| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148 |
- // -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
- // vi: set et ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi
- //
- // Copyright 2024 Mozilla Foundation
- //
- // Permission is hereby granted, free of charge, to any person obtaining
- // a copy of this software and associated documentation files (the
- // "Software"), to deal in the Software without restriction, including
- // without limitation the rights to use, copy, modify, merge, publish,
- // distribute, sublicense, and/or sell copies of the Software, and to
- // permit persons to whom the Software is furnished to do so, subject to
- // the following conditions:
- //
- // The above copyright notice and this permission notice shall be
- // included in all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //
- // _ _ ___ _ _ ___
- // | |_(_)_ _ _ _| _ ) | /_\ / __|
- // | _| | ' \ || | _ \ |__ / _ \\__ \.
- // \__|_|_||_\_, |___/____/_/ \_\___/
- // |__/
- //
- // BASIC LINEAR ALGEBRA SUBPROGRAMS
- //
- //
- // This file implements multithreaded CPU matrix multiplication for the
- // common contiguous use case C = Aᵀ * B. These kernels are designed to
- // have excellent performance[1] for matrices that fit in the CPU cache
- // without imposing any overhead such as cache filling or malloc calls.
- //
- // This implementation does not guarantee any upper bound with rounding
- // errors, which grow along with k. Our goal's to maximally exploit the
- // hardware for performance, and then use whatever resources remain for
- // improving numerical accuracy.
- //
- // [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
- // Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
- #pragma GCC diagnostic ignored "-Wpedantic"
- #pragma GCC diagnostic ignored "-Wignored-attributes"
- #include "sgemm.h"
- #include "ggml-impl.h"
- #include "ggml-quants.h"
- #ifdef _MSC_VER
- #define NOINLINE __declspec(noinline)
- #else
- #define NOINLINE __attribute__((__noinline__))
- #endif
- #if defined(__ARM_NEON) || defined(__AVX512F__)
- #define VECTOR_REGISTERS 32
- #else
- #define VECTOR_REGISTERS 16
- #endif
- // there will be blocks
- #define BEGIN_KERNEL(RM, RN) \
- int ytiles = (m - m0) / RM; \
- int xtiles = (n - n0) / RN; \
- int tiles = ytiles * xtiles; \
- int duty = (tiles + nth - 1) / nth; \
- int start = duty * ith; \
- int end = start + duty; \
- if (end > tiles) \
- end = tiles; \
- for (int job = start; job < end; ++job) { \
- int i = m0 + job / xtiles * RM; \
- int j = n0 + job % xtiles * RN;
- #define END_KERNEL() }
- #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
- namespace {
- inline float unhalf(ggml_fp16_t d) {
- return GGML_FP16_TO_FP32(d);
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // VECTORIZED ARITHMETIC OPERATIONS
- #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
- inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
- inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
- #endif // __SSE__
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
- inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
- inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
- #endif // __AVX__
- #if defined(__AVX512F__)
- inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
- inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
- inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
- #endif // __AVX512F__
- #if defined(__ARM_NEON)
- inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
- inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
- inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
- #endif // __ARM_NEON
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
- inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
- inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
- #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // VECTORIZED HORIZONTAL SUM
- #if defined(__ARM_NEON)
- inline float hsum(float32x4_t x) {
- return vaddvq_f32(x);
- }
- #endif // __ARM_NEON
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
- inline float hsum(float16x8_t x) {
- return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
- vcvt_f32_f16(vget_high_f16(x))));
- }
- #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- inline float hsum(__m128 x) {
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- x = _mm_add_ps(x, _mm_movehl_ps(x, x));
- x = _mm_add_ss(x, _mm_movehdup_ps(x));
- #else
- __m128 t;
- t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
- x = _mm_add_ps(x, t);
- t = _mm_movehl_ps(t, x);
- x = _mm_add_ss(x, t);
- #endif
- return _mm_cvtss_f32(x);
- }
- #endif
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- inline float hsum(__m256 x) {
- return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
- _mm256_castps256_ps128(x)));
- }
- #endif // __AVX__
- #if defined(__AVX512F__)
- inline float hsum(__m512 x) {
- return _mm512_reduce_add_ps(x);
- }
- #endif // __AVX512F__
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // VECTORIZED MEMORY LOADING
- template <typename T, typename U> T load(const U *);
- #if defined(__ARM_NEON)
- template <> inline float32x4_t load(const float *p) {
- return vld1q_f32(p);
- }
- #if !defined(_MSC_VER)
- template <> inline float16x8_t load(const ggml_fp16_t *p) {
- return vld1q_f16((const float16_t *)p);
- }
- template <> inline float32x4_t load(const ggml_fp16_t *p) {
- return vcvt_f32_f16(vld1_f16((const float16_t *)p));
- }
- #endif // _MSC_VER
- #endif // __ARM_NEON
- #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- template <> inline __m128 load(const float *p) {
- return _mm_loadu_ps(p);
- }
- #endif // __SSE__
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- template <> inline __m256 load(const float *p) {
- return _mm256_loadu_ps(p);
- }
- #endif // __AVX__
- #if defined(__F16C__)
- template <> inline __m256 load(const ggml_fp16_t *p) {
- return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
- }
- #endif // __F16C__
- #if defined(__AVX512F__)
- template <> inline __m512 load(const float *p) {
- return _mm512_loadu_ps(p);
- }
- template <> inline __m512 load(const ggml_fp16_t *p) {
- return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
- }
- #endif // __AVX512F__
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // ABSTRACTIONS
- /**
- * Computes a * b + c.
