ggml-rpc.cpp 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <mutex>
  9. #include <unordered_map>
  10. #include <unordered_set>
  11. #ifdef _WIN32
  12. # define WIN32_LEAN_AND_MEAN
  13. # ifndef NOMINMAX
  14. # define NOMINMAX
  15. # endif
  16. # include <windows.h>
  17. # include <winsock2.h>
  18. #else
  19. # include <arpa/inet.h>
  20. # include <sys/socket.h>
  21. # include <sys/types.h>
  22. # include <netinet/in.h>
  23. # include <netinet/tcp.h>
  24. # include <netdb.h>
  25. # include <unistd.h>
  26. #endif
  27. #include <cstring>
  28. #define UNUSED GGML_UNUSED
  29. #define GGML_DEBUG 0
  30. #if (GGML_DEBUG >= 1)
  31. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  32. #else
  33. #define GGML_PRINT_DEBUG(...)
  34. #endif
  35. #ifdef _WIN32
  36. typedef SOCKET sockfd_t;
  37. using ssize_t = __int64;
  38. #else
  39. typedef int sockfd_t;
  40. #endif
  41. // cross-platform socket
  42. struct socket_t {
  43. sockfd_t fd;
  44. socket_t(sockfd_t fd) : fd(fd) {}
  45. ~socket_t() {
  46. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  47. #ifdef _WIN32
  48. closesocket(this->fd);
  49. #else
  50. close(this->fd);
  51. #endif
  52. }
  53. };
  54. // all RPC structures must be packed
  55. #pragma pack(push, 1)
  56. // ggml_tensor is serialized into rpc_tensor
  57. struct rpc_tensor {
  58. uint64_t id;
  59. uint32_t type;
  60. uint64_t buffer;
  61. uint32_t ne[GGML_MAX_DIMS];
  62. uint32_t nb[GGML_MAX_DIMS];
  63. uint32_t op;
  64. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  65. int32_t flags;
  66. uint64_t src[GGML_MAX_SRC];
  67. uint64_t view_src;
  68. uint64_t view_offs;
  69. uint64_t data;
  70. char name[GGML_MAX_NAME];
  71. char padding[4];
  72. };
  73. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  74. // RPC commands
  75. enum rpc_cmd {
  76. RPC_CMD_ALLOC_BUFFER = 0,
  77. RPC_CMD_GET_ALIGNMENT,
  78. RPC_CMD_GET_MAX_SIZE,
  79. RPC_CMD_BUFFER_GET_BASE,
  80. RPC_CMD_FREE_BUFFER,
  81. RPC_CMD_BUFFER_CLEAR,
  82. RPC_CMD_SET_TENSOR,
  83. RPC_CMD_GET_TENSOR,
  84. RPC_CMD_COPY_TENSOR,
  85. RPC_CMD_GRAPH_COMPUTE,
  86. RPC_CMD_GET_DEVICE_MEMORY,
  87. RPC_CMD_COUNT,
  88. };
  89. struct rpc_msg_alloc_buffer_req {
  90. uint64_t size;
  91. };
  92. struct rpc_msg_alloc_buffer_rsp {
  93. uint64_t remote_ptr;
  94. uint64_t remote_size;
  95. };
  96. struct rpc_msg_get_alignment_rsp {
  97. uint64_t alignment;
  98. };
  99. struct rpc_msg_get_max_size_rsp {
  100. uint64_t max_size;
  101. };
  102. struct rpc_msg_buffer_get_base_req {
  103. uint64_t remote_ptr;
  104. };
  105. struct rpc_msg_buffer_get_base_rsp {
  106. uint64_t base_ptr;
  107. };
  108. struct rpc_msg_free_buffer_req {
  109. uint64_t remote_ptr;
  110. };
  111. struct rpc_msg_buffer_clear_req {
  112. uint64_t remote_ptr;
  113. uint8_t value;
  114. };
  115. struct rpc_msg_get_tensor_req {
  116. rpc_tensor tensor;
  117. uint64_t offset;
  118. uint64_t size;
  119. };
  120. struct rpc_msg_copy_tensor_req {
  121. rpc_tensor src;
  122. rpc_tensor dst;
  123. };
  124. struct rpc_msg_copy_tensor_rsp {
  125. uint8_t result;
  126. };
  127. struct rpc_msg_graph_compute_rsp {
  128. uint8_t result;
  129. };
  130. struct rpc_msg_get_device_memory_rsp {
  131. uint64_t free_mem;
  132. uint64_t total_mem;
  133. };
  134. #pragma pack(pop)
  135. // RPC data structures
  136. static ggml_guid_t ggml_backend_rpc_guid() {
  137. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  138. return &guid;
  139. }
  140. struct ggml_backend_rpc_buffer_type_context {
  141. std::string endpoint;
  142. std::string name;
  143. size_t alignment;
  144. size_t max_size;
  145. };
  146. struct ggml_backend_rpc_context {
  147. std::string endpoint;
  148. std::string name;
  149. };
  150. struct ggml_backend_rpc_buffer_context {
  151. std::shared_ptr<socket_t> sock;
  152. std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
  153. uint64_t remote_ptr;
  154. std::string name;
  155. };
  156. // RPC helper functions
  157. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  158. #ifdef _WIN32
  159. if (fd == INVALID_SOCKET) {
  160. return nullptr;
  161. }
  162. #else
  163. if (fd < 0) {
  164. return nullptr;
  165. }
  166. #endif
  167. return std::make_shared<socket_t>(fd);
  168. }
  169. static bool set_no_delay(sockfd_t sockfd) {
  170. int flag = 1;
  171. // set TCP_NODELAY to disable Nagle's algorithm
  172. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  173. return ret == 0;
  174. }
  175. static bool set_reuse_addr(sockfd_t sockfd) {
  176. int flag = 1;
  177. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  178. return ret == 0;
  179. }
  180. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  181. struct sockaddr_in addr;
  182. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  183. auto sock_ptr = make_socket(sockfd);
  184. if (sock_ptr == nullptr) {
  185. return nullptr;
  186. }
  187. if (!set_no_delay(sockfd)) {
  188. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  189. return nullptr;
  190. }
  191. addr.sin_family = AF_INET;
  192. addr.sin_port = htons(port);
  193. struct hostent * server = gethostbyname(host);
  194. if (server == NULL) {
  195. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  196. return nullptr;
  197. }
  198. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  199. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  200. return nullptr;
  201. }
  202. return sock_ptr;
  203. }
