convert_hf_to_gguf.py 287 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. )
  262. )
  263. or not new_name.endswith(".weight")
  264. ):
  265. data_qtype = gguf.GGMLQuantizationType.F32
  266. if data_qtype is False and any(
  267. self.match_model_tensor_name(new_name, key, bid)
  268. for key in (
  269. gguf.MODEL_TENSOR.TOKEN_EMBD,
  270. gguf.MODEL_TENSOR.OUTPUT,
  271. )
  272. ):
  273. if self.ftype in (
  274. gguf.LlamaFileType.MOSTLY_TQ1_0,
  275. gguf.LlamaFileType.MOSTLY_TQ2_0,
  276. ):
  277. # TODO: use Q4_K and Q6_K
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  280. if isinstance(data_qtype, bool):
  281. if self.ftype == gguf.LlamaFileType.ALL_F32:
  282. data_qtype = gguf.GGMLQuantizationType.F32
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  286. data_qtype = gguf.GGMLQuantizationType.BF16
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  288. data_qtype = gguf.GGMLQuantizationType.Q8_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  292. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  293. else:
  294. raise ValueError(f"Unknown file type: {self.ftype.name}")
  295. try:
  296. data = gguf.quants.quantize(data, data_qtype)
  297. except gguf.QuantError as e:
  298. logger.warning("%s, %s", e, "falling back to F16")
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. data = gguf.quants.quantize(data, data_qtype)
  301. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  302. # reverse shape to make it similar to the internal ggml dimension order
  303. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  304. # n_dims is implicit in the shape
  305. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  306. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  307. def set_type(self):
  308. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  309. def prepare_metadata(self, vocab_only: bool):
  310. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  311. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  312. # If we are using HF model id, set the metadata name to the model id
  313. if self.remote_hf_model_id:
  314. self.metadata.name = self.remote_hf_model_id
  315. # Fallback to model directory name if metadata name is still missing
  316. if self.metadata.name is None:
  317. self.metadata.name = self.dir_model.name
  318. # Generate parameter weight class (useful for leader boards) if not yet determined
  319. if self.metadata.size_label is None and total_params > 0:
  320. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  321. self.set_type()
  322. logger.info("Set meta model")
  323. self.metadata.set_gguf_meta_model(self.gguf_writer)
  324. logger.info("Set model parameters")
  325. self.set_gguf_parameters()
  326. logger.info("Set model quantization version")
  327. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  328. def write_vocab(self):
  329. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  330. def write(self):
  331. self.prepare_tensors()
  332. self.prepare_metadata(vocab_only=False)
  333. self.gguf_writer.write_header_to_file(path=self.fname_out)
  334. self.gguf_writer.write_kv_data_to_file()
  335. self.gguf_writer.write_tensors_to_file(progress=True)
  336. self.gguf_writer.close()
  337. @staticmethod
  338. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  339. part_names: list[str] = []
  340. for filename in os.listdir(dir_model):
  341. if filename.startswith(prefix) and filename.endswith(suffix):
  342. part_names.append(filename)
  343. part_names.sort()
  344. return part_names
  345. @staticmethod
  346. def load_hparams(dir_model: Path):
  347. try:
  348. # for security reason, we don't allow loading remote code by default
  349. # if a model need remote code, we will fallback to config.json
  350. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  351. except Exception as e:
  352. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  353. logger.warning("Trying to load config.json instead")
  354. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  355. config = json.load(f)
  356. if "llm_config" in config:
  357. # rename for InternVL
  358. config["text_config"] = config["llm_config"]
  359. return config
  360. @classmethod
  361. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  362. assert names
  363. def func(modelcls: AnyModel) -> AnyModel:
  364. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  365. for name in names:
  366. cls._model_classes[model_type][name] = modelcls
  367. return modelcls
  368. return func
  369. @classmethod
  370. def print_registered_models(cls):
  371. for model_type, model_classes in cls._model_classes.items():
  372. logger.error(f"{model_type.name} models:")
  373. for name in sorted(model_classes.keys()):
  374. logger.error(f" - {name}")
  375. @classmethod
  376. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  377. try:
  378. return cls._model_classes[model_type][arch]
  379. except KeyError:
  380. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  381. class TextModel(ModelBase):
  382. model_type = ModelType.TEXT
  383. hf_arch: str
  384. def __init__(self, *args, **kwargs):
  385. super().__init__(*args, **kwargs)
  386. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  387. if "text_config" in self.hparams:
  388. # move the text_config to the root level
  389. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  390. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  391. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  392. @classmethod
  393. def __init_subclass__(cls):
  394. # can't use an abstract property, because overriding it without type errors
  395. # would require using decorated functions instead of simply defining the property
  396. if "model_arch" not in cls.__dict__:
  397. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  398. def set_vocab(self):
  399. self._set_vocab_gpt2()
  400. def prepare_metadata(self, vocab_only: bool):
  401. super().prepare_metadata(vocab_only=vocab_only)
  402. total_params = self.gguf_writer.get_total_parameter_count()[0]
  403. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  404. output_type: str = self.ftype.name.partition("_")[2]
  405. # Filename Output
  406. if self.fname_out.is_dir():
  407. # Generate default filename based on model specification and available metadata
  408. if not vocab_only:
  409. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  410. else:
  411. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  412. # Use the default filename
  413. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  414. else:
  415. # Output path is a custom defined templated filename
  416. # Note: `not is_dir()` is used because `.is_file()` will not detect
  417. # file template strings as it doesn't actually exist as a file
  418. # Process templated file name with the output ftype, useful with the "auto" ftype
  419. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  420. logger.info("Set model tokenizer")
  421. self.set_vocab()
  422. def set_gguf_parameters(self):
  423. self.gguf_writer.add_block_count(self.block_count)
  424. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  425. self.gguf_writer.add_context_length(n_ctx)
  426. logger.info(f"gguf: context length = {n_ctx}")
  427. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  428. self.gguf_writer.add_embedding_length(n_embd)
  429. logger.info(f"gguf: embedding length = {n_embd}")
  430. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  431. self.gguf_writer.add_feed_forward_length(n_ff)
  432. logger.info(f"gguf: feed forward length = {n_ff}")
  433. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  434. self.gguf_writer.add_head_count(n_head)
  435. logger.info(f"gguf: head count = {n_head}")
  436. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  437. self.gguf_writer.add_head_count_kv(n_head_kv)
  438. logger.info(f"gguf: key-value head count = {n_head_kv}")
  439. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  440. self.gguf_writer.add_rope_freq_base(rope_theta)
  441. logger.info(f"gguf: rope theta = {rope_theta}")
  442. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  443. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  444. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  445. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  446. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  447. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  448. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  449. self.gguf_writer.add_expert_count(n_experts)
  450. logger.info(f"gguf: expert count = {n_experts}")
  451. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  452. self.gguf_writer.add_expert_used_count(n_experts_used)
  453. logger.info(f"gguf: experts used count = {n_experts_used}")
  454. if (head_dim := self.hparams.get("head_dim")) is not None:
  455. self.gguf_writer.add_key_length(head_dim)
  456. self.gguf_writer.add_value_length(head_dim)
  457. self.gguf_writer.add_file_type(self.ftype)
  458. logger.info(f"gguf: file type = {self.ftype}")
  459. def write_vocab(self):
  460. if len(self.gguf_writer.tensors) != 1:
  461. raise ValueError('Splitting the vocabulary is not supported')
  462. self.prepare_metadata(vocab_only=True)
  463. self.gguf_writer.write_header_to_file(path=self.fname_out)
  464. self.gguf_writer.write_kv_data_to_file()
  465. self.gguf_writer.close()
  466. def does_token_look_special(self, token: str | bytes) -> bool:
  467. if isinstance(token, (bytes, bytearray)):
  468. token_text = token.decode(encoding="utf-8")
  469. elif isinstance(token, memoryview):
  470. token_text = token.tobytes().decode(encoding="utf-8")
  471. else:
  472. token_text = token
  473. # Some models mark some added tokens which ought to be control tokens as not special.
  474. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  475. seems_special = token_text in (
  476. "<pad>", # deepseek-coder
  477. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  478. )
  479. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  480. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  481. # TODO: should these be marked as UNUSED instead? (maybe not)
  482. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  483. return seems_special
  484. # used for GPT-2 BPE and WordPiece vocabs
  485. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  486. tokens: list[str] = []
  487. toktypes: list[int] = []
  488. from transformers import AutoTokenizer
  489. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  490. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  491. assert max(tokenizer.vocab.values()) < vocab_size
  492. tokpre = self.get_vocab_base_pre(tokenizer)
  493. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  494. added_vocab = tokenizer.get_added_vocab()
  495. added_tokens_decoder = tokenizer.added_tokens_decoder
  496. for i in range(vocab_size):
  497. if i not in reverse_vocab:
  498. tokens.append(f"[PAD{i}]")
  499. toktypes.append(gguf.TokenType.UNUSED)
  500. else:
  501. token: str = reverse_vocab[i]
  502. if token in added_vocab:
  503. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  504. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  505. if not added_tokens_decoder[i].normalized:
  506. previous_token = token
  507. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  508. if previous_token != token:
  509. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  510. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  511. toktypes.append(gguf.TokenType.CONTROL)
  512. else:
  513. # NOTE: this was added for Gemma.
  514. # Encoding and decoding the tokens above isn't sufficient for this case.
  515. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  516. toktypes.append(gguf.TokenType.USER_DEFINED)
  517. else:
  518. toktypes.append(gguf.TokenType.NORMAL)
  519. tokens.append(token)
  520. return tokens, toktypes, tokpre
  521. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  522. # do not modify it manually!
  523. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  524. # Marker: Start get_vocab_base_pre
  525. def get_vocab_base_pre(self, tokenizer) -> str:
  526. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  527. # is specific for the BPE pre-tokenizer used by the model
  528. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  529. # use in llama.cpp to implement the same pre-tokenizer
  530. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  531. chktok = tokenizer.encode(chktxt)
  532. chkhsh = sha256(str(chktok).encode()).hexdigest()
  533. logger.debug(f"chktok: {chktok}")
  534. logger.debug(f"chkhsh: {chkhsh}")
  535. res = None
  536. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  537. # or pull the latest version of the model from Huggingface
  538. # don't edit the hashes manually!
  539. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  540. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  541. res = "llama-bpe"
  542. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  543. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  544. res = "deepseek-llm"
  545. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  546. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  547. res = "deepseek-coder"
  548. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  549. # ref: https://huggingface.co/tiiuae/falcon-7b
  550. res = "falcon"
  551. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  552. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  553. res = "falcon3"
  554. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  555. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  556. res = "bert-bge"
  557. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  558. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  559. res = "bert-bge-large"
  560. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  561. # ref: https://huggingface.co/mosaicml/mpt-7b
  562. res = "mpt"
  563. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  564. # ref: https://huggingface.co/bigcode/starcoder2-3b
  565. res = "starcoder"
  566. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  567. # ref: https://huggingface.co/openai-community/gpt2
  568. res = "gpt-2"
  569. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  570. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  571. res = "stablelm2"
  572. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  573. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  574. res = "refact"
  575. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  576. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  577. res = "command-r"
  578. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  579. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  580. res = "qwen2"
  581. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  582. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  583. res = "olmo"
  584. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  585. # ref: https://huggingface.co/databricks/dbrx-base
  586. res = "dbrx"
  587. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  588. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  589. res = "jina-v1-en"
  590. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  591. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  592. res = "jina-v2-en"
  593. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  594. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  595. res = "jina-v2-es"
  596. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  598. res = "jina-v2-de"
  599. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  600. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  601. res = "smaug-bpe"
  602. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  603. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  604. res = "poro-chat"
  605. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  606. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  607. res = "jina-v2-code"
  608. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  609. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  610. res = "chatglm-bpe"
  611. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  612. # ref: https://huggingface.co/LumiOpen/Viking-7B
  613. res = "viking"
  614. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  615. # ref: https://huggingface.co/core42/jais-13b
  616. res = "jais"
  617. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  618. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  619. res = "codeshell"
  620. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  621. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  622. res = "tekken"
  623. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  624. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  625. res = "smollm"
  626. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  627. # ref: https://huggingface.co/bigscience/bloom
  628. res = "bloom"
  629. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  630. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  631. res = "gpt3-finnish"
  632. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  633. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  634. res = "exaone"
  635. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  636. # ref: https://huggingface.co/microsoft/phi-2
  637. res = "phi-2"
  638. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  639. # ref: https://huggingface.co/facebook/chameleon-7b
  640. res = "chameleon"
  641. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  642. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  643. res = "minerva-7b"
  644. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  645. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  646. res = "roberta-bpe"
  647. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  648. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  649. res = "gigachat"
  650. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  651. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  652. res = "megrez"
  653. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  654. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  655. res = "deepseek-v3"
  656. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  657. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  658. res = "deepseek-r1-qwen"
  659. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  660. # ref: https://huggingface.co/Xenova/gpt-4o
  661. res = "gpt-4o"
  662. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  663. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  664. res = "superbpe"
  665. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  666. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  667. res = "trillion"
  668. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  669. # ref: https://huggingface.co/inclusionAI/Ling-lite
  670. res = "bailingmoe"
  671. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  672. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  673. res = "llama4"
  674. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  675. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  676. res = "glm4"
  677. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  678. # ref: https://huggingface.co/mistral-community/pixtral-12b
  679. res = "pixtral"
  680. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  681. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  682. res = "seed-coder"
  683. if res is None:
  684. logger.warning("\n")
  685. logger.warning("**************************************************************************************")
  686. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  687. logger.warning("** There are 2 possible reasons for this:")
  688. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  689. logger.warning("** - the pre-tokenization config has changed upstream")
  690. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  691. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  692. logger.warning("**")
  693. logger.warning(f"** chkhsh: {chkhsh}")
  694. logger.warning("**************************************************************************************")
  695. logger.warning("\n")
  696. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  697. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  698. logger.debug(f"chkhsh: {chkhsh}")
  699. return res
  700. # Marker: End get_vocab_base_pre
  701. def _set_vocab_none(self) -> None:
  702. self.gguf_writer.add_tokenizer_model("none")
  703. def _set_vocab_gpt2(self) -> None:
  704. tokens, toktypes, tokpre = self.get_vocab_base()
  705. self.gguf_writer.add_tokenizer_model("gpt2")
  706. self.gguf_writer.add_tokenizer_pre(tokpre)
  707. self.gguf_writer.add_token_list(tokens)
  708. self.gguf_writer.add_token_types(toktypes)
  709. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  710. special_vocab.add_to_gguf(self.gguf_writer)
  711. def _set_vocab_qwen(self):
  712. dir_model = self.dir_model
  713. hparams = self.hparams
  714. tokens: list[str] = []
  715. toktypes: list[int] = []
  716. from transformers import AutoTokenizer
  717. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  718. vocab_size = hparams["vocab_size"]
  719. assert max(tokenizer.get_vocab().values()) < vocab_size
  720. tokpre = self.get_vocab_base_pre(tokenizer)
  721. merges = []
  722. vocab = {}
  723. mergeable_ranks = tokenizer.mergeable_ranks
  724. for token, rank in mergeable_ranks.items():
  725. vocab[QwenModel.token_bytes_to_string(token)] = rank
  726. if len(token) == 1:
  727. continue
  728. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  729. assert len(merged) == 2
  730. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  731. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  732. added_vocab = tokenizer.special_tokens
  733. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  734. for i in range(vocab_size):
  735. if i not in reverse_vocab:
  736. tokens.append(f"[PAD{i}]")
  737. toktypes.append(gguf.TokenType.UNUSED)
  738. elif reverse_vocab[i] in added_vocab:
  739. tokens.append(reverse_vocab[i])
  740. toktypes.append(gguf.TokenType.CONTROL)
  741. else:
  742. tokens.append(reverse_vocab[i])
  743. toktypes.append(gguf.TokenType.NORMAL)
  744. self.gguf_writer.add_tokenizer_model("gpt2")
  745. self.gguf_writer.add_tokenizer_pre(tokpre)
  746. self.gguf_writer.add_token_list(tokens)
  747. self.gguf_writer.add_token_types(toktypes)
  748. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  749. special_vocab.merges = merges
  750. # only add special tokens when they were not already loaded from config.json
  751. if len(special_vocab.special_token_ids) == 0:
  752. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  753. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  754. # this one is usually not in config.json anyway
  755. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  756. special_vocab.add_to_gguf(self.gguf_writer)
  757. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  758. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  759. self.gguf_writer.add_tokenizer_model("llama")
  760. self.gguf_writer.add_tokenizer_pre("default")
  761. self.gguf_writer.add_token_list(tokens)
  762. self.gguf_writer.add_token_scores(scores)
  763. self.gguf_writer.add_token_types(toktypes)
  764. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  765. special_vocab.add_to_gguf(self.gguf_writer)
  766. def _create_vocab_sentencepiece(self):
  767. from sentencepiece import SentencePieceProcessor
  768. tokenizer_path = self.dir_model / 'tokenizer.model'
  769. if not tokenizer_path.is_file():
  770. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  771. tokenizer = SentencePieceProcessor()
  772. tokenizer.LoadFromFile(str(tokenizer_path))
  773. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  774. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  775. scores: list[float] = [-10000.0] * vocab_size
  776. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  777. for token_id in range(tokenizer.vocab_size()):
  778. piece = tokenizer.IdToPiece(token_id)
  779. text = piece.encode("utf-8")
  780. score = tokenizer.GetScore(token_id)
  781. toktype = SentencePieceTokenTypes.NORMAL
  782. if tokenizer.IsUnknown(token_id):
  783. toktype = SentencePieceTokenTypes.UNKNOWN
  784. elif tokenizer.IsControl(token_id):
  785. toktype = SentencePieceTokenTypes.CONTROL
  786. elif tokenizer.IsUnused(token_id):
  787. toktype = SentencePieceTokenTypes.UNUSED
  788. elif tokenizer.IsByte(token_id):
  789. toktype = SentencePieceTokenTypes.BYTE
  790. tokens[token_id] = text
  791. scores[token_id] = score
  792. toktypes[token_id] = toktype
  793. added_tokens_file = self.dir_model / 'added_tokens.json'
  794. if added_tokens_file.is_file():
  795. with open(added_tokens_file, "r", encoding="utf-8") as f:
  796. added_tokens_json = json.load(f)
  797. for key in added_tokens_json:
  798. token_id = added_tokens_json[key]
  799. if token_id >= vocab_size:
  800. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  801. continue
  802. tokens[token_id] = key.encode("utf-8")
  803. scores[token_id] = -1000.0
  804. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  805. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  806. if tokenizer_config_file.is_file():
  807. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  808. tokenizer_config_json = json.load(f)
  809. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  810. for token_id, token_data in added_tokens_decoder.items():
  811. token_id = int(token_id)
  812. token: str = token_data["content"]
  813. if token_id >= vocab_size:
  814. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  815. continue
  816. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  817. if tokens[token_id] != token.encode("utf-8"):
  818. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  819. if token_data.get("special") or self.does_token_look_special(token):
  820. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  821. else:
  822. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  823. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  824. scores[token_id] = -1000.0
  825. tokens[token_id] = token.encode("utf-8")
  826. if vocab_size > len(tokens):
  827. pad_count = vocab_size - len(tokens)
  828. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  829. for i in range(1, pad_count + 1):
  830. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  831. scores.append(-1000.0)
  832. toktypes.append(SentencePieceTokenTypes.UNUSED)
  833. return tokens, scores, toktypes
  834. def _set_vocab_llama_hf(self):