- *
- * This operation will become fused into a single arithmetic instruction
- * if the hardware has support for this feature, e.g. Intel Haswell+ (c.
- * 2013), AMD Bulldozer+ (c. 2011), etc.
- */
- template <typename T, typename U>
- inline U madd(T a, T b, U c) {
- return add(mul(a, b), c);
- }
- /**
- * Computes a * b + c with error correction.
- *
- * @see W. Kahan, "Further remarks on reducing truncation errors,"
- * Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965,
- * doi: 10.1145/363707.363723.
- */
- template <typename T, typename U>
- inline U madder(T a, T b, U c, U *e) {
- U y = sub(mul(a, b), *e);
- U t = add(c, y);
- *e = sub(sub(t, c), y);
- return t;
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // FLOATING POINT MATRIX MULTIPLICATION
- template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
- class tinyBLAS {
- public:
- tinyBLAS(int k,
- const TA *A, int lda,
- const TB *B, int ldb,
- TC *C, int ldc,
- int ith, int nth)
- : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
- }
- void matmul(int m, int n, int task) {
- if (task == GGML_TASK_TYPE_COMPUTE)
- mnpack(0, m, 0, n);
- }
- private:
- NOINLINE void mnpack(int m0, int m, int n0, int n) {
- int mc, nc, mp, np;
- if (m - m0 <= 0 || n - n0 <= 0)
- return;
- if (VECTOR_REGISTERS >= 32 && n - n0 >= 5 && m - m0 >= 5) {
- mc = 5;
- nc = 5;
- gemm5x5(m0, m, n0, n);
- } else if (n - n0 >= 4 && m - m0 >= 3) {
- mc = 3;
- nc = 4;
- gemm3x4(m0, m, n0, n);
- } else if (n - n0 >= 4) {
- mc = 1;
- nc = 4;
- gemm1x4(m0, m, n0, n);
- } else if (m - m0 >= 4) {
- mc = 4;
- nc = 1;
- gemm4x1(m0, m, n0, n);
- } else {
- mc = 1;
- nc = 1;
- gemm1x1(m0, m, n0, n);
- }
- mp = m0 + (m - m0) / mc * mc;
- np = n0 + (n - n0) / nc * nc;
- mnpack(mp, m, n0, np);
- mnpack(m0, mp, np, n);
- mnpack(mp, m, np, n);
- }
- NOINLINE void gemm5x5(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(5, 5)
- D c00 = {0};
- D c01 = {0};
- D c02 = {0};
- D c03 = {0};
- D c04 = {0};
- D c10 = {0};
- D c11 = {0};
- D c12 = {0};
- D c13 = {0};
- D c14 = {0};
- D c20 = {0};
- D c21 = {0};
- D c22 = {0};
- D c23 = {0};
- D c24 = {0};
- D c30 = {0};
- D c31 = {0};
- D c32 = {0};
- D c33 = {0};
- D c34 = {0};
- D c40 = {0};
- D c41 = {0};
- D c42 = {0};
- D c43 = {0};
- D c44 = {0};
- for (int l = 0; l < k; l += KN) {
- V k0 = load<V>(B + ldb * (j + 0) + l);
- V k1 = load<V>(B + ldb * (j + 1) + l);
- V k2 = load<V>(B + ldb * (j + 2) + l);
- V k3 = load<V>(B + ldb * (j + 3) + l);
- V k4 = load<V>(B + ldb * (j + 4) + l);
- V a0 = load<V>(A + lda * (i + 0) + l);
- c00 = madd(a0, k0, c00);
- c01 = madd(a0, k1, c01);
- c02 = madd(a0, k2, c02);
- c03 = madd(a0, k3, c03);
- c04 = madd(a0, k4, c04);
- V a1 = load<V>(A + lda * (i + 1) + l);
- c10 = madd(a1, k0, c10);
- c11 = madd(a1, k1, c11);
- c12 = madd(a1, k2, c12);
- c13 = madd(a1, k3, c13);
- c14 = madd(a1, k4, c14);
- V a2 = load<V>(A + lda * (i + 2) + l);
- c20 = madd(a2, k0, c20);
- c21 = madd(a2, k1, c21);
- c22 = madd(a2, k2, c22);
- c23 = madd(a2, k3, c23);
- c24 = madd(a2, k4, c24);
- V a3 = load<V>(A + lda * (i + 3) + l);
- c30 = madd(a3, k0, c30);
- c31 = madd(a3, k1, c31);
- c32 = madd(a3, k2, c32);
- c33 = madd(a3, k3, c33);
- c34 = madd(a3, k4, c34);
- V a4 = load<V>(A + lda * (i + 4) + l);
- c40 = madd(a4, k0, c40);
- c41 = madd(a4, k1, c41);
- c42 = madd(a4, k2, c42);
- c43 = madd(a4, k3, c43);
- c44 = madd(a4, k4, c44);
- }
- C[ldc * (j + 0) + (i + 0)] = hsum(c00);
- C[ldc * (j + 0) + (i + 1)] = hsum(c10);