  204. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  205. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  206. auto client_socket = make_socket(client_socket_fd);
  207. if (client_socket == nullptr) {
  208. return nullptr;
  209. }
  210. if (!set_no_delay(client_socket_fd)) {
  211. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  212. return nullptr;
  213. }
  214. return client_socket;
  215. }
  216. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  217. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  218. auto sock = make_socket(sockfd);
  219. if (sock == nullptr) {
  220. return nullptr;
  221. }
  222. if (!set_reuse_addr(sockfd)) {
  223. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  224. return nullptr;
  225. }
  226. if (inet_addr(host) == INADDR_NONE) {
  227. fprintf(stderr, "Invalid host address: %s\n", host);
  228. return nullptr;
  229. }
  230. struct sockaddr_in serv_addr;
  231. serv_addr.sin_family = AF_INET;
  232. serv_addr.sin_addr.s_addr = inet_addr(host);
  233. serv_addr.sin_port = htons(port);
  234. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  235. return nullptr;
  236. }
  237. if (listen(sockfd, 1) < 0) {
  238. return nullptr;
  239. }
  240. return sock;
  241. }
  242. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  243. size_t bytes_sent = 0;
  244. while (bytes_sent < size) {
  245. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  246. if (n < 0) {
  247. return false;
  248. }
  249. bytes_sent += n;
  250. }
  251. return true;
  252. }
  253. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  254. size_t bytes_recv = 0;
  255. while (bytes_recv < size) {
  256. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  257. if (n <= 0) {
  258. return false;
  259. }
  260. bytes_recv += n;
  261. }
  262. return true;
  263. }
  264. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  265. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  266. return false;
  267. }
  268. return send_data(sockfd, msg, msg_size);
  269. }
  270. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  271. uint64_t size;
  272. if (!recv_data(sockfd, &size, sizeof(size))) {
  273. return false;
  274. }
  275. if (size != msg_size) {
  276. return false;
  277. }
  278. return recv_data(sockfd, msg, msg_size);
  279. }
  280. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  281. uint64_t size;
  282. if (!recv_data(sockfd, &size, sizeof(size))) {
  283. return false;
  284. }
  285. try {
  286. input.resize(size);
  287. } catch (const std::bad_alloc & e) {
  288. fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", size);
  289. return false;
  290. }
  291. return recv_data(sockfd, input.data(), size);
  292. }
  293. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  294. size_t pos = endpoint.find(':');
  295. if (pos == std::string::npos) {
  296. return false;
  297. }
  298. host = endpoint.substr(0, pos);
  299. port = std::stoi(endpoint.substr(pos + 1));
  300. return true;
  301. }
  302. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  303. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  304. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  305. uint8_t cmd_byte = cmd;
  306. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  307. return false;
  308. }
  309. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  310. return false;
  311. }
  312. if (!send_data(sock->fd, input, input_size)) {
  313. return false;
  314. }
  315. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  316. // even if we do, we can skip sending output_size from the server for commands with known output size
  317. uint64_t out_size;
  318. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  319. return false;
  320. }
  321. if (out_size != output_size) {
  322. return false;
  323. }
  324. if (!recv_data(sock->fd, output, output_size)) {
  325. return false;
  326. }
  327. return true;
  328. }
  329. // RPC client-side implementation
  330. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  331. static std::mutex mutex;
  332. std::lock_guard<std::mutex> lock(mutex);
  333. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  334. static bool initialized = false;
  335. auto it = sockets.find(endpoint);
  336. if (it != sockets.end()) {
  337. if (auto sock = it->second.lock()) {
  338. return sock;
  339. }
  340. }
  341. std::string host;
  342. int port;
  343. if (!parse_endpoint(endpoint, host, port)) {
  344. return nullptr;
  345. }
  346. #ifdef _WIN32
  347. if (!initialized) {
  348. WSADATA wsaData;
  349. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  350. if (res != 0) {
  351. return nullptr;
  352. }
  353. initialized = true;
  354. }
  355. #else
  356. UNUSED(initialized);
  357. #endif
  358. auto sock = socket_connect(host.c_str(), port);
  359. if (sock == nullptr) {
  360. return nullptr;
  361. }
  362. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  363. sockets[endpoint] = sock;
  364. return sock;
  365. }
  366. static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
  367. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  368. return ctx->name.c_str();
  369. }
  370. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  371. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  372. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  373. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  374. GGML_ASSERT(status);
  375. delete ctx;
  376. }
  377. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  378. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  379. if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