  835. vocab = gguf.LlamaHfVocab(self.dir_model)
  836. tokens = []
  837. scores = []
  838. toktypes = []
  839. for text, score, toktype in vocab.all_tokens():
  840. tokens.append(text)
  841. scores.append(score)
  842. toktypes.append(toktype)
  843. assert len(tokens) == vocab.vocab_size
  844. self.gguf_writer.add_tokenizer_model("llama")
  845. self.gguf_writer.add_tokenizer_pre("default")
  846. self.gguf_writer.add_token_list(tokens)
  847. self.gguf_writer.add_token_scores(scores)
  848. self.gguf_writer.add_token_types(toktypes)
  849. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  850. special_vocab.add_to_gguf(self.gguf_writer)
  851. def _set_vocab_rwkv_world(self):
  852. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  853. vocab_size = self.hparams.get("vocab_size", 65536)
  854. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  855. toktypes: list[int] = [gguf.TokenType.CONTROL]
  856. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  857. lines = f.readlines()
  858. for line in lines:
  859. parts = line.split(' ')
  860. assert len(parts) >= 3
  861. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  862. token = token.encode("utf-8") if isinstance(token, str) else token
  863. assert isinstance(token, bytes)
  864. assert len(token) == token_len
  865. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  866. tokens.append(token_text.encode("utf-8"))
  867. toktypes.append(gguf.TokenType.NORMAL)
  868. remainder = vocab_size - len(tokens)
  869. assert remainder >= 0
  870. for i in range(len(tokens), vocab_size):
  871. tokens.append(f"[PAD{i}]".encode("utf-8"))
  872. toktypes.append(gguf.TokenType.UNUSED)
  873. self.gguf_writer.add_tokenizer_model("rwkv")
  874. self.gguf_writer.add_token_list(tokens)
  875. self.gguf_writer.add_token_types(toktypes)
  876. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  877. special_vocab.chat_template = "rwkv-world"
  878. # hack: Add '\n\n' as the EOT token to make it chat normally
  879. special_vocab._set_special_token("eot", 261)
  880. special_vocab.add_to_gguf(self.gguf_writer)
  881. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  882. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  883. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  884. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  885. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  886. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  887. assert field # tokenizer model
  888. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  889. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  890. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  891. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  892. assert field # token list
  893. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  894. if model_name == "llama-spm":
  895. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  896. assert field # token scores
  897. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  898. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  899. assert field # token types
  900. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  901. if model_name != "llama-spm":
  902. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  903. assert field # token merges
  904. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  905. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  906. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  907. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  908. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  909. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  910. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  911. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  912. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  913. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  914. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  915. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  916. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  917. def _try_set_pooling_type(self) -> None:
  918. # get pooling path
  919. pooling_path = None
  920. module_path = self.dir_model / "modules.json"
  921. if module_path.is_file():
  922. with open(module_path, encoding="utf-8") as f:
  923. modules = json.load(f)
  924. for mod in modules:
  925. if mod["type"] == "sentence_transformers.models.Pooling":
  926. pooling_path = mod["path"]
  927. break
  928. # get pooling type
  929. if pooling_path is not None:
  930. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  931. pooling = json.load(f)
  932. if pooling["pooling_mode_mean_tokens"]:
  933. pooling_type = gguf.PoolingType.MEAN
  934. elif pooling["pooling_mode_cls_token"]:
  935. pooling_type = gguf.PoolingType.CLS
  936. elif pooling["pooling_mode_lasttoken"]:
  937. pooling_type = gguf.PoolingType.LAST
  938. else:
  939. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  940. self.gguf_writer.add_pooling_type(pooling_type)
  941. class MmprojModel(ModelBase):
  942. model_type = ModelType.MMPROJ
  943. model_arch = gguf.MODEL_ARCH.MMPROJ
  944. preprocessor_config: dict[str, Any]
  945. global_config: dict[str, Any]
  946. has_vision_encoder: bool = True # by default
  947. has_audio_encoder: bool = False
  948. def __init__(self, *args, **kwargs):
  949. super().__init__(*args, **kwargs)
  950. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  951. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  952. if self.has_vision_encoder and self.has_audio_encoder:
  953. raise NotImplementedError("both vision + audio not supported yet")
  954. # get n_embd of the text model
  955. if "text_config" not in self.hparams:
  956. self.hparams["text_config"] = {}
  957. if "audio_config" not in self.hparams:
  958. self.hparams["audio_config"] = {}
  959. text_config = {**self.hparams, **self.hparams["text_config"]}
  960. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  961. assert self.n_embd_text > 0, "n_embd not found in hparams"
  962. # move vision config to the top level, while preserving the original hparams in global_config
  963. self.global_config = self.hparams
  964. if "vision_config" in self.hparams:
  965. self.hparams = self.hparams["vision_config"]
  966. elif "audio_config" in self.hparams:
  967. self.hparams = self.hparams["audio_config"]
  968. else:
  969. raise ValueError("vision_config / audio_config not found in hparams")
  970. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  971. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  972. # load preprocessor config
  973. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  974. self.preprocessor_config = json.load(f)
  975. def set_type(self):
  976. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  977. def set_gguf_parameters(self):
  978. self.gguf_writer.add_file_type(self.ftype)
  979. if self.has_vision_encoder:
  980. self.gguf_writer.add_clip_has_vision_encoder(True)
  981. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  982. # vision config
  983. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  984. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  985. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  986. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  987. self.gguf_writer.add_vision_block_count(self.block_count)
  988. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  989. # preprocessor config
  990. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  991. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  992. elif self.has_audio_encoder:
  993. self.gguf_writer.add_clip_has_audio_encoder(True)
  994. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  995. # audio config
  996. self.gguf_writer.add_audio_embedding_length(self.find_hparam(["hidden_size"]))
  997. self.gguf_writer.add_audio_feed_forward_length(self.find_hparam(["intermediate_size"]))
  998. self.gguf_writer.add_audio_block_count(self.block_count)
  999. self.gguf_writer.add_audio_head_count(self.find_hparam(["num_attention_heads"]))
  1000. else:
  1001. raise ValueError("MmprojModel must have either vision or audio encoder")
  1002. def write_vocab(self):
  1003. raise ValueError("MmprojModel does not support vocab writing")
  1004. @ModelBase.register("GPTNeoXForCausalLM")
  1005. class GPTNeoXModel(TextModel):
  1006. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1007. def set_gguf_parameters(self):
  1008. block_count = self.hparams["num_hidden_layers"]
  1009. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1010. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1011. self.gguf_writer.add_block_count(block_count)
  1012. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1013. self.gguf_writer.add_rope_dimension_count(
  1014. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1015. )
  1016. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1017. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1018. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1019. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1020. del bid # unused
  1021. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1022. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1023. tensors: list[tuple[str, Tensor]] = []
  1024. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1025. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1026. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1027. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1028. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1029. data_torch = torch.cat(
  1030. (
  1031. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1032. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1033. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1034. ),
  1035. dim=0,
  1036. )
  1037. logger.info("re-format attention.linear_qkv.weight")
  1038. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1039. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1040. data_torch = torch.cat(
  1041. (
  1042. qkv_bias[:, 0, :].reshape((n_embed,)),
  1043. qkv_bias[:, 1, :].reshape((n_embed,)),
  1044. qkv_bias[:, 2, :].reshape((n_embed,)),
  1045. ),
  1046. dim=0,
  1047. )
  1048. logger.info("re-format attention.linear_qkv.bias")
  1049. tensors.append((self.map_tensor_name(name), data_torch))
  1050. return tensors
  1051. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1052. class BloomModel(TextModel):
  1053. model_arch = gguf.MODEL_ARCH.BLOOM
  1054. def set_gguf_parameters(self):
  1055. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1056. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1057. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1058. self.gguf_writer.add_embedding_length(n_embed)
  1059. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1060. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1061. self.gguf_writer.add_head_count(n_head)
  1062. self.gguf_writer.add_head_count_kv(n_head)
  1063. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1064. self.gguf_writer.add_file_type(self.ftype)
  1065. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1066. del bid # unused
  1067. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1068. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1069. name = re.sub(r'transformer\.', '', name)
  1070. tensors: list[tuple[str, Tensor]] = []
  1071. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1072. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1073. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1074. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1075. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1076. data_torch = torch.cat(
  1077. (
  1078. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1079. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1080. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1081. ),
  1082. dim=0,
  1083. )
  1084. logger.info("re-format attention.linear_qkv.weight")
  1085. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1086. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1087. data_torch = torch.cat(
  1088. (
  1089. qkv_bias[:, 0, :].reshape((n_embed,)),
  1090. qkv_bias[:, 1, :].reshape((n_embed,)),
  1091. qkv_bias[:, 2, :].reshape((n_embed,)),
  1092. ),
  1093. dim=0,
  1094. )
  1095. logger.info("re-format attention.linear_qkv.bias")
  1096. tensors.append((self.map_tensor_name(name), data_torch))
  1097. return tensors
  1098. @ModelBase.register("MPTForCausalLM")
  1099. class MPTModel(TextModel):
  1100. model_arch = gguf.MODEL_ARCH.MPT
  1101. def set_vocab(self):
  1102. try:
  1103. self._set_vocab_gpt2()
  1104. except Exception:
  1105. # Fallback for SEA-LION model
  1106. self._set_vocab_sentencepiece()
  1107. self.gguf_writer.add_add_bos_token(False)
  1108. self.gguf_writer.add_pad_token_id(3)
  1109. self.gguf_writer.add_eos_token_id(1)
  1110. self.gguf_writer.add_unk_token_id(0)
  1111. def set_gguf_parameters(self):
  1112. block_count = self.hparams["n_layers"]
  1113. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1114. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1115. self.gguf_writer.add_block_count(block_count)
  1116. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1117. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1118. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1119. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1120. self.gguf_writer.add_layer_norm_eps(1e-5)
  1121. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1122. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1123. if self.hparams["attn_config"]["alibi"]:
  1124. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1125. else:
  1126. self.gguf_writer.add_max_alibi_bias(0.0)
  1127. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1128. del bid # unused
  1129. if "scales" in name:
  1130. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1131. new_name = new_name.replace("scales", "act.scales")
  1132. else:
  1133. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1134. return [(new_name, data_torch)]
  1135. @ModelBase.register("OrionForCausalLM")
  1136. class OrionModel(TextModel):
  1137. model_arch = gguf.MODEL_ARCH.ORION
  1138. def set_vocab(self):
  1139. self._set_vocab_sentencepiece()
  1140. def set_gguf_parameters(self):
  1141. block_count = self.hparams["num_hidden_layers"]
  1142. head_count = self.hparams["num_attention_heads"]
  1143. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1144. ctx_length = 0
  1145. if "max_sequence_length" in self.hparams:
  1146. ctx_length = self.hparams["max_sequence_length"]
  1147. elif "max_position_embeddings" in self.hparams:
  1148. ctx_length = self.hparams["max_position_embeddings"]
  1149. elif "model_max_length" in self.hparams:
  1150. ctx_length = self.hparams["model_max_length"]
  1151. else:
  1152. raise ValueError("gguf: can not find ctx length parameter.")
  1153. self.gguf_writer.add_file_type(self.ftype)
  1154. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1155. self.gguf_writer.add_context_length(ctx_length)
  1156. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1157. self.gguf_writer.add_block_count(block_count)
  1158. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1159. self.gguf_writer.add_head_count(head_count)
  1160. self.gguf_writer.add_head_count_kv(head_count_kv)
  1161. # note: config provides rms norm but it is actually layer norm
  1162. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1163. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1164. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1165. class BaichuanModel(TextModel):
  1166. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1167. def set_vocab(self):
  1168. self._set_vocab_sentencepiece()
  1169. def set_gguf_parameters(self):
  1170. block_count = self.hparams["num_hidden_layers"]
  1171. head_count = self.hparams["num_attention_heads"]
  1172. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1173. ctx_length = 0
  1174. if "max_sequence_length" in self.hparams:
  1175. ctx_length = self.hparams["max_sequence_length"]
  1176. elif "max_position_embeddings" in self.hparams:
  1177. ctx_length = self.hparams["max_position_embeddings"]
  1178. elif "model_max_length" in self.hparams:
  1179. ctx_length = self.hparams["model_max_length"]
  1180. else:
  1181. raise ValueError("gguf: can not find ctx length parameter.")
  1182. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1183. self.gguf_writer.add_context_length(ctx_length)
  1184. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1185. self.gguf_writer.add_block_count(block_count)
  1186. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1187. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1188. self.gguf_writer.add_head_count(head_count)
  1189. self.gguf_writer.add_head_count_kv(head_count_kv)
  1190. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1191. self.gguf_writer.add_file_type(self.ftype)
  1192. rope_scaling = self.hparams.get("rope_scaling") or {}
  1193. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1194. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1195. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1197. head_count = self.hparams["num_attention_heads"]
  1198. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1199. tensors: list[tuple[str, Tensor]] = []
  1200. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1201. logger.info(f"Unpacking and permuting layer {bid}")
  1202. tensors = [
  1203. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1204. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1205. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1206. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1207. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1208. self._reverse_hf_part(data_torch, 2)),
  1209. ]
  1210. else:
  1211. tensors = [(self.map_tensor_name(name), data_torch)]
  1212. return tensors
  1213. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1214. if n_kv_head is not None and n_head != n_kv_head:
  1215. n_head //= n_kv_head
  1216. return (
  1217. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1218. .swapaxes(1, 2)
  1219. .reshape(weights.shape)
  1220. )
  1221. def _reverse_hf_permute_part(
  1222. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1223. ) -> Tensor:
  1224. r = weights.shape[0] // 3
  1225. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1226. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1227. r = weights.shape[0] // 3
  1228. return weights[r * n_part:r * n_part + r, ...]
  1229. @ModelBase.register("XverseForCausalLM")
  1230. class XverseModel(TextModel):
  1231. model_arch = gguf.MODEL_ARCH.XVERSE
  1232. def set_vocab(self):
  1233. assert (self.dir_model / "tokenizer.json").is_file()
  1234. dir_model = self.dir_model
  1235. hparams = self.hparams
  1236. tokens: list[bytes] = []
  1237. toktypes: list[int] = []
  1238. from transformers import AutoTokenizer
  1239. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1240. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1241. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1242. # because vocab_size is the count of items, and indexes start at 0.
  1243. max_vocab_index = max(tokenizer.get_vocab().values())
  1244. if max_vocab_index >= vocab_size:
  1245. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1246. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1247. added_vocab = tokenizer.get_added_vocab()
  1248. for token_id in range(vocab_size):
  1249. token_text = reverse_vocab[token_id].encode('utf-8')
  1250. # replace "\x00" to string with length > 0
  1251. if token_text == b"\x00":
  1252. toktype = gguf.TokenType.BYTE # special
  1253. token_text = f"<{token_text}>".encode('utf-8')
  1254. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1255. toktype = gguf.TokenType.BYTE # special
  1256. elif reverse_vocab[token_id] in added_vocab:
  1257. if tokenizer.added_tokens_decoder[token_id].special:
  1258. toktype = gguf.TokenType.CONTROL
  1259. else:
  1260. toktype = gguf.TokenType.USER_DEFINED
  1261. else:
  1262. toktype = gguf.TokenType.NORMAL
  1263. tokens.append(token_text)
  1264. toktypes.append(toktype)
  1265. self.gguf_writer.add_tokenizer_model("llama")
  1266. self.gguf_writer.add_tokenizer_pre("default")
  1267. self.gguf_writer.add_token_list(tokens)
  1268. self.gguf_writer.add_token_types(toktypes)
  1269. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1270. special_vocab.add_to_gguf(self.gguf_writer)
  1271. def set_gguf_parameters(self):
  1272. block_count = self.hparams["num_hidden_layers"]
  1273. head_count = self.hparams["num_attention_heads"]
  1274. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1275. ctx_length = 0
  1276. if "max_sequence_length" in self.hparams:
  1277. ctx_length = self.hparams["max_sequence_length"]
  1278. elif "max_position_embeddings" in self.hparams:
  1279. ctx_length = self.hparams["max_position_embeddings"]
  1280. elif "model_max_length" in self.hparams:
  1281. ctx_length = self.hparams["model_max_length"]
  1282. else:
  1283. raise ValueError("gguf: can not find ctx length parameter.")
  1284. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1285. self.gguf_writer.add_context_length(ctx_length)
  1286. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1287. self.gguf_writer.add_block_count(block_count)
  1288. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1289. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1290. self.gguf_writer.add_head_count(head_count)
  1291. self.gguf_writer.add_head_count_kv(head_count_kv)
  1292. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1293. self.gguf_writer.add_file_type(self.ftype)
  1294. rope_scaling = self.hparams.get("rope_scaling") or {}
  1295. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1296. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1297. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1298. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1299. del bid # unused
  1300. head_count = self.hparams["num_attention_heads"]
  1301. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1302. # HF models permute some of the tensors, so we need to undo that
  1303. if name.endswith("q_proj.weight"):
  1304. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1305. if name.endswith("k_proj.weight"):
  1306. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1307. return [(self.map_tensor_name(name), data_torch)]
  1308. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1309. if n_kv_head is not None and n_head != n_kv_head:
  1310. n_head //= n_kv_head
  1311. return (
  1312. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1313. .swapaxes(1, 2)
  1314. .reshape(weights.shape)
  1315. )
  1316. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1317. class FalconModel(TextModel):
  1318. model_arch = gguf.MODEL_ARCH.FALCON
  1319. def set_gguf_parameters(self):
  1320. block_count = self.hparams.get("num_hidden_layers")
  1321. if block_count is None:
  1322. block_count = self.hparams["n_layer"] # old name
  1323. n_head = self.hparams.get("num_attention_heads")
  1324. if n_head is None:
  1325. n_head = self.hparams["n_head"] # old name
  1326. n_head_kv = self.hparams.get("num_kv_heads")
  1327. if n_head_kv is None:
  1328. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1329. self.gguf_writer.add_context_length(2048) # not in config.json
  1330. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1331. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1332. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1333. self.gguf_writer.add_block_count(block_count)
  1334. self.gguf_writer.add_head_count(n_head)
  1335. self.gguf_writer.add_head_count_kv(n_head_kv)
  1336. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1337. self.gguf_writer.add_file_type(self.ftype)
  1338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1339. del bid # unused
  1340. # QKV tensor transform
  1341. # The original query_key_value tensor contains n_head_kv "kv groups",
  1342. # each consisting of n_head/n_head_kv query weights followed by one key
  1343. # and one value weight (shared by all query heads in the kv group).
  1344. # This layout makes it a big pain to work with in GGML.
  1345. # So we rearrange them here,, so that we have n_head query weights
  1346. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1347. # in contiguous fashion.
  1348. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1349. if "query_key_value" in name:
  1350. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1351. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1352. head_dim = self.hparams["hidden_size"] // n_head
  1353. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1354. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1355. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1356. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1357. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1358. return [(self.map_tensor_name(name), data_torch)]
  1359. @ModelBase.register("GPTBigCodeForCausalLM")
  1360. class StarCoderModel(TextModel):
  1361. model_arch = gguf.MODEL_ARCH.STARCODER
  1362. def set_gguf_parameters(self):
  1363. block_count = self.hparams["n_layer"]
  1364. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1365. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1366. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1367. self.gguf_writer.add_block_count(block_count)
  1368. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1369. self.gguf_writer.add_head_count_kv(1)
  1370. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1371. self.gguf_writer.add_file_type(self.ftype)
  1372. @ModelBase.register("GPTRefactForCausalLM")
  1373. class RefactModel(TextModel):
  1374. model_arch = gguf.MODEL_ARCH.REFACT
  1375. def set_vocab(self):
  1376. super().set_vocab()
  1377. # TODO: how to determine special FIM tokens automatically?
  1378. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1379. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1380. special_vocab._set_special_token("prefix", 1)
  1381. special_vocab._set_special_token("suffix", 3)
  1382. special_vocab._set_special_token("middle", 2)
  1383. special_vocab.chat_template = None # do not add it twice
  1384. special_vocab.add_to_gguf(self.gguf_writer)
  1385. def set_gguf_parameters(self):
  1386. hidden_dim = self.hparams["n_embd"]
  1387. inner_dim = 4 * hidden_dim
  1388. hidden_dim = int(2 * inner_dim / 3)
  1389. multiple_of = 256
  1390. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1391. block_count = self.hparams["n_layer"]
  1392. # refact uses Alibi. So this is from config.json which might be used by training.
