clip.cpp 172 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #define STB_IMAGE_IMPLEMENTATION
  14. #include "stb_image.h"
  15. #include <cassert>
  16. #include <cmath>
  17. #include <cstdlib>
  18. #include <cstring>
  19. #include <fstream>
  20. #include <map>
  21. #include <regex>
  22. #include <stdexcept>
  23. #include <unordered_set>
  24. #include <vector>
  25. #include <sstream>
  26. #include <cinttypes>
  27. #include <limits>
  28. #include <array>
  29. #include <numeric>
  30. #include <functional>
  31. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  32. enum ffn_op_type {
  33. FFN_GELU,
  34. FFN_GELU_ERF,
  35. FFN_SILU,
  36. FFN_GELU_QUICK,
  37. };
  38. enum norm_type {
  39. NORM_TYPE_NORMAL,
  40. NORM_TYPE_RMS,
  41. };
  42. //#define CLIP_DEBUG_FUNCTIONS
  43. #ifdef CLIP_DEBUG_FUNCTIONS
  44. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  45. std::ofstream file(filename, std::ios::binary);
  46. if (!file.is_open()) {
  47. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  48. return;
  49. }
  50. // PPM header: P6 format, width, height, and max color value
  51. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  52. // Write pixel data
  53. for (size_t i = 0; i < img.buf.size(); i += 3) {
  54. // PPM expects binary data in RGB format, which matches our image buffer
  55. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  56. }
  57. file.close();
  58. }
  59. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  60. std::ofstream file(filename, std::ios::binary);
  61. if (!file.is_open()) {
  62. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  63. return;
  64. }
  65. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  66. int bytesPerPixel = 3;
  67. int widthInBytes = img.nx * bytesPerPixel;
  68. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  69. int stride = widthInBytes + paddingAmount;
  70. // Bitmap file header
  71. unsigned char fileHeader[14] = {
  72. 'B','M', // Signature
  73. 0,0,0,0, // Image file size in bytes
  74. 0,0,0,0, // Reserved
  75. 54,0,0,0 // Start of pixel array
  76. };
  77. // Total file size
  78. fileSize = 54 + (stride * img.ny);
  79. fileHeader[2] = (unsigned char)(fileSize);
  80. fileHeader[3] = (unsigned char)(fileSize >> 8);
  81. fileHeader[4] = (unsigned char)(fileSize >> 16);
  82. fileHeader[5] = (unsigned char)(fileSize >> 24);
  83. // Bitmap information header (BITMAPINFOHEADER)
  84. unsigned char infoHeader[40] = {
  85. 40,0,0,0, // Size of this header (40 bytes)
  86. 0,0,0,0, // Image width
  87. 0,0,0,0, // Image height
  88. 1,0, // Number of color planes
  89. 24,0, // Bits per pixel
  90. 0,0,0,0, // No compression
  91. 0,0,0,0, // Image size (can be 0 for no compression)
  92. 0,0,0,0, // X pixels per meter (not specified)
  93. 0,0,0,0, // Y pixels per meter (not specified)
  94. 0,0,0,0, // Total colors (color table not used)
  95. 0,0,0,0 // Important colors (all are important)
  96. };
  97. // Width and height in the information header
  98. infoHeader[4] = (unsigned char)(img.nx);
  99. infoHeader[5] = (unsigned char)(img.nx >> 8);
  100. infoHeader[6] = (unsigned char)(img.nx >> 16);
  101. infoHeader[7] = (unsigned char)(img.nx >> 24);
  102. infoHeader[8] = (unsigned char)(img.ny);
  103. infoHeader[9] = (unsigned char)(img.ny >> 8);
  104. infoHeader[10] = (unsigned char)(img.ny >> 16);
  105. infoHeader[11] = (unsigned char)(img.ny >> 24);
  106. // Write file headers
  107. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  108. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  109. // Pixel data
  110. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  111. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  112. for (int x = 0; x < img.nx; ++x) {
  113. // Each pixel
  114. size_t pixelIndex = (y * img.nx + x) * 3;
  115. unsigned char pixel[3] = {
  116. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  117. img.buf[pixelIndex + 1],
  118. img.buf[pixelIndex]
  119. };
  120. file.write(reinterpret_cast<char*>(pixel), 3);
  121. }
  122. // Write padding for the row
  123. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  124. }
  125. file.close();
  126. }
  127. // debug function to convert f32 to u8
  128. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  129. dst.nx = src.nx;
  130. dst.ny = src.ny;
  131. dst.buf.resize(3 * src.nx * src.ny);
  132. for (size_t i = 0; i < src.buf.size(); ++i) {
  133. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  134. }
  135. }
  136. #endif
  137. //
  138. // clip layers
  139. //
  140. enum patch_merge_type {
  141. PATCH_MERGE_FLAT,
  142. PATCH_MERGE_SPATIAL_UNPAD,
  143. };
  144. struct clip_hparams {
  145. bool has_vision = false;
  146. bool has_audio = false;
  147. int32_t image_size;
  148. int32_t patch_size;
  149. int32_t n_embd;
  150. int32_t n_ff;
  151. int32_t projection_dim;
  152. int32_t n_head;
  153. int32_t n_layer;
  154. int32_t proj_scale_factor = 0; // idefics3
  155. // for models using dynamic image size, we need to have a smaller image size to warmup
  156. // otherwise, user will get OOM everytime they load the model
  157. int32_t warmup_image_size = 0;
  158. ffn_op_type ffn_op = FFN_GELU;
  159. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  160. float eps = 1e-6;
  161. float rope_theta = 0.0;
  162. std::vector<int32_t> image_grid_pinpoints;
  163. int32_t image_crop_resolution;
  164. std::unordered_set<int32_t> vision_feature_layer;
  165. int32_t attn_window_size = 0;
  166. int32_t n_wa_pattern = 0;
  167. int32_t spatial_merge_size = 0;
  168. // audio
  169. int32_t n_mel_bins = 0; // whisper preprocessor
  170. int32_t proj_stack_factor = 0; // ultravox
  171. };
  172. struct clip_layer {
  173. // attention
  174. ggml_tensor * k_w = nullptr;
  175. ggml_tensor * k_b = nullptr;
  176. ggml_tensor * q_w = nullptr;
  177. ggml_tensor * q_b = nullptr;
  178. ggml_tensor * v_w = nullptr;
  179. ggml_tensor * v_b = nullptr;
  180. ggml_tensor * o_w = nullptr;
  181. ggml_tensor * o_b = nullptr;
  182. ggml_tensor * k_norm = nullptr;
  183. ggml_tensor * q_norm = nullptr;
  184. // layernorm 1
  185. ggml_tensor * ln_1_w = nullptr;
  186. ggml_tensor * ln_1_b = nullptr;
  187. ggml_tensor * ff_up_w = nullptr;
  188. ggml_tensor * ff_up_b = nullptr;
  189. ggml_tensor * ff_gate_w = nullptr;
  190. ggml_tensor * ff_gate_b = nullptr;
  191. ggml_tensor * ff_down_w = nullptr;
  192. ggml_tensor * ff_down_b = nullptr;
  193. // layernorm 2
  194. ggml_tensor * ln_2_w = nullptr;
  195. ggml_tensor * ln_2_b = nullptr;
  196. // layer scale (no bias)
  197. ggml_tensor * ls_1_w = nullptr;
  198. ggml_tensor * ls_2_w = nullptr;
  199. };
  200. struct clip_vision_model {
  201. struct clip_hparams hparams;
  202. // embeddings
  203. ggml_tensor * class_embedding = nullptr;
  204. ggml_tensor * patch_embeddings_0 = nullptr;
  205. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  206. ggml_tensor * patch_bias = nullptr;
  207. ggml_tensor * position_embeddings = nullptr;
  208. ggml_tensor * pre_ln_w = nullptr;
  209. ggml_tensor * pre_ln_b = nullptr;
  210. std::vector<clip_layer> layers;
  211. ggml_tensor * post_ln_w;
  212. ggml_tensor * post_ln_b;
  213. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  214. ggml_tensor * mm_fc_w;
  215. ggml_tensor * mm_fc_b;
  216. // LLaVA projection
  217. ggml_tensor * mm_input_norm_w = nullptr;
  218. ggml_tensor * mm_0_w = nullptr;
  219. ggml_tensor * mm_0_b = nullptr;
  220. ggml_tensor * mm_2_w = nullptr;
  221. ggml_tensor * mm_2_b = nullptr;
  222. ggml_tensor * image_newline = nullptr;
  223. // Yi type models with mlp+normalization projection
  224. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  225. ggml_tensor * mm_1_b = nullptr;
  226. ggml_tensor * mm_3_w = nullptr;
  227. ggml_tensor * mm_3_b = nullptr;
  228. ggml_tensor * mm_4_w = nullptr;
  229. ggml_tensor * mm_4_b = nullptr;
  230. // GLMV-Edge projection
  231. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  232. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  233. ggml_tensor * mm_glm_tok_boi = nullptr;
  234. ggml_tensor * mm_glm_tok_eoi = nullptr;
  235. // MobileVLM projection
  236. ggml_tensor * mm_model_mlp_1_w = nullptr;
  237. ggml_tensor * mm_model_mlp_1_b = nullptr;
  238. ggml_tensor * mm_model_mlp_3_w = nullptr;
  239. ggml_tensor * mm_model_mlp_3_b = nullptr;
  240. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  241. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  242. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  243. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  244. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  245. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  246. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  247. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  248. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  249. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  250. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  251. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  252. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  253. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  254. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  255. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  256. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  257. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  258. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  259. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  260. // MobileVLM_V2 projection
  261. ggml_tensor * mm_model_mlp_0_w = nullptr;
  262. ggml_tensor * mm_model_mlp_0_b = nullptr;
  263. ggml_tensor * mm_model_mlp_2_w = nullptr;
  264. ggml_tensor * mm_model_mlp_2_b = nullptr;
  265. ggml_tensor * mm_model_peg_0_w = nullptr;
  266. ggml_tensor * mm_model_peg_0_b = nullptr;
  267. // MINICPMV projection
  268. ggml_tensor * mm_model_pos_embed_k = nullptr;
  269. ggml_tensor * mm_model_query = nullptr;
  270. ggml_tensor * mm_model_proj = nullptr;
  271. ggml_tensor * mm_model_kv_proj = nullptr;
  272. ggml_tensor * mm_model_attn_q_w = nullptr;
  273. ggml_tensor * mm_model_attn_q_b = nullptr;
  274. ggml_tensor * mm_model_attn_k_w = nullptr;
  275. ggml_tensor * mm_model_attn_k_b = nullptr;
  276. ggml_tensor * mm_model_attn_v_w = nullptr;
  277. ggml_tensor * mm_model_attn_v_b = nullptr;
  278. ggml_tensor * mm_model_attn_o_w = nullptr;
  279. ggml_tensor * mm_model_attn_o_b = nullptr;
  280. ggml_tensor * mm_model_ln_q_w = nullptr;
  281. ggml_tensor * mm_model_ln_q_b = nullptr;
  282. ggml_tensor * mm_model_ln_kv_w = nullptr;
  283. ggml_tensor * mm_model_ln_kv_b = nullptr;
  284. ggml_tensor * mm_model_ln_post_w = nullptr;
  285. ggml_tensor * mm_model_ln_post_b = nullptr;
  286. // gemma3
  287. ggml_tensor * mm_input_proj_w = nullptr;
  288. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  289. // pixtral
  290. ggml_tensor * token_embd_img_break = nullptr;
  291. ggml_tensor * mm_patch_merger_w = nullptr;
  292. // ultravox / whisper encoder
  293. ggml_tensor * conv1d_1_w = nullptr;
  294. ggml_tensor * conv1d_1_b = nullptr;
  295. ggml_tensor * conv1d_2_w = nullptr;
  296. ggml_tensor * conv1d_2_b = nullptr;
  297. ggml_tensor * mm_norm_pre_w = nullptr;
  298. ggml_tensor * mm_norm_mid_w = nullptr;
  299. };
  300. struct clip_ctx {
  301. bool has_llava_projector = false;
  302. int minicpmv_version = 0;
  303. struct clip_vision_model vision_model;
  304. projector_type proj_type = PROJECTOR_TYPE_MLP;
  305. float image_mean[3];
  306. float image_std[3];
  307. gguf_context_ptr ctx_gguf;
  308. ggml_context_ptr ctx_data;
  309. std::vector<uint8_t> buf_compute_meta;
  310. std::vector<ggml_backend_t> backend_ptrs;
  311. std::vector<ggml_backend_buffer_type_t> backend_buft;
  312. ggml_backend_t backend;
  313. ggml_backend_t backend_cpu;
  314. ggml_backend_buffer_ptr buf;
  315. int max_nodes = 8192;
  316. ggml_backend_sched_ptr sched;
  317. // for debugging
  318. bool debug_graph = false;
  319. std::vector<ggml_tensor *> debug_print_tensors;
  320. clip_ctx(clip_context_params & ctx_params) {
  321. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  322. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  323. if (!backend_cpu) {
  324. throw std::runtime_error("failed to initialize CPU backend");
  325. }
  326. backend = ctx_params.use_gpu
  327. ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
  328. : nullptr;
  329. if (backend) {
  330. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  331. backend_ptrs.push_back(backend);
  332. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  333. } else {
  334. backend = backend_cpu;
  335. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  336. }
  337. backend_ptrs.push_back(backend_cpu);
  338. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  339. sched.reset(
  340. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  341. );
  342. }
  343. ~clip_ctx() {
  344. ggml_backend_free(backend);
  345. if (backend != backend_cpu) {
  346. ggml_backend_free(backend_cpu);
  347. }
  348. }
  349. };
  350. struct clip_graph {
  351. clip_ctx * ctx;
  352. const clip_vision_model & model;
  353. const clip_hparams & hparams;
  354. // we only support single image per batch
  355. const clip_image_f32 & img;
  356. const int patch_size;
  357. const int n_patches_x;
  358. const int n_patches_y;
  359. const int n_patches;
  360. const int n_embd;
  361. const int n_head;
  362. const int d_head;
  363. const int n_layer;
  364. const float eps;
  365. const float kq_scale;
  366. ggml_context_ptr ctx0_ptr;
  367. ggml_context * ctx0;
  368. ggml_cgraph * gf;
  369. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  370. ctx(ctx),
  371. model(ctx->vision_model),
  372. hparams(model.hparams),
  373. img(img),
  374. patch_size(hparams.patch_size),
  375. n_patches_x(img.nx / patch_size),
  376. n_patches_y(img.ny / patch_size),
  377. n_patches(n_patches_x * n_patches_y),
  378. n_embd(hparams.n_embd),
  379. n_head(hparams.n_head),
  380. d_head(n_embd / n_head),
  381. n_layer(hparams.n_layer),
  382. eps(hparams.eps),
  383. kq_scale(1.0f / sqrtf((float)d_head)) {
  384. struct ggml_init_params params = {
  385. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  386. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  387. /*.no_alloc =*/ true,
  388. };
  389. ctx0_ptr.reset(ggml_init(params));
  390. ctx0 = ctx0_ptr.get();
  391. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  392. }
  393. ggml_cgraph * build_siglip() {
  394. ggml_tensor * inp = build_inp();
  395. ggml_tensor * cur = build_vit(
  396. inp, n_patches,
  397. NORM_TYPE_NORMAL,
  398. hparams.ffn_op,
  399. model.position_embeddings,
  400. nullptr);
  401. if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  402. const int batch_size = 1;
  403. GGML_ASSERT(n_patches_x == n_patches_y);
  404. const int patches_per_image = n_patches_x;
  405. const int kernel_size = hparams.proj_scale_factor;
  406. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  407. cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  408. // doing a pool2d to reduce the number of output tokens
  409. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  410. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  411. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  412. // apply norm before projection
  413. cur = ggml_rms_norm(ctx0, cur, eps);
  414. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  415. // apply projection
  416. cur = ggml_mul_mat(ctx0,
  417. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  418. cur);
  419. } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
  420. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  421. const int scale_factor = model.hparams.proj_scale_factor;
  422. const int n_embd = cur->ne[0];
  423. const int seq = cur->ne[1];
  424. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  425. const int height = std::sqrt(seq);
  426. const int width = std::sqrt(seq);
  427. GGML_ASSERT(scale_factor != 0);
  428. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
  429. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  430. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  431. n_embd * scale_factor * scale_factor,
  432. height / scale_factor,
  433. width / scale_factor,
  434. bsz);
  435. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  436. cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
  437. n_embd * scale_factor * scale_factor,
  438. seq / (scale_factor * scale_factor),
  439. bsz);
  440. cur = ggml_mul_mat(ctx0, model.projection, cur);
  441. } else {
  442. GGML_ABORT("SigLIP: Unsupported projector type");
  443. }
  444. // build the graph
  445. ggml_build_forward_expand(gf, cur);
  446. return gf;
  447. }
  448. ggml_cgraph * build_pixtral() {
  449. const int n_merge = hparams.spatial_merge_size;
  450. // 2D input positions
  451. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  452. ggml_set_name(pos_h, "pos_h");
  453. ggml_set_input(pos_h);
  454. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  455. ggml_set_name(pos_w, "pos_w");
  456. ggml_set_input(pos_w);
  457. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  458. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  459. };
  460. ggml_tensor * inp = build_inp();
  461. ggml_tensor * cur = build_vit(
  462. inp, n_patches,
  463. NORM_TYPE_RMS,
  464. hparams.ffn_op,
  465. nullptr, // no learned pos embd
  466. add_pos);
  467. // mistral small 3.1 patch merger
  468. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  469. if (model.mm_patch_merger_w) {
  470. GGML_ASSERT(hparams.spatial_merge_size > 0);
  471. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  472. // reshape image tokens to 2D grid
  473. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  474. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  475. cur = ggml_cont(ctx0, cur);