  380. return ctx->base_cache[buffer];
  381. }
  382. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  383. rpc_msg_buffer_get_base_rsp response;
  384. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  385. GGML_ASSERT(status);
  386. void * base_ptr = reinterpret_cast<void *>(response.base_ptr);
  387. ctx->base_cache[buffer] = base_ptr;
  388. return base_ptr;
  389. }
  390. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  391. rpc_tensor result;
  392. result.id = reinterpret_cast<uint64_t>(tensor);
  393. result.type = tensor->type;
  394. if (tensor->buffer) {
  395. ggml_backend_buffer_t buffer = tensor->buffer;
  396. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  397. result.buffer = ctx->remote_ptr;
  398. } else {
  399. result.buffer = 0;
  400. }
  401. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  402. result.ne[i] = tensor->ne[i];
  403. result.nb[i] = tensor->nb[i];
  404. }
  405. result.op = tensor->op;
  406. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  407. result.op_params[i] = tensor->op_params[i];
  408. }
  409. result.flags = tensor->flags;
  410. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  411. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  412. }
  413. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  414. result.view_offs = tensor->view_offs;
  415. result.data = reinterpret_cast<uint64_t>(tensor->data);
  416. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  417. return result;
  418. }
  419. static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  420. UNUSED(buffer);
  421. if (ggml_is_quantized(tensor->type)) {
  422. // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
  423. GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
  424. }
  425. }
  426. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  427. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  428. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  429. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  430. std::vector<uint8_t> input(input_size, 0);
  431. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  432. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  433. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  434. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  435. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
  436. GGML_ASSERT(status);
  437. }
  438. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  439. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  440. rpc_msg_get_tensor_req request;
  441. request.tensor = serialize_tensor(tensor);
  442. request.offset = offset;
  443. request.size = size;
  444. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  445. GGML_ASSERT(status);
  446. }
  447. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  448. // check if src and dst are on the same server
  449. ggml_backend_buffer_t src_buffer = src->buffer;
  450. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  451. ggml_backend_buffer_t dst_buffer = dst->buffer;
  452. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  453. if (src_ctx->sock != dst_ctx->sock) {
  454. return false;
  455. }
  456. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  457. rpc_msg_copy_tensor_req request;
  458. request.src = serialize_tensor(src);
  459. request.dst = serialize_tensor(dst);
  460. rpc_msg_copy_tensor_rsp response;
  461. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  462. GGML_ASSERT(status);
  463. return response.result;
  464. }
  465. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  466. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  467. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  468. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  469. GGML_ASSERT(status);
  470. }
  471. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  472. /* .get_name = */ ggml_backend_rpc_buffer_get_name,
  473. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  474. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  475. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  476. /* .memset_tensor = */ NULL,
  477. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  478. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  479. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  480. /* .clear = */ ggml_backend_rpc_buffer_clear,
  481. /* .reset = */ NULL,
  482. };
  483. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  484. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  485. return buft_ctx->name.c_str();
  486. }
  487. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  488. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  489. rpc_msg_alloc_buffer_req request = {size};
  490. rpc_msg_alloc_buffer_rsp response;
  491. auto sock = get_socket(buft_ctx->endpoint);
  492. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  493. GGML_ASSERT(status);
  494. if (response.remote_ptr != 0) {
  495. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  496. ggml_backend_rpc_buffer_interface,
  497. new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"},
  498. response.remote_size);
  499. return buffer;
  500. } else {
  501. return nullptr;
  502. }
  503. }
  504. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  505. rpc_msg_get_alignment_rsp response;
  506. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
  507. GGML_ASSERT(status);
  508. return response.alignment;
  509. }
  510. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  511. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  512. return buft_ctx->alignment;
