ggml.c 312 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. #define GGML_MLOCK_SUPPORT 0
  83. #ifdef __has_include
  84. #if __has_include(<sys/mman.h>)
  85. #undef GGML_MLOCK_SUPPORT
  86. #define GGML_MLOCK_SUPPORT 1
  87. #include <sys/mman.h>
  88. #endif
  89. #endif
  90. /*#define GGML_PERF*/
  91. #define GGML_DEBUG 0
  92. #define GGML_GELU_FP16
  93. #define GGML_SILU_FP16
  94. #define GGML_SOFT_MAX_UNROLL 4
  95. #define GGML_VEC_DOT_UNROLL 2
  96. #ifdef GGML_USE_ACCELERATE
  97. // uncomment to use vDSP for soft max computation
  98. // note: not sure if it is actually faster
  99. //#define GGML_SOFT_MAX_ACCELERATE
  100. #endif
  101. #if UINTPTR_MAX == 0xFFFFFFFF
  102. #define GGML_MEM_ALIGN 4
  103. #else
  104. #define GGML_MEM_ALIGN 16
  105. #endif
  106. #define UNUSED(x) (void)(x)
  107. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  108. #define GGML_ASSERT(x) \
  109. do { \
  110. if (!(x)) { \
  111. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  112. abort(); \
  113. } \
  114. } while (0)
  115. #ifdef GGML_USE_ACCELERATE
  116. #include <Accelerate/Accelerate.h>
  117. #elif GGML_USE_OPENBLAS
  118. #include <cblas.h>
  119. #endif
  120. #undef MIN
  121. #undef MAX
  122. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  123. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  124. // floating point type used to accumulate sums
  125. typedef double ggml_float;
  126. // 16-bit float
  127. // on Arm, we use __fp16
  128. // on x86, we use uint16_t
  129. #ifdef __ARM_NEON
  130. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  131. //
  132. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  133. //
  134. #include <arm_neon.h>
  135. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  136. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  137. #define GGML_FP16_TO_FP32(x) ((float) (x))
  138. #define GGML_FP32_TO_FP16(x) (x)
  139. #else
  140. #ifdef __wasm_simd128__
  141. #include <wasm_simd128.h>
  142. #else
  143. #ifdef __POWER9_VECTOR__
  144. #include <altivec.h>
  145. #undef bool
  146. #define bool _Bool
  147. #else
  148. #include <immintrin.h>
  149. #endif
  150. #endif
  151. #ifdef __F16C__
  152. #ifdef _MSC_VER
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  155. #else
  156. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  157. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  158. #endif
  159. #elif defined(__POWER9_VECTOR__)
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  162. /* the inline asm below is about 12% faster than the lookup method */
  163. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  164. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  165. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  166. register float f;
  167. register double d;
  168. __asm__(
  169. "mtfprd %0,%2\n"
  170. "xscvhpdp %0,%0\n"
  171. "frsp %1,%0\n" :
  172. /* temp */ "=d"(d),
  173. /* out */ "=f"(f):
  174. /* in */ "r"(h));
  175. return f;
  176. }
  177. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  178. register double d;
  179. register ggml_fp16_t r;
  180. __asm__( /* xscvdphp can work on double or single precision */
  181. "xscvdphp %0,%2\n"
  182. "mffprd %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=r"(r):
  185. /* in */ "f"(f));
  186. return r;
  187. }
  188. #else
  189. // FP16 <-> FP32
  190. // ref: https://github.com/Maratyszcza/FP16
  191. static inline float fp32_from_bits(uint32_t w) {
  192. union {
  193. uint32_t as_bits;
  194. float as_value;
  195. } fp32;
  196. fp32.as_bits = w;
  197. return fp32.as_value;
  198. }
  199. static inline uint32_t fp32_to_bits(float f) {
  200. union {
  201. float as_value;
  202. uint32_t as_bits;
  203. } fp32;
  204. fp32.as_value = f;
  205. return fp32.as_bits;
  206. }
  207. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  208. const uint32_t w = (uint32_t) h << 16;
  209. const uint32_t sign = w & UINT32_C(0x80000000);
  210. const uint32_t two_w = w + w;
  211. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  212. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  213. const float exp_scale = 0x1.0p-112f;
  214. #else
  215. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  216. #endif
  217. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  218. const uint32_t magic_mask = UINT32_C(126) << 23;
  219. const float magic_bias = 0.5f;
  220. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  221. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  222. const uint32_t result = sign |
  223. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  224. return fp32_from_bits(result);
  225. }
  226. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  227. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  228. const float scale_to_inf = 0x1.0p+112f;
  229. const float scale_to_zero = 0x1.0p-110f;
  230. #else
  231. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  232. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  233. #endif
  234. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  235. const uint32_t w = fp32_to_bits(f);
  236. const uint32_t shl1_w = w + w;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  239. if (bias < UINT32_C(0x71000000)) {
  240. bias = UINT32_C(0x71000000);
  241. }
  242. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  243. const uint32_t bits = fp32_to_bits(base);
  244. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  245. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  246. const uint32_t nonsign = exp_bits + mantissa_bits;
  247. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  248. }
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  251. #endif // __F16C__
  252. #endif // __ARM_NEON
  253. //
  254. // global data
  255. //
  256. // precomputed gelu table for f16 (128 KB)
  257. static ggml_fp16_t table_gelu_f16[1 << 16];
  258. // precomputed silu table for f16 (128 KB)
  259. static ggml_fp16_t table_silu_f16[1 << 16];
  260. // precomputed exp table for f16 (128 KB)
  261. static ggml_fp16_t table_exp_f16[1 << 16];
  262. // precomputed f32 table for f16 (256 KB)
  263. static float table_f32_f16[1 << 16];
  264. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  265. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  266. // This is also true for POWER9.
  267. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  268. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  269. uint16_t s;
  270. memcpy(&s, &f, sizeof(uint16_t));
  271. return table_f32_f16[s];
  272. }
  273. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  274. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  275. #endif
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return (float) GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. //
  285. // timing
  286. //
  287. #if defined(_MSC_VER) || defined(__MINGW32__)
  288. static int64_t timer_freq;
  289. void ggml_time_init(void) {
  290. LARGE_INTEGER frequency;
  291. QueryPerformanceFrequency(&frequency);
  292. timer_freq = frequency.QuadPart;
  293. }
  294. int64_t ggml_time_ms(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return (t.QuadPart * 1000) / timer_freq;
  298. }
  299. int64_t ggml_time_us(void) {
  300. LARGE_INTEGER t;
  301. QueryPerformanceCounter(&t);
  302. return (t.QuadPart * 1000000) / timer_freq;
  303. }
  304. #else
  305. void ggml_time_init(void) {}
  306. int64_t ggml_time_ms(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  310. }
  311. int64_t ggml_time_us(void) {
  312. struct timespec ts;
  313. clock_gettime(CLOCK_MONOTONIC, &ts);
  314. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  315. }
  316. #endif
  317. int64_t ggml_cycles(void) {
  318. return clock();
  319. }
  320. int64_t ggml_cycles_per_ms(void) {
  321. return CLOCKS_PER_SEC/1000;
  322. }
  323. #ifdef GGML_PERF
  324. #define ggml_perf_time_ms() ggml_time_ms()
  325. #define ggml_perf_time_us() ggml_time_us()
  326. #define ggml_perf_cycles() ggml_cycles()
  327. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  328. #else
  329. #define ggml_perf_time_ms() 0
  330. #define ggml_perf_time_us() 0
  331. #define ggml_perf_cycles() 0
  332. #define ggml_perf_cycles_per_ms() 0
  333. #endif
  334. //
  335. // cache line
  336. //
  337. #if defined(__cpp_lib_hardware_interference_size)
  338. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  339. #else
  340. #if defined(__POWER9_VECTOR__)
  341. #define CACHE_LINE_SIZE 128
  342. #else
  343. #define CACHE_LINE_SIZE 64
  344. #endif
  345. #endif
  346. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  347. //
  348. // quantization
  349. //
  350. #define QK 32
  351. // AVX routines provided by GH user Const-me
  352. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  353. #if __AVX2__ || __AVX512F__
  354. // Unpack 32 4-bit fields into 32 bytes
  355. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  356. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  357. {
  358. // Load 16 bytes from memory
  359. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  360. // Expand bytes into uint16_t values
  361. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  362. // Unpack values into individual bytes
  363. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  364. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  365. __m256i low = _mm256_and_si256( lowMask, bytes );
  366. high = _mm256_slli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. return bytes;
  369. }
  370. static inline __m128i packNibbles( __m256i bytes )
  371. {
  372. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  373. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  374. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  375. __m256i low = _mm256_and_si256( lowByte, bytes );
  376. high = _mm256_srli_epi16( high, 4 );
  377. bytes = _mm256_or_si256( low, high );
  378. // Compress uint16_t lanes into bytes
  379. __m128i r0 = _mm256_castsi256_si128( bytes );
  380. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  381. return _mm_packus_epi16( r0, r1 );
  382. }
  383. #endif
  384. // method 5
  385. // blocks of QK elements
  386. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  387. typedef struct {
  388. float d; // delta
  389. uint8_t qs[QK / 2]; // nibbles / quants
  390. } block_q4_0;
  391. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  392. // method 4
  393. // blocks of QK elements
  394. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  395. typedef struct {
  396. float d;
  397. float m;
  398. uint8_t qs[QK / 2]; // nibbles / quants
  399. } block_q4_1;
  400. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  401. // reference implementation for deterministic creation of model files
  402. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  403. assert(k % QK == 0);
  404. const int nb = k / QK;
  405. uint8_t pp[QK/2];
  406. for (int i = 0; i < nb; i++) {
  407. float amax = 0.0f; // absolute max
  408. for (int l = 0; l < QK; l++) {
  409. const float v = x[i*QK + l];
  410. amax = MAX(amax, fabsf(v));
  411. }
  412. const float d = amax / ((1 << 3) - 1);
  413. const float id = d ? 1.0f/d : 0.0f;
  414. y[i].d = d;
  415. for (int l = 0; l < QK; l += 2) {
  416. const float v0 = x[i*QK + l + 0]*id;
  417. const float v1 = x[i*QK + l + 1]*id;
  418. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  419. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  420. assert(vi0 >= 0 && vi0 < 16);
  421. assert(vi1 >= 0 && vi1 < 16);
  422. pp[l/2] = vi0 | (vi1 << 4);
  423. }
  424. memcpy(y[i].qs, pp, sizeof(pp));
  425. }
  426. }
  427. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  428. assert(k % QK == 0);
  429. const int nb = k / QK;
  430. block_q4_0 * restrict y = vy;
  431. #if defined(__POWER9_VECTOR__)
  432. const vector float v85 = vec_splats(8.5f);
  433. for (int i = 0; i < nb; i++) {
  434. float amax = 0.0f; // absolute max
  435. vector float srcv [8];
  436. vector float asrcv[8];
  437. vector float amaxv[8];
  438. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  439. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  440. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  441. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  442. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  443. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  444. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  445. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  446. amax = MAX(
  447. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  448. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  449. const float d = amax / ((1 << 3) - 1);
  450. const float id = d ? 1.0/d : 0.0;
  451. y[i].d = d;
  452. const vector float vid = vec_splats(id);
  453. uint8_t * restrict pb = y[i].qs;
  454. for (int l = 0; l < 8; l++) {
  455. const vector float vf = vec_madd(srcv[l], vid, v85);
  456. const vector signed int vi = vec_signed(vf);
  457. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  458. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  459. }
  460. }
  461. #elif __ARM_NEON
  462. uint8_t pp[QK/2];
  463. for (int i = 0; i < nb; i++) {
  464. float amax = 0.0f; // absolute max
  465. float32x4_t srcv [8];
  466. float32x4_t asrcv[8];
  467. float32x4_t amaxv[8];
  468. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  469. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  470. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  471. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  472. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  473. amax = MAX(
  474. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  475. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  476. const float d = amax / ((1 << 3) - 1);
  477. const float id = d ? 1.0f/d : 0.0f;
  478. y[i].d = d;
  479. for (int l = 0; l < 8; l++) {
  480. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  481. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  482. const int32x4_t vi = vcvtq_s32_f32(vf);
  483. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  484. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  485. }
  486. memcpy(y[i].qs, pp, sizeof(pp));
  487. }
  488. #elif defined(__AVX2__)
  489. for (int i = 0; i < nb; i++) {
  490. // Load elements into 4 AVX vectors
  491. __m256 v0 = _mm256_loadu_ps( x );
  492. __m256 v1 = _mm256_loadu_ps( x + 8 );
  493. __m256 v2 = _mm256_loadu_ps( x + 16 );
  494. __m256 v3 = _mm256_loadu_ps( x + 24 );
  495. x += 32;
  496. // Compute max(abs(e)) for the block
  497. const __m256 signBit = _mm256_set1_ps( -0.0f );
  498. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  499. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  500. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  501. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  502. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  503. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  504. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  505. const float maxScalar = _mm_cvtss_f32( max4 );
  506. // Quantize these floats
  507. const float d = maxScalar / 7.0f;
  508. y[i].d = d;
  509. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  510. const __m256 mul = _mm256_set1_ps( id );
  511. // Apply the multiplier
  512. v0 = _mm256_mul_ps( v0, mul );
  513. v1 = _mm256_mul_ps( v1, mul );
  514. v2 = _mm256_mul_ps( v2, mul );
  515. v3 = _mm256_mul_ps( v3, mul );
  516. // Round to nearest integer
  517. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  518. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  519. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  520. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  521. // Convert floats to integers
  522. __m256i i0 = _mm256_cvtps_epi32( v0 );
  523. __m256i i1 = _mm256_cvtps_epi32( v1 );
  524. __m256i i2 = _mm256_cvtps_epi32( v2 );
  525. __m256i i3 = _mm256_cvtps_epi32( v3 );
  526. // Convert int32 to int16
  527. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  528. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  529. // Convert int16 to int8
  530. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  531. // We got our precious signed bytes, but the order is now wrong
  532. // These AVX2 pack instructions process 16-byte pieces independently
  533. // The following instruction is fixing the order
  534. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  535. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  536. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  537. const __m256i off = _mm256_set1_epi8( 8 );
  538. i0 = _mm256_add_epi8( i0, off );
  539. // Compress the vector into 4 bit/value, and store
  540. __m128i res = packNibbles( i0 );
  541. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  542. }
  543. #elif defined(__wasm_simd128__)
  544. uint8_t pp[QK/2];
  545. for (int i = 0; i < nb; i++) {
  546. float amax = 0.0f; // absolute max
  547. v128_t srcv [8];
  548. v128_t asrcv[8];
  549. v128_t amaxv[8];
  550. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  551. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  552. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  553. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  554. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  555. amax = MAX(
  556. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  557. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  558. const float d = amax / ((1 << 3) - 1);
  559. const float id = d ? 1.0/d : 0.0;
  560. y[i].d = d;
  561. for (int l = 0; l < 8; l++) {
  562. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  563. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  564. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  565. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  566. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  567. }
  568. memcpy(y[i].qs, pp, sizeof(pp));
  569. }
  570. #else
  571. // scalar
  572. quantize_row_q4_0_reference(x, y, k);
  573. #endif
  574. }
  575. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  576. assert(k % QK == 0);
  577. const int nb = k / QK;
  578. block_q4_1 * restrict y = vy;
  579. uint8_t pp[QK/2];
  580. for (int i = 0; i < nb; i++) {
  581. float min = FLT_MAX;
  582. float max = -FLT_MAX;
  583. for (int l = 0; l < QK; l++) {
  584. const float v = x[i*QK + l];
  585. if (v < min) min = v;
  586. if (v > max) max = v;
  587. }
  588. const float d = (max - min) / ((1 << 4) - 1);
  589. const float id = d ? 1.0f/d : 0.0f;
  590. y[i].d = d;
  591. y[i].m = min;
  592. for (int l = 0; l < QK; l += 2) {
  593. const float v0 = (x[i*QK + l + 0] - min)*id;
  594. const float v1 = (x[i*QK + l + 1] - min)*id;
  595. const uint8_t vi0 = roundf(v0);
  596. const uint8_t vi1 = roundf(v1);
  597. assert(vi0 >= 0 && vi0 < 16);
  598. assert(vi1 >= 0 && vi1 < 16);
  599. pp[l/2] = vi0 | (vi1 << 4);
  600. }
  601. memcpy(y[i].qs, pp, sizeof(pp));
  602. }
  603. }
  604. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  605. assert(k % QK == 0);
  606. #if defined(__AVX2__)
  607. const int nb = k / QK;
  608. block_q4_1 * restrict y = vy;
  609. for (int i = 0; i < nb; i++) {
  610. // Load elements into 4 AVX vectors
  611. __m256 v0 = _mm256_loadu_ps( x );
  612. __m256 v1 = _mm256_loadu_ps( x + 8 );
  613. __m256 v2 = _mm256_loadu_ps( x + 16 );
  614. __m256 v3 = _mm256_loadu_ps( x + 24 );
  615. x += 32;
  616. // Compute max for the block
  617. __m256 vmax;
  618. vmax = _mm256_max_ps( v0, v1 );
  619. vmax = _mm256_max_ps( vmax, v2 );
  620. vmax = _mm256_max_ps( vmax, v3 );
  621. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  622. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  623. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  624. const float maxScalar = _mm_cvtss_f32( max4 );
  625. // Compute min for the block
  626. __m256 vmin;
  627. vmin = _mm256_min_ps( v0, v1 );
  628. vmin = _mm256_min_ps( vmin, v2 );
  629. vmin = _mm256_min_ps( vmin, v3 );
  630. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  631. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  632. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  633. const float minScalar = _mm_cvtss_f32( min4 );
  634. // Quantize these floats
  635. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  636. const float id = d ? 1.0f/d : 0.0f;
  637. y[i].m = minScalar;
  638. y[i].d = d;
  639. // x = (x-min)*id
  640. const __m256 mul = _mm256_set1_ps( id );
  641. const __m256 off = _mm256_set1_ps( minScalar );
  642. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  643. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  644. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  645. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  646. // Round to nearest integer
  647. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  648. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  649. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  650. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  651. // Convert floats to integers
  652. __m256i i0 = _mm256_cvtps_epi32( v0 );
  653. __m256i i1 = _mm256_cvtps_epi32( v1 );
  654. __m256i i2 = _mm256_cvtps_epi32( v2 );
  655. __m256i i3 = _mm256_cvtps_epi32( v3 );
  656. // Convert int32 to int16
  657. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  658. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  659. // Convert int16 to int8
  660. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  661. // We got our precious signed bytes, but the order is now wrong
  662. // These AVX2 pack instructions process 16-byte pieces independently
  663. // The following instruction is fixing the order
  664. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  665. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  666. // Compress the vector into 4 bit/value, and store
  667. __m128i res = packNibbles( i0 );
  668. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  669. }
  670. #else
  671. // scalar
  672. quantize_row_q4_1_reference(x, vy, k);
  673. #endif
  674. }
  675. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  676. assert(k % QK == 0);
  677. const int nb = k / QK;
  678. const block_q4_0 * restrict x = vx;
  679. #if defined(__AVX2__)
  680. for (int i = 0; i < nb; i++) {
  681. // scale factor
  682. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  683. const uint8_t * restrict pp = x[i].qs;
  684. for (int l = 0; l < QK; l += 32) {
  685. // Load 32x4-bit integers into 32x8-bit integers
  686. __m256i vx8 = bytesFromNibbles(pp+l/2);
  687. // Subtract 8 from the integers
  688. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  689. // Convert to 16-bit int
  690. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  691. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  692. // Convert to 32-bit int -> float 32
  693. const __m256 vf[4] = {
  694. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  695. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  696. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  697. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  698. };
  699. // Scale and store
  700. for (int j = 0; j < 4; j++) {
  701. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  702. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  703. }
  704. }
  705. }
  706. #elif defined(__ARM_NEON)
  707. for (int i = 0; i < nb; i++) {
  708. const float32x4_t vd = vdupq_n_f32(x[i].d);
  709. const uint8_t * restrict pp = x[i].qs;
  710. for (int l = 0; l < QK; l += 16) {
  711. // Load 16x4-bit integers into 8x8-bit integers
  712. const uint8x8_t v8 = vld1_u8(pp + l/2);
  713. // Expand 4-bit qs to 8-bit bytes
  714. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  715. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  716. // Convert to signed 8-bit integers
  717. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  718. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  719. // Subtract 8 from each byte
  720. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  721. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  722. // Interleave and combine
  723. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  724. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  725. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  726. // convert to 2x int16x8_t
  727. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  728. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  729. // convert to 4x float32x4_t
  730. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  731. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  732. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  733. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  734. // Multiply by d
  735. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  736. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  737. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  738. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  739. // Store
  740. vst1q_f32(y + i*QK + l + 0, r0);
  741. vst1q_f32(y + i*QK + l + 4, r1);
  742. vst1q_f32(y + i*QK + l + 8, r2);
  743. vst1q_f32(y + i*QK + l + 12, r3);
  744. }
  745. }
  746. #else
  747. // scalar
  748. for (int i = 0; i < nb; i++) {
  749. const float d = x[i].d;
  750. const uint8_t * restrict pp = x[i].qs;
  751. for (int l = 0; l < QK; l += 2) {
  752. const uint8_t vi = pp[l/2];
  753. const int8_t vi0 = vi & 0xf;
  754. const int8_t vi1 = vi >> 4;
  755. const float v0 = (vi0 - 8)*d;
  756. const float v1 = (vi1 - 8)*d;
  757. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  758. y[i*QK + l + 0] = v0;
  759. y[i*QK + l + 1] = v1;
  760. assert(!isnan(y[i*QK + l + 0]));
  761. assert(!isnan(y[i*QK + l + 1]));
  762. }
  763. }
  764. #endif
  765. }
  766. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  767. assert(k % QK == 0);
  768. const int nb = k / QK;
  769. const block_q4_1 * restrict x = vx;
  770. #if defined(__AVX2__)
  771. for (int i = 0; i < nb; i++) {
  772. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  773. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  774. const uint8_t * restrict pp = x[i].qs;
  775. for (int l = 0; l < QK; l += 32) {
  776. // Load 32x4-bit integers into 32x8-bit integers
  777. __m256i vx8 = bytesFromNibbles(pp+l/2);
  778. // Convert to 16-bit int
  779. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  780. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  781. // Convert to 32-bit int -> float 32
  782. const __m256 vf[4] = {
  783. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  784. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  785. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  786. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  787. };
  788. // Scale, add m and store
  789. for (int j = 0; j < 4; j++) {
  790. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  791. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  792. }
  793. }
  794. }
  795. #else
  796. for (int i = 0; i < nb; i++) {
  797. const float d = x[i].d;
  798. const float m = x[i].m;
  799. const uint8_t * restrict pp = x[i].qs;
  800. for (int l = 0; l < QK; l += 2) {
  801. const uint8_t vi = pp[l/2];
  802. const int8_t vi0 = vi & 0xf;
  803. const int8_t vi1 = vi >> 4;
  804. const float v0 = vi0*d + m;
  805. const float v1 = vi1*d + m;
  806. y[i*QK + l + 0] = v0;
  807. y[i*QK + l + 1] = v1;
  808. assert(!isnan(y[i*QK + l + 0]));
  809. assert(!isnan(y[i*QK + l + 1]));
  810. }
  811. }
  812. #endif
  813. }
  814. //
  815. // simd mappings
  816. //
  817. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  818. // we then implement the fundamental computation operations below using only these macros
  819. // adding support for new architectures requires to define the corresponding SIMD macros
  820. //
  821. // GGML_F32_STEP / GGML_F16_STEP
  822. // number of elements to process in a single step
  823. //
  824. // GGML_F32_EPR / GGML_F16_EPR
  825. // number of elements to fit in a single register
  826. //
  827. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  828. #define GGML_SIMD
  829. // F32 NEON
  830. #define GGML_F32_STEP 16
  831. #define GGML_F32_EPR 4
  832. #define GGML_F32x4 float32x4_t
  833. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  834. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  835. #define GGML_F32x4_LOAD vld1q_f32
  836. #define GGML_F32x4_STORE vst1q_f32
  837. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  838. #define GGML_F32x4_ADD vaddq_f32
  839. #define GGML_F32x4_MUL vmulq_f32
  840. #if defined(__ARM_FEATURE_QRDMX)
  841. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  842. #else
  843. #define GGML_F32x4_REDUCE_ONE(x) \
  844. (vgetq_lane_f32(x, 0) + \
  845. vgetq_lane_f32(x, 1) + \
  846. vgetq_lane_f32(x, 2) + \
  847. vgetq_lane_f32(x, 3))
  848. #endif
  849. #define GGML_F32x4_REDUCE(res, x) \
  850. { \
  851. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  852. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  853. } \
  854. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  855. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  856. } \
  857. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  858. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  859. } \
  860. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  861. }
  862. #define GGML_F32_VEC GGML_F32x4
  863. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  864. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  865. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  866. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  867. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  868. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  869. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  870. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  871. // F16 NEON
  872. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  873. #define GGML_F16_STEP 32
  874. #define GGML_F16_EPR 8
  875. #define GGML_F16x8 float16x8_t
  876. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  877. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  878. #define GGML_F16x8_LOAD vld1q_f16
  879. #define GGML_F16x8_STORE vst1q_f16
  880. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  881. #define GGML_F16x8_ADD vaddq_f16
  882. #define GGML_F16x8_MUL vmulq_f16
  883. #define GGML_F16x8_REDUCE(res, x) \
  884. { \
  885. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  886. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  887. } \
  888. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  889. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  890. } \
  891. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  892. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  893. } \
  894. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  895. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  896. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  897. }
  898. #define GGML_F16_VEC GGML_F16x8
  899. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  900. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  901. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  902. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  903. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  904. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  905. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  906. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  907. #else
  908. // if FP16 vector arithmetic is not supported, we use FP32 instead
  909. // and take advantage of the vcvt_ functions to convert to/from FP16
  910. #define GGML_F16_STEP 16
  911. #define GGML_F16_EPR 4
  912. #define GGML_F32Cx4 float32x4_t
  913. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  914. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  915. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  916. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  917. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  918. #define GGML_F32Cx4_ADD vaddq_f32
  919. #define GGML_F32Cx4_MUL vmulq_f32
  920. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  921. #define GGML_F16_VEC GGML_F32Cx4
  922. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  923. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  924. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  925. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  926. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  927. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  928. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  929. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  930. #endif
  931. #elif defined(__AVX__)
  932. #define GGML_SIMD
  933. // F32 AVX
  934. #define GGML_F32_STEP 32
  935. #define GGML_F32_EPR 8
  936. #define GGML_F32x8 __m256
  937. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  938. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  939. #define GGML_F32x8_LOAD _mm256_loadu_ps
  940. #define GGML_F32x8_STORE _mm256_storeu_ps
  941. #if defined(__FMA__)
  942. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  943. #else
  944. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  945. #endif
  946. #define GGML_F32x8_ADD _mm256_add_ps
  947. #define GGML_F32x8_MUL _mm256_mul_ps
  948. #define GGML_F32x8_REDUCE(res, x) \
  949. { \
  950. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  951. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  952. } \
  953. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  954. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  955. } \
  956. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  957. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  958. } \
  959. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  960. _mm256_extractf128_ps(x[0], 1)); \
  961. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  962. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  963. }
  964. // TODO: is this optimal ?
  965. #define GGML_F32_VEC GGML_F32x8
  966. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  967. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  968. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  969. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  970. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  971. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  972. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  973. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  974. // F16 AVX
  975. #define GGML_F16_STEP 32
  976. #define GGML_F16_EPR 8
  977. // F16 arithmetic is not supported by AVX, so we use F32 instead
  978. #define GGML_F32Cx8 __m256
  979. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  980. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  981. #if defined(__F16C__)
  982. // the _mm256_cvt intrinsics require F16C
  983. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  984. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  985. #else
  986. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  987. float tmp[8];
  988. for (int i = 0; i < 8; i++)
  989. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  990. return _mm256_loadu_ps(tmp);
  991. }
  992. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  993. float arr[8];
  994. _mm256_storeu_ps(arr, y);
  995. for (int i = 0; i < 8; i++)
  996. x[i] = GGML_FP16_TO_FP32(arr[i]);
  997. }
  998. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  999. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1000. #endif
  1001. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1002. #define GGML_F32Cx8_ADD _mm256_add_ps
  1003. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1004. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1005. #define GGML_F16_VEC GGML_F32Cx8
  1006. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1007. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1008. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1009. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1010. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1011. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1012. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1013. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1014. #elif defined(__POWER9_VECTOR__)
  1015. #define GGML_SIMD
  1016. // F32 POWER9
  1017. #define GGML_F32_STEP 32
  1018. #define GGML_F32_EPR 4
  1019. #define GGML_F32x4 vector float
  1020. #define GGML_F32x4_ZERO 0.0f
  1021. #define GGML_F32x4_SET1 vec_splats
  1022. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1023. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1024. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1025. #define GGML_F32x4_ADD vec_add
  1026. #define GGML_F32x4_MUL vec_mul
  1027. #define GGML_F32x4_REDUCE(res, x) \
  1028. { \
  1029. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1030. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1031. } \
  1032. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1033. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1034. } \
  1035. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1036. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1037. } \
  1038. res = vec_extract(x[0], 0) + \
  1039. vec_extract(x[0], 1) + \
  1040. vec_extract(x[0], 2) + \
  1041. vec_extract(x[0], 3); \
  1042. }
  1043. #define GGML_F32_VEC GGML_F32x4
  1044. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1045. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1046. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1047. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1048. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1049. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1050. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1051. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1052. // F16 POWER9
  1053. #define GGML_F16_STEP GGML_F32_STEP
  1054. #define GGML_F16_EPR GGML_F32_EPR
  1055. #define GGML_F16_VEC GGML_F32x4
  1056. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1058. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1059. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1060. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1061. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1062. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1063. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1064. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1065. #define GGML_F16_VEC_STORE(p, r, i) \
  1066. if (i & 0x1) \
  1067. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1068. r[i - GGML_ENDIAN_BYTE(0)]), \
  1069. 0, p - GGML_F16_EPR)
  1070. #elif defined(__wasm_simd128__)
  1071. #define GGML_SIMD
  1072. // F32 WASM
  1073. #define GGML_F32_STEP 16
  1074. #define GGML_F32_EPR 4
  1075. #define GGML_F32x4 v128_t
  1076. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1077. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1078. #define GGML_F32x4_LOAD wasm_v128_load
  1079. #define GGML_F32x4_STORE wasm_v128_store
  1080. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1081. #define GGML_F32x4_ADD wasm_f32x4_add
  1082. #define GGML_F32x4_MUL wasm_f32x4_mul
  1083. #define GGML_F32x4_REDUCE(res, x) \
  1084. { \
  1085. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1086. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1087. } \
  1088. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1089. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1090. } \
  1091. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1092. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1093. } \
  1094. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1095. wasm_f32x4_extract_lane(x[0], 1) + \
  1096. wasm_f32x4_extract_lane(x[0], 2) + \
  1097. wasm_f32x4_extract_lane(x[0], 3); \
  1098. }
  1099. #define GGML_F32_VEC GGML_F32x4
  1100. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1101. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1102. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1103. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1104. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1105. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1106. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1107. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1108. // F16 WASM
  1109. #define GGML_F16_STEP 16
  1110. #define GGML_F16_EPR 4
  1111. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1112. float tmp[4];
  1113. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1114. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1115. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1116. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1117. return wasm_v128_load(tmp);
  1118. }
  1119. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1120. float tmp[4];
  1121. wasm_v128_store(tmp, x);
  1122. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1123. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1124. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1125. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1126. }
  1127. #define GGML_F16x4 v128_t
  1128. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1129. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1130. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1131. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1132. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1133. #define GGML_F16x4_ADD wasm_f32x4_add
  1134. #define GGML_F16x4_MUL wasm_f32x4_mul
  1135. #define GGML_F16x4_REDUCE(res, x) \
  1136. { \
  1137. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1138. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1139. } \
  1140. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1141. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1142. } \
  1143. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1144. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1145. } \
  1146. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1147. wasm_f32x4_extract_lane(x[0], 1) + \
  1148. wasm_f32x4_extract_lane(x[0], 2) + \
  1149. wasm_f32x4_extract_lane(x[0], 3); \
  1150. }
  1151. #define GGML_F16_VEC GGML_F16x4
  1152. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1153. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1154. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1155. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1156. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1157. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1158. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1159. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1160. #elif defined(__SSE3__)
  1161. #define GGML_SIMD
  1162. // F32 SSE
  1163. #define GGML_F32_STEP 32
  1164. #define GGML_F32_EPR 4
  1165. #define GGML_F32x4 __m128
  1166. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1167. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1168. #define GGML_F32x4_LOAD _mm_loadu_ps
  1169. #define GGML_F32x4_STORE _mm_storeu_ps
  1170. #if defined(__FMA__)
  1171. // TODO: Does this work?
