vocab_get_type(model->vocab)) {
  14277. case LLAMA_VOCAB_TYPE_WPM:
  14278. case LLAMA_VOCAB_TYPE_SPM: {
  14279. // NOTE: we accept all unsupported token types,
  14280. // suppressing them like CONTROL tokens.
  14281. if (llama_is_normal_token(model->vocab, token)) {
  14282. std::string result = model->vocab.id_to_token[token].text;
  14283. llama_unescape_whitespace(result);
  14284. if (length < (int) result.length()) {
  14285. return -(int) result.length();
  14286. }
  14287. memcpy(buf, result.c_str(), result.length());
  14288. return result.length();
  14289. } else if (
  14290. (llama_is_user_defined_token(model->vocab, token)) ||
  14291. (llama_is_control_token (model->vocab, token) && special)) {
  14292. std::string result = model->vocab.id_to_token[token].text;
  14293. if (length < (int) result.length()) {
  14294. return -(int) result.length();
  14295. }
  14296. memcpy(buf, result.c_str(), result.length());
  14297. return result.length();
  14298. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14299. if (length < 3) {
  14300. return -3;
  14301. }
  14302. memcpy(buf, "\xe2\x96\x85", 3);
  14303. return 3;
  14304. } else if (llama_is_byte_token(model->vocab, token)) {
  14305. if (length < 1) {
  14306. return -1;
  14307. }
  14308. buf[0] = llama_token_to_byte(model->vocab, token);
  14309. return 1;
  14310. }
  14311. break;
  14312. }
  14313. case LLAMA_VOCAB_TYPE_BPE: {
  14314. // NOTE: we accept all unsupported token types,
  14315. // suppressing them like CONTROL tokens.
  14316. if (llama_is_normal_token(model->vocab, token)) {
  14317. std::string result = model->vocab.id_to_token[token].text;
  14318. result = llama_decode_text(result);
  14319. if (length < (int) result.length()) {
  14320. return -(int) result.length();
  14321. }
  14322. memcpy(buf, result.c_str(), result.length());
  14323. return result.length();
  14324. } else if (
  14325. (llama_is_user_defined_token(model->vocab, token)) ||
  14326. (llama_is_control_token (model->vocab, token) && special)) {
  14327. std::string result = model->vocab.id_to_token[token].text;
  14328. if (length < (int) result.length()) {
  14329. return -(int) result.length();
  14330. }
  14331. memcpy(buf, result.c_str(), result.length());
  14332. return result.length();
  14333. }
  14334. break;
  14335. }
  14336. default:
  14337. GGML_ASSERT(false);
  14338. }
  14339. }
  14340. return 0;
  14341. }
  14342. // trim whitespace from the beginning and end of a string
  14343. static std::string trim(const std::string & str) {
  14344. size_t start = 0;
  14345. size_t end = str.size();
  14346. while (start < end && isspace(str[start])) {
  14347. start += 1;
  14348. }
  14349. while (end > start && isspace(str[end - 1])) {
  14350. end -= 1;
  14351. }
  14352. return str.substr(start, end - start);
  14353. }
  14354. // Simple version of "llama_apply_chat_template" that only works with strings
  14355. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14356. static int32_t llama_chat_apply_template_internal(
  14357. const std::string & tmpl,
  14358. const std::vector<const llama_chat_message *> & chat,
  14359. std::string & dest, bool add_ass) {
  14360. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14361. std::stringstream ss;
  14362. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14363. // chatml template
  14364. for (auto message : chat) {
  14365. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14366. }
  14367. if (add_ass) {
  14368. ss << "<|im_start|>assistant\n";
  14369. }
  14370. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14371. // llama2 template and its variants
  14372. // [variant] support system message
  14373. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14374. // [variant] space before + after response
  14375. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14376. // [variant] add BOS inside history
  14377. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14378. // [variant] trim spaces from the input message
  14379. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14380. // construct the prompt
  14381. bool is_inside_turn = true; // skip BOS at the beginning
  14382. ss << "[INST] ";
  14383. for (auto message : chat) {
  14384. std::string content = strip_message ? trim(message->content) : message->content;
  14385. std::string role(message->role);
  14386. if (!is_inside_turn) {
  14387. is_inside_turn = true;
  14388. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14389. }
  14390. if (role == "system") {
  14391. if (support_system_message) {
  14392. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14393. } else {
  14394. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14395. ss << content << "\n";
  14396. }
  14397. } else if (role == "user") {
  14398. ss << content << " [/INST]";
  14399. } else {
  14400. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14401. is_inside_turn = false;
  14402. }
  14403. }
  14404. // llama2 templates seem to not care about "add_generation_prompt"
  14405. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14406. // zephyr template
  14407. for (auto message : chat) {
  14408. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14409. }
  14410. if (add_ass) {
  14411. ss << "<|assistant|>\n";
  14412. }
  14413. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14414. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14415. for (auto message : chat) {
  14416. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14417. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14418. }
  14419. if (add_ass) {
  14420. ss << "<s>assistant\n";
  14421. }
  14422. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14423. // google/gemma-7b-it
  14424. std::string system_prompt = "";
  14425. for (auto message : chat) {
  14426. std::string role(message->role);
  14427. if (role == "system") {