- C[ldc * (j + 0) + (i + 2)] = hsum(c20);
- C[ldc * (j + 0) + (i + 3)] = hsum(c30);
- C[ldc * (j + 0) + (i + 4)] = hsum(c40);
- C[ldc * (j + 1) + (i + 0)] = hsum(c01);
- C[ldc * (j + 1) + (i + 1)] = hsum(c11);
- C[ldc * (j + 1) + (i + 2)] = hsum(c21);
- C[ldc * (j + 1) + (i + 3)] = hsum(c31);
- C[ldc * (j + 1) + (i + 4)] = hsum(c41);
- C[ldc * (j + 2) + (i + 0)] = hsum(c02);
- C[ldc * (j + 2) + (i + 1)] = hsum(c12);
- C[ldc * (j + 2) + (i + 2)] = hsum(c22);
- C[ldc * (j + 2) + (i + 3)] = hsum(c32);
- C[ldc * (j + 2) + (i + 4)] = hsum(c42);
- C[ldc * (j + 3) + (i + 0)] = hsum(c03);
- C[ldc * (j + 3) + (i + 1)] = hsum(c13);
- C[ldc * (j + 3) + (i + 2)] = hsum(c23);
- C[ldc * (j + 3) + (i + 3)] = hsum(c33);
- C[ldc * (j + 3) + (i + 4)] = hsum(c43);
- C[ldc * (j + 4) + (i + 0)] = hsum(c04);
- C[ldc * (j + 4) + (i + 1)] = hsum(c14);
- C[ldc * (j + 4) + (i + 2)] = hsum(c24);
- C[ldc * (j + 4) + (i + 3)] = hsum(c34);
- C[ldc * (j + 4) + (i + 4)] = hsum(c44);
- END_KERNEL()
- }
- NOINLINE void gemm3x4(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(3, 4)
- D c00 = {0};
- D c01 = {0};
- D c02 = {0};
- D c03 = {0};
- D c10 = {0};
- D c11 = {0};
- D c12 = {0};
- D c13 = {0};
- D c20 = {0};
- D c21 = {0};
- D c22 = {0};
- D c23 = {0};
- for (int l = 0; l < k; l += KN) {
- V k0 = load<V>(B + ldb * (j + 0) + l);
- V k1 = load<V>(B + ldb * (j + 1) + l);
- V k2 = load<V>(B + ldb * (j + 2) + l);
- V k3 = load<V>(B + ldb * (j + 3) + l);
- V a0 = load<V>(A + lda * (i + 0) + l);
- c00 = madd(a0, k0, c00);
- c01 = madd(a0, k1, c01);
- c02 = madd(a0, k2, c02);
- c03 = madd(a0, k3, c03);
- V a1 = load<V>(A + lda * (i + 1) + l);
- c10 = madd(a1, k0, c10);
- c11 = madd(a1, k1, c11);
- c12 = madd(a1, k2, c12);
- c13 = madd(a1, k3, c13);
- V a2 = load<V>(A + lda * (i + 2) + l);
- c20 = madd(a2, k0, c20);
- c21 = madd(a2, k1, c21);
- c22 = madd(a2, k2, c22);
- c23 = madd(a2, k3, c23);
- }
- C[ldc * (j + 0) + (i + 0)] = hsum(c00);
- C[ldc * (j + 0) + (i + 1)] = hsum(c10);
- C[ldc * (j + 0) + (i + 2)] = hsum(c20);
- C[ldc * (j + 1) + (i + 0)] = hsum(c01);
- C[ldc * (j + 1) + (i + 1)] = hsum(c11);
- C[ldc * (j + 1) + (i + 2)] = hsum(c21);
- C[ldc * (j + 2) + (i + 0)] = hsum(c02);
- C[ldc * (j + 2) + (i + 1)] = hsum(c12);
- C[ldc * (j + 2) + (i + 2)] = hsum(c22);
- C[ldc * (j + 3) + (i + 0)] = hsum(c03);
- C[ldc * (j + 3) + (i + 1)] = hsum(c13);
- C[ldc * (j + 3) + (i + 2)] = hsum(c23);
- END_KERNEL()
- }
- NOINLINE void gemm1x4(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(1, 4)
- D c00 = {0}, e00 = {0};
- D c01 = {0}, e01 = {0};
- D c02 = {0}, e02 = {0};
- D c03 = {0}, e03 = {0};
- for (int l = 0; l < k; l += KN) {
- V a = load<V>(A + lda * (i + 0) + l);
- c00 = madder(a, load<V>(B + ldb * (j + 0) + l), c00, &e00);
- c01 = madder(a, load<V>(B + ldb * (j + 1) + l), c01, &e01);
- c02 = madder(a, load<V>(B + ldb * (j + 2) + l), c02, &e02);
- c03 = madder(a, load<V>(B + ldb * (j + 3) + l), c03, &e03);
- }
- C[ldc * (j + 0) + (i + 0)] = hsum(c00);
- C[ldc * (j + 1) + (i + 0)] = hsum(c01);
- C[ldc * (j + 2) + (i + 0)] = hsum(c02);
- C[ldc * (j + 3) + (i + 0)] = hsum(c03);
- END_KERNEL()
- }
- NOINLINE void gemm4x1(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(4, 1)
- D c00 = {0}, e00 = {0};
- D c10 = {0}, e10 = {0};
- D c20 = {0}, e20 = {0};
- D c30 = {0}, e30 = {0};
- for (int l = 0; l < k; l += KN) {
- V b = load<V>(B + ldb * (j + 0) + l);
- c00 = madder(load<V>(A + lda * (i + 0) + l), b, c00, &e00);
- c10 = madder(load<V>(A + lda * (i + 1) + l), b, c10, &e10);