  1172. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1173. #else
  1174. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1175. #endif
  1176. #define GGML_F32x4_ADD _mm_add_ps
  1177. #define GGML_F32x4_MUL _mm_mul_ps
  1178. #define GGML_F32x4_REDUCE(res, x) \
  1179. { \
  1180. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1181. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1182. } \
  1183. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1184. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1185. } \
  1186. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1187. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1188. } \
  1189. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1190. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1191. }
  1192. // TODO: is this optimal ?
  1193. #define GGML_F32_VEC GGML_F32x4
  1194. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1195. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1196. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1197. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1198. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1199. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1200. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1201. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1202. // F16 SSE
  1203. #define GGML_F16_STEP 32
  1204. #define GGML_F16_EPR 4
  1205. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1206. float tmp[4];
  1207. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1208. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1209. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1210. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1211. return _mm_loadu_ps(tmp);
  1212. }
  1213. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1214. float arr[4];
  1215. _mm_storeu_ps(arr, y);
  1216. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1217. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1218. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1219. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1220. }
  1221. #define GGML_F32Cx4 __m128
  1222. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1223. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1224. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1225. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1226. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1227. #define GGML_F32Cx4_ADD _mm_add_ps
  1228. #define GGML_F32Cx4_MUL _mm_mul_ps
  1229. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1230. #define GGML_F16_VEC GGML_F32Cx4
  1231. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1232. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1233. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1234. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1235. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1236. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1237. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1238. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1239. #endif
  1240. // GGML_F32_ARR / GGML_F16_ARR
  1241. // number of registers to use per step
  1242. #ifdef GGML_SIMD
  1243. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1244. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1245. #endif
  1246. //
  1247. // fundamental operations
  1248. //
  1249. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1250. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1251. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1252. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1253. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1254. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1255. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1256. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1257. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1258. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1259. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1260. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1261. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1262. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1263. #ifdef GGML_SIMD
  1264. float sumf = 0.0f;
  1265. const int np = (n & ~(GGML_F32_STEP - 1));
  1266. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1267. GGML_F32_VEC ax[GGML_F32_ARR];
  1268. GGML_F32_VEC ay[GGML_F32_ARR];
  1269. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1270. for (int j = 0; j < GGML_F32_ARR; j++) {
  1271. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1272. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1273. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1274. }
  1275. }
  1276. // reduce sum0..sum3 to sum0
  1277. GGML_F32_VEC_REDUCE(sumf, sum);
  1278. // leftovers
  1279. for (int i = np; i < n; ++i) {
  1280. sumf += x[i]*y[i];
  1281. }
  1282. #else
  1283. // scalar
  1284. ggml_float sumf = 0.0;
  1285. for (int i = 0; i < n; ++i) {
  1286. sumf += (ggml_float)(x[i]*y[i]);
  1287. }
  1288. #endif
  1289. *s = sumf;
  1290. }
  1291. #if __AVX512F__ && QK == 32
  1292. static inline __m512 dot_q4_0_oneblock_avx512(
  1293. __m512 acc,
  1294. const block_q4_0 * restrict x,
  1295. const block_q4_0 * restrict y,
  1296. int i
  1297. ) {
  1298. // Compute combined scale for the block
  1299. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1300. __m256i bx = bytesFromNibbles( x[i].qs );
  1301. __m256i by = bytesFromNibbles( y[i].qs );
  1302. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1303. const __m256i off = _mm256_set1_epi8( 8 );
  1304. bx = _mm256_sub_epi8( bx, off );
  1305. by = _mm256_sub_epi8( by, off );
  1306. // Sign-extend 16 signed bytes into int16_t
  1307. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1308. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1309. // Compute products of int16_t integers, add pairwise
  1310. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1311. // Convert int32_t to float
  1312. __m512 p = _mm512_cvtepi32_ps( i64 );
  1313. // Apply the scale, and accumulate
  1314. return _mm512_fmadd_ps( d, p, acc );
  1315. }
  1316. #endif
  1317. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1318. ggml_float sumf = 0.0;
  1319. #if defined(GGML_SIMD)
  1320. const int np = (n & ~(GGML_F16_STEP - 1));
  1321. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1322. GGML_F16_VEC ax[GGML_F16_ARR];
  1323. GGML_F16_VEC ay[GGML_F16_ARR];
  1324. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1325. for (int j = 0; j < GGML_F16_ARR; j++) {
  1326. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1327. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1328. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1329. }
  1330. }
  1331. // reduce sum0..sum3 to sum0
  1332. GGML_F16_VEC_REDUCE(sumf, sum);
  1333. // leftovers
  1334. for (int i = np; i < n; ++i) {
  1335. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1336. }
  1337. #else
  1338. for (int i = 0; i < n; ++i) {
  1339. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1340. }
  1341. #endif
  1342. *s = sumf;
  1343. }
  1344. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1345. const int nb = n / QK;
  1346. assert(n % QK == 0);
  1347. assert(nb % 2 == 0);
  1348. const block_q4_0 * restrict x = vx;
  1349. const block_q4_0 * restrict y = vy;
  1350. ggml_float sumf = 0.0;
  1351. #if defined(__ARM_NEON)
  1352. float sum0 = 0.0f;
  1353. float sum1 = 0.0f;
  1354. for (int i = 0; i < nb; i += 2) {
  1355. const block_q4_0 * restrict x0 = &x[i + 0];
  1356. const block_q4_0 * restrict y0 = &y[i + 0];
  1357. const block_q4_0 * restrict x1 = &x[i + 1];
  1358. const block_q4_0 * restrict y1 = &y[i + 1];
  1359. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1360. const int8x16_t s8b = vdupq_n_s8(0x8);
  1361. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1362. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1363. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1364. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1365. // 4-bit -> 8-bit
  1366. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1367. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1368. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1369. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1370. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1371. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1372. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1373. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1374. // sub 8
  1375. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1376. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1377. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1378. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1379. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1380. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1381. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1382. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1383. #if defined(__ARM_FEATURE_DOTPROD)
  1384. // dot product into int16x8_t
  1385. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1386. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1387. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1388. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1389. // scalar
  1390. #if defined(__ARM_FEATURE_QRDMX)
  1391. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1392. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1393. #else
  1394. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1395. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1396. #endif
  1397. #else
  1398. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1399. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1400. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1401. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1402. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1403. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1404. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1405. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1406. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1407. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1408. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1409. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1410. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1411. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1412. // scalar
  1413. #if defined(__ARM_FEATURE_QRDMX)
  1414. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1415. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1416. #else
  1417. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1418. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1419. #endif
  1420. #endif
  1421. }
  1422. sumf = (ggml_float)(sum0 + sum1);
  1423. #elif defined(__AVX512F__)
  1424. // Initialize accumulator with zeros
  1425. __m512 acc0 = _mm512_setzero_ps();
  1426. __m512 acc1 = _mm512_setzero_ps();
  1427. const int superblock_size = 8;
  1428. const int superblock_count = nb / superblock_size;
  1429. const int remainder = nb % superblock_size;
  1430. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1431. int i = superblock_ix * superblock_size;
  1432. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1433. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1434. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1435. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1436. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1437. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1438. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1439. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1440. }
  1441. // Remainders
  1442. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1443. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1444. }
  1445. // Horizontal sum of all lanes of the accumulator
  1446. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1447. #elif defined(__AVX2__)
  1448. // Initialize accumulator with zeros
  1449. __m256 acc = _mm256_setzero_ps();
  1450. // Main loop
  1451. for (int i = 0; i < nb; ++i) {
  1452. // Compute combined scale for the block
  1453. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1454. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1455. __m256i bx = bytesFromNibbles( x[i].qs );
  1456. __m256i by = bytesFromNibbles( y[i].qs );
  1457. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1458. const __m256i off = _mm256_set1_epi8( 8 );
  1459. bx = _mm256_sub_epi8( bx, off );
  1460. by = _mm256_sub_epi8( by, off );
  1461. // Sign-extend first 16 signed bytes into int16_t
  1462. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1463. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1464. // Compute products of int16_t integers, add pairwise
  1465. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1466. // Sign-extend last 16 signed bytes into int16_t vectors
  1467. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1468. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1469. // Accumulate products of int16_t integers
  1470. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1471. // Convert int32_t to float
  1472. __m256 p = _mm256_cvtepi32_ps( i32 );
  1473. // Apply the scale, and accumulate
  1474. acc = _mm256_fmadd_ps( d, p, acc );
  1475. }
  1476. // Return horizontal sum of the acc vector
  1477. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1478. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1479. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1480. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1481. sumf = _mm_cvtss_f32( res );
  1482. #elif defined(__wasm_simd128__)
  1483. // wasm simd
  1484. float sum0 = 0.0f;
  1485. float sum1 = 0.0f;
  1486. for (int i = 0; i < nb; i += 2) {
  1487. const block_q4_0 * restrict x0 = &px[i + 0];
  1488. const block_q4_0 * restrict y0 = &py[i + 0];
  1489. const block_q4_0 * restrict x1 = &px[i + 1];
  1490. const block_q4_0 * restrict y1 = &py[i + 1];
  1491. const v128_t m4b = wasm_u8x16_splat(0xf);
  1492. const v128_t s8b = wasm_i8x16_splat(0x8);
  1493. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1494. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1495. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1496. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1497. // 4-bit -> 8-bit
  1498. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1499. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1500. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1501. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1502. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1503. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1504. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1505. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1506. // sub 8
  1507. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1508. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1509. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1510. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1511. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1512. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1513. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1514. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1515. // dot product into int16x8_t
  1516. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1517. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1518. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1519. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1520. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1521. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1522. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1523. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1524. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1525. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1526. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1527. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1528. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1529. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1530. sum0 += x0->d * y0->d * (
  1531. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1532. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1533. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1534. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1535. sum1 += x1->d * y1->d * (
  1536. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1537. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1538. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1539. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1540. }
  1541. sumf = sum0 + sum1;
  1542. #else
  1543. // scalar
  1544. for (int i = 0; i < nb; i++) {
  1545. const float d0 = x[i].d;
  1546. const float d1 = y[i].d;
  1547. const uint8_t * restrict p0 = x[i].qs;
  1548. const uint8_t * restrict p1 = y[i].qs;
  1549. for (int j = 0; j < QK/2; j++) {
  1550. const uint8_t v0 = p0[j];
  1551. const uint8_t v1 = p1[j];
  1552. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1553. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1554. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1555. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1556. sumf += f0*f2 + f1*f3;
  1557. }
  1558. }
  1559. #endif
  1560. *s = sumf;
  1561. }
  1562. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1563. const int nb = n / QK;
  1564. const block_q4_1 * restrict x = vx;
  1565. const block_q4_1 * restrict y = vy;
  1566. float sumf = 0.0;
  1567. #if defined(__AVX2__)
  1568. // Initialize accumulator with zeros
  1569. __m256 acc = _mm256_setzero_ps();
  1570. // Accumulator for constant offsets
  1571. float acc_offset = 0.0f;
  1572. // Main loop
  1573. for (int i = 0; i < nb; ++i) {
  1574. const float * d0 = &x[i].d;
  1575. const float * d1 = &y[i].d;
  1576. const float * m0 = &x[i].m;
  1577. const float * m1 = &y[i].m;
  1578. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1579. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1580. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1581. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1582. // Compute combined scale for the block
  1583. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1584. // Compute cross scales for the block
  1585. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1586. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1587. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1588. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1589. __m256i bx = bytesFromNibbles( x[i].qs );
  1590. __m256i by = bytesFromNibbles( y[i].qs );
  1591. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1592. // Sign-extend first 16 signed bytes into int16_t
  1593. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1594. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1595. // Compute products of int16_t integers, add pairwise
  1596. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1597. // Sign-extend last 16 signed bytes into int16_t vectors
  1598. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1599. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1600. // Accumulate products of int16_t integers
  1601. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1602. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1603. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1604. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1605. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1606. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1607. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1608. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1609. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1610. // Convert int32_t to float
  1611. __m256 p = _mm256_cvtepi32_ps( i32 );
  1612. // Apply the scale, and accumulate
  1613. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1614. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1615. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1616. // acc_offset += m0*m1 (for each entry in the block)
  1617. acc_offset += (*m0)*(*m1);
  1618. }
  1619. // Return horizontal sum of the acc vector
  1620. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1621. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1622. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1623. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1624. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1625. #else
  1626. // scalar
  1627. for (int i = 0; i < nb; i++) {
  1628. const float d0 = x[i].d;
  1629. const float d1 = y[i].d;
  1630. const float m0 = x[i].m;
  1631. const float m1 = y[i].m;
  1632. const uint8_t * restrict p0 = x[i].qs;
  1633. const uint8_t * restrict p1 = y[i].qs;
  1634. for (int j = 0; j < QK/2; j++) {
  1635. const uint8_t v0 = p0[j];
  1636. const uint8_t v1 = p1[j];
  1637. const float f0 = d0*(v0 & 0xf) + m0;
  1638. const float f1 = d0*(v0 >> 4) + m0;
  1639. const float f2 = d1*(v1 & 0xf) + m1;
  1640. const float f3 = d1*(v1 >> 4) + m1;
  1641. sumf += f0*f2 + f1*f3;
  1642. }
  1643. }
  1644. #endif
  1645. *s = sumf;
  1646. }
  1647. // compute GGML_VEC_DOT_UNROLL dot products at once
  1648. // xs - x row stride in bytes
  1649. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1650. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1651. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1652. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1653. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1654. }
  1655. #if defined(GGML_SIMD)
  1656. const int np = (n & ~(GGML_F16_STEP - 1));
  1657. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1658. GGML_F16_VEC ax[GGML_F16_ARR];
  1659. GGML_F16_VEC ay[GGML_F16_ARR];
  1660. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1661. for (int j = 0; j < GGML_F16_ARR; j++) {
  1662. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1663. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1664. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1665. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1666. }
  1667. }
  1668. }
  1669. // reduce sum0..sum3 to sum0
  1670. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1671. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1672. }
  1673. // leftovers
  1674. for (int i = np; i < n; ++i) {
  1675. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1676. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1677. }
  1678. }
  1679. #else
  1680. for (int i = 0; i < n; ++i) {
  1681. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1682. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1683. }
  1684. }
  1685. #endif
  1686. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1687. s[i] = sumf[i];
  1688. }
  1689. }
  1690. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1691. #if defined(GGML_SIMD)
  1692. const int np = (n & ~(GGML_F32_STEP - 1));
  1693. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1694. GGML_F32_VEC ax[GGML_F32_ARR];
  1695. GGML_F32_VEC ay[GGML_F32_ARR];
  1696. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1697. for (int j = 0; j < GGML_F32_ARR; j++) {
  1698. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1699. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1700. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1701. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1702. }
  1703. }
  1704. // leftovers
  1705. for (int i = np; i < n; ++i) {
  1706. y[i] += x[i]*v;
  1707. }
  1708. #else
  1709. // scalar
  1710. for (int i = 0; i < n; ++i) {
  1711. y[i] += x[i]*v;
  1712. }
  1713. #endif
  1714. }
  1715. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1716. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1717. #if defined(GGML_SIMD)
  1718. const int np = (n & ~(GGML_F32_STEP - 1));
  1719. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1720. GGML_F32_VEC ay[GGML_F32_ARR];
  1721. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1722. for (int j = 0; j < GGML_F32_ARR; j++) {
  1723. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1724. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1725. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1726. }
  1727. }
  1728. // leftovers
  1729. for (int i = np; i < n; ++i) {
  1730. y[i] *= v;
  1731. }
  1732. #else
  1733. // scalar
  1734. for (int i = 0; i < n; ++i) {
  1735. y[i] *= v;
  1736. }
  1737. #endif
  1738. }
  1739. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1740. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1741. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1742. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1743. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1744. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1745. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1746. static const float GELU_COEF_A = 0.044715f;
  1747. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1748. inline static float ggml_gelu_f32(float x) {
  1749. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1750. }
  1751. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1752. const uint16_t * i16 = (const uint16_t *) x;
  1753. for (int i = 0; i < n; ++i) {
  1754. y[i] = table_gelu_f16[i16[i]];
  1755. }
  1756. }
  1757. #ifdef GGML_GELU_FP16
  1758. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1759. uint16_t t;
  1760. for (int i = 0; i < n; ++i) {
  1761. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1762. memcpy(&t, &fp16, sizeof(uint16_t));
  1763. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1764. }
  1765. }
  1766. #else
  1767. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1768. for (int i = 0; i < n; ++i) {
  1769. y[i] = ggml_gelu_f32(x[i]);
  1770. }
  1771. }
  1772. #endif
  1773. // Sigmoid Linear Unit (SiLU) function
  1774. inline static float ggml_silu_f32(float x) {
  1775. return x/(1.0f + expf(-x));
  1776. }
  1777. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1778. const uint16_t * i16 = (const uint16_t *) x;
  1779. for (int i = 0; i < n; ++i) {
  1780. y[i] = table_silu_f16[i16[i]];
  1781. }
  1782. }
  1783. #ifdef GGML_SILU_FP16
  1784. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1785. uint16_t t;
  1786. for (int i = 0; i < n; ++i) {
  1787. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1788. memcpy(&t, &fp16, sizeof(uint16_t));
  1789. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1790. }
  1791. }
  1792. #else
  1793. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1794. for (int i = 0; i < n; ++i) {
  1795. y[i] = ggml_silu_f32(x[i]);
  1796. }
  1797. }
  1798. #endif
  1799. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1800. #ifndef GGML_USE_ACCELERATE
  1801. ggml_float sum = 0.0;
  1802. for (int i = 0; i < n; ++i) {
  1803. sum += (ggml_float)x[i];
  1804. }
  1805. *s = sum;
  1806. #else
  1807. vDSP_sve(x, 1, s, n);
  1808. #endif
  1809. }
  1810. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1811. #ifndef GGML_USE_ACCELERATE
  1812. float max = -INFINITY;
  1813. for (int i = 0; i < n; ++i) {
  1814. max = MAX(max, x[i]);
  1815. }
  1816. *s = max;
  1817. #else
  1818. vDSP_maxv(x, 1, s, n);
  1819. #endif
  1820. }
  1821. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1822. ggml_vec_norm_f32(n, s, x);
  1823. *s = 1.f/(*s);
  1824. }
  1825. //
  1826. // logging
  1827. //
  1828. #if (GGML_DEBUG >= 1)
  1829. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1830. #else
  1831. #define GGML_PRINT_DEBUG(...)
  1832. #endif
  1833. #if (GGML_DEBUG >= 5)
  1834. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1835. #else
  1836. #define GGML_PRINT_DEBUG_5(...)
  1837. #endif
  1838. #if (GGML_DEBUG >= 10)
  1839. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1840. #else
  1841. #define GGML_PRINT_DEBUG_10(...)
  1842. #endif
  1843. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1844. //
  1845. // data types
  1846. //
  1847. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1848. QK,
  1849. QK,
  1850. 1,
  1851. 1,
  1852. 1,
  1853. 1,
  1854. 1,
  1855. };
  1856. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1857. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1858. sizeof(block_q4_0),
  1859. sizeof(block_q4_1),
  1860. sizeof(int8_t ),
  1861. sizeof(int16_t),
  1862. sizeof(int32_t),
  1863. sizeof(ggml_fp16_t),
  1864. sizeof(float ),
  1865. };
  1866. // don't forget to update the array above when adding new types
  1867. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1868. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1869. "NONE",
  1870. "DUP",
  1871. "ADD",
  1872. "SUB",
  1873. "MUL",
  1874. "DIV",
  1875. "SQR",
  1876. "SQRT",
  1877. "SUM",
  1878. "MEAN",
  1879. "REPEAT",
  1880. "ABS",
  1881. "SGN",
  1882. "NEG",
  1883. "STEP",
  1884. "RELU",
  1885. "GELU",
  1886. "SILU",
  1887. "NORM",
  1888. "RMS_NORM",
  1889. "MUL_MAT",
  1890. "SCALE",
  1891. "CPY",
  1892. "RESHAPE",
  1893. "VIEW",
  1894. "PERMUTE",
  1895. "TRANSPOSE",
  1896. "GET_ROWS",
  1897. "DIAG_MASK_INF",
  1898. "SOFT_MAX",
  1899. "ROPE",
  1900. "CONV_1D_1S",
  1901. "CONV_1D_2S",
  1902. "FLASH_ATTN",
  1903. "FLASH_FF",
  1904. };
  1905. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1906. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1907. "none",
  1908. "x",
  1909. "x+y",
  1910. "x-y",
  1911. "x*y",
  1912. "x/y",
  1913. "x^2",
  1914. "√x",
  1915. "Σx",
  1916. "Σx/n",
  1917. "repeat(x)",
  1918. "abs(x)",
  1919. "sgn(x)",
  1920. "-x",
  1921. "step(x)",
  1922. "relu(x)",
  1923. "gelu(x)",
  1924. "silu(x)",
  1925. "norm(x)",
  1926. "rms_norm(x)",
  1927. "X*Y",
  1928. "x*v",
  1929. "x-\\>y",
  1930. "reshape(x)",
  1931. "view(x)",
  1932. "permute(x)",
  1933. "transpose(x)",
  1934. "get_rows(x)",
  1935. "diag_mask_inf(x)",
  1936. "soft_max(x)",
  1937. "rope(x)",
  1938. "conv_1d_1s(x)",
  1939. "conv_1d_2s(x)",
  1940. "flash_attn(x)",
  1941. "flash_ff(x)",
  1942. };
  1943. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1944. //
  1945. // ggml object
  1946. //
  1947. struct ggml_object {
  1948. size_t offs;
  1949. size_t size;
  1950. struct ggml_object * next;
  1951. char padding[8];
  1952. };
  1953. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1954. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1955. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1956. //
  1957. // ggml context
  1958. //
  1959. struct ggml_context {
  1960. size_t mem_size;
  1961. void * mem_buffer;
  1962. bool mem_buffer_owned;
  1963. bool mem_buffer_mlocked;
  1964. int n_objects;
  1965. struct ggml_object * objects_begin;
  1966. struct ggml_object * objects_end;
  1967. struct ggml_scratch scratch;
  1968. struct ggml_scratch scratch_save;
  1969. };
  1970. struct ggml_context_container {
  1971. bool used;
  1972. struct ggml_context context;
  1973. };
  1974. //
  1975. // compute types
  1976. //
  1977. enum ggml_task_type {
  1978. GGML_TASK_INIT = 0,
  1979. GGML_TASK_COMPUTE,
  1980. GGML_TASK_FINALIZE,
  1981. };
  1982. struct ggml_compute_params {
  1983. enum ggml_task_type type;
  1984. int ith, nth;
  1985. // work buffer for all threads
  1986. size_t wsize;
  1987. void * wdata;
  1988. };
  1989. //
  1990. // ggml state
  1991. //
  1992. struct ggml_state {
  1993. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1994. };
  1995. // global state
  1996. static struct ggml_state g_state;
  1997. static atomic_int g_state_barrier = 0;
  1998. // barrier via spin lock
  1999. inline static void ggml_critical_section_start(void) {
  2000. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2001. while (processing > 0) {
  2002. // wait for other threads to finish
  2003. atomic_fetch_sub(&g_state_barrier, 1);
  2004. sched_yield(); // TODO: reconsider this
  2005. processing = atomic_fetch_add(&g_state_barrier, 1);
  2006. }
  2007. }
  2008. // TODO: make this somehow automatically executed
  2009. // some sort of "sentry" mechanism
  2010. inline static void ggml_critical_section_end(void) {
  2011. atomic_fetch_sub(&g_state_barrier, 1);
  2012. }
  2013. ////////////////////////////////////////////////////////////////////////////////
  2014. void ggml_print_object(const struct ggml_object * obj) {
  2015. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2016. obj->offs, obj->size, (const void *) obj->next);
  2017. }
  2018. void ggml_print_objects(const struct ggml_context * ctx) {
  2019. struct ggml_object * obj = ctx->objects_begin;
  2020. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2021. while (obj != NULL) {
  2022. ggml_print_object(obj);
  2023. obj = obj->next;
  2024. }
  2025. GGML_PRINT("%s: --- end ---\n", __func__);
  2026. }
  2027. int ggml_nelements(const struct ggml_tensor * tensor) {
  2028. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2029. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2030. }
  2031. int ggml_nrows(const struct ggml_tensor * tensor) {
  2032. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2033. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2034. }
  2035. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2036. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2037. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2038. }
  2039. int ggml_blck_size(enum ggml_type type) {
  2040. return GGML_BLCK_SIZE[type];
  2041. }
  2042. size_t ggml_type_size(enum ggml_type type) {
  2043. return GGML_TYPE_SIZE[type];
  2044. }
  2045. float ggml_type_sizef(enum ggml_type type) {
  2046. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2047. }
  2048. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2049. return GGML_TYPE_SIZE[tensor->type];
  2050. }
  2051. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2052. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2053. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2054. }
  2055. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2056. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2057. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2058. }
  2059. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2060. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2061. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2062. }
  2063. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2064. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2065. return
  2066. (t0->ne[0] == t1->ne[0]) &&
  2067. (t0->ne[2] == t1->ne[2]) &&
  2068. (t0->ne[3] == t1->ne[3]);
  2069. }
  2070. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2071. return tensor->nb[0] > tensor->nb[1];
  2072. }
  2073. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2074. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2075. return
  2076. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2077. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2078. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2079. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2080. }
  2081. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2082. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2083. return
  2084. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2085. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2086. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2087. }
  2088. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2090. return
  2091. (t0->ne[0] == t1->ne[0] ) &&
  2092. (t0->ne[1] == t1->ne[1] ) &&
  2093. (t0->ne[2] == t1->ne[2] ) &&
  2094. (t0->ne[3] == t1->ne[3] );
  2095. }
  2096. // check if t1 can be represented as a repeatition of t0
  2097. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2098. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2099. return
  2100. (t1->ne[0]%t0->ne[0] == 0) &&
  2101. (t1->ne[1]%t0->ne[1] == 0) &&
  2102. (t1->ne[2]%t0->ne[2] == 0) &&
  2103. (t1->ne[3]%t0->ne[3] == 0);
  2104. }
  2105. static inline int ggml_up32(int n) {
  2106. return (n + 31) & ~31;
  2107. }
  2108. static inline int ggml_up64(int n) {
  2109. return (n + 63) & ~63;
  2110. }
  2111. static inline int ggml_up(int n, int m) {
  2112. // assert m is a power of 2
  2113. GGML_ASSERT((m & (m - 1)) == 0);
  2114. return (n + m - 1) & ~(m - 1);
  2115. }
  2116. // assert that pointer is aligned to GGML_MEM_ALIGN
  2117. #define ggml_assert_aligned(ptr) \
  2118. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2119. ////////////////////////////////////////////////////////////////////////////////
  2120. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2121. // make this function thread safe
  2122. ggml_critical_section_start();
  2123. static bool is_first_call = true;
  2124. if (is_first_call) {
  2125. // initialize GELU, SILU and EXP F32 tables
  2126. {
  2127. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2128. ggml_fp16_t ii;
  2129. for (int i = 0; i < (1 << 16); ++i) {
  2130. uint16_t ui = i;
  2131. memcpy(&ii, &ui, sizeof(ii));
  2132. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2133. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2134. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2135. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2136. }
  2137. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2138. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2139. }
  2140. // initialize g_state
  2141. {
  2142. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2143. g_state = (struct ggml_state) {
  2144. /*.contexts =*/ { { 0 } },
  2145. };
  2146. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2147. g_state.contexts[i].used = false;