  1393. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1394. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1395. self.gguf_writer.add_feed_forward_length(ff_dim)
  1396. self.gguf_writer.add_block_count(block_count)
  1397. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1398. self.gguf_writer.add_head_count_kv(1)
  1399. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1400. self.gguf_writer.add_file_type(self.ftype)
  1401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1402. hidden_dim = self.hparams["n_embd"]
  1403. inner_dim = 4 * hidden_dim
  1404. hidden_dim = int(2 * inner_dim / 3)
  1405. multiple_of = 256
  1406. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1407. n_head = self.hparams["n_head"]
  1408. n_head_kv = 1
  1409. head_dim = self.hparams["n_embd"] // n_head
  1410. tensors: list[tuple[str, Tensor]] = []
  1411. if bid is not None:
  1412. if name == f"transformer.h.{bid}.attn.kv.weight":
  1413. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1414. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1415. elif name == f"transformer.h.{bid}.attn.q.weight":
  1416. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1417. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1418. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1419. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1420. if len(tensors) == 0:
  1421. tensors.append((self.map_tensor_name(name), data_torch))
  1422. return tensors
  1423. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1424. class StableLMModel(TextModel):
  1425. model_arch = gguf.MODEL_ARCH.STABLELM
  1426. def set_vocab(self):
  1427. if (self.dir_model / "tokenizer.json").is_file():
  1428. self._set_vocab_gpt2()
  1429. else:
  1430. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1431. self._set_vocab_qwen()
  1432. def set_gguf_parameters(self):
  1433. hparams = self.hparams
  1434. block_count = hparams["num_hidden_layers"]
  1435. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1436. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1437. self.gguf_writer.add_block_count(block_count)
  1438. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1439. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1440. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1441. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1442. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1443. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1444. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1445. self.gguf_writer.add_file_type(self.ftype)
  1446. _q_norms: list[dict[str, Tensor]] | None = None
  1447. _k_norms: list[dict[str, Tensor]] | None = None
  1448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1449. n_head = self.hparams["num_attention_heads"]
  1450. n_kv_head = self.hparams["num_key_value_heads"]
  1451. if name.find("q_layernorm.norms") != -1:
  1452. assert bid is not None
  1453. if self._q_norms is None:
  1454. self._q_norms = [{} for _ in range(self.block_count)]
  1455. self._q_norms[bid][name] = data_torch
  1456. if len(self._q_norms[bid]) >= n_head:
  1457. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1458. else:
  1459. return []
  1460. if name.find("k_layernorm.norms") != -1:
  1461. assert bid is not None
  1462. if self._k_norms is None:
  1463. self._k_norms = [{} for _ in range(self.block_count)]
  1464. self._k_norms[bid][name] = data_torch
  1465. if len(self._k_norms[bid]) >= n_kv_head:
  1466. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1467. else:
  1468. return []
  1469. return [(self.map_tensor_name(name), data_torch)]
  1470. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1471. datas: list[Tensor] = []
  1472. # extract the norms in order
  1473. for xid in range(n_head):
  1474. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1475. datas.append(norms[ename])
  1476. del norms[ename]
  1477. data_torch = torch.stack(datas, dim=0)
  1478. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1479. new_name = self.map_tensor_name(merged_name)
  1480. return [(new_name, data_torch)]
  1481. def prepare_tensors(self):
  1482. super().prepare_tensors()
  1483. if self._q_norms is not None or self._k_norms is not None:
  1484. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1485. norms = (
  1486. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1487. ) + (
  1488. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1489. )
  1490. if len(norms) > 0:
  1491. raise ValueError(f"Unprocessed norms: {norms}")
  1492. @ModelBase.register(
  1493. "LLaMAForCausalLM",
  1494. "LlamaForCausalLM",
  1495. "MistralForCausalLM",
  1496. "MixtralForCausalLM",
  1497. "VLlama3ForCausalLM",
  1498. "LlavaForConditionalGeneration")
  1499. class LlamaModel(TextModel):
  1500. model_arch = gguf.MODEL_ARCH.LLAMA
  1501. undo_permute = True
  1502. def __init__(self, *args, **kwargs):
  1503. super().__init__(*args, **kwargs)
  1504. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1505. if self.hf_arch == "VLlama3ForCausalLM":
  1506. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1507. def set_vocab(self):
  1508. try:
  1509. self._set_vocab_sentencepiece()
  1510. except FileNotFoundError:
  1511. try:
  1512. self._set_vocab_llama_hf()
  1513. except (FileNotFoundError, TypeError):
  1514. # Llama 3
  1515. self._set_vocab_gpt2()
  1516. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1517. if self.hparams.get("vocab_size", 32000) == 32016:
  1518. special_vocab = gguf.SpecialVocab(
  1519. self.dir_model, load_merges=False,
  1520. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1521. )
  1522. special_vocab._set_special_token("prefix", 32007)
  1523. special_vocab._set_special_token("suffix", 32008)
  1524. special_vocab._set_special_token("middle", 32009)
  1525. special_vocab._set_special_token("eot", 32010)
  1526. special_vocab.add_to_gguf(self.gguf_writer)
  1527. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1528. if tokenizer_config_file.is_file():
  1529. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1530. tokenizer_config_json = json.load(f)
  1531. if "add_prefix_space" in tokenizer_config_json:
  1532. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1533. # Apply to granite small models only
  1534. if self.hparams.get("vocab_size", 32000) == 49152:
  1535. self.gguf_writer.add_add_bos_token(False)
  1536. def set_gguf_parameters(self):
  1537. super().set_gguf_parameters()
  1538. hparams = self.hparams
  1539. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1540. if "head_dim" in hparams:
  1541. rope_dim = hparams["head_dim"]
  1542. else:
  1543. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1544. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1545. rope_scaling = self.hparams.get("rope_scaling") or {}
  1546. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1547. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1548. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1549. @staticmethod
  1550. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1551. if n_head_kv is not None and n_head != n_head_kv:
  1552. n_head = n_head_kv
  1553. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1554. .swapaxes(1, 2)
  1555. .reshape(weights.shape))
  1556. _experts: list[dict[str, Tensor]] | None = None
  1557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1558. n_head = self.hparams["num_attention_heads"]
  1559. n_kv_head = self.hparams.get("num_key_value_heads")
  1560. is_vision_tensor = "vision_tower" in name \
  1561. or "vision_model" in name \
  1562. or "model.connector" in name \
  1563. or "multi_modal_projector" in name
  1564. if is_vision_tensor:
  1565. return [] # skip vision tensors
  1566. elif name.startswith("model.text_model"):
  1567. name = name.replace("text_model.", "") # for SmolVLM
  1568. elif name.startswith("language_model."):
  1569. name = name.replace("language_model.", "") # for the rest
  1570. if self.undo_permute:
  1571. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1572. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1573. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1574. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1575. # process the experts separately
  1576. if name.find("block_sparse_moe.experts") != -1:
  1577. n_experts = self.hparams["num_local_experts"]
  1578. assert bid is not None
  1579. if self._experts is None:
  1580. self._experts = [{} for _ in range(self.block_count)]
  1581. self._experts[bid][name] = data_torch
  1582. if len(self._experts[bid]) >= n_experts * 3:
  1583. tensors: list[tuple[str, Tensor]] = []
  1584. # merge the experts into a single 3d tensor
  1585. for wid in ["w1", "w2", "w3"]:
  1586. datas: list[Tensor] = []
  1587. for xid in range(n_experts):
  1588. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1589. datas.append(self._experts[bid][ename])
  1590. del self._experts[bid][ename]
  1591. data_torch = torch.stack(datas, dim=0)
  1592. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1593. new_name = self.map_tensor_name(merged_name)
  1594. tensors.append((new_name, data_torch))
  1595. return tensors
  1596. else:
  1597. return []
  1598. return [(self.map_tensor_name(name), data_torch)]
  1599. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1600. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1601. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1602. base = self.hparams.get("rope_theta", 10000.0)
  1603. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1604. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1605. factor = rope_scaling.get("factor", 8.0)
  1606. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1607. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1608. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1609. low_freq_wavelen = old_context_len / low_freq_factor
  1610. high_freq_wavelen = old_context_len / high_freq_factor
  1611. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1612. rope_factors = []
  1613. for freq in freqs:
  1614. wavelen = 2 * math.pi / freq
  1615. if wavelen < high_freq_wavelen:
  1616. rope_factors.append(1)
  1617. elif wavelen > low_freq_wavelen:
  1618. rope_factors.append(factor)
  1619. else:
  1620. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1621. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1622. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1623. def prepare_tensors(self):
  1624. super().prepare_tensors()
  1625. if self._experts is not None:
  1626. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1627. experts = [k for d in self._experts for k in d.keys()]
  1628. if len(experts) > 0:
  1629. raise ValueError(f"Unprocessed experts: {experts}")
  1630. @ModelBase.register(
  1631. "LlavaForConditionalGeneration", # pixtral
  1632. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1633. )
  1634. class LlavaVisionModel(MmprojModel):
  1635. img_break_tok_id = -1
  1636. def __init__(self, *args, **kwargs):
  1637. super().__init__(*args, **kwargs)
  1638. if self.hparams["model_type"] == "pixtral":
  1639. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1640. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1641. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1642. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1643. else:
  1644. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1645. def get_token_id(self, token: str) -> int:
  1646. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1647. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1648. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1649. for id_, token_data in added_tokens_decoder.items():
  1650. if token_data["content"] == token:
  1651. return int(id_)
  1652. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1653. def set_gguf_parameters(self):
  1654. super().set_gguf_parameters()
  1655. hparams = self.hparams
  1656. if hparams["model_type"] == "pixtral":
  1657. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1658. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1659. # hidden_act
  1660. if hparams["hidden_act"] == "silu":
  1661. self.gguf_writer.add_vision_use_silu(True)
  1662. elif hparams["hidden_act"] == "gelu":
  1663. self.gguf_writer.add_vision_use_gelu(True)
  1664. else:
  1665. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1666. # spatial_merge_size
  1667. if "spatial_merge_size" in self.global_config:
  1668. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1670. del bid # unused
  1671. n_head = self.hparams["num_attention_heads"]
  1672. n_kv_head = n_head
  1673. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1674. # process vision tensors
  1675. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1676. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1677. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1678. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1679. return [(self.map_tensor_name(name), data_torch)]
  1680. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1681. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1682. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1683. img_break_embd = data_torch[self.img_break_tok_id]
  1684. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1685. return [(self.map_tensor_name(name), img_break_embd)]
  1686. return [] # skip other tensors
  1687. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1688. class SmolVLMModel(MmprojModel):
  1689. def __init__(self, *args, **kwargs):
  1690. super().__init__(*args, **kwargs)
  1691. if self.hparams["model_type"] == "smolvlm_vision":
  1692. # fix for SmolVLM2, missing some keys in config.json
  1693. # default values are taken from transformers code
  1694. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1695. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1696. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1697. def set_gguf_parameters(self):
  1698. super().set_gguf_parameters()
  1699. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1700. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1701. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1702. self.gguf_writer.add_vision_use_gelu(True)
  1703. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1704. del bid, new_name, n_dims # unused
  1705. if ".embeddings." in name:
  1706. return gguf.GGMLQuantizationType.F32
  1707. return False
  1708. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1709. del bid # unused
  1710. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1711. if is_vision_tensor:
  1712. return [(self.map_tensor_name(name), data_torch)]
  1713. return [] # skip other tensors
  1714. @ModelBase.register("Llama4ForConditionalGeneration")
  1715. class Llama4Model(LlamaModel):
  1716. model_arch = gguf.MODEL_ARCH.LLAMA4
  1717. undo_permute = False
  1718. def __init__(self, *args, **kwargs):
  1719. super().__init__(*args, **kwargs)
  1720. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1721. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1722. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1723. def set_vocab(self):
  1724. self._set_vocab_gpt2()
  1725. self.gguf_writer.add_add_bos_token(True)
  1726. def set_gguf_parameters(self):
  1727. super().set_gguf_parameters()
  1728. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1729. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1731. if name.startswith("language_model."):
  1732. name = name.replace("language_model.", "")
  1733. # split the gate_up into gate and up
  1734. if "gate_up_proj" in name:
  1735. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1736. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1737. dim_half = data_torch.shape[-1] // 2
  1738. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1739. return [
  1740. (self.map_tensor_name(name_gate), gate_proj_weight),
  1741. (self.map_tensor_name(name_up), up_proj_weight)
  1742. ]
  1743. if name.endswith("down_proj"):
  1744. name += ".weight"
  1745. data_torch = data_torch.transpose(-1, -2)
  1746. if "multi_modal_projector" in name or "vision_model" in name:
  1747. return []
  1748. return super().modify_tensors(data_torch, name, bid)
  1749. @ModelBase.register("Llama4ForConditionalGeneration")
  1750. class Llama4VisionModel(MmprojModel):
  1751. def set_gguf_parameters(self):
  1752. super().set_gguf_parameters()
  1753. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1754. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1755. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1756. assert self.hparams["hidden_act"] == "gelu"
  1757. self.gguf_writer.add_vision_use_gelu(True)
  1758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1759. del bid # unused
  1760. if "multi_modal_projector" in name or "vision_model" in name:
  1761. # process vision tensors
  1762. if "positional_embedding_vlm" in name and ".weight" not in name:
  1763. name += ".weight"
  1764. return [(self.map_tensor_name(name), data_torch)]
  1765. return []
  1766. @ModelBase.register("Mistral3ForConditionalGeneration")
  1767. class Mistral3Model(LlamaModel):
  1768. model_arch = gguf.MODEL_ARCH.LLAMA
  1769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1770. name = name.replace("language_model.", "")
  1771. if "multi_modal_projector" in name or "vision_tower" in name:
  1772. return []
  1773. return super().modify_tensors(data_torch, name, bid)
  1774. @ModelBase.register("DeciLMForCausalLM")
  1775. class DeciModel(TextModel):
  1776. model_arch = gguf.MODEL_ARCH.DECI
  1777. @staticmethod
  1778. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1779. # DeciLM-specific code
  1780. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1781. return DeciModel._find_multiple(intermediate_size, 256)
  1782. @staticmethod
  1783. def _find_multiple(n: int, k: int) -> int:
  1784. # DeciLM-specific code
  1785. if n % k == 0:
  1786. return n
  1787. return n + k - (n % k)
  1788. def __init__(self, *args, **kwargs):
  1789. super().__init__(*args, **kwargs)
  1790. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1791. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1792. assert self.block_count == len(_block_configs)
  1793. self._num_kv_heads = list()
  1794. self._num_heads = list()
  1795. _ffn_multipliers = list()
  1796. # ***linear attention layer***
  1797. # if n_heads_in_group is None and replace_with_linear is True
  1798. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1799. # ***attention-free layer***
  1800. # if n_heads_in_group is None and replace_with_linear is False
  1801. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1802. # ***normal attention-layer***
  1803. # if n_heads_in_group is not None, then
  1804. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1805. # _num_heads[il] is num_attention_head
  1806. # ***dummy layer*** for nemotron 253B
  1807. # if n_heads_in_group is None and ffn_mult is None
  1808. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1809. for il in range(len(_block_configs)):
  1810. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1811. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1812. self._num_kv_heads.append(0)
  1813. self._num_heads.append(self.hparams["num_attention_heads"])
  1814. else:
  1815. self._num_kv_heads.append(0)
  1816. self._num_heads.append(0)
  1817. else:
  1818. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1819. self._num_heads.append(self.hparams["num_attention_heads"])
  1820. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1821. _ffn_multipliers.append(0.0)
  1822. else:
  1823. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1824. assert self.block_count == len(self._num_kv_heads)
  1825. assert self.block_count == len(self._num_heads)
  1826. assert self.block_count == len(_ffn_multipliers)
  1827. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1828. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1829. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1830. self._ffn_dims: list[int] = [
  1831. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1832. for multiplier in _ffn_multipliers
  1833. ]
  1834. def set_vocab(self):
  1835. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1836. # eos_token from '|eot_id|' to '|end_of_text|'
  1837. if self.hparams.get("vocab_size", 128256) == 128256:
  1838. tokens, toktypes, tokpre = self.get_vocab_base()
  1839. self.gguf_writer.add_tokenizer_model("gpt2")
  1840. self.gguf_writer.add_tokenizer_pre(tokpre)
  1841. self.gguf_writer.add_token_list(tokens)
  1842. self.gguf_writer.add_token_types(toktypes)
  1843. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1844. special_vocab.add_to_gguf(self.gguf_writer)
  1845. else:
  1846. # DeciLM-7B
  1847. self._set_vocab_llama_hf()
  1848. def set_gguf_parameters(self):
  1849. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1850. assert self.block_count == len(self._num_kv_heads)
  1851. assert self.block_count == len(self._num_heads)
  1852. assert self.block_count == len(self._ffn_dims)
  1853. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1854. self.gguf_writer.add_rope_freq_base(rope_theta)
  1855. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1856. self.gguf_writer.add_head_count(self._num_heads)
  1857. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1858. self.gguf_writer.add_block_count(self.block_count)
  1859. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1860. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1861. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1862. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1863. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1864. self.gguf_writer.add_file_type(self.ftype)
  1865. else: # DeciLM-7B
  1866. super().set_gguf_parameters()
  1867. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1868. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1869. assert self.block_count == len(self._num_kv_heads)
  1870. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1871. hparams = self.hparams
  1872. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1873. if "head_dim" in hparams:
  1874. rope_dim = hparams["head_dim"]
  1875. else:
  1876. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1877. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1878. rope_scaling = self.hparams.get("rope_scaling") or {}
  1879. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1880. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1881. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1882. @staticmethod
  1883. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1884. if n_head_kv is not None and n_head != n_head_kv:
  1885. n_head = n_head_kv
  1886. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1887. .swapaxes(1, 2)
  1888. .reshape(weights.shape))
  1889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1890. n_head = self.hparams["num_attention_heads"]
  1891. if bid is not None:
  1892. if "num_key_value_heads_per_layer" in self.hparams:
  1893. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1894. elif "block_configs" in self.hparams:
  1895. n_kv_head = self._num_kv_heads[bid]
  1896. n_head = self._num_heads[bid]
  1897. else:
  1898. n_kv_head = self.hparams.get("num_key_value_heads")
  1899. else:
  1900. n_kv_head = self.hparams.get("num_key_value_heads")
  1901. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1902. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1903. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1904. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1905. return [(self.map_tensor_name(name), data_torch)]
  1906. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1907. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1908. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1909. base = self.hparams.get("rope_theta", 10000.0)
  1910. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1911. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1912. factor = rope_scaling.get("factor", 8.0)
  1913. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1914. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1915. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1916. low_freq_wavelen = old_context_len / low_freq_factor
  1917. high_freq_wavelen = old_context_len / high_freq_factor
  1918. assert low_freq_wavelen != high_freq_wavelen
  1919. rope_factors = []
  1920. for freq in freqs:
  1921. wavelen = 2 * math.pi / freq
  1922. if wavelen < high_freq_wavelen:
  1923. rope_factors.append(1)
  1924. elif wavelen > low_freq_wavelen:
  1925. rope_factors.append(factor)
  1926. else:
  1927. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1928. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1929. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1930. def prepare_tensors(self):
  1931. super().prepare_tensors()
  1932. @ModelBase.register("BitnetForCausalLM")
  1933. class BitnetModel(TextModel):
  1934. model_arch = gguf.MODEL_ARCH.BITNET
  1935. def set_vocab(self):
  1936. self._set_vocab_sentencepiece()
  1937. def set_gguf_parameters(self):
  1938. super().set_gguf_parameters()
  1939. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1940. self.gguf_writer.add_rope_scaling_factor(1.0)
  1941. def weight_quant(self, weight: Tensor) -> Tensor:
  1942. dtype = weight.dtype
  1943. weight = weight.float()
  1944. scale = weight.abs().mean().clamp(min=1e-5)
  1945. iscale = 1 / scale
  1946. # TODO: multiply by the scale directly instead of inverting it twice
  1947. # (this is also unnecessarily doubly inverted upstream)
  1948. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1949. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1950. return result.type(dtype)
  1951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1952. new_name = self.map_tensor_name(name)
  1953. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1954. gguf.MODEL_TENSOR.ATTN_Q,
  1955. gguf.MODEL_TENSOR.ATTN_K,
  1956. gguf.MODEL_TENSOR.ATTN_V,
  1957. gguf.MODEL_TENSOR.ATTN_OUT,
  1958. gguf.MODEL_TENSOR.FFN_UP,
  1959. gguf.MODEL_TENSOR.FFN_DOWN,
  1960. gguf.MODEL_TENSOR.FFN_GATE,
  1961. ]):
  1962. # transform weight into 1/0/-1 (in fp32)
  1963. data_torch = self.weight_quant(data_torch)
  1964. yield (new_name, data_torch)
  1965. @ModelBase.register("GrokForCausalLM")
  1966. class GrokModel(TextModel):
  1967. model_arch = gguf.MODEL_ARCH.GROK
  1968. def set_vocab(self):
  1969. self._set_vocab_sentencepiece()
  1970. def __init__(self, *args, **kwargs):
  1971. super().__init__(*args, **kwargs)
  1972. def set_gguf_parameters(self):
  1973. super().set_gguf_parameters()
  1974. _experts: list[dict[str, Tensor]] | None = None
  1975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1976. # process the experts separately
  1977. if name.find(".moe.") != -1:
  1978. n_experts = self.hparams["num_local_experts"]
  1979. assert bid is not None
  1980. if self._experts is None:
  1981. self._experts = [{} for _ in range(self.block_count)]
  1982. self._experts[bid][name] = data_torch
  1983. if len(self._experts[bid]) >= n_experts * 3:
  1984. tensors: list[tuple[str, Tensor]] = []
  1985. # merge the experts into a single 3d tensor
  1986. for wid in ["linear", "linear_1", "linear_v"]:
  1987. datas: list[Tensor] = []
  1988. for xid in range(n_experts):
  1989. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1990. datas.append(self._experts[bid][ename])
  1991. del self._experts[bid][ename]
  1992. data_torch = torch.stack(datas, dim=0)
  1993. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1994. new_name = self.map_tensor_name(merged_name)
  1995. tensors.append((new_name, data_torch))
  1996. return tensors
  1997. else:
  1998. return []
  1999. return [(self.map_tensor_name(name), data_torch)]
  2000. @ModelBase.register("DbrxForCausalLM")
  2001. class DbrxModel(TextModel):
  2002. model_arch = gguf.MODEL_ARCH.DBRX
  2003. def set_gguf_parameters(self):
  2004. ffn_config = self.hparams["ffn_config"]
  2005. attn_config = self.hparams["attn_config"]
  2006. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2007. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2008. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2009. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2010. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2011. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2012. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2013. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2014. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2015. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2016. self.gguf_writer.add_layer_norm_eps(1e-5)
  2017. self.gguf_writer.add_file_type(self.ftype)
  2018. logger.info(f"gguf: file type = {self.ftype}")
  2019. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2020. del bid # unused
  2021. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2022. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2023. n_embd = self.hparams["d_model"]
  2024. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2025. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2026. # But llama.cpp moe graph works differently
  2027. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2028. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2029. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2030. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2031. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2032. experts = False
  2033. for exp_tensor_name in exp_tensor_names.keys():
  2034. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2035. experts = True
  2036. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2037. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2038. data_torch = data_torch.permute(*permute_tensor)
  2039. break
  2040. # map tensor names
  2041. # In MoE models the ffn tensors are typically most of the model weights,
  2042. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2043. # Every other model has the weight names ending in .weight,
  2044. # let's assume that is the convention which is not the case for dbrx:
  2045. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2046. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2047. return [(new_name, data_torch)]
  2048. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2049. del name, new_name, bid # unused
  2050. return n_dims > 1
  2051. @ModelBase.register("MiniCPMForCausalLM")
  2052. class MiniCPMModel(TextModel):
  2053. model_arch = gguf.MODEL_ARCH.MINICPM
  2054. def set_gguf_parameters(self):
  2055. super().set_gguf_parameters()
  2056. embedding_scale = float(self.hparams["scale_emb"])
  2057. self.gguf_writer.add_embedding_scale(embedding_scale)
  2058. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2059. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2060. self.gguf_writer.add_residual_scale(residual_scale)
  2061. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2062. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2063. self.gguf_writer.add_logit_scale(logit_scale)
  2064. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2065. rope_scaling = self.hparams.get("rope_scaling") or {}
  2066. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2067. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2068. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2069. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2070. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2071. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2072. if rope_scaling is not None:
  2073. long_factors = rope_scaling.get('long_factor', None)
  2074. short_factors = rope_scaling.get('short_factor', None)
  2075. if long_factors is None or short_factors is None:
  2076. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2077. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2078. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2079. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2080. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2081. def set_vocab(self):
  2082. self._set_vocab_sentencepiece()
  2083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2084. del bid # unused
  2085. n_head = self.hparams["num_attention_heads"]
  2086. n_kv_head = self.hparams.get("num_key_value_heads")
  2087. # HF models permute some of the tensors, so we need to undo that
  2088. if name.endswith(("q_proj.weight")):
  2089. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2090. if name.endswith(("k_proj.weight")):
  2091. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2092. return [(self.map_tensor_name(name), data_torch)]
  2093. @ModelBase.register("MiniCPM3ForCausalLM")
  2094. class MiniCPM3Model(TextModel):
  2095. model_arch = gguf.MODEL_ARCH.MINICPM3
  2096. def set_gguf_parameters(self):
  2097. hparams = self.hparams
  2098. self.gguf_writer.add_file_type(self.ftype)
  2099. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2100. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2101. self.gguf_writer.add_block_count(self.block_count)
  2102. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2103. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2104. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2105. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2106. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2107. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2108. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2109. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2110. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2111. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2112. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2113. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2114. if rope_scaling is not None:
  2115. rope_dims = self.hparams["qk_rope_head_dim"]
  2116. long_factors = rope_scaling.get('long_factor', None)
  2117. short_factors = rope_scaling.get('short_factor', None)
  2118. if long_factors is None or short_factors is None:
  2119. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2120. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2121. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2122. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2123. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2124. def set_vocab(self):
  2125. self._set_vocab_sentencepiece()
  2126. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2127. if n_kv_head is not None and n_head != n_kv_head:
  2128. n_head //= n_kv_head
  2129. return (
  2130. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2131. .swapaxes(1, 2)
  2132. .reshape(weights.shape)
  2133. )
  2134. @ModelBase.register("QWenLMHeadModel")
  2135. class QwenModel(TextModel):
  2136. model_arch = gguf.MODEL_ARCH.QWEN
  2137. @staticmethod
  2138. def token_bytes_to_string(b):
  2139. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2140. byte_encoder = bytes_to_unicode()
  2141. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2142. @staticmethod
  2143. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2144. parts = [bytes([b]) for b in token]
  2145. while True:
  2146. min_idx = None
  2147. min_rank = None
  2148. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2149. rank = mergeable_ranks.get(pair[0] + pair[1])
  2150. if rank is not None and (min_rank is None or rank < min_rank):
  2151. min_idx = i
  2152. min_rank = rank
  2153. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2154. break
  2155. assert min_idx is not None
  2156. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2157. return parts
  2158. def set_vocab(self):
  2159. self._set_vocab_qwen()
  2160. def set_gguf_parameters(self):
  2161. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2162. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2163. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2164. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2165. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2166. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2167. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2168. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2169. self.gguf_writer.add_file_type(self.ftype)
  2170. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2171. class Qwen2Model(TextModel):
  2172. model_arch = gguf.MODEL_ARCH.QWEN2
  2173. def set_vocab(self):
  2174. try:
  2175. self._set_vocab_sentencepiece()
  2176. except FileNotFoundError:
  2177. self._set_vocab_gpt2()
  2178. def set_gguf_parameters(self):
  2179. super().set_gguf_parameters()
  2180. self._try_set_pooling_type()
  2181. rope_scaling = self.hparams.get("rope_scaling") or {}
  2182. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2183. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2184. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2185. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2186. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2187. if self.hf_arch == "Qwen2Model":
  2188. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2189. if "language_model." in name:
  2190. name = name.replace("language_model.", "") # for InternVL
  2191. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2192. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2193. # skip vision and audio tensors
  2194. return []
  2195. yield from super().modify_tensors(data_torch, name, bid)
  2196. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2197. class Qwen2VLModel(TextModel):
  2198. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2199. def set_gguf_parameters(self):
  2200. super().set_gguf_parameters()
  2201. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2202. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2203. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2204. def set_vocab(self):
  2205. try:
  2206. self._set_vocab_sentencepiece()
  2207. except FileNotFoundError:
  2208. self._set_vocab_gpt2()
  2209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2210. del bid # unused
  2211. if name.startswith("visual."):
  2212. # skip visual tensors
  2213. return []
  2214. return [(self.map_tensor_name(name), data_torch)]
  2215. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2216. class Qwen2VLVisionModel(MmprojModel):
  2217. def __init__(self, *args, **kwargs):
  2218. super().__init__(*args, **kwargs)
  2219. self.hparams["image_size"] = self.hparams.get("image_size", 560)
  2220. # rename config.json values
  2221. self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
  2222. self.hparams["num_hidden_layers"] = self.hparams.get("depth")
  2223. if "embed_dim" in self.hparams: # qwen2vl
  2224. self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
  2225. self.hparams["hidden_size"] = self.hparams.get("embed_dim")
  2226. def set_gguf_parameters(self):
  2227. super().set_gguf_parameters()
  2228. hparams = self.hparams
  2229. if self.global_config['model_type'] == 'qwen2_vl':
  2230. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2231. elif self.global_config['model_type'] == 'qwen2_5_vl':
  2232. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2233. self.gguf_writer.add_vision_use_silu(True)
  2234. # find n_wa_pattern (window attention pattern)
  2235. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2236. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2237. n_wa_pattern = fullatt_block_indexes[0] + 1
  2238. # validate n_wa_pattern
  2239. for i in range(1, len(fullatt_block_indexes)):
  2240. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2241. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2242. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2243. else:
  2244. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2245. # default values below are taken from HF tranformers code
  2246. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2247. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2248. del bid, name, n_dims # unused
  2249. if ".patch_embd." in new_name:
  2250. return gguf.GGMLQuantizationType.F16
  2251. if ".position_embd." in new_name:
  2252. return gguf.GGMLQuantizationType.F32
  2253. return False
  2254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2255. del bid # unused
  2256. if name.startswith("visual."):
  2257. # process visual tensors
  2258. # split QKV tensors if needed
  2259. if ".qkv." in name:
  2260. if data_torch.ndim == 2: # weight
  2261. c3, _ = data_torch.shape
  2262. else: # bias
  2263. c3 = data_torch.shape[0]
  2264. assert c3 % 3 == 0
  2265. c = c3 // 3
  2266. wq = data_torch[:c]
  2267. wk = data_torch[c: c * 2]
  2268. wv = data_torch[c * 2:]
  2269. return [
  2270. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2271. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2272. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2273. ]
  2274. elif 'patch_embed.proj.weight' in name:
  2275. # split Conv3D into Conv2Ds
  2276. c1, c2, kt, kh, kw = data_torch.shape
  2277. del c1, c2, kh, kw # unused
  2278. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2279. return [
  2280. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2281. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2282. ]
  2283. else:
  2284. return [(self.map_tensor_name(name), data_torch)]
  2285. return [] # skip other tensors
  2286. @ModelBase.register("InternVisionModel")
  2287. class InternVisionModel(MmprojModel):
  2288. def set_gguf_parameters(self):
  2289. super().set_gguf_parameters()
  2290. hparams = self.hparams
  2291. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2292. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2293. # hidden_act
  2294. if hparams["hidden_act"] == "silu":
  2295. self.gguf_writer.add_vision_use_silu(True)
  2296. elif hparams["hidden_act"] == "gelu":
  2297. self.gguf_writer.add_vision_use_gelu(True)
  2298. else:
  2299. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2300. # downsample_ratio
  2301. downsample_ratio = self.global_config.get("downsample_ratio")
  2302. assert downsample_ratio is not None
  2303. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2304. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2305. del bid, name, n_dims # unused
  2306. if ".patch_embd." in new_name:
  2307. return gguf.GGMLQuantizationType.F16
  2308. if ".position_embd." in new_name:
  2309. return gguf.GGMLQuantizationType.F32
  2310. return False
  2311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2312. del bid # unused
  2313. if name.startswith("vision_model") or name.startswith("mlp"):
  2314. # process visual tensors
  2315. # correct name
  2316. if name.startswith("vision_model"):
  2317. name = "vision_tower." + name
  2318. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2319. name += ".weight"
  2320. # split QKV tensors if needed
  2321. if ".qkv." in name:
  2322. if data_torch.ndim == 2: # weight
  2323. c3, _ = data_torch.shape
  2324. else: # bias
  2325. c3 = data_torch.shape[0]
  2326. assert c3 % 3 == 0
  2327. c = c3 // 3
  2328. wq = data_torch[:c]
  2329. wk = data_torch[c: c * 2]
  2330. wv = data_torch[c * 2:]
  2331. return [
  2332. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2333. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2334. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2335. ]
  2336. return [(self.map_tensor_name(name), data_torch)]
  2337. return [] # skip other tensors
  2338. @ModelBase.register("WavTokenizerDec")
  2339. class WavTokenizerDecModel(TextModel):
  2340. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2342. del bid # unused
  2343. if \
  2344. name.endswith("codebook.cluster_size") or \
  2345. name.endswith("codebook.embed_avg") or \
  2346. name.endswith("codebook.inited"):
  2347. logger.debug(f"Skipping {name!r}")
  2348. return []
  2349. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2350. return [(self.map_tensor_name(name), data_torch)]
  2351. def set_vocab(self):
  2352. self._set_vocab_none()
  2353. def set_gguf_parameters(self):
  2354. super().set_gguf_parameters()
  2355. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2356. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2357. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2358. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2359. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2360. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2361. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2362. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2363. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2364. self.gguf_writer.add_causal_attention(False)
  2365. @ModelBase.register("Qwen2MoeForCausalLM")
  2366. class Qwen2MoeModel(TextModel):
  2367. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2368. def set_gguf_parameters(self):
  2369. super().set_gguf_parameters()
  2370. if (n_experts := self.hparams.get("num_experts")) is not None:
  2371. self.gguf_writer.add_expert_count(n_experts)
  2372. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2373. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2374. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2375. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2376. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2377. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2378. # YaRN is not enabled by default
  2379. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2380. rope_scaling = self.hparams.get("rope_scaling") or {}
  2381. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2382. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2383. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2384. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2385. _experts: list[dict[str, Tensor]] | None = None
  2386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2387. # process the experts separately
  2388. if name.find("experts") != -1:
  2389. n_experts = self.hparams["num_experts"]
  2390. assert bid is not None
  2391. if self._experts is None:
  2392. self._experts = [{} for _ in range(self.block_count)]
  2393. self._experts[bid][name] = data_torch
  2394. if len(self._experts[bid]) >= n_experts * 3:
  2395. tensors: list[tuple[str, Tensor]] = []
  2396. # merge the experts into a single 3d tensor
  2397. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2398. datas: list[Tensor] = []
  2399. for xid in range(n_experts):
  2400. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2401. datas.append(self._experts[bid][ename])
  2402. del self._experts[bid][ename]
  2403. data_torch = torch.stack(datas, dim=0)
  2404. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2405. new_name = self.map_tensor_name(merged_name)
  2406. tensors.append((new_name, data_torch))
  2407. return tensors
  2408. else:
  2409. return []
  2410. return [(self.map_tensor_name(name), data_torch)]
  2411. def prepare_tensors(self):
  2412. super().prepare_tensors()
  2413. if self._experts is not None:
  2414. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2415. experts = [k for d in self._experts for k in d.keys()]
  2416. if len(experts) > 0:
  2417. raise ValueError(f"Unprocessed experts: {experts}")
  2418. @ModelBase.register("Qwen3ForCausalLM")
  2419. class Qwen3Model(Qwen2Model):
  2420. model_arch = gguf.MODEL_ARCH.QWEN3
  2421. @ModelBase.register("Qwen3MoeForCausalLM")
  2422. class Qwen3MoeModel(Qwen2MoeModel):
  2423. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2424. @ModelBase.register("GPT2LMHeadModel")
  2425. class GPT2Model(TextModel):
  2426. model_arch = gguf.MODEL_ARCH.GPT2
  2427. def set_gguf_parameters(self):
  2428. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2429. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2430. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2431. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2432. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2433. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2434. self.gguf_writer.add_file_type(self.ftype)
  2435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2436. del bid # unused
  2437. tensors: list[tuple[str, Tensor]] = []
  2438. # we don't need these
  2439. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2440. return tensors
  2441. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2442. data_torch = data_torch.transpose(1, 0)
  2443. new_name = self.map_tensor_name(name)
  2444. tensors.append((new_name, data_torch))
  2445. return tensors
  2446. @ModelBase.register("PhiForCausalLM")
  2447. class Phi2Model(TextModel):
  2448. model_arch = gguf.MODEL_ARCH.PHI2
  2449. def set_gguf_parameters(self):
  2450. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2451. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2452. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2453. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2454. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2455. self.gguf_writer.add_embedding_length(n_embd)
  2456. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2457. self.gguf_writer.add_block_count(block_count)
  2458. self.gguf_writer.add_head_count(n_head)
  2459. self.gguf_writer.add_head_count_kv(n_head)
  2460. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2461. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2462. self.gguf_writer.add_file_type(self.ftype)
  2463. self.gguf_writer.add_add_bos_token(False)
  2464. @ModelBase.register("Phi3ForCausalLM")
  2465. class Phi3MiniModel(TextModel):
  2466. model_arch = gguf.MODEL_ARCH.PHI3
  2467. def set_vocab(self):
  2468. # Phi-4 model uses GPT2Tokenizer
  2469. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2470. if tokenizer_config_file.is_file():
  2471. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2472. tokenizer_config_json = json.load(f)
  2473. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2474. if tokenizer_class == 'GPT2Tokenizer':
  2475. return self._set_vocab_gpt2()
  2476. from sentencepiece import SentencePieceProcessor
  2477. tokenizer_path = self.dir_model / 'tokenizer.model'
  2478. if not tokenizer_path.is_file():
  2479. raise ValueError(f'Error: Missing {tokenizer_path}')
  2480. tokenizer = SentencePieceProcessor()
  2481. tokenizer.LoadFromFile(str(tokenizer_path))
  2482. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2483. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2484. scores: list[float] = [-10000.0] * vocab_size
  2485. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2486. for token_id in range(tokenizer.vocab_size()):
  2487. piece = tokenizer.IdToPiece(token_id)
  2488. text = piece.encode("utf-8")
  2489. score = tokenizer.GetScore(token_id)
  2490. toktype = SentencePieceTokenTypes.NORMAL
  2491. if tokenizer.IsUnknown(token_id):
  2492. toktype = SentencePieceTokenTypes.UNKNOWN
  2493. elif tokenizer.IsControl(token_id):
  2494. toktype = SentencePieceTokenTypes.CONTROL
  2495. elif tokenizer.IsUnused(token_id):
  2496. toktype = SentencePieceTokenTypes.UNUSED
  2497. elif tokenizer.IsByte(token_id):
  2498. toktype = SentencePieceTokenTypes.BYTE
  2499. tokens[token_id] = text
  2500. scores[token_id] = score
  2501. toktypes[token_id] = toktype
  2502. added_tokens_file = self.dir_model / 'added_tokens.json'
  2503. if added_tokens_file.is_file():
  2504. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2505. added_tokens_json = json.load(f)
  2506. for key in added_tokens_json:
  2507. token_id = added_tokens_json[key]
  2508. if token_id >= vocab_size:
  2509. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2510. continue
  2511. tokens[token_id] = key.encode("utf-8")
  2512. scores[token_id] = -1000.0
  2513. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2514. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2515. if tokenizer_config_file.is_file():
  2516. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2517. tokenizer_config_json = json.load(f)
  2518. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2519. for token_id, foken_data in added_tokens_decoder.items():
  2520. token_id = int(token_id)
  2521. token = foken_data["content"].encode("utf-8")
  2522. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2523. if tokens[token_id] != token:
  2524. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2525. tokens[token_id] = token
  2526. scores[token_id] = -1000.0
  2527. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2528. if foken_data.get("special"):
  2529. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2530. tokenizer_file = self.dir_model / 'tokenizer.json'
  2531. if tokenizer_file.is_file():
  2532. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2533. tokenizer_json = json.load(f)
  2534. added_tokens = tokenizer_json.get("added_tokens", [])
  2535. for foken_data in added_tokens:
  2536. token_id = int(foken_data["id"])
  2537. token = foken_data["content"].encode("utf-8")
  2538. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2539. if tokens[token_id] != token:
  2540. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2541. tokens[token_id] = token
  2542. scores[token_id] = -1000.0
  2543. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2544. if foken_data.get("special"):
  2545. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2546. self.gguf_writer.add_tokenizer_model("llama")
  2547. self.gguf_writer.add_tokenizer_pre("default")
  2548. self.gguf_writer.add_token_list(tokens)
  2549. self.gguf_writer.add_token_scores(scores)
  2550. self.gguf_writer.add_token_types(toktypes)
  2551. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2552. special_vocab.add_to_gguf(self.gguf_writer)
  2553. def set_gguf_parameters(self):
  2554. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2555. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2556. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2557. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2558. rms_eps = self.find_hparam(["rms_norm_eps"])
  2559. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2560. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2561. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2562. rope_dims = int(rot_pct * n_embd) // n_head
  2563. self.gguf_writer.add_context_length(max_pos_embds)
  2564. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2565. self.gguf_writer.add_embedding_length(n_embd)
  2566. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2567. self.gguf_writer.add_block_count(block_count)
  2568. self.gguf_writer.add_head_count(n_head)
  2569. self.gguf_writer.add_head_count_kv(n_head_kv)
  2570. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2571. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2572. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2573. self.gguf_writer.add_file_type(self.ftype)
  2574. sliding_window = self.hparams.get("sliding_window")
  2575. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2576. if sliding_window is None:
  2577. sliding_window = 0
  2578. self.gguf_writer.add_sliding_window(sliding_window)
  2579. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2580. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2581. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2582. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2583. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2584. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2585. rope_dims = int(rot_pct * n_embd) // n_head
  2586. # write rope scaling for long context (128k) model
  2587. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2588. if rope_scaling is None:
  2589. return
  2590. scale = max_pos_embds / orig_max_pos_embds
  2591. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2592. if len(rope_scaling_type) == 0:
  2593. raise KeyError('Missing the required key rope_scaling.type')
  2594. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2595. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2596. elif rope_scaling_type == 'yarn':
  2597. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2598. else:
  2599. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2600. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2601. long_factors = rope_scaling.get('long_factor', None)
  2602. short_factors = rope_scaling.get('short_factor', None)
  2603. if long_factors is None or short_factors is None:
  2604. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2605. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2606. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2607. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2608. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2609. @ModelBase.register("PhiMoEForCausalLM")
  2610. class PhiMoeModel(Phi3MiniModel):
  2611. model_arch = gguf.MODEL_ARCH.PHIMOE
  2612. _experts: list[dict[str, Tensor]] | None = None
  2613. def set_gguf_parameters(self):
  2614. super().set_gguf_parameters()
  2615. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2616. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2617. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2618. # process the experts separately
  2619. if name.find("block_sparse_moe.experts") != -1:
  2620. n_experts = self.hparams["num_local_experts"]
  2621. assert bid is not None
  2622. if self._experts is None:
  2623. self._experts = [{} for _ in range(self.block_count)]
  2624. self._experts[bid][name] = data_torch
  2625. if len(self._experts[bid]) >= n_experts * 3:
  2626. tensors: list[tuple[str, Tensor]] = []
  2627. # merge the experts into a single 3d tensor
  2628. for w_name in ["w1", "w2", "w3"]:
  2629. datas: list[Tensor] = []
  2630. for xid in range(n_experts):
  2631. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2632. datas.append(self._experts[bid][ename])
  2633. del self._experts[bid][ename]
  2634. data_torch = torch.stack(datas, dim=0)
  2635. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2636. new_name = self.map_tensor_name(merged_name)
  2637. tensors.append((new_name, data_torch))
  2638. return tensors
  2639. else:
  2640. return []
  2641. return [(self.map_tensor_name(name), data_torch)]
  2642. def prepare_tensors(self):
  2643. super().prepare_tensors()
  2644. if self._experts is not None:
  2645. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2646. experts = [k for d in self._experts for k in d.keys()]
  2647. if len(experts) > 0:
  2648. raise ValueError(f"Unprocessed experts: {experts}")
  2649. @ModelBase.register("PlamoForCausalLM")
  2650. class PlamoModel(TextModel):
  2651. model_arch = gguf.MODEL_ARCH.PLAMO
  2652. def set_vocab(self):
  2653. self._set_vocab_sentencepiece()
  2654. def set_gguf_parameters(self):
  2655. hparams = self.hparams
  2656. block_count = hparams["num_hidden_layers"]
  2657. self.gguf_writer.add_context_length(4096) # not in config.json
  2658. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2659. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2660. self.gguf_writer.add_block_count(block_count)
  2661. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2662. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2663. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2664. self.gguf_writer.add_file_type(self.ftype)
  2665. def shuffle_attn_q_weight(self, data_torch):
  2666. assert data_torch.size() == (5120, 5120)
  2667. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2668. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2669. data_torch = torch.reshape(data_torch, (5120, 5120))
  2670. return data_torch
  2671. def shuffle_attn_output_weight(self, data_torch):
  2672. assert data_torch.size() == (5120, 5120)
  2673. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2674. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2675. data_torch = torch.reshape(data_torch, (5120, 5120))
  2676. return data_torch
  2677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2678. del bid # unused
  2679. new_name = self.map_tensor_name(name)
  2680. # shuffle for broadcasting of gqa in ggml_mul_mat
  2681. if new_name.endswith("attn_q.weight"):
  2682. data_torch = self.shuffle_attn_q_weight(data_torch)
  2683. elif new_name.endswith("attn_output.weight"):
  2684. data_torch = self.shuffle_attn_output_weight(data_torch)
  2685. return [(new_name, data_torch)]
  2686. @ModelBase.register("CodeShellForCausalLM")
  2687. class CodeShellModel(TextModel):
  2688. model_arch = gguf.MODEL_ARCH.CODESHELL
  2689. def set_gguf_parameters(self):
  2690. block_count = self.hparams["n_layer"]
  2691. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2692. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2693. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2694. self.gguf_writer.add_block_count(block_count)
  2695. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2696. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2697. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2698. self.gguf_writer.add_file_type(self.ftype)
  2699. self.gguf_writer.add_rope_freq_base(10000.0)
  2700. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2701. self.gguf_writer.add_rope_scaling_factor(1.0)
  2702. _has_tok_embd = False
  2703. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2704. del bid # unused
  2705. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2706. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2707. new_name = self.map_tensor_name(name)
  2708. # assuming token_embd.weight is seen before output.weight
  2709. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2710. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2711. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2712. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2713. self.tensor_names.remove("transformer.wte.weight")
  2714. elif new_name == tok_embd_name:
  2715. self._has_tok_embd = True
  2716. return [(new_name, data_torch)]
  2717. @ModelBase.register("InternLM2ForCausalLM")
  2718. class InternLM2Model(TextModel):
  2719. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2720. def set_vocab(self):
  2721. # (TODO): Is there a better way?
  2722. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2723. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2724. # recognized as an empty string in C++.
  2725. from sentencepiece import SentencePieceProcessor
  2726. from sentencepiece import sentencepiece_model_pb2 as model
  2727. tokenizer_path = self.dir_model / 'tokenizer.model'
  2728. tokens: list[bytes] = []
  2729. scores: list[float] = []
  2730. toktypes: list[int] = []
  2731. if not tokenizer_path.is_file():
  2732. logger.error(f'Error: Missing {tokenizer_path}')
  2733. sys.exit(1)
  2734. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2735. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2736. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2737. tokenizer = SentencePieceProcessor()
  2738. tokenizer.LoadFromFile(str(tokenizer_path))
  2739. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2740. for token_id in range(vocab_size):
  2741. piece = tokenizer.IdToPiece(token_id)
  2742. text = piece.encode("utf-8")
  2743. score = tokenizer.GetScore(token_id)
  2744. if text == b"\x00":
  2745. # (TODO): fixme
  2746. # Hack here and replace the \x00 characters.