  476. // torch.nn.functional.unfold is just an im2col under the hood
  477. // we just need a dummy kernel to make it work
  478. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  479. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  480. // project to n_embd
  481. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  482. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  483. }
  484. // LlavaMultiModalProjector (always using GELU activation)
  485. {
  486. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  487. if (model.mm_1_b) {
  488. cur = ggml_add(ctx0, cur, model.mm_1_b);
  489. }
  490. cur = ggml_gelu(ctx0, cur);
  491. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  492. if (model.mm_2_b) {
  493. cur = ggml_add(ctx0, cur, model.mm_2_b);
  494. }
  495. }
  496. // arrangement of the [IMG_BREAK] token
  497. {
  498. // not efficient, but works
  499. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  500. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  501. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  502. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  503. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  504. const int p_total = p_x * p_y;
  505. const int n_embd_text = cur->ne[0];
  506. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  507. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  508. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  509. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  510. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  511. tmp = ggml_concat(ctx0, tmp, tok, 1);
  512. cur = ggml_view_2d(ctx0, tmp,
  513. n_embd_text, n_tokens_output,
  514. ggml_row_size(tmp->type, n_embd_text), 0);
  515. }
  516. // build the graph
  517. ggml_build_forward_expand(gf, cur);
  518. return gf;
  519. }
  520. // Qwen2VL and Qwen2.5VL use M-RoPE
  521. ggml_cgraph * build_qwen2vl() {
  522. GGML_ASSERT(model.patch_bias == nullptr);
  523. GGML_ASSERT(model.class_embedding == nullptr);
  524. const int batch_size = 1;
  525. const bool use_window_attn = hparams.n_wa_pattern > 0;
  526. const int n_wa_pattern = hparams.n_wa_pattern;
  527. const int n_pos = n_patches;
  528. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  529. norm_type norm_t = ctx->proj_type == PROJECTOR_TYPE_QWEN25VL
  530. ? NORM_TYPE_RMS // qwen 2.5 vl
  531. : NORM_TYPE_NORMAL; // qwen 2 vl
  532. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  533. ggml_tensor * inp_raw = build_inp_raw();
  534. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  535. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  536. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  537. // second conv dimension
  538. {
  539. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  540. inp = ggml_add(ctx0, inp, inp_1);
  541. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  542. inp = ggml_reshape_4d(
  543. ctx0, inp,
  544. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  545. inp = ggml_reshape_4d(
  546. ctx0, inp,
  547. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  548. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  549. inp = ggml_reshape_3d(
  550. ctx0, inp,
  551. n_embd, n_patches_x * n_patches_y, batch_size);
  552. }
  553. ggml_tensor * inpL = inp;
  554. ggml_tensor * window_mask = nullptr;
  555. ggml_tensor * window_idx = nullptr;
  556. ggml_tensor * inv_window_idx = nullptr;
  557. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  558. ggml_set_name(positions, "positions");
  559. ggml_set_input(positions);
  560. // pre-layernorm
  561. if (model.pre_ln_w) {
  562. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  563. }
  564. if (use_window_attn) {
  565. // handle window attention inputs
  566. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  567. ggml_set_name(inv_window_idx, "inv_window_idx");
  568. ggml_set_input(inv_window_idx);
  569. // mask for window attention
  570. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  571. ggml_set_name(window_mask, "window_mask");
  572. ggml_set_input(window_mask);
  573. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  574. GGML_ASSERT(batch_size == 1);
  575. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  576. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  577. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  578. }
  579. // loop over layers
  580. for (int il = 0; il < n_layer; il++) {
  581. auto & layer = model.layers[il];
  582. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  583. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  584. // layernorm1
  585. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  586. cb(cur, "ln1", il);
  587. // self-attention
  588. {
  589. ggml_tensor * Qcur = ggml_add(ctx0,
  590. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  591. ggml_tensor * Kcur = ggml_add(ctx0,
  592. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  593. ggml_tensor * Vcur = ggml_add(ctx0,
  594. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  595. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  596. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  597. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  598. cb(Qcur, "Qcur", il);
  599. cb(Kcur, "Kcur", il);
  600. cb(Vcur, "Vcur", il);
  601. // apply M-RoPE
  602. Qcur = ggml_rope_multi(
  603. ctx0, Qcur, positions, nullptr,
  604. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  605. Kcur = ggml_rope_multi(
  606. ctx0, Kcur, positions, nullptr,
  607. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  608. cb(Qcur, "Qcur_rope", il);
  609. cb(Kcur, "Kcur_rope", il);
  610. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  611. cur = build_attn(layer.o_w, layer.o_b,
  612. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  613. cb(cur, "attn_out", il);
  614. }
  615. // re-add the layer input, e.g., residual
  616. cur = ggml_add(ctx0, cur, inpL);
  617. inpL = cur; // inpL = residual, cur = hidden_states
  618. cb(cur, "ffn_inp", il);
  619. // layernorm2
  620. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  621. cb(cur, "ffn_inp_normed", il);
  622. // ffn
  623. cur = build_ffn(cur,
  624. layer.ff_up_w, layer.ff_up_b,
  625. layer.ff_gate_w, layer.ff_gate_b,
  626. layer.ff_down_w, layer.ff_down_b,
  627. hparams.ffn_op, il);
  628. cb(cur, "ffn_out", il);
  629. // residual 2
  630. cur = ggml_add(ctx0, inpL, cur);
  631. cb(cur, "layer_out", il);
  632. inpL = cur;
  633. }
  634. // post-layernorm
  635. if (model.post_ln_w) {
  636. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  637. }
  638. // multimodal projection
  639. ggml_tensor * embeddings = inpL;
  640. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  641. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  642. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  643. // GELU activation
  644. embeddings = ggml_gelu(ctx0, embeddings);
  645. // Second linear layer
  646. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  647. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  648. if (use_window_attn) {
  649. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  650. ggml_set_name(window_idx, "window_idx");
  651. ggml_set_input(window_idx);
  652. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  653. GGML_ASSERT(batch_size == 1);
  654. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  655. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  656. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  657. }
  658. // build the graph
  659. ggml_build_forward_expand(gf, embeddings);
  660. return gf;
  661. }
  662. ggml_cgraph * build_minicpmv() {
  663. const int batch_size = 1;
  664. GGML_ASSERT(model.class_embedding == nullptr);
  665. const int n_pos = n_patches;
  666. // position embeddings for the projector (not for ViT)
  667. int n_output_dim = clip_n_mmproj_embd(ctx);
  668. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  669. ggml_set_name(pos_embed, "pos_embed");
  670. ggml_set_input(pos_embed);
  671. // for selecting learned pos embd, used by ViT
  672. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  673. ggml_set_name(positions, "positions");
  674. ggml_set_input(positions);
  675. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  676. ggml_tensor * inp = build_inp();
  677. ggml_tensor * embeddings = build_vit(
  678. inp, n_patches,
  679. NORM_TYPE_NORMAL,
  680. hparams.ffn_op,
  681. learned_pos_embd,
  682. nullptr);
  683. // resampler projector (it is just another transformer)
  684. ggml_tensor * q = model.mm_model_query;
  685. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  686. // norm
  687. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  688. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  689. // k = v + pos_embed
  690. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  691. // attention
  692. {
  693. int n_embd = clip_n_mmproj_embd(ctx);
  694. const int d_head = 128;
  695. int n_head = n_embd/d_head;
  696. int num_query = 96;
  697. if (ctx->minicpmv_version == 2) {
  698. num_query = 96;
  699. } else if (ctx->minicpmv_version == 3) {
  700. num_query = 64;
  701. } else if (ctx->minicpmv_version == 4) {
  702. num_query = 64;
  703. }
  704. ggml_tensor * Q = ggml_add(ctx0,
  705. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  706. model.mm_model_attn_q_b);
  707. ggml_tensor * K = ggml_add(ctx0,
  708. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  709. model.mm_model_attn_k_b);
  710. ggml_tensor * V = ggml_add(ctx0,
  711. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  712. model.mm_model_attn_v_b);
  713. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  714. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  715. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  716. cb(Q, "resampler_Q", -1);
  717. cb(K, "resampler_K", -1);
  718. cb(V, "resampler_V", -1);
  719. embeddings = build_attn(
  720. model.mm_model_attn_o_w,
  721. model.mm_model_attn_o_b,
  722. Q, K, V, nullptr, kq_scale, -1);
  723. cb(embeddings, "resampler_attn_out", -1);
  724. }
  725. // layernorm
  726. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  727. // projection
  728. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  729. // build the graph
  730. ggml_build_forward_expand(gf, embeddings);
  731. return gf;
  732. }
  733. ggml_cgraph * build_internvl() {
  734. GGML_ASSERT(model.class_embedding != nullptr);
  735. GGML_ASSERT(model.position_embeddings != nullptr);
  736. const int n_pos = n_patches + 1;
  737. ggml_tensor * inp = build_inp();
  738. // add CLS token
  739. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  740. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  741. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  742. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  743. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  744. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  745. ggml_tensor * cur = build_vit(
  746. inp, n_pos,
  747. norm_t,
  748. hparams.ffn_op,
  749. model.position_embeddings,
  750. nullptr);
  751. // remove CLS token
  752. cur = ggml_view_2d(ctx0, cur,
  753. n_embd, n_patches,
  754. ggml_row_size(cur->type, n_embd), 0);
  755. // pixel shuffle
  756. {
  757. const int scale_factor = model.hparams.proj_scale_factor;
  758. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  759. const int height = n_patches_y;
  760. const int width = n_patches_x;
  761. GGML_ASSERT(scale_factor > 0);
  762. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  763. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  764. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  765. n_embd * scale_factor * scale_factor,
  766. height / scale_factor,
  767. width / scale_factor,
  768. bsz);
  769. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  770. // flatten to 2D
  771. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  772. n_embd * scale_factor * scale_factor,
  773. cur->ne[1] * cur->ne[2]);
  774. }
  775. // projector (always using GELU activation)
  776. {
  777. // projector LayerNorm uses pytorch's default eps = 1e-5
  778. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  779. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  780. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  781. cur = ggml_add(ctx0, cur, model.mm_1_b);
  782. cur = ggml_gelu(ctx0, cur);
  783. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  784. cur = ggml_add(ctx0, cur, model.mm_3_b);
  785. }
  786. // build the graph
  787. ggml_build_forward_expand(gf, cur);
  788. return gf;
  789. }
  790. ggml_cgraph * build_llama4() {
  791. GGML_ASSERT(model.class_embedding != nullptr);
  792. GGML_ASSERT(model.position_embeddings != nullptr);
  793. const int n_pos = n_patches + 1; // +1 for [CLS]
  794. // 2D input positions
  795. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  796. ggml_set_name(pos_h, "pos_h");
  797. ggml_set_input(pos_h);
  798. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  799. ggml_set_name(pos_w, "pos_w");
  800. ggml_set_input(pos_w);
  801. ggml_tensor * inp = build_inp_raw();
  802. // Llama4UnfoldConvolution
  803. {
  804. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  805. patch_size, patch_size, 3, n_embd);
  806. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  807. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  808. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  809. cb(inp, "patch_conv", -1);
  810. }
  811. // add CLS token
  812. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  813. // build ViT with 2D position embeddings
  814. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  815. // first half is X axis and second half is Y axis
  816. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  817. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  818. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  819. };
  820. ggml_tensor * cur = build_vit(
  821. inp, n_pos,
  822. NORM_TYPE_NORMAL,
  823. hparams.ffn_op,
  824. model.position_embeddings,
  825. add_pos);
  826. // remove CLS token
  827. cur = ggml_view_2d(ctx0, cur,
  828. n_embd, n_patches,
  829. ggml_row_size(cur->type, n_embd), 0);
  830. // pixel shuffle
  831. // based on Llama4VisionPixelShuffleMLP
  832. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  833. {
  834. const int scale_factor = model.hparams.proj_scale_factor;
  835. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  836. GGML_ASSERT(scale_factor > 0);
  837. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  838. cur = ggml_reshape_4d(ctx0, cur,
  839. n_embd * scale_factor,
  840. n_patches_x / scale_factor,
  841. n_patches_y,
  842. bsz);
  843. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  844. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  845. n_embd * scale_factor * scale_factor,
  846. n_patches_x / scale_factor,
  847. n_patches_y / scale_factor,
  848. bsz);
  849. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  850. // flatten to 2D
  851. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  852. n_embd * scale_factor * scale_factor,
  853. n_patches / scale_factor / scale_factor);
  854. cb(cur, "pixel_shuffle", -1);
  855. }
  856. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  857. {
  858. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  859. cur = ggml_gelu(ctx0, cur);
  860. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  861. cur = ggml_gelu(ctx0, cur);
  862. cb(cur, "adapter_mlp", -1);
  863. }
  864. // Llama4MultiModalProjector
  865. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  866. cb(cur, "projected", -1);
  867. // build the graph
  868. ggml_build_forward_expand(gf, cur);
  869. return gf;
  870. }
  871. // this graph is used by llava, granite and glm
  872. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  873. ggml_cgraph * build_llava() {
  874. const int batch_size = 1;
  875. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  876. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  877. // Calculate the deepest feature layer based on hparams and projector type
  878. int max_feature_layer = n_layer;
  879. {
  880. // Get the index of the second to last layer; this is the default for models that have a llava projector
  881. int il_last = hparams.n_layer - 1;
  882. int deepest_feature_layer = -1;
  883. if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  884. il_last += 1;
  885. }
  886. // If we set explicit vision feature layers, only go up to the deepest one
  887. // NOTE: only used by granite-vision models for now
  888. for (const auto & feature_layer : hparams.vision_feature_layer) {
  889. if (feature_layer > deepest_feature_layer) {
  890. deepest_feature_layer = feature_layer;
  891. }
  892. }
  893. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  894. }
  895. ggml_tensor * inp = build_inp();
  896. // concat class_embeddings and patch_embeddings
  897. if (model.class_embedding) {
  898. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  899. }
  900. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  901. ggml_set_name(positions, "positions");
  902. ggml_set_input(positions);
  903. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  904. ggml_tensor * inpL = inp;
  905. // pre-layernorm
  906. if (model.pre_ln_w) {
  907. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  908. cb(inpL, "pre_ln", -1);
  909. }
  910. std::vector<ggml_tensor *> embedding_stack;
  911. const auto & vision_feature_layer = hparams.vision_feature_layer;
  912. // loop over layers
  913. for (int il = 0; il < max_feature_layer; il++) {
  914. auto & layer = model.layers[il];
  915. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  916. // If this is an embedding feature layer, save the output.