  2148. }
  2149. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2150. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2151. }
  2152. is_first_call = false;
  2153. }
  2154. // find non-used context in g_state
  2155. struct ggml_context * ctx = NULL;
  2156. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2157. if (!g_state.contexts[i].used) {
  2158. g_state.contexts[i].used = true;
  2159. ctx = &g_state.contexts[i].context;
  2160. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2161. break;
  2162. }
  2163. }
  2164. if (ctx == NULL) {
  2165. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2166. ggml_critical_section_end();
  2167. return NULL;
  2168. }
  2169. *ctx = (struct ggml_context) {
  2170. /*.mem_size =*/ params.mem_size,
  2171. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2172. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2173. /*.mem_buffer_mlocked =*/ false,
  2174. /*.n_objects =*/ 0,
  2175. /*.objects_begin =*/ NULL,
  2176. /*.objects_end =*/ NULL,
  2177. /*.scratch =*/ { 0, 0, NULL, },
  2178. /*.scratch_save =*/ { 0, 0, NULL, },
  2179. };
  2180. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2181. ggml_assert_aligned(ctx->mem_buffer);
  2182. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2183. ggml_critical_section_end();
  2184. return ctx;
  2185. }
  2186. void ggml_free(struct ggml_context * ctx) {
  2187. // make this function thread safe
  2188. ggml_critical_section_start();
  2189. bool found = false;
  2190. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2191. if (&g_state.contexts[i].context == ctx) {
  2192. g_state.contexts[i].used = false;
  2193. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2194. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2195. #if GGML_MLOCK_SUPPORT
  2196. if (ctx->mem_buffer_mlocked) {
  2197. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2198. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2199. }
  2200. }
  2201. #endif
  2202. if (ctx->mem_buffer_owned) {
  2203. free(ctx->mem_buffer);
  2204. }
  2205. found = true;
  2206. break;
  2207. }
  2208. }
  2209. if (!found) {
  2210. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2211. }
  2212. ggml_critical_section_end();
  2213. }
  2214. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2215. return ctx->objects_end->offs + ctx->objects_end->size;
  2216. }
  2217. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2218. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2219. ctx->scratch = scratch;
  2220. return result;
  2221. }
  2222. bool ggml_mlock_supported(void) {
  2223. return GGML_MLOCK_SUPPORT;
  2224. }
  2225. #if GGML_MLOCK_SUPPORT
  2226. #ifdef __APPLE__
  2227. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2228. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2229. #else
  2230. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2231. #endif
  2232. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2233. if (ctx->mem_buffer_mlocked) {
  2234. return true;
  2235. }
  2236. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2237. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2238. ctx->mem_size, strerror(errno));
  2239. GGML_ASSERT(ret >= 0);
  2240. return false;
  2241. }
  2242. ctx->mem_buffer_mlocked = true;
  2243. return true;
  2244. }
  2245. #else // GGML_MLOCK_SUPPORT
  2246. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2247. *err_p = strdup("can't mlock because it's not supported on this system");
  2248. return false;
  2249. }
  2250. #endif // GGML_MLOCK_SUPPORT
  2251. ////////////////////////////////////////////////////////////////////////////////
  2252. struct ggml_tensor * ggml_new_tensor_impl(
  2253. struct ggml_context * ctx,
  2254. enum ggml_type type,
  2255. int n_dims,
  2256. const int* ne,
  2257. void* data) {
  2258. // always insert objects at the end of the context's memory pool
  2259. struct ggml_object * obj_cur = ctx->objects_end;
  2260. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2261. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2262. const size_t cur_end = cur_offs + cur_size;
  2263. size_t size_needed = 0;
  2264. if (data == NULL) {
  2265. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2266. for (int i = 1; i < n_dims; i++) {
  2267. size_needed *= ne[i];
  2268. }
  2269. // align to GGML_MEM_ALIGN
  2270. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2271. }
  2272. char * const mem_buffer = ctx->mem_buffer;
  2273. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2274. if (ctx->scratch.data == NULL || data != NULL) {
  2275. size_needed += sizeof(struct ggml_tensor);
  2276. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2277. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2278. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2279. assert(false);
  2280. return NULL;
  2281. }
  2282. *obj_new = (struct ggml_object) {
  2283. .offs = cur_end + GGML_OBJECT_SIZE,
  2284. .size = size_needed,
  2285. .next = NULL,
  2286. };
  2287. } else {
  2288. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2289. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2290. assert(false);
  2291. return NULL;
  2292. }
  2293. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2294. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2295. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2296. assert(false);
  2297. return NULL;
  2298. }
  2299. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2300. *obj_new = (struct ggml_object) {
  2301. .offs = cur_end + GGML_OBJECT_SIZE,
  2302. .size = sizeof(struct ggml_tensor),
  2303. .next = NULL,
  2304. };
  2305. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2306. ctx->scratch.offs += size_needed;
  2307. }
  2308. if (obj_cur != NULL) {
  2309. obj_cur->next = obj_new;
  2310. } else {
  2311. // this is the first object in this context
  2312. ctx->objects_begin = obj_new;
  2313. }
  2314. ctx->objects_end = obj_new;
  2315. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2316. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2317. ggml_assert_aligned(result);
  2318. *result = (struct ggml_tensor) {
  2319. /*.type =*/ type,
  2320. /*.n_dims =*/ n_dims,
  2321. /*.ne =*/ { 1, 1, 1, 1 },
  2322. /*.nb =*/ { 0, 0, 0, 0 },
  2323. /*.op =*/ GGML_OP_NONE,
  2324. /*.is_param =*/ false,
  2325. /*.grad =*/ NULL,
  2326. /*.src0 =*/ NULL,
  2327. /*.src1 =*/ NULL,
  2328. /*.opt =*/ { NULL },
  2329. /*.n_tasks =*/ 0,
  2330. /*.perf_runs =*/ 0,
  2331. /*.perf_cycles =*/ 0,
  2332. /*.perf_time_us =*/ 0,
  2333. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2334. /*.pad =*/ { 0 },
  2335. };
  2336. ggml_assert_aligned(result->data);
  2337. for (int i = 0; i < n_dims; i++) {
  2338. result->ne[i] = ne[i];
  2339. }
  2340. result->nb[0] = GGML_TYPE_SIZE[type];
  2341. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2342. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2343. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2344. }
  2345. ctx->n_objects++;
  2346. return result;
  2347. }
  2348. struct ggml_tensor * ggml_new_tensor(
  2349. struct ggml_context * ctx,
  2350. enum ggml_type type,
  2351. int n_dims,
  2352. const int * ne) {
  2353. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2354. }
  2355. struct ggml_tensor * ggml_new_tensor_1d(
  2356. struct ggml_context * ctx,
  2357. enum ggml_type type,
  2358. int ne0) {
  2359. return ggml_new_tensor(ctx, type, 1, &ne0);
  2360. }
  2361. struct ggml_tensor * ggml_new_tensor_2d(
  2362. struct ggml_context * ctx,
  2363. enum ggml_type type,
  2364. int ne0,
  2365. int ne1) {
  2366. const int ne[2] = { ne0, ne1 };
  2367. return ggml_new_tensor(ctx, type, 2, ne);
  2368. }
  2369. struct ggml_tensor * ggml_new_tensor_3d(
  2370. struct ggml_context * ctx,
  2371. enum ggml_type type,
  2372. int ne0,
  2373. int ne1,
  2374. int ne2) {
  2375. const int ne[3] = { ne0, ne1, ne2 };
  2376. return ggml_new_tensor(ctx, type, 3, ne);
  2377. }
  2378. struct ggml_tensor * ggml_new_tensor_4d(
  2379. struct ggml_context * ctx,
  2380. enum ggml_type type,
  2381. int ne0,
  2382. int ne1,
  2383. int ne2,
  2384. int ne3) {
  2385. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2386. return ggml_new_tensor(ctx, type, 4, ne);
  2387. }
  2388. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2389. ctx->scratch_save = ctx->scratch;
  2390. ctx->scratch.data = NULL;
  2391. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2392. ctx->scratch = ctx->scratch_save;
  2393. ggml_set_i32(result, value);
  2394. return result;
  2395. }
  2396. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2397. ctx->scratch_save = ctx->scratch;
  2398. ctx->scratch.data = NULL;
  2399. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2400. ctx->scratch = ctx->scratch_save;
  2401. ggml_set_f32(result, value);
  2402. return result;
  2403. }
  2404. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2405. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2406. }
  2407. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2408. memset(tensor->data, 0, ggml_nbytes(tensor));
  2409. return tensor;
  2410. }
  2411. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2412. const int n = ggml_nrows(tensor);
  2413. const int nc = tensor->ne[0];
  2414. const size_t n1 = tensor->nb[1];
  2415. char * const data = tensor->data;
  2416. switch (tensor->type) {
  2417. case GGML_TYPE_Q4_0:
  2418. {
  2419. GGML_ASSERT(false);
  2420. } break;
  2421. case GGML_TYPE_Q4_1:
  2422. {
  2423. GGML_ASSERT(false);
  2424. } break;
  2425. case GGML_TYPE_I8:
  2426. {
  2427. assert(tensor->nb[0] == sizeof(int8_t));
  2428. for (int i = 0; i < n; i++) {
  2429. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2430. }
  2431. } break;
  2432. case GGML_TYPE_I16:
  2433. {
  2434. assert(tensor->nb[0] == sizeof(int16_t));
  2435. for (int i = 0; i < n; i++) {
  2436. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2437. }
  2438. } break;
  2439. case GGML_TYPE_I32:
  2440. {
  2441. assert(tensor->nb[0] == sizeof(int32_t));
  2442. for (int i = 0; i < n; i++) {
  2443. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2444. }
  2445. } break;
  2446. case GGML_TYPE_F16:
  2447. {
  2448. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2449. for (int i = 0; i < n; i++) {
  2450. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2451. }
  2452. } break;
  2453. case GGML_TYPE_F32:
  2454. {
  2455. assert(tensor->nb[0] == sizeof(float));
  2456. for (int i = 0; i < n; i++) {
  2457. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2458. }
  2459. } break;
  2460. case GGML_TYPE_COUNT:
  2461. {
  2462. GGML_ASSERT(false);
  2463. } break;
  2464. }
  2465. return tensor;
  2466. }
  2467. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2468. const int n = ggml_nrows(tensor);
  2469. const int nc = tensor->ne[0];
  2470. const size_t n1 = tensor->nb[1];
  2471. char * const data = tensor->data;
  2472. switch (tensor->type) {
  2473. case GGML_TYPE_Q4_0:
  2474. {
  2475. GGML_ASSERT(false);
  2476. } break;
  2477. case GGML_TYPE_Q4_1:
  2478. {
  2479. GGML_ASSERT(false);
  2480. } break;
  2481. case GGML_TYPE_I8:
  2482. {
  2483. assert(tensor->nb[0] == sizeof(int8_t));
  2484. for (int i = 0; i < n; i++) {
  2485. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2486. }
  2487. } break;
  2488. case GGML_TYPE_I16:
  2489. {
  2490. assert(tensor->nb[0] == sizeof(int16_t));
  2491. for (int i = 0; i < n; i++) {
  2492. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2493. }
  2494. } break;
  2495. case GGML_TYPE_I32:
  2496. {
  2497. assert(tensor->nb[0] == sizeof(int32_t));
  2498. for (int i = 0; i < n; i++) {
  2499. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2500. }
  2501. } break;
  2502. case GGML_TYPE_F16:
  2503. {
  2504. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2505. for (int i = 0; i < n; i++) {
  2506. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2507. }
  2508. } break;
  2509. case GGML_TYPE_F32:
  2510. {
  2511. assert(tensor->nb[0] == sizeof(float));
  2512. for (int i = 0; i < n; i++) {
  2513. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2514. }
  2515. } break;
  2516. case GGML_TYPE_COUNT:
  2517. {
  2518. GGML_ASSERT(false);
  2519. } break;
  2520. }
  2521. return tensor;
  2522. }
  2523. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2524. switch (tensor->type) {
  2525. case GGML_TYPE_Q4_0:
  2526. {
  2527. GGML_ASSERT(false);
  2528. } break;
  2529. case GGML_TYPE_Q4_1:
  2530. {
  2531. GGML_ASSERT(false);
  2532. } break;
  2533. case GGML_TYPE_I8:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2536. return ((int8_t *)(tensor->data))[i];
  2537. } break;
  2538. case GGML_TYPE_I16:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2541. return ((int16_t *)(tensor->data))[i];
  2542. } break;
  2543. case GGML_TYPE_I32:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2546. return ((int32_t *)(tensor->data))[i];
  2547. } break;
  2548. case GGML_TYPE_F16:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2551. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2552. } break;
  2553. case GGML_TYPE_F32:
  2554. {
  2555. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2556. return ((float *)(tensor->data))[i];
  2557. } break;
  2558. case GGML_TYPE_COUNT:
  2559. {
  2560. GGML_ASSERT(false);
  2561. } break;
  2562. }
  2563. return 0.0f;
  2564. }
  2565. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2566. switch (tensor->type) {
  2567. case GGML_TYPE_Q4_0:
  2568. {
  2569. GGML_ASSERT(false);
  2570. } break;
  2571. case GGML_TYPE_Q4_1:
  2572. {
  2573. GGML_ASSERT(false);
  2574. } break;
  2575. case GGML_TYPE_I8:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2578. ((int8_t *)(tensor->data))[i] = value;
  2579. } break;
  2580. case GGML_TYPE_I16:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2583. ((int16_t *)(tensor->data))[i] = value;
  2584. } break;
  2585. case GGML_TYPE_I32:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2588. ((int32_t *)(tensor->data))[i] = value;
  2589. } break;
  2590. case GGML_TYPE_F16:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2593. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2594. } break;
  2595. case GGML_TYPE_F32:
  2596. {
  2597. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2598. ((float *)(tensor->data))[i] = value;
  2599. } break;
  2600. case GGML_TYPE_COUNT:
  2601. {
  2602. GGML_ASSERT(false);
  2603. } break;
  2604. }
  2605. }
  2606. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2607. switch (tensor->type) {
  2608. case GGML_TYPE_Q4_0:
  2609. {
  2610. GGML_ASSERT(false);
  2611. } break;
  2612. case GGML_TYPE_Q4_1:
  2613. {
  2614. GGML_ASSERT(false);
  2615. } break;
  2616. case GGML_TYPE_I8:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2619. return ((int8_t *)(tensor->data))[i];
  2620. } break;
  2621. case GGML_TYPE_I16:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2624. return ((int16_t *)(tensor->data))[i];
  2625. } break;
  2626. case GGML_TYPE_I32:
  2627. {
  2628. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2629. return ((int32_t *)(tensor->data))[i];
  2630. } break;
  2631. case GGML_TYPE_F16:
  2632. {
  2633. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2634. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2635. } break;
  2636. case GGML_TYPE_F32:
  2637. {
  2638. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2639. return ((float *)(tensor->data))[i];
  2640. } break;
  2641. case GGML_TYPE_COUNT:
  2642. {
  2643. GGML_ASSERT(false);
  2644. } break;
  2645. }
  2646. return 0.0f;
  2647. }
  2648. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2649. switch (tensor->type) {
  2650. case GGML_TYPE_Q4_0:
  2651. {
  2652. GGML_ASSERT(false);
  2653. } break;
  2654. case GGML_TYPE_Q4_1:
  2655. {
  2656. GGML_ASSERT(false);
  2657. } break;
  2658. case GGML_TYPE_I8:
  2659. {
  2660. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2661. ((int8_t *)(tensor->data))[i] = value;
  2662. } break;
  2663. case GGML_TYPE_I16:
  2664. {
  2665. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2666. ((int16_t *)(tensor->data))[i] = value;
  2667. } break;
  2668. case GGML_TYPE_I32:
  2669. {
  2670. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2671. ((int32_t *)(tensor->data))[i] = value;
  2672. } break;
  2673. case GGML_TYPE_F16:
  2674. {
  2675. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2676. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2677. } break;
  2678. case GGML_TYPE_F32:
  2679. {
  2680. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2681. ((float *)(tensor->data))[i] = value;
  2682. } break;
  2683. case GGML_TYPE_COUNT:
  2684. {
  2685. GGML_ASSERT(false);
  2686. } break;
  2687. }
  2688. }
  2689. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2690. return tensor->data;
  2691. }
  2692. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2693. assert(tensor->type == GGML_TYPE_F32);
  2694. return (float *)(tensor->data);
  2695. }
  2696. struct ggml_tensor * ggml_view_tensor(
  2697. struct ggml_context * ctx,
  2698. const struct ggml_tensor * src) {
  2699. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2700. }
  2701. ////////////////////////////////////////////////////////////////////////////////
  2702. // ggml_dup
  2703. struct ggml_tensor * ggml_dup_impl(
  2704. struct ggml_context * ctx,
  2705. struct ggml_tensor * a,
  2706. bool inplace) {
  2707. bool is_node = false;
  2708. if (!inplace && (a->grad)) {
  2709. is_node = true;
  2710. }
  2711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2712. result->op = GGML_OP_DUP;
  2713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2714. result->src0 = a;
  2715. result->src1 = NULL;
  2716. return result;
  2717. }
  2718. struct ggml_tensor * ggml_dup(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a) {
  2721. return ggml_dup_impl(ctx, a, false);
  2722. }
  2723. struct ggml_tensor * ggml_dup_inplace(
  2724. struct ggml_context * ctx,
  2725. struct ggml_tensor * a) {
  2726. return ggml_dup_impl(ctx, a, true);
  2727. }
  2728. // ggml_add
  2729. struct ggml_tensor * ggml_add_impl(
  2730. struct ggml_context * ctx,
  2731. struct ggml_tensor * a,
  2732. struct ggml_tensor * b,
  2733. bool inplace) {
  2734. GGML_ASSERT(ggml_are_same_shape(a, b));
  2735. bool is_node = false;
  2736. if (!inplace && (a->grad || b->grad)) {
  2737. is_node = true;
  2738. }
  2739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2740. result->op = GGML_OP_ADD;
  2741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2742. result->src0 = a;
  2743. result->src1 = b;
  2744. return result;
  2745. }
  2746. struct ggml_tensor * ggml_add(
  2747. struct ggml_context * ctx,
  2748. struct ggml_tensor * a,
  2749. struct ggml_tensor * b) {
  2750. return ggml_add_impl(ctx, a, b, false);
  2751. }
  2752. struct ggml_tensor * ggml_add_inplace(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b) {
  2756. return ggml_add_impl(ctx, a, b, true);
  2757. }
  2758. // ggml_sub
  2759. struct ggml_tensor * ggml_sub_impl(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b,
  2763. bool inplace) {
  2764. GGML_ASSERT(ggml_are_same_shape(a, b));
  2765. bool is_node = false;
  2766. if (!inplace && (a->grad || b->grad)) {
  2767. is_node = true;
  2768. }
  2769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2770. result->op = GGML_OP_SUB;
  2771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2772. result->src0 = a;
  2773. result->src1 = b;
  2774. return result;
  2775. }
  2776. struct ggml_tensor * ggml_sub(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b) {
  2780. return ggml_sub_impl(ctx, a, b, false);
  2781. }
  2782. struct ggml_tensor * ggml_sub_inplace(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a,
  2785. struct ggml_tensor * b) {
  2786. return ggml_sub_impl(ctx, a, b, true);
  2787. }
  2788. // ggml_mul
  2789. struct ggml_tensor * ggml_mul_impl(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a,
  2792. struct ggml_tensor * b,
  2793. bool inplace) {
  2794. GGML_ASSERT(ggml_are_same_shape(a, b));
  2795. bool is_node = false;
  2796. if (!inplace && (a->grad || b->grad)) {
  2797. is_node = true;
  2798. }
  2799. if (inplace) {
  2800. GGML_ASSERT(is_node == false);
  2801. }
  2802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2803. result->op = GGML_OP_MUL;
  2804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2805. result->src0 = a;
  2806. result->src1 = b;
  2807. return result;
  2808. }
  2809. struct ggml_tensor * ggml_mul(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * a,
  2812. struct ggml_tensor * b) {
  2813. return ggml_mul_impl(ctx, a, b, false);
  2814. }
  2815. struct ggml_tensor * ggml_mul_inplace(
  2816. struct ggml_context * ctx,
  2817. struct ggml_tensor * a,
  2818. struct ggml_tensor * b) {
  2819. return ggml_mul_impl(ctx, a, b, true);
  2820. }
  2821. // ggml_div
  2822. struct ggml_tensor * ggml_div_impl(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. struct ggml_tensor * b,
  2826. bool inplace) {
  2827. GGML_ASSERT(ggml_are_same_shape(a, b));
  2828. bool is_node = false;
  2829. if (!inplace && (a->grad || b->grad)) {
  2830. is_node = true;
  2831. }
  2832. if (inplace) {
  2833. GGML_ASSERT(is_node == false);
  2834. }
  2835. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2836. result->op = GGML_OP_DIV;
  2837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2838. result->src0 = a;
  2839. result->src1 = b;
  2840. return result;
  2841. }
  2842. struct ggml_tensor * ggml_div(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a,
  2845. struct ggml_tensor * b) {
  2846. return ggml_div_impl(ctx, a, b, false);
  2847. }
  2848. struct ggml_tensor * ggml_div_inplace(
  2849. struct ggml_context * ctx,
  2850. struct ggml_tensor * a,
  2851. struct ggml_tensor * b) {
  2852. return ggml_div_impl(ctx, a, b, true);
  2853. }
  2854. // ggml_sqr
  2855. struct ggml_tensor * ggml_sqr_impl(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * a,
  2858. bool inplace) {
  2859. bool is_node = false;
  2860. if (!inplace && (a->grad)) {
  2861. is_node = true;
  2862. }
  2863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2864. result->op = GGML_OP_SQR;
  2865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2866. result->src0 = a;
  2867. result->src1 = NULL;
  2868. return result;
  2869. }
  2870. struct ggml_tensor * ggml_sqr(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * a) {
  2873. return ggml_sqr_impl(ctx, a, false);
  2874. }
  2875. struct ggml_tensor * ggml_sqr_inplace(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a) {
  2878. return ggml_sqr_impl(ctx, a, true);
  2879. }
  2880. // ggml_sqrt
  2881. struct ggml_tensor * ggml_sqrt_impl(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. bool inplace) {
  2885. bool is_node = false;
  2886. if (!inplace && (a->grad)) {
  2887. is_node = true;
  2888. }
  2889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2890. result->op = GGML_OP_SQRT;
  2891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2892. result->src0 = a;
  2893. result->src1 = NULL;
  2894. return result;
  2895. }
  2896. struct ggml_tensor * ggml_sqrt(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a) {
  2899. return ggml_sqrt_impl(ctx, a, false);
  2900. }
  2901. struct ggml_tensor * ggml_sqrt_inplace(
  2902. struct ggml_context * ctx,
  2903. struct ggml_tensor * a) {
  2904. return ggml_sqrt_impl(ctx, a, true);
  2905. }
  2906. // ggml_sum
  2907. struct ggml_tensor * ggml_sum(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a) {
  2910. bool is_node = false;
  2911. if (a->grad) {
  2912. is_node = true;
  2913. }
  2914. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2915. result->op = GGML_OP_SUM;
  2916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2917. result->src0 = a;
  2918. result->src1 = NULL;
  2919. return result;
  2920. }
  2921. // ggml_mean
  2922. struct ggml_tensor * ggml_mean(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a) {
  2925. bool is_node = false;
  2926. if (a->grad) {
  2927. GGML_ASSERT(false); // TODO: implement
  2928. is_node = true;
  2929. }
  2930. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2931. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2932. result->op = GGML_OP_MEAN;
  2933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2934. result->src0 = a;
  2935. result->src1 = NULL;
  2936. return result;
  2937. }
  2938. // ggml_repeat
  2939. struct ggml_tensor * ggml_repeat(
  2940. struct ggml_context * ctx,
  2941. struct ggml_tensor * a,
  2942. struct ggml_tensor * b) {
  2943. GGML_ASSERT(ggml_can_repeat(a, b));
  2944. bool is_node = false;
  2945. if (a->grad) {
  2946. is_node = true;
  2947. }
  2948. if (ggml_are_same_shape(a, b) && !is_node) {
  2949. return a;
  2950. }
  2951. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2952. result->op = GGML_OP_REPEAT;
  2953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2954. result->src0 = a;
  2955. result->src1 = b;
  2956. return result;
  2957. }
  2958. // ggml_abs
  2959. struct ggml_tensor * ggml_abs_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. bool inplace) {
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_ABS;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src0 = a;
  2971. result->src1 = NULL;
  2972. return result;
  2973. }
  2974. struct ggml_tensor * ggml_abs(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a) {
  2977. return ggml_abs_impl(ctx, a, false);
  2978. }
  2979. struct ggml_tensor * ggml_abs_inplace(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. return ggml_abs_impl(ctx, a, true);
  2983. }
  2984. // ggml_sgn
  2985. struct ggml_tensor * ggml_sgn_impl(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. bool inplace) {
  2989. bool is_node = false;
  2990. if (!inplace && (a->grad)) {
  2991. is_node = true;
  2992. }
  2993. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2994. result->op = GGML_OP_SGN;
  2995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2996. result->src0 = a;
  2997. result->src1 = NULL;
  2998. return result;
  2999. }
  3000. struct ggml_tensor * ggml_sgn(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a) {
  3003. return ggml_sgn_impl(ctx, a, false);
  3004. }
  3005. struct ggml_tensor * ggml_sgn_inplace(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_sgn_impl(ctx, a, true);
  3009. }
  3010. // ggml_neg
  3011. struct ggml_tensor * ggml_neg_impl(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a,
  3014. bool inplace) {
  3015. bool is_node = false;
  3016. if (!inplace && (a->grad)) {
  3017. is_node = true;
  3018. }
  3019. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3020. result->op = GGML_OP_NEG;
  3021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3022. result->src0 = a;
  3023. result->src1 = NULL;
  3024. return result;
  3025. }
  3026. struct ggml_tensor * ggml_neg(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a) {
  3029. return ggml_neg_impl(ctx, a, false);
  3030. }
  3031. struct ggml_tensor * ggml_neg_inplace(
  3032. struct ggml_context * ctx,
  3033. struct ggml_tensor * a) {
  3034. return ggml_neg_impl(ctx, a, true);
  3035. }
  3036. // ggml_step
  3037. struct ggml_tensor * ggml_step_impl(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. bool inplace) {
  3041. bool is_node = false;
  3042. if (!inplace && (a->grad)) {
  3043. is_node = true;
  3044. }
  3045. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3046. result->op = GGML_OP_STEP;
  3047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3048. result->src0 = a;
  3049. result->src1 = NULL;
  3050. return result;
  3051. }
  3052. struct ggml_tensor * ggml_step(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a) {
  3055. return ggml_step_impl(ctx, a, false);
  3056. }
  3057. struct ggml_tensor * ggml_step_inplace(
  3058. struct ggml_context * ctx,
  3059. struct ggml_tensor * a) {
  3060. return ggml_step_impl(ctx, a, true);
  3061. }
  3062. // ggml_relu
  3063. struct ggml_tensor * ggml_relu_impl(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a,
  3066. bool inplace) {
  3067. bool is_node = false;
  3068. if (!inplace && (a->grad)) {
  3069. is_node = true;
  3070. }
  3071. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3072. result->op = GGML_OP_RELU;
  3073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3074. result->src0 = a;
  3075. result->src1 = NULL;
  3076. return result;
  3077. }
  3078. struct ggml_tensor * ggml_relu(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a) {
  3081. return ggml_relu_impl(ctx, a, false);
  3082. }
  3083. struct ggml_tensor * ggml_relu_inplace(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a) {
  3086. return ggml_relu_impl(ctx, a, true);
  3087. }
  3088. // ggml_gelu
  3089. struct ggml_tensor * ggml_gelu_impl(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a,
  3092. bool inplace) {
  3093. bool is_node = false;
  3094. if (!inplace && (a->grad)) {
  3095. is_node = true;
  3096. }
  3097. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3098. result->op = GGML_OP_GELU;
  3099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3100. result->src0 = a;
  3101. result->src1 = NULL;
  3102. return result;
  3103. }
  3104. struct ggml_tensor * ggml_gelu(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a) {
  3107. return ggml_gelu_impl(ctx, a, false);
  3108. }
  3109. struct ggml_tensor * ggml_gelu_inplace(
  3110. struct ggml_context * ctx,
  3111. struct ggml_tensor * a) {
  3112. return ggml_gelu_impl(ctx, a, true);
  3113. }
  3114. // ggml_silu
  3115. struct ggml_tensor * ggml_silu_impl(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. bool inplace) {
  3119. bool is_node = false;
  3120. if (!inplace && (a->grad)) {
  3121. is_node = true;
  3122. }
  3123. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3124. result->op = GGML_OP_SILU;
  3125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3126. result->src0 = a;
  3127. result->src1 = NULL;
  3128. return result;
  3129. }
  3130. struct ggml_tensor * ggml_silu(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a) {
  3133. return ggml_silu_impl(ctx, a, false);
  3134. }
  3135. struct ggml_tensor * ggml_silu_inplace(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a) {
  3138. return ggml_silu_impl(ctx, a, true);
  3139. }
  3140. // ggml_norm
  3141. struct ggml_tensor * ggml_norm_impl(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a,
  3144. bool inplace) {
  3145. bool is_node = false;
  3146. if (!inplace && (a->grad)) {
  3147. GGML_ASSERT(false); // TODO: implement backward
  3148. is_node = true;
  3149. }
  3150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3151. result->op = GGML_OP_NORM;
  3152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3153. result->src0 = a;
  3154. result->src1 = NULL; // TODO: maybe store epsilon here?
  3155. return result;
  3156. }
  3157. struct ggml_tensor * ggml_norm(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a) {
  3160. return ggml_norm_impl(ctx, a, false);
  3161. }
  3162. struct ggml_tensor * ggml_norm_inplace(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a) {
  3165. return ggml_norm_impl(ctx, a, true);
  3166. }
  3167. struct ggml_tensor * ggml_rms_norm_impl(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a,
  3170. bool inplace) {
  3171. bool is_node = false;
  3172. if (!inplace && (a->grad)) {
  3173. GGML_ASSERT(false); // TODO: implement backward
  3174. is_node = true;
  3175. }
  3176. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3177. result->op = GGML_OP_RMS_NORM;
  3178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3179. result->src0 = a;
  3180. result->src1 = NULL; // TODO: maybe store epsilon here?
  3181. return result;
  3182. }
  3183. struct ggml_tensor * ggml_rms_norm(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_rms_norm_impl(ctx, a, false);
  3187. }
  3188. struct ggml_tensor * ggml_rms_norm_inplace(
  3189. struct ggml_context * ctx,
  3190. struct ggml_tensor * a) {
  3191. return ggml_rms_norm_impl(ctx, a, true);
  3192. }
  3193. // ggml_mul_mat
  3194. struct ggml_tensor * ggml_mul_mat(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a,
  3197. struct ggml_tensor * b) {
  3198. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3199. GGML_ASSERT(!ggml_is_transposed(a));
  3200. bool is_node = false;
  3201. if (a->grad || b->grad) {
  3202. is_node = true;
  3203. }
  3204. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3205. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3206. result->op = GGML_OP_MUL_MAT;
  3207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3208. result->src0 = a;
  3209. result->src1 = b;
  3210. return result;
  3211. }
  3212. // ggml_scale
  3213. struct ggml_tensor * ggml_scale_impl(
  3214. struct ggml_context * ctx,
  3215. struct ggml_tensor * a,
  3216. struct ggml_tensor * b,
  3217. bool inplace) {
  3218. GGML_ASSERT(ggml_is_scalar(b));
  3219. GGML_ASSERT(ggml_is_padded_1d(a));
  3220. bool is_node = false;
  3221. if (!inplace && (a->grad || b->grad)) {
  3222. GGML_ASSERT(false); // TODO: implement backward
  3223. is_node = true;
  3224. }
  3225. // TODO: when implement backward, fix this:
  3226. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3227. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3228. result->op = GGML_OP_SCALE;
  3229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3230. result->src0 = a;
  3231. result->src1 = b;
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_scale(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. struct ggml_tensor * b) {
  3238. return ggml_scale_impl(ctx, a, b, false);
  3239. }
  3240. struct ggml_tensor * ggml_scale_inplace(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a,
  3243. struct ggml_tensor * b) {
  3244. return ggml_scale_impl(ctx, a, b, true);
  3245. }
  3246. // ggml_cpy
  3247. struct ggml_tensor * ggml_cpy_impl(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a,
  3250. struct ggml_tensor * b,
  3251. bool inplace) {
  3252. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3253. bool is_node = false;
  3254. if (!inplace && (a->grad || b->grad)) {
  3255. GGML_ASSERT(false); // TODO: implement backward
  3256. is_node = true;
  3257. }
  3258. // make a view of the destination
  3259. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3260. result->op = GGML_OP_CPY;
  3261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3262. result->src0 = a;
  3263. result->src1 = b;
  3264. return result;
  3265. }
  3266. struct ggml_tensor * ggml_cpy(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b) {
  3270. return ggml_cpy_impl(ctx, a, b, false);
  3271. }
  3272. struct ggml_tensor * ggml_cpy_inplace(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a,
  3275. struct ggml_tensor * b) {
  3276. return ggml_cpy_impl(ctx, a, b, true);
  3277. }
  3278. // ggml_reshape
  3279. struct ggml_tensor * ggml_reshape(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a,
  3282. struct ggml_tensor * b) {
  3283. GGML_ASSERT(ggml_is_contiguous(a));
  3284. GGML_ASSERT(ggml_is_contiguous(b));
  3285. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3286. bool is_node = false;
  3287. if (a->grad || b->grad) {
  3288. GGML_ASSERT(false); // TODO: implement backward
  3289. is_node = true;
  3290. }
  3291. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3292. result->op = GGML_OP_RESHAPE;
  3293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3294. result->src0 = a;
  3295. result->src1 = NULL;
  3296. return result;
  3297. }
  3298. struct ggml_tensor * ggml_reshape_2d(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a,
  3301. int ne0,
  3302. int ne1) {
  3303. GGML_ASSERT(ggml_is_contiguous(a));
  3304. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3305. bool is_node = false;
  3306. if (a->grad) {
  3307. GGML_ASSERT(false); // TODO: implement backward
  3308. is_node = true;
  3309. }
  3310. const int ne[2] = { ne0, ne1 };
  3311. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3312. result->op = GGML_OP_RESHAPE;
  3313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3314. result->src0 = a;
  3315. result->src1 = NULL;
  3316. return result;
  3317. }
  3318. struct ggml_tensor * ggml_reshape_3d(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a,
  3321. int ne0,
  3322. int ne1,
  3323. int ne2) {
  3324. GGML_ASSERT(ggml_is_contiguous(a));
  3325. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3326. bool is_node = false;
  3327. if (a->grad) {
  3328. GGML_ASSERT(false); // TODO: implement backward
  3329. is_node = true;
  3330. }
  3331. const int ne[3] = { ne0, ne1, ne2 };
  3332. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3333. result->op = GGML_OP_RESHAPE;
  3334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3335. result->src0 = a;
  3336. result->src1 = NULL;
  3337. return result;
  3338. }
  3339. // ggml_view_1d
  3340. struct ggml_tensor * ggml_view_1d(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a,
  3343. int ne0,
  3344. size_t offset) {
  3345. if (a->grad) {
  3346. GGML_ASSERT(false); // gradient propagation is not supported
  3347. }
  3348. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3349. result->op = GGML_OP_VIEW;
  3350. result->grad = NULL;
  3351. result->src0 = a;
  3352. result->src1 = NULL; // TODO: maybe store the offset here?