- c20 = madder(load<V>(A + lda * (i + 2) + l), b, c20, &e20);
- c30 = madder(load<V>(A + lda * (i + 3) + l), b, c30, &e30);
- }
- C[ldc * (j + 0) + (i + 0)] = hsum(c00);
- C[ldc * (j + 0) + (i + 1)] = hsum(c10);
- C[ldc * (j + 0) + (i + 2)] = hsum(c20);
- C[ldc * (j + 0) + (i + 3)] = hsum(c30);
- END_KERNEL()
- }
- NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(1, 1)
- D c = {0}, e = {0};
- for (int l = 0; l < k; l += KN)
- c = madder(load<V>(A + lda * i + l),
- load<V>(B + ldb * j + l), c, &e);
- C[ldc * j + i] = hsum(c);
- END_KERNEL()
- }
- const TA *const A;
- const TB *const B;
- TC *const C;
- const int k;
- const int lda;
- const int ldb;
- const int ldc;
- const int ith;
- const int nth;
- };
- //////////////////////////////////////////////////////////////////////////////////////////
- // QUANT ZERO MATRIX MULTIPLICATION
- #if defined(__ARM_FEATURE_DOTPROD)
- template <typename TA>
- class tinyBLAS_Q0_ARM {
- public:
- tinyBLAS_Q0_ARM(int k,
- const TA *A, int lda,
- const block_q8_0 *B, int ldb,
- float *C, int ldc,
- int ith, int nth)
- : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
- }
- void matmul(int m, int n, int task) {
- if (task == GGML_TASK_TYPE_COMPUTE)
- mnpack(0, m, 0, n);
- }
- private:
- NOINLINE void mnpack(int m0, int m, int n0, int n) {
- int mc, nc, mp, np;
- if (m - m0 <= 0 || n - n0 <= 0)
- return;
- if (m - m0 >= 3 && n - n0 >= 3) {
- mc = 3;
- nc = 3;
- gemm3x3(m0, m, n0, n);
- } else {
- mc = 1;
- nc = 1;
- gemm1x1(m0, m, n0, n);
- }
- mp = m0 + (m - m0) / mc * mc;
- np = n0 + (n - n0) / nc * nc;
- mnpack(mp, m, n0, np);
- mnpack(m0, mp, np, n);
- mnpack(mp, m, np, n);
- }
- NOINLINE void gemm3x3(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(3, 3)
- int32x4_t zero = vdupq_n_s32(0);
- float32x4_t c00 = vdupq_n_f32(0.f);
- float32x4_t c01 = vdupq_n_f32(0.f);
- float32x4_t c02 = vdupq_n_f32(0.f);
- float32x4_t c10 = vdupq_n_f32(0.f);
- float32x4_t c11 = vdupq_n_f32(0.f);
- float32x4_t c12 = vdupq_n_f32(0.f);
- float32x4_t c20 = vdupq_n_f32(0.f);
- float32x4_t c21 = vdupq_n_f32(0.f);
- float32x4_t c22 = vdupq_n_f32(0.f);
- const TA *Ap0 = A + lda * (i + 0);
- const TA *Ap1 = A + lda * (i + 1);
- const TA *Ap2 = A + lda * (i + 2);
- const block_q8_0 *Bp0 = B + ldb * (j + 0);
- const block_q8_0 *Bp1 = B + ldb * (j + 1);
- const block_q8_0 *Bp2 = B + ldb * (j + 2);
- for (int l = 0; l < k; ++l) {
- c00 = vmlaq_n_f32(
- c00,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp0 + l)),
- load_hi(Ap0 + l), load_hi(Bp0 + l))),
- unhalf(Ap0[l].d) * unhalf(Bp0[l].d));
- c01 = vmlaq_n_f32(
- c01,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp1 + l)),
- load_hi(Ap0 + l), load_hi(Bp1 + l))),
- unhalf(Ap0[l].d) * unhalf(Bp1[l].d));
- c02 = vmlaq_n_f32(
- c02,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp2 + l)),
- load_hi(Ap0 + l), load_hi(Bp2 + l))),
- unhalf(Ap0[l].d) * unhalf(Bp2[l].d));
- c10 = vmlaq_n_f32(
- c10,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp0 + l)),
- load_hi(Ap1 + l), load_hi(Bp0 + l))),
- unhalf(Ap1[l].d) * unhalf(Bp0[l].d));
- c11 = vmlaq_n_f32(
- c11,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp1 + l)),
- load_hi(Ap1 + l), load_hi(Bp1 + l))),
- unhalf(Ap1[l].d) * unhalf(Bp1[l].d));
- c12 = vmlaq_n_f32(
- c12,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp2 + l)),
- load_hi(Ap1 + l), load_hi(Bp2 + l))),
- unhalf(Ap1[l].d) * unhalf(Bp2[l].d));
- c20 = vmlaq_n_f32(
- c20,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp0 + l)),