  2747. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2748. text = "🐉".encode("utf-8")
  2749. toktype = SentencePieceTokenTypes.NORMAL
  2750. if tokenizer.IsUnknown(token_id):
  2751. toktype = SentencePieceTokenTypes.UNKNOWN
  2752. elif tokenizer.IsControl(token_id):
  2753. toktype = SentencePieceTokenTypes.CONTROL
  2754. elif tokenizer.IsUnused(token_id):
  2755. toktype = SentencePieceTokenTypes.UNUSED
  2756. elif tokenizer.IsByte(token_id):
  2757. toktype = SentencePieceTokenTypes.BYTE
  2758. # take care of ununsed raw token
  2759. if piece.startswith('[UNUSED'):
  2760. toktype = SentencePieceTokenTypes.UNUSED
  2761. tokens.append(text)
  2762. scores.append(score)
  2763. toktypes.append(toktype)
  2764. added_tokens_file = self.dir_model / 'added_tokens.json'
  2765. if added_tokens_file.is_file():
  2766. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2767. added_tokens_json = json.load(f)
  2768. for key in added_tokens_json:
  2769. tokens.append(key.encode("utf-8"))
  2770. scores.append(-1000.0)
  2771. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2772. chat_eos_token = '<|im_end|>'
  2773. chat_eos_token_id = None
  2774. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2775. if tokenizer_config_file.is_file():
  2776. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2777. tokenizer_config_json = json.load(f)
  2778. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2779. for token_id, foken_data in added_tokens_decoder.items():
  2780. token_id = int(token_id)
  2781. token = foken_data["content"]
  2782. if token == chat_eos_token:
  2783. chat_eos_token_id = token_id
  2784. token = token.encode("utf-8")
  2785. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2786. if tokens[token_id] != token:
  2787. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2788. tokens[token_id] = token
  2789. scores[token_id] = -1000.0
  2790. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2791. if foken_data.get("special"):
  2792. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2793. tokenizer_file = self.dir_model / 'tokenizer.json'
  2794. if tokenizer_file.is_file():
  2795. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2796. tokenizer_json = json.load(f)
  2797. added_tokens = tokenizer_json.get("added_tokens", [])
  2798. for foken_data in added_tokens:
  2799. token_id = int(foken_data["id"])
  2800. token = foken_data["content"]
  2801. if token == chat_eos_token:
  2802. chat_eos_token_id = token_id
  2803. token = token.encode("utf-8")
  2804. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2805. if tokens[token_id] != token:
  2806. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2807. tokens[token_id] = token
  2808. scores[token_id] = -1000.0
  2809. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2810. if foken_data.get("special"):
  2811. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2812. self.gguf_writer.add_tokenizer_model("llama")
  2813. self.gguf_writer.add_tokenizer_pre("default")
  2814. self.gguf_writer.add_token_list(tokens)
  2815. self.gguf_writer.add_token_scores(scores)
  2816. self.gguf_writer.add_token_types(toktypes)
  2817. self.gguf_writer.add_add_space_prefix(add_prefix)
  2818. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2819. old_eos = special_vocab.special_token_ids["eos"]
  2820. if chat_eos_token_id is not None:
  2821. # For the chat model, we replace the eos with '<|im_end|>'.
  2822. # TODO: this is a hack, should be fixed
  2823. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2824. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2825. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2826. " in chat mode so that the conversation can end normally.")
  2827. special_vocab.add_to_gguf(self.gguf_writer)
  2828. def set_gguf_parameters(self):
  2829. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2830. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2831. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2832. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2833. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2834. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2835. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2836. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2837. self.gguf_writer.add_file_type(self.ftype)
  2838. rope_scaling = self.hparams.get("rope_scaling") or {}
  2839. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2840. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2841. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2843. num_heads = self.hparams["num_attention_heads"]
  2844. num_kv_heads = self.hparams["num_key_value_heads"]
  2845. n_embd = self.hparams["hidden_size"]
  2846. q_per_kv = num_heads // num_kv_heads
  2847. head_dim = n_embd // num_heads
  2848. num_groups = num_heads // q_per_kv
  2849. name = name.replace("language_model.", "") # InternVL
  2850. if name.startswith("mlp") or name.startswith("vision_model"):
  2851. # skip visual tensors
  2852. return []
  2853. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2854. qkv = data_torch
  2855. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2856. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2857. # The model weights of q and k equire additional reshape.
  2858. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2859. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2860. v = v.reshape((-1, v.shape[-1]))
  2861. return [
  2862. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2863. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2864. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2865. ]
  2866. else:
  2867. return [(self.map_tensor_name(name), data_torch)]
  2868. @ModelBase.register("InternLM3ForCausalLM")
  2869. class InternLM3Model(TextModel):
  2870. model_arch = gguf.MODEL_ARCH.LLAMA
  2871. def set_vocab(self):
  2872. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2873. self.gguf_writer.add_tokenizer_model("llama")
  2874. self.gguf_writer.add_tokenizer_pre("default")
  2875. self.gguf_writer.add_token_list(tokens)
  2876. self.gguf_writer.add_token_scores(scores)
  2877. self.gguf_writer.add_token_types(toktypes)
  2878. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2879. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2880. if tokenizer_config_file.is_file():
  2881. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2882. tokenizer_config_json = json.load(f)
  2883. if "add_prefix_space" in tokenizer_config_json:
  2884. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2885. if "added_tokens_decoder" in tokenizer_config_json:
  2886. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2887. if token_data.get("special"):
  2888. token_id = int(token_id)
  2889. token = token_data["content"]
  2890. special_vocab._set_special_token(token, token_id)
  2891. # update eos token
  2892. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2893. special_vocab.special_token_ids["eos"] = token_id
  2894. special_vocab.add_to_gguf(self.gguf_writer)
  2895. def set_gguf_parameters(self):
  2896. super().set_gguf_parameters()
  2897. hparams = self.hparams
  2898. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2899. if "head_dim" in hparams:
  2900. rope_dim = hparams["head_dim"]
  2901. else:
  2902. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2903. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2904. rope_scaling = self.hparams.get("rope_scaling") or {}
  2905. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2906. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2907. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2908. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2909. n_head = self.hparams["num_attention_heads"]
  2910. n_kv_head = self.hparams.get("num_key_value_heads")
  2911. name = name.replace("language_model.", "") # InternVL
  2912. if name.startswith("mlp") or name.startswith("vision_model"):
  2913. # skip visual tensors
  2914. return []
  2915. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2916. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2917. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2918. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2919. return [(self.map_tensor_name(name), data_torch)]
  2920. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2921. class BertModel(TextModel):
  2922. model_arch = gguf.MODEL_ARCH.BERT
  2923. def __init__(self, *args, **kwargs):
  2924. super().__init__(*args, **kwargs)
  2925. self.vocab_size = None
  2926. def set_gguf_parameters(self):
  2927. super().set_gguf_parameters()
  2928. self.gguf_writer.add_causal_attention(False)
  2929. self._try_set_pooling_type()
  2930. def set_vocab(self):
  2931. tokens, toktypes, tokpre = self.get_vocab_base()
  2932. self.vocab_size = len(tokens)
  2933. # we need this to validate the size of the token_type embeddings
  2934. # though currently we are passing all zeros to the token_type embeddings
  2935. # "Sequence A" or "Sequence B"
  2936. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2937. # convert to phantom space vocab
  2938. def phantom(tok):
  2939. if tok.startswith("[") and tok.endswith("]"):
  2940. return tok
  2941. if tok.startswith("##"):
  2942. return tok[2:]
  2943. return "\u2581" + tok
  2944. tokens = list(map(phantom, tokens))
  2945. # add vocab to gguf
  2946. self.gguf_writer.add_tokenizer_model("bert")
  2947. self.gguf_writer.add_tokenizer_pre(tokpre)
  2948. self.gguf_writer.add_token_list(tokens)
  2949. self.gguf_writer.add_token_types(toktypes)
  2950. # handle special tokens
  2951. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2952. special_vocab.add_to_gguf(self.gguf_writer)
  2953. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2954. del bid # unused
  2955. if name.startswith("bert."):
  2956. name = name[5:]
  2957. if name.endswith(".gamma"):
  2958. name = name[:-6] + ".weight"
  2959. if name.endswith(".beta"):
  2960. name = name[:-5] + ".bias"
  2961. # we are only using BERT for embeddings so we don't need the pooling layer
  2962. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2963. return [] # we don't need these
  2964. if name.startswith("cls.predictions"):
  2965. return []
  2966. if name.startswith("cls.seq_relationship"):
  2967. return []
  2968. return [(self.map_tensor_name(name), data_torch)]
  2969. def _xlmroberta_tokenizer_init(self) -> None:
  2970. # we need the pad_token_id to know how to chop down position_embd matrix
  2971. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2972. self._position_offset = 1 + pad_token_id
  2973. if "max_position_embeddings" in self.hparams:
  2974. self.hparams["max_position_embeddings"] -= self._position_offset
  2975. else:
  2976. self._position_offset = None
  2977. def _xlmroberta_set_vocab(self) -> None:
  2978. # to avoid TypeError: Descriptors cannot be created directly
  2979. # exception when importing sentencepiece_model_pb2
  2980. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2981. from sentencepiece import SentencePieceProcessor
  2982. from sentencepiece import sentencepiece_model_pb2 as model
  2983. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2984. if not tokenizer_path.is_file():
  2985. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2986. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2987. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2988. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2989. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2990. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2991. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2992. tokenizer = SentencePieceProcessor()
  2993. tokenizer.LoadFromFile(str(tokenizer_path))
  2994. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2995. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2996. scores: list[float] = [-10000.0] * vocab_size
  2997. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2998. for token_id in range(tokenizer.vocab_size()):
  2999. piece = tokenizer.IdToPiece(token_id)
  3000. text = piece.encode("utf-8")
  3001. score = tokenizer.GetScore(token_id)
  3002. toktype = SentencePieceTokenTypes.NORMAL
  3003. if tokenizer.IsUnknown(token_id):
  3004. toktype = SentencePieceTokenTypes.UNKNOWN
  3005. elif tokenizer.IsControl(token_id):
  3006. toktype = SentencePieceTokenTypes.CONTROL
  3007. elif tokenizer.IsUnused(token_id):
  3008. toktype = SentencePieceTokenTypes.UNUSED
  3009. elif tokenizer.IsByte(token_id):
  3010. toktype = SentencePieceTokenTypes.BYTE
  3011. tokens[token_id] = text
  3012. scores[token_id] = score
  3013. toktypes[token_id] = toktype
  3014. if vocab_size > len(tokens):
  3015. pad_count = vocab_size - len(tokens)
  3016. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3017. for i in range(1, pad_count + 1):
  3018. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3019. scores.append(-1000.0)
  3020. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3021. # realign tokens (see HF tokenizer code)
  3022. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3023. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3024. toktypes = [
  3025. SentencePieceTokenTypes.CONTROL,
  3026. SentencePieceTokenTypes.CONTROL,
  3027. SentencePieceTokenTypes.CONTROL,
  3028. SentencePieceTokenTypes.UNKNOWN,
  3029. ] + toktypes[3:-1]
  3030. self.gguf_writer.add_tokenizer_model("t5")
  3031. self.gguf_writer.add_tokenizer_pre("default")
  3032. self.gguf_writer.add_token_list(tokens)
  3033. self.gguf_writer.add_token_scores(scores)
  3034. self.gguf_writer.add_token_types(toktypes)
  3035. self.gguf_writer.add_add_space_prefix(add_prefix)
  3036. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3037. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3038. if precompiled_charsmap:
  3039. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3040. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3041. special_vocab.add_to_gguf(self.gguf_writer)
  3042. self.gguf_writer.add_add_bos_token(True)
  3043. self.gguf_writer.add_add_eos_token(True)
  3044. @ModelBase.register("RobertaModel")
  3045. class RobertaModel(BertModel):
  3046. model_arch = gguf.MODEL_ARCH.BERT
  3047. def __init__(self, *args, **kwargs):
  3048. super().__init__(*args, **kwargs)
  3049. # we need the pad_token_id to know how to chop down position_embd matrix
  3050. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3051. self._position_offset = 1 + pad_token_id
  3052. if "max_position_embeddings" in self.hparams:
  3053. self.hparams["max_position_embeddings"] -= self._position_offset
  3054. else:
  3055. self._position_offset = None
  3056. def set_vocab(self):
  3057. """Support BPE tokenizers for roberta models"""
  3058. bpe_tok_path = self.dir_model / "tokenizer.json"
  3059. if bpe_tok_path.exists():
  3060. self._set_vocab_gpt2()
  3061. self.gguf_writer.add_add_bos_token(True)
  3062. self.gguf_writer.add_add_eos_token(True)
  3063. # we need this to validate the size of the token_type embeddings
  3064. # though currently we are passing all zeros to the token_type embeddings
  3065. # "Sequence A" or "Sequence B"
  3066. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3067. else:
  3068. return super().set_vocab()
  3069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3070. # if name starts with "roberta.", remove the prefix
  3071. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3072. if name.startswith("roberta."):
  3073. name = name[8:]
  3074. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3075. if name == "embeddings.position_embeddings.weight":
  3076. if self._position_offset is not None:
  3077. data_torch = data_torch[self._position_offset:,:]
  3078. return super().modify_tensors(data_torch, name, bid)
  3079. @ModelBase.register("NomicBertModel")
  3080. class NomicBertModel(BertModel):
  3081. model_arch = gguf.MODEL_ARCH.BERT
  3082. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3083. hparams = kwargs.pop("hparams", None)
  3084. if hparams is None:
  3085. hparams = ModelBase.load_hparams(dir_model)
  3086. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3087. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3088. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3089. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3090. if self._tokenizer_is_xlmroberta:
  3091. self._xlmroberta_tokenizer_init()
  3092. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3093. if npos == 8192 and mtp == 2048:
  3094. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3095. elif npos == 2048 and mtp == 2048:
  3096. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3097. else:
  3098. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3099. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3100. # this doesn't do anything in the HF version
  3101. assert self.hparams["causal"] is False
  3102. # no bias tensors unless MoE
  3103. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3104. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3105. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3106. # norm at end of layer
  3107. assert self.hparams["prenorm"] is False
  3108. # standard RoPE
  3109. assert self.hparams["rotary_emb_fraction"] == 1.0
  3110. assert self.hparams["rotary_emb_interleaved"] is False
  3111. assert self.hparams["rotary_emb_scale_base"] is None
  3112. def set_vocab(self) -> None:
  3113. if self._tokenizer_is_xlmroberta:
  3114. return self._xlmroberta_set_vocab()
  3115. return super().set_vocab()
  3116. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3117. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3118. if "mlp.experts.bias" in name:
  3119. return [] # Explicitly return an empty list.
  3120. if "mlp.experts.mlp.w1" in name:
  3121. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3122. name += ".weight"
  3123. if "mlp.experts.mlp.w2" in name:
  3124. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3125. data_torch = data_torch.transpose(1, 2)
  3126. name += ".weight"
  3127. return [(self.map_tensor_name(name), data_torch)]
  3128. def set_gguf_parameters(self):
  3129. super().set_gguf_parameters()
  3130. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3131. if self.is_moe:
  3132. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3133. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3134. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3135. def _is_tokenizer_xlmroberta(self) -> bool:
  3136. with open(self.dir_model / "tokenizer.json") as f:
  3137. tokenizer_json = json.load(f)
  3138. toktyp = tokenizer_json["model"]["type"]
  3139. if toktyp == "Unigram":
  3140. return True
  3141. if toktyp == "WordPiece":
  3142. return False
  3143. raise ValueError(f"unknown tokenizer: {toktyp}")
  3144. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3145. class XLMRobertaModel(BertModel):
  3146. model_arch = gguf.MODEL_ARCH.BERT
  3147. def __init__(self, *args, **kwargs):
  3148. super().__init__(*args, **kwargs)
  3149. self._xlmroberta_tokenizer_init()
  3150. def set_vocab(self):
  3151. self._xlmroberta_set_vocab()
  3152. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3153. # if name starts with "roberta.", remove the prefix
  3154. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3155. if name.startswith("roberta."):
  3156. name = name[8:]
  3157. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3158. if name == "embeddings.position_embeddings.weight":
  3159. if self._position_offset is not None:
  3160. data_torch = data_torch[self._position_offset:,:]
  3161. return super().modify_tensors(data_torch, name, bid)
  3162. @ModelBase.register("GemmaForCausalLM")
  3163. class GemmaModel(TextModel):
  3164. model_arch = gguf.MODEL_ARCH.GEMMA
  3165. def set_vocab(self):
  3166. self._set_vocab_sentencepiece()
  3167. # TODO: these special tokens should be exported only for the CodeGemma family
  3168. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3169. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3170. special_vocab._set_special_token("prefix", 67)
  3171. special_vocab._set_special_token("suffix", 69)
  3172. special_vocab._set_special_token("middle", 68)
  3173. special_vocab._set_special_token("fsep", 70)
  3174. special_vocab._set_special_token("eot", 107)
  3175. special_vocab.chat_template = None # do not add it twice
  3176. special_vocab.add_to_gguf(self.gguf_writer)
  3177. self.gguf_writer.add_add_space_prefix(False)
  3178. def set_gguf_parameters(self):
  3179. hparams = self.hparams
  3180. block_count = hparams["num_hidden_layers"]
  3181. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3182. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3183. self.gguf_writer.add_block_count(block_count)
  3184. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3185. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3186. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3187. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3188. self.gguf_writer.add_key_length(hparams["head_dim"])
  3189. self.gguf_writer.add_value_length(hparams["head_dim"])
  3190. self.gguf_writer.add_file_type(self.ftype)
  3191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3192. del bid # unused
  3193. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3194. # To prevent errors, skip loading lm_head.weight.
  3195. if name == "lm_head.weight":
  3196. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3197. return []
  3198. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3199. if name.endswith("norm.weight"):
  3200. data_torch = data_torch + 1
  3201. return [(self.map_tensor_name(name), data_torch)]
  3202. @ModelBase.register("Gemma2ForCausalLM")
  3203. class Gemma2Model(TextModel):
  3204. model_arch = gguf.MODEL_ARCH.GEMMA2
  3205. def set_vocab(self):
  3206. self._set_vocab_sentencepiece()
  3207. self.gguf_writer.add_add_space_prefix(False)
  3208. def set_gguf_parameters(self):
  3209. hparams = self.hparams
  3210. block_count = hparams["num_hidden_layers"]
  3211. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3212. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3213. self.gguf_writer.add_block_count(block_count)
  3214. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3215. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3216. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3217. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3218. self.gguf_writer.add_key_length(hparams["head_dim"])
  3219. self.gguf_writer.add_value_length(hparams["head_dim"])
  3220. self.gguf_writer.add_file_type(self.ftype)
  3221. self.gguf_writer.add_attn_logit_softcapping(
  3222. self.hparams["attn_logit_softcapping"]
  3223. )
  3224. self.gguf_writer.add_final_logit_softcapping(
  3225. self.hparams["final_logit_softcapping"]
  3226. )
  3227. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3229. del bid # unused
  3230. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3231. # To prevent errors, skip loading lm_head.weight.