  3353. return result;
  3354. }
  3355. // ggml_view_2d
  3356. struct ggml_tensor * ggml_view_2d(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. int ne0,
  3360. int ne1,
  3361. size_t nb1,
  3362. size_t offset) {
  3363. if (a->grad) {
  3364. GGML_ASSERT(false); // gradient propagation is not supported
  3365. }
  3366. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3367. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3368. result->nb[1] = nb1;
  3369. result->nb[2] = result->nb[1]*ne1;
  3370. result->nb[3] = result->nb[2];
  3371. result->op = GGML_OP_VIEW;
  3372. result->grad = NULL;
  3373. result->src0 = a;
  3374. result->src1 = NULL; // TODO: maybe store the offset here?
  3375. return result;
  3376. }
  3377. // ggml_permute
  3378. struct ggml_tensor * ggml_permute(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a,
  3381. int axis0,
  3382. int axis1,
  3383. int axis2,
  3384. int axis3) {
  3385. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3386. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3387. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3388. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3389. GGML_ASSERT(axis0 != axis1);
  3390. GGML_ASSERT(axis0 != axis2);
  3391. GGML_ASSERT(axis0 != axis3);
  3392. GGML_ASSERT(axis1 != axis2);
  3393. GGML_ASSERT(axis1 != axis3);
  3394. GGML_ASSERT(axis2 != axis3);
  3395. bool is_node = false;
  3396. if (a->grad) {
  3397. GGML_ASSERT(false); // TODO: implement backward
  3398. is_node = true;
  3399. }
  3400. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3401. int ne[GGML_MAX_DIMS];
  3402. int nb[GGML_MAX_DIMS];
  3403. ne[axis0] = a->ne[0];
  3404. ne[axis1] = a->ne[1];
  3405. ne[axis2] = a->ne[2];
  3406. ne[axis3] = a->ne[3];
  3407. nb[axis0] = a->nb[0];
  3408. nb[axis1] = a->nb[1];
  3409. nb[axis2] = a->nb[2];
  3410. nb[axis3] = a->nb[3];
  3411. result->ne[0] = ne[0];
  3412. result->ne[1] = ne[1];
  3413. result->ne[2] = ne[2];
  3414. result->ne[3] = ne[3];
  3415. result->nb[0] = nb[0];
  3416. result->nb[1] = nb[1];
  3417. result->nb[2] = nb[2];
  3418. result->nb[3] = nb[3];
  3419. result->op = GGML_OP_PERMUTE;
  3420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3421. result->src0 = a;
  3422. result->src1 = NULL; // TODO: maybe store the permutation here?
  3423. return result;
  3424. }
  3425. // ggml_transpose
  3426. struct ggml_tensor * ggml_transpose(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a) {
  3429. bool is_node = false;
  3430. if (a->grad) {
  3431. GGML_ASSERT(false); // TODO: implement backward
  3432. is_node = true;
  3433. }
  3434. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3435. result->ne[0] = a->ne[1];
  3436. result->ne[1] = a->ne[0];
  3437. result->nb[0] = a->nb[1];
  3438. result->nb[1] = a->nb[0];
  3439. result->op = GGML_OP_TRANSPOSE;
  3440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3441. result->src0 = a;
  3442. result->src1 = NULL;
  3443. return result;
  3444. }
  3445. // ggml_get_rows
  3446. struct ggml_tensor * ggml_get_rows(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a,
  3449. struct ggml_tensor * b) {
  3450. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3451. bool is_node = false;
  3452. if (a->grad || b->grad) {
  3453. GGML_ASSERT(false); // TODO: implement backward
  3454. is_node = true;
  3455. }
  3456. // TODO: implement non F32 return
  3457. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3458. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3459. result->op = GGML_OP_GET_ROWS;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src0 = a;
  3462. result->src1 = b;
  3463. return result;
  3464. }
  3465. // ggml_diag_mask_inf
  3466. struct ggml_tensor * ggml_diag_mask_inf(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. int n_past) {
  3470. bool is_node = false;
  3471. if (a->grad) {
  3472. GGML_ASSERT(false); // TODO: implement backward
  3473. is_node = true;
  3474. }
  3475. // TODO: when implement backward, fix this:
  3476. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3477. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3478. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3479. result->op = GGML_OP_DIAG_MASK_INF;
  3480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3481. result->src0 = a;
  3482. result->src1 = b;
  3483. return result;
  3484. }
  3485. // ggml_soft_max
  3486. struct ggml_tensor * ggml_soft_max(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a) {
  3489. bool is_node = false;
  3490. if (a->grad) {
  3491. GGML_ASSERT(false); // TODO: implement backward
  3492. is_node = true;
  3493. }
  3494. // TODO: when implement backward, fix this:
  3495. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3496. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3497. result->op = GGML_OP_SOFT_MAX;
  3498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3499. result->src0 = a;
  3500. result->src1 = NULL;
  3501. return result;
  3502. }
  3503. // ggml_rope
  3504. struct ggml_tensor * ggml_rope(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. int n_past,
  3508. int n_dims,
  3509. int mode) {
  3510. GGML_ASSERT(n_past >= 0);
  3511. bool is_node = false;
  3512. if (a->grad) {
  3513. GGML_ASSERT(false); // TODO: implement backward
  3514. is_node = true;
  3515. }
  3516. // TODO: when implement backward, fix this:
  3517. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3518. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3519. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3520. ((int32_t *) b->data)[0] = n_past;
  3521. ((int32_t *) b->data)[1] = n_dims;
  3522. ((int32_t *) b->data)[2] = mode;
  3523. result->op = GGML_OP_ROPE;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src0 = a;
  3526. result->src1 = b;
  3527. return result;
  3528. }
  3529. // ggml_conv_1d_1s
  3530. struct ggml_tensor * ggml_conv_1d_1s(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a,
  3533. struct ggml_tensor * b) {
  3534. GGML_ASSERT(ggml_is_matrix(b));
  3535. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3536. GGML_ASSERT(a->ne[3] == 1);
  3537. bool is_node = false;
  3538. if (a->grad || b->grad) {
  3539. GGML_ASSERT(false); // TODO: implement backward
  3540. is_node = true;
  3541. }
  3542. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3543. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3544. result->op = GGML_OP_CONV_1D_1S;
  3545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3546. result->src0 = a;
  3547. result->src1 = b;
  3548. return result;
  3549. }
  3550. // ggml_conv_1d_2s
  3551. struct ggml_tensor * ggml_conv_1d_2s(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a,
  3554. struct ggml_tensor * b) {
  3555. GGML_ASSERT(ggml_is_matrix(b));
  3556. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3557. GGML_ASSERT(a->ne[3] == 1);
  3558. bool is_node = false;
  3559. if (a->grad || b->grad) {
  3560. GGML_ASSERT(false); // TODO: implement backward
  3561. is_node = true;
  3562. }
  3563. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3564. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3565. result->op = GGML_OP_CONV_1D_2S;
  3566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3567. result->src0 = a;
  3568. result->src1 = b;
  3569. return result;
  3570. }
  3571. // ggml_flash_attn
  3572. struct ggml_tensor * ggml_flash_attn(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * q,
  3575. struct ggml_tensor * k,
  3576. struct ggml_tensor * v,
  3577. bool masked) {
  3578. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3579. // TODO: check if vT can be multiplied by (k*qT)
  3580. bool is_node = false;
  3581. if (q->grad || k->grad || v->grad) {
  3582. GGML_ASSERT(false); // TODO: implement backward
  3583. is_node = true;
  3584. }
  3585. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3587. result->op = GGML_OP_FLASH_ATTN;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src0 = q;
  3590. result->src1 = k;
  3591. result->opt[0] = v;
  3592. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3593. return result;
  3594. }
  3595. // ggml_flash_ff
  3596. struct ggml_tensor * ggml_flash_ff(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. struct ggml_tensor * b0,
  3600. struct ggml_tensor * b1,
  3601. struct ggml_tensor * c0,
  3602. struct ggml_tensor * c1) {
  3603. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3604. // TODO: more checks
  3605. bool is_node = false;
  3606. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3607. GGML_ASSERT(false); // TODO: implement backward
  3608. is_node = true;
  3609. }
  3610. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3611. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3612. result->op = GGML_OP_FLASH_FF;
  3613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3614. result->src0 = a;
  3615. result->src1 = b0;
  3616. result->opt[0] = b1;
  3617. result->opt[1] = c0;
  3618. result->opt[2] = c1;
  3619. return result;
  3620. }
  3621. ////////////////////////////////////////////////////////////////////////////////
  3622. void ggml_set_param(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * tensor) {
  3625. tensor->is_param = true;
  3626. GGML_ASSERT(tensor->grad == NULL);
  3627. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3628. }
  3629. // ggml_compute_forward_dup
  3630. static void ggml_compute_forward_dup_f16(
  3631. const struct ggml_compute_params * params,
  3632. const struct ggml_tensor * src0,
  3633. struct ggml_tensor * dst) {
  3634. GGML_ASSERT(params->ith == 0);
  3635. GGML_ASSERT(ggml_is_contiguous(dst));
  3636. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3638. return;
  3639. }
  3640. const int ne00 = src0->ne[0];
  3641. const int ne01 = src0->ne[1];
  3642. const int ne02 = src0->ne[2];
  3643. const int ne03 = src0->ne[3];
  3644. const size_t nb00 = src0->nb[0];
  3645. const size_t nb01 = src0->nb[1];
  3646. const size_t nb02 = src0->nb[2];
  3647. const size_t nb03 = src0->nb[3];
  3648. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3649. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3650. return;
  3651. }
  3652. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3653. if (dst->type == GGML_TYPE_F16) {
  3654. size_t id = 0;
  3655. const size_t rs = ne00*nb00;
  3656. for (int i03 = 0; i03 < ne03; i03++) {
  3657. for (int i02 = 0; i02 < ne02; i02++) {
  3658. for (int i01 = 0; i01 < ne01; i01++) {
  3659. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3660. char * dst_ptr = (char *) dst->data + id*rs;
  3661. memcpy(dst_ptr, src0_ptr, rs);
  3662. id++;
  3663. }
  3664. }
  3665. }
  3666. } else if (dst->type == GGML_TYPE_F32) {
  3667. size_t id = 0;
  3668. float * dst_ptr = (float *) dst->data;
  3669. for (int i03 = 0; i03 < ne03; i03++) {
  3670. for (int i02 = 0; i02 < ne02; i02++) {
  3671. for (int i01 = 0; i01 < ne01; i01++) {
  3672. for (int i00 = 0; i00 < ne00; i00++) {
  3673. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3674. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3675. id++;
  3676. }
  3677. }
  3678. }
  3679. }
  3680. } else {
  3681. GGML_ASSERT(false); // TODO: implement
  3682. }
  3683. } else {
  3684. //printf("%s: this is not optimal - fix me\n", __func__);
  3685. if (dst->type == GGML_TYPE_F32) {
  3686. size_t id = 0;
  3687. float * dst_ptr = (float *) dst->data;
  3688. for (int i03 = 0; i03 < ne03; i03++) {
  3689. for (int i02 = 0; i02 < ne02; i02++) {
  3690. for (int i01 = 0; i01 < ne01; i01++) {
  3691. for (int i00 = 0; i00 < ne00; i00++) {
  3692. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3693. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3694. id++;
  3695. }
  3696. }
  3697. }
  3698. }
  3699. } else if (dst->type == GGML_TYPE_F16) {
  3700. size_t id = 0;
  3701. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3702. for (int i03 = 0; i03 < ne03; i03++) {
  3703. for (int i02 = 0; i02 < ne02; i02++) {
  3704. for (int i01 = 0; i01 < ne01; i01++) {
  3705. for (int i00 = 0; i00 < ne00; i00++) {
  3706. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3707. dst_ptr[id] = *src0_ptr;
  3708. id++;
  3709. }
  3710. }
  3711. }
  3712. }
  3713. } else {
  3714. GGML_ASSERT(false); // TODO: implement
  3715. }
  3716. }
  3717. }
  3718. static void ggml_compute_forward_dup_f32(
  3719. const struct ggml_compute_params * params,
  3720. const struct ggml_tensor * src0,
  3721. struct ggml_tensor * dst) {
  3722. GGML_ASSERT(params->ith == 0);
  3723. GGML_ASSERT(ggml_is_contiguous(dst));
  3724. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3726. return;
  3727. }
  3728. const int ne00 = src0->ne[0];
  3729. const int ne01 = src0->ne[1];
  3730. const int ne02 = src0->ne[2];
  3731. const int ne03 = src0->ne[3];
  3732. const size_t nb00 = src0->nb[0];
  3733. const size_t nb01 = src0->nb[1];
  3734. const size_t nb02 = src0->nb[2];
  3735. const size_t nb03 = src0->nb[3];
  3736. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3737. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3738. return;
  3739. }
  3740. if (src0->nb[0] == sizeof(float)) {
  3741. if (dst->type == GGML_TYPE_F32) {
  3742. size_t id = 0;
  3743. const size_t rs = ne00*nb00;
  3744. for (int i03 = 0; i03 < ne03; i03++) {
  3745. for (int i02 = 0; i02 < ne02; i02++) {
  3746. for (int i01 = 0; i01 < ne01; i01++) {
  3747. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3748. char * dst_ptr = (char *) dst->data + id*rs;
  3749. memcpy(dst_ptr, src0_ptr, rs);
  3750. id++;
  3751. }
  3752. }
  3753. }
  3754. } else if (dst->type == GGML_TYPE_F16) {
  3755. size_t id = 0;
  3756. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3757. for (int i03 = 0; i03 < ne03; i03++) {
  3758. for (int i02 = 0; i02 < ne02; i02++) {
  3759. for (int i01 = 0; i01 < ne01; i01++) {
  3760. for (int i00 = 0; i00 < ne00; i00++) {
  3761. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3762. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3763. id++;
  3764. }
  3765. }
  3766. }
  3767. }
  3768. } else {
  3769. GGML_ASSERT(false); // TODO: implement
  3770. }
  3771. } else {
  3772. //printf("%s: this is not optimal - fix me\n", __func__);
  3773. if (dst->type == GGML_TYPE_F32) {
  3774. size_t id = 0;
  3775. float * dst_ptr = (float *) dst->data;
  3776. for (int i03 = 0; i03 < ne03; i03++) {
  3777. for (int i02 = 0; i02 < ne02; i02++) {
  3778. for (int i01 = 0; i01 < ne01; i01++) {
  3779. for (int i00 = 0; i00 < ne00; i00++) {
  3780. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3781. dst_ptr[id] = *src0_ptr;
  3782. id++;
  3783. }
  3784. }
  3785. }
  3786. }
  3787. } else if (dst->type == GGML_TYPE_F16) {
  3788. size_t id = 0;
  3789. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3790. for (int i03 = 0; i03 < ne03; i03++) {
  3791. for (int i02 = 0; i02 < ne02; i02++) {
  3792. for (int i01 = 0; i01 < ne01; i01++) {
  3793. for (int i00 = 0; i00 < ne00; i00++) {
  3794. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3795. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3796. id++;
  3797. }
  3798. }
  3799. }
  3800. }
  3801. } else {
  3802. GGML_ASSERT(false); // TODO: implement
  3803. }
  3804. }
  3805. }
  3806. static void ggml_compute_forward_dup(
  3807. const struct ggml_compute_params * params,
  3808. const struct ggml_tensor * src0,
  3809. struct ggml_tensor * dst) {
  3810. switch (src0->type) {
  3811. case GGML_TYPE_F16:
  3812. {
  3813. ggml_compute_forward_dup_f16(params, src0, dst);
  3814. } break;
  3815. case GGML_TYPE_F32:
  3816. {
  3817. ggml_compute_forward_dup_f32(params, src0, dst);
  3818. } break;
  3819. case GGML_TYPE_Q4_0:
  3820. case GGML_TYPE_Q4_1:
  3821. case GGML_TYPE_I8:
  3822. case GGML_TYPE_I16:
  3823. case GGML_TYPE_I32:
  3824. case GGML_TYPE_COUNT:
  3825. {
  3826. GGML_ASSERT(false);
  3827. } break;
  3828. }
  3829. }
  3830. // ggml_compute_forward_add
  3831. static void ggml_compute_forward_add_f32(
  3832. const struct ggml_compute_params * params,
  3833. const struct ggml_tensor * src0,
  3834. const struct ggml_tensor * src1,
  3835. struct ggml_tensor * dst) {
  3836. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3838. return;
  3839. }
  3840. const int ith = params->ith;
  3841. const int nth = params->nth;
  3842. const int n = ggml_nrows(src0);
  3843. const int nc = src0->ne[0];
  3844. const size_t nb00 = src0->nb[0];
  3845. const size_t nb01 = src0->nb[1];
  3846. const size_t nb10 = src1->nb[0];
  3847. const size_t nb11 = src1->nb[1];
  3848. const size_t nb0 = dst->nb[0];
  3849. const size_t nb1 = dst->nb[1];
  3850. GGML_ASSERT( nb0 == sizeof(float));
  3851. GGML_ASSERT(nb00 == sizeof(float));
  3852. if (nb10 == sizeof(float)) {
  3853. const int j0 = (n/nth)*ith;
  3854. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3855. for (int j = j0; j < j1; j++) {
  3856. ggml_vec_add_f32(nc,
  3857. (float *) ((char *) dst->data + j*nb1),
  3858. (float *) ((char *) src0->data + j*nb01),
  3859. (float *) ((char *) src1->data + j*nb11));
  3860. }
  3861. } else {
  3862. // src1 is not contiguous
  3863. for (int j = ith; j < n; j += nth) {
  3864. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3865. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3866. for (int i = 0; i < nc; i++) {
  3867. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3868. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3869. }
  3870. }
  3871. }
  3872. }
  3873. static void ggml_compute_forward_add(
  3874. const struct ggml_compute_params * params,
  3875. const struct ggml_tensor * src0,
  3876. const struct ggml_tensor * src1,
  3877. struct ggml_tensor * dst) {
  3878. switch (src0->type) {
  3879. case GGML_TYPE_F32:
  3880. {
  3881. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3882. } break;
  3883. case GGML_TYPE_Q4_0:
  3884. case GGML_TYPE_Q4_1:
  3885. case GGML_TYPE_I8:
  3886. case GGML_TYPE_I16:
  3887. case GGML_TYPE_I32:
  3888. case GGML_TYPE_F16:
  3889. case GGML_TYPE_COUNT:
  3890. {
  3891. GGML_ASSERT(false);
  3892. } break;
  3893. }
  3894. }
  3895. // ggml_compute_forward_sub
  3896. static void ggml_compute_forward_sub_f32(
  3897. const struct ggml_compute_params * params,
  3898. const struct ggml_tensor * src0,
  3899. const struct ggml_tensor * src1,
  3900. struct ggml_tensor * dst) {
  3901. assert(params->ith == 0);
  3902. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3904. return;
  3905. }
  3906. const int n = ggml_nrows(src0);
  3907. const int nc = src0->ne[0];
  3908. assert( dst->nb[0] == sizeof(float));
  3909. assert(src0->nb[0] == sizeof(float));
  3910. assert(src1->nb[0] == sizeof(float));
  3911. for (int i = 0; i < n; i++) {
  3912. ggml_vec_sub_f32(nc,
  3913. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3914. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3915. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3916. }
  3917. }
  3918. static void ggml_compute_forward_sub(
  3919. const struct ggml_compute_params * params,
  3920. const struct ggml_tensor * src0,
  3921. const struct ggml_tensor * src1,
  3922. struct ggml_tensor * dst) {
  3923. switch (src0->type) {
  3924. case GGML_TYPE_F32:
  3925. {
  3926. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3927. } break;
  3928. case GGML_TYPE_Q4_0:
  3929. case GGML_TYPE_Q4_1:
  3930. case GGML_TYPE_I8:
  3931. case GGML_TYPE_I16:
  3932. case GGML_TYPE_I32:
  3933. case GGML_TYPE_F16:
  3934. case GGML_TYPE_COUNT:
  3935. {
  3936. GGML_ASSERT(false);
  3937. } break;
  3938. }
  3939. }
  3940. // ggml_compute_forward_mul
  3941. static void ggml_compute_forward_mul_f32(
  3942. const struct ggml_compute_params * params,
  3943. const struct ggml_tensor * src0,
  3944. const struct ggml_tensor * src1,
  3945. struct ggml_tensor * dst) {
  3946. assert(params->ith == 0);
  3947. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3949. return;
  3950. }
  3951. const int n = ggml_nrows(src0);
  3952. const int nc = src0->ne[0];
  3953. assert( dst->nb[0] == sizeof(float));
  3954. assert(src0->nb[0] == sizeof(float));
  3955. assert(src1->nb[0] == sizeof(float));
  3956. for (int i = 0; i < n; i++) {
  3957. ggml_vec_mul_f32(nc,
  3958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3959. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3960. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3961. }
  3962. }
  3963. static void ggml_compute_forward_mul(
  3964. const struct ggml_compute_params * params,
  3965. const struct ggml_tensor * src0,
  3966. const struct ggml_tensor * src1,
  3967. struct ggml_tensor * dst) {
  3968. switch (src0->type) {
  3969. case GGML_TYPE_F32:
  3970. {
  3971. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3972. } break;
  3973. case GGML_TYPE_Q4_0:
  3974. case GGML_TYPE_Q4_1:
  3975. case GGML_TYPE_I8:
  3976. case GGML_TYPE_I16:
  3977. case GGML_TYPE_I32:
  3978. case GGML_TYPE_F16:
  3979. case GGML_TYPE_COUNT:
  3980. {
  3981. GGML_ASSERT(false);
  3982. } break;
  3983. }
  3984. }
  3985. // ggml_compute_forward_div
  3986. static void ggml_compute_forward_div_f32(
  3987. const struct ggml_compute_params * params,
  3988. const struct ggml_tensor * src0,
  3989. const struct ggml_tensor * src1,
  3990. struct ggml_tensor * dst) {
  3991. assert(params->ith == 0);
  3992. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3994. return;
  3995. }
  3996. const int n = ggml_nrows(src0);
  3997. const int nc = src0->ne[0];
  3998. assert( dst->nb[0] == sizeof(float));
  3999. assert(src0->nb[0] == sizeof(float));
  4000. assert(src1->nb[0] == sizeof(float));
  4001. for (int i = 0; i < n; i++) {
  4002. ggml_vec_div_f32(nc,
  4003. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4004. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4005. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4006. }
  4007. }
  4008. static void ggml_compute_forward_div(
  4009. const struct ggml_compute_params * params,
  4010. const struct ggml_tensor * src0,
  4011. const struct ggml_tensor * src1,
  4012. struct ggml_tensor * dst) {
  4013. switch (src0->type) {
  4014. case GGML_TYPE_F32:
  4015. {
  4016. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4017. } break;
  4018. case GGML_TYPE_Q4_0:
  4019. case GGML_TYPE_Q4_1:
  4020. case GGML_TYPE_I8:
  4021. case GGML_TYPE_I16:
  4022. case GGML_TYPE_I32:
  4023. case GGML_TYPE_F16:
  4024. case GGML_TYPE_COUNT:
  4025. {
  4026. GGML_ASSERT(false);
  4027. } break;
  4028. }
  4029. }
  4030. // ggml_compute_forward_sqr
  4031. static void ggml_compute_forward_sqr_f32(
  4032. const struct ggml_compute_params * params,
  4033. const struct ggml_tensor * src0,
  4034. struct ggml_tensor * dst) {
  4035. assert(params->ith == 0);
  4036. assert(ggml_are_same_shape(src0, dst));
  4037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4038. return;
  4039. }
  4040. const int n = ggml_nrows(src0);
  4041. const int nc = src0->ne[0];
  4042. assert( dst->nb[0] == sizeof(float));
  4043. assert(src0->nb[0] == sizeof(float));
  4044. for (int i = 0; i < n; i++) {
  4045. ggml_vec_sqr_f32(nc,
  4046. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4047. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4048. }
  4049. }
  4050. static void ggml_compute_forward_sqr(
  4051. const struct ggml_compute_params * params,
  4052. const struct ggml_tensor * src0,
  4053. struct ggml_tensor * dst) {
  4054. switch (src0->type) {
  4055. case GGML_TYPE_F32:
  4056. {
  4057. ggml_compute_forward_sqr_f32(params, src0, dst);
  4058. } break;
  4059. case GGML_TYPE_Q4_0:
  4060. case GGML_TYPE_Q4_1:
  4061. case GGML_TYPE_I8:
  4062. case GGML_TYPE_I16:
  4063. case GGML_TYPE_I32:
  4064. case GGML_TYPE_F16:
  4065. case GGML_TYPE_COUNT:
  4066. {
  4067. GGML_ASSERT(false);
  4068. } break;
  4069. }
  4070. }
  4071. // ggml_compute_forward_sqrt
  4072. static void ggml_compute_forward_sqrt_f32(
  4073. const struct ggml_compute_params * params,
  4074. const struct ggml_tensor * src0,
  4075. struct ggml_tensor * dst) {
  4076. assert(params->ith == 0);
  4077. assert(ggml_are_same_shape(src0, dst));
  4078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4079. return;
  4080. }
  4081. const int n = ggml_nrows(src0);
  4082. const int nc = src0->ne[0];
  4083. assert( dst->nb[0] == sizeof(float));
  4084. assert(src0->nb[0] == sizeof(float));
  4085. for (int i = 0; i < n; i++) {
  4086. ggml_vec_sqrt_f32(nc,
  4087. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4088. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4089. }
  4090. }
  4091. static void ggml_compute_forward_sqrt(
  4092. const struct ggml_compute_params * params,
  4093. const struct ggml_tensor * src0,
  4094. struct ggml_tensor * dst) {
  4095. switch (src0->type) {
  4096. case GGML_TYPE_F32:
  4097. {
  4098. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4099. } break;
  4100. case GGML_TYPE_Q4_0:
  4101. case GGML_TYPE_Q4_1:
  4102. case GGML_TYPE_I8:
  4103. case GGML_TYPE_I16:
  4104. case GGML_TYPE_I32:
  4105. case GGML_TYPE_F16:
  4106. case GGML_TYPE_COUNT:
  4107. {
  4108. GGML_ASSERT(false);
  4109. } break;
  4110. }
  4111. }
  4112. // ggml_compute_forward_sum
  4113. static void ggml_compute_forward_sum_f32(
  4114. const struct ggml_compute_params * params,
  4115. const struct ggml_tensor * src0,
  4116. struct ggml_tensor * dst) {
  4117. assert(params->ith == 0);
  4118. assert(ggml_is_scalar(dst));
  4119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4120. return;
  4121. }
  4122. assert(ggml_is_scalar(dst));
  4123. assert(src0->nb[0] == sizeof(float));
  4124. const int ne00 = src0->ne[0];
  4125. const int ne01 = src0->ne[1];
  4126. const int ne02 = src0->ne[2];
  4127. const int ne03 = src0->ne[3];
  4128. const size_t nb01 = src0->nb[1];
  4129. const size_t nb02 = src0->nb[2];
  4130. const size_t nb03 = src0->nb[3];
  4131. for (int i03 = 0; i03 < ne03; i03++) {
  4132. for (int i02 = 0; i02 < ne02; i02++) {
  4133. for (int i01 = 0; i01 < ne01; i01++) {
  4134. ggml_vec_sum_f32(ne00,
  4135. (float *) (dst->data),
  4136. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4137. }
  4138. }
  4139. }
  4140. }
  4141. static void ggml_compute_forward_sum(
  4142. const struct ggml_compute_params * params,
  4143. const struct ggml_tensor * src0,
  4144. struct ggml_tensor * dst) {
  4145. switch (src0->type) {
  4146. case GGML_TYPE_F32:
  4147. {
  4148. ggml_compute_forward_sum_f32(params, src0, dst);
  4149. } break;
  4150. case GGML_TYPE_Q4_0:
  4151. case GGML_TYPE_Q4_1:
  4152. case GGML_TYPE_I8:
  4153. case GGML_TYPE_I16:
  4154. case GGML_TYPE_I32:
  4155. case GGML_TYPE_F16:
  4156. case GGML_TYPE_COUNT:
  4157. {
  4158. GGML_ASSERT(false);
  4159. } break;
  4160. }
  4161. }
  4162. // ggml_compute_forward_mean
  4163. static void ggml_compute_forward_mean_f32(
  4164. const struct ggml_compute_params * params,
  4165. const struct ggml_tensor * src0,
  4166. struct ggml_tensor * dst) {
  4167. assert(params->ith == 0);
  4168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4169. return;
  4170. }
  4171. assert(src0->nb[0] == sizeof(float));
  4172. const int ne00 = src0->ne[0];
  4173. const int ne01 = src0->ne[1];
  4174. const int ne02 = src0->ne[2];
  4175. const int ne03 = src0->ne[3];
  4176. const size_t nb01 = src0->nb[1];
  4177. const size_t nb02 = src0->nb[2];
  4178. const size_t nb03 = src0->nb[3];
  4179. const int ne0 = dst->ne[0];
  4180. const int ne1 = dst->ne[1];
  4181. const int ne2 = dst->ne[2];
  4182. const int ne3 = dst->ne[3];
  4183. assert(ne0 == 1);
  4184. assert(ne1 == ne01);
  4185. assert(ne2 == ne02);
  4186. assert(ne3 == ne03);
  4187. UNUSED(ne0);
  4188. UNUSED(ne1);
  4189. UNUSED(ne2);
  4190. UNUSED(ne3);
  4191. const size_t nb1 = dst->nb[1];
  4192. const size_t nb2 = dst->nb[2];
  4193. const size_t nb3 = dst->nb[3];
  4194. for (int i03 = 0; i03 < ne03; i03++) {
  4195. for (int i02 = 0; i02 < ne02; i02++) {
  4196. for (int i01 = 0; i01 < ne01; i01++) {
  4197. ggml_vec_sum_f32(ne00,
  4198. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4199. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4200. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4201. }
  4202. }
  4203. }
  4204. }
  4205. static void ggml_compute_forward_mean(
  4206. const struct ggml_compute_params * params,
  4207. const struct ggml_tensor * src0,
  4208. struct ggml_tensor * dst) {
  4209. switch (src0->type) {
  4210. case GGML_TYPE_F32:
  4211. {
  4212. ggml_compute_forward_mean_f32(params, src0, dst);
  4213. } break;
  4214. case GGML_TYPE_Q4_0:
  4215. case GGML_TYPE_Q4_1:
  4216. case GGML_TYPE_I8:
  4217. case GGML_TYPE_I16:
  4218. case GGML_TYPE_I32:
  4219. case GGML_TYPE_F16:
  4220. case GGML_TYPE_COUNT:
  4221. {
  4222. GGML_ASSERT(false);
  4223. } break;
  4224. }
  4225. }
  4226. // ggml_compute_forward_repeat
  4227. static void ggml_compute_forward_repeat_f32(
  4228. const struct ggml_compute_params * params,
  4229. const struct ggml_tensor * src0,
  4230. struct ggml_tensor * dst) {
  4231. assert(params->ith == 0);
  4232. assert(ggml_can_repeat(src0, dst));
  4233. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4234. return;
  4235. }
  4236. // TODO: implement support for rank > 2 tensors
  4237. assert(src0->ne[2] == 1);
  4238. assert(src0->ne[3] == 1);
  4239. assert( dst->ne[2] == 1);
  4240. assert( dst->ne[3] == 1);
  4241. const int nc = dst->ne[0];
  4242. const int nr = dst->ne[1];
  4243. const int nc0 = src0->ne[0];
  4244. const int nr0 = src0->ne[1];
  4245. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4246. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4247. // TODO: support for transposed / permuted tensors
  4248. assert( dst->nb[0] == sizeof(float));
  4249. assert(src0->nb[0] == sizeof(float));
  4250. // TODO: maybe this is not optimal?