  14428. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14429. system_prompt = trim(message->content);
  14430. continue;
  14431. }
  14432. // in gemma, "assistant" is "model"
  14433. role = role == "assistant" ? "model" : message->role;
  14434. ss << "<start_of_turn>" << role << "\n";
  14435. if (!system_prompt.empty() && role != "model") {
  14436. ss << system_prompt << "\n\n";
  14437. system_prompt = "";
  14438. }
  14439. ss << trim(message->content) << "<end_of_turn>\n";
  14440. }
  14441. if (add_ass) {
  14442. ss << "<start_of_turn>model\n";
  14443. }
  14444. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14445. // OrionStarAI/Orion-14B-Chat
  14446. std::string system_prompt = "";
  14447. for (auto message : chat) {
  14448. std::string role(message->role);
  14449. if (role == "system") {
  14450. // there is no system message support, we will merge it with user prompt
  14451. system_prompt = message->content;
  14452. continue;
  14453. } else if (role == "user") {
  14454. ss << "Human: ";
  14455. if (!system_prompt.empty()) {
  14456. ss << system_prompt << "\n\n";
  14457. system_prompt = "";
  14458. }
  14459. ss << message->content << "\n\nAssistant: </s>";
  14460. } else {
  14461. ss << message->content << "</s>";
  14462. }
  14463. }
  14464. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14465. // openchat/openchat-3.5-0106,
  14466. for (auto message : chat) {
  14467. std::string role(message->role);
  14468. if (role == "system") {
  14469. ss << message->content << "<|end_of_turn|>";
  14470. } else {
  14471. role[0] = toupper(role[0]);
  14472. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14473. }
  14474. }
  14475. if (add_ass) {
  14476. ss << "GPT4 Correct Assistant:";
  14477. }
  14478. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14479. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14480. for (auto message : chat) {
  14481. std::string role(message->role);
  14482. if (role == "system") {
  14483. // Orca-Vicuna variant uses a system prefix
  14484. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14485. ss << "SYSTEM: " << message->content << "\n";
  14486. } else {
  14487. ss << message->content << "\n\n";
  14488. }
  14489. } else if (role == "user") {
  14490. ss << "USER: " << message->content << "\n";
  14491. } else if (role == "assistant") {
  14492. ss << "ASSISTANT: " << message->content << "</s>\n";
  14493. }
  14494. }
  14495. if (add_ass) {
  14496. ss << "ASSISTANT:";
  14497. }
  14498. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14499. // deepseek-ai/deepseek-coder-33b-instruct
  14500. for (auto message : chat) {
  14501. std::string role(message->role);
  14502. if (role == "system") {
  14503. ss << message->content;
  14504. } else if (role == "user") {
  14505. ss << "### Instruction:\n" << message->content << "\n";
  14506. } else if (role == "assistant") {
  14507. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14508. }
  14509. }
  14510. if (add_ass) {
  14511. ss << "### Response:\n";
  14512. }
  14513. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14514. // CohereForAI/c4ai-command-r-plus
  14515. for (auto message : chat) {
  14516. std::string role(message->role);
  14517. if (role == "system") {
  14518. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14519. } else if (role == "user") {
  14520. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14521. } else if (role == "assistant") {
  14522. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14523. }
  14524. }
  14525. if (add_ass) {
  14526. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14527. }
  14528. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14529. // Llama 3
  14530. for (auto message : chat) {
  14531. std::string role(message->role);
  14532. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14533. }
  14534. if (add_ass) {
  14535. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14536. }
  14537. } else {
  14538. // template not supported
  14539. return -1;
  14540. }
  14541. dest = ss.str();
  14542. return dest.size();
  14543. }
  14544. LLAMA_API int32_t llama_chat_apply_template(
  14545. const struct llama_model * model,
  14546. const char * tmpl,
  14547. const struct llama_chat_message * chat,
  14548. size_t n_msg,
  14549. bool add_ass,
  14550. char * buf,
  14551. int32_t length) {
  14552. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14553. if (tmpl == nullptr) {
  14554. GGML_ASSERT(model != nullptr);
  14555. // load template from model
  14556. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14557. std::string template_key = "tokenizer.chat_template";
  14558. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14559. if (res < 0) {
  14560. // worst case: there is no information about template, we will use chatml by default
  14561. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14562. } else {
  14563. curr_tmpl = std::string(model_template.data(), model_template.size());
  14564. }
  14565. }
  14566. // format the chat to string
  14567. std::vector<const llama_chat_message *> chat_vec;
  14568. chat_vec.resize(n_msg);
  14569. for (size_t i = 0; i < n_msg; i++) {
  14570. chat_vec[i] = &chat[i];
  14571. }
  14572. std::string formatted_chat;
  14573. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14574. if (res < 0) {
  14575. return res;
  14576. }
  14577. if (buf && length > 0) {
  14578. strncpy(buf, formatted_chat.c_str(), length);
  14579. }
  14580. return res;
  14581. }
  14582. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14583. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14584. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14585. return strlen(split_path);
  14586. }
  14587. return 0;
  14588. }
  14589. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14590. std::string str_split_path(split_path);
  14591. char postfix[32];