  3232. if name == "lm_head.weight":
  3233. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3234. return []
  3235. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3236. if name.endswith("norm.weight"):
  3237. data_torch = data_torch + 1
  3238. return [(self.map_tensor_name(name), data_torch)]
  3239. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3240. class Gemma3Model(TextModel):
  3241. model_arch = gguf.MODEL_ARCH.GEMMA3
  3242. def set_vocab(self):
  3243. self._set_vocab_sentencepiece()
  3244. self.gguf_writer.add_add_space_prefix(False)
  3245. def set_gguf_parameters(self):
  3246. hparams = self.hparams
  3247. block_count = hparams["num_hidden_layers"]
  3248. # some default values are not specified in the hparams
  3249. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3250. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3251. self.gguf_writer.add_block_count(block_count)
  3252. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3253. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3254. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3255. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3256. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3257. self.gguf_writer.add_file_type(self.ftype)
  3258. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3259. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3260. assert hparams.get("attn_logit_softcapping") is None
  3261. assert hparams.get("final_logit_softcapping") is None
  3262. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3263. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3264. if hparams.get("rope_scaling") is not None:
  3265. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3266. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3267. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3268. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3270. del bid # unused
  3271. if name.startswith("language_model."):
  3272. name = name.replace("language_model.", "")
  3273. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3274. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3275. return [] # skip vision tensors
  3276. # remove OOV (out-of-vocabulary) rows in token_embd
  3277. if "embed_tokens.weight" in name:
  3278. vocab = self._create_vocab_sentencepiece()
  3279. tokens = vocab[0]
  3280. data_torch = data_torch[:len(tokens)]
  3281. # ref code in Gemma3RMSNorm
  3282. # output = output * (1.0 + self.weight.float())
  3283. if name.endswith("norm.weight"):
  3284. data_torch = data_torch + 1
  3285. return [(self.map_tensor_name(name), data_torch)]
  3286. @ModelBase.register("Gemma3ForConditionalGeneration")
  3287. class Gemma3VisionModel(MmprojModel):
  3288. def set_gguf_parameters(self):
  3289. super().set_gguf_parameters()
  3290. hparams = self.hparams
  3291. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3292. # default values below are taken from HF tranformers code
  3293. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3294. self.gguf_writer.add_vision_use_gelu(True)
  3295. # calculate proj_scale_factor (used by tinygemma3 test model)
  3296. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3297. n_per_side = int(image_seq_length ** 0.5)
  3298. image_size = self.hparams["image_size"]
  3299. patch_size = self.hparams["patch_size"]
  3300. proj_scale_factor = (image_size // patch_size) // n_per_side
  3301. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3302. # we only need to write this if it's not the default value
  3303. # in this case, we are converting a test model
  3304. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3305. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3306. del bid, new_name, n_dims # unused
  3307. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3308. if "input_projection" in name:
  3309. return gguf.GGMLQuantizationType.F16
  3310. if ".embeddings." in name:
  3311. return gguf.GGMLQuantizationType.F32
  3312. return False
  3313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3314. del bid # unused
  3315. if "vision_model.head." in name:
  3316. return [] # skip redundant tensors for tinygemma3
  3317. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3318. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3319. # process vision tensors
  3320. name = name.replace("_weight", ".weight")
  3321. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3322. # the other norm values are part of SigLIP model, and they are already correct
  3323. # ref code: Gemma3RMSNorm
  3324. if "soft_emb_norm.weight" in name:
  3325. logger.info(f"Correcting norm value for '{name}'")
  3326. data_torch = data_torch + 1
  3327. return [(self.map_tensor_name(name), data_torch)]
  3328. return [] # skip other tensors
  3329. @ModelBase.register("Starcoder2ForCausalLM")
  3330. class StarCoder2Model(TextModel):
  3331. model_arch = gguf.MODEL_ARCH.STARCODER2
  3332. @ModelBase.register("Rwkv6ForCausalLM")
  3333. class Rwkv6Model(TextModel):
  3334. model_arch = gguf.MODEL_ARCH.RWKV6
  3335. def set_vocab(self):
  3336. self._set_vocab_rwkv_world()
  3337. def set_gguf_parameters(self):
  3338. block_count = self.hparams["num_hidden_layers"]
  3339. head_size = self.hparams["head_size"]
  3340. hidden_size = self.hparams["hidden_size"]
  3341. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3342. rescale_every_n_layers = self.hparams["rescale_every"]
  3343. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3344. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3345. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3346. # RWKV isn't context limited
  3347. self.gguf_writer.add_context_length(1048576)
  3348. self.gguf_writer.add_embedding_length(hidden_size)
  3349. self.gguf_writer.add_block_count(block_count)
  3350. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3351. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3352. self.gguf_writer.add_wkv_head_size(head_size)
  3353. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3354. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3355. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3356. self.gguf_writer.add_file_type(self.ftype)
  3357. # required by llama.cpp, unused
  3358. self.gguf_writer.add_head_count(0)
  3359. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3360. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3361. new_name = self.map_tensor_name(name)
  3362. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3363. new_name += ".weight"
  3364. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3365. data_torch = data_torch.transpose(0, 1)
  3366. if new_name.endswith("time_mix_w2.weight"):
  3367. data_torch = data_torch.permute(0, 2, 1)
  3368. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3369. data_torch = data_torch.squeeze()
  3370. try:
  3371. rescale_every_n_layers = self.hparams["rescale_every"]
  3372. if rescale_every_n_layers > 0:
  3373. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3374. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3375. except KeyError:
  3376. pass
  3377. # concat time_mix_lerp weights to reduce some cpu overhead
  3378. # also reduces the number of tensors in the model
  3379. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3380. try:
  3381. self.lerp_weights[bid][new_name] = data_torch
  3382. except KeyError:
  3383. self.lerp_weights[bid] = {new_name: data_torch}
  3384. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3385. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3386. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3387. yield (new_name, data)
  3388. return
  3389. yield (new_name, data_torch)
  3390. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3391. class RWKV6Qwen2Model(Rwkv6Model):
  3392. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3393. def set_vocab(self):
  3394. try:
  3395. self._set_vocab_sentencepiece()
  3396. except FileNotFoundError:
  3397. self._set_vocab_gpt2()
  3398. def set_gguf_parameters(self):
  3399. block_count = self.hparams["num_hidden_layers"]
  3400. num_attention_heads = self.hparams["num_attention_heads"]
  3401. num_key_value_heads = self.hparams["num_key_value_heads"]
  3402. hidden_size = self.hparams["hidden_size"]
  3403. head_size = hidden_size // num_attention_heads
  3404. rms_norm_eps = self.hparams["rms_norm_eps"]
  3405. intermediate_size = self.hparams["intermediate_size"]
  3406. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3407. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3408. # RWKV isn't context limited
  3409. self.gguf_writer.add_context_length(1048576)
  3410. self.gguf_writer.add_embedding_length(hidden_size)
  3411. self.gguf_writer.add_block_count(block_count)
  3412. self.gguf_writer.add_wkv_head_size(head_size)
  3413. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3414. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3415. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3416. self.gguf_writer.add_file_type(self.ftype)
  3417. # special parameters for time_mixing in RWKV6QWEN2
  3418. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3419. self.gguf_writer.add_token_shift_count(1)
  3420. # RWKV6QWEN2 use grouped key/value like GQA
  3421. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3422. # required by llama.cpp, unused
  3423. self.gguf_writer.add_head_count(0)
  3424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3425. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3426. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3427. data = data.view(5, -1, data.shape[-1])
  3428. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3429. # permute them here to avoid code changes
  3430. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3431. if "w2" in new_name:
  3432. data = data.view(5, -1, data.shape[-1])
  3433. yield (new_name, data)
  3434. continue
  3435. yield (new_name, data)
  3436. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3437. class Rwkv7Model(TextModel):
  3438. model_arch = gguf.MODEL_ARCH.RWKV7
  3439. def set_vocab(self):
  3440. self._set_vocab_rwkv_world()
  3441. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3442. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3443. def set_gguf_parameters(self):
  3444. block_count = self.hparams["num_hidden_layers"]
  3445. try:
  3446. head_size = self.hparams["head_size"]
  3447. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3448. except KeyError:
  3449. head_size = self.hparams["head_dim"]
  3450. layer_norm_eps = self.hparams["norm_eps"]
  3451. hidden_size = self.hparams["hidden_size"]
  3452. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3453. # ICLR: In-Context-Learning-Rate
  3454. try:
  3455. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3456. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3457. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3458. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3459. except KeyError:
  3460. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3461. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3462. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3463. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3464. # RWKV isn't context limited
  3465. self.gguf_writer.add_context_length(1048576)
  3466. self.gguf_writer.add_embedding_length(hidden_size)
  3467. self.gguf_writer.add_block_count(block_count)
  3468. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3469. self.gguf_writer.add_wkv_head_size(head_size)
  3470. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3471. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3472. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3473. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3474. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3475. self.gguf_writer.add_file_type(self.ftype)
  3476. # required by llama.cpp, unused
  3477. self.gguf_writer.add_head_count(0)
  3478. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3479. lora_needs_transpose: bool = True
  3480. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3481. # unify tensor names here to make life easier
  3482. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3483. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3484. name = name.replace("time_mixer.", "")
  3485. # lora layer names in fla-hub's impl
  3486. if "_lora.lora" in name:
  3487. self.lora_needs_transpose = False
  3488. name = name.replace("_lora.lora.0.weight", "1.weight")
  3489. name = name.replace("_lora.lora.2.weight", "2.weight")
  3490. name = name.replace("_lora.lora.2.bias", "0.weight")
  3491. name = name.replace("feed_forward_norm", "ln2")
  3492. name = name.replace("g_norm", "ln_x")
  3493. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3494. # some models have dummy v0/v1/v2 on first layer while others don't
  3495. # ignore them all since they are not used
  3496. return
  3497. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3498. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3499. if bid is not None and "attention.x_" in name:
  3500. if "attention.x_x" in name:
  3501. # already concatenated
  3502. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3503. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3504. yield (new_name, data)
  3505. else:
  3506. try:
  3507. self.lerp_weights[bid][name] = data_torch
  3508. except KeyError:
  3509. self.lerp_weights[bid] = {name: data_torch}
  3510. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3511. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3512. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3513. yield (new_name, data)
  3514. return
  3515. else:
  3516. data_torch = data_torch.squeeze()
  3517. new_name = self.map_tensor_name(name)
  3518. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3519. new_name += ".weight"
  3520. if self.lora_needs_transpose and any(
  3521. new_name.endswith(t) for t in [
  3522. "time_mix_w1.weight", "time_mix_w2.weight",
  3523. "time_mix_a1.weight", "time_mix_a2.weight",
  3524. "time_mix_v1.weight", "time_mix_v2.weight",
  3525. "time_mix_g1.weight", "time_mix_g2.weight",
  3526. ]
  3527. ):
  3528. data_torch = data_torch.transpose(0, 1)
  3529. if 'r_k' in new_name:
  3530. data_torch = data_torch.flatten()
  3531. if bid == 0 and "time_mix_a" in new_name:
  3532. # dummy v0/v1/v2 on first layer
  3533. # easist way to make llama happy
  3534. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3535. yield (new_name, data_torch)
  3536. @ModelBase.register("RwkvHybridForCausalLM")
  3537. class ARwkv7Model(Rwkv7Model):
  3538. model_arch = gguf.MODEL_ARCH.ARWKV7
  3539. def set_vocab(self):
  3540. try:
  3541. self._set_vocab_sentencepiece()
  3542. except FileNotFoundError:
  3543. self._set_vocab_gpt2()
  3544. def set_gguf_parameters(self):
  3545. block_count = self.hparams["num_hidden_layers"]
  3546. hidden_size = self.hparams["hidden_size"]
  3547. head_size = self.hparams["head_size"]
  3548. rms_norm_eps = self.hparams["rms_norm_eps"]
  3549. intermediate_size = self.hparams["intermediate_size"]
  3550. wkv_has_gate = self.hparams["wkv_has_gate"]
  3551. assert self.hparams["wkv_version"] == 7
  3552. # ICLR: In-Context-Learning-Rate
  3553. lora_rank_decay = 64
  3554. lora_rank_iclr = 64
  3555. lora_rank_value_residual_mix = 32
  3556. lora_rank_gate = 128 if wkv_has_gate else 0
  3557. # RWKV isn't context limited
  3558. self.gguf_writer.add_context_length(1048576)
  3559. self.gguf_writer.add_embedding_length(hidden_size)
  3560. self.gguf_writer.add_block_count(block_count)
  3561. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3562. self.gguf_writer.add_wkv_head_size(head_size)
  3563. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3564. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3565. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3566. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3567. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3568. self.gguf_writer.add_file_type(self.ftype)
  3569. self.gguf_writer.add_token_shift_count(1)
  3570. # required by llama.cpp, unused
  3571. self.gguf_writer.add_head_count(0)
  3572. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3573. class MambaModel(TextModel):
  3574. model_arch = gguf.MODEL_ARCH.MAMBA
  3575. def set_vocab(self):
  3576. vocab_size = self.hparams["vocab_size"]
  3577. # Round vocab size to next multiple of 8
  3578. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3579. # pad using ceiling division
  3580. # ref: https://stackoverflow.com/a/17511341/22827863
  3581. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3582. self.hparams["vocab_size"] = vocab_size
  3583. if (self.dir_model / "tokenizer.json").is_file():
  3584. self._set_vocab_gpt2()
  3585. elif (self.dir_model / "tokenizer.model").is_file():
  3586. self._set_vocab_sentencepiece()
  3587. else:
  3588. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3589. self._set_vocab_builtin("gpt-neox", vocab_size)
  3590. def set_gguf_parameters(self):
  3591. d_model = self.find_hparam(["hidden_size", "d_model"])
  3592. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3593. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3594. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3595. # ceiling division
  3596. # ref: https://stackoverflow.com/a/17511341/22827863
  3597. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3598. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3599. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3600. use_dt_b_c_norm = False
  3601. # For falconmamba we do apply RMS norm on B / DT and C layers
  3602. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3603. use_dt_b_c_norm = True
  3604. # Fail early for models which don't have a block expansion factor of 2
  3605. assert d_inner == 2 * d_model
  3606. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3607. self.gguf_writer.add_embedding_length(d_model)
  3608. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3609. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3610. self.gguf_writer.add_block_count(self.block_count)
  3611. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3612. self.gguf_writer.add_ssm_inner_size(d_inner)
  3613. self.gguf_writer.add_ssm_state_size(d_state)
  3614. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3615. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3616. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3617. self.gguf_writer.add_file_type(self.ftype)
  3618. _tok_embd = None
  3619. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3620. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3621. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3622. new_name = self.map_tensor_name(name)
  3623. if name.endswith(".A_log"):
  3624. logger.debug("A_log --> A ==> " + new_name)
  3625. data_torch = -torch.exp(data_torch)
  3626. # [4 1 8192 1] -> [4 8192 1 1]
  3627. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3628. data_torch = data_torch.squeeze()
  3629. # assuming token_embd.weight is seen before output.weight
  3630. if self._tok_embd is not None and new_name == output_name:
  3631. if torch.equal(self._tok_embd, data_torch):
  3632. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3633. return []
  3634. elif new_name == tok_embd_name:
  3635. self._tok_embd = data_torch
  3636. return [(new_name, data_torch)]
  3637. @ModelBase.register("CohereForCausalLM")
  3638. class CommandR2Model(TextModel):
  3639. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3640. def __init__(self, *args, **kwargs):
  3641. super().__init__(*args, **kwargs)
  3642. # max_position_embeddings = 8192 in config.json but model was actually
  3643. # trained on 128k context length
  3644. # aya-23 models don't have model_max_length specified
  3645. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3646. def set_gguf_parameters(self):
  3647. super().set_gguf_parameters()
  3648. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3649. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3650. @ModelBase.register("Cohere2ForCausalLM")
  3651. class Cohere2Model(TextModel):
  3652. model_arch = gguf.MODEL_ARCH.COHERE2
  3653. def set_gguf_parameters(self):
  3654. super().set_gguf_parameters()
  3655. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3656. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3657. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3658. rotary_pct = self.hparams["rotary_pct"]
  3659. hidden_size = self.hparams["hidden_size"]
  3660. num_attention_heads = self.hparams["num_attention_heads"]
  3661. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3662. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3663. @ModelBase.register("OlmoForCausalLM")
  3664. @ModelBase.register("OLMoForCausalLM")
  3665. class OlmoModel(TextModel):
  3666. model_arch = gguf.MODEL_ARCH.OLMO
  3667. def set_gguf_parameters(self):
  3668. super().set_gguf_parameters()
  3669. self.gguf_writer.add_layer_norm_eps(1e-5)
  3670. clip_qkv = self.hparams.get("clip_qkv")
  3671. if clip_qkv is not None:
  3672. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3673. # Same as super class, but permuting q_proj, k_proj
  3674. # Copied from: LlamaModel
  3675. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3676. del bid # unused
  3677. n_head = self.hparams["num_attention_heads"]
  3678. n_kv_head = self.hparams.get("num_key_value_heads")
  3679. if name.endswith("q_proj.weight"):
  3680. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3681. if name.endswith("k_proj.weight"):
  3682. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3683. return [(self.map_tensor_name(name), data_torch)]
  3684. @ModelBase.register("Olmo2ForCausalLM")
  3685. class Olmo2Model(TextModel):
  3686. model_arch = gguf.MODEL_ARCH.OLMO2
  3687. @ModelBase.register("OlmoeForCausalLM")
  3688. class OlmoeModel(TextModel):
  3689. model_arch = gguf.MODEL_ARCH.OLMOE
  3690. def set_gguf_parameters(self):
  3691. super().set_gguf_parameters()
  3692. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3693. if (n_experts := self.hparams.get("num_experts")) is not None:
  3694. self.gguf_writer.add_expert_count(n_experts)
  3695. _experts: list[dict[str, Tensor]] | None = None
  3696. # Copied from: Qwen2MoeModel
  3697. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3698. # process the experts separately
  3699. if name.find("experts") != -1:
  3700. n_experts = self.hparams["num_experts"]
  3701. assert bid is not None
  3702. if self._experts is None:
  3703. self._experts = [{} for _ in range(self.block_count)]
  3704. self._experts[bid][name] = data_torch
  3705. if len(self._experts[bid]) >= n_experts * 3:
  3706. tensors: list[tuple[str, Tensor]] = []
  3707. # merge the experts into a single 3d tensor
  3708. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3709. datas: list[Tensor] = []
  3710. for xid in range(n_experts):
  3711. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3712. datas.append(self._experts[bid][ename])
  3713. del self._experts[bid][ename]
  3714. data_torch = torch.stack(datas, dim=0)
  3715. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3716. new_name = self.map_tensor_name(merged_name)
  3717. tensors.append((new_name, data_torch))
  3718. return tensors
  3719. else:
  3720. return []
  3721. return [(self.map_tensor_name(name), data_torch)]
  3722. # Copied from: Qwen2MoeModel
  3723. def prepare_tensors(self):
  3724. super().prepare_tensors()
  3725. if self._experts is not None:
  3726. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3727. experts = [k for d in self._experts for k in d.keys()]
  3728. if len(experts) > 0:
  3729. raise ValueError(f"Unprocessed experts: {experts}")
  3730. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3731. class JinaBertV2Model(BertModel):
  3732. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3733. def __init__(self, *args, **kwargs):
  3734. super().__init__(*args, **kwargs)
  3735. self.intermediate_size = self.hparams["intermediate_size"]
  3736. def get_tensors(self):
  3737. for name, data in super().get_tensors():
  3738. if 'gated_layer' in name:
  3739. d1 = data[:self.intermediate_size, :]
  3740. name1 = name.replace('gated_layers', 'gated_layers_w')
  3741. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3742. d2 = data[self.intermediate_size:, :]
  3743. name2 = name.replace('gated_layers', 'gated_layers_v')
  3744. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3745. yield name1, d1
  3746. yield name2, d2
  3747. continue
  3748. yield name, data
  3749. def set_vocab(self):
  3750. tokenizer_class = 'BertTokenizer'
  3751. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3752. tokenizer_class = json.load(f)['tokenizer_class']
  3753. if tokenizer_class == 'BertTokenizer':
  3754. super().set_vocab()
  3755. elif tokenizer_class == 'RobertaTokenizer':
  3756. self._set_vocab_gpt2()
  3757. self.gguf_writer.add_token_type_count(2)
  3758. else:
  3759. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3760. self.gguf_writer.add_add_bos_token(True)
  3761. self.gguf_writer.add_add_eos_token(True)
  3762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3763. # if name starts with "bert.", remove the prefix
  3764. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3765. if name.startswith("bert."):
  3766. name = name[5:]
  3767. return super().modify_tensors(data_torch, name, bid)
  3768. @ModelBase.register("OpenELMForCausalLM")
  3769. class OpenELMModel(TextModel):
  3770. model_arch = gguf.MODEL_ARCH.OPENELM
  3771. @staticmethod
  3772. def _make_divisible(v: float | int, divisor: int) -> int:
  3773. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3774. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3775. # Make sure that round down does not go down by more than 10%.
  3776. if new_v < 0.9 * v:
  3777. new_v += divisor
  3778. return new_v
  3779. def __init__(self, *args, **kwargs):
  3780. super().__init__(*args, **kwargs)
  3781. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3782. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3783. self._n_embd: int = self.hparams["model_dim"]
  3784. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3785. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3786. self._ffn_dims: list[int] = [
  3787. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3788. for multiplier in ffn_multipliers
  3789. ]
  3790. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3791. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3792. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3793. def set_vocab(self):
  3794. try:
  3795. self._set_vocab_sentencepiece()
  3796. except FileNotFoundError:
  3797. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3798. def set_gguf_parameters(self):
  3799. n_embd = self._n_embd
  3800. head_dim = self.hparams["head_dim"]
  3801. rot_pct = 1.0
  3802. assert self.block_count == len(self._num_kv_heads)
  3803. assert self.block_count == len(self._num_query_heads)
  3804. assert self.block_count == len(self._ffn_dims)
  3805. self.gguf_writer.add_block_count(self.block_count)
  3806. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3807. self.gguf_writer.add_embedding_length(n_embd)
  3808. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3809. self.gguf_writer.add_head_count(self._num_query_heads)
  3810. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3811. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3812. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3813. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3814. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3815. self.gguf_writer.add_key_length(head_dim)
  3816. self.gguf_writer.add_value_length(head_dim)
  3817. self.gguf_writer.add_file_type(self.ftype)
  3818. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3819. if "n_layers" in keys:
  3820. return self.hparams["num_transformer_layers"]
  3821. return super().find_hparam(keys, optional)
  3822. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3823. # split ff
  3824. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3825. ff_dim = self._ffn_dims[bid]
  3826. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3827. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3828. return
  3829. yield (self.map_tensor_name(name), data_torch)
  3830. @ModelBase.register("ArcticForCausalLM")
  3831. class ArcticModel(TextModel):
  3832. model_arch = gguf.MODEL_ARCH.ARCTIC
  3833. def set_vocab(self):
  3834. # The reason for using a custom implementation here is that the
  3835. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3836. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3837. from sentencepiece import SentencePieceProcessor
  3838. tokenizer_path = self.dir_model / 'tokenizer.model'
  3839. if not tokenizer_path.is_file():
  3840. logger.error(f'Error: Missing {tokenizer_path}')
  3841. sys.exit(1)
  3842. # Read the whole vocabulary from the tokenizer.model file
  3843. tokenizer = SentencePieceProcessor()
  3844. tokenizer.LoadFromFile(str(tokenizer_path))
  3845. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3846. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3847. scores: list[float] = [-10000.0] * vocab_size
  3848. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3849. for token_id in range(tokenizer.vocab_size()):
  3850. piece = tokenizer.IdToPiece(token_id)
  3851. text = piece.encode("utf-8")
  3852. score = tokenizer.GetScore(token_id)
  3853. toktype = SentencePieceTokenTypes.NORMAL
  3854. if tokenizer.IsUnknown(token_id):
  3855. toktype = SentencePieceTokenTypes.UNKNOWN
  3856. elif tokenizer.IsControl(token_id):
  3857. toktype = SentencePieceTokenTypes.CONTROL
  3858. elif tokenizer.IsUnused(token_id):
  3859. toktype = SentencePieceTokenTypes.UNUSED
  3860. elif tokenizer.IsByte(token_id):
  3861. toktype = SentencePieceTokenTypes.BYTE
  3862. tokens[token_id] = text
  3863. scores[token_id] = score
  3864. toktypes[token_id] = toktype
  3865. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3866. # of information about added/redefined tokens and modify them accordingly.