  4251. for (int i = 0; i < nrr; i++) {
  4252. for (int j = 0; j < ncr; j++) {
  4253. for (int k = 0; k < nr0; k++) {
  4254. ggml_vec_cpy_f32(nc0,
  4255. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4256. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4257. }
  4258. }
  4259. }
  4260. }
  4261. static void ggml_compute_forward_repeat(
  4262. const struct ggml_compute_params * params,
  4263. const struct ggml_tensor * src0,
  4264. struct ggml_tensor * dst) {
  4265. switch (src0->type) {
  4266. case GGML_TYPE_F32:
  4267. {
  4268. ggml_compute_forward_repeat_f32(params, src0, dst);
  4269. } break;
  4270. case GGML_TYPE_Q4_0:
  4271. case GGML_TYPE_Q4_1:
  4272. case GGML_TYPE_I8:
  4273. case GGML_TYPE_I16:
  4274. case GGML_TYPE_I32:
  4275. case GGML_TYPE_F16:
  4276. case GGML_TYPE_COUNT:
  4277. {
  4278. GGML_ASSERT(false);
  4279. } break;
  4280. }
  4281. }
  4282. // ggml_compute_forward_abs
  4283. static void ggml_compute_forward_abs_f32(
  4284. const struct ggml_compute_params * params,
  4285. const struct ggml_tensor * src0,
  4286. struct ggml_tensor * dst) {
  4287. assert(params->ith == 0);
  4288. assert(ggml_are_same_shape(src0, dst));
  4289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4290. return;
  4291. }
  4292. const int n = ggml_nrows(src0);
  4293. const int nc = src0->ne[0];
  4294. assert(dst->nb[0] == sizeof(float));
  4295. assert(src0->nb[0] == sizeof(float));
  4296. for (int i = 0; i < n; i++) {
  4297. ggml_vec_abs_f32(nc,
  4298. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4299. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4300. }
  4301. }
  4302. static void ggml_compute_forward_abs(
  4303. const struct ggml_compute_params * params,
  4304. const struct ggml_tensor * src0,
  4305. struct ggml_tensor * dst) {
  4306. switch (src0->type) {
  4307. case GGML_TYPE_F32:
  4308. {
  4309. ggml_compute_forward_abs_f32(params, src0, dst);
  4310. } break;
  4311. case GGML_TYPE_Q4_0:
  4312. case GGML_TYPE_Q4_1:
  4313. case GGML_TYPE_I8:
  4314. case GGML_TYPE_I16:
  4315. case GGML_TYPE_I32:
  4316. case GGML_TYPE_F16:
  4317. case GGML_TYPE_COUNT:
  4318. {
  4319. GGML_ASSERT(false);
  4320. } break;
  4321. }
  4322. }
  4323. // ggml_compute_forward_sgn
  4324. static void ggml_compute_forward_sgn_f32(
  4325. const struct ggml_compute_params * params,
  4326. const struct ggml_tensor * src0,
  4327. struct ggml_tensor * dst) {
  4328. assert(params->ith == 0);
  4329. assert(ggml_are_same_shape(src0, dst));
  4330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4331. return;
  4332. }
  4333. const int n = ggml_nrows(src0);
  4334. const int nc = src0->ne[0];
  4335. assert(dst->nb[0] == sizeof(float));
  4336. assert(src0->nb[0] == sizeof(float));
  4337. for (int i = 0; i < n; i++) {
  4338. ggml_vec_sgn_f32(nc,
  4339. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4340. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4341. }
  4342. }
  4343. static void ggml_compute_forward_sgn(
  4344. const struct ggml_compute_params * params,
  4345. const struct ggml_tensor * src0,
  4346. struct ggml_tensor * dst) {
  4347. switch (src0->type) {
  4348. case GGML_TYPE_F32:
  4349. {
  4350. ggml_compute_forward_sgn_f32(params, src0, dst);
  4351. } break;
  4352. case GGML_TYPE_Q4_0:
  4353. case GGML_TYPE_Q4_1:
  4354. case GGML_TYPE_I8:
  4355. case GGML_TYPE_I16:
  4356. case GGML_TYPE_I32:
  4357. case GGML_TYPE_F16:
  4358. case GGML_TYPE_COUNT:
  4359. {
  4360. GGML_ASSERT(false);
  4361. } break;
  4362. }
  4363. }
  4364. // ggml_compute_forward_neg
  4365. static void ggml_compute_forward_neg_f32(
  4366. const struct ggml_compute_params * params,
  4367. const struct ggml_tensor * src0,
  4368. struct ggml_tensor * dst) {
  4369. assert(params->ith == 0);
  4370. assert(ggml_are_same_shape(src0, dst));
  4371. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4372. return;
  4373. }
  4374. const int n = ggml_nrows(src0);
  4375. const int nc = src0->ne[0];
  4376. assert(dst->nb[0] == sizeof(float));
  4377. assert(src0->nb[0] == sizeof(float));
  4378. for (int i = 0; i < n; i++) {
  4379. ggml_vec_neg_f32(nc,
  4380. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4381. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4382. }
  4383. }
  4384. static void ggml_compute_forward_neg(
  4385. const struct ggml_compute_params * params,
  4386. const struct ggml_tensor * src0,
  4387. struct ggml_tensor * dst) {
  4388. switch (src0->type) {
  4389. case GGML_TYPE_F32:
  4390. {
  4391. ggml_compute_forward_neg_f32(params, src0, dst);
  4392. } break;
  4393. case GGML_TYPE_Q4_0:
  4394. case GGML_TYPE_Q4_1:
  4395. case GGML_TYPE_I8:
  4396. case GGML_TYPE_I16:
  4397. case GGML_TYPE_I32:
  4398. case GGML_TYPE_F16:
  4399. case GGML_TYPE_COUNT:
  4400. {
  4401. GGML_ASSERT(false);
  4402. } break;
  4403. }
  4404. }
  4405. // ggml_compute_forward_step
  4406. static void ggml_compute_forward_step_f32(
  4407. const struct ggml_compute_params * params,
  4408. const struct ggml_tensor * src0,
  4409. struct ggml_tensor * dst) {
  4410. assert(params->ith == 0);
  4411. assert(ggml_are_same_shape(src0, dst));
  4412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4413. return;
  4414. }
  4415. const int n = ggml_nrows(src0);
  4416. const int nc = src0->ne[0];
  4417. assert(dst->nb[0] == sizeof(float));
  4418. assert(src0->nb[0] == sizeof(float));
  4419. for (int i = 0; i < n; i++) {
  4420. ggml_vec_step_f32(nc,
  4421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4423. }
  4424. }
  4425. static void ggml_compute_forward_step(
  4426. const struct ggml_compute_params * params,
  4427. const struct ggml_tensor * src0,
  4428. struct ggml_tensor * dst) {
  4429. switch (src0->type) {
  4430. case GGML_TYPE_F32:
  4431. {
  4432. ggml_compute_forward_step_f32(params, src0, dst);
  4433. } break;
  4434. case GGML_TYPE_Q4_0:
  4435. case GGML_TYPE_Q4_1:
  4436. case GGML_TYPE_I8:
  4437. case GGML_TYPE_I16:
  4438. case GGML_TYPE_I32:
  4439. case GGML_TYPE_F16:
  4440. case GGML_TYPE_COUNT:
  4441. {
  4442. GGML_ASSERT(false);
  4443. } break;
  4444. }
  4445. }
  4446. // ggml_compute_forward_relu
  4447. static void ggml_compute_forward_relu_f32(
  4448. const struct ggml_compute_params * params,
  4449. const struct ggml_tensor * src0,
  4450. struct ggml_tensor * dst) {
  4451. assert(params->ith == 0);
  4452. assert(ggml_are_same_shape(src0, dst));
  4453. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4454. return;
  4455. }
  4456. const int n = ggml_nrows(src0);
  4457. const int nc = src0->ne[0];
  4458. assert(dst->nb[0] == sizeof(float));
  4459. assert(src0->nb[0] == sizeof(float));
  4460. for (int i = 0; i < n; i++) {
  4461. ggml_vec_relu_f32(nc,
  4462. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4463. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4464. }
  4465. }
  4466. static void ggml_compute_forward_relu(
  4467. const struct ggml_compute_params * params,
  4468. const struct ggml_tensor * src0,
  4469. struct ggml_tensor * dst) {
  4470. switch (src0->type) {
  4471. case GGML_TYPE_F32:
  4472. {
  4473. ggml_compute_forward_relu_f32(params, src0, dst);
  4474. } break;
  4475. case GGML_TYPE_Q4_0:
  4476. case GGML_TYPE_Q4_1:
  4477. case GGML_TYPE_I8:
  4478. case GGML_TYPE_I16:
  4479. case GGML_TYPE_I32:
  4480. case GGML_TYPE_F16:
  4481. case GGML_TYPE_COUNT:
  4482. {
  4483. GGML_ASSERT(false);
  4484. } break;
  4485. }
  4486. }
  4487. // ggml_compute_forward_gelu
  4488. static void ggml_compute_forward_gelu_f32(
  4489. const struct ggml_compute_params * params,
  4490. const struct ggml_tensor * src0,
  4491. struct ggml_tensor * dst) {
  4492. GGML_ASSERT(ggml_is_contiguous(src0));
  4493. GGML_ASSERT(ggml_is_contiguous(dst));
  4494. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4496. return;
  4497. }
  4498. const int ith = params->ith;
  4499. const int nth = params->nth;
  4500. const int nc = src0->ne[0];
  4501. const int nr = ggml_nrows(src0);
  4502. // rows per thread
  4503. const int dr = (nr + nth - 1)/nth;
  4504. // row range for this thread
  4505. const int ir0 = dr*ith;
  4506. const int ir1 = MIN(ir0 + dr, nr);
  4507. for (int i1 = ir0; i1 < ir1; i1++) {
  4508. ggml_vec_gelu_f32(nc,
  4509. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4510. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4511. #ifndef NDEBUG
  4512. for (int k = 0; k < nc; k++) {
  4513. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4514. UNUSED(x);
  4515. assert(!isnan(x));
  4516. assert(!isinf(x));
  4517. }
  4518. #endif
  4519. }
  4520. }
  4521. static void ggml_compute_forward_gelu(
  4522. const struct ggml_compute_params * params,
  4523. const struct ggml_tensor * src0,
  4524. struct ggml_tensor * dst) {
  4525. switch (src0->type) {
  4526. case GGML_TYPE_F32:
  4527. {
  4528. ggml_compute_forward_gelu_f32(params, src0, dst);
  4529. } break;
  4530. case GGML_TYPE_Q4_0:
  4531. case GGML_TYPE_Q4_1:
  4532. case GGML_TYPE_I8:
  4533. case GGML_TYPE_I16:
  4534. case GGML_TYPE_I32:
  4535. case GGML_TYPE_F16:
  4536. case GGML_TYPE_COUNT:
  4537. {
  4538. GGML_ASSERT(false);
  4539. } break;
  4540. }
  4541. //printf("XXXXXXXX gelu\n");
  4542. }
  4543. // ggml_compute_forward_silu
  4544. static void ggml_compute_forward_silu_f32(
  4545. const struct ggml_compute_params * params,
  4546. const struct ggml_tensor * src0,
  4547. struct ggml_tensor * dst) {
  4548. GGML_ASSERT(ggml_is_contiguous(src0));
  4549. GGML_ASSERT(ggml_is_contiguous(dst));
  4550. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4552. return;
  4553. }
  4554. const int ith = params->ith;
  4555. const int nth = params->nth;
  4556. const int nc = src0->ne[0];
  4557. const int nr = ggml_nrows(src0);
  4558. // rows per thread
  4559. const int dr = (nr + nth - 1)/nth;
  4560. // row range for this thread
  4561. const int ir0 = dr*ith;
  4562. const int ir1 = MIN(ir0 + dr, nr);
  4563. for (int i1 = ir0; i1 < ir1; i1++) {
  4564. ggml_vec_silu_f32(nc,
  4565. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4566. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4567. #ifndef NDEBUG
  4568. for (int k = 0; k < nc; k++) {
  4569. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4570. UNUSED(x);
  4571. assert(!isnan(x));
  4572. assert(!isinf(x));
  4573. }
  4574. #endif
  4575. }
  4576. }
  4577. static void ggml_compute_forward_silu(
  4578. const struct ggml_compute_params * params,
  4579. const struct ggml_tensor * src0,
  4580. struct ggml_tensor * dst) {
  4581. switch (src0->type) {
  4582. case GGML_TYPE_F32:
  4583. {
  4584. ggml_compute_forward_silu_f32(params, src0, dst);
  4585. } break;
  4586. case GGML_TYPE_Q4_0:
  4587. case GGML_TYPE_Q4_1:
  4588. case GGML_TYPE_I8:
  4589. case GGML_TYPE_I16:
  4590. case GGML_TYPE_I32:
  4591. case GGML_TYPE_F16:
  4592. case GGML_TYPE_COUNT:
  4593. {
  4594. GGML_ASSERT(false);
  4595. } break;
  4596. }
  4597. }
  4598. // ggml_compute_forward_norm
  4599. static void ggml_compute_forward_norm_f32(
  4600. const struct ggml_compute_params * params,
  4601. const struct ggml_tensor * src0,
  4602. struct ggml_tensor * dst) {
  4603. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4605. return;
  4606. }
  4607. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4608. const int ith = params->ith;
  4609. const int nth = params->nth;
  4610. const int ne00 = src0->ne[0];
  4611. const int ne01 = src0->ne[1];
  4612. const int ne02 = src0->ne[2];
  4613. const int ne03 = src0->ne[3];
  4614. const size_t nb01 = src0->nb[1];
  4615. const size_t nb02 = src0->nb[2];
  4616. const size_t nb03 = src0->nb[3];
  4617. const size_t nb1 = dst->nb[1];
  4618. const size_t nb2 = dst->nb[2];
  4619. const size_t nb3 = dst->nb[3];
  4620. const float eps = 1e-5f; // TODO: make this a parameter
  4621. // TODO: optimize
  4622. for (int i03 = 0; i03 < ne03; i03++) {
  4623. for (int i02 = 0; i02 < ne02; i02++) {
  4624. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4625. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4626. ggml_float sum = 0.0;
  4627. for (int i00 = 0; i00 < ne00; i00++) {
  4628. sum += (ggml_float)x[i00];
  4629. }
  4630. float mean = sum/ne00;
  4631. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4632. ggml_float sum2 = 0.0;
  4633. for (int i00 = 0; i00 < ne00; i00++) {
  4634. float v = x[i00] - mean;
  4635. y[i00] = v;
  4636. sum2 += (ggml_float)(v*v);
  4637. }
  4638. float variance = sum2/ne00;
  4639. const float scale = 1.0f/sqrtf(variance + eps);
  4640. ggml_vec_scale_f32(ne00, y, scale);
  4641. }
  4642. }
  4643. }
  4644. }
  4645. static void ggml_compute_forward_norm(
  4646. const struct ggml_compute_params * params,
  4647. const struct ggml_tensor * src0,
  4648. struct ggml_tensor * dst) {
  4649. switch (src0->type) {
  4650. case GGML_TYPE_F32:
  4651. {
  4652. ggml_compute_forward_norm_f32(params, src0, dst);
  4653. } break;
  4654. case GGML_TYPE_Q4_0:
  4655. case GGML_TYPE_Q4_1:
  4656. case GGML_TYPE_I8:
  4657. case GGML_TYPE_I16:
  4658. case GGML_TYPE_I32:
  4659. case GGML_TYPE_F16:
  4660. case GGML_TYPE_COUNT:
  4661. {
  4662. GGML_ASSERT(false);
  4663. } break;
  4664. }
  4665. }
  4666. static void ggml_compute_forward_rms_norm_f32(
  4667. const struct ggml_compute_params * params,
  4668. const struct ggml_tensor * src0,
  4669. struct ggml_tensor * dst) {
  4670. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4672. return;
  4673. }
  4674. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4675. const int ith = params->ith;
  4676. const int nth = params->nth;
  4677. const int ne00 = src0->ne[0];
  4678. const int ne01 = src0->ne[1];
  4679. const int ne02 = src0->ne[2];
  4680. const int ne03 = src0->ne[3];
  4681. const size_t nb01 = src0->nb[1];
  4682. const size_t nb02 = src0->nb[2];
  4683. const size_t nb03 = src0->nb[3];
  4684. const size_t nb1 = dst->nb[1];
  4685. const size_t nb2 = dst->nb[2];
  4686. const size_t nb3 = dst->nb[3];
  4687. const float eps = 1e-6f; // TODO: make this a parameter
  4688. // TODO: optimize
  4689. for (int i03 = 0; i03 < ne03; i03++) {
  4690. for (int i02 = 0; i02 < ne02; i02++) {
  4691. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4692. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4693. ggml_float sum = 0.0;
  4694. for (int i00 = 0; i00 < ne00; i00++) {
  4695. sum += (ggml_float)(x[i00] * x[i00]);
  4696. }
  4697. float mean = sum/ne00;
  4698. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4699. memcpy(y, x, ne00 * sizeof(float));
  4700. // for (int i00 = 0; i00 < ne00; i00++) {
  4701. // y[i00] = x[i00];
  4702. // }
  4703. const float scale = 1.0f/sqrtf(mean + eps);
  4704. ggml_vec_scale_f32(ne00, y, scale);
  4705. }
  4706. }
  4707. }
  4708. }
  4709. static void ggml_compute_forward_rms_norm(
  4710. const struct ggml_compute_params * params,
  4711. const struct ggml_tensor * src0,
  4712. struct ggml_tensor * dst) {
  4713. switch (src0->type) {
  4714. case GGML_TYPE_F32:
  4715. {
  4716. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4717. } break;
  4718. case GGML_TYPE_Q4_0:
  4719. case GGML_TYPE_Q4_1:
  4720. case GGML_TYPE_I8:
  4721. case GGML_TYPE_I16:
  4722. case GGML_TYPE_I32:
  4723. case GGML_TYPE_F16:
  4724. case GGML_TYPE_COUNT:
  4725. {
  4726. GGML_ASSERT(false);
  4727. } break;
  4728. }
  4729. }
  4730. // ggml_compute_forward_mul_mat
  4731. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4732. // helper function to determine if it is better to use BLAS or not
  4733. // for large matrices, BLAS is faster
  4734. static bool ggml_compute_forward_mul_mat_use_blas(
  4735. const struct ggml_tensor * src0,
  4736. const struct ggml_tensor * src1,
  4737. struct ggml_tensor * dst) {
  4738. //const int ne00 = src0->ne[0];
  4739. //const int ne01 = src0->ne[1];
  4740. const int ne10 = src1->ne[0];
  4741. const int ne0 = dst->ne[0];
  4742. const int ne1 = dst->ne[1];
  4743. // TODO: find the optimal values for these
  4744. if (ggml_is_contiguous(src0) &&
  4745. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4746. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4747. return true;
  4748. }
  4749. return false;
  4750. }
  4751. #endif
  4752. static void ggml_compute_forward_mul_mat_f32(
  4753. const struct ggml_compute_params * params,
  4754. const struct ggml_tensor * src0,
  4755. const struct ggml_tensor * src1,
  4756. struct ggml_tensor * dst) {
  4757. int64_t t0 = ggml_perf_time_us();
  4758. UNUSED(t0);
  4759. const int ne00 = src0->ne[0];
  4760. const int ne01 = src0->ne[1];
  4761. const int ne02 = src0->ne[2];
  4762. const int ne03 = src0->ne[3];
  4763. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4764. const int ne10 = src1->ne[0];
  4765. #endif
  4766. const int ne11 = src1->ne[1];
  4767. #ifndef NDEBUG
  4768. const int ne12 = src1->ne[2];
  4769. const int ne13 = src1->ne[3];
  4770. const int ne0 = dst->ne[0];
  4771. const int ne1 = dst->ne[1];
  4772. const int ne2 = dst->ne[2];
  4773. const int ne3 = dst->ne[3];
  4774. const int nb00 = src0->nb[0];
  4775. #endif
  4776. const int nb01 = src0->nb[1];
  4777. const int nb02 = src0->nb[2];
  4778. const int nb03 = src0->nb[3];
  4779. #ifndef NDEBUG
  4780. const int nb10 = src1->nb[0];
  4781. #endif
  4782. const int nb11 = src1->nb[1];
  4783. const int nb12 = src1->nb[2];
  4784. const int nb13 = src1->nb[3];
  4785. const int nb0 = dst->nb[0];
  4786. const int nb1 = dst->nb[1];
  4787. const int nb2 = dst->nb[2];
  4788. const int nb3 = dst->nb[3];
  4789. const int ith = params->ith;
  4790. const int nth = params->nth;
  4791. assert(ne02 == ne12);
  4792. assert(ne03 == ne13);
  4793. assert(ne2 == ne12);
  4794. assert(ne3 == ne13);
  4795. // we don't support permuted src0 or src1
  4796. assert(nb00 == sizeof(float));
  4797. assert(nb10 == sizeof(float));
  4798. // dst cannot be transposed or permuted
  4799. assert(nb0 == sizeof(float));
  4800. assert(nb0 <= nb1);
  4801. assert(nb1 <= nb2);
  4802. assert(nb2 <= nb3);
  4803. assert(ne0 == ne01);
  4804. assert(ne1 == ne11);
  4805. assert(ne2 == ne02);
  4806. assert(ne3 == ne03);
  4807. // nb01 >= nb00 - src0 is not transposed
  4808. // compute by src0 rows
  4809. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4810. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4811. if (params->ith != 0) {
  4812. return;
  4813. }
  4814. if (params->type == GGML_TASK_INIT) {
  4815. return;
  4816. }
  4817. if (params->type == GGML_TASK_FINALIZE) {
  4818. return;
  4819. }
  4820. for (int i03 = 0; i03 < ne03; i03++) {
  4821. for (int i02 = 0; i02 < ne02; i02++) {
  4822. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4823. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4824. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4825. // zT = y * xT
  4826. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4827. ne11, ne01, ne10,
  4828. 1.0f, y, ne10,
  4829. x, ne10,
  4830. 0.0f, d, ne01);
  4831. }
  4832. }
  4833. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4834. return;
  4835. }
  4836. #endif
  4837. if (params->type == GGML_TASK_INIT) {
  4838. return;
  4839. }
  4840. if (params->type == GGML_TASK_FINALIZE) {
  4841. return;
  4842. }
  4843. // parallelize by src0 rows using ggml_vec_dot_f32
  4844. // total rows in src0
  4845. const int nr = ne01*ne02*ne03;
  4846. // rows per thread
  4847. const int dr = (nr + nth - 1)/nth;
  4848. // row range for this thread
  4849. const int ir0 = dr*ith;
  4850. const int ir1 = MIN(ir0 + dr, nr);
  4851. for (int ir = ir0; ir < ir1; ++ir) {
  4852. // src0 indices
  4853. const int i03 = ir/(ne02*ne01);
  4854. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4855. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4856. for (int ic = 0; ic < ne11; ++ic) {
  4857. // src1 indices
  4858. const int i13 = i03;
  4859. const int i12 = i02;
  4860. const int i11 = ic;
  4861. // dst indices
  4862. const int i0 = i01;
  4863. const int i1 = i11;
  4864. const int i2 = i02;
  4865. const int i3 = i03;
  4866. ggml_vec_dot_f32(ne00,
  4867. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4868. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4869. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4870. }
  4871. }
  4872. //int64_t t1 = ggml_perf_time_us();
  4873. //static int64_t acc = 0;
  4874. //acc += t1 - t0;
  4875. //if (t1 - t0 > 10) {
  4876. // printf("\n");
  4877. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4878. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4879. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4880. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4881. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4882. //}
  4883. }
  4884. static void ggml_compute_forward_mul_mat_f16_f32(
  4885. const struct ggml_compute_params * params,
  4886. const struct ggml_tensor * src0,
  4887. const struct ggml_tensor * src1,
  4888. struct ggml_tensor * dst) {
  4889. int64_t t0 = ggml_perf_time_us();
  4890. UNUSED(t0);
  4891. const int ne00 = src0->ne[0];
  4892. const int ne01 = src0->ne[1];
  4893. const int ne02 = src0->ne[2];
  4894. const int ne03 = src0->ne[3];
  4895. const int ne10 = src1->ne[0];
  4896. const int ne11 = src1->ne[1];
  4897. const int ne12 = src1->ne[2];
  4898. const int ne13 = src1->ne[3];
  4899. const int ne0 = dst->ne[0];
  4900. const int ne1 = dst->ne[1];
  4901. const int ne2 = dst->ne[2];
  4902. const int ne3 = dst->ne[3];
  4903. //const int ne = ne0*ne1*ne2*ne3;
  4904. const int nb00 = src0->nb[0];
  4905. const int nb01 = src0->nb[1];
  4906. const int nb02 = src0->nb[2];
  4907. const int nb03 = src0->nb[3];
  4908. const int nb10 = src1->nb[0];
  4909. const int nb11 = src1->nb[1];
  4910. const int nb12 = src1->nb[2];
  4911. const int nb13 = src1->nb[3];
  4912. const int nb0 = dst->nb[0];
  4913. const int nb1 = dst->nb[1];
  4914. const int nb2 = dst->nb[2];
  4915. const int nb3 = dst->nb[3];
  4916. const int ith = params->ith;
  4917. const int nth = params->nth;
  4918. GGML_ASSERT(ne02 == ne12);
  4919. GGML_ASSERT(ne03 == ne13);
  4920. GGML_ASSERT(ne2 == ne12);
  4921. GGML_ASSERT(ne3 == ne13);
  4922. // TODO: we don't support permuted src0
  4923. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4924. // dst cannot be transposed or permuted
  4925. GGML_ASSERT(nb0 == sizeof(float));
  4926. GGML_ASSERT(nb0 <= nb1);
  4927. GGML_ASSERT(nb1 <= nb2);
  4928. GGML_ASSERT(nb2 <= nb3);
  4929. GGML_ASSERT(ne0 == ne01);
  4930. GGML_ASSERT(ne1 == ne11);
  4931. GGML_ASSERT(ne2 == ne02);
  4932. GGML_ASSERT(ne3 == ne03);
  4933. // nb01 >= nb00 - src0 is not transposed
  4934. // compute by src0 rows
  4935. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4936. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4937. GGML_ASSERT(nb10 == sizeof(float));
  4938. if (params->ith != 0) {
  4939. return;
  4940. }
  4941. if (params->type == GGML_TASK_INIT) {
  4942. return;
  4943. }
  4944. if (params->type == GGML_TASK_FINALIZE) {
  4945. return;
  4946. }
  4947. float * const wdata = params->wdata;
  4948. for (int i03 = 0; i03 < ne03; i03++) {
  4949. for (int i02 = 0; i02 < ne02; i02++) {
  4950. {
  4951. size_t id = 0;
  4952. for (int i01 = 0; i01 < ne01; ++i01) {
  4953. for (int i00 = 0; i00 < ne00; ++i00) {
  4954. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4955. }
  4956. }
  4957. }
  4958. const float * x = wdata;
  4959. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4960. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4961. // zT = y * xT
  4962. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4963. ne11, ne01, ne10,
  4964. 1.0f, y, ne10,
  4965. x, ne10,
  4966. 0.0f, d, ne01);
  4967. }
  4968. }
  4969. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4970. return;
  4971. }
  4972. #endif
  4973. if (params->type == GGML_TASK_INIT) {
  4974. ggml_fp16_t * const wdata = params->wdata;
  4975. size_t id = 0;
  4976. for (int i13 = 0; i13 < ne13; ++i13) {
  4977. for (int i12 = 0; i12 < ne12; ++i12) {
  4978. for (int i11 = 0; i11 < ne11; ++i11) {
  4979. for (int i10 = 0; i10 < ne10; ++i10) {
  4980. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4981. }
  4982. }
  4983. }
  4984. }
  4985. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4986. return;
  4987. }
  4988. if (params->type == GGML_TASK_FINALIZE) {
  4989. return;
  4990. }
  4991. // fp16 -> half the size, so divide by 2
  4992. // TODO: do not support transposed src1
  4993. assert(nb10/2 == sizeof(ggml_fp16_t));
  4994. // parallelize by src0 rows using ggml_vec_dot_f16
  4995. // total rows in src0
  4996. const int nr = ne01*ne02*ne03;
  4997. // rows per thread
  4998. const int dr = (nr + nth - 1)/nth;
  4999. // row range for this thread
  5000. const int ir0 = dr*ith;
  5001. const int ir1 = MIN(ir0 + dr, nr);
  5002. ggml_fp16_t * wdata = params->wdata;
  5003. for (int ir = ir0; ir < ir1; ++ir) {
  5004. // src0 indices
  5005. const int i03 = ir/(ne02*ne01);
  5006. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5007. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5008. const int i13 = i03;
  5009. const int i12 = i02;
  5010. const int i0 = i01;
  5011. const int i2 = i02;
  5012. const int i3 = i03;
  5013. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5014. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5015. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5016. for (int ic = 0; ic < ne11; ++ic) {
  5017. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5018. }
  5019. }
  5020. //int64_t t1 = ggml_time_us();
  5021. //static int64_t acc = 0;
  5022. //acc += t1 - t0;
  5023. //if (t1 - t0 > 10) {
  5024. // printf("\n");
  5025. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5026. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5027. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5028. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5029. //}
  5030. }
  5031. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5032. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5033. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5034. typedef struct {
  5035. dequantize_row_q_t dequantize_row_q;
  5036. quantize_row_q_t quantize_row_q;
  5037. vec_dot_q_t vec_dot_q;
  5038. } quantize_fns_t;
  5039. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5040. [GGML_TYPE_Q4_0] = {
  5041. .dequantize_row_q = dequantize_row_q4_0,
  5042. .quantize_row_q = quantize_row_q4_0,
  5043. .vec_dot_q = ggml_vec_dot_q4_0,
  5044. },
  5045. [GGML_TYPE_Q4_1] = {
  5046. .dequantize_row_q = dequantize_row_q4_1,
  5047. .quantize_row_q = quantize_row_q4_1,
  5048. .vec_dot_q = ggml_vec_dot_q4_1,
  5049. },
  5050. };
  5051. static void ggml_compute_forward_mul_mat_q_f32(
  5052. const struct ggml_compute_params * params,
  5053. const struct ggml_tensor * src0,
  5054. const struct ggml_tensor * src1,
  5055. struct ggml_tensor * dst) {
  5056. int64_t t0 = ggml_perf_time_us();
  5057. UNUSED(t0);
  5058. const int ne00 = src0->ne[0];
  5059. const int ne01 = src0->ne[1];
  5060. const int ne02 = src0->ne[2];
  5061. const int ne03 = src0->ne[3];
  5062. const int ne10 = src1->ne[0];
  5063. const int ne11 = src1->ne[1];
  5064. const int ne12 = src1->ne[2];
  5065. const int ne13 = src1->ne[3];
  5066. const int ne0 = dst->ne[0];
  5067. const int ne1 = dst->ne[1];
  5068. const int ne2 = dst->ne[2];
  5069. const int ne3 = dst->ne[3];
  5070. const int nb00 = src0->nb[0];
  5071. const int nb01 = src0->nb[1];
  5072. const int nb02 = src0->nb[2];
  5073. const int nb03 = src0->nb[3];
  5074. const int nb10 = src1->nb[0];
  5075. const int nb11 = src1->nb[1];
  5076. const int nb12 = src1->nb[2];
  5077. const int nb13 = src1->nb[3];
  5078. const int nb0 = dst->nb[0];
  5079. const int nb1 = dst->nb[1];
  5080. const int nb2 = dst->nb[2];
  5081. const int nb3 = dst->nb[3];
  5082. const int ith = params->ith;
  5083. const int nth = params->nth;
  5084. GGML_ASSERT(ne02 == ne12);
  5085. GGML_ASSERT(ne03 == ne13);
  5086. GGML_ASSERT(ne2 == ne12);
  5087. GGML_ASSERT(ne3 == ne13);
  5088. const enum ggml_type type = src0->type;
  5089. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5090. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5091. // we don't support permuted src0 or src1
  5092. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5093. GGML_ASSERT(nb10 == sizeof(float));
  5094. // dst cannot be transposed or permuted
  5095. GGML_ASSERT(nb0 == sizeof(float));
  5096. GGML_ASSERT(nb0 <= nb1);