  14592. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14593. std::string str_postfix(postfix);
  14594. // check if dest ends with postfix
  14595. int size_prefix = str_split_path.size() - str_postfix.size();
  14596. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14597. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14598. return size_prefix;
  14599. }
  14600. return 0;
  14601. }
  14602. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14603. struct llama_timings result = {
  14604. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14605. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14606. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14607. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14608. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14609. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14610. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14611. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14612. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14613. };
  14614. return result;
  14615. }
  14616. void llama_print_timings(struct llama_context * ctx) {
  14617. const llama_timings timings = llama_get_timings(ctx);
  14618. LLAMA_LOG_INFO("\n");
  14619. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14620. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14621. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14622. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14623. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14624. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14625. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14626. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14627. }
  14628. void llama_reset_timings(struct llama_context * ctx) {
  14629. ctx->t_start_us = ggml_time_us();
  14630. ctx->t_sample_us = ctx->n_sample = 0;
  14631. ctx->t_eval_us = ctx->n_eval = 0;
  14632. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14633. }
  14634. const char * llama_print_system_info(void) {
  14635. static std::string s;
  14636. s = "";
  14637. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14638. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14639. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14640. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14641. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14642. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14643. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14644. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14645. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14646. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14647. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14648. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14649. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14650. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14651. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14652. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14653. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14654. return s.c_str();
  14655. }
  14656. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14657. fprintf(stream, "\n");
  14658. fprintf(stream, "###########\n");
  14659. fprintf(stream, "# Timings #\n");
  14660. fprintf(stream, "###########\n");
  14661. fprintf(stream, "\n");
  14662. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14663. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14664. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14665. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14666. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14667. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14668. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14669. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14670. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14671. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14672. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14673. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14674. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14675. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14676. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14677. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14678. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14679. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14680. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14681. }
  14682. // For internal test use
  14683. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14684. struct llama_context * ctx
  14685. ) {
  14686. return ctx->model.tensors_by_name;
  14687. }
  14688. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14689. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14690. g_state.log_callback_user_data = user_data;
  14691. #ifdef GGML_USE_METAL
  14692. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14693. #endif
  14694. }
  14695. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14696. va_list args_copy;
  14697. va_copy(args_copy, args);
  14698. char buffer[128];
  14699. int len = vsnprintf(buffer, 128, format, args);
  14700. if (len < 128) {
  14701. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14702. } else {
  14703. char* buffer2 = new char[len+1];
  14704. vsnprintf(buffer2, len+1, format, args_copy);
  14705. buffer2[len] = 0;
  14706. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14707. delete[] buffer2;
  14708. }
  14709. va_end(args_copy);
  14710. }
  14711. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14712. va_list args;
  14713. va_start(args, format);
  14714. llama_log_internal_v(level, format, args);
  14715. va_end(args);
  14716. }
  14717. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14718. (void) level;
  14719. (void) user_data;
  14720. fputs(text, stderr);
  14721. fflush(stderr);
  14722. }