  3867. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3868. if tokenizer_config_file.is_file():
  3869. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3870. tokenizer_config_json = json.load(f)
  3871. if "added_tokens_decoder" in tokenizer_config_json:
  3872. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3873. for token_id, token_json in added_tokens_decoder.items():
  3874. token_id = int(token_id)
  3875. if token_id >= vocab_size:
  3876. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3877. continue
  3878. token_content = token_json["content"]
  3879. token_type = SentencePieceTokenTypes.USER_DEFINED
  3880. token_score = -10000.0
  3881. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3882. # Set the score to 0.0 as in the original tokenizer.model
  3883. if ("special" in token_json) and token_json["special"]:
  3884. if token_content == tokenizer_config_json["unk_token"]:
  3885. token_type = SentencePieceTokenTypes.UNKNOWN
  3886. else:
  3887. token_type = SentencePieceTokenTypes.CONTROL
  3888. token_score = 0.0
  3889. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3890. tokens[token_id] = token_content.encode("utf-8")
  3891. toktypes[token_id] = token_type
  3892. scores[token_id] = token_score
  3893. self.gguf_writer.add_tokenizer_model("llama")
  3894. self.gguf_writer.add_tokenizer_pre("default")
  3895. self.gguf_writer.add_token_list(tokens)
  3896. self.gguf_writer.add_token_scores(scores)
  3897. self.gguf_writer.add_token_types(toktypes)
  3898. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3899. special_vocab.add_to_gguf(self.gguf_writer)
  3900. def set_gguf_parameters(self):
  3901. super().set_gguf_parameters()
  3902. hparams = self.hparams
  3903. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3904. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3905. _experts: list[dict[str, Tensor]] | None = None
  3906. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3907. n_head = self.hparams["num_attention_heads"]
  3908. n_kv_head = self.hparams.get("num_key_value_heads")
  3909. if name.endswith("q_proj.weight"):
  3910. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3911. if name.endswith("k_proj.weight"):
  3912. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3913. # process the experts separately
  3914. if name.find("block_sparse_moe.experts") != -1:
  3915. n_experts = self.hparams["num_local_experts"]
  3916. assert bid is not None
  3917. if self._experts is None:
  3918. self._experts = [{} for _ in range(self.block_count)]
  3919. self._experts[bid][name] = data_torch
  3920. if len(self._experts[bid]) >= n_experts * 3:
  3921. tensors: list[tuple[str, Tensor]] = []
  3922. # merge the experts into a single 3d tensor
  3923. for wid in ["w1", "w2", "w3"]:
  3924. datas: list[Tensor] = []
  3925. for xid in range(n_experts):
  3926. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3927. datas.append(self._experts[bid][ename])
  3928. del self._experts[bid][ename]
  3929. data_torch = torch.stack(datas, dim=0)
  3930. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3931. new_name = self.map_tensor_name(merged_name)
  3932. tensors.append((new_name, data_torch))
  3933. return tensors
  3934. else:
  3935. return []
  3936. return [(self.map_tensor_name(name), data_torch)]
  3937. def prepare_tensors(self):
  3938. super().prepare_tensors()
  3939. if self._experts is not None:
  3940. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3941. experts = [k for d in self._experts for k in d.keys()]
  3942. if len(experts) > 0:
  3943. raise ValueError(f"Unprocessed experts: {experts}")
  3944. @ModelBase.register("DeepseekForCausalLM")
  3945. class DeepseekModel(TextModel):
  3946. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3947. def set_vocab(self):
  3948. try:
  3949. self._set_vocab_sentencepiece()
  3950. except FileNotFoundError:
  3951. self._set_vocab_gpt2()
  3952. def set_gguf_parameters(self):
  3953. super().set_gguf_parameters()
  3954. hparams = self.hparams
  3955. if "head_dim" in hparams:
  3956. rope_dim = hparams["head_dim"]
  3957. else:
  3958. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3959. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3960. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3961. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3962. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3963. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3964. self.gguf_writer.add_expert_weights_scale(1.0)
  3965. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3966. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3967. _experts: list[dict[str, Tensor]] | None = None
  3968. @staticmethod
  3969. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3970. if n_head_kv is not None and n_head != n_head_kv:
  3971. n_head = n_head_kv
  3972. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3973. .swapaxes(1, 2)
  3974. .reshape(weights.shape))
  3975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3976. n_head = self.hparams["num_attention_heads"]
  3977. n_kv_head = self.hparams.get("num_key_value_heads")
  3978. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3979. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3980. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3981. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3982. # process the experts separately
  3983. if name.find("mlp.experts") != -1:
  3984. n_experts = self.hparams["n_routed_experts"]
  3985. assert bid is not None
  3986. if self._experts is None:
  3987. self._experts = [{} for _ in range(self.block_count)]
  3988. self._experts[bid][name] = data_torch
  3989. if len(self._experts[bid]) >= n_experts * 3:
  3990. tensors: list[tuple[str, Tensor]] = []
  3991. # merge the experts into a single 3d tensor
  3992. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3993. datas: list[Tensor] = []
  3994. for xid in range(n_experts):
  3995. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3996. datas.append(self._experts[bid][ename])
  3997. del self._experts[bid][ename]
  3998. data_torch = torch.stack(datas, dim=0)
  3999. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4000. new_name = self.map_tensor_name(merged_name)
  4001. tensors.append((new_name, data_torch))
  4002. return tensors
  4003. else:
  4004. return []
  4005. return [(self.map_tensor_name(name), data_torch)]
  4006. def prepare_tensors(self):
  4007. super().prepare_tensors()
  4008. if self._experts is not None:
  4009. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4010. experts = [k for d in self._experts for k in d.keys()]
  4011. if len(experts) > 0:
  4012. raise ValueError(f"Unprocessed experts: {experts}")
  4013. @ModelBase.register("DeepseekV2ForCausalLM")
  4014. @ModelBase.register("DeepseekV3ForCausalLM")
  4015. class DeepseekV2Model(TextModel):
  4016. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4017. def set_vocab(self):
  4018. self._set_vocab_gpt2()
  4019. def set_gguf_parameters(self):
  4020. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4021. self.hparams["num_key_value_heads"] = 1
  4022. super().set_gguf_parameters()
  4023. hparams = self.hparams
  4024. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4025. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4026. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4027. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4028. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4029. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4030. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4031. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4032. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4033. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4034. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4035. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4036. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4037. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4038. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4039. if hparams["scoring_func"] == "sigmoid":
  4040. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4041. elif hparams["scoring_func"] == "softmax":
  4042. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4043. else:
  4044. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4045. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4046. rope_scaling = self.hparams.get("rope_scaling") or {}
  4047. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4048. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4049. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4050. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4051. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4052. _experts: list[dict[str, Tensor]] | None = None
  4053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4054. # rename e_score_correction_bias tensors
  4055. if name.endswith("e_score_correction_bias"):
  4056. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4057. # skip Multi-Token Prediction (MTP) layers
  4058. block_count = self.hparams["num_hidden_layers"]
  4059. match = re.match(r"model.layers.(\d+)", name)
  4060. if match and int(match.group(1)) >= block_count:
  4061. return []
  4062. # process the experts separately
  4063. if name.find("mlp.experts") != -1:
  4064. n_experts = self.hparams["n_routed_experts"]
  4065. assert bid is not None
  4066. if self._experts is None:
  4067. self._experts = [{} for _ in range(self.block_count)]
  4068. self._experts[bid][name] = data_torch
  4069. if len(self._experts[bid]) >= n_experts * 3:
  4070. tensors: list[tuple[str, Tensor]] = []
  4071. # merge the experts into a single 3d tensor
  4072. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4073. datas: list[Tensor] = []
  4074. for xid in range(n_experts):
  4075. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4076. datas.append(self._experts[bid][ename])
  4077. del self._experts[bid][ename]
  4078. data_torch = torch.stack(datas, dim=0)
  4079. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4080. new_name = self.map_tensor_name(merged_name)
  4081. tensors.append((new_name, data_torch))
  4082. return tensors
  4083. else:
  4084. return []
  4085. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4086. if name.endswith("kv_b_proj.weight"):
  4087. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4088. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4089. n_head_kv = self.hparams["num_key_value_heads"]
  4090. v_head_dim = self.hparams["v_head_dim"]
  4091. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4092. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4093. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4094. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4095. k_b = k_b.transpose(1, 2)
  4096. return [
  4097. (self.map_tensor_name(name_kb), k_b),
  4098. (self.map_tensor_name(name_vb), v_b)
  4099. ]
  4100. return [(self.map_tensor_name(name), data_torch)]
  4101. def prepare_tensors(self):
  4102. super().prepare_tensors()
  4103. if self._experts is not None:
  4104. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4105. experts = [k for d in self._experts for k in d.keys()]
  4106. if len(experts) > 0:
  4107. raise ValueError(f"Unprocessed experts: {experts}")
  4108. @ModelBase.register("PLMForCausalLM")
  4109. class PLMModel(TextModel):
  4110. model_arch = gguf.MODEL_ARCH.PLM
  4111. def set_vocab(self):
  4112. self._set_vocab_gpt2()
  4113. def set_gguf_parameters(self):
  4114. super().set_gguf_parameters()
  4115. hparams = self.hparams
  4116. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4117. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4118. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4119. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4120. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4122. return [(self.map_tensor_name(name), data_torch)]
  4123. def prepare_tensors(self):
  4124. super().prepare_tensors()
  4125. @ModelBase.register("T5WithLMHeadModel")
  4126. @ModelBase.register("T5ForConditionalGeneration")
  4127. @ModelBase.register("MT5ForConditionalGeneration")
  4128. @ModelBase.register("UMT5ForConditionalGeneration")
  4129. class T5Model(TextModel):
  4130. model_arch = gguf.MODEL_ARCH.T5
  4131. def __init__(self, *args, **kwargs):
  4132. super().__init__(*args, **kwargs)
  4133. self.shared_token_embeddings_found = False
  4134. def set_vocab(self):
  4135. # to avoid TypeError: Descriptors cannot be created directly
  4136. # exception when importing sentencepiece_model_pb2
  4137. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4138. from sentencepiece import SentencePieceProcessor
  4139. from sentencepiece import sentencepiece_model_pb2 as model
  4140. tokenizer_path = self.dir_model / 'tokenizer.model'
  4141. # many older models use spiece.model tokenizer model filename
  4142. if not tokenizer_path.is_file():
  4143. tokenizer_path = self.dir_model / 'spiece.model'
  4144. if not tokenizer_path.is_file():
  4145. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4146. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4147. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4148. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4149. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4150. # assure the tokenizer model file name is correct
  4151. assert tokenizer_path.name == 'tokenizer.model'
  4152. return self._set_vocab_sentencepiece()
  4153. else:
  4154. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4155. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4156. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4157. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4158. tokenizer = SentencePieceProcessor()
  4159. tokenizer.LoadFromFile(str(tokenizer_path))
  4160. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4161. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4162. scores: list[float] = [-10000.0] * vocab_size
  4163. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4164. for token_id in range(tokenizer.vocab_size()):
  4165. piece = tokenizer.IdToPiece(token_id)
  4166. text = piece.encode("utf-8")
  4167. score = tokenizer.GetScore(token_id)
  4168. toktype = SentencePieceTokenTypes.NORMAL
  4169. if tokenizer.IsUnknown(token_id):
  4170. toktype = SentencePieceTokenTypes.UNKNOWN
  4171. elif tokenizer.IsControl(token_id):
  4172. toktype = SentencePieceTokenTypes.CONTROL
  4173. elif tokenizer.IsUnused(token_id):
  4174. toktype = SentencePieceTokenTypes.UNUSED
  4175. elif tokenizer.IsByte(token_id):
  4176. toktype = SentencePieceTokenTypes.BYTE
  4177. tokens[token_id] = text
  4178. scores[token_id] = score
  4179. toktypes[token_id] = toktype
  4180. added_tokens_file = self.dir_model / 'added_tokens.json'
  4181. if added_tokens_file.is_file():
  4182. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4183. added_tokens_json = json.load(f)
  4184. for key in added_tokens_json:
  4185. token_id = added_tokens_json[key]
  4186. if token_id >= vocab_size:
  4187. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4188. continue
  4189. tokens[token_id] = key.encode("utf-8")
  4190. scores[token_id] = -1000.0
  4191. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4192. if vocab_size > len(tokens):
  4193. pad_count = vocab_size - len(tokens)
  4194. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4195. for i in range(1, pad_count + 1):
  4196. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4197. scores.append(-1000.0)
  4198. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4199. self.gguf_writer.add_tokenizer_model("t5")
  4200. self.gguf_writer.add_tokenizer_pre("default")
  4201. self.gguf_writer.add_token_list(tokens)
  4202. self.gguf_writer.add_token_scores(scores)
  4203. self.gguf_writer.add_token_types(toktypes)
  4204. self.gguf_writer.add_add_space_prefix(add_prefix)
  4205. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4206. if precompiled_charsmap:
  4207. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4208. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4209. special_vocab.add_to_gguf(self.gguf_writer)
  4210. self.gguf_writer.add_add_bos_token(False)
  4211. self.gguf_writer.add_add_eos_token(True)
  4212. def set_gguf_parameters(self):
  4213. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4214. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4215. n_ctx = 512
  4216. self.gguf_writer.add_context_length(n_ctx)
  4217. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4218. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4219. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4220. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4221. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4222. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4223. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4224. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4225. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4226. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4227. self.gguf_writer.add_file_type(self.ftype)
  4228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4229. del bid # unused
  4230. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4231. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4232. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4233. # and decoder and ignore the remaining ones.
  4234. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4235. if not self.shared_token_embeddings_found:
  4236. name = "shared.weight"
  4237. self.shared_token_embeddings_found = True
  4238. else:
  4239. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4240. return []
  4241. return [(self.map_tensor_name(name), data_torch)]
  4242. @ModelBase.register("T5EncoderModel")
  4243. class T5EncoderModel(TextModel):
  4244. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4245. def __init__(self, *args, **kwargs):
  4246. super().__init__(*args, **kwargs)
  4247. self.shared_token_embeddings_found = False
  4248. def set_vocab(self):
  4249. # to avoid TypeError: Descriptors cannot be created directly
  4250. # exception when importing sentencepiece_model_pb2
  4251. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4252. from sentencepiece import SentencePieceProcessor
  4253. from sentencepiece import sentencepiece_model_pb2 as model
  4254. tokenizer_path = self.dir_model / 'tokenizer.model'
  4255. # many older models use spiece.model tokenizer model filename
  4256. if not tokenizer_path.is_file():
  4257. tokenizer_path = self.dir_model / 'spiece.model'
  4258. if not tokenizer_path.is_file():
  4259. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4260. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4261. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4262. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4263. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4264. # assure the tokenizer model file name is correct
  4265. assert tokenizer_path.name == 'tokenizer.model'
  4266. return self._set_vocab_sentencepiece()
  4267. else:
  4268. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4269. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4270. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4271. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4272. tokenizer = SentencePieceProcessor()
  4273. tokenizer.LoadFromFile(str(tokenizer_path))
  4274. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4275. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4276. scores: list[float] = [-10000.0] * vocab_size
  4277. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4278. for token_id in range(tokenizer.vocab_size()):
  4279. piece = tokenizer.IdToPiece(token_id)
  4280. text = piece.encode("utf-8")
  4281. score = tokenizer.GetScore(token_id)
  4282. toktype = SentencePieceTokenTypes.NORMAL
  4283. if tokenizer.IsUnknown(token_id):
  4284. toktype = SentencePieceTokenTypes.UNKNOWN
  4285. elif tokenizer.IsControl(token_id):
  4286. toktype = SentencePieceTokenTypes.CONTROL
  4287. elif tokenizer.IsUnused(token_id):
  4288. toktype = SentencePieceTokenTypes.UNUSED
  4289. elif tokenizer.IsByte(token_id):
  4290. toktype = SentencePieceTokenTypes.BYTE
  4291. tokens[token_id] = text
  4292. scores[token_id] = score
  4293. toktypes[token_id] = toktype
  4294. added_tokens_file = self.dir_model / 'added_tokens.json'
  4295. if added_tokens_file.is_file():
  4296. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4297. added_tokens_json = json.load(f)
  4298. for key in added_tokens_json:
  4299. token_id = added_tokens_json[key]
  4300. if token_id >= vocab_size:
  4301. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4302. continue
  4303. tokens[token_id] = key.encode("utf-8")
  4304. scores[token_id] = -1000.0
  4305. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4306. if vocab_size > len(tokens):
  4307. pad_count = vocab_size - len(tokens)
  4308. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4309. for i in range(1, pad_count + 1):
  4310. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4311. scores.append(-1000.0)
  4312. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4313. self.gguf_writer.add_tokenizer_model("t5")
  4314. self.gguf_writer.add_tokenizer_pre("default")
  4315. self.gguf_writer.add_token_list(tokens)
  4316. self.gguf_writer.add_token_scores(scores)
  4317. self.gguf_writer.add_token_types(toktypes)
  4318. self.gguf_writer.add_add_space_prefix(add_prefix)
  4319. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4320. if precompiled_charsmap:
  4321. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4322. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4323. special_vocab.add_to_gguf(self.gguf_writer)
  4324. self.gguf_writer.add_add_bos_token(False)
  4325. self.gguf_writer.add_add_eos_token(True)
  4326. def set_gguf_parameters(self):
  4327. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4328. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4329. n_ctx = 512
  4330. self.gguf_writer.add_context_length(n_ctx)
  4331. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4332. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4333. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4334. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4335. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4336. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4337. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4338. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4339. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4340. self.gguf_writer.add_file_type(self.ftype)
  4341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4342. del bid # unused
  4343. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4344. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4345. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4346. # and decoder and ignore the remaining ones.
  4347. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4348. if not self.shared_token_embeddings_found:
  4349. name = "shared.weight"
  4350. self.shared_token_embeddings_found = True
  4351. else:
  4352. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4353. return []
  4354. return [(self.map_tensor_name(name), data_torch)]
  4355. @ModelBase.register("JAISLMHeadModel")
  4356. class JaisModel(TextModel):
  4357. model_arch = gguf.MODEL_ARCH.JAIS
  4358. def __init__(self, *args, **kwargs):
  4359. super().__init__(*args, **kwargs)
  4360. # SwigLU activation
  4361. assert self.hparams["activation_function"] == "swiglu"
  4362. # ALiBi position embedding
  4363. assert self.hparams["position_embedding_type"] == "alibi"
  4364. # Embeddings scale
  4365. self.embeddings_scale = 1.0
  4366. if 'mup_embeddings_scale' in self.hparams:
  4367. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4368. elif 'embeddings_scale' in self.hparams:
  4369. self.embeddings_scale = self.hparams['embeddings_scale']
  4370. else:
  4371. assert False
  4372. self.width_scale = 1.0
  4373. if 'mup_output_alpha' in self.hparams:
  4374. assert 'mup_width_scale' in self.hparams
  4375. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4376. elif 'width_scale' in self.hparams:
  4377. self.width_scale = self.hparams['width_scale']
  4378. else:
  4379. assert False
  4380. self.max_alibi_bias = 8.0
  4381. def set_vocab(self):
  4382. self._set_vocab_gpt2()
  4383. def set_gguf_parameters(self):
  4384. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4385. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4386. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4387. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4388. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4389. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4390. self.gguf_writer.add_file_type(self.ftype)
  4391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4392. del bid # unused
  4393. tensors: list[tuple[str, Tensor]] = []
  4394. # we don't need these
  4395. if name.endswith((".attn.bias")):
  4396. return tensors
  4397. if name.endswith(("relative_pe.slopes")):
  4398. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4399. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4400. # but Jais's PyTorch model simply precalculates the slope values and places them
  4401. # in relative_pes.slopes
  4402. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4403. first_val = float(data_torch[0].item())
  4404. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4405. return tensors
  4406. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4407. data_torch = data_torch.transpose(1, 0)
  4408. new_name = self.map_tensor_name(name)
  4409. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4410. tensors.append((new_name, data_torch * self.embeddings_scale))
  4411. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4412. tensors.append((new_name, data_torch * self.width_scale))
  4413. else:
  4414. tensors.append((new_name, data_torch))
  4415. return tensors
  4416. def prepare_tensors(self):
  4417. super().prepare_tensors()
  4418. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4419. @ModelBase.register("Glm4ForCausalLM")
  4420. class Glm4Model(TextModel):
  4421. model_arch = gguf.MODEL_ARCH.GLM4
  4422. def set_vocab(self):
  4423. from transformers import AutoTokenizer
  4424. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4425. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4426. tokens, toktypes, tokpre = self.get_vocab_base()
  4427. self.gguf_writer.add_tokenizer_model("gpt2")
  4428. self.gguf_writer.add_tokenizer_pre(tokpre)
  4429. self.gguf_writer.add_token_list(tokens)
  4430. self.gguf_writer.add_token_types(toktypes)
  4431. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4432. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4433. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4434. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4435. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4436. special_vocab.add_to_gguf(self.gguf_writer)
  4437. def set_gguf_parameters(self):
  4438. super().set_gguf_parameters()
  4439. rope_dim = self.hparams["head_dim"]
  4440. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4441. rope_scaling = self.hparams.get("rope_scaling") or {}
  4442. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4443. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4444. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4445. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4446. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4447. class ChatGLMModel(TextModel):
  4448. model_arch = gguf.MODEL_ARCH.CHATGLM
  4449. def set_vocab_chatglm3(self):
  4450. dir_model = self.dir_model
  4451. hparams = self.hparams
  4452. tokens: list[bytes] = []
  4453. toktypes: list[int] = []
  4454. scores: list[float] = []
  4455. from transformers import AutoTokenizer
  4456. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4457. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4458. assert max(tokenizer.get_vocab().values()) < vocab_size
  4459. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4460. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4461. for token_id in range(vocab_size):
  4462. piece = tokenizer._convert_id_to_token(token_id)
  4463. if token_id == 0:
  4464. piece = "<unk>"
  4465. elif token_id == 1:
  4466. piece = "<bos>"
  4467. elif token_id == 2:
  4468. piece = "<eos>"
  4469. text = piece.encode("utf-8")
  4470. score = 0.0
  4471. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4472. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4473. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4474. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4475. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4476. if piece in special_tokens:
  4477. toktype = SentencePieceTokenTypes.CONTROL
  4478. elif len(piece) == 0:
  4479. text = f"[PAD{token_id}]".encode("utf-8")
  4480. toktype = SentencePieceTokenTypes.UNUSED
  4481. else:
  4482. toktype = SentencePieceTokenTypes.USER_DEFINED
  4483. tokens.append(text)
  4484. scores.append(score)
  4485. toktypes.append(toktype)
  4486. continue
  4487. toktype = SentencePieceTokenTypes.NORMAL
  4488. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4489. toktype = SentencePieceTokenTypes.UNKNOWN
  4490. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4491. toktype = SentencePieceTokenTypes.CONTROL
  4492. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4493. toktype = SentencePieceTokenTypes.UNUSED
  4494. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4495. toktype = SentencePieceTokenTypes.BYTE
  4496. tokens.append(text)
  4497. scores.append(score)
  4498. toktypes.append(toktype)
  4499. self.gguf_writer.add_tokenizer_model("llama")
  4500. # glm3 needs prefix and suffix formatted as:
  4501. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4502. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4503. self.gguf_writer.add_token_list(tokens)
  4504. self.gguf_writer.add_token_scores(scores)
  4505. self.gguf_writer.add_token_types(toktypes)
  4506. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4507. special_vocab.add_to_gguf(self.gguf_writer)
  4508. @staticmethod
  4509. def token_bytes_to_string(b):
  4510. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4511. byte_encoder = bytes_to_unicode()
  4512. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4513. @staticmethod
  4514. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4515. parts = [bytes([b]) for b in token]
  4516. while True:
  4517. min_idx = None
  4518. min_rank = None
  4519. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4520. rank = mergeable_ranks.get(pair[0] + pair[1])
  4521. if rank is not None and (min_rank is None or rank < min_rank):
  4522. min_idx = i
  4523. min_rank = rank
  4524. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4525. break
  4526. assert min_idx is not None
  4527. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4528. return parts
  4529. def set_vocab(self):
  4530. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4531. self.set_vocab_chatglm3()
  4532. return
  4533. dir_model = self.dir_model
  4534. hparams = self.hparams
  4535. tokens: list[str] = []
  4536. toktypes: list[int] = []
  4537. from transformers import AutoTokenizer
  4538. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4539. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4540. assert max(tokenizer.get_vocab().values()) < vocab_size
  4541. tokens, toktypes, tokpre = self.get_vocab_base()
  4542. self.gguf_writer.add_tokenizer_model("gpt2")
  4543. self.gguf_writer.add_tokenizer_pre(tokpre)
  4544. self.gguf_writer.add_token_list(tokens)
  4545. self.gguf_writer.add_token_types(toktypes)
  4546. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4547. # only add special tokens when they were not already loaded from config.json
  4548. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4549. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4550. # this one is usually not in config.json anyway
  4551. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4552. special_vocab.add_to_gguf(self.gguf_writer)
  4553. def set_gguf_parameters(self):
  4554. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4555. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4556. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4557. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4558. self.gguf_writer.add_embedding_length(n_embed)
  4559. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4560. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4561. self.gguf_writer.add_head_count(n_head)
  4562. self.gguf_writer.add_head_count_kv(n_head_kv)
  4563. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4564. self.gguf_writer.add_file_type(self.ftype)
  4565. if "attention_dim" in self.hparams:
  4566. rope_dim = self.hparams["attention_dim"]
  4567. else:
  4568. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4569. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4570. self.gguf_writer.add_add_bos_token(False)
  4571. rope_freq = 10000
  4572. if "rope_ratio" in self.hparams:
  4573. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4574. self.gguf_writer.add_rope_freq_base(rope_freq)
  4575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4576. del bid # unused
  4577. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4578. return []
  4579. name = name.removeprefix("transformer.")