- load_hi(Ap2 + l), load_hi(Bp0 + l))),
- unhalf(Ap2[l].d) * unhalf(Bp0[l].d));
- c21 = vmlaq_n_f32(
- c21,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp1 + l)),
- load_hi(Ap2 + l), load_hi(Bp1 + l))),
- unhalf(Ap2[l].d) * unhalf(Bp1[l].d));
- c22 = vmlaq_n_f32(
- c22,
- vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp2 + l)),
- load_hi(Ap2 + l), load_hi(Bp2 + l))),
- unhalf(Ap2[l].d) * unhalf(Bp2[l].d));
- }
- C[ldc * (j + 0) + (i + 0)] = hsum(c00);
- C[ldc * (j + 0) + (i + 1)] = hsum(c10);
- C[ldc * (j + 0) + (i + 2)] = hsum(c20);
- C[ldc * (j + 1) + (i + 0)] = hsum(c01);
- C[ldc * (j + 1) + (i + 1)] = hsum(c11);
- C[ldc * (j + 1) + (i + 2)] = hsum(c21);
- C[ldc * (j + 2) + (i + 0)] = hsum(c02);
- C[ldc * (j + 2) + (i + 1)] = hsum(c12);
- C[ldc * (j + 2) + (i + 2)] = hsum(c22);
- END_KERNEL()
- }
- NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(1, 1)
- float32x4_t acc = vdupq_n_f32(0.f);
- const TA *Ap = A + lda * i;
- const block_q8_0 *Bp = B + ldb * j;
- for (int l = 0; l < k; ++l) {
- acc = vmlaq_n_f32(acc,
- vcvtq_f32_s32(vdotq_s32(
- vdotq_s32(vdupq_n_s32(0), load_lo(Ap + l), load_lo(Bp + l)),
- load_hi(Ap + l), load_hi(Bp + l))),
- unhalf(Ap[l].d) * unhalf(Bp[l].d));
- }
- C[ldc * j + i] = hsum(acc);
- END_KERNEL()
- }
- inline int8x16_t load_lo(const block_q8_0 *b) {
- return vld1q_s8(b->qs);
- }
- inline int8x16_t load_hi(const block_q8_0 *b) {
- return vld1q_s8(b->qs + 16);
- }
- inline int8x16_t load_lo(const block_q4_0 *b) {
- return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
- vdupq_n_u8(0x0f))),
- vdupq_n_s8(0x8));
- }
- inline int8x16_t load_hi(const block_q4_0 *b) {
- return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
- vdupq_n_s8(0x8));
- }
- const TA *const A;
- const block_q8_0 *const B;
- float *const C;
- const int k;
- const int lda;
- const int ldb;
- const int ldc;
- const int ith;
- const int nth;
- };
- #endif // __ARM_FEATURE_DOTPROD
- #if defined(__AVX2__) || defined(__AVX512F__)
- template <typename TA, typename TB, typename TC>
- class tinyBLAS_Q0_AVX2 {
- public:
- tinyBLAS_Q0_AVX2(int k,
- const TA *A, int lda,
- const TB *B, int ldb,
- TC *C, int ldc,
- int ith, int nth)
- : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
- }
- void matmul(int m, int n, int task) {
- if (task == GGML_TASK_TYPE_COMPUTE)
- mnpack(0, m, 0, n);
- }
- private:
- NOINLINE void mnpack(int m0, int m, int n0, int n) {
- int mc, nc, mp, np;
- if (m - m0 <= 0 || n - n0 <= 0)
- return;
- if (m - m0 >= 4 && n - n0 >= 3) {
- mc = 4;
- nc = 3;
- gemm4x3(m0, m, n0, n);
- } else if (m - m0 >= 4 && n - n0 >= 1) {
- mc = 4;
- nc = 1;
- gemm4x1(m0, m, n0, n);
- } else if (m - m0 >= 1 && n - n0 >= 4) {
- mc = 1;
- nc = 4;
- gemm1x4(m0, m, n0, n);
- } else {
- mc = 1;
- nc = 1;
- gemm1x1(m0, m, n0, n);
- }
- mp = m0 + (m - m0) / mc * mc;
- np = n0 + (n - n0) / nc * nc;
- mnpack(mp, m, n0, np);
- mnpack(m0, mp, np, n);
- mnpack(mp, m, np, n);
- }
- NOINLINE void gemm4x3(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(4, 3)
- __m256 c00 = _mm256_setzero_ps();
- __m256 c10 = _mm256_setzero_ps();
- __m256 c20 = _mm256_setzero_ps();
- __m256 c30 = _mm256_setzero_ps();
- __m256 c01 = _mm256_setzero_ps();
- __m256 c11 = _mm256_setzero_ps();
- __m256 c21 = _mm256_setzero_ps();
- __m256 c31 = _mm256_setzero_ps();
- __m256 c02 = _mm256_setzero_ps();
- __m256 c12 = _mm256_setzero_ps();
- __m256 c22 = _mm256_setzero_ps();
- __m256 c32 = _mm256_setzero_ps();
- const TA *Ap0 = A + lda * (i + 0);
