tensor_mapping.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. ),
  17. # Token type embeddings
  18. MODEL_TENSOR.TOKEN_TYPES: (
  19. "embeddings.token_type_embeddings", # bert
  20. ),
  21. # Normalization of token embeddings
  22. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  23. "word_embeddings_layernorm", # bloom
  24. ),
  25. # Position embeddings
  26. MODEL_TENSOR.POS_EMBD: (
  27. "transformer.wpe", # gpt2
  28. "embeddings.position_embeddings", # bert
  29. ),
  30. # Output
  31. MODEL_TENSOR.OUTPUT: (
  32. "embed_out", # gptneox
  33. "lm_head", # gpt2 mpt falcon llama-hf baichuan
  34. "output", # llama-pth bloom
  35. "word_embeddings_for_head", # persimmon
  36. ),
  37. # Output norm
  38. MODEL_TENSOR.OUTPUT_NORM: (
  39. "gpt_neox.final_layer_norm", # gptneox
  40. "transformer.ln_f", # gpt2 gpt-j falcon
  41. "model.norm", # llama-hf baichuan
  42. "norm", # llama-pth
  43. "embeddings.LayerNorm", # bert
  44. "transformer.norm_f", # mpt
  45. "ln_f", # refact bloom
  46. "language_model.encoder.final_layernorm", # persimmon
  47. ),
  48. # Rope frequencies
  49. MODEL_TENSOR.ROPE_FREQS: (
  50. "rope.freqs", # llama-pth
  51. ),
  52. }
  53. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  54. # Attention norm
  55. MODEL_TENSOR.ATTN_NORM: (
  56. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  57. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
  58. "transformer.blocks.{bid}.norm_1", # mpt
  59. "transformer.h.{bid}.input_layernorm", # falcon7b
  60. "h.{bid}.input_layernorm", # bloom
  61. "transformer.h.{bid}.ln_mlp", # falcon40b
  62. "model.layers.{bid}.input_layernorm", # llama-hf
  63. "layers.{bid}.attention_norm", # llama-pth
  64. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  65. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  66. "model.layers.{bid}.ln1", # yi
  67. ),
  68. # Attention norm 2
  69. MODEL_TENSOR.ATTN_NORM_2: (
  70. "transformer.h.{bid}.ln_attn", # falcon40b
  71. ),
  72. # Attention query-key-value
  73. MODEL_TENSOR.ATTN_QKV: (
  74. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  75. "transformer.h.{bid}.attn.c_attn", # gpt2
  76. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  77. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  78. "h.{bid}.self_attention.query_key_value", # bloom
  79. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  80. ),
  81. # Attention query
  82. MODEL_TENSOR.ATTN_Q: (
  83. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  84. "layers.{bid}.attention.wq", # llama-pth
  85. "encoder.layer.{bid}.attention.self.query", # bert
  86. "transformer.h.{bid}.attn.q_proj", # gpt-j
  87. ),
  88. # Attention key
  89. MODEL_TENSOR.ATTN_K: (
  90. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  91. "layers.{bid}.attention.wk", # llama-pth
  92. "encoder.layer.{bid}.attention.self.key", # bert
  93. "transformer.h.{bid}.attn.k_proj", # gpt-j
  94. ),
  95. # Attention value
  96. MODEL_TENSOR.ATTN_V: (
  97. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  98. "layers.{bid}.attention.wv", # llama-pth
  99. "encoder.layer.{bid}.attention.self.value", # bert
  100. "transformer.h.{bid}.attn.v_proj", # gpt-j
  101. ),
  102. # Attention output
  103. MODEL_TENSOR.ATTN_OUT: (
  104. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  105. "transformer.h.{bid}.attn.c_proj", # gpt2 refact
  106. "transformer.blocks.{bid}.attn.out_proj", # mpt
  107. "transformer.h.{bid}.self_attention.dense", # falcon
  108. "h.{bid}.self_attention.dense", # bloom
  109. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  110. "layers.{bid}.attention.wo", # llama-pth
  111. "encoder.layer.{bid}.attention.output.dense", # bert
  112. "transformer.h.{bid}.attn.out_proj", # gpt-j
  113. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  114. ),
  115. # Rotary embeddings
  116. MODEL_TENSOR.ATTN_ROT_EMBD: (
  117. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  118. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  119. ),
  120. # Feed-forward norm
  121. MODEL_TENSOR.FFN_NORM: (