  917. // NOTE: 0 index here refers to the input to the encoder.
  918. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  919. embedding_stack.push_back(cur);
  920. }
  921. // layernorm1
  922. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  923. cb(cur, "layer_inp_normed", il);
  924. // self-attention
  925. {
  926. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  927. if (layer.q_b) {
  928. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  929. }
  930. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  931. if (layer.k_b) {
  932. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  933. }
  934. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  935. if (layer.v_b) {
  936. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  937. }
  938. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  939. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  940. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  941. cb(Qcur, "Qcur", il);
  942. cb(Kcur, "Kcur", il);
  943. cb(Vcur, "Vcur", il);
  944. cur = build_attn(layer.o_w, layer.o_b,
  945. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  946. cb(cur, "attn_out", il);
  947. }
  948. // re-add the layer input, e.g., residual
  949. cur = ggml_add(ctx0, cur, inpL);
  950. inpL = cur; // inpL = residual, cur = hidden_states
  951. cb(cur, "ffn_inp", il);
  952. // layernorm2
  953. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  954. cb(cur, "ffn_inp_normed", il);
  955. // ffn
  956. cur = build_ffn(cur,
  957. layer.ff_up_w, layer.ff_up_b,
  958. layer.ff_gate_w, layer.ff_gate_b,
  959. layer.ff_down_w, layer.ff_down_b,
  960. hparams.ffn_op, il);
  961. cb(cur, "ffn_out", il);
  962. // residual 2
  963. cur = ggml_add(ctx0, inpL, cur);
  964. cb(cur, "layer_out", il);
  965. inpL = cur;
  966. }
  967. // post-layernorm
  968. if (model.post_ln_w) {
  969. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  970. }
  971. ggml_tensor * embeddings = inpL;
  972. // process vision feature layers (used by granite)
  973. {
  974. // final layer is a vision feature layer
  975. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  976. embedding_stack.push_back(inpL);
  977. }
  978. // If feature layers are explicitly set, stack them (if we have multiple)
  979. if (!embedding_stack.empty()) {
  980. embeddings = embedding_stack[0];
  981. for (size_t i = 1; i < embedding_stack.size(); i++) {
  982. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  983. }
  984. }
  985. }
  986. // llava projector (also used by granite)
  987. if (ctx->has_llava_projector) {
  988. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  989. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  990. ggml_set_name(patches, "patches");
  991. ggml_set_input(patches);
  992. // shape [1, 576, 1024]
  993. // ne is whcn, ne = [1024, 576, 1, 1]
  994. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  995. // print_tensor_info(embeddings, "embeddings");
  996. // llava projector
  997. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  998. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  999. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1000. embeddings = ggml_gelu(ctx0, embeddings);
  1001. if (model.mm_2_w) {
  1002. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1003. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1004. }
  1005. }
  1006. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1007. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1008. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1009. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1010. // First LayerNorm
  1011. embeddings = ggml_norm(ctx0, embeddings, eps);
  1012. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1013. model.mm_1_b);
  1014. // GELU activation
  1015. embeddings = ggml_gelu(ctx0, embeddings);
  1016. // Second linear layer
  1017. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1018. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1019. // Second LayerNorm
  1020. embeddings = ggml_norm(ctx0, embeddings, eps);
  1021. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1022. model.mm_4_b);
  1023. }
  1024. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  1025. // MobileVLM projector
  1026. int n_patch = 24;
  1027. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1028. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1029. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1030. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1031. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1032. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1033. // block 1
  1034. ggml_tensor * block_1 = nullptr;
  1035. {
  1036. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1037. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  1038. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1039. // stride = 1, padding = 1, bias is nullptr
  1040. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1041. // layer norm
  1042. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1043. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1044. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1045. block_1 = ggml_norm(ctx0, block_1, eps);
  1046. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1047. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1048. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1049. // hardswish
  1050. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1051. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1052. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1053. // pointwise conv
  1054. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1055. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1056. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1057. block_1 = ggml_relu(ctx0, block_1);
  1058. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1059. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1060. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1061. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1062. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1063. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1064. int w = block_1->ne[0], h = block_1->ne[1];
  1065. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1066. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1067. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1068. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1069. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1070. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1071. block_1 = ggml_norm(ctx0, block_1, eps);
  1072. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1073. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1074. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1075. // residual
  1076. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1077. }
  1078. // block_2
  1079. {
  1080. // stride = 2
  1081. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1082. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1083. // layer norm
  1084. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1085. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1086. block_1 = ggml_norm(ctx0, block_1, eps);
  1087. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1088. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1089. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1090. // hardswish
  1091. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1092. // not sure the parameters is right for globalAvgPooling
  1093. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1094. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1095. // pointwise conv
  1096. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1097. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1098. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1099. block_1 = ggml_relu(ctx0, block_1);
  1100. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1101. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1102. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1103. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1104. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1105. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1106. int w = block_1->ne[0], h = block_1->ne[1];
  1107. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1108. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1109. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1110. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1111. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1112. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1113. block_1 = ggml_norm(ctx0, block_1, eps);
  1114. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1115. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1116. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1117. }
  1118. embeddings = block_1;
  1119. }
  1120. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  1121. {
  1122. int n_patch = 24;
  1123. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1124. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1125. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1126. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1127. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1128. // mlp_2 ne = [2048, 576, 1, 1]
  1129. // // AVG Pool Layer 2*2, strides = 2
  1130. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  1131. // mlp_2 ne = [576, 2048, 1, 1]
  1132. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1133. // mlp_2 ne [24, 24, 2048, 1]
  1134. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1135. // weight ne = [3, 3, 2048, 1]
  1136. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1137. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1138. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1139. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1140. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1141. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1142. embeddings = peg_0;
  1143. }
  1144. else {
  1145. GGML_ABORT("fatal error");
  1146. }
  1147. }
  1148. // glm projector
  1149. else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  1150. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1151. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  1152. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1153. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1154. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1155. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1156. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1157. // GLU
  1158. {
  1159. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1160. embeddings = ggml_norm(ctx0, embeddings, eps);
  1161. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1162. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1163. ggml_tensor * x = embeddings;
  1164. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1165. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1166. embeddings = ggml_silu_inplace(ctx0, embeddings);
  1167. embeddings = ggml_mul(ctx0, embeddings,x);
  1168. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1169. }
  1170. // arrangement of BOI/EOI token embeddings
  1171. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1172. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1173. {
  1174. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1175. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1176. }
  1177. }
  1178. else {
  1179. GGML_ABORT("llava: unknown projector type");
  1180. }
  1181. // build the graph
  1182. ggml_build_forward_expand(gf, embeddings);
  1183. return gf;
  1184. }
  1185. // whisper encoder with custom projector
  1186. ggml_cgraph * build_whisper_enc() {
  1187. const int n_frames = img.nx;
  1188. const int n_pos = n_frames / 2;
  1189. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1190. ggml_tensor * inp = build_inp_raw(1);
  1191. // conv1d block
  1192. {
  1193. // convolution + gelu
  1194. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1195. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1196. cur = ggml_gelu_erf(ctx0, cur);
  1197. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1198. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1199. cur = ggml_gelu_erf(ctx0, cur);
  1200. // transpose
  1201. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1202. cb(inp, "after_conv1d", -1);
  1203. }
  1204. // sanity check (only check one layer, but it should be the same for all)
  1205. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1206. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1207. GGML_ASSERT(model.layers[0].q_b);
  1208. GGML_ASSERT(model.layers[0].v_b);
  1209. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1210. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1211. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1212. ctx0, model.position_embeddings,
  1213. model.position_embeddings->ne[0], n_pos,
  1214. model.position_embeddings->nb[1], 0
  1215. );
  1216. ggml_tensor * cur = build_vit(
  1217. inp, n_pos,
  1218. NORM_TYPE_NORMAL,
  1219. hparams.ffn_op,
  1220. pos_embd_selected,
  1221. nullptr);
  1222. cb(cur, "after_transformer", -1);
  1223. if (ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX) {
  1224. // StackAudioFrames
  1225. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1226. {
  1227. int64_t stride = n_embd * hparams.proj_stack_factor;
  1228. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1229. int64_t pad = padded_len - ggml_nelements(cur);
  1230. if (pad > 0) {
  1231. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1232. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1233. }
  1234. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1235. ggml_row_size(cur->type, stride), 0);
  1236. }
  1237. cb(cur, "after_stacked", -1);
  1238. // UltravoxProjector
  1239. {
  1240. // pre-norm
  1241. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1242. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1243. // ffn in
  1244. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1245. // swiglu
  1246. {
  1247. int64_t split_point = cur->ne[0] / 2;
  1248. ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
  1249. ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
  1250. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1251. x1 = ggml_silu(ctx0, x1);
  1252. cur = ggml_mul(ctx0, x0, x1);
  1253. }
  1254. // mid-norm
  1255. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1256. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1257. // ffn out
  1258. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1259. }
  1260. } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) {
  1261. // projector
  1262. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1263. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1264. } else {
  1265. GGML_ABORT("%s: unknown projector type", __func__);
  1266. }
  1267. cb(cur, "projected", -1);
  1268. ggml_build_forward_expand(gf, cur);
  1269. return gf;
  1270. }
  1271. private:
  1272. //
  1273. // utility functions
  1274. //
  1275. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1276. if (ctx->debug_graph) {
  1277. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1278. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1279. ggml_set_name(cur, cur_name.c_str());
  1280. ggml_set_output(cur);
  1281. ggml_build_forward_expand(gf, cur);
  1282. ctx->debug_print_tensors.push_back(cur);
  1283. }
  1284. }
  1285. // build vision transformer (ViT) cgraph
  1286. // this function should cover most of the models
  1287. // if your model has specific features, you should probably duplicate this function
  1288. ggml_tensor * build_vit(
  1289. ggml_tensor * inp,
  1290. int64_t n_pos,
  1291. norm_type norm_t,
  1292. ffn_op_type ffn_t,
  1293. ggml_tensor * learned_pos_embd,
  1294. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1295. ) {
  1296. if (learned_pos_embd) {
  1297. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1298. cb(inp, "pos_embed", -1);
  1299. }
  1300. ggml_tensor * inpL = inp;
  1301. // pre-layernorm
  1302. if (model.pre_ln_w) {
  1303. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1304. cb(inpL, "pre_ln", -1);
  1305. }
  1306. // loop over layers
  1307. for (int il = 0; il < n_layer; il++) {
  1308. auto & layer = model.layers[il];