  513. }
  514. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  515. rpc_msg_get_max_size_rsp response;
  516. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
  517. GGML_ASSERT(status);
  518. return response.max_size;
  519. }
  520. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  521. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  522. return buft_ctx->max_size;
  523. }
  524. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  525. UNUSED(buft);
  526. return ggml_nbytes(tensor);
  527. }
  528. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  529. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  530. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  531. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  532. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  533. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  534. /* .is_host = */ NULL,
  535. };
  536. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  537. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  538. return rpc_ctx->name.c_str();
  539. }
  540. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  541. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  542. delete rpc_ctx;
  543. delete backend;
  544. }
  545. static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
  546. ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
  547. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  548. }
  549. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  550. UNUSED(backend);
  551. // this is no-op because we don't have any async operations
  552. }
  553. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  554. if (tensor == nullptr) {
  555. return;
  556. }
  557. if (visited.find(tensor) != visited.end()) {
  558. return;
  559. }
  560. visited.insert(tensor);
  561. for (int i = 0; i < GGML_MAX_SRC; i++) {
  562. add_tensor(tensor->src[i], tensors, visited);
  563. }
  564. add_tensor(tensor->view_src, tensors, visited);
  565. tensors.push_back(serialize_tensor(tensor));
  566. }
  567. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  568. uint32_t n_nodes = cgraph->n_nodes;
  569. std::vector<rpc_tensor> tensors;
  570. std::unordered_set<ggml_tensor*> visited;
  571. for (uint32_t i = 0; i < n_nodes; i++) {
  572. add_tensor(cgraph->nodes[i], tensors, visited);
  573. }
  574. // serialization format:
  575. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  576. uint32_t n_tensors = tensors.size();
  577. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  578. output.resize(output_size, 0);
  579. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  580. for (uint32_t i = 0; i < n_nodes; i++) {
  581. memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  582. }
  583. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  584. *out_ntensors = n_tensors;
  585. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  586. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  587. }
  588. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  589. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  590. std::vector<uint8_t> input;
  591. serialize_graph(cgraph, input);
  592. rpc_msg_graph_compute_rsp response;
  593. auto sock = get_socket(rpc_ctx->endpoint);
  594. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
  595. GGML_ASSERT(status);
  596. return (enum ggml_status)response.result;
  597. }
  598. static ggml_backend_i ggml_backend_rpc_interface = {
  599. /* .get_name = */ ggml_backend_rpc_name,
  600. /* .free = */ ggml_backend_rpc_free,
  601. /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
  602. /* .set_tensor_async = */ NULL,
  603. /* .get_tensor_async = */ NULL,
  604. /* .cpy_tensor_async = */ NULL,
  605. /* .synchronize = */ ggml_backend_rpc_synchronize,
  606. /* .graph_plan_create = */ NULL,
  607. /* .graph_plan_free = */ NULL,
  608. /* .graph_plan_update = */ NULL,
  609. /* .graph_plan_compute = */ NULL,
  610. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  611. /* .supports_op = */ NULL,
  612. /* .supports_buft = */ NULL,
  613. /* .offload_op = */ NULL,
  614. /* .event_record = */ NULL,
  615. /* .event_wait = */ NULL,
  616. };
  617. GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  618. static std::mutex mutex;
  619. std::lock_guard<std::mutex> lock(mutex);
  620. // NOTE: buffer types are allocated and never freed; this is by design
  621. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  622. auto it = buft_map.find(endpoint);
  623. if (it != buft_map.end()) {
  624. return it->second;
  625. }
  626. auto sock = get_socket(endpoint);
  627. if (sock == nullptr) {
  628. fprintf(stderr, "Failed to connect to %s\n", endpoint);
  629. return nullptr;
  630. }
  631. size_t alignment = get_alignment(sock);
  632. size_t max_size = get_max_size(sock);
  633. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  634. /* .endpoint = */ endpoint,
  635. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  636. /* .alignment = */ alignment,
  637. /* .max_size = */ max_size
  638. };
  639. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  640. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  641. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  642. /* .context = */ buft_ctx
  643. };
  644. buft_map[endpoint] = buft;
  645. return buft;
  646. }
  647. ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  648. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  649. /* .endpoint = */ endpoint,