  4580. return [(self.map_tensor_name(name), data_torch)]
  4581. @ModelBase.register("NemotronForCausalLM")
  4582. class NemotronModel(TextModel):
  4583. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4584. def set_vocab(self):
  4585. self._set_vocab_sentencepiece()
  4586. self.gguf_writer.add_pad_token_id(0)
  4587. self.gguf_writer.add_unk_token_id(1)
  4588. def set_gguf_parameters(self):
  4589. super().set_gguf_parameters()
  4590. hparams = self.hparams
  4591. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4592. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4593. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4594. # * Partial RoPE
  4595. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4596. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4597. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4598. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4599. # * RopeScaling for Nemotron
  4600. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4601. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4602. else:
  4603. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4604. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4606. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4607. # model.layers.{l}.input_layernorm.weight
  4608. # model.layers.{l}.post_attention_layernorm.weight
  4609. # model.norm.weight
  4610. if name.endswith("norm.weight"):
  4611. data_torch = data_torch + 1
  4612. return [(self.map_tensor_name(name), data_torch)]
  4613. @ModelBase.register("ExaoneForCausalLM")
  4614. class ExaoneModel(TextModel):
  4615. model_arch = gguf.MODEL_ARCH.EXAONE
  4616. def set_gguf_parameters(self):
  4617. hparams = self.hparams
  4618. assert (hparams["activation_function"] == "silu")
  4619. max_position_embeddings = hparams["max_position_embeddings"]
  4620. embed_dim = hparams["hidden_size"]
  4621. num_heads = hparams["num_attention_heads"]
  4622. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4623. layer_norm_eps = hparams["layer_norm_epsilon"]
  4624. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4625. num_layers = hparams["num_layers"]
  4626. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4627. # attention_dropout_rate = hparams["attention_dropout"]
  4628. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4629. # embed_dropout_rate = hparams["embed_dropout"]
  4630. self.gguf_writer.add_embedding_length(embed_dim)
  4631. self.gguf_writer.add_head_count(num_heads)
  4632. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4633. self.gguf_writer.add_context_length(max_position_embeddings)
  4634. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4635. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4636. self.gguf_writer.add_block_count(num_layers)
  4637. self.gguf_writer.add_file_type(self.ftype)
  4638. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4639. self.gguf_writer.add_rope_freq_base(rope_theta)
  4640. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4641. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4642. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4643. rope_scaling = self.hparams.get("rope_scaling") or {}
  4644. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4645. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4646. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4647. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4648. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4649. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4650. base = self.hparams.get("rope_theta", 10000.0)
  4651. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4652. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4653. factor = rope_scaling.get("factor", 8.0)
  4654. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4655. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4656. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4657. low_freq_wavelen = old_context_len / low_freq_factor
  4658. high_freq_wavelen = old_context_len / high_freq_factor
  4659. assert low_freq_wavelen != high_freq_wavelen
  4660. rope_factors = []
  4661. for freq in freqs:
  4662. wavelen = 2 * math.pi / freq
  4663. if wavelen < high_freq_wavelen:
  4664. rope_factors.append(1)
  4665. elif wavelen > low_freq_wavelen:
  4666. rope_factors.append(factor)
  4667. else:
  4668. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4669. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4670. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4671. @ModelBase.register("GraniteForCausalLM")
  4672. class GraniteModel(LlamaModel):
  4673. """Conversion for IBM's GraniteForCausalLM"""
  4674. model_arch = gguf.MODEL_ARCH.GRANITE
  4675. def set_gguf_parameters(self):
  4676. """Granite uses standard llama parameters with the following differences:
  4677. - No head_dim support
  4678. - New multiplier params:
  4679. - attention_scale
  4680. - embedding_scale
  4681. - residual_scale
  4682. - logits_scaling
  4683. """
  4684. if head_dim := self.hparams.pop("head_dim", None):
  4685. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4686. super().set_gguf_parameters()
  4687. # NOTE: Convert _multiplier params to _scale params for naming
  4688. # consistency
  4689. if attention_scale := self.hparams.get("attention_multiplier"):
  4690. self.gguf_writer.add_attention_scale(attention_scale)
  4691. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4692. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4693. self.gguf_writer.add_embedding_scale(embedding_scale)
  4694. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4695. if residual_scale := self.hparams.get("residual_multiplier"):
  4696. self.gguf_writer.add_residual_scale(residual_scale)
  4697. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4698. if logits_scale := self.hparams.get("logits_scaling"):
  4699. self.gguf_writer.add_logit_scale(logits_scale)
  4700. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4701. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  4702. class GraniteMoeModel(GraniteModel):
  4703. """Conversion for IBM's GraniteMoeForCausalLM"""
  4704. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4705. def set_gguf_parameters(self):
  4706. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  4707. - shared_intermediate_size
  4708. """
  4709. super().set_gguf_parameters()
  4710. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  4711. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  4712. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  4713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4714. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4715. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4716. the hidden size that is then split during forward. To keep compatibility
  4717. with existing mixtral support, we pull them apart here.
  4718. """
  4719. if name.endswith("block_sparse_moe.input_linear.weight"):
  4720. ffn_dim = self.hparams["intermediate_size"]
  4721. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4722. gate, up = data_torch.split(ffn_dim, dim=-2)
  4723. return [
  4724. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4725. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4726. ]
  4727. if name.endswith("shared_mlp.input_linear.weight"):
  4728. ffn_dim = self.hparams["shared_intermediate_size"]
  4729. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  4730. gate, up = data_torch.split(ffn_dim, dim=-2)
  4731. return [
  4732. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  4733. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  4734. ]
  4735. return super().modify_tensors(data_torch, name, bid)
  4736. @ModelBase.register("BailingMoeForCausalLM")
  4737. class BailingMoeModel(TextModel):
  4738. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4739. def set_vocab(self):
  4740. self._set_vocab_gpt2()
  4741. def set_gguf_parameters(self):
  4742. super().set_gguf_parameters()
  4743. hparams = self.hparams
  4744. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4745. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4746. rope_scaling = self.hparams.get("rope_scaling") or {}
  4747. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4748. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4749. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4750. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4751. else:
  4752. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4753. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4754. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4755. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4756. self.gguf_writer.add_expert_weights_scale(1.0)
  4757. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4758. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4759. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4760. _experts: list[dict[str, Tensor]] | None = None
  4761. @staticmethod
  4762. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4763. if n_head_kv is not None and n_head != n_head_kv:
  4764. n_head = n_head_kv
  4765. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4766. .swapaxes(1, 2)
  4767. .reshape(weights.shape))
  4768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4769. n_head = self.hparams["num_attention_heads"]
  4770. n_kv_head = self.hparams.get("num_key_value_heads")
  4771. n_embd = self.hparams["hidden_size"]
  4772. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4773. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4774. if name.endswith("attention.dense.weight"):
  4775. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4776. elif name.endswith("query_key_value.weight"):
  4777. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4778. return [
  4779. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4780. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4781. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4782. ]
  4783. elif name.find("mlp.experts") != -1:
  4784. n_experts = self.hparams["num_experts"]
  4785. assert bid is not None
  4786. tensors: list[tuple[str, Tensor]] = []
  4787. if self._experts is None:
  4788. self._experts = [{} for _ in range(self.block_count)]
  4789. self._experts[bid][name] = data_torch
  4790. if len(self._experts[bid]) >= n_experts * 3:
  4791. # merge the experts into a single 3d tensor
  4792. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4793. datas: list[Tensor] = []
  4794. for xid in range(n_experts):
  4795. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4796. datas.append(self._experts[bid][ename])
  4797. del self._experts[bid][ename]
  4798. data_torch = torch.stack(datas, dim=0)
  4799. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4800. new_name = self.map_tensor_name(merged_name)
  4801. tensors.append((new_name, data_torch))
  4802. return tensors
  4803. new_name = self.map_tensor_name(name)
  4804. if new_name == output_name and self.hparams.get("norm_head"):
  4805. data_torch = data_torch.float()
  4806. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4807. return [(new_name, data_torch)]
  4808. def prepare_tensors(self):
  4809. super().prepare_tensors()
  4810. if self._experts is not None:
  4811. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4812. experts = [k for d in self._experts for k in d.keys()]
  4813. if len(experts) > 0:
  4814. raise ValueError(f"Unprocessed experts: {experts}")
  4815. @ModelBase.register("ChameleonForConditionalGeneration")
  4816. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4817. class ChameleonModel(TextModel):
  4818. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4819. def set_gguf_parameters(self):
  4820. super().set_gguf_parameters()
  4821. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4822. def set_vocab(self):
  4823. self._set_vocab_gpt2()
  4824. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4825. # ignore image tokenizer for now
  4826. # TODO: remove this once image support is implemented for Chameleon
  4827. if name.startswith("model.vqmodel"):
  4828. return []
  4829. n_head = self.hparams["num_attention_heads"]
  4830. n_kv_head = self.hparams.get("num_key_value_heads")
  4831. hidden_dim = self.hparams.get("hidden_size")
  4832. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4833. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4834. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4835. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4836. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4837. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4838. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4839. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4840. return [(self.map_tensor_name(name), data_torch)]
  4841. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4842. @staticmethod
  4843. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4844. head_dim = hidden_dim // n_heads
  4845. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4846. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4847. return data_torch
  4848. @ModelBase.register("UltravoxModel")
  4849. class UltravoxModel(TextModel):
  4850. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  4851. def __init__(self, *args, **kwargs):
  4852. super().__init__(*args, **kwargs)
  4853. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  4854. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  4855. class WhisperEncoderModel(MmprojModel):
  4856. has_vision_encoder = False # no vision encoder
  4857. has_audio_encoder = True
  4858. def __init__(self, *args, **kwargs):
  4859. super().__init__(*args, **kwargs)
  4860. self.hparams["hidden_size"] = self.hparams["d_model"]
  4861. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  4862. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  4863. def set_gguf_parameters(self):
  4864. super().set_gguf_parameters()
  4865. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  4866. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  4867. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  4868. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4869. del bid, new_name, n_dims # unused
  4870. if ".conv" in name and ".weight" in name:
  4871. return gguf.GGMLQuantizationType.F16
  4872. return False
  4873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4874. del bid # unused
  4875. if name.startswith("language_model."):
  4876. # skip language model tensors
  4877. return []
  4878. # prevent clash naming with vision tensors
  4879. if name.startswith("multi_modal_projector"):
  4880. name = "audio." + name
  4881. if "conv1.bias" in name or "conv2.bias" in name:
  4882. # transpose conv1 and conv2 bias
  4883. data_torch = data_torch.unsqueeze(-1)
  4884. return [(self.map_tensor_name(name), data_torch)]
  4885. @ModelBase.register("UltravoxModel")
  4886. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  4887. has_vision_encoder = False # no vision encoder
  4888. has_audio_encoder = True
  4889. def set_gguf_parameters(self):
  4890. super().set_gguf_parameters()
  4891. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  4892. ###### CONVERSION LOGIC ######
  4893. # tree of lazy tensors
  4894. class LazyTorchTensor(gguf.LazyBase):
  4895. _tensor_type = torch.Tensor
  4896. # to keep the type-checker happy
  4897. dtype: torch.dtype
  4898. shape: torch.Size
  4899. # only used when converting a torch.Tensor to a np.ndarray
  4900. _dtype_map: dict[torch.dtype, type] = {
  4901. torch.float16: np.float16,
  4902. torch.float32: np.float32,
  4903. }
  4904. # used for safetensors slices
  4905. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4906. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4907. _dtype_str_map: dict[str, torch.dtype] = {
  4908. "F64": torch.float64,
  4909. "F32": torch.float32,
  4910. "BF16": torch.bfloat16,
  4911. "F16": torch.float16,
  4912. # "U64": torch.uint64,
  4913. "I64": torch.int64,
  4914. # "U32": torch.uint32,
  4915. "I32": torch.int32,
  4916. # "U16": torch.uint16,
  4917. "I16": torch.int16,
  4918. "U8": torch.uint8,
  4919. "I8": torch.int8,
  4920. "BOOL": torch.bool,
  4921. "F8_E4M3": torch.float8_e4m3fn,
  4922. "F8_E5M2": torch.float8_e5m2,
  4923. }
  4924. def numpy(self) -> gguf.LazyNumpyTensor:
  4925. dtype = self._dtype_map[self.dtype]
  4926. return gguf.LazyNumpyTensor(
  4927. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4928. args=(self,),
  4929. func=(lambda s: s.numpy())
  4930. )
  4931. @classmethod
  4932. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4933. return torch.empty(size=shape, dtype=dtype, device="meta")
  4934. @classmethod
  4935. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4936. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4937. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4938. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4939. return cast(torch.Tensor, lazy)
  4940. @classmethod
  4941. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4942. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4943. shape = remote_tensor.shape
  4944. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4945. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4946. return cast(torch.Tensor, lazy)
  4947. @classmethod
  4948. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4949. del types # unused
  4950. if kwargs is None:
  4951. kwargs = {}
  4952. if func is torch.Tensor.numpy:
  4953. return args[0].numpy()
  4954. return cls._wrap_fn(func)(*args, **kwargs)
  4955. def parse_args() -> argparse.Namespace:
  4956. parser = argparse.ArgumentParser(
  4957. description="Convert a huggingface model to a GGML compatible file")
  4958. parser.add_argument(
  4959. "--vocab-only", action="store_true",
  4960. help="extract only the vocab",
  4961. )
  4962. parser.add_argument(
  4963. "--outfile", type=Path,
  4964. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4965. )
  4966. parser.add_argument(
  4967. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4968. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4969. )
  4970. parser.add_argument(
  4971. "--bigendian", action="store_true",
  4972. help="model is executed on big endian machine",
  4973. )
  4974. parser.add_argument(
  4975. "model", type=Path,
  4976. help="directory containing model file",
  4977. nargs="?",
  4978. )
  4979. parser.add_argument(
  4980. "--use-temp-file", action="store_true",
  4981. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4982. )
  4983. parser.add_argument(
  4984. "--no-lazy", action="store_true",
  4985. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4986. )
  4987. parser.add_argument(
  4988. "--model-name", type=str, default=None,
  4989. help="name of the model",
  4990. )
  4991. parser.add_argument(
  4992. "--verbose", action="store_true",
  4993. help="increase output verbosity",
  4994. )
  4995. parser.add_argument(
  4996. "--split-max-tensors", type=int, default=0,
  4997. help="max tensors in each split",
  4998. )
  4999. parser.add_argument(
  5000. "--split-max-size", type=str, default="0",
  5001. help="max size per split N(M|G)",
  5002. )
  5003. parser.add_argument(
  5004. "--dry-run", action="store_true",
  5005. help="only print out a split plan and exit, without writing any new files",
  5006. )
  5007. parser.add_argument(
  5008. "--no-tensor-first-split", action="store_true",
  5009. help="do not add tensors to the first split (disabled by default)"
  5010. )
  5011. parser.add_argument(
  5012. "--metadata", type=Path,
  5013. help="Specify the path for an authorship metadata override file"
  5014. )
  5015. parser.add_argument(
  5016. "--print-supported-models", action="store_true",
  5017. help="Print the supported models"
  5018. )
  5019. parser.add_argument(
  5020. "--remote", action="store_true",
  5021. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5022. )
  5023. parser.add_argument(
  5024. "--mmproj", action="store_true",
  5025. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5026. )
  5027. args = parser.parse_args()
  5028. if not args.print_supported_models and args.model is None:
  5029. parser.error("the following arguments are required: model")
  5030. return args
  5031. def split_str_to_n_bytes(split_str: str) -> int:
  5032. if split_str.endswith("K"):
  5033. n = int(split_str[:-1]) * 1000
  5034. elif split_str.endswith("M"):
  5035. n = int(split_str[:-1]) * 1000 * 1000
  5036. elif split_str.endswith("G"):
  5037. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5038. elif split_str.isnumeric():
  5039. n = int(split_str)
  5040. else:
  5041. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5042. if n < 0:
  5043. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5044. return n
  5045. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5046. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5047. # maybe we should fallback to text model's arch in that case, since not many models have both
  5048. text_config = hparams.get("text_config", {})
  5049. vision_config = hparams.get("vision_config", {})
  5050. arch = hparams["architectures"][0]
  5051. # if "architectures" is found in the sub-config, use that instead
  5052. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5053. arch = text_config["architectures"][0]
  5054. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5055. arch = vision_config["architectures"][0]
  5056. return arch
  5057. def main() -> None:
  5058. args = parse_args()
  5059. if args.print_supported_models:
  5060. logger.error("Supported models:")
  5061. ModelBase.print_registered_models()
  5062. sys.exit(0)
  5063. if args.verbose:
  5064. logging.basicConfig(level=logging.DEBUG)
  5065. else:
  5066. logging.basicConfig(level=logging.INFO)
  5067. dir_model = args.model
  5068. if args.remote:
  5069. from huggingface_hub import snapshot_download
  5070. local_dir = snapshot_download(
  5071. repo_id=str(dir_model),
  5072. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5073. dir_model = Path(local_dir)
  5074. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5075. if not dir_model.is_dir():
  5076. logger.error(f'Error: {args.model} is not a directory')
  5077. sys.exit(1)
  5078. ftype_map: dict[str, gguf.LlamaFileType] = {
  5079. "f32": gguf.LlamaFileType.ALL_F32,
  5080. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5081. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5082. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5083. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5084. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5085. "auto": gguf.LlamaFileType.GUESSED,
  5086. }
  5087. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5088. if args.use_temp_file and is_split:
  5089. logger.error("Error: Cannot use temp file when splitting")
  5090. sys.exit(1)
  5091. if args.outfile is not None:
  5092. fname_out = args.outfile
  5093. elif args.remote:
  5094. # if remote, use the model ID as the output file name
  5095. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  5096. else:
  5097. fname_out = dir_model
  5098. logger.info(f"Loading model: {dir_model.name}")
  5099. if args.mmproj:
  5100. if "mmproj" not in fname_out.name:
  5101. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5102. with torch.inference_mode():
  5103. output_type = ftype_map[args.outtype]
  5104. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5105. hparams = ModelBase.load_hparams(dir_model)
  5106. model_architecture = get_model_architecture(hparams, model_type)
  5107. logger.info(f"Model architecture: {model_architecture}")
  5108. try:
  5109. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5110. except NotImplementedError:
  5111. logger.error(f"Model {model_architecture} is not supported")
  5112. sys.exit(1)
  5113. model_instance = model_class(dir_model, output_type, fname_out,
  5114. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5115. eager=args.no_lazy,
  5116. metadata_override=args.metadata, model_name=args.model_name,
  5117. split_max_tensors=args.split_max_tensors,
  5118. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5119. small_first_shard=args.no_tensor_first_split,
  5120. remote_hf_model_id=str(args.model) if args.remote else None)
  5121. if args.vocab_only:
  5122. logger.info("Exporting model vocab...")
  5123. model_instance.write_vocab()
  5124. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5125. else:
  5126. logger.info("Exporting model...")
  5127. model_instance.write()
  5128. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5129. logger.info(f"Model successfully exported to {out_path}")
  5130. if __name__ == '__main__':
  5131. main()