  1309. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1310. // layernorm1
  1311. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1312. cb(cur, "layer_inp_normed", il);
  1313. // self-attention
  1314. {
  1315. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1316. if (layer.q_b) {
  1317. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1318. }
  1319. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1320. if (layer.k_b) {
  1321. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1322. }
  1323. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1324. if (layer.v_b) {
  1325. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1326. }
  1327. if (layer.q_norm) {
  1328. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1329. cb(Qcur, "Qcur_norm", il);
  1330. }
  1331. if (layer.k_norm) {
  1332. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1333. cb(Kcur, "Kcur_norm", il);
  1334. }
  1335. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1336. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1337. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1338. cb(Qcur, "Qcur", il);
  1339. cb(Kcur, "Kcur", il);
  1340. cb(Vcur, "Vcur", il);
  1341. if (add_pos) {
  1342. Qcur = add_pos(Qcur, layer);
  1343. Kcur = add_pos(Kcur, layer);
  1344. cb(Qcur, "Qcur_pos", il);
  1345. cb(Kcur, "Kcur_pos", il);
  1346. }
  1347. cur = build_attn(layer.o_w, layer.o_b,
  1348. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1349. cb(cur, "attn_out", il);
  1350. }
  1351. if (layer.ls_1_w) {
  1352. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1353. cb(cur, "attn_out_scaled", il);
  1354. }
  1355. // re-add the layer input, e.g., residual
  1356. cur = ggml_add(ctx0, cur, inpL);
  1357. inpL = cur; // inpL = residual, cur = hidden_states
  1358. cb(cur, "ffn_inp", il);
  1359. // layernorm2
  1360. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1361. cb(cur, "ffn_inp_normed", il);
  1362. // ffn
  1363. cur = build_ffn(cur,
  1364. layer.ff_up_w, layer.ff_up_b,
  1365. layer.ff_gate_w, layer.ff_gate_b,
  1366. layer.ff_down_w, layer.ff_down_b,
  1367. ffn_t, il);
  1368. cb(cur, "ffn_out", il);
  1369. if (layer.ls_2_w) {
  1370. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1371. cb(cur, "ffn_out_scaled", il);
  1372. }
  1373. // residual 2
  1374. cur = ggml_add(ctx0, inpL, cur);
  1375. cb(cur, "layer_out", il);
  1376. inpL = cur;
  1377. }
  1378. // TODO @ngxson : find a way to move this outside
  1379. if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) {
  1380. ggml_tensor * cur = inpL;
  1381. cur = ggml_transpose(ctx0, cur);
  1382. cur = ggml_cont(ctx0, cur);
  1383. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1384. cur = ggml_transpose(ctx0, cur);
  1385. cur = ggml_cont(ctx0, cur);
  1386. inpL = cur;
  1387. }
  1388. // post-layernorm
  1389. if (model.post_ln_w) {
  1390. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1391. }
  1392. return inpL;
  1393. }
  1394. // build the input after conv2d (inp_raw --> patches)
  1395. // returns tensor with shape [n_embd, n_patches]
  1396. ggml_tensor * build_inp() {
  1397. ggml_tensor * inp_raw = build_inp_raw();
  1398. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1399. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1400. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1401. if (model.patch_bias) {
  1402. inp = ggml_add(ctx0, inp, model.patch_bias);
  1403. cb(inp, "patch_bias", -1);
  1404. }
  1405. return inp;
  1406. }
  1407. ggml_tensor * build_inp_raw(int channels = 3) {
  1408. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1409. ggml_set_name(inp_raw, "inp_raw");
  1410. ggml_set_input(inp_raw);
  1411. return inp_raw;
  1412. }
  1413. ggml_tensor * build_norm(
  1414. ggml_tensor * cur,
  1415. ggml_tensor * mw,
  1416. ggml_tensor * mb,
  1417. norm_type type,
  1418. float norm_eps,
  1419. int il) const {
  1420. cur = type == NORM_TYPE_RMS
  1421. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1422. : ggml_norm(ctx0, cur, norm_eps);
  1423. if (mw || mb) {
  1424. cb(cur, "norm", il);
  1425. }
  1426. if (mw) {
  1427. cur = ggml_mul(ctx0, cur, mw);
  1428. if (mb) {
  1429. cb(cur, "norm_w", il);
  1430. }
  1431. }
  1432. if (mb) {
  1433. cur = ggml_add(ctx0, cur, mb);
  1434. }
  1435. return cur;
  1436. }
  1437. ggml_tensor * build_ffn(
  1438. ggml_tensor * cur,
  1439. ggml_tensor * up,
  1440. ggml_tensor * up_b,
  1441. ggml_tensor * gate,
  1442. ggml_tensor * gate_b,
  1443. ggml_tensor * down,
  1444. ggml_tensor * down_b,
  1445. ffn_op_type type_op,
  1446. int il) const {
  1447. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1448. cb(tmp, "ffn_up", il);
  1449. if (up_b) {
  1450. tmp = ggml_add(ctx0, tmp, up_b);
  1451. cb(tmp, "ffn_up_b", il);
  1452. }
  1453. if (gate) {
  1454. cur = ggml_mul_mat(ctx0, gate, cur);
  1455. cb(cur, "ffn_gate", il);
  1456. if (gate_b) {
  1457. cur = ggml_add(ctx0, cur, gate_b);
  1458. cb(cur, "ffn_gate_b", il);
  1459. }
  1460. } else {
  1461. cur = tmp;
  1462. }
  1463. switch (type_op) {
  1464. case FFN_SILU:
  1465. {
  1466. cur = ggml_silu(ctx0, cur);
  1467. cb(cur, "ffn_silu", il);
  1468. } break;
  1469. case FFN_GELU:
  1470. {
  1471. cur = ggml_gelu(ctx0, cur);
  1472. cb(cur, "ffn_gelu", il);
  1473. } break;
  1474. case FFN_GELU_ERF:
  1475. {
  1476. cur = ggml_gelu_erf(ctx0, cur);
  1477. cb(cur, "ggml_gelu_erf", il);
  1478. } break;
  1479. case FFN_GELU_QUICK:
  1480. {
  1481. cur = ggml_gelu_quick(ctx0, cur);
  1482. cb(cur, "ffn_relu", il);
  1483. } break;
  1484. }
  1485. // we only support parallel ffn for now
  1486. if (gate) {
  1487. cur = ggml_mul(ctx0, cur, tmp);
  1488. cb(cur, "ffn_gate_par", il);
  1489. }
  1490. if (down) {
  1491. cur = ggml_mul_mat(ctx0, down, cur);
  1492. }
  1493. if (down_b) {
  1494. cb(cur, "ffn_down", il);
  1495. }
  1496. if (down_b) {
  1497. cur = ggml_add(ctx0, cur, down_b);
  1498. }
  1499. return cur;
  1500. }
  1501. ggml_tensor * build_attn(
  1502. ggml_tensor * wo,
  1503. ggml_tensor * wo_b,
  1504. ggml_tensor * q_cur,
  1505. ggml_tensor * k_cur,
  1506. ggml_tensor * v_cur,
  1507. ggml_tensor * kq_mask,
  1508. float kq_scale,
  1509. int il) const {
  1510. // these nodes are added to the graph together so that they are not reordered
  1511. // by doing so, the number of splits in the graph is reduced
  1512. ggml_build_forward_expand(gf, q_cur);
  1513. ggml_build_forward_expand(gf, k_cur);
  1514. ggml_build_forward_expand(gf, v_cur);
  1515. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1516. //cb(q, "q", il);
  1517. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1518. //cb(k, "k", il);
  1519. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1520. v = ggml_cont(ctx0, v);
  1521. //cb(k, "v", il);
  1522. ggml_tensor * cur;
  1523. // TODO @ngxson : support flash attention
  1524. {
  1525. const auto n_tokens = q->ne[1];
  1526. const auto n_head = q->ne[2];
  1527. // const auto n_kv = k->ne[1]; // for flash attention
  1528. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1529. // F32 may not needed for vision encoders?
  1530. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1531. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1532. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1533. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1534. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1535. }
  1536. cb(cur, "kqv_out", il);
  1537. if (wo) {
  1538. cur = ggml_mul_mat(ctx0, wo, cur);
  1539. }
  1540. if (wo_b) {
  1541. cur = ggml_add(ctx0, cur, wo_b);
  1542. }
  1543. return cur;
  1544. }
  1545. // implementation of the 2D RoPE without adding a new op in ggml
  1546. // this is not efficient (use double the memory), but works on all backends
  1547. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1548. static ggml_tensor * build_rope_2d(
  1549. ggml_context * ctx0,
  1550. ggml_tensor * cur,
  1551. ggml_tensor * pos_a, // first half
  1552. ggml_tensor * pos_b, // second half
  1553. const float freq_base,
  1554. const bool interleave_freq
  1555. ) {
  1556. const int64_t n_dim = cur->ne[0];
  1557. const int64_t n_head = cur->ne[1];
  1558. const int64_t n_pos = cur->ne[2];
  1559. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1560. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1561. // first half of cur will use 1e-0, 1e-2 (even)
  1562. // second half of cur will use 1e-1, 1e-3 (odd)
  1563. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1564. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1565. // then for the second half, we use freq_scale to shift the inv_freq
  1566. // ^ why? replace (2i) with (2i+1) in the above equation
  1567. const float freq_scale_odd = interleave_freq
  1568. ? std::pow(freq_base, (float)-2/n_dim)
  1569. : 1.0;
  1570. // first half
  1571. ggml_tensor * first;
  1572. {
  1573. first = ggml_view_3d(ctx0, cur,
  1574. n_dim/2, n_head, n_pos,
  1575. ggml_row_size(cur->type, n_dim),
  1576. ggml_row_size(cur->type, n_dim*n_head),
  1577. 0);
  1578. first = ggml_rope_ext(
  1579. ctx0,
  1580. first,
  1581. pos_a, // positions
  1582. nullptr, // freq factors
  1583. n_dim/2, // n_dims
  1584. 0, 0, freq_base,
  1585. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1586. );
  1587. }
  1588. // second half
  1589. ggml_tensor * second;
  1590. {
  1591. second = ggml_view_3d(ctx0, cur,
  1592. n_dim/2, n_head, n_pos,
  1593. ggml_row_size(cur->type, n_dim),
  1594. ggml_row_size(cur->type, n_dim*n_head),
  1595. n_dim/2 * ggml_element_size(cur));
  1596. second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
  1597. second = ggml_rope_ext(
  1598. ctx0,
  1599. second,
  1600. pos_b, // positions
  1601. nullptr, // freq factors
  1602. n_dim/2, // n_dims
  1603. 0, 0, freq_base,
  1604. freq_scale_odd,
  1605. 0.0f, 1.0f, 0.0f, 0.0f
  1606. );
  1607. }
  1608. cur = ggml_concat(ctx0, first, second, 0);
  1609. return cur;
  1610. }
  1611. };
  1612. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1613. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1614. clip_graph graph(ctx, *imgs.entries[0]);
  1615. ggml_cgraph * res;
  1616. switch (ctx->proj_type) {
  1617. case PROJECTOR_TYPE_GEMMA3:
  1618. case PROJECTOR_TYPE_IDEFICS3:
  1619. {
  1620. res = graph.build_siglip();
  1621. } break;
  1622. case PROJECTOR_TYPE_PIXTRAL:
  1623. {
  1624. res = graph.build_pixtral();
  1625. } break;
  1626. case PROJECTOR_TYPE_QWEN2VL:
  1627. case PROJECTOR_TYPE_QWEN25VL:
  1628. {
  1629. res = graph.build_qwen2vl();
  1630. } break;
  1631. case PROJECTOR_TYPE_MINICPMV:
  1632. {
  1633. res = graph.build_minicpmv();
  1634. } break;
  1635. case PROJECTOR_TYPE_INTERNVL:
  1636. {
  1637. res = graph.build_internvl();
  1638. } break;
  1639. case PROJECTOR_TYPE_LLAMA4:
  1640. {
  1641. res = graph.build_llama4();
  1642. } break;
  1643. case PROJECTOR_TYPE_ULTRAVOX:
  1644. case PROJECTOR_TYPE_QWEN2A:
  1645. {
  1646. res = graph.build_whisper_enc();
  1647. } break;
  1648. default:
  1649. {
  1650. res = graph.build_llava();
  1651. } break;
  1652. }
  1653. return res;
  1654. }
  1655. struct clip_model_loader {
  1656. ggml_context_ptr ctx_meta;
  1657. gguf_context_ptr ctx_gguf;
  1658. clip_ctx & ctx_clip;
  1659. std::string fname;
  1660. size_t model_size = 0; // in bytes
  1661. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
  1662. clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
  1663. struct ggml_context * meta = nullptr;
  1664. struct gguf_init_params params = {
  1665. /*.no_alloc = */ true,
  1666. /*.ctx = */ &meta,
  1667. };
  1668. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1669. if (!ctx_gguf.get()) {
  1670. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1671. }
  1672. ctx_meta.reset(meta);
  1673. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1674. // print gguf info
  1675. {
  1676. std::string name;
  1677. get_string(KEY_NAME, name, false);
  1678. std::string description;
  1679. get_string(KEY_DESCRIPTION, description, false);
  1680. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1681. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1682. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1683. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1684. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1685. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1686. LOG_INF("\n");
  1687. }
  1688. // tensors
  1689. {
  1690. for (int i = 0; i < n_tensors; ++i) {
  1691. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1692. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1693. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1694. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1695. size_t tensor_size = ggml_nbytes(cur);
  1696. model_size += tensor_size;
  1697. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1698. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1699. }
  1700. }
  1701. }
  1702. void load_hparams() {
  1703. auto & hparams = ctx_clip.vision_model.hparams;
  1704. std::string log_ffn_op; // for logging
  1705. // projector type
  1706. std::string proj_type;
  1707. {
  1708. get_string(KEY_PROJ_TYPE, proj_type, false);
  1709. if (!proj_type.empty()) {
  1710. ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
  1711. }
  1712. if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1713. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1714. }
  1715. }
  1716. // other hparams
  1717. {
  1718. get_bool(KEY_HAS_AUDIO_ENC, hparams.has_audio, false);
  1719. get_bool(KEY_HAS_VISION_ENC, hparams.has_vision, false);
  1720. const char * prefix = hparams.has_vision ? "vision" : "audio";
  1721. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1722. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1723. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1724. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1725. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1726. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1727. if (hparams.has_vision) {
  1728. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1729. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1730. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1731. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
  1732. get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); // legacy
  1733. } else if (hparams.has_audio) {
  1734. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1735. } else {
  1736. throw std::runtime_error(string_format("%s: neither vision nor audio encoder is present\n", __func__));
  1737. }
  1738. // default warmup value
  1739. hparams.warmup_image_size = hparams.image_size;
  1740. ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
  1741. || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
  1742. || ctx_clip.proj_type == PROJECTOR_TYPE_LDP
  1743. || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
  1744. {
  1745. bool use_gelu = false;
  1746. bool use_silu = false;
  1747. get_bool(KEY_USE_GELU, use_gelu, false);
  1748. get_bool(KEY_USE_SILU, use_silu, false);
  1749. if (use_gelu && use_silu) {
  1750. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1751. }
  1752. if (use_gelu) {
  1753. hparams.ffn_op = FFN_GELU;
  1754. log_ffn_op = "gelu";
  1755. } else if (use_silu) {
  1756. hparams.ffn_op = FFN_SILU;
  1757. log_ffn_op = "silu";
  1758. } else {
  1759. hparams.ffn_op = FFN_GELU_QUICK;
  1760. log_ffn_op = "gelu_quick";
  1761. }
  1762. }
  1763. {
  1764. std::string mm_patch_merge_type;
  1765. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1766. if (mm_patch_merge_type == "spatial_unpad") {
  1767. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1768. }
  1769. }
  1770. if (hparams.has_vision) {
  1771. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1772. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1773. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1774. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1775. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1776. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1777. for (int i = 0; i < 3; ++i) {
  1778. ctx_clip.image_mean[i] = mean_data[i];
  1779. ctx_clip.image_std[i] = std_data[i];
  1780. }
  1781. }
  1782. // Load the vision feature layer indices if they are explicitly provided;
  1783. // if multiple vision feature layers are present, the values will be concatenated
  1784. // to form the final visual features.