  5097. GGML_ASSERT(nb1 <= nb2);
  5098. GGML_ASSERT(nb2 <= nb3);
  5099. GGML_ASSERT(ne0 == ne01);
  5100. GGML_ASSERT(ne1 == ne11);
  5101. GGML_ASSERT(ne2 == ne02);
  5102. GGML_ASSERT(ne3 == ne03);
  5103. // nb01 >= nb00 - src0 is not transposed
  5104. // compute by src0 rows
  5105. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5106. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5107. if (params->ith != 0) {
  5108. return;
  5109. }
  5110. if (params->type == GGML_TASK_INIT) {
  5111. return;
  5112. }
  5113. if (params->type == GGML_TASK_FINALIZE) {
  5114. return;
  5115. }
  5116. float * const wdata = params->wdata;
  5117. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5118. for (int i03 = 0; i03 < ne03; i03++) {
  5119. for (int i02 = 0; i02 < ne02; i02++) {
  5120. {
  5121. size_t id = 0;
  5122. for (int i01 = 0; i01 < ne01; ++i01) {
  5123. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5124. id += ne00;
  5125. }
  5126. }
  5127. const float * x = wdata;
  5128. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5129. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5130. // zT = y * xT
  5131. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5132. ne11, ne01, ne10,
  5133. 1.0f, y, ne10,
  5134. x, ne10,
  5135. 0.0f, d, ne01);
  5136. }
  5137. }
  5138. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5139. return;
  5140. }
  5141. #endif
  5142. if (params->type == GGML_TASK_INIT) {
  5143. char * wdata = params->wdata;
  5144. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5145. for (int i13 = 0; i13 < ne13; ++i13) {
  5146. for (int i12 = 0; i12 < ne12; ++i12) {
  5147. for (int i11 = 0; i11 < ne11; ++i11) {
  5148. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5149. wdata += row_size;
  5150. }
  5151. }
  5152. }
  5153. return;
  5154. }
  5155. if (params->type == GGML_TASK_FINALIZE) {
  5156. return;
  5157. }
  5158. // parallelize by src0 rows using ggml_vec_dot_q
  5159. // total rows in src0
  5160. const int nr = ne01*ne02*ne03;
  5161. // rows per thread
  5162. const int dr = (nr + nth - 1)/nth;
  5163. // row range for this thread
  5164. const int ir0 = dr*ith;
  5165. const int ir1 = MIN(ir0 + dr, nr);
  5166. void * wdata = params->wdata;
  5167. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5168. for (int ir = ir0; ir < ir1; ++ir) {
  5169. // src0 indices
  5170. const int i03 = ir/(ne02*ne01);
  5171. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5172. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5173. const int i13 = i03;
  5174. const int i12 = i02;
  5175. const int i0 = i01;
  5176. const int i2 = i02;
  5177. const int i3 = i03;
  5178. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5179. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5180. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5181. assert(ne00 % 32 == 0);
  5182. for (int ic = 0; ic < ne11; ++ic) {
  5183. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5184. }
  5185. }
  5186. //int64_t t1 = ggml_time_us();
  5187. //static int64_t acc = 0;
  5188. //acc += t1 - t0;
  5189. //if (t1 - t0 > 10) {
  5190. // printf("\n");
  5191. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5192. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5193. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5194. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5195. //}
  5196. }
  5197. static void ggml_compute_forward_mul_mat(
  5198. const struct ggml_compute_params * params,
  5199. const struct ggml_tensor * src0,
  5200. const struct ggml_tensor * src1,
  5201. struct ggml_tensor * dst) {
  5202. switch (src0->type) {
  5203. case GGML_TYPE_Q4_0:
  5204. case GGML_TYPE_Q4_1:
  5205. {
  5206. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5207. } break;
  5208. case GGML_TYPE_F16:
  5209. {
  5210. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5211. } break;
  5212. case GGML_TYPE_F32:
  5213. {
  5214. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5215. } break;
  5216. case GGML_TYPE_I8:
  5217. case GGML_TYPE_I16:
  5218. case GGML_TYPE_I32:
  5219. case GGML_TYPE_COUNT:
  5220. {
  5221. GGML_ASSERT(false);
  5222. } break;
  5223. }
  5224. #if 0
  5225. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5226. static int first = 8;
  5227. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5228. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5229. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5230. if (first) {
  5231. --first;
  5232. } else {
  5233. for (int k = 0; k < dst->ne[1]; ++k) {
  5234. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5235. for (int i = 0; i < 16; ++i) {
  5236. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5237. }
  5238. printf("\n");
  5239. }
  5240. printf("\n");
  5241. }
  5242. printf("\n");
  5243. exit(0);
  5244. }
  5245. } else {
  5246. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5247. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5248. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5249. }
  5250. #endif
  5251. }
  5252. // ggml_compute_forward_scale
  5253. static void ggml_compute_forward_scale_f32(
  5254. const struct ggml_compute_params * params,
  5255. const struct ggml_tensor * src0,
  5256. const struct ggml_tensor * src1,
  5257. struct ggml_tensor * dst) {
  5258. GGML_ASSERT(ggml_is_contiguous(src0));
  5259. GGML_ASSERT(ggml_is_contiguous(dst));
  5260. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5261. GGML_ASSERT(ggml_is_scalar(src1));
  5262. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5263. return;
  5264. }
  5265. // scale factor
  5266. const float v = *(float *) src1->data;
  5267. const int ith = params->ith;
  5268. const int nth = params->nth;
  5269. const int nc = src0->ne[0];
  5270. const int nr = ggml_nrows(src0);
  5271. // rows per thread
  5272. const int dr = (nr + nth - 1)/nth;
  5273. // row range for this thread
  5274. const int ir0 = dr*ith;
  5275. const int ir1 = MIN(ir0 + dr, nr);
  5276. for (int i1 = ir0; i1 < ir1; i1++) {
  5277. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5278. }
  5279. }
  5280. static void ggml_compute_forward_scale(
  5281. const struct ggml_compute_params * params,
  5282. const struct ggml_tensor * src0,
  5283. const struct ggml_tensor * src1,
  5284. struct ggml_tensor * dst) {
  5285. switch (src0->type) {
  5286. case GGML_TYPE_F32:
  5287. {
  5288. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5289. } break;
  5290. case GGML_TYPE_Q4_0:
  5291. case GGML_TYPE_Q4_1:
  5292. case GGML_TYPE_I8:
  5293. case GGML_TYPE_I16:
  5294. case GGML_TYPE_I32:
  5295. case GGML_TYPE_F16:
  5296. case GGML_TYPE_COUNT:
  5297. {
  5298. GGML_ASSERT(false);
  5299. } break;
  5300. }
  5301. }
  5302. // ggml_compute_forward_cpy
  5303. static void ggml_compute_forward_cpy(
  5304. const struct ggml_compute_params * params,
  5305. const struct ggml_tensor * src0,
  5306. struct ggml_tensor * dst) {
  5307. ggml_compute_forward_dup(params, src0, dst);
  5308. }
  5309. // ggml_compute_forward_reshape
  5310. static void ggml_compute_forward_reshape(
  5311. const struct ggml_compute_params * params,
  5312. const struct ggml_tensor * src0,
  5313. struct ggml_tensor * dst) {
  5314. // NOP
  5315. UNUSED(params);
  5316. UNUSED(src0);
  5317. UNUSED(dst);
  5318. }
  5319. // ggml_compute_forward_view
  5320. static void ggml_compute_forward_view(
  5321. const struct ggml_compute_params * params,
  5322. const struct ggml_tensor * src0) {
  5323. // NOP
  5324. UNUSED(params);
  5325. UNUSED(src0);
  5326. }
  5327. // ggml_compute_forward_permute
  5328. static void ggml_compute_forward_permute(
  5329. const struct ggml_compute_params * params,
  5330. const struct ggml_tensor * src0) {
  5331. // NOP
  5332. UNUSED(params);
  5333. UNUSED(src0);
  5334. }
  5335. // ggml_compute_forward_transpose
  5336. static void ggml_compute_forward_transpose(
  5337. const struct ggml_compute_params * params,
  5338. const struct ggml_tensor * src0) {
  5339. // NOP
  5340. UNUSED(params);
  5341. UNUSED(src0);
  5342. }
  5343. // ggml_compute_forward_get_rows
  5344. static void ggml_compute_forward_get_rows_q(
  5345. const struct ggml_compute_params * params,
  5346. const struct ggml_tensor * src0,
  5347. const struct ggml_tensor * src1,
  5348. struct ggml_tensor * dst) {
  5349. assert(params->ith == 0);
  5350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5351. return;
  5352. }
  5353. const int nc = src0->ne[0];
  5354. const int nr = ggml_nelements(src1);
  5355. const enum ggml_type type = src0->type;
  5356. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5357. assert( dst->ne[0] == nc);
  5358. assert( dst->ne[1] == nr);
  5359. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5360. for (int i = 0; i < nr; ++i) {
  5361. const int r = ((int32_t *) src1->data)[i];
  5362. dequantize_row_q(
  5363. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5364. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5365. }
  5366. }
  5367. static void ggml_compute_forward_get_rows_f16(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. const struct ggml_tensor * src1,
  5371. struct ggml_tensor * dst) {
  5372. assert(params->ith == 0);
  5373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5374. return;
  5375. }
  5376. const int nc = src0->ne[0];
  5377. const int nr = ggml_nelements(src1);
  5378. assert( dst->ne[0] == nc);
  5379. assert( dst->ne[1] == nr);
  5380. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5381. for (int i = 0; i < nr; ++i) {
  5382. const int r = ((int32_t *) src1->data)[i];
  5383. for (int j = 0; j < nc; ++j) {
  5384. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5385. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5386. }
  5387. }
  5388. }
  5389. static void ggml_compute_forward_get_rows_f32(
  5390. const struct ggml_compute_params * params,
  5391. const struct ggml_tensor * src0,
  5392. const struct ggml_tensor * src1,
  5393. struct ggml_tensor * dst) {
  5394. assert(params->ith == 0);
  5395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5396. return;
  5397. }
  5398. const int nc = src0->ne[0];
  5399. const int nr = ggml_nelements(src1);
  5400. assert( dst->ne[0] == nc);
  5401. assert( dst->ne[1] == nr);
  5402. assert(src0->nb[0] == sizeof(float));
  5403. for (int i = 0; i < nr; ++i) {
  5404. const int r = ((int32_t *) src1->data)[i];
  5405. ggml_vec_cpy_f32(nc,
  5406. (float *) ((char *) dst->data + i*dst->nb[1]),
  5407. (float *) ((char *) src0->data + r*src0->nb[1]));
  5408. }
  5409. }
  5410. static void ggml_compute_forward_get_rows(
  5411. const struct ggml_compute_params * params,
  5412. const struct ggml_tensor * src0,
  5413. const struct ggml_tensor * src1,
  5414. struct ggml_tensor * dst) {
  5415. switch (src0->type) {
  5416. case GGML_TYPE_Q4_0:
  5417. case GGML_TYPE_Q4_1:
  5418. {
  5419. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5420. } break;
  5421. case GGML_TYPE_F16:
  5422. {
  5423. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5424. } break;
  5425. case GGML_TYPE_F32:
  5426. {
  5427. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5428. } break;
  5429. case GGML_TYPE_I8:
  5430. case GGML_TYPE_I16:
  5431. case GGML_TYPE_I32:
  5432. case GGML_TYPE_COUNT:
  5433. {
  5434. GGML_ASSERT(false);
  5435. } break;
  5436. }
  5437. //static bool first = true;
  5438. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5439. //if (first) {
  5440. // first = false;
  5441. //} else {
  5442. // for (int k = 0; k < dst->ne[1]; ++k) {
  5443. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5444. // for (int i = 0; i < 16; ++i) {
  5445. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5446. // }
  5447. // printf("\n");
  5448. // }
  5449. // printf("\n");
  5450. // }
  5451. // printf("\n");
  5452. // exit(0);
  5453. //}
  5454. }
  5455. // ggml_compute_forward_diag_mask_inf
  5456. static void ggml_compute_forward_diag_mask_inf_f32(
  5457. const struct ggml_compute_params * params,
  5458. const struct ggml_tensor * src0,
  5459. const struct ggml_tensor * src1,
  5460. struct ggml_tensor * dst) {
  5461. assert(params->ith == 0);
  5462. assert(src1->type == GGML_TYPE_I32);
  5463. assert(ggml_nelements(src1) == 1);
  5464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5465. return;
  5466. }
  5467. const int n_past = ((int32_t *) src1->data)[0];
  5468. // TODO: handle transposed/permuted matrices
  5469. const int n = ggml_nrows(src0);
  5470. const int nc = src0->ne[0];
  5471. const int nr = src0->ne[1];
  5472. const int nz = n/nr;
  5473. assert( dst->nb[0] == sizeof(float));
  5474. assert(src0->nb[0] == sizeof(float));
  5475. for (int k = 0; k < nz; k++) {
  5476. for (int j = 0; j < nr; j++) {
  5477. for (int i = n_past; i < nc; i++) {
  5478. if (i > n_past + j) {
  5479. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5480. }
  5481. }
  5482. }
  5483. }
  5484. }
  5485. static void ggml_compute_forward_diag_mask_inf(
  5486. const struct ggml_compute_params * params,
  5487. const struct ggml_tensor * src0,
  5488. const struct ggml_tensor * src1,
  5489. struct ggml_tensor * dst) {
  5490. switch (src0->type) {
  5491. case GGML_TYPE_F32:
  5492. {
  5493. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5494. } break;
  5495. case GGML_TYPE_Q4_0:
  5496. case GGML_TYPE_Q4_1:
  5497. case GGML_TYPE_I8:
  5498. case GGML_TYPE_I16:
  5499. case GGML_TYPE_I32:
  5500. case GGML_TYPE_F16:
  5501. case GGML_TYPE_COUNT:
  5502. {
  5503. GGML_ASSERT(false);
  5504. } break;
  5505. }
  5506. }
  5507. // ggml_compute_forward_soft_max
  5508. static void ggml_compute_forward_soft_max_f32(
  5509. const struct ggml_compute_params * params,
  5510. const struct ggml_tensor * src0,
  5511. struct ggml_tensor * dst) {
  5512. GGML_ASSERT(ggml_is_contiguous(src0));
  5513. GGML_ASSERT(ggml_is_contiguous(dst));
  5514. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5516. return;
  5517. }
  5518. // TODO: handle transposed/permuted matrices
  5519. const int ith = params->ith;
  5520. const int nth = params->nth;
  5521. const int nc = src0->ne[0];
  5522. const int nr = ggml_nrows(src0);
  5523. // rows per thread
  5524. const int dr = (nr + nth - 1)/nth;
  5525. // row range for this thread
  5526. const int ir0 = dr*ith;
  5527. const int ir1 = MIN(ir0 + dr, nr);
  5528. for (int i1 = ir0; i1 < ir1; i1++) {
  5529. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5530. #ifndef NDEBUG
  5531. for (int i = 0; i < nc; ++i) {
  5532. //printf("p[%d] = %f\n", i, p[i]);
  5533. assert(!isnan(p[i]));
  5534. }
  5535. #endif
  5536. float max = -INFINITY;
  5537. ggml_vec_max_f32(nc, &max, p);
  5538. ggml_float sum = 0.0;
  5539. uint16_t scvt;
  5540. for (int i = 0; i < nc; i++) {
  5541. if (p[i] == -INFINITY) {
  5542. p[i] = 0.0f;
  5543. } else {
  5544. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5545. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5546. memcpy(&scvt, &s, sizeof(scvt));
  5547. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5548. sum += (ggml_float)val;
  5549. p[i] = val;
  5550. }
  5551. }
  5552. assert(sum > 0.0);
  5553. sum = 1.0/sum;
  5554. ggml_vec_scale_f32(nc, p, sum);
  5555. #ifndef NDEBUG
  5556. for (int i = 0; i < nc; ++i) {
  5557. assert(!isnan(p[i]));
  5558. assert(!isinf(p[i]));
  5559. }
  5560. #endif
  5561. }
  5562. }
  5563. static void ggml_compute_forward_soft_max(
  5564. const struct ggml_compute_params * params,
  5565. const struct ggml_tensor * src0,
  5566. struct ggml_tensor * dst) {
  5567. switch (src0->type) {
  5568. case GGML_TYPE_F32:
  5569. {
  5570. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5571. } break;
  5572. case GGML_TYPE_Q4_0:
  5573. case GGML_TYPE_Q4_1:
  5574. case GGML_TYPE_I8:
  5575. case GGML_TYPE_I16:
  5576. case GGML_TYPE_I32:
  5577. case GGML_TYPE_F16:
  5578. case GGML_TYPE_COUNT:
  5579. {
  5580. GGML_ASSERT(false);
  5581. } break;
  5582. }
  5583. }
  5584. // ggml_compute_forward_rope
  5585. static void ggml_compute_forward_rope_f32(
  5586. const struct ggml_compute_params * params,
  5587. const struct ggml_tensor * src0,
  5588. const struct ggml_tensor * src1,
  5589. struct ggml_tensor * dst) {
  5590. assert(params->ith == 0);
  5591. assert(src1->type == GGML_TYPE_I32);
  5592. assert(ggml_nelements(src1) == 3);
  5593. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5594. return;
  5595. }
  5596. const int n_past = ((int32_t *) src1->data)[0];
  5597. const int n_dims = ((int32_t *) src1->data)[1];
  5598. const int mode = ((int32_t *) src1->data)[2];
  5599. //const int ne0 = src0->ne[0];
  5600. const int ne1 = src0->ne[1];
  5601. const int ne2 = src0->ne[2];
  5602. const int ne3 = src0->ne[3];
  5603. const int nb0 = src0->nb[0];
  5604. const int nb1 = src0->nb[1];
  5605. const int nb2 = src0->nb[2];
  5606. const int nb3 = src0->nb[3];
  5607. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5608. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5609. assert(nb0 == sizeof(float));
  5610. // TODO: optimize
  5611. for (int i3 = 0; i3 < ne3; i3++) {
  5612. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5613. const int p = (mode == 0 ? n_past + i2 : i2);
  5614. for (int i1 = 0; i1 < ne1; i1++) {
  5615. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5616. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5617. const float cos_theta = cosf(p*theta);
  5618. const float sin_theta = sinf(p*theta);
  5619. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5620. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5621. const float x0 = src[0];
  5622. const float x1 = src[1];
  5623. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5624. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. static void ggml_compute_forward_rope_f16(
  5631. const struct ggml_compute_params * params,
  5632. const struct ggml_tensor * src0,
  5633. const struct ggml_tensor * src1,
  5634. struct ggml_tensor * dst) {
  5635. assert(params->ith == 0);
  5636. assert(src1->type == GGML_TYPE_I32);
  5637. assert(ggml_nelements(src1) == 3);
  5638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5639. return;
  5640. }
  5641. const int n_past = ((int32_t *) src1->data)[0];
  5642. const int n_dims = ((int32_t *) src1->data)[1];
  5643. const int mode = ((int32_t *) src1->data)[2];
  5644. //const int ne0 = src0->ne[0];
  5645. const int ne1 = src0->ne[1];
  5646. const int ne2 = src0->ne[2];
  5647. const int ne3 = src0->ne[3];
  5648. const int nb0 = src0->nb[0];
  5649. const int nb1 = src0->nb[1];
  5650. const int nb2 = src0->nb[2];
  5651. const int nb3 = src0->nb[3];
  5652. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5653. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5654. assert(nb0 == sizeof(ggml_fp16_t));
  5655. for (int i3 = 0; i3 < ne3; i3++) {
  5656. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5657. const int p = (mode == 0 ? n_past + i2 : i2);
  5658. for (int i1 = 0; i1 < ne1; i1++) {
  5659. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5660. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5661. const float cos_theta = cosf(p*theta);
  5662. const float sin_theta = sinf(p*theta);
  5663. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5664. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5665. const float x0 = ggml_fp16_to_fp32(src[0]);
  5666. const float x1 = ggml_fp16_to_fp32(src[1]);
  5667. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5668. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5669. }
  5670. }
  5671. }
  5672. }
  5673. }
  5674. static void ggml_compute_forward_rope(
  5675. const struct ggml_compute_params * params,
  5676. const struct ggml_tensor * src0,
  5677. const struct ggml_tensor * src1,
  5678. struct ggml_tensor * dst) {
  5679. switch (src0->type) {
  5680. case GGML_TYPE_F16:
  5681. {
  5682. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5683. } break;
  5684. case GGML_TYPE_F32:
  5685. {
  5686. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5687. } break;
  5688. case GGML_TYPE_Q4_0:
  5689. case GGML_TYPE_Q4_1:
  5690. case GGML_TYPE_I8:
  5691. case GGML_TYPE_I16:
  5692. case GGML_TYPE_I32:
  5693. case GGML_TYPE_COUNT:
  5694. {
  5695. GGML_ASSERT(false);
  5696. } break;
  5697. }
  5698. }
  5699. // ggml_compute_forward_conv_1d_1s
  5700. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5701. const struct ggml_compute_params * params,
  5702. const struct ggml_tensor * src0,
  5703. const struct ggml_tensor * src1,
  5704. struct ggml_tensor * dst) {
  5705. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5706. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5707. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5708. int64_t t0 = ggml_perf_time_us();
  5709. UNUSED(t0);
  5710. const int ne00 = src0->ne[0];
  5711. const int ne01 = src0->ne[1];
  5712. const int ne02 = src0->ne[2];
  5713. //const int ne03 = src0->ne[3];
  5714. const int ne10 = src1->ne[0];
  5715. const int ne11 = src1->ne[1];
  5716. //const int ne12 = src1->ne[2];
  5717. //const int ne13 = src1->ne[3];
  5718. //const int ne0 = dst->ne[0];
  5719. //const int ne1 = dst->ne[1];
  5720. //const int ne2 = dst->ne[2];
  5721. //const int ne3 = dst->ne[3];
  5722. //const int ne = ne0*ne1*ne2*ne3;
  5723. const int nb00 = src0->nb[0];
  5724. const int nb01 = src0->nb[1];
  5725. const int nb02 = src0->nb[2];
  5726. //const int nb03 = src0->nb[3];
  5727. const int nb10 = src1->nb[0];
  5728. const int nb11 = src1->nb[1];
  5729. //const int nb12 = src1->nb[2];
  5730. //const int nb13 = src1->nb[3];
  5731. //const int nb0 = dst->nb[0];
  5732. const int nb1 = dst->nb[1];
  5733. //const int nb2 = dst->nb[2];
  5734. //const int nb3 = dst->nb[3];
  5735. const int ith = params->ith;
  5736. const int nth = params->nth;
  5737. const int nk = ne00;
  5738. const int nh = nk/2;
  5739. const int ew0 = ggml_up32(ne01);
  5740. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5741. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5742. GGML_ASSERT(nb10 == sizeof(float));
  5743. if (params->type == GGML_TASK_INIT) {
  5744. // TODO: fix this memset (wsize is overestimated)
  5745. memset(params->wdata, 0, params->wsize);
  5746. // prepare kernel data (src0)
  5747. {
  5748. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5749. for (int i02 = 0; i02 < ne02; i02++) {
  5750. for (int i01 = 0; i01 < ne01; i01++) {
  5751. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5752. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5753. for (int i00 = 0; i00 < ne00; i00++) {
  5754. dst_data[i00*ew0 + i01] = src[i00];
  5755. }
  5756. }
  5757. }
  5758. }
  5759. // prepare source data (src1)
  5760. {
  5761. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5762. for (int i11 = 0; i11 < ne11; i11++) {
  5763. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5764. ggml_fp16_t * dst_data = wdata;
  5765. for (int i10 = 0; i10 < ne10; i10++) {
  5766. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5767. }
  5768. }
  5769. }
  5770. return;
  5771. }
  5772. if (params->type == GGML_TASK_FINALIZE) {
  5773. return;
  5774. }
  5775. // total rows in dst
  5776. const int nr = ne02;
  5777. // rows per thread
  5778. const int dr = (nr + nth - 1)/nth;
  5779. // row range for this thread
  5780. const int ir0 = dr*ith;
  5781. const int ir1 = MIN(ir0 + dr, nr);
  5782. for (int i1 = ir0; i1 < ir1; i1++) {
  5783. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5784. for (int i0 = 0; i0 < ne10; ++i0) {
  5785. dst_data[i0] = 0;
  5786. for (int k = -nh; k <= nh; k++) {
  5787. float v = 0.0f;
  5788. ggml_vec_dot_f16(ew0, &v,
  5789. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5790. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5791. dst_data[i0] += v;
  5792. }
  5793. }
  5794. }
  5795. }
  5796. static void ggml_compute_forward_conv_1d_1s_f32(
  5797. const struct ggml_compute_params * params,
  5798. const struct ggml_tensor * src0,
  5799. const struct ggml_tensor * src1,
  5800. struct ggml_tensor * dst) {
  5801. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5802. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5803. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5804. int64_t t0 = ggml_perf_time_us();
  5805. UNUSED(t0);
  5806. const int ne00 = src0->ne[0];
  5807. const int ne01 = src0->ne[1];
  5808. const int ne02 = src0->ne[2];
  5809. //const int ne03 = src0->ne[3];
  5810. const int ne10 = src1->ne[0];
  5811. const int ne11 = src1->ne[1];
  5812. //const int ne12 = src1->ne[2];
  5813. //const int ne13 = src1->ne[3];
  5814. //const int ne0 = dst->ne[0];
  5815. //const int ne1 = dst->ne[1];
  5816. //const int ne2 = dst->ne[2];
  5817. //const int ne3 = dst->ne[3];
  5818. //const int ne = ne0*ne1*ne2*ne3;
  5819. const int nb00 = src0->nb[0];
  5820. const int nb01 = src0->nb[1];
  5821. const int nb02 = src0->nb[2];
  5822. //const int nb03 = src0->nb[3];
  5823. const int nb10 = src1->nb[0];
  5824. const int nb11 = src1->nb[1];
  5825. //const int nb12 = src1->nb[2];
  5826. //const int nb13 = src1->nb[3];
  5827. //const int nb0 = dst->nb[0];
  5828. const int nb1 = dst->nb[1];
  5829. //const int nb2 = dst->nb[2];
  5830. //const int nb3 = dst->nb[3];
  5831. const int ith = params->ith;
  5832. const int nth = params->nth;
  5833. const int nk = ne00;
  5834. const int nh = nk/2;
  5835. const int ew0 = ggml_up32(ne01);
  5836. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5837. GGML_ASSERT(nb00 == sizeof(float));
  5838. GGML_ASSERT(nb10 == sizeof(float));
  5839. if (params->type == GGML_TASK_INIT) {
  5840. // TODO: fix this memset (wsize is overestimated)
  5841. memset(params->wdata, 0, params->wsize);
  5842. // prepare kernel data (src0)
  5843. {
  5844. float * const wdata = (float *) params->wdata + 0;
  5845. for (int i02 = 0; i02 < ne02; i02++) {
  5846. for (int i01 = 0; i01 < ne01; i01++) {
  5847. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5848. float * dst_data = wdata + i02*ew0*ne00;
  5849. for (int i00 = 0; i00 < ne00; i00++) {
  5850. dst_data[i00*ew0 + i01] = src[i00];
  5851. }
  5852. }
  5853. }
  5854. }
  5855. // prepare source data (src1)
  5856. {
  5857. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5858. for (int i11 = 0; i11 < ne11; i11++) {
  5859. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5860. float * dst_data = wdata;
  5861. for (int i10 = 0; i10 < ne10; i10++) {
  5862. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5863. }
  5864. }
  5865. }
  5866. return;
  5867. }
  5868. if (params->type == GGML_TASK_FINALIZE) {
  5869. return;
  5870. }
  5871. // total rows in dst
  5872. const int nr = ne02;
  5873. // rows per thread
  5874. const int dr = (nr + nth - 1)/nth;
  5875. // row range for this thread
  5876. const int ir0 = dr*ith;
  5877. const int ir1 = MIN(ir0 + dr, nr);
  5878. for (int i1 = ir0; i1 < ir1; i1++) {
  5879. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5880. for (int i0 = 0; i0 < ne10; ++i0) {
  5881. dst_data[i0] = 0;
  5882. for (int k = -nh; k <= nh; k++) {
  5883. float v = 0.0f;
  5884. ggml_vec_dot_f32(ew0, &v,
  5885. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5886. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5887. dst_data[i0] += v;
  5888. }
  5889. }
  5890. }
  5891. }
  5892. static void ggml_compute_forward_conv_1d_1s(
  5893. const struct ggml_compute_params * params,
  5894. const struct ggml_tensor * src0,
  5895. const struct ggml_tensor * src1,
  5896. struct ggml_tensor * dst) {
  5897. switch (src0->type) {
  5898. case GGML_TYPE_F16:
  5899. {
  5900. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5901. } break;
  5902. case GGML_TYPE_F32:
  5903. {
  5904. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5905. } break;
  5906. case GGML_TYPE_Q4_0:
  5907. case GGML_TYPE_Q4_1:
  5908. case GGML_TYPE_I8:
  5909. case GGML_TYPE_I16:
  5910. case GGML_TYPE_I32:
  5911. case GGML_TYPE_COUNT:
  5912. {
  5913. GGML_ASSERT(false);
  5914. } break;
  5915. }
  5916. }
  5917. // ggml_compute_forward_conv_1d_2s
  5918. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5919. const struct ggml_compute_params * params,
  5920. const struct ggml_tensor * src0,
  5921. const struct ggml_tensor * src1,
  5922. struct ggml_tensor * dst) {
  5923. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5924. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5925. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5926. int64_t t0 = ggml_perf_time_us();
  5927. UNUSED(t0);