- const TA *Ap1 = A + lda * (i + 1);
- const TA *Ap2 = A + lda * (i + 2);
- const TA *Ap3 = A + lda * (i + 3);
- const TB *Bp0 = B + ldb * (j + 0);
- const TB *Bp1 = B + ldb * (j + 1);
- const TB *Bp2 = B + ldb * (j + 2);
- for (int l = 0; l < k; ++l) {
- float da0 = unhalf(Ap0[l].d);
- float da1 = unhalf(Ap1[l].d);
- float da2 = unhalf(Ap2[l].d);
- float da3 = unhalf(Ap3[l].d);
- __m256i e0 = load(Ap0 + l);
- __m256i e1 = load(Ap1 + l);
- __m256i e2 = load(Ap2 + l);
- __m256i e3 = load(Ap3 + l);
- float db0 = unhalf(Bp0[l].d);
- __m256 d00 = _mm256_set1_ps(da0 * db0);
- __m256 d10 = _mm256_set1_ps(da1 * db0);
- __m256 d20 = _mm256_set1_ps(da2 * db0);
- __m256 d30 = _mm256_set1_ps(da3 * db0);
- __m256i f0 = load(Bp0 + l);
- __m256i u0 = _mm256_sign_epi8(f0, f0);
- __m256i s00 = _mm256_sign_epi8(e0, f0);
- __m256i s10 = _mm256_sign_epi8(e1, f0);
- __m256i s20 = _mm256_sign_epi8(e2, f0);
- __m256i s30 = _mm256_sign_epi8(e3, f0);
- c00 = madd(d00, updot(u0, s00), c00);
- c10 = madd(d10, updot(u0, s10), c10);
- c20 = madd(d20, updot(u0, s20), c20);
- c30 = madd(d30, updot(u0, s30), c30);
- float db1 = unhalf(Bp1[l].d);
- __m256 d01 = _mm256_set1_ps(da0 * db1);
- __m256 d11 = _mm256_set1_ps(da1 * db1);
- __m256 d21 = _mm256_set1_ps(da2 * db1);
- __m256 d31 = _mm256_set1_ps(da3 * db1);
- __m256i f1 = load(Bp1 + l);
- __m256i u1 = _mm256_sign_epi8(f1, f1);
- __m256i s01 = _mm256_sign_epi8(e0, f1);
- __m256i s11 = _mm256_sign_epi8(e1, f1);
- __m256i s21 = _mm256_sign_epi8(e2, f1);
- __m256i s31 = _mm256_sign_epi8(e3, f1);
- c01 = madd(d01, updot(u1, s01), c01);
- c11 = madd(d11, updot(u1, s11), c11);
- c21 = madd(d21, updot(u1, s21), c21);
- c31 = madd(d31, updot(u1, s31), c31);
- float db2 = unhalf(Bp2[l].d);
- __m256 d02 = _mm256_set1_ps(da0 * db2);
- __m256 d12 = _mm256_set1_ps(da1 * db2);
- __m256 d22 = _mm256_set1_ps(da2 * db2);
- __m256 d32 = _mm256_set1_ps(da3 * db2);
- __m256i f2 = load(Bp2 + l);
- __m256i u2 = _mm256_sign_epi8(f2, f2);
- __m256i s02 = _mm256_sign_epi8(e0, f2);
- __m256i s12 = _mm256_sign_epi8(e1, f2);
- __m256i s22 = _mm256_sign_epi8(e2, f2);
- __m256i s32 = _mm256_sign_epi8(e3, f2);
- c02 = madd(d02, updot(u2, s02), c02);
- c12 = madd(d12, updot(u2, s12), c12);
- c22 = madd(d22, updot(u2, s22), c22);
- c32 = madd(d32, updot(u2, s32), c32);
- }
- C[ldc * (j + 0) + (i + 0)] = hsum(c00);
- C[ldc * (j + 0) + (i + 1)] = hsum(c10);
- C[ldc * (j + 0) + (i + 2)] = hsum(c20);
- C[ldc * (j + 0) + (i + 3)] = hsum(c30);
- C[ldc * (j + 1) + (i + 0)] = hsum(c01);
- C[ldc * (j + 1) + (i + 1)] = hsum(c11);
- C[ldc * (j + 1) + (i + 2)] = hsum(c21);
- C[ldc * (j + 1) + (i + 3)] = hsum(c31);
- C[ldc * (j + 2) + (i + 0)] = hsum(c02);
- C[ldc * (j + 2) + (i + 1)] = hsum(c12);
- C[ldc * (j + 2) + (i + 2)] = hsum(c22);
- C[ldc * (j + 2) + (i + 3)] = hsum(c32);
- END_KERNEL()
- }
- NOINLINE void gemm4x1(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(4, 1)
- __m256 c0 = _mm256_setzero_ps();
- __m256 c1 = _mm256_setzero_ps();
- __m256 c2 = _mm256_setzero_ps();
- __m256 c3 = _mm256_setzero_ps();
- const TA *Ap0 = A + lda * (i + 0);
- const TA *Ap1 = A + lda * (i + 1);
- const TA *Ap2 = A + lda * (i + 2);
- const TA *Ap3 = A + lda * (i + 3);
- const TB *Bp = B + ldb * j;
- for (int l = 0; l < k; ++l) {
- float db0 = unhalf(Bp[l].d);
- __m256i f = load(Bp + l);
- __m256i u = _mm256_sign_epi8(f, f);
- __m256 d0 = _mm256_set1_ps(unhalf(Ap0[l].d) * db0);
- __m256 d1 = _mm256_set1_ps(unhalf(Ap1[l].d) * db0);