  650. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  651. };
  652. ggml_backend_t backend = new ggml_backend {
  653. /* .guid = */ ggml_backend_rpc_guid(),
  654. /* .interface = */ ggml_backend_rpc_interface,
  655. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  656. /* .context = */ ctx
  657. };
  658. return backend;
  659. }
  660. GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) {
  661. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  662. }
  663. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  664. rpc_msg_get_device_memory_rsp response;
  665. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
  666. GGML_ASSERT(status);
  667. *free = response.free_mem;
  668. *total = response.total_mem;
  669. }
  670. GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  671. auto sock = get_socket(endpoint);
  672. if (sock == nullptr) {
  673. *free = 0;
  674. *total = 0;
  675. return;
  676. }
  677. get_device_memory(sock, free, total);
  678. }
  679. // RPC server-side implementation
  680. class rpc_server {
  681. public:
  682. rpc_server(ggml_backend_t backend) : backend(backend) {}
  683. ~rpc_server();
  684. void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  685. void get_alignment(rpc_msg_get_alignment_rsp & response);
  686. void get_max_size(rpc_msg_get_max_size_rsp & response);
  687. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  688. bool free_buffer(const rpc_msg_free_buffer_req & request);
  689. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  690. bool set_tensor(const std::vector<uint8_t> & input);
  691. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  692. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  693. bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
  694. private:
  695. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  696. ggml_tensor * create_node(uint64_t id,
  697. struct ggml_context * ctx,
  698. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  699. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  700. ggml_backend_t backend;
  701. std::unordered_set<ggml_backend_buffer_t> buffers;
  702. };
  703. void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  704. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  705. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  706. response.remote_ptr = 0;
  707. response.remote_size = 0;
  708. if (buffer != nullptr) {
  709. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  710. response.remote_size = buffer->size;
  711. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
  712. buffers.insert(buffer);
  713. } else {
  714. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
  715. }
  716. }
  717. void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
  718. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  719. size_t alignment = ggml_backend_buft_get_alignment(buft);
  720. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  721. response.alignment = alignment;
  722. }
  723. void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
  724. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  725. size_t max_size = ggml_backend_buft_get_max_size(buft);
  726. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  727. response.max_size = max_size;
  728. }
  729. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  730. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  731. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  732. if (buffers.find(buffer) == buffers.end()) {
  733. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  734. return false;
  735. }
  736. void * base = ggml_backend_buffer_get_base(buffer);
  737. response.base_ptr = reinterpret_cast<uint64_t>(base);
  738. return true;
  739. }
  740. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  741. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  742. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  743. if (buffers.find(buffer) == buffers.end()) {
  744. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  745. return false;
  746. }
  747. ggml_backend_buffer_free(buffer);
  748. buffers.erase(buffer);
  749. return true;
  750. }
  751. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  752. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  753. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  754. if (buffers.find(buffer) == buffers.end()) {
  755. GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
  756. return false;
  757. }
  758. ggml_backend_buffer_clear(buffer, request.value);
  759. return true;
  760. }
  761. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  762. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  763. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  764. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  765. result->nb[i] = tensor->nb[i];
  766. }
  767. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  768. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  769. result->buffer = nullptr;
  770. }
  771. if (result->buffer) {
  772. // require that the tensor data does not go beyond the buffer end
  773. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  774. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  775. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  776. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  777. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  778. }
  779. result->op = (ggml_op) tensor->op;
  780. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  781. result->op_params[i] = tensor->op_params[i];
  782. }