  1785. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1786. // be non-negative, since we use -1 to mark values as unset here.
  1787. std::vector<int> vision_feature_layer;
  1788. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1789. // convert std::vector to std::unordered_set
  1790. for (auto & layer : vision_feature_layer) {
  1791. hparams.vision_feature_layer.insert(layer);
  1792. }
  1793. // model-specific params
  1794. switch (ctx_clip.proj_type) {
  1795. case PROJECTOR_TYPE_MINICPMV:
  1796. {
  1797. if (ctx_clip.minicpmv_version == 0) {
  1798. ctx_clip.minicpmv_version = 2; // default to 2 if not set
  1799. }
  1800. } break;
  1801. case PROJECTOR_TYPE_IDEFICS3:
  1802. case PROJECTOR_TYPE_INTERNVL:
  1803. {
  1804. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1805. } break;
  1806. case PROJECTOR_TYPE_PIXTRAL:
  1807. {
  1808. hparams.rope_theta = 10000.0f;
  1809. hparams.warmup_image_size = hparams.patch_size * 8;
  1810. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1811. } break;
  1812. case PROJECTOR_TYPE_GEMMA3:
  1813. {
  1814. // default value (used by all model sizes in gemma 3 family)
  1815. // number of patches for each **side** is reduced by a factor of 4
  1816. hparams.proj_scale_factor = 4;
  1817. // test model (tinygemma3) has a different value, we optionally read it
  1818. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1819. } break;
  1820. case PROJECTOR_TYPE_QWEN2VL:
  1821. {
  1822. // max image size = sqrt(max_pixels) = 3584
  1823. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  1824. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1825. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1826. hparams.image_size = 1024;
  1827. hparams.warmup_image_size = hparams.patch_size * 8;
  1828. } break;
  1829. case PROJECTOR_TYPE_QWEN25VL:
  1830. {
  1831. // max image size = sqrt(max_pixels)
  1832. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  1833. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1834. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1835. hparams.image_size = 1024;
  1836. hparams.warmup_image_size = hparams.patch_size * 8;
  1837. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  1838. } break;
  1839. case PROJECTOR_TYPE_LLAMA4:
  1840. {
  1841. hparams.rope_theta = 10000.0f;
  1842. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  1843. // borrowed from llava-1.6
  1844. const int isize = hparams.image_size;
  1845. hparams.image_grid_pinpoints = {
  1846. isize, isize*2, // 336, 672
  1847. isize*2, isize, // 672, 336
  1848. isize*2, isize*2, // 672, 672
  1849. isize*3, isize, // 1008, 336
  1850. isize, isize*3, // 336, 1008
  1851. };
  1852. } break;
  1853. case PROJECTOR_TYPE_ULTRAVOX:
  1854. case PROJECTOR_TYPE_QWEN2A:
  1855. {
  1856. bool require_stack = ctx_clip.proj_type == PROJECTOR_TYPE_ULTRAVOX;
  1857. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  1858. if (hparams.n_mel_bins != 128) {
  1859. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  1860. }
  1861. hparams.ffn_op = FFN_GELU_ERF;
  1862. log_ffn_op = "gelu_erf"; // temporary solution for logging
  1863. } break;
  1864. default:
  1865. break;
  1866. }
  1867. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1868. LOG_INF("%s: has_vision_encoder: %d\n", __func__, hparams.has_vision);
  1869. LOG_INF("%s: has_audio_encoder: %d\n", __func__, hparams.has_audio);
  1870. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1871. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1872. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1873. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1874. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1875. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1876. LOG_INF("\n");
  1877. if (hparams.has_vision) {
  1878. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1879. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1880. LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector);
  1881. LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
  1882. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  1883. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  1884. } else if (hparams.has_audio) {
  1885. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  1886. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  1887. }
  1888. LOG_INF("\n");
  1889. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1890. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1891. }
  1892. }
  1893. void load_tensors() {
  1894. auto & hparams = ctx_clip.vision_model.hparams;
  1895. std::map<std::string, size_t> tensor_offset;
  1896. std::vector<ggml_tensor *> tensors_to_load;
  1897. // TODO @ngxson : support both audio and video in the future
  1898. const char * prefix = hparams.has_audio ? "a" : "v";
  1899. // get offsets
  1900. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1901. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1902. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1903. }
  1904. // create data context
  1905. struct ggml_init_params params = {
  1906. /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1907. /*.mem_buffer =*/ NULL,
  1908. /*.no_alloc =*/ true,
  1909. };
  1910. ctx_clip.ctx_data.reset(ggml_init(params));
  1911. if (!ctx_clip.ctx_data) {
  1912. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1913. }
  1914. // helper function
  1915. auto get_tensor = [&](const std::string & name, bool required = true) {
  1916. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1917. if (!cur && required) {
  1918. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1919. }
  1920. if (cur) {
  1921. tensors_to_load.push_back(cur);
  1922. // add tensors to context
  1923. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1924. ggml_set_name(data_tensor, cur->name);
  1925. cur = data_tensor;
  1926. }
  1927. return cur;
  1928. };
  1929. auto & vision_model = ctx_clip.vision_model; // TODO: rename this to just "model"
  1930. vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1931. vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  1932. vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  1933. vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  1934. vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  1935. vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  1936. vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  1937. vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  1938. vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  1939. // layers
  1940. vision_model.layers.resize(hparams.n_layer);
  1941. for (int il = 0; il < hparams.n_layer; ++il) {
  1942. auto & layer = vision_model.layers[il];
  1943. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  1944. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  1945. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  1946. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  1947. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  1948. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  1949. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  1950. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  1951. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  1952. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  1953. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  1954. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  1955. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  1956. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  1957. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  1958. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  1959. // ffn
  1960. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  1961. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  1962. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  1963. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  1964. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  1965. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  1966. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  1967. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  1968. if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
  1969. // swap up and down weights
  1970. ggml_tensor * tmp = layer.ff_up_w;
  1971. layer.ff_up_w = layer.ff_down_w;
  1972. layer.ff_down_w = tmp;
  1973. // swap up and down biases
  1974. tmp = layer.ff_up_b;
  1975. layer.ff_up_b = layer.ff_down_b;
  1976. layer.ff_down_b = tmp;
  1977. }
  1978. }
  1979. switch (ctx_clip.proj_type) {
  1980. case PROJECTOR_TYPE_MLP:
  1981. case PROJECTOR_TYPE_MLP_NORM:
  1982. {
  1983. // LLaVA projection
  1984. vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  1985. vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  1986. // Yi-type llava
  1987. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  1988. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1989. // missing in Yi-type llava
  1990. vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  1991. vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1992. // Yi-type llava
  1993. vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  1994. vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  1995. vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  1996. vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  1997. if (vision_model.mm_3_w) {
  1998. // TODO: this is a hack to support Yi-type llava
  1999. ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2000. }
  2001. vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2002. } break;
  2003. case PROJECTOR_TYPE_LDP:
  2004. {
  2005. // MobileVLM projection
  2006. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2007. vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2008. vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2009. vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2010. vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2011. vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2012. vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2013. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2014. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2015. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2016. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2017. vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2018. vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2019. vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2020. vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2021. vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2022. vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2023. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2024. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2025. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2026. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2027. vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2028. vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2029. vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2030. } break;
  2031. case PROJECTOR_TYPE_LDPV2:
  2032. {
  2033. // MobilVLM_V2 projection
  2034. vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2035. vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2036. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2037. vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2038. vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2039. vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2040. } break;
  2041. case PROJECTOR_TYPE_MINICPMV:
  2042. {
  2043. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2044. vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2045. vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2046. vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2047. vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2048. vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2049. vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2050. vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2051. vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2052. vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2053. vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2054. vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2055. vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2056. vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2057. vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2058. vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2059. vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2060. vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2061. vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2062. } break;
  2063. case PROJECTOR_TYPE_GLM_EDGE:
  2064. {
  2065. vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2066. vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2067. vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2068. vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2069. vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2070. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2071. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2072. vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2073. vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2074. vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2075. } break;
  2076. case PROJECTOR_TYPE_QWEN2VL:
  2077. case PROJECTOR_TYPE_QWEN25VL:
  2078. {
  2079. vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2080. vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2081. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2082. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2083. } break;
  2084. case PROJECTOR_TYPE_GEMMA3:
  2085. {
  2086. vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2087. vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2088. } break;
  2089. case PROJECTOR_TYPE_IDEFICS3:
  2090. {
  2091. vision_model.projection = get_tensor(TN_MM_PROJECTOR);
  2092. } break;
  2093. case PROJECTOR_TYPE_PIXTRAL:
  2094. {
  2095. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2096. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2097. vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2098. vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2099. // [IMG_BREAK] token embedding
  2100. vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2101. // for mistral small 3.1
  2102. vision_model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2103. vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2104. } break;
  2105. case PROJECTOR_TYPE_ULTRAVOX:
  2106. {
  2107. vision_model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2108. vision_model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2109. vision_model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2110. vision_model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2111. vision_model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2112. vision_model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2113. vision_model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2114. vision_model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2115. } break;
  2116. case PROJECTOR_TYPE_QWEN2A:
  2117. {
  2118. vision_model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2119. vision_model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2120. vision_model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2121. vision_model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2122. vision_model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2123. vision_model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2124. } break;
  2125. case PROJECTOR_TYPE_INTERNVL:
  2126. {
  2127. vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2128. vision_model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2129. vision_model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2130. vision_model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2131. vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2132. vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2133. } break;
  2134. case PROJECTOR_TYPE_LLAMA4:
  2135. {
  2136. vision_model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2137. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2138. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2139. } break;
  2140. default:
  2141. GGML_ASSERT(false && "unknown projector type");
  2142. }
  2143. // load data
  2144. {
  2145. std::vector<uint8_t> read_buf;
  2146. auto fin = std::ifstream(fname, std::ios::binary);
  2147. if (!fin) {
  2148. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2149. }
  2150. // alloc memory and offload data
  2151. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2152. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2153. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2154. for (auto & t : tensors_to_load) {
  2155. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2156. const size_t offset = tensor_offset[t->name];
  2157. fin.seekg(offset, std::ios::beg);
  2158. if (!fin) {
  2159. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2160. }
  2161. size_t num_bytes = ggml_nbytes(cur);
  2162. if (ggml_backend_buft_is_host(buft)) {
  2163. // for the CPU and Metal backend, we can read directly into the tensor
  2164. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2165. } else {
  2166. // read into a temporary buffer first, then copy to device memory
  2167. read_buf.resize(num_bytes);
  2168. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2169. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2170. }
  2171. }
  2172. fin.close();
  2173. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2174. }
  2175. }
  2176. void alloc_compute_meta() {
  2177. const auto & hparams = ctx_clip.vision_model.hparams;
  2178. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2179. // create a fake batch
  2180. clip_image_f32_batch batch;
  2181. clip_image_f32_ptr img(clip_image_f32_init());
  2182. if (hparams.has_vision) {
  2183. img->nx = hparams.warmup_image_size;
  2184. img->ny = hparams.warmup_image_size;
  2185. } else {
  2186. img->nx = 1024; // TODO @ngxson : use a better default
  2187. img->ny = hparams.n_mel_bins;
  2188. }
  2189. img->buf.resize(img->nx * img->ny * 3);
  2190. batch.entries.push_back(std::move(img));
  2191. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2192. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2193. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2194. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2195. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2196. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2197. if (size > 1) {