- __m256 d2 = _mm256_set1_ps(unhalf(Ap2[l].d) * db0);
- __m256 d3 = _mm256_set1_ps(unhalf(Ap3[l].d) * db0);
- __m256i e0 = load(Ap0 + l);
- __m256i e1 = load(Ap1 + l);
- __m256i e2 = load(Ap2 + l);
- __m256i e3 = load(Ap3 + l);
- __m256i s0 = _mm256_sign_epi8(e0, f);
- __m256i s1 = _mm256_sign_epi8(e1, f);
- __m256i s2 = _mm256_sign_epi8(e2, f);
- __m256i s3 = _mm256_sign_epi8(e3, f);
- __m256 g0 = updot(u, s0);
- __m256 g1 = updot(u, s1);
- __m256 g2 = updot(u, s2);
- __m256 g3 = updot(u, s3);
- c0 = madd(d0, g0, c0);
- c1 = madd(d1, g1, c1);
- c2 = madd(d2, g2, c2);
- c3 = madd(d3, g3, c3);
- }
- C[ldc * j + (i + 0)] = hsum(c0);
- C[ldc * j + (i + 1)] = hsum(c1);
- C[ldc * j + (i + 2)] = hsum(c2);
- C[ldc * j + (i + 3)] = hsum(c3);
- END_KERNEL()
- }
- NOINLINE void gemm1x4(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(1, 4)
- __m256 c0 = _mm256_setzero_ps();
- __m256 c1 = _mm256_setzero_ps();
- __m256 c2 = _mm256_setzero_ps();
- __m256 c3 = _mm256_setzero_ps();
- const TB *Bp0 = B + ldb * (j + 0);
- const TB *Bp1 = B + ldb * (j + 1);
- const TB *Bp2 = B + ldb * (j + 2);
- const TB *Bp3 = B + ldb * (j + 3);
- const TA *Ap = A + lda * i;
- for (int l = 0; l < k; ++l) {
- float da0 = unhalf(Ap[l].d);
- __m256i f = load(Ap + l);
- __m256i u = _mm256_sign_epi8(f, f);
- __m256 d0 = _mm256_set1_ps(unhalf(Bp0[l].d) * da0);
- __m256 d1 = _mm256_set1_ps(unhalf(Bp1[l].d) * da0);
- __m256 d2 = _mm256_set1_ps(unhalf(Bp2[l].d) * da0);
- __m256 d3 = _mm256_set1_ps(unhalf(Bp3[l].d) * da0);
- __m256 g0 = updot(u, _mm256_sign_epi8(load(Bp0 + l), f));
- __m256 g1 = updot(u, _mm256_sign_epi8(load(Bp1 + l), f));
- __m256 g2 = updot(u, _mm256_sign_epi8(load(Bp2 + l), f));
- __m256 g3 = updot(u, _mm256_sign_epi8(load(Bp3 + l), f));
- c0 = madd(d0, g0, c0);
- c1 = madd(d1, g1, c1);
- c2 = madd(d2, g2, c2);
- c3 = madd(d3, g3, c3);
- }
- C[ldc * (j + 0) + i] = hsum(c0);
- C[ldc * (j + 1) + i] = hsum(c1);
- C[ldc * (j + 2) + i] = hsum(c2);
- C[ldc * (j + 3) + i] = hsum(c3);
- END_KERNEL()
- }
- NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
- BEGIN_KERNEL(1, 1)
- __m256 c = _mm256_setzero_ps();
- const TA *Ap = A + lda * i;
- const TB *Bp = B + ldb * j;
- for (int l = 0; l < k; ++l) {
- __m256 d = _mm256_set1_ps(unhalf(Ap[l].d) * unhalf(Bp[l].d));
- __m256i e = load(Ap + l);
- __m256i f = load(Bp + l);
- __m256 g = updot(_mm256_sign_epi8(e, e), _mm256_sign_epi8(f, e));
- c = madd(d, g, c);
- }
- C[ldc * j + i] = hsum(c);
- END_KERNEL()
- }
- inline __m256i load(const block_q8_0 *b) {
- return _mm256_loadu_si256((const __m256i *)b->qs);
- }
- inline __m256i load(const block_q4_0 *b) {
- return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
- }
- inline __m256 updot(__m256i u, __m256i s) {
- __m256i res;
- #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
- res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
- #else
- res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
- #endif
- return _mm256_cvtepi32_ps(res);
- }
- static inline __m256i denibble(const uint8_t *p) {
- const __m128i tmp = _mm_loadu_si128((const __m128i *)p);
- const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
- const __m256i lowMask = _mm256_set1_epi8(15);
- return _mm256_and_si256(lowMask, bytes);
- }
- const TA *const A;
- const TB *const B;
- TC *const C;
- const int k;
- const int lda;
- const int ldb;
- const int ldc;
- const int ith;
- const int nth;
- };
- #endif // __AVX2__
- } // namespace
- /**
- * Performs optimized matrix multiplication on CPU.