  783. result->flags = tensor->flags;
  784. result->data = reinterpret_cast<void *>(tensor->data);
  785. ggml_set_name(result, tensor->name);
  786. return result;
  787. }
  788. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  789. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  790. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  791. return false;
  792. }
  793. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  794. uint64_t offset;
  795. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  796. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  797. struct ggml_init_params params {
  798. /*.mem_size =*/ ggml_tensor_overhead(),
  799. /*.mem_buffer =*/ NULL,
  800. /*.no_alloc =*/ true,
  801. };
  802. struct ggml_context * ctx = ggml_init(params);
  803. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  804. if (tensor == nullptr) {
  805. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  806. ggml_free(ctx);
  807. return false;
  808. }
  809. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  810. // sanitize tensor->data
  811. {
  812. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  813. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  814. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  815. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  816. }
  817. }
  818. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  819. ggml_backend_tensor_set(tensor, data, offset, size);
  820. ggml_free(ctx);
  821. return true;
  822. }
  823. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  824. struct ggml_init_params params {
  825. /*.mem_size =*/ ggml_tensor_overhead(),
  826. /*.mem_buffer =*/ NULL,
  827. /*.no_alloc =*/ true,
  828. };
  829. struct ggml_context * ctx = ggml_init(params);
  830. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  831. if (tensor == nullptr) {
  832. GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
  833. ggml_free(ctx);
  834. return false;
  835. }
  836. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  837. // sanitize tensor->data
  838. {
  839. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  840. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  841. if (request.tensor.data + request.offset < p0 ||
  842. request.tensor.data + request.offset >= p1 ||
  843. request.size > (p1 - request.tensor.data - request.offset)) {
  844. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  845. }
  846. }
  847. response.resize(request.size, 0);
  848. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  849. ggml_free(ctx);
  850. return true;
  851. }
  852. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  853. struct ggml_init_params params {
  854. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  855. /*.mem_buffer =*/ NULL,
  856. /*.no_alloc =*/ true,
  857. };
  858. struct ggml_context * ctx = ggml_init(params);
  859. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  860. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  861. if (src == nullptr || dst == nullptr) {
  862. GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
  863. ggml_free(ctx);
  864. return false;
  865. }
  866. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
  867. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  868. ggml_free(ctx);
  869. return true;
  870. }
  871. ggml_tensor * rpc_server::create_node(uint64_t id,
  872. struct ggml_context * ctx,
  873. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  874. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  875. if (id == 0) {
  876. return nullptr;
  877. }
  878. if (tensor_map.find(id) != tensor_map.end()) {
  879. return tensor_map[id];
  880. }
  881. const rpc_tensor * tensor = tensor_ptrs.at(id);
  882. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  883. if (result == nullptr) {
  884. return nullptr;
  885. }
  886. tensor_map[id] = result;
  887. for (int i = 0; i < GGML_MAX_SRC; i++) {
  888. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  889. }
  890. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  891. result->view_offs = tensor->view_offs;
  892. return result;
  893. }
  894. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
  895. // serialization format:
  896. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  897. if (input.size() < sizeof(uint32_t)) {
  898. return false;
  899. }
  900. uint32_t n_nodes;
  901. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  902. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  903. return false;
  904. }
  905. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  906. uint32_t n_tensors;
  907. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  908. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  909. return false;
  910. }
  911. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  912. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  913. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  914. struct ggml_init_params params = {
  915. /*.mem_size =*/ buf_size,
  916. /*.mem_buffer =*/ NULL,
  917. /*.no_alloc =*/ true,
  918. };
  919. struct ggml_context * ctx = ggml_init(params);
  920. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  921. graph->n_nodes = n_nodes;
  922. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  923. for (uint32_t i = 0; i < n_tensors; i++) {
  924. tensor_ptrs[tensors[i].id] = &tensors[i];
  925. }
  926. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  927. for (uint32_t i = 0; i < n_nodes; i++) {
  928. int64_t id;
  929. memcpy(&id, &nodes[i], sizeof(id));