  122. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  123. "transformer.h.{bid}.ln_2", # gpt2 refact
  124. "h.{bid}.post_attention_layernorm", # bloom
  125. "transformer.blocks.{bid}.norm_2", # mpt
  126. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  127. "layers.{bid}.ffn_norm", # llama-pth
  128. "encoder.layer.{bid}.output.LayerNorm", # bert
  129. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  130. "model.layers.{bid}.ln2", # yi
  131. ),
  132. # Feed-forward up
  133. MODEL_TENSOR.FFN_UP: (
  134. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  135. "transformer.h.{bid}.mlp.c_fc", # gpt2
  136. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  137. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  138. "h.{bid}.mlp.dense_h_to_4h", # bloom
  139. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  140. "layers.{bid}.feed_forward.w3", # llama-pth
  141. "encoder.layer.{bid}.intermediate.dense", # bert
  142. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  143. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  144. ),
  145. # Feed-forward gate
  146. MODEL_TENSOR.FFN_GATE: (
  147. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  148. "layers.{bid}.feed_forward.w1", # llama-pth
  149. ),
  150. # Feed-forward down
  151. MODEL_TENSOR.FFN_DOWN: (
  152. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  153. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact
  154. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  155. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  156. "h.{bid}.mlp.dense_4h_to_h", # bloom
  157. "model.layers.{bid}.mlp.down_proj", # llama-hf
  158. "layers.{bid}.feed_forward.w2", # llama-pth
  159. "encoder.layer.{bid}.output.dense", # bert
  160. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  161. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  162. ),
  163. MODEL_TENSOR.ATTN_Q_NORM: (
  164. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  165. ),
  166. MODEL_TENSOR.ATTN_K_NORM: (
  167. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  168. ),
  169. MODEL_TENSOR.ROPE_FREQS: (
  170. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  171. ),
  172. }
  173. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  174. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  175. self.mapping = {}
  176. for tensor, keys in self.mappings_cfg.items():
  177. if tensor not in MODEL_TENSORS[arch]:
  178. continue
  179. tensor_name = TENSOR_NAMES[tensor]
  180. self.mapping[tensor_name] = (tensor, tensor_name)
  181. for key in keys:
  182. self.mapping[key] = (tensor, tensor_name)
  183. for bid in range(n_blocks):
  184. for tensor, keys in self.block_mappings_cfg.items():
  185. if tensor not in MODEL_TENSORS[arch]:
  186. continue
  187. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  188. self.mapping[tensor_name] = (tensor, tensor_name)
  189. for key in keys:
  190. key = key.format(bid = bid)
  191. self.mapping[key] = (tensor, tensor_name)
  192. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  193. result = self.mapping.get(key)
  194. if result is not None:
  195. return result
  196. for suffix in try_suffixes:
  197. if key.endswith(suffix):
  198. result = self.mapping.get(key[:-len(suffix)])
  199. if result is not None:
  200. return result[0], result[1] + suffix
  201. return None
  202. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  203. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  204. if result is None:
  205. return None
  206. return result[1]
  207. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  208. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  209. if result is None:
  210. return None
  211. return result[0]
  212. def __getitem__(self, key: str) -> str:
  213. try:
  214. return self.mapping[key][1]
  215. except KeyError:
  216. raise KeyError(key)
  217. def __contains__(self, key: str) -> bool:
  218. return key in self.mapping
  219. def __repr__(self) -> str:
  220. return repr(self.mapping)
  221. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  222. return TensorNameMap(arch, n_blocks)