  2198. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2199. ggml_backend_buft_name(buft),
  2200. size / 1024.0 / 1024.0);
  2201. }
  2202. }
  2203. }
  2204. void get_bool(const std::string & key, bool & output, bool required = true) {
  2205. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2206. if (i < 0) {
  2207. if (required) throw std::runtime_error("Key not found: " + key);
  2208. return;
  2209. }
  2210. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2211. }
  2212. void get_i32(const std::string & key, int & output, bool required = true) {
  2213. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2214. if (i < 0) {
  2215. if (required) throw std::runtime_error("Key not found: " + key);
  2216. return;
  2217. }
  2218. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2219. }
  2220. void get_u32(const std::string & key, int & output, bool required = true) {
  2221. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2222. if (i < 0) {
  2223. if (required) throw std::runtime_error("Key not found: " + key);
  2224. return;
  2225. }
  2226. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2227. }
  2228. void get_f32(const std::string & key, float & output, bool required = true) {
  2229. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2230. if (i < 0) {
  2231. if (required) throw std::runtime_error("Key not found: " + key);
  2232. return;
  2233. }
  2234. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2235. }
  2236. void get_string(const std::string & key, std::string & output, bool required = true) {
  2237. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2238. if (i < 0) {
  2239. if (required) throw std::runtime_error("Key not found: " + key);
  2240. return;
  2241. }
  2242. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2243. }
  2244. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2245. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2246. if (i < 0) {
  2247. if (required) throw std::runtime_error("Key not found: " + key);
  2248. return;
  2249. }
  2250. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2251. output.resize(n);
  2252. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2253. for (int i = 0; i < n; ++i) {
  2254. output[i] = values[i];
  2255. }
  2256. }
  2257. };
  2258. struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
  2259. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2260. clip_ctx * ctx_clip = nullptr;
  2261. try {
  2262. ctx_clip = new clip_ctx(ctx_params);
  2263. clip_model_loader loader(fname, *ctx_clip);
  2264. loader.load_hparams();
  2265. loader.load_tensors();
  2266. loader.alloc_compute_meta();
  2267. } catch (const std::exception & e) {
  2268. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2269. delete ctx_clip;
  2270. return nullptr;
  2271. }
  2272. return ctx_clip;
  2273. }
  2274. struct clip_image_size * clip_image_size_init() {
  2275. struct clip_image_size * load_image_size = new struct clip_image_size();
  2276. load_image_size->width = 448;
  2277. load_image_size->height = 448;
  2278. return load_image_size;
  2279. }
  2280. struct clip_image_u8 * clip_image_u8_init() {
  2281. return new clip_image_u8();
  2282. }
  2283. struct clip_image_f32 * clip_image_f32_init() {
  2284. return new clip_image_f32();
  2285. }
  2286. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2287. return new clip_image_f32_batch();
  2288. }
  2289. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2290. if (nx) *nx = img->nx;
  2291. if (ny) *ny = img->ny;
  2292. return img->buf.data();
  2293. }
  2294. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2295. if (load_image_size == nullptr) {
  2296. return;
  2297. }
  2298. delete load_image_size;
  2299. }
  2300. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2301. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2302. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2303. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2304. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2305. return batch->entries.size();
  2306. }
  2307. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2308. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2309. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2310. return 0;
  2311. }
  2312. return batch->entries[idx]->nx;
  2313. }
  2314. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2315. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2316. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2317. return 0;
  2318. }
  2319. return batch->entries[idx]->ny;
  2320. }
  2321. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2322. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2323. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2324. return nullptr;
  2325. }
  2326. return batch->entries[idx].get();
  2327. }
  2328. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2329. img->nx = nx;
  2330. img->ny = ny;
  2331. img->buf.resize(3 * nx * ny);
  2332. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2333. }
  2334. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  2335. int nx, ny, nc;
  2336. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  2337. if (!data) {
  2338. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  2339. return false;
  2340. }
  2341. clip_build_img_from_pixels(data, nx, ny, img);
  2342. stbi_image_free(data);
  2343. return true;
  2344. }
  2345. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  2346. int nx, ny, nc;
  2347. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  2348. if (!data) {
  2349. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  2350. return false;
  2351. }
  2352. clip_build_img_from_pixels(data, nx, ny, img);
  2353. stbi_image_free(data);
  2354. return true;
  2355. }
  2356. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2357. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2358. dst.nx = src.nx;
  2359. dst.ny = src.ny;
  2360. dst.buf.resize(src.buf.size());
  2361. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2362. for (size_t i = 0; i < src.buf.size(); ++i) {
  2363. int c = i % 3; // rgb
  2364. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2365. }
  2366. }
  2367. // set of tools to manupulate images
  2368. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2369. struct image_manipulation {
  2370. // Bilinear resize function
  2371. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2372. dst.nx = target_width;
  2373. dst.ny = target_height;
  2374. dst.buf.resize(3 * target_width * target_height);
  2375. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2376. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2377. for (int y = 0; y < target_height; y++) {
  2378. for (int x = 0; x < target_width; x++) {
  2379. float px = x_ratio * x;
  2380. float py = y_ratio * y;
  2381. int x_floor = static_cast<int>(px);
  2382. int y_floor = static_cast<int>(py);
  2383. float x_lerp = px - x_floor;
  2384. float y_lerp = py - y_floor;
  2385. for (int c = 0; c < 3; c++) {
  2386. float top = lerp(
  2387. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2388. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2389. x_lerp
  2390. );
  2391. float bottom = lerp(
  2392. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2393. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2394. x_lerp
  2395. );
  2396. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2397. }
  2398. }
  2399. }
  2400. }
  2401. // Bicubic resize function
  2402. // part of image will be cropped if the aspect ratio is different
  2403. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2404. const int nx = img.nx;
  2405. const int ny = img.ny;
  2406. dst.nx = target_width;
  2407. dst.ny = target_height;
  2408. dst.buf.resize(3 * target_width * target_height);
  2409. float Cc;
  2410. float C[5];
  2411. float d0, d2, d3, a0, a1, a2, a3;
  2412. int i, j, k, jj;
  2413. int x, y;
  2414. float dx, dy;
  2415. float tx, ty;
  2416. tx = (float)nx / (float)target_width;
  2417. ty = (float)ny / (float)target_height;
  2418. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2419. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2420. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2421. for (i = 0; i < target_height; i++) {
  2422. for (j = 0; j < target_width; j++) {
  2423. x = (int)(tx * j);
  2424. y = (int)(ty * i);
  2425. dx = tx * j - x;
  2426. dy = ty * i - y;
  2427. for (k = 0; k < 3; k++) {
  2428. for (jj = 0; jj <= 3; jj++) {
  2429. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2430. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2431. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2432. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2433. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2434. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2435. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2436. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2437. d0 = C[0] - C[1];
  2438. d2 = C[2] - C[1];
  2439. d3 = C[3] - C[1];
  2440. a0 = C[1];
  2441. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2442. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2443. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2444. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2445. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2446. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2447. }
  2448. }
  2449. }
  2450. }
  2451. return true;
  2452. }
  2453. // llava-1.6 type of resize_and_pad
  2454. // if the ratio is not 1:1, padding with pad_color will be applied
  2455. // pad_color is single channel, default is 0 (black)
  2456. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2457. int target_width = target_resolution.width;
  2458. int target_height = target_resolution.height;
  2459. float scale_w = static_cast<float>(target_width) / image.nx;
  2460. float scale_h = static_cast<float>(target_height) / image.ny;
  2461. int new_width, new_height;
  2462. if (scale_w < scale_h) {
  2463. new_width = target_width;
  2464. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2465. } else {
  2466. new_height = target_height;
  2467. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2468. }
  2469. clip_image_u8 resized_image;
  2470. bicubic_resize(image, resized_image, new_width, new_height);
  2471. clip_image_u8 padded_image;
  2472. padded_image.nx = target_width;
  2473. padded_image.ny = target_height;
  2474. padded_image.buf.resize(3 * target_width * target_height);
  2475. // Fill the padded image with the fill color
  2476. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2477. padded_image.buf[i] = pad_color[0];
  2478. padded_image.buf[i + 1] = pad_color[1];
  2479. padded_image.buf[i + 2] = pad_color[2];
  2480. }
  2481. // Calculate padding offsets
  2482. int pad_x = (target_width - new_width) / 2;
  2483. int pad_y = (target_height - new_height) / 2;
  2484. // Copy the resized image into the center of the padded buffer
  2485. for (int y = 0; y < new_height; ++y) {
  2486. for (int x = 0; x < new_width; ++x) {
  2487. for (int c = 0; c < 3; ++c) {
  2488. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2489. }
  2490. }
  2491. }
  2492. dst = std::move(padded_image);
  2493. }
  2494. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2495. dst.nx = w;
  2496. dst.ny = h;
  2497. dst.buf.resize(3 * w * h);
  2498. for (int i = 0; i < h; ++i) {
  2499. for (int j = 0; j < w; ++j) {
  2500. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2501. int dst_idx = 3 * (i*w + j);
  2502. dst.buf[dst_idx] = image.buf[src_idx];
  2503. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2504. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2505. }
  2506. }
  2507. }
  2508. // calculate the size of the **resized** image, while preserving the aspect ratio
  2509. // the calculated size will be aligned to the nearest multiple of align_size
  2510. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2511. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2512. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2513. return {0, 0};
  2514. }
  2515. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2516. static_cast<float>(max_dimension) / inp_size.height));
  2517. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2518. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2519. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2520. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2521. return {aligned_width, aligned_height};
  2522. }
  2523. private:
  2524. static inline int clip(int x, int lower, int upper) {
  2525. return std::max(lower, std::min(x, upper));
  2526. }
  2527. // Linear interpolation between two points
  2528. static inline float lerp(float s, float e, float t) {
  2529. return s + (e - s) * t;
  2530. }
  2531. };
  2532. /**
  2533. * implementation of LLaVA-UHD:
  2534. * - https://arxiv.org/pdf/2403.11703
  2535. * - https://github.com/thunlp/LLaVA-UHD
  2536. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2537. *
  2538. * overview:
  2539. * - an image always have a single overview (downscaled image)
  2540. * - an image can have 0 or multiple slices, depending on the image size
  2541. * - each slice can then be considered as a separate image
  2542. *
  2543. * for example:
  2544. *
  2545. * [overview] --> [slice 1] --> [slice 2]
  2546. * | |
  2547. * +--> [slice 3] --> [slice 4]
  2548. */
  2549. struct llava_uhd {
  2550. struct slice_coordinates {
  2551. int x;
  2552. int y;
  2553. clip_image_size size;
  2554. };
  2555. struct slice_instructions {
  2556. clip_image_size overview_size; // size of downscaled image
  2557. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2558. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2559. std::vector<slice_coordinates> slices;
  2560. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2561. };
  2562. static int get_max_slices(struct clip_ctx * ctx) {
  2563. if (clip_is_minicpmv(ctx)) {
  2564. return 9;
  2565. }
  2566. return 0;
  2567. }
  2568. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2569. slice_instructions res;
  2570. const int patch_size = clip_get_patch_size(ctx);
  2571. const int slice_size = clip_get_image_size(ctx);
  2572. const int max_slice_nums = get_max_slices(ctx);
  2573. const int original_width = original_size.width;
  2574. const int original_height = original_size.height;
  2575. const float log_ratio = log((float)original_width / original_height);
  2576. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2577. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2578. const bool has_slices = (multiple > 1);
  2579. const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
  2580. if (has_pinpoints) {
  2581. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2582. auto refine_size = llava_uhd::select_best_resolution(
  2583. ctx->vision_model.hparams.image_grid_pinpoints,
  2584. original_size);
  2585. res.overview_size = clip_image_size{slice_size, slice_size};
  2586. res.refined_size = refine_size;
  2587. res.grid_size = clip_image_size{0, 0};
  2588. res.padding_refined = true;
  2589. for (int y = 0; y < refine_size.height; y += slice_size) {
  2590. for (int x = 0; x < refine_size.width; x += slice_size) {
  2591. slice_coordinates slice;
  2592. slice.x = x;
  2593. slice.y = y;
  2594. slice.size.width = std::min(slice_size, refine_size.width - x);
  2595. slice.size.height = std::min(slice_size, refine_size.height - y);
  2596. res.slices.push_back(slice);
  2597. if (x == 0) {
  2598. res.grid_size.width++;
  2599. }
  2600. }
  2601. res.grid_size.height++;
  2602. }
  2603. return res;
  2604. }
  2605. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2606. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2607. res.overview_size = best_size;
  2608. if (!has_slices) {
  2609. // skip slicing logic
  2610. res.refined_size = clip_image_size{0, 0};
  2611. res.grid_size = clip_image_size{0, 0};
  2612. } else {
  2613. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2614. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2615. res.grid_size = best_grid;
  2616. res.refined_size = refine_size;
  2617. int width = refine_size.width;
  2618. int height = refine_size.height;
  2619. int grid_x = int(width / best_grid.width);
  2620. int grid_y = int(height / best_grid.height);
  2621. for (int patches_y = 0, ic = 0;
  2622. patches_y < refine_size.height && ic < best_grid.height;
  2623. patches_y += grid_y, ic += 1) {
  2624. for (int patches_x = 0, jc = 0;
  2625. patches_x < refine_size.width && jc < best_grid.width;
  2626. patches_x += grid_x, jc += 1) {
  2627. slice_coordinates slice;
  2628. slice.x = patches_x;
  2629. slice.y = patches_y;
  2630. slice.size.width = grid_x;
  2631. slice.size.height = grid_y;
  2632. res.slices.push_back(slice);
  2633. // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
  2634. }
  2635. }
  2636. }
  2637. return res;
  2638. }
  2639. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2640. std::vector<clip_image_u8_ptr> output;
  2641. // resize to overview size
  2642. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2643. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2644. output.push_back(std::move(resized_img));
  2645. if (inst.slices.empty()) {
  2646. // no slices, just return the resized image
  2647. return output;
  2648. }
  2649. // resize to refined size
  2650. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2651. if (inst.padding_refined) {
  2652. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2653. } else {
  2654. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2655. }
  2656. // create slices
  2657. for (const auto & slice : inst.slices) {
  2658. int x = slice.x;
  2659. int y = slice.y;
  2660. int w = slice.size.width;
  2661. int h = slice.size.height;
  2662. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2663. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2664. output.push_back(std::move(img_slice));
  2665. }
  2666. return output;
  2667. }
  2668. private:
  2669. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2670. int width = original_size.width;
  2671. int height = original_size.height;
  2672. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2673. float r = static_cast<float>(width) / height;
  2674. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2675. width = static_cast<int>(height * r);
  2676. }
  2677. clip_image_size res;
  2678. res.width = ensure_divide(width, patch_size);
  2679. res.height = ensure_divide(height, patch_size);
  2680. return res;
  2681. }
  2682. /**
  2683. * Selects the best resolution from a list of possible resolutions based on the original size.