  930. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  931. }
  932. ggml_status status = ggml_backend_graph_compute(backend, graph);
  933. response.result = status;
  934. ggml_free(ctx);
  935. return true;
  936. }
  937. rpc_server::~rpc_server() {
  938. for (auto buffer : buffers) {
  939. ggml_backend_buffer_free(buffer);
  940. }
  941. }
  942. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  943. rpc_server server(backend);
  944. while (true) {
  945. uint8_t cmd;
  946. if (!recv_data(sockfd, &cmd, 1)) {
  947. break;
  948. }
  949. if (cmd >= RPC_CMD_COUNT) {
  950. // fail fast if the command is invalid
  951. fprintf(stderr, "Unknown command: %d\n", cmd);
  952. break;
  953. }
  954. switch (cmd) {
  955. case RPC_CMD_ALLOC_BUFFER: {
  956. rpc_msg_alloc_buffer_req request;
  957. if (!recv_msg(sockfd, &request, sizeof(request))) {
  958. return;
  959. }
  960. rpc_msg_alloc_buffer_rsp response;
  961. server.alloc_buffer(request, response);
  962. if (!send_msg(sockfd, &response, sizeof(response))) {
  963. return;
  964. }
  965. break;
  966. }
  967. case RPC_CMD_GET_ALIGNMENT: {
  968. if (!recv_msg(sockfd, nullptr, 0)) {
  969. return;
  970. }
  971. rpc_msg_get_alignment_rsp response;
  972. server.get_alignment(response);
  973. if (!send_msg(sockfd, &response, sizeof(response))) {
  974. return;
  975. }
  976. break;
  977. }
  978. case RPC_CMD_GET_MAX_SIZE: {
  979. if (!recv_msg(sockfd, nullptr, 0)) {
  980. return;
  981. }
  982. rpc_msg_get_max_size_rsp response;
  983. server.get_max_size(response);
  984. if (!send_msg(sockfd, &response, sizeof(response))) {
  985. return;
  986. }
  987. break;
  988. }
  989. case RPC_CMD_BUFFER_GET_BASE: {
  990. rpc_msg_buffer_get_base_req request;
  991. if (!recv_msg(sockfd, &request, sizeof(request))) {
  992. return;
  993. }
  994. rpc_msg_buffer_get_base_rsp response;
  995. if (!server.buffer_get_base(request, response)) {
  996. return;
  997. }
  998. if (!send_msg(sockfd, &response, sizeof(response))) {
  999. return;
  1000. }
  1001. break;
  1002. }
  1003. case RPC_CMD_FREE_BUFFER: {
  1004. rpc_msg_free_buffer_req request;
  1005. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1006. return;
  1007. }
  1008. if (!server.free_buffer(request)) {
  1009. return;
  1010. }
  1011. if (!send_msg(sockfd, nullptr, 0)) {
  1012. return;
  1013. }
  1014. break;
  1015. }
  1016. case RPC_CMD_BUFFER_CLEAR: {
  1017. rpc_msg_buffer_clear_req request;
  1018. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1019. return;
  1020. }
  1021. if (!server.buffer_clear(request)) {
  1022. return;
  1023. }
  1024. if (!send_msg(sockfd, nullptr, 0)) {
  1025. return;
  1026. }
  1027. break;
  1028. }
  1029. case RPC_CMD_SET_TENSOR: {
  1030. std::vector<uint8_t> input;
  1031. if (!recv_msg(sockfd, input)) {
  1032. return;
  1033. }
  1034. if (!server.set_tensor(input)) {
  1035. return;
  1036. }
  1037. if (!send_msg(sockfd, nullptr, 0)) {
  1038. return;
  1039. }
  1040. break;
  1041. }
  1042. case RPC_CMD_GET_TENSOR: {
  1043. rpc_msg_get_tensor_req request;
  1044. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1045. return;
  1046. }
  1047. std::vector<uint8_t> response;
  1048. if (!server.get_tensor(request, response)) {
  1049. return;
  1050. }
  1051. if (!send_msg(sockfd, response.data(), response.size())) {
  1052. return;
  1053. }
  1054. break;
  1055. }
  1056. case RPC_CMD_COPY_TENSOR: {
  1057. rpc_msg_copy_tensor_req request;
  1058. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1059. return;
  1060. }
  1061. rpc_msg_copy_tensor_rsp response;
  1062. if (!server.copy_tensor(request, response)) {
  1063. return;
  1064. }
  1065. if (!send_msg(sockfd, &response, sizeof(response))) {
  1066. return;
  1067. }
  1068. break;
  1069. }
  1070. case RPC_CMD_GRAPH_COMPUTE: {
  1071. std::vector<uint8_t> input;
  1072. if (!recv_msg(sockfd, input)) {
  1073. return;
  1074. }
  1075. rpc_msg_graph_compute_rsp response;
  1076. if (!server.graph_compute(input, response)) {
  1077. return;
  1078. }
  1079. if (!send_msg(sockfd, &response, sizeof(response))) {
  1080. return;
  1081. }
  1082. break;
  1083. }
  1084. case RPC_CMD_GET_DEVICE_MEMORY: {
  1085. if (!recv_msg(sockfd, nullptr, 0)) {
  1086. return;
  1087. }
  1088. rpc_msg_get_device_memory_rsp response;
  1089. response.free_mem = free_mem;
  1090. response.total_mem = total_mem;
  1091. if (!send_msg(sockfd, &response, sizeof(response))) {
  1092. return;
  1093. }
  1094. break;
  1095. }
  1096. default: {
  1097. fprintf(stderr, "Unknown command: %d\n", cmd);
  1098. return;
  1099. }
  1100. }
  1101. }
  1102. }
  1103. void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  1104. std::string host;
  1105. int port;
  1106. if (!parse_endpoint(endpoint, host, port)) {
  1107. return;
  1108. }
  1109. #ifdef _WIN32
  1110. {
  1111. WSADATA wsaData;
  1112. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1113. if (res != 0) {
  1114. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1115. return;
  1116. }
  1117. }
  1118. #endif
  1119. auto server_socket = create_server_socket(host.c_str(), port);
  1120. if (server_socket == nullptr) {
  1121. fprintf(stderr, "Failed to create server socket\n");
  1122. return;
  1123. }
  1124. while (true) {
  1125. auto client_socket = socket_accept(server_socket->fd);
  1126. if (client_socket == nullptr) {
  1127. fprintf(stderr, "Failed to accept client connection\n");
  1128. return;
  1129. }
  1130. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1131. fflush(stdout);