- *
- * This subroutine may compute C = Aᵀ * B with column major ordering.
- * Despite its name, this isn't a generalized implementation. Work is
- * only performed when a handwritten kernel is written and available.
- * Otherwise the caller should fall back to a general matmul routine.
- *
- * For example, for single-threaded single-precision GEMM you can say
- *
- * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
- * 0, 1, GGML_TASK_TYPE_COMPUTE,
- * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
- *
- * @param m is rows in `A` and `C`
- * @param n is cols in `B` and `C`
- * @param k is cols in `A` and rows in `B`
- * @param A is first input matrix (always transposed)
- * @param lda is row stride of `A`
- * @param B is second input matrix (never transposed)
- * @param ldb is row stride of `B`
- * @param C is input/output array of output matrices
- * @param ldc is row stride of `C`
- * @param ith is thread id (must be less than `nth`)
- * @param nth is number of threads (must be greater than zero)
- * @param task is GGML task type
- * @param Atype is GGML data type of `A`
- * @param Btype is GGML data type of `B`
- * @param Ctype is GGML data type of `C`
- * @return true if this function was able to service the matmul request
- */
- bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, int ldb, void *C,
- int ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
- assert(m >= 0);
- assert(n >= 0);
- assert(k >= 0);
- assert(lda >= k);
- assert(ldb >= k);
- assert(ldc >= m);
- assert(nth > 0);
- assert(ith < nth);
- assert(1ll * lda * m <= 0x7fffffff);
- assert(1ll * ldb * n <= 0x7fffffff);
- assert(1ll * ldc * n <= 0x7fffffff);
- if (Ctype != GGML_TYPE_F32)
- return false;
- switch (Atype) {
- case GGML_TYPE_F32: {
- if (Btype != GGML_TYPE_F32)
- return false;
- #if defined(__AVX512F__)
- if (k % 16)
- return false;
- tinyBLAS<16, __m512, __m512, float, float, float> tb{
- k, (const float *)A, lda,
- (const float *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif defined(__AVX__) || defined(__AVX2__)
- if (k % 8)
- return false;
- tinyBLAS<8, __m256, __m256, float, float, float> tb{
- k, (const float *)A, lda,
- (const float *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif defined(__ARM_NEON)
- if (n < 4)
- return false;
- if (k % 4)
- return false;
- tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
- k, (const float *)A, lda,
- (const float *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #else
- return false;
- #endif
- }
- case GGML_TYPE_F16: {
- #if defined(__AVX512F__)
- if (k % 16)
- return false;
- if (Btype != GGML_TYPE_F32)
- return false;
- tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
- k, (const ggml_fp16_t *)A, lda,
- (const float *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
- if (k % 8)
- return false;
- if (Btype != GGML_TYPE_F32)
- return false;
- tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
- k, (const ggml_fp16_t *)A, lda,
- (const float *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
- if (n < 8)
- return false;
- if (k % 8)
- return false;
- if (Btype != GGML_TYPE_F16)
- return false;
- tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
- k, (const ggml_fp16_t *)A, lda,
- (const ggml_fp16_t *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif defined(__ARM_NEON) && !defined(_MSC_VER)
- if (k % 4)
- return false;
- if (Btype != GGML_TYPE_F32)
- return false;
- tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
- k, (const ggml_fp16_t *)A, lda,
- (const float *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #else
- return false;
- #endif
- }
- case GGML_TYPE_Q8_0: {
- if (Btype != GGML_TYPE_Q8_0)
- return false;
- #if defined(__AVX2__) || defined(__AVX512F__)
- tinyBLAS_Q0_AVX2<block_q8_0, block_q8_0, float> tb{
- k, (const block_q8_0 *)A, lda,
- (const block_q8_0 *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif defined(__ARM_FEATURE_DOTPROD)
- tinyBLAS_Q0_ARM<block_q8_0> tb{
- k, (const block_q8_0 *)A, lda,
- (const block_q8_0 *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #else
- return false;
- #endif
- }
- case GGML_TYPE_Q4_0: {
- if (Btype != GGML_TYPE_Q8_0)
- return false;
- #if defined(__AVX2__) || defined(__AVX512F__)
- tinyBLAS_Q0_AVX2<block_q4_0, block_q8_0, float> tb{
- k, (const block_q4_0 *)A, lda,
- (const block_q8_0 *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #elif defined(__ARM_FEATURE_DOTPROD)
- tinyBLAS_Q0_ARM<block_q4_0> tb{
- k, (const block_q4_0 *)A, lda,
- (const block_q8_0 *)B, ldb,
- (float *)C, ldc,
- ith, nth};
- tb.matmul(m, n, task);
- return true;
- #else
- return false;
- #endif
- }
- default:
- return false;
- }
- (void)m;
- (void)n;
- (void)k;
- (void)A;
- (void)lda;
- (void)B;
- (void)ldb;
- (void)C;
- (void)ldc;
- (void)ith;
- (void)nth;
- (void)task;
- (void)Atype;
- (void)Btype;
- (void)Ctype;
- }
|