  2684. *
  2685. * @param original_size The original size of the image
  2686. * @param possible_resolutions A list of possible resolutions
  2687. * @return The best fit resolution
  2688. */
  2689. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2690. int original_width = original_size.width;
  2691. int original_height = original_size.height;
  2692. clip_image_size best_fit;
  2693. int max_effective_resolution = 0;
  2694. int min_wasted_resolution = std::numeric_limits<int>::max();
  2695. for (const auto & resolution : possible_resolutions) {
  2696. int width = resolution.width;
  2697. int height = resolution.height;
  2698. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  2699. int downscaled_width = static_cast<int>(original_width * scale);
  2700. int downscaled_height = static_cast<int>(original_height * scale);
  2701. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  2702. int wasted_resolution = (width * height) - effective_resolution;
  2703. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  2704. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  2705. max_effective_resolution = effective_resolution;
  2706. min_wasted_resolution = wasted_resolution;
  2707. best_fit = resolution;
  2708. }
  2709. }
  2710. return best_fit;
  2711. }
  2712. // used by llava 1.6 with custom list of pinpoints
  2713. static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
  2714. std::vector<clip_image_size> possible_resolutions; // TODO @ngxson : construct this inside hparams, not here
  2715. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2716. possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
  2717. }
  2718. return select_best_resolution(original_size, possible_resolutions);
  2719. }
  2720. static int ensure_divide(int length, int patch_size) {
  2721. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2722. }
  2723. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2724. int width = original_size.width;
  2725. int height = original_size.height;
  2726. int grid_x = grid.width;
  2727. int grid_y = grid.height;
  2728. int refine_width = ensure_divide(width, grid_x);
  2729. int refine_height = ensure_divide(height, grid_y);
  2730. clip_image_size grid_size;
  2731. grid_size.width = refine_width / grid_x;
  2732. grid_size.height = refine_height / grid_y;
  2733. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2734. int best_grid_width = best_grid_size.width;
  2735. int best_grid_height = best_grid_size.height;
  2736. clip_image_size refine_size;
  2737. refine_size.width = best_grid_width * grid_x;
  2738. refine_size.height = best_grid_height * grid_y;
  2739. return refine_size;
  2740. }
  2741. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2742. std::vector<int> candidate_split_grids_nums;
  2743. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2744. if (i == 1 || i > max_slice_nums) {
  2745. continue;
  2746. }
  2747. candidate_split_grids_nums.push_back(i);
  2748. }
  2749. std::vector<clip_image_size> candidate_grids;
  2750. for (int split_grids_nums : candidate_split_grids_nums) {
  2751. int m = 1;
  2752. while (m <= split_grids_nums) {
  2753. if (split_grids_nums % m == 0) {
  2754. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2755. }
  2756. ++m;
  2757. }
  2758. }
  2759. clip_image_size best_grid{1, 1};
  2760. float min_error = std::numeric_limits<float>::infinity();
  2761. for (const auto& grid : candidate_grids) {
  2762. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2763. if (error < min_error) {
  2764. best_grid = grid;
  2765. min_error = error;
  2766. }
  2767. }
  2768. return best_grid;
  2769. }
  2770. };
  2771. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2772. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2773. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2774. clip_image_size original_size{img->nx, img->ny};
  2775. bool pad_to_square = true;
  2776. auto & params = ctx->vision_model.hparams;
  2777. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2778. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  2779. pad_to_square = false;
  2780. }
  2781. if (clip_is_minicpmv(ctx)) {
  2782. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2783. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2784. for (size_t i = 0; i < imgs.size(); ++i) {
  2785. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2786. clip_image_f32_ptr res(clip_image_f32_init());
  2787. normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
  2788. res_imgs->entries.push_back(std::move(res));
  2789. }
  2790. res_imgs->grid_x = inst.grid_size.width;
  2791. res_imgs->grid_y = inst.grid_size.height;
  2792. return true;
  2793. } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2794. clip_image_u8 resized;
  2795. auto patch_size = params.patch_size * 2;
  2796. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  2797. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  2798. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2799. // clip_image_f32_ptr res(clip_image_f32_init());
  2800. normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
  2801. // res_imgs->data[0] = *res;
  2802. res_imgs->entries.push_back(std::move(img_f32));
  2803. return true;
  2804. }
  2805. else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
  2806. || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
  2807. || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3
  2808. || ctx->proj_type == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  2809. ) {
  2810. clip_image_u8 resized_image;
  2811. int sz = params.image_size;
  2812. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  2813. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2814. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2815. normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
  2816. res_imgs->entries.push_back(std::move(img_f32));
  2817. return true;
  2818. } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
  2819. clip_image_u8 resized_image;
  2820. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  2821. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  2822. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2823. normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
  2824. res_imgs->entries.push_back(std::move(img_f32));
  2825. return true;
  2826. } else if (ctx->proj_type == PROJECTOR_TYPE_LLAMA4) {
  2827. GGML_ASSERT(!params.image_grid_pinpoints.empty());
  2828. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2829. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2830. for (size_t i = 0; i < imgs.size(); ++i) {
  2831. clip_image_f32_ptr res(clip_image_f32_init());
  2832. normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
  2833. res_imgs->entries.push_back(std::move(res));
  2834. }
  2835. res_imgs->grid_x = inst.grid_size.width;
  2836. res_imgs->grid_y = inst.grid_size.height;
  2837. return true;
  2838. }
  2839. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  2840. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2841. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  2842. if (pad_to_square) {
  2843. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  2844. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2845. const int longer_side = std::max(img->nx, img->ny);
  2846. temp->nx = longer_side;
  2847. temp->ny = longer_side;
  2848. temp->buf.resize(3 * longer_side * longer_side);
  2849. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  2850. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2851. // resize the image to the target_size
  2852. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  2853. clip_image_f32_ptr res(clip_image_f32_init());
  2854. normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  2855. res_imgs->entries.push_back(std::move(res));
  2856. return true;
  2857. } else if (!params.image_grid_pinpoints.empty()) {
  2858. // "spatial_unpad" with "anyres" processing for llava-1.6
  2859. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2860. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2861. for (size_t i = 0; i < imgs.size(); ++i) {
  2862. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2863. clip_image_f32_ptr res(clip_image_f32_init());
  2864. normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
  2865. res_imgs->entries.push_back(std::move(res));
  2866. }
  2867. return true;
  2868. }
  2869. GGML_ASSERT(false && "Unknown image preprocessing type");
  2870. }
  2871. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2872. return ctx->vision_model.image_newline;
  2873. }
  2874. void clip_free(clip_ctx * ctx) {
  2875. if (ctx == nullptr) {
  2876. return;
  2877. }
  2878. delete ctx;
  2879. }
  2880. // deprecated
  2881. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2882. const int32_t nx = ctx->vision_model.hparams.image_size;
  2883. const int32_t ny = ctx->vision_model.hparams.image_size;
  2884. return clip_embd_nbytes_by_img(ctx, nx, ny);
  2885. }
  2886. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  2887. clip_image_f32 img;
  2888. img.nx = img_w;
  2889. img.ny = img_h;
  2890. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2891. }
  2892. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  2893. return ctx->vision_model.hparams.image_size;
  2894. }
  2895. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  2896. return ctx->vision_model.hparams.patch_size;
  2897. }
  2898. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  2899. return ctx->vision_model.hparams.n_embd;
  2900. }
  2901. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2902. return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  2903. }
  2904. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  2905. if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
  2906. return &ctx->vision_model.hparams.image_grid_pinpoints.front();
  2907. }
  2908. return nullptr;
  2909. }
  2910. size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
  2911. return ctx->vision_model.hparams.image_grid_pinpoints.size();
  2912. }
  2913. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2914. const auto & params = ctx->vision_model.hparams;
  2915. const int n_total = clip_n_output_tokens(ctx, img);
  2916. if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2917. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  2918. }
  2919. return n_total;
  2920. }
  2921. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2922. const auto & params = ctx->vision_model.hparams;
  2923. if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2924. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  2925. }
  2926. return 1;
  2927. }
  2928. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2929. const auto & params = ctx->vision_model.hparams;
  2930. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2931. int scale_factor = ctx->vision_model.hparams.proj_scale_factor;
  2932. if (ctx->proj_type == PROJECTOR_TYPE_LDP
  2933. || ctx->proj_type == PROJECTOR_TYPE_LDPV2
  2934. || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  2935. n_patches /= 4;
  2936. if (ctx->vision_model.mm_glm_tok_boi) {
  2937. n_patches += 2; // for BOI and EOI token embeddings
  2938. }
  2939. } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
  2940. if (ctx->minicpmv_version == 2) {
  2941. n_patches = 96;
  2942. }
  2943. else if (ctx->minicpmv_version == 3) {
  2944. n_patches = 64;
  2945. }
  2946. else if (ctx->minicpmv_version == 4) {
  2947. n_patches = 64;
  2948. }
  2949. else {
  2950. GGML_ABORT("Unknown minicpmv version");
  2951. }
  2952. } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
  2953. int patch_size = params.patch_size * 2;
  2954. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  2955. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  2956. n_patches = x_patch * y_patch;
  2957. } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  2958. int n_per_side = params.image_size / params.patch_size;
  2959. int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
  2960. n_patches = n_per_side_2d_pool * n_per_side_2d_pool;
  2961. } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 || ctx->proj_type == PROJECTOR_TYPE_INTERNVL) {
  2962. // both W and H are divided by proj_scale_factor
  2963. n_patches /= (params.proj_scale_factor * params.proj_scale_factor);
  2964. } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
  2965. int n_merge = params.spatial_merge_size;
  2966. int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
  2967. int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
  2968. n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  2969. } else if (ctx->proj_type == PROJECTOR_TYPE_LLAMA4) {
  2970. n_patches /= (scale_factor * scale_factor);
  2971. } else if (ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX) {
  2972. const int proj_stack_factor = ctx->vision_model.hparams.proj_stack_factor;
  2973. const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor);
  2974. n_patches = n_len / proj_stack_factor / 2;
  2975. } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) {
  2976. // divide by 2 because of whisper
  2977. // another divide by 2 because of nn.AvgPool1d(2, stride=2)
  2978. n_patches = img->nx / 4;
  2979. }
  2980. return n_patches;
  2981. }
  2982. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  2983. assert(embed_dim % 2 == 0);
  2984. int H = pos.size();
  2985. int W = pos[0].size();
  2986. std::vector<float> omega(embed_dim / 2);
  2987. for (int i = 0; i < embed_dim / 2; ++i) {
  2988. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2989. }
  2990. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2991. for (int h = 0; h < H; ++h) {
  2992. for (int w = 0; w < W; ++w) {
  2993. for (int d = 0; d < embed_dim / 2; ++d) {
  2994. float out_value = pos[h][w] * omega[d];
  2995. emb[h][w][d] = sin(out_value);
  2996. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2997. }
  2998. }
  2999. }
  3000. return emb;
  3001. }
  3002. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3003. assert(embed_dim % 2 == 0);
  3004. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3005. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3006. int H = emb_h.size();
  3007. int W = emb_h[0].size();
  3008. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3009. for (int h = 0; h < H; ++h) {
  3010. for (int w = 0; w < W; ++w) {
  3011. for (int d = 0; d < embed_dim / 2; ++d) {
  3012. emb[h][w][d] = emb_h[h][w][d];
  3013. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3014. }
  3015. }
  3016. }
  3017. return emb;
  3018. }
  3019. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3020. int grid_h_size = image_size.first;
  3021. int grid_w_size = image_size.second;
  3022. std::vector<float> grid_h(grid_h_size);
  3023. std::vector<float> grid_w(grid_w_size);
  3024. for (int i = 0; i < grid_h_size; ++i) {
  3025. grid_h[i] = static_cast<float>(i);
  3026. }
  3027. for (int i = 0; i < grid_w_size; ++i) {
  3028. grid_w[i] = static_cast<float>(i);
  3029. }
  3030. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3031. for (int h = 0; h < grid_h_size; ++h) {
  3032. for (int w = 0; w < grid_w_size; ++w) {
  3033. grid[h][w] = grid_w[w];
  3034. }
  3035. }
  3036. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3037. for (int h = 0; h < grid_h_size; ++h) {
  3038. for (int w = 0; w < grid_w_size; ++w) {
  3039. grid_2d[0][h][w] = grid_h[h];
  3040. grid_2d[1][h][w] = grid_w[w];
  3041. }
  3042. }
  3043. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3044. int H = image_size.first;
  3045. int W = image_size.second;
  3046. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3047. for (int h = 0; h < H; ++h) {
  3048. for (int w = 0; w < W; ++w) {
  3049. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3050. }
  3051. }
  3052. return pos_embed_2d;
  3053. }
  3054. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3055. clip_image_f32_batch imgs;
  3056. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3057. *img_copy = *img;
  3058. imgs.entries.push_back(std::move(img_copy));
  3059. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3060. }