  1132. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  1133. printf("Client connection closed\n");
  1134. fflush(stdout);
  1135. }
  1136. #ifdef _WIN32
  1137. WSACleanup();
  1138. #endif
  1139. }
  1140. // device interface
  1141. struct ggml_backend_rpc_device_context {
  1142. std::string endpoint;
  1143. std::string name;
  1144. };
  1145. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1146. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1147. return ctx->name.c_str();
  1148. }
  1149. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1150. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1151. return ctx->name.c_str();
  1152. }
  1153. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1154. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1155. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
  1156. UNUSED(dev);
  1157. }
  1158. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1159. // TODO: obtain value from the server
  1160. return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
  1161. UNUSED(dev);
  1162. }
  1163. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1164. props->name = ggml_backend_rpc_device_get_name(dev);
  1165. props->description = ggml_backend_rpc_device_get_description(dev);
  1166. props->type = ggml_backend_rpc_device_get_type(dev);
  1167. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1168. props->caps = {
  1169. /* .async = */ false,
  1170. /* .host_buffer = */ false,
  1171. /* .buffer_from_host_ptr = */ false,
  1172. /* .events = */ false,
  1173. };
  1174. }
  1175. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1176. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1177. return ggml_backend_rpc_init(ctx->endpoint.c_str());
  1178. UNUSED(params);
  1179. }
  1180. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1181. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1182. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  1183. UNUSED(dev);
  1184. }
  1185. static ggml_backend_buffer_t ggml_backend_rpc_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  1186. return ggml_backend_cpu_buffer_from_ptr(ptr, size);
  1187. UNUSED(dev);
  1188. UNUSED(max_tensor_size);
  1189. }
  1190. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1191. UNUSED(dev);
  1192. UNUSED(op);
  1193. //TODO: call the remote backend and cache the results
  1194. return true;
  1195. }
  1196. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1197. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1198. return false;
  1199. }
  1200. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1201. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1202. return buft_ctx->endpoint == dev_ctx->endpoint;
  1203. }
  1204. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1205. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1206. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1207. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1208. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1209. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1210. /* .init_backend = */ ggml_backend_rpc_device_init,
  1211. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1212. /* .get_host_buffer_type = */ NULL,
  1213. /* .buffer_from_host_ptr = */ ggml_backend_rpc_device_buffer_from_ptr,
  1214. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1215. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1216. /* .offload_op = */ NULL,
  1217. /* .event_new = */ NULL,
  1218. /* .event_free = */ NULL,
  1219. /* .event_synchronize = */ NULL,
  1220. };
  1221. // backend reg interface
  1222. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1223. return "RPC";
  1224. UNUSED(reg);
  1225. }
  1226. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1227. return 0;
  1228. UNUSED(reg);
  1229. }
  1230. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1231. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
  1232. UNUSED(reg);
  1233. UNUSED(index);
  1234. }
  1235. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1236. if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
  1237. return (void *)ggml_backend_rpc_add_device;
  1238. }
  1239. return NULL;
  1240. UNUSED(reg);
  1241. }
  1242. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1243. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1244. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1245. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1246. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1247. };
  1248. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1249. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1250. /* .iface = */ ggml_backend_rpc_reg_i,
  1251. /* .context = */ NULL,
  1252. };
  1253. return &ggml_backend_rpc_reg;
  1254. }
  1255. ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
  1256. static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
  1257. static std::mutex mutex;
  1258. std::lock_guard<std::mutex> lock(mutex);
  1259. if (dev_map.find(endpoint) != dev_map.end()) {
  1260. return dev_map[endpoint];
  1261. }
  1262. ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
  1263. /* .endpoint = */ endpoint,
  1264. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  1265. };
  1266. ggml_backend_dev_t dev = new ggml_backend_device {
  1267. /* .iface = */ ggml_backend_rpc_device_i,
  1268. /* .reg = */ ggml_backend_rpc_reg(),
  1269. /* .context = */ ctx,
  1270. };
  1271. dev_map[endpoint] = dev;
  1272. return dev;
  1273. }