  3061. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3062. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3063. int batch_size = imgs.entries.size();
  3064. // TODO @ngxson : implement batch size > 1 as a loop
  3065. // we don't need true batching support because the cgraph will gonna be big anyway
  3066. if (batch_size != 1) {
  3067. return false; // only support batch size of 1
  3068. }
  3069. // build the inference graph
  3070. ctx->debug_print_tensors.clear();
  3071. ggml_backend_sched_reset(ctx->sched.get());
  3072. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3073. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3074. // set inputs
  3075. const auto & model = ctx->vision_model;
  3076. const auto & hparams = model.hparams;
  3077. const int image_size_width = imgs.entries[0]->nx;
  3078. const int image_size_height = imgs.entries[0]->ny;
  3079. const int patch_size = hparams.patch_size;
  3080. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3081. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3082. const int pos_w = image_size_width / patch_size;
  3083. const int pos_h = image_size_height / patch_size;
  3084. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3085. auto get_inp_tensor = [&gf](const char * name) {
  3086. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3087. if (inp == nullptr) {
  3088. GGML_ABORT("Failed to get tensor %s", name);
  3089. }
  3090. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3091. GGML_ABORT("Tensor %s is not an input tensor", name);
  3092. }
  3093. return inp;
  3094. };
  3095. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3096. ggml_tensor * cur = get_inp_tensor(name);
  3097. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3098. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3099. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3100. };
  3101. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3102. ggml_tensor * cur = get_inp_tensor(name);
  3103. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3104. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3105. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3106. };
  3107. // set input pixel values
  3108. if (!imgs.is_audio) {
  3109. size_t nelem = 0;
  3110. for (const auto & img : imgs.entries) {
  3111. nelem += img->nx * img->ny * 3;
  3112. }
  3113. std::vector<float> inp_raw(nelem);
  3114. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3115. //
  3116. // ┌──W──┐
  3117. // │ H │ channel = R
  3118. // ├─────┤ │
  3119. // │ H │ channel = G
  3120. // ├─────┤ │
  3121. // │ H │ channel = B
  3122. // └─────┘ │
  3123. // ──────┘ x B
  3124. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3125. const int nx = imgs.entries[i]->nx;
  3126. const int ny = imgs.entries[i]->ny;
  3127. const int n = nx * ny;
  3128. for (int b = 0; b < batch_size; b++) {
  3129. float * batch_entry = inp_raw.data() + b * (3*n);
  3130. for (int y = 0; y < ny; y++) {
  3131. for (int x = 0; x < nx; x++) {
  3132. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3133. size_t base_dst = y * nx + x; // idx of the first channel
  3134. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3135. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3136. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3137. }
  3138. }
  3139. }
  3140. }
  3141. set_input_f32("inp_raw", inp_raw);
  3142. } else {
  3143. // audio input
  3144. GGML_ASSERT(imgs.entries.size() == 1);
  3145. const auto & mel_inp = imgs.entries[0];
  3146. const int n_step = mel_inp->nx;
  3147. const int n_mel = mel_inp->ny;
  3148. std::vector<float> inp_raw(n_step * n_mel);
  3149. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3150. set_input_f32("inp_raw", inp_raw);
  3151. }
  3152. // set input per projector
  3153. switch (ctx->proj_type) {
  3154. case PROJECTOR_TYPE_MINICPMV:
  3155. {
  3156. // inspired from siglip:
  3157. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3158. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3159. std::vector<int32_t> positions(pos_h * pos_w);
  3160. int bucket_coords_h[1024];
  3161. int bucket_coords_w[1024];
  3162. for (int i = 0; i < pos_h; i++){
  3163. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3164. }
  3165. for (int i = 0; i < pos_w; i++){
  3166. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3167. }
  3168. for (int i = 0, id = 0; i < pos_h; i++){
  3169. for (int j = 0; j < pos_w; j++){
  3170. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3171. }
  3172. }
  3173. set_input_i32("positions", positions);
  3174. // inspired from resampler of Qwen-VL:
  3175. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3176. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3177. int embed_dim = clip_n_mmproj_embd(ctx);
  3178. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3179. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3180. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3181. for(int i = 0; i < pos_w * pos_h; ++i){
  3182. for(int j = 0; j < embed_dim; ++j){
  3183. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3184. }
  3185. }
  3186. set_input_f32("pos_embed", pos_embed);
  3187. } break;
  3188. case PROJECTOR_TYPE_QWEN2VL:
  3189. {
  3190. const int merge_ratio = 2;
  3191. const int pw = image_size_width / patch_size;
  3192. const int ph = image_size_height / patch_size;
  3193. std::vector<int> positions(n_pos * 4);
  3194. int ptr = 0;
  3195. for (int y = 0; y < ph; y += merge_ratio) {
  3196. for (int x = 0; x < pw; x += merge_ratio) {
  3197. for (int dy = 0; dy < 2; dy++) {
  3198. for (int dx = 0; dx < 2; dx++) {
  3199. positions[ ptr] = y + dy;
  3200. positions[ num_patches + ptr] = x + dx;
  3201. positions[2 * num_patches + ptr] = y + dy;
  3202. positions[3 * num_patches + ptr] = x + dx;
  3203. ptr++;
  3204. }
  3205. }
  3206. }
  3207. }
  3208. set_input_i32("positions", positions);
  3209. } break;
  3210. case PROJECTOR_TYPE_QWEN25VL:
  3211. {
  3212. // pw * ph = number of tokens output by ViT after apply patch merger
  3213. // ipw * ipw = number of vision token been processed inside ViT
  3214. const int merge_ratio = 2;
  3215. const int pw = image_size_width / patch_size / merge_ratio;
  3216. const int ph = image_size_height / patch_size / merge_ratio;
  3217. const int ipw = image_size_width / patch_size;
  3218. const int iph = image_size_height / patch_size;
  3219. std::vector<int> idx (ph * pw);
  3220. std::vector<int> inv_idx(ph * pw);
  3221. if (use_window_attn) {
  3222. const int attn_window_size = 112;
  3223. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3224. int dst = 0;
  3225. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3226. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3227. int mask_row = 0;
  3228. for (int y = 0; y < ph; y += grid_window) {
  3229. for (int x = 0; x < pw; x += grid_window) {
  3230. const int win_h = std::min(grid_window, ph - y);
  3231. const int win_w = std::min(grid_window, pw - x);
  3232. const int dst_0 = dst;
  3233. // group all tokens belong to the same window togather (to a continue range)
  3234. for (int dy = 0; dy < win_h; dy++) {
  3235. for (int dx = 0; dx < win_w; dx++) {
  3236. const int src = (y + dy) * pw + (x + dx);
  3237. GGML_ASSERT(src < (int)idx.size());
  3238. GGML_ASSERT(dst < (int)inv_idx.size());
  3239. idx [src] = dst;
  3240. inv_idx[dst] = src;
  3241. dst++;
  3242. }
  3243. }
  3244. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3245. int row_offset = mask_row * (ipw * iph);
  3246. std::fill(
  3247. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3248. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3249. 0.0);
  3250. mask_row++;
  3251. }
  3252. }
  3253. }
  3254. set_input_i32("window_idx", idx);
  3255. set_input_i32("inv_window_idx", inv_idx);
  3256. set_input_f32("window_mask", mask);
  3257. } else {
  3258. for (int i = 0; i < ph * pw; i++) {
  3259. idx[i] = i;
  3260. }
  3261. }
  3262. const int mpow = merge_ratio * merge_ratio;
  3263. std::vector<int> positions(n_pos * 4);
  3264. int ptr = 0;
  3265. for (int y = 0; y < iph; y += merge_ratio) {
  3266. for (int x = 0; x < ipw; x += merge_ratio) {
  3267. for (int dy = 0; dy < 2; dy++) {
  3268. for (int dx = 0; dx < 2; dx++) {
  3269. auto remap = idx[ptr / mpow];
  3270. remap = (remap * mpow) + (ptr % mpow);
  3271. positions[ remap] = y + dy;
  3272. positions[ num_patches + remap] = x + dx;
  3273. positions[2 * num_patches + remap] = y + dy;
  3274. positions[3 * num_patches + remap] = x + dx;
  3275. ptr++;
  3276. }
  3277. }
  3278. }
  3279. }
  3280. set_input_i32("positions", positions);
  3281. } break;
  3282. case PROJECTOR_TYPE_PIXTRAL:
  3283. {
  3284. // set the 2D positions
  3285. int n_patches_per_col = image_size_width / patch_size;
  3286. std::vector<int> pos_data(n_pos);
  3287. // dimension H
  3288. for (int i = 0; i < n_pos; i++) {
  3289. pos_data[i] = i / n_patches_per_col;
  3290. }
  3291. set_input_i32("pos_h", pos_data);
  3292. // dimension W
  3293. for (int i = 0; i < n_pos; i++) {
  3294. pos_data[i] = i % n_patches_per_col;
  3295. }
  3296. set_input_i32("pos_w", pos_data);
  3297. } break;
  3298. case PROJECTOR_TYPE_GLM_EDGE:
  3299. {
  3300. // llava and other models
  3301. std::vector<int32_t> positions(n_pos);
  3302. for (int i = 0; i < n_pos; i++) {
  3303. positions[i] = i;
  3304. }
  3305. set_input_i32("positions", positions);
  3306. } break;
  3307. case PROJECTOR_TYPE_MLP:
  3308. case PROJECTOR_TYPE_MLP_NORM:
  3309. case PROJECTOR_TYPE_LDP:
  3310. case PROJECTOR_TYPE_LDPV2:
  3311. {
  3312. // llava and other models
  3313. std::vector<int32_t> positions(n_pos);
  3314. for (int i = 0; i < n_pos; i++) {
  3315. positions[i] = i;
  3316. }
  3317. set_input_i32("positions", positions);
  3318. // The patches vector is used to get rows to index into the embeds with;
  3319. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3320. // when retrieving the rows.
  3321. int patch_offset = model.class_embedding ? 1 : 0;
  3322. std::vector<int32_t> patches(num_patches);
  3323. for (int i = 0; i < num_patches; i++) {
  3324. patches[i] = i + patch_offset;
  3325. }
  3326. set_input_i32("patches", patches);
  3327. } break;
  3328. case PROJECTOR_TYPE_GEMMA3:
  3329. case PROJECTOR_TYPE_IDEFICS3:
  3330. case PROJECTOR_TYPE_INTERNVL:
  3331. case PROJECTOR_TYPE_QWEN2A:
  3332. case PROJECTOR_TYPE_ULTRAVOX:
  3333. {
  3334. // do nothing
  3335. } break;
  3336. case PROJECTOR_TYPE_LLAMA4:
  3337. {
  3338. // set the 2D positions
  3339. int n_patches_per_col = image_size_width / patch_size;
  3340. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3341. // last pos is always kept 0, it's for CLS
  3342. // dimension H
  3343. for (int i = 0; i < num_patches; i++) {
  3344. pos_data[i] = (i / n_patches_per_col) + 1;
  3345. }
  3346. set_input_i32("pos_h", pos_data);
  3347. // dimension W
  3348. for (int i = 0; i < num_patches; i++) {
  3349. pos_data[i] = (i % n_patches_per_col) + 1;
  3350. }
  3351. set_input_i32("pos_w", pos_data);
  3352. } break;
  3353. default:
  3354. GGML_ABORT("Unknown projector type");
  3355. }
  3356. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3357. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3358. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3359. if (reg) {
  3360. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3361. if (ggml_backend_set_n_threads_fn) {
  3362. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3363. }
  3364. }
  3365. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3366. if (status != GGML_STATUS_SUCCESS) {
  3367. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3368. return false;
  3369. }
  3370. // print debug nodes
  3371. if (ctx->debug_graph) {
  3372. LOG_INF("\n\n---\n\n");
  3373. LOG_INF("\n\nDebug graph:\n\n");
  3374. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3375. std::vector<uint8_t> data(ggml_nbytes(t));
  3376. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3377. print_tensor_shape(t);
  3378. print_tensor_data(t, data.data(), 3);
  3379. }
  3380. }
  3381. // the last node is the embedding tensor
  3382. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3383. // sanity check (only support batch size of 1 for now)
  3384. const int n_tokens_out = embeddings->ne[1];
  3385. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3386. if (n_tokens_out != expected_n_tokens_out) {
  3387. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3388. GGML_ABORT("Invalid number of output tokens");
  3389. }
  3390. // copy the embeddings to the location passed by the user
  3391. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3392. return true;
  3393. }
  3394. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3395. switch (ctx->proj_type) {
  3396. case PROJECTOR_TYPE_LDP:
  3397. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  3398. case PROJECTOR_TYPE_LDPV2:
  3399. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  3400. case PROJECTOR_TYPE_MLP:
  3401. case PROJECTOR_TYPE_PIXTRAL:
  3402. return ctx->vision_model.mm_2_w->ne[1];
  3403. case PROJECTOR_TYPE_MLP_NORM:
  3404. return ctx->vision_model.mm_3_b->ne[0];
  3405. case PROJECTOR_TYPE_MINICPMV:
  3406. if (ctx->minicpmv_version == 2) {
  3407. return 4096;
  3408. } else if (ctx->minicpmv_version == 3) {
  3409. return 3584;
  3410. } else if (ctx->minicpmv_version == 4) {
  3411. return 3584;
  3412. }
  3413. GGML_ABORT("Unknown minicpmv version");
  3414. case PROJECTOR_TYPE_GLM_EDGE:
  3415. return ctx->vision_model.mm_model_mlp_3_w->ne[1];
  3416. case PROJECTOR_TYPE_QWEN2VL:
  3417. case PROJECTOR_TYPE_QWEN25VL:
  3418. return ctx->vision_model.mm_1_b->ne[0];
  3419. case PROJECTOR_TYPE_GEMMA3:
  3420. return ctx->vision_model.mm_input_proj_w->ne[0];
  3421. case PROJECTOR_TYPE_IDEFICS3:
  3422. return ctx->vision_model.projection->ne[1];
  3423. case PROJECTOR_TYPE_ULTRAVOX:
  3424. return ctx->vision_model.mm_2_w->ne[1];
  3425. case PROJECTOR_TYPE_INTERNVL:
  3426. return ctx->vision_model.mm_3_w->ne[1];
  3427. case PROJECTOR_TYPE_LLAMA4:
  3428. return ctx->vision_model.mm_model_proj->ne[1];
  3429. case PROJECTOR_TYPE_QWEN2A:
  3430. return ctx->vision_model.mm_fc_w->ne[1];
  3431. default:
  3432. GGML_ABORT("Unknown projector type");
  3433. }
  3434. }
  3435. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3436. if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
  3437. return ctx->minicpmv_version;
  3438. }
  3439. return 0;
  3440. }
  3441. bool clip_is_glm(const struct clip_ctx * ctx) {
  3442. return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
  3443. }
  3444. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3445. return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
  3446. }
  3447. bool clip_is_llava(const struct clip_ctx * ctx) {
  3448. return ctx->has_llava_projector;
  3449. }
  3450. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3451. return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
  3452. }
  3453. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3454. return ctx->vision_model.hparams.has_vision;
  3455. }
  3456. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3457. return ctx->vision_model.hparams.has_audio;
  3458. }
  3459. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3460. return ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX || ctx->proj_type == PROJECTOR_TYPE_QWEN2A;
  3461. }
  3462. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3463. clip_image_f32 clip_img;
  3464. clip_img.buf.resize(h * w * 3);
  3465. for (int i = 0; i < h*w*3; i++)
  3466. {
  3467. clip_img.buf[i] = img[i];
  3468. }
  3469. clip_img.nx = w;
  3470. clip_img.ny = h;
  3471. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3472. return true;
  3473. }
  3474. //
  3475. // API used internally with mtmd
  3476. //
  3477. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3478. return ctx->proj_type;
  3479. }
  3480. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3481. clip_image_f32 * audio = new clip_image_f32;
  3482. audio->nx = n_frames;
  3483. audio->ny = n_mel;
  3484. audio->buf.resize(n_frames * n_mel);
  3485. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3486. batch->entries.push_back(clip_image_f32_ptr(audio));
  3487. batch->is_audio = true;
  3488. }