  5928. const int ne00 = src0->ne[0];
  5929. const int ne01 = src0->ne[1];
  5930. const int ne02 = src0->ne[2];
  5931. //const int ne03 = src0->ne[3];
  5932. const int ne10 = src1->ne[0];
  5933. const int ne11 = src1->ne[1];
  5934. //const int ne12 = src1->ne[2];
  5935. //const int ne13 = src1->ne[3];
  5936. //const int ne0 = dst->ne[0];
  5937. //const int ne1 = dst->ne[1];
  5938. //const int ne2 = dst->ne[2];
  5939. //const int ne3 = dst->ne[3];
  5940. //const int ne = ne0*ne1*ne2*ne3;
  5941. const int nb00 = src0->nb[0];
  5942. const int nb01 = src0->nb[1];
  5943. const int nb02 = src0->nb[2];
  5944. //const int nb03 = src0->nb[3];
  5945. const int nb10 = src1->nb[0];
  5946. const int nb11 = src1->nb[1];
  5947. //const int nb12 = src1->nb[2];
  5948. //const int nb13 = src1->nb[3];
  5949. //const int nb0 = dst->nb[0];
  5950. const int nb1 = dst->nb[1];
  5951. //const int nb2 = dst->nb[2];
  5952. //const int nb3 = dst->nb[3];
  5953. const int ith = params->ith;
  5954. const int nth = params->nth;
  5955. const int nk = ne00;
  5956. const int nh = nk/2;
  5957. const int ew0 = ggml_up32(ne01);
  5958. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5959. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5960. GGML_ASSERT(nb10 == sizeof(float));
  5961. if (params->type == GGML_TASK_INIT) {
  5962. // TODO: fix this memset (wsize is overestimated)
  5963. memset(params->wdata, 0, params->wsize);
  5964. // prepare kernel data (src0)
  5965. {
  5966. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5967. for (int i02 = 0; i02 < ne02; i02++) {
  5968. for (int i01 = 0; i01 < ne01; i01++) {
  5969. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5970. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5971. for (int i00 = 0; i00 < ne00; i00++) {
  5972. dst_data[i00*ew0 + i01] = src[i00];
  5973. }
  5974. }
  5975. }
  5976. }
  5977. // prepare source data (src1)
  5978. {
  5979. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5980. for (int i11 = 0; i11 < ne11; i11++) {
  5981. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5982. ggml_fp16_t * dst_data = wdata;
  5983. for (int i10 = 0; i10 < ne10; i10++) {
  5984. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5985. }
  5986. }
  5987. }
  5988. return;
  5989. }
  5990. if (params->type == GGML_TASK_FINALIZE) {
  5991. return;
  5992. }
  5993. // total rows in dst
  5994. const int nr = ne02;
  5995. // rows per thread
  5996. const int dr = (nr + nth - 1)/nth;
  5997. // row range for this thread
  5998. const int ir0 = dr*ith;
  5999. const int ir1 = MIN(ir0 + dr, nr);
  6000. for (int i1 = ir0; i1 < ir1; i1++) {
  6001. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6002. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6003. dst_data[i0/2] = 0;
  6004. for (int k = -nh; k <= nh; k++) {
  6005. float v = 0.0f;
  6006. ggml_vec_dot_f16(ew0, &v,
  6007. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6008. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6009. dst_data[i0/2] += v;
  6010. }
  6011. }
  6012. }
  6013. }
  6014. static void ggml_compute_forward_conv_1d_2s_f32(
  6015. const struct ggml_compute_params * params,
  6016. const struct ggml_tensor * src0,
  6017. const struct ggml_tensor * src1,
  6018. struct ggml_tensor * dst) {
  6019. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6020. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6021. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6022. int64_t t0 = ggml_perf_time_us();
  6023. UNUSED(t0);
  6024. const int ne00 = src0->ne[0];
  6025. const int ne01 = src0->ne[1];
  6026. const int ne02 = src0->ne[2];
  6027. //const int ne03 = src0->ne[3];
  6028. const int ne10 = src1->ne[0];
  6029. const int ne11 = src1->ne[1];
  6030. //const int ne12 = src1->ne[2];
  6031. //const int ne13 = src1->ne[3];
  6032. //const int ne0 = dst->ne[0];
  6033. //const int ne1 = dst->ne[1];
  6034. //const int ne2 = dst->ne[2];
  6035. //const int ne3 = dst->ne[3];
  6036. //const int ne = ne0*ne1*ne2*ne3;
  6037. const int nb00 = src0->nb[0];
  6038. const int nb01 = src0->nb[1];
  6039. const int nb02 = src0->nb[2];
  6040. //const int nb03 = src0->nb[3];
  6041. const int nb10 = src1->nb[0];
  6042. const int nb11 = src1->nb[1];
  6043. //const int nb12 = src1->nb[2];
  6044. //const int nb13 = src1->nb[3];
  6045. //const int nb0 = dst->nb[0];
  6046. const int nb1 = dst->nb[1];
  6047. //const int nb2 = dst->nb[2];
  6048. //const int nb3 = dst->nb[3];
  6049. const int ith = params->ith;
  6050. const int nth = params->nth;
  6051. const int nk = ne00;
  6052. const int nh = nk/2;
  6053. const int ew0 = ggml_up32(ne01);
  6054. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6055. GGML_ASSERT(nb00 == sizeof(float));
  6056. GGML_ASSERT(nb10 == sizeof(float));
  6057. if (params->type == GGML_TASK_INIT) {
  6058. // TODO: fix this memset (wsize is overestimated)
  6059. memset(params->wdata, 0, params->wsize);
  6060. // prepare kernel data (src0)
  6061. {
  6062. float * const wdata = (float *) params->wdata + 0;
  6063. for (int i02 = 0; i02 < ne02; i02++) {
  6064. for (int i01 = 0; i01 < ne01; i01++) {
  6065. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6066. float * dst_data = wdata + i02*ew0*ne00;
  6067. for (int i00 = 0; i00 < ne00; i00++) {
  6068. dst_data[i00*ew0 + i01] = src[i00];
  6069. }
  6070. }
  6071. }
  6072. }
  6073. // prepare source data (src1)
  6074. {
  6075. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6076. for (int i11 = 0; i11 < ne11; i11++) {
  6077. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6078. float * dst_data = wdata;
  6079. for (int i10 = 0; i10 < ne10; i10++) {
  6080. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6081. }
  6082. }
  6083. }
  6084. return;
  6085. }
  6086. if (params->type == GGML_TASK_FINALIZE) {
  6087. return;
  6088. }
  6089. // total rows in dst
  6090. const int nr = ne02;
  6091. // rows per thread
  6092. const int dr = (nr + nth - 1)/nth;
  6093. // row range for this thread
  6094. const int ir0 = dr*ith;
  6095. const int ir1 = MIN(ir0 + dr, nr);
  6096. for (int i1 = ir0; i1 < ir1; i1++) {
  6097. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6098. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6099. dst_data[i0/2] = 0;
  6100. for (int k = -nh; k <= nh; k++) {
  6101. float v = 0.0f;
  6102. ggml_vec_dot_f32(ew0, &v,
  6103. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6104. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6105. dst_data[i0/2] += v;
  6106. }
  6107. }
  6108. }
  6109. }
  6110. static void ggml_compute_forward_conv_1d_2s(
  6111. const struct ggml_compute_params * params,
  6112. const struct ggml_tensor * src0,
  6113. const struct ggml_tensor * src1,
  6114. struct ggml_tensor * dst) {
  6115. switch (src0->type) {
  6116. case GGML_TYPE_F16:
  6117. {
  6118. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6119. } break;
  6120. case GGML_TYPE_F32:
  6121. {
  6122. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6123. } break;
  6124. case GGML_TYPE_Q4_0:
  6125. case GGML_TYPE_Q4_1:
  6126. case GGML_TYPE_I8:
  6127. case GGML_TYPE_I16:
  6128. case GGML_TYPE_I32:
  6129. case GGML_TYPE_COUNT:
  6130. {
  6131. GGML_ASSERT(false);
  6132. } break;
  6133. }
  6134. }
  6135. // ggml_compute_forward_flash_attn
  6136. static void ggml_compute_forward_flash_attn_f32(
  6137. const struct ggml_compute_params * params,
  6138. const struct ggml_tensor * q,
  6139. const struct ggml_tensor * k,
  6140. const struct ggml_tensor * v,
  6141. const bool masked,
  6142. struct ggml_tensor * dst) {
  6143. int64_t t0 = ggml_perf_time_us();
  6144. UNUSED(t0);
  6145. const int neq0 = q->ne[0];
  6146. const int neq1 = q->ne[1];
  6147. const int neq2 = q->ne[2];
  6148. const int neq3 = q->ne[3];
  6149. const int nek0 = k->ne[0];
  6150. const int nek1 = k->ne[1];
  6151. //const int nek2 = k->ne[2];
  6152. //const int nek3 = k->ne[3];
  6153. //const int nev0 = v->ne[0];
  6154. const int nev1 = v->ne[1];
  6155. //const int nev2 = v->ne[2];
  6156. //const int nev3 = v->ne[3];
  6157. const int ne0 = dst->ne[0];
  6158. const int ne1 = dst->ne[1];
  6159. //const int ne2 = dst->ne[2];
  6160. //const int ne3 = dst->ne[3];
  6161. const int nbk0 = k->nb[0];
  6162. const int nbk1 = k->nb[1];
  6163. const int nbk2 = k->nb[2];
  6164. const int nbk3 = k->nb[3];
  6165. const int nbq0 = q->nb[0];
  6166. const int nbq1 = q->nb[1];
  6167. const int nbq2 = q->nb[2];
  6168. const int nbq3 = q->nb[3];
  6169. const int nbv0 = v->nb[0];
  6170. const int nbv1 = v->nb[1];
  6171. const int nbv2 = v->nb[2];
  6172. const int nbv3 = v->nb[3];
  6173. const int nb0 = dst->nb[0];
  6174. const int nb1 = dst->nb[1];
  6175. const int nb2 = dst->nb[2];
  6176. const int nb3 = dst->nb[3];
  6177. const int ith = params->ith;
  6178. const int nth = params->nth;
  6179. const int D = neq0;
  6180. const int N = neq1;
  6181. const int P = nek1 - N;
  6182. const int M = P + N;
  6183. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6184. GGML_ASSERT(ne0 == D);
  6185. GGML_ASSERT(ne1 == N);
  6186. GGML_ASSERT(P >= 0);
  6187. GGML_ASSERT(nbq0 == sizeof(float));
  6188. GGML_ASSERT(nbk0 == sizeof(float));
  6189. GGML_ASSERT(nbv0 == sizeof(float));
  6190. GGML_ASSERT(neq0 == D);
  6191. GGML_ASSERT(nek0 == D);
  6192. GGML_ASSERT(nev1 == D);
  6193. GGML_ASSERT(neq1 == N);
  6194. GGML_ASSERT(nek1 == N + P);
  6195. GGML_ASSERT(nev1 == D);
  6196. // dst cannot be transposed or permuted
  6197. GGML_ASSERT(nb0 == sizeof(float));
  6198. GGML_ASSERT(nb0 <= nb1);
  6199. GGML_ASSERT(nb1 <= nb2);
  6200. GGML_ASSERT(nb2 <= nb3);
  6201. if (params->type == GGML_TASK_INIT) {
  6202. return;
  6203. }
  6204. if (params->type == GGML_TASK_FINALIZE) {
  6205. return;
  6206. }
  6207. // parallelize by q rows using ggml_vec_dot_f32
  6208. // total rows in q
  6209. const int nr = neq1*neq2*neq3;
  6210. // rows per thread
  6211. const int dr = (nr + nth - 1)/nth;
  6212. // row range for this thread
  6213. const int ir0 = dr*ith;
  6214. const int ir1 = MIN(ir0 + dr, nr);
  6215. const float scale = 1.0f/sqrtf(D);
  6216. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6217. for (int ir = ir0; ir < ir1; ++ir) {
  6218. // q indices
  6219. const int iq3 = ir/(neq2*neq1);
  6220. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6221. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6222. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6223. for (int i = M; i < Mup; ++i) {
  6224. S[i] = -INFINITY;
  6225. }
  6226. for (int ic = 0; ic < nek1; ++ic) {
  6227. // k indices
  6228. const int ik3 = iq3;
  6229. const int ik2 = iq2;
  6230. const int ik1 = ic;
  6231. // S indices
  6232. const int i1 = ik1;
  6233. ggml_vec_dot_f32(neq0,
  6234. S + i1,
  6235. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6236. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6237. }
  6238. // scale
  6239. ggml_vec_scale_f32(nek1, S, scale);
  6240. if (masked) {
  6241. for (int i = P; i < M; i++) {
  6242. if (i > P + iq1) {
  6243. S[i] = -INFINITY;
  6244. }
  6245. }
  6246. }
  6247. // softmax
  6248. {
  6249. float max = -INFINITY;
  6250. ggml_vec_max_f32(M, &max, S);
  6251. ggml_float sum = 0.0;
  6252. {
  6253. #ifdef GGML_SOFT_MAX_ACCELERATE
  6254. max = -max;
  6255. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6256. vvexpf(S, S, &Mup);
  6257. ggml_vec_sum_f32(Mup, &sum, S);
  6258. #else
  6259. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6260. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6261. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6262. float * SS = S + i;
  6263. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6264. if (SS[j] == -INFINITY) {
  6265. SS[j] = 0.0f;
  6266. } else {
  6267. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6268. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6269. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6270. sump[j] += (ggml_float)val;
  6271. SS[j] = val;
  6272. }
  6273. }
  6274. }
  6275. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6276. sum += sump[i];
  6277. }
  6278. #endif
  6279. }
  6280. assert(sum > 0.0);
  6281. sum = 1.0/sum;
  6282. ggml_vec_scale_f32(M, S, sum);
  6283. #ifndef NDEBUG
  6284. for (int i = 0; i < M; ++i) {
  6285. assert(!isnan(S[i]));
  6286. assert(!isinf(S[i]));
  6287. }
  6288. #endif
  6289. }
  6290. for (int ic = 0; ic < nev1; ++ic) {
  6291. // dst indices
  6292. const int i1 = iq1;
  6293. const int i2 = iq2;
  6294. const int i3 = iq3;
  6295. ggml_vec_dot_f32(nek1,
  6296. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6297. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6298. S);
  6299. }
  6300. }
  6301. }
  6302. static void ggml_compute_forward_flash_attn_f16(
  6303. const struct ggml_compute_params * params,
  6304. const struct ggml_tensor * q,
  6305. const struct ggml_tensor * k,
  6306. const struct ggml_tensor * v,
  6307. const bool masked,
  6308. struct ggml_tensor * dst) {
  6309. int64_t t0 = ggml_perf_time_us();
  6310. UNUSED(t0);
  6311. const int neq0 = q->ne[0];
  6312. const int neq1 = q->ne[1];
  6313. const int neq2 = q->ne[2];
  6314. const int neq3 = q->ne[3];
  6315. const int nek0 = k->ne[0];
  6316. const int nek1 = k->ne[1];
  6317. //const int nek2 = k->ne[2];
  6318. //const int nek3 = k->ne[3];
  6319. //const int nev0 = v->ne[0];
  6320. const int nev1 = v->ne[1];
  6321. //const int nev2 = v->ne[2];
  6322. //const int nev3 = v->ne[3];
  6323. const int ne0 = dst->ne[0];
  6324. const int ne1 = dst->ne[1];
  6325. //const int ne2 = dst->ne[2];
  6326. //const int ne3 = dst->ne[3];
  6327. const int nbk0 = k->nb[0];
  6328. const int nbk1 = k->nb[1];
  6329. const int nbk2 = k->nb[2];
  6330. const int nbk3 = k->nb[3];
  6331. const int nbq0 = q->nb[0];
  6332. const int nbq1 = q->nb[1];
  6333. const int nbq2 = q->nb[2];
  6334. const int nbq3 = q->nb[3];
  6335. const int nbv0 = v->nb[0];
  6336. const int nbv1 = v->nb[1];
  6337. const int nbv2 = v->nb[2];
  6338. const int nbv3 = v->nb[3];
  6339. const int nb0 = dst->nb[0];
  6340. const int nb1 = dst->nb[1];
  6341. const int nb2 = dst->nb[2];
  6342. const int nb3 = dst->nb[3];
  6343. const int ith = params->ith;
  6344. const int nth = params->nth;
  6345. const int D = neq0;
  6346. const int N = neq1;
  6347. const int P = nek1 - N;
  6348. const int M = P + N;
  6349. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6350. GGML_ASSERT(ne0 == D);
  6351. GGML_ASSERT(ne1 == N);
  6352. GGML_ASSERT(P >= 0);
  6353. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6354. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6355. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6356. GGML_ASSERT(neq0 == D);
  6357. GGML_ASSERT(nek0 == D);
  6358. GGML_ASSERT(nev1 == D);
  6359. GGML_ASSERT(neq1 == N);
  6360. GGML_ASSERT(nek1 == N + P);
  6361. GGML_ASSERT(nev1 == D);
  6362. // dst cannot be transposed or permuted
  6363. GGML_ASSERT(nb0 == sizeof(float));
  6364. GGML_ASSERT(nb0 <= nb1);
  6365. GGML_ASSERT(nb1 <= nb2);
  6366. GGML_ASSERT(nb2 <= nb3);
  6367. if (params->type == GGML_TASK_INIT) {
  6368. return;
  6369. }
  6370. if (params->type == GGML_TASK_FINALIZE) {
  6371. return;
  6372. }
  6373. // parallelize by q rows using ggml_vec_dot_f32
  6374. // total rows in q
  6375. const int nr = neq1*neq2*neq3;
  6376. // rows per thread
  6377. const int dr = (nr + nth - 1)/nth;
  6378. // row range for this thread
  6379. const int ir0 = dr*ith;
  6380. const int ir1 = MIN(ir0 + dr, nr);
  6381. const float scale = 1.0f/sqrtf(D);
  6382. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6383. for (int ir = ir0; ir < ir1; ++ir) {
  6384. // q indices
  6385. const int iq3 = ir/(neq2*neq1);
  6386. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6387. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6388. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6389. for (int i = M; i < Mup; ++i) {
  6390. S[i] = -INFINITY;
  6391. }
  6392. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6393. for (int ic = 0; ic < nek1; ++ic) {
  6394. // k indices
  6395. const int ik3 = iq3;
  6396. const int ik2 = iq2;
  6397. const int ik1 = ic;
  6398. // S indices
  6399. const int i1 = ik1;
  6400. ggml_vec_dot_f16(neq0,
  6401. S + i1,
  6402. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6403. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6404. }
  6405. } else {
  6406. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6407. // k indices
  6408. const int ik3 = iq3;
  6409. const int ik2 = iq2;
  6410. const int ik1 = ic;
  6411. // S indices
  6412. const int i1 = ik1;
  6413. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6414. S + i1,
  6415. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6416. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6417. }
  6418. }
  6419. // scale
  6420. ggml_vec_scale_f32(nek1, S, scale);
  6421. if (masked) {
  6422. for (int i = P; i < M; i++) {
  6423. if (i > P + iq1) {
  6424. S[i] = -INFINITY;
  6425. }
  6426. }
  6427. }
  6428. // softmax
  6429. {
  6430. float max = -INFINITY;
  6431. ggml_vec_max_f32(M, &max, S);
  6432. ggml_float sum = 0.0;
  6433. {
  6434. #ifdef GGML_SOFT_MAX_ACCELERATE
  6435. max = -max;
  6436. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6437. vvexpf(S, S, &Mup);
  6438. ggml_vec_sum_f32(Mup, &sum, S);
  6439. #else
  6440. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6441. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6442. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6443. float * SS = S + i;
  6444. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6445. if (SS[j] == -INFINITY) {
  6446. SS[j] = 0.0f;
  6447. } else {
  6448. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6449. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6450. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6451. sump[j] += (ggml_float)val;
  6452. SS[j] = val;
  6453. }
  6454. }
  6455. }
  6456. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6457. sum += sump[i];
  6458. }
  6459. #endif
  6460. }
  6461. assert(sum > 0.0);
  6462. sum = 1.0/sum;
  6463. ggml_vec_scale_f32(M, S, sum);
  6464. #ifndef NDEBUG
  6465. for (int i = 0; i < M; ++i) {
  6466. assert(!isnan(S[i]));
  6467. assert(!isinf(S[i]));
  6468. }
  6469. #endif
  6470. }
  6471. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6472. for (int i = 0; i < M; i++) {
  6473. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6474. }
  6475. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6476. for (int ic = 0; ic < nev1; ++ic) {
  6477. // dst indices
  6478. const int i1 = iq1;
  6479. const int i2 = iq2;
  6480. const int i3 = iq3;
  6481. ggml_vec_dot_f16(nek1,
  6482. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6483. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6484. S16);
  6485. }
  6486. } else {
  6487. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6488. // dst indices
  6489. const int i1 = iq1;
  6490. const int i2 = iq2;
  6491. const int i3 = iq3;
  6492. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6493. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6494. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6495. S16);
  6496. }
  6497. }
  6498. }
  6499. }
  6500. static void ggml_compute_forward_flash_attn(
  6501. const struct ggml_compute_params * params,
  6502. const struct ggml_tensor * q,
  6503. const struct ggml_tensor * k,
  6504. const struct ggml_tensor * v,
  6505. const bool masked,
  6506. struct ggml_tensor * dst) {
  6507. switch (q->type) {
  6508. case GGML_TYPE_F16:
  6509. {
  6510. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6511. } break;
  6512. case GGML_TYPE_F32:
  6513. {
  6514. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6515. } break;
  6516. case GGML_TYPE_Q4_0:
  6517. case GGML_TYPE_Q4_1:
  6518. case GGML_TYPE_I8:
  6519. case GGML_TYPE_I16:
  6520. case GGML_TYPE_I32:
  6521. case GGML_TYPE_COUNT:
  6522. {
  6523. GGML_ASSERT(false);
  6524. } break;
  6525. }
  6526. }
  6527. // ggml_compute_forward_flash_ff
  6528. static void ggml_compute_forward_flash_ff_f16(
  6529. const struct ggml_compute_params * params,
  6530. const struct ggml_tensor * a, // F16
  6531. const struct ggml_tensor * b0, // F16 fc_w
  6532. const struct ggml_tensor * b1, // F32 fc_b
  6533. const struct ggml_tensor * c0, // F16 proj_w
  6534. const struct ggml_tensor * c1, // F32 proj_b
  6535. struct ggml_tensor * dst) {
  6536. int64_t t0 = ggml_perf_time_us();
  6537. UNUSED(t0);
  6538. const int nea0 = a->ne[0];
  6539. const int nea1 = a->ne[1];
  6540. const int nea2 = a->ne[2];
  6541. const int nea3 = a->ne[3];
  6542. const int neb00 = b0->ne[0];
  6543. const int neb01 = b0->ne[1];
  6544. //const int neb02 = b0->ne[2];
  6545. //const int neb03 = b0->ne[3];
  6546. const int neb10 = b1->ne[0];
  6547. const int neb11 = b1->ne[1];
  6548. //const int neb12 = b1->ne[2];
  6549. //const int neb13 = b1->ne[3];
  6550. const int nec00 = c0->ne[0];
  6551. const int nec01 = c0->ne[1];
  6552. //const int nec02 = c0->ne[2];
  6553. //const int nec03 = c0->ne[3];
  6554. const int nec10 = c1->ne[0];
  6555. const int nec11 = c1->ne[1];
  6556. //const int nec12 = c1->ne[2];
  6557. //const int nec13 = c1->ne[3];
  6558. const int ne0 = dst->ne[0];
  6559. const int ne1 = dst->ne[1];
  6560. const int ne2 = dst->ne[2];
  6561. //const int ne3 = dst->ne[3];
  6562. const int nba0 = a->nb[0];
  6563. const int nba1 = a->nb[1];
  6564. const int nba2 = a->nb[2];
  6565. const int nba3 = a->nb[3];
  6566. const int nbb00 = b0->nb[0];
  6567. const int nbb01 = b0->nb[1];
  6568. const int nbb02 = b0->nb[2];
  6569. const int nbb03 = b0->nb[3];
  6570. const int nbb10 = b1->nb[0];
  6571. //const int nbb11 = b1->nb[1];
  6572. //const int nbb12 = b1->nb[2];
  6573. //const int nbb13 = b1->nb[3];
  6574. const int nbc00 = c0->nb[0];
  6575. const int nbc01 = c0->nb[1];
  6576. const int nbc02 = c0->nb[2];
  6577. const int nbc03 = c0->nb[3];
  6578. const int nbc10 = c1->nb[0];
  6579. //const int nbc11 = c1->nb[1];
  6580. //const int nbc12 = c1->nb[2];
  6581. //const int nbc13 = c1->nb[3];
  6582. const int nb0 = dst->nb[0];
  6583. const int nb1 = dst->nb[1];
  6584. const int nb2 = dst->nb[2];
  6585. const int nb3 = dst->nb[3];
  6586. const int ith = params->ith;
  6587. const int nth = params->nth;
  6588. const int D = nea0;
  6589. //const int N = nea1;
  6590. const int M = neb01;
  6591. GGML_ASSERT(ne0 == nea0);
  6592. GGML_ASSERT(ne1 == nea1);
  6593. GGML_ASSERT(ne2 == nea2);
  6594. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6595. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6596. GGML_ASSERT(nbb10 == sizeof(float));
  6597. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6598. GGML_ASSERT(nbc10 == sizeof(float));
  6599. GGML_ASSERT(neb00 == D);
  6600. GGML_ASSERT(neb01 == M);
  6601. GGML_ASSERT(neb10 == M);
  6602. GGML_ASSERT(neb11 == 1);
  6603. GGML_ASSERT(nec00 == M);
  6604. GGML_ASSERT(nec01 == D);
  6605. GGML_ASSERT(nec10 == D);
  6606. GGML_ASSERT(nec11 == 1);
  6607. // dst cannot be transposed or permuted
  6608. GGML_ASSERT(nb0 == sizeof(float));
  6609. GGML_ASSERT(nb0 <= nb1);
  6610. GGML_ASSERT(nb1 <= nb2);
  6611. GGML_ASSERT(nb2 <= nb3);
  6612. if (params->type == GGML_TASK_INIT) {
  6613. return;
  6614. }
  6615. if (params->type == GGML_TASK_FINALIZE) {
  6616. return;
  6617. }
  6618. // parallelize by a rows using ggml_vec_dot_f32
  6619. // total rows in a
  6620. const int nr = nea1*nea2*nea3;
  6621. // rows per thread
  6622. const int dr = (nr + nth - 1)/nth;
  6623. // row range for this thread
  6624. const int ir0 = dr*ith;
  6625. const int ir1 = MIN(ir0 + dr, nr);
  6626. for (int ir = ir0; ir < ir1; ++ir) {
  6627. // a indices
  6628. const int ia3 = ir/(nea2*nea1);
  6629. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6630. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6631. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6632. for (int ic = 0; ic < neb01; ++ic) {
  6633. // b0 indices
  6634. const int ib03 = ia3;
  6635. const int ib02 = ia2;
  6636. const int ib01 = ic;
  6637. // S indices
  6638. const int i1 = ib01;
  6639. ggml_vec_dot_f16(nea0,
  6640. S + i1,
  6641. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6642. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6643. }
  6644. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6645. //ggml_vec_gelu_f32(neb01, S, S);
  6646. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6647. for (int i = 0; i < M; i++) {
  6648. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6649. }
  6650. ggml_vec_gelu_f16(neb01, S16, S16);
  6651. {
  6652. // dst indices
  6653. const int i1 = ia1;
  6654. const int i2 = ia2;
  6655. const int i3 = ia3;
  6656. for (int ic = 0; ic < nec01; ++ic) {
  6657. ggml_vec_dot_f16(neb01,
  6658. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6659. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6660. S16);
  6661. }
  6662. ggml_vec_add_f32(nec01,
  6663. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6664. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6665. (float *) c1->data);
  6666. }
  6667. }
  6668. }
  6669. static void ggml_compute_forward_flash_ff(
  6670. const struct ggml_compute_params * params,
  6671. const struct ggml_tensor * a,
  6672. const struct ggml_tensor * b0,
  6673. const struct ggml_tensor * b1,
  6674. const struct ggml_tensor * c0,
  6675. const struct ggml_tensor * c1,
  6676. struct ggml_tensor * dst) {
  6677. switch (b0->type) {
  6678. case GGML_TYPE_F16:
  6679. {
  6680. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6681. } break;
  6682. case GGML_TYPE_F32:
  6683. {
  6684. GGML_ASSERT(false); // TODO
  6685. } break;
  6686. case GGML_TYPE_Q4_0:
  6687. case GGML_TYPE_Q4_1:
  6688. case GGML_TYPE_I8:
  6689. case GGML_TYPE_I16:
  6690. case GGML_TYPE_I32:
  6691. case GGML_TYPE_COUNT:
  6692. {
  6693. GGML_ASSERT(false);
  6694. } break;
  6695. }
  6696. }
  6697. /////////////////////////////////
  6698. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6699. GGML_ASSERT(params);
  6700. switch (tensor->op) {
  6701. case GGML_OP_DUP:
  6702. {
  6703. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6704. } break;
  6705. case GGML_OP_ADD:
  6706. {
  6707. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6708. } break;
  6709. case GGML_OP_SUB:
  6710. {
  6711. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6712. } break;
  6713. case GGML_OP_MUL:
  6714. {
  6715. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6716. } break;
  6717. case GGML_OP_DIV:
  6718. {
  6719. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6720. } break;
  6721. case GGML_OP_SQR:
  6722. {
  6723. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6724. } break;
  6725. case GGML_OP_SQRT:
  6726. {
  6727. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6728. } break;
  6729. case GGML_OP_SUM:
  6730. {
  6731. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6732. } break;
  6733. case GGML_OP_MEAN:
  6734. {
  6735. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6736. } break;
  6737. case GGML_OP_REPEAT:
  6738. {
  6739. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6740. } break;
  6741. case GGML_OP_ABS:
  6742. {
  6743. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6744. } break;
  6745. case GGML_OP_SGN:
  6746. {
  6747. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6748. } break;
  6749. case GGML_OP_NEG:
  6750. {
  6751. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6752. } break;
  6753. case GGML_OP_STEP:
  6754. {
  6755. ggml_compute_forward_step(params, tensor->src0, tensor);
  6756. } break;
  6757. case GGML_OP_RELU:
  6758. {
  6759. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6760. } break;
  6761. case GGML_OP_GELU:
  6762. {
  6763. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6764. } break;
  6765. case GGML_OP_SILU:
  6766. {
  6767. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6768. } break;
  6769. case GGML_OP_NORM:
  6770. {
  6771. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6772. } break;
  6773. case GGML_OP_RMS_NORM:
  6774. {
  6775. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6776. } break;
  6777. case GGML_OP_MUL_MAT:
  6778. {
  6779. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6780. } break;
  6781. case GGML_OP_SCALE:
  6782. {
  6783. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6784. } break;
  6785. case GGML_OP_CPY:
  6786. {
  6787. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6788. } break;
  6789. case GGML_OP_RESHAPE:
  6790. {
  6791. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6792. } break;
  6793. case GGML_OP_VIEW:
  6794. {
  6795. ggml_compute_forward_view(params, tensor->src0);
  6796. } break;
  6797. case GGML_OP_PERMUTE:
  6798. {
  6799. ggml_compute_forward_permute(params, tensor->src0);
  6800. } break;
  6801. case GGML_OP_TRANSPOSE:
  6802. {
  6803. ggml_compute_forward_transpose(params, tensor->src0);
  6804. } break;
  6805. case GGML_OP_GET_ROWS:
  6806. {
  6807. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6808. } break;
  6809. case GGML_OP_DIAG_MASK_INF:
  6810. {
  6811. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6812. } break;
  6813. case GGML_OP_SOFT_MAX:
  6814. {
  6815. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6816. } break;
  6817. case GGML_OP_ROPE:
  6818. {
  6819. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6820. } break;
  6821. case GGML_OP_CONV_1D_1S:
  6822. {
  6823. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6824. } break;
  6825. case GGML_OP_CONV_1D_2S:
  6826. {
  6827. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6828. } break;
  6829. case GGML_OP_FLASH_ATTN:
  6830. {
  6831. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6832. GGML_ASSERT(t == 0 || t == 1);
  6833. bool masked = t != 0;
  6834. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6835. } break;
  6836. case GGML_OP_FLASH_FF:
  6837. {
  6838. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6839. } break;
  6840. case GGML_OP_NONE:
  6841. {
  6842. // nop
  6843. } break;
  6844. case GGML_OP_COUNT:
  6845. {
  6846. GGML_ASSERT(false);
  6847. } break;
  6848. }
  6849. }
  6850. ////////////////////////////////////////////////////////////////////////////////
  6851. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6852. struct ggml_tensor * src0 = tensor->src0;
  6853. struct ggml_tensor * src1 = tensor->src1;
  6854. switch (tensor->op) {
  6855. case GGML_OP_DUP:
  6856. {
  6857. if (src0->grad) {
  6858. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6859. }
  6860. } break;
  6861. case GGML_OP_ADD:
  6862. {
  6863. if (src0->grad) {
  6864. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6865. }
  6866. if (src1->grad) {
  6867. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6868. }
  6869. } break;
  6870. case GGML_OP_SUB:
  6871. {
  6872. if (src0->grad) {
  6873. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6874. }
  6875. if (src1->grad) {
  6876. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6877. }
  6878. } break;
  6879. case GGML_OP_MUL:
  6880. {
  6881. if (src0->grad) {
  6882. src0->grad =
  6883. ggml_add_impl(ctx,
  6884. src0->grad,
  6885. ggml_mul(ctx, src1, tensor->grad),
  6886. inplace);
  6887. }
  6888. if (src1->grad) {
  6889. src1->grad =
  6890. ggml_add_impl(ctx,
  6891. src1->grad,
  6892. ggml_mul(ctx, src0, tensor->grad),
  6893. inplace);
  6894. }
  6895. } break;
  6896. case GGML_OP_DIV:
  6897. {
  6898. if (src0->grad) {
  6899. src0->grad =
  6900. ggml_add_impl(ctx,
  6901. src0->grad,
  6902. ggml_div(ctx, tensor->grad, src1),
  6903. inplace);
  6904. }
  6905. if (src1->grad) {
  6906. src1->grad =
  6907. ggml_sub_impl(ctx,
  6908. src1->grad,
  6909. ggml_mul(ctx,
  6910. tensor->grad,
  6911. ggml_div(ctx, tensor, src1)),
  6912. inplace);
  6913. }
  6914. } break;
  6915. case GGML_OP_SQR:
  6916. {
  6917. if (src0->grad) {
  6918. src0->grad =
  6919. ggml_add_impl(ctx,
  6920. src0->grad,
  6921. ggml_mul(ctx,
  6922. ggml_mul(ctx, src0, tensor->grad),
  6923. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  6924. inplace);
  6925. }
  6926. } break;
  6927. case GGML_OP_SQRT:
  6928. {
  6929. if (src0->grad) {
  6930. src0->grad =
  6931. ggml_add_impl(ctx,
  6932. src0->grad,
  6933. ggml_div(ctx,
  6934. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  6935. tensor),
  6936. inplace);
  6937. }
  6938. } break;
  6939. case GGML_OP_SUM:
  6940. {
  6941. if (src0->grad) {
  6942. src0->grad =
  6943. ggml_add_impl(ctx,
  6944. src0->grad,
  6945. ggml_repeat(ctx, tensor->grad, src0->grad),
  6946. inplace);
  6947. }
  6948. } break;
  6949. case GGML_OP_MEAN:
  6950. {
  6951. GGML_ASSERT(false); // TODO: implement
  6952. } break;
  6953. case GGML_OP_REPEAT:
  6954. {
  6955. if (src0->grad) {
  6956. src0->grad =
  6957. ggml_add_impl(ctx,
  6958. src0->grad,
  6959. ggml_sum(ctx, tensor->grad),
  6960. inplace);
  6961. }
  6962. } break;
  6963. case GGML_OP_ABS:
  6964. {
  6965. if (src0->grad) {
  6966. src0->grad =
  6967. ggml_add_impl(ctx,
  6968. src0->grad,
  6969. ggml_mul(ctx,
  6970. ggml_sgn(ctx, src0),
  6971. tensor->grad),
  6972. inplace);
  6973. }
  6974. } break;
  6975. case GGML_OP_SGN:
  6976. {
  6977. if (src0->grad) {
  6978. // noop
  6979. }
  6980. } break;
  6981. case GGML_OP_NEG:
  6982. {
  6983. if (src0->grad) {
  6984. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  6985. }
  6986. } break;
  6987. case GGML_OP_STEP:
  6988. {
  6989. if (src0->grad) {
  6990. // noop
  6991. }
  6992. } break;
  6993. case GGML_OP_RELU:
  6994. {
  6995. if (src0->grad) {
  6996. src0->grad = ggml_sub_impl(ctx,
  6997. src0->grad,
  6998. ggml_mul(ctx,
  6999. ggml_step(ctx, src0),
  7000. tensor->grad),
  7001. inplace);
  7002. }
  7003. } break;
  7004. case GGML_OP_GELU:
  7005. {
  7006. GGML_ASSERT(false); // TODO: not implemented
  7007. } break;
  7008. case GGML_OP_SILU:
  7009. {
  7010. GGML_ASSERT(false); // TODO: not implemented
  7011. } break;
  7012. case GGML_OP_NORM:
  7013. {
  7014. GGML_ASSERT(false); // TODO: not implemented
  7015. } break;
  7016. case GGML_OP_RMS_NORM:
  7017. {
  7018. GGML_ASSERT(false); // TODO: not implemented
  7019. } break;
  7020. case GGML_OP_MUL_MAT:
  7021. {
  7022. if (src0->grad) {
  7023. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7024. GGML_ASSERT(false);
  7025. }
  7026. if (src1->grad) {
  7027. src1->grad =
  7028. ggml_add_impl(ctx,
  7029. src1->grad,
  7030. // TODO: fix transpose, the node will break the graph connections
  7031. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7032. inplace);
  7033. }
  7034. } break;
  7035. case GGML_OP_SCALE:
  7036. {
  7037. GGML_ASSERT(false); // TODO: not implemented
  7038. } break;
  7039. case GGML_OP_CPY:
  7040. {
  7041. GGML_ASSERT(false); // TODO: not implemented
  7042. } break;
  7043. case GGML_OP_RESHAPE:
  7044. {
  7045. GGML_ASSERT(false); // TODO: not implemented
  7046. } break;
  7047. case GGML_OP_VIEW:
  7048. {
  7049. GGML_ASSERT(false); // not supported
  7050. } break;
  7051. case GGML_OP_PERMUTE:
  7052. {
  7053. GGML_ASSERT(false); // TODO: not implemented
  7054. } break;
  7055. case GGML_OP_TRANSPOSE:
  7056. {
  7057. GGML_ASSERT(false); // TODO: not implemented
  7058. } break;
  7059. case GGML_OP_GET_ROWS:
  7060. {
  7061. GGML_ASSERT(false); // TODO: not implemented
  7062. } break;
  7063. case GGML_OP_DIAG_MASK_INF:
  7064. {
  7065. GGML_ASSERT(false); // TODO: not implemented
  7066. } break;
  7067. case GGML_OP_SOFT_MAX:
  7068. {
  7069. GGML_ASSERT(false); // TODO: not implemented
  7070. } break;
  7071. case GGML_OP_ROPE:
  7072. {
  7073. GGML_ASSERT(false); // TODO: not implemented
  7074. } break;
  7075. case GGML_OP_CONV_1D_1S:
  7076. {
  7077. GGML_ASSERT(false); // TODO: not implemented
  7078. } break;
  7079. case GGML_OP_CONV_1D_2S:
  7080. {
  7081. GGML_ASSERT(false); // TODO: not implemented
  7082. } break;
  7083. case GGML_OP_FLASH_ATTN:
  7084. {
  7085. GGML_ASSERT(false); // not supported
  7086. } break;
  7087. case GGML_OP_FLASH_FF:
  7088. {
  7089. GGML_ASSERT(false); // not supported
  7090. } break;
  7091. case GGML_OP_NONE:
  7092. {
  7093. // nop
  7094. } break;
  7095. case GGML_OP_COUNT:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7102. if (node->grad == NULL) {
  7103. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7104. // it can also happen during forward pass, if the user performs computations with constants
  7105. if (node->op != GGML_OP_NONE) {
  7106. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7107. }
  7108. }
  7109. // check if already visited
  7110. for (int i = 0; i < cgraph->n_nodes; i++) {
  7111. if (cgraph->nodes[i] == node) {
  7112. return;
  7113. }
  7114. }
  7115. for (int i = 0; i < cgraph->n_leafs; i++) {
  7116. if (cgraph->leafs[i] == node) {
  7117. return;
  7118. }
  7119. }
  7120. if (node->src0) {
  7121. ggml_visit_parents(cgraph, node->src0);
  7122. }
  7123. if (node->src1) {
  7124. ggml_visit_parents(cgraph, node->src1);
  7125. }
  7126. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7127. if (node->opt[i]) {
  7128. ggml_visit_parents(cgraph, node->opt[i]);
  7129. }
  7130. }
  7131. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7132. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7133. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7134. cgraph->leafs[cgraph->n_leafs] = node;
  7135. cgraph->n_leafs++;
  7136. } else {
  7137. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7138. cgraph->nodes[cgraph->n_nodes] = node;
  7139. cgraph->grads[cgraph->n_nodes] = node->grad;
  7140. cgraph->n_nodes++;
  7141. }
  7142. }
  7143. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7144. if (!expand) {
  7145. cgraph->n_nodes = 0;
  7146. cgraph->n_leafs = 0;
  7147. }
  7148. const int n0 = cgraph->n_nodes;
  7149. UNUSED(n0);
  7150. ggml_visit_parents(cgraph, tensor);
  7151. const int n_new = cgraph->n_nodes - n0;
  7152. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7153. if (n_new > 0) {
  7154. // the last added node should always be starting point
  7155. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7156. }
  7157. }
  7158. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7159. ggml_build_forward_impl(cgraph, tensor, true);
  7160. }
  7161. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7162. struct ggml_cgraph result = {
  7163. /*.n_nodes =*/ 0,
  7164. /*.n_leafs =*/ 0,
  7165. /*.n_threads =*/ 0,
  7166. /*.work_size =*/ 0,
  7167. /*.work =*/ NULL,
  7168. /*.nodes =*/ { NULL },
  7169. /*.grads =*/ { NULL },
  7170. /*.leafs =*/ { NULL },
  7171. /*.perf_runs =*/ 0,
  7172. /*.perf_cycles =*/ 0,
  7173. /*.perf_time_us =*/ 0,
  7174. };
  7175. ggml_build_forward_impl(&result, tensor, false);
  7176. return result;
  7177. }
  7178. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7179. struct ggml_cgraph result = *gf;
  7180. GGML_ASSERT(gf->n_nodes > 0);
  7181. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7182. if (keep) {
  7183. for (int i = 0; i < gf->n_nodes; i++) {
  7184. struct ggml_tensor * node = gf->nodes[i];
  7185. if (node->grad) {
  7186. node->grad = ggml_dup_tensor(ctx, node);
  7187. gf->grads[i] = node->grad;
  7188. }
  7189. }
  7190. }
  7191. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7192. struct ggml_tensor * node = gf->nodes[i];
  7193. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7194. if (node->grad) {
  7195. ggml_compute_backward(ctx, node, keep);
  7196. }
  7197. }
  7198. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7199. struct ggml_tensor * node = gf->nodes[i];
  7200. if (node->is_param) {
  7201. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7202. ggml_build_forward_impl(&result, node->grad, true);
  7203. }
  7204. }
  7205. return result;
  7206. }
  7207. //
  7208. // thread data
  7209. //
  7210. // synchronization is done via busy loops
  7211. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7212. //
  7213. #ifdef __APPLE__
  7214. //#include <os/lock.h>
  7215. //
  7216. //typedef os_unfair_lock ggml_lock_t;
  7217. //
  7218. //#define ggml_lock_init(x) UNUSED(x)
  7219. //#define ggml_lock_destroy(x) UNUSED(x)
  7220. //#define ggml_lock_lock os_unfair_lock_lock
  7221. //#define ggml_lock_unlock os_unfair_lock_unlock
  7222. //
  7223. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7224. typedef int ggml_lock_t;
  7225. #define ggml_lock_init(x) UNUSED(x)
  7226. #define ggml_lock_destroy(x) UNUSED(x)
  7227. #define ggml_lock_lock(x) UNUSED(x)
  7228. #define ggml_lock_unlock(x) UNUSED(x)
  7229. #define GGML_LOCK_INITIALIZER 0
  7230. typedef pthread_t ggml_thread_t;
  7231. #define ggml_thread_create pthread_create
  7232. #define ggml_thread_join pthread_join
  7233. #else
  7234. //typedef pthread_spinlock_t ggml_lock_t;
  7235. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7236. //#define ggml_lock_destroy pthread_spin_destroy
  7237. //#define ggml_lock_lock pthread_spin_lock
  7238. //#define ggml_lock_unlock pthread_spin_unlock
  7239. typedef int ggml_lock_t;
  7240. #define ggml_lock_init(x) UNUSED(x)
  7241. #define ggml_lock_destroy(x) UNUSED(x)
  7242. #define ggml_lock_lock(x) UNUSED(x)
  7243. #define ggml_lock_unlock(x) UNUSED(x)
  7244. #define GGML_LOCK_INITIALIZER 0
  7245. typedef pthread_t ggml_thread_t;
  7246. #define ggml_thread_create pthread_create
  7247. #define ggml_thread_join pthread_join
  7248. #endif
  7249. struct ggml_compute_state_shared {
  7250. ggml_lock_t spin;
  7251. int n_threads;
  7252. // synchronization primitives
  7253. atomic_int n_ready;
  7254. atomic_bool has_work;
  7255. atomic_bool stop; // stop all threads
  7256. };
  7257. struct ggml_compute_state {
  7258. ggml_thread_t thrd;
  7259. struct ggml_compute_params params;
  7260. struct ggml_tensor * node;
  7261. struct ggml_compute_state_shared * shared;
  7262. };
  7263. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7264. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7265. const int n_threads = state->shared->n_threads;
  7266. while (true) {
  7267. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7268. atomic_store(&state->shared->has_work, false);
  7269. } else {
  7270. while (atomic_load(&state->shared->has_work)) {
  7271. if (atomic_load(&state->shared->stop)) {
  7272. return 0;
  7273. }
  7274. ggml_lock_lock (&state->shared->spin);
  7275. ggml_lock_unlock(&state->shared->spin);
  7276. }
  7277. }
  7278. atomic_fetch_sub(&state->shared->n_ready, 1);
  7279. // wait for work
  7280. while (!atomic_load(&state->shared->has_work)) {
  7281. if (atomic_load(&state->shared->stop)) {
  7282. return 0;
  7283. }
  7284. ggml_lock_lock (&state->shared->spin);
  7285. ggml_lock_unlock(&state->shared->spin);
  7286. }
  7287. // check if we should stop
  7288. if (atomic_load(&state->shared->stop)) {
  7289. break;
  7290. }
  7291. if (state->node) {
  7292. if (state->params.ith < state->params.nth) {
  7293. ggml_compute_forward(&state->params, state->node);
  7294. }
  7295. state->node = NULL;
  7296. } else {
  7297. break;
  7298. }
  7299. }
  7300. return 0;
  7301. }
  7302. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7303. const int n_threads = cgraph->n_threads;
  7304. struct ggml_compute_state_shared state_shared = {
  7305. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7306. /*.n_threads =*/ n_threads,
  7307. /*.n_ready =*/ 0,
  7308. /*.has_work =*/ false,
  7309. /*.stop =*/ false,
  7310. };
  7311. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7312. // create thread pool
  7313. if (n_threads > 1) {
  7314. ggml_lock_init(&state_shared.spin);
  7315. atomic_store(&state_shared.has_work, true);
  7316. for (int j = 0; j < n_threads - 1; j++) {
  7317. workers[j] = (struct ggml_compute_state) {
  7318. .thrd = 0,
  7319. .params = {
  7320. .type = GGML_TASK_COMPUTE,
  7321. .ith = j + 1,
  7322. .nth = n_threads,
  7323. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7324. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7325. },
  7326. .node = NULL,
  7327. .shared = &state_shared,
  7328. };
  7329. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7330. GGML_ASSERT(rc == 0);
  7331. UNUSED(rc);
  7332. }
  7333. }
  7334. // initialize tasks + work buffer
  7335. {
  7336. size_t work_size = 0;
  7337. // thread scheduling for the different operations
  7338. for (int i = 0; i < cgraph->n_nodes; i++) {
  7339. struct ggml_tensor * node = cgraph->nodes[i];
  7340. switch (node->op) {
  7341. case GGML_OP_DUP:
  7342. {
  7343. node->n_tasks = 1;
  7344. } break;
  7345. case GGML_OP_ADD:
  7346. {
  7347. node->n_tasks = n_threads;
  7348. } break;
  7349. case GGML_OP_SUB:
  7350. case GGML_OP_MUL:
  7351. case GGML_OP_DIV:
  7352. case GGML_OP_SQR:
  7353. case GGML_OP_SQRT:
  7354. case GGML_OP_SUM:
  7355. case GGML_OP_MEAN:
  7356. case GGML_OP_REPEAT:
  7357. case GGML_OP_ABS:
  7358. case GGML_OP_SGN:
  7359. case GGML_OP_NEG:
  7360. case GGML_OP_STEP:
  7361. case GGML_OP_RELU:
  7362. {
  7363. node->n_tasks = 1;
  7364. } break;
  7365. case GGML_OP_GELU:
  7366. {
  7367. node->n_tasks = n_threads;
  7368. } break;
  7369. case GGML_OP_SILU:
  7370. {
  7371. node->n_tasks = n_threads;
  7372. } break;
  7373. case GGML_OP_NORM:
  7374. case GGML_OP_RMS_NORM:
  7375. {
  7376. node->n_tasks = n_threads;
  7377. } break;
  7378. case GGML_OP_MUL_MAT:
  7379. {
  7380. node->n_tasks = n_threads;
  7381. // TODO: use different scheduling for different matrix sizes
  7382. //const int nr0 = ggml_nrows(node->src0);
  7383. //const int nr1 = ggml_nrows(node->src1);
  7384. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7385. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7386. size_t cur = 0;
  7387. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7388. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7389. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7390. node->n_tasks = 1; // TODO: this actually is doing nothing
  7391. // the threads are still spinning
  7392. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7393. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7394. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7395. //printf("cur = %zu\n", cur);
  7396. } else {
  7397. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7398. }
  7399. #else
  7400. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7401. #endif
  7402. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7403. cur = 0;
  7404. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7405. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7406. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7407. node->n_tasks = 1;
  7408. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7409. } else
  7410. #endif
  7411. {
  7412. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7413. }
  7414. } else {
  7415. GGML_ASSERT(false);
  7416. }
  7417. work_size = MAX(work_size, cur);
  7418. } break;
  7419. case GGML_OP_SCALE:
  7420. {
  7421. node->n_tasks = n_threads;
  7422. } break;
  7423. case GGML_OP_CPY:
  7424. case GGML_OP_RESHAPE:
  7425. case GGML_OP_VIEW:
  7426. case GGML_OP_PERMUTE:
  7427. case GGML_OP_TRANSPOSE:
  7428. case GGML_OP_GET_ROWS:
  7429. case GGML_OP_DIAG_MASK_INF:
  7430. {
  7431. node->n_tasks = 1;
  7432. } break;
  7433. case GGML_OP_SOFT_MAX:
  7434. {
  7435. node->n_tasks = n_threads;
  7436. } break;
  7437. case GGML_OP_ROPE:
  7438. {
  7439. node->n_tasks = 1;
  7440. } break;
  7441. case GGML_OP_CONV_1D_1S:
  7442. case GGML_OP_CONV_1D_2S:
  7443. {
  7444. node->n_tasks = n_threads;
  7445. GGML_ASSERT(node->src0->ne[3] == 1);
  7446. GGML_ASSERT(node->src1->ne[2] == 1);
  7447. GGML_ASSERT(node->src1->ne[3] == 1);
  7448. size_t cur = 0;
  7449. const int nk = node->src0->ne[0];
  7450. if (node->src0->type == GGML_TYPE_F16 &&
  7451. node->src1->type == GGML_TYPE_F32) {
  7452. cur = sizeof(ggml_fp16_t)*(
  7453. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7454. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7455. );
  7456. } else if (node->src0->type == GGML_TYPE_F32 &&
  7457. node->src1->type == GGML_TYPE_F32) {
  7458. cur = sizeof(float)*(
  7459. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7460. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7461. );
  7462. } else {
  7463. GGML_ASSERT(false);
  7464. }
  7465. work_size = MAX(work_size, cur);
  7466. } break;
  7467. case GGML_OP_FLASH_ATTN:
  7468. {
  7469. node->n_tasks = n_threads;
  7470. size_t cur = 0;
  7471. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7472. if (node->src1->type == GGML_TYPE_F32) {
  7473. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7474. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7475. }
  7476. if (node->src1->type == GGML_TYPE_F16) {
  7477. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7478. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7479. }
  7480. work_size = MAX(work_size, cur);
  7481. } break;
  7482. case GGML_OP_FLASH_FF:
  7483. {
  7484. node->n_tasks = n_threads;
  7485. size_t cur = 0;
  7486. if (node->src1->type == GGML_TYPE_F32) {
  7487. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7488. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7489. }
  7490. if (node->src1->type == GGML_TYPE_F16) {
  7491. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7492. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7493. }
  7494. work_size = MAX(work_size, cur);
  7495. } break;
  7496. case GGML_OP_NONE:
  7497. {
  7498. node->n_tasks = 1;
  7499. } break;
  7500. case GGML_OP_COUNT:
  7501. {
  7502. GGML_ASSERT(false);
  7503. } break;
  7504. }
  7505. }
  7506. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7507. GGML_ASSERT(false); // TODO: better handling
  7508. }
  7509. if (work_size > 0 && cgraph->work == NULL) {
  7510. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7511. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7512. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7513. }
  7514. }
  7515. const int64_t perf_start_cycles = ggml_perf_cycles();
  7516. const int64_t perf_start_time_us = ggml_perf_time_us();
  7517. for (int i = 0; i < cgraph->n_nodes; i++) {
  7518. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7519. struct ggml_tensor * node = cgraph->nodes[i];
  7520. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7521. //if (node->grad == NULL && node->perf_runs > 0) {
  7522. // continue;
  7523. //}
  7524. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7525. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7526. // INIT
  7527. struct ggml_compute_params params = {
  7528. /*.type =*/ GGML_TASK_INIT,
  7529. /*.ith =*/ 0,
  7530. /*.nth =*/ node->n_tasks,
  7531. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7532. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7533. };
  7534. ggml_compute_forward(&params, node);
  7535. // COMPUTE
  7536. if (node->n_tasks > 1) {
  7537. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7538. atomic_store(&state_shared.has_work, false);
  7539. }
  7540. while (atomic_load(&state_shared.has_work)) {
  7541. ggml_lock_lock (&state_shared.spin);
  7542. ggml_lock_unlock(&state_shared.spin);
  7543. }
  7544. // launch thread pool
  7545. for (int j = 0; j < n_threads - 1; j++) {
  7546. workers[j].params = (struct ggml_compute_params) {
  7547. .type = GGML_TASK_COMPUTE,
  7548. .ith = j + 1,
  7549. .nth = node->n_tasks,
  7550. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7551. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7552. };
  7553. workers[j].node = node;
  7554. }
  7555. atomic_fetch_sub(&state_shared.n_ready, 1);
  7556. while (atomic_load(&state_shared.n_ready) > 0) {
  7557. ggml_lock_lock (&state_shared.spin);
  7558. ggml_lock_unlock(&state_shared.spin);
  7559. }
  7560. atomic_store(&state_shared.has_work, true);
  7561. }
  7562. params.type = GGML_TASK_COMPUTE;
  7563. ggml_compute_forward(&params, node);
  7564. // wait for thread pool
  7565. if (node->n_tasks > 1) {
  7566. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7567. atomic_store(&state_shared.has_work, false);
  7568. }
  7569. while (atomic_load(&state_shared.has_work)) {
  7570. ggml_lock_lock (&state_shared.spin);
  7571. ggml_lock_unlock(&state_shared.spin);
  7572. }
  7573. atomic_fetch_sub(&state_shared.n_ready, 1);
  7574. while (atomic_load(&state_shared.n_ready) != 0) {
  7575. ggml_lock_lock (&state_shared.spin);
  7576. ggml_lock_unlock(&state_shared.spin);
  7577. }
  7578. }
  7579. // FINALIZE
  7580. if (node->n_tasks > 1) {
  7581. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7582. atomic_store(&state_shared.has_work, false);
  7583. }
  7584. while (atomic_load(&state_shared.has_work)) {
  7585. ggml_lock_lock (&state_shared.spin);
  7586. ggml_lock_unlock(&state_shared.spin);
  7587. }
  7588. // launch thread pool
  7589. for (int j = 0; j < n_threads - 1; j++) {
  7590. workers[j].params = (struct ggml_compute_params) {
  7591. .type = GGML_TASK_FINALIZE,
  7592. .ith = j + 1,
  7593. .nth = node->n_tasks,
  7594. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7595. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7596. };
  7597. workers[j].node = node;
  7598. }
  7599. atomic_fetch_sub(&state_shared.n_ready, 1);
  7600. while (atomic_load(&state_shared.n_ready) > 0) {
  7601. ggml_lock_lock (&state_shared.spin);
  7602. ggml_lock_unlock(&state_shared.spin);
  7603. }
  7604. atomic_store(&state_shared.has_work, true);
  7605. }
  7606. params.type = GGML_TASK_FINALIZE;
  7607. ggml_compute_forward(&params, node);
  7608. // wait for thread pool
  7609. if (node->n_tasks > 1) {
  7610. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7611. atomic_store(&state_shared.has_work, false);
  7612. }
  7613. while (atomic_load(&state_shared.has_work)) {
  7614. ggml_lock_lock (&state_shared.spin);
  7615. ggml_lock_unlock(&state_shared.spin);
  7616. }
  7617. atomic_fetch_sub(&state_shared.n_ready, 1);
  7618. while (atomic_load(&state_shared.n_ready) != 0) {
  7619. ggml_lock_lock (&state_shared.spin);
  7620. ggml_lock_unlock(&state_shared.spin);
  7621. }
  7622. }
  7623. // performance stats (node)
  7624. {
  7625. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7626. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7627. node->perf_runs++;
  7628. node->perf_cycles += perf_cycles_cur;
  7629. node->perf_time_us += perf_time_us_cur;
  7630. }
  7631. }
  7632. // join thread pool
  7633. if (n_threads > 1) {
  7634. atomic_store(&state_shared.stop, true);
  7635. atomic_store(&state_shared.has_work, true);
  7636. for (int j = 0; j < n_threads - 1; j++) {
  7637. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7638. GGML_ASSERT(rc == 0);
  7639. UNUSED(rc);
  7640. }
  7641. ggml_lock_destroy(&state_shared.spin);
  7642. }
  7643. // performance stats (graph)
  7644. {
  7645. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7646. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7647. cgraph->perf_runs++;
  7648. cgraph->perf_cycles += perf_cycles_cur;
  7649. cgraph->perf_time_us += perf_time_us_cur;
  7650. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7651. __func__, cgraph->perf_runs,
  7652. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7653. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7654. (double) perf_time_us_cur / 1000.0,
  7655. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7656. }
  7657. }
  7658. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7659. for (int i = 0; i < cgraph->n_nodes; i++) {
  7660. struct ggml_tensor * grad = cgraph->grads[i];
  7661. if (grad) {
  7662. ggml_set_zero(grad);
  7663. }
  7664. }
  7665. }
  7666. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7667. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7668. GGML_PRINT("=== GRAPH ===\n");
  7669. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7670. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7671. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7672. for (int i = 0; i < cgraph->n_nodes; i++) {
  7673. struct ggml_tensor * node = cgraph->nodes[i];
  7674. perf_total_per_op_us[node->op] += node->perf_time_us;
  7675. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7676. i,
  7677. node->ne[0], node->ne[1], node->ne[2],
  7678. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7679. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7680. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7681. (double) node->perf_time_us / 1000.0,
  7682. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7683. }
  7684. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7685. for (int i = 0; i < cgraph->n_leafs; i++) {
  7686. struct ggml_tensor * node = cgraph->leafs[i];
  7687. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7688. i,
  7689. node->ne[0], node->ne[1],
  7690. GGML_OP_LABEL[node->op]);
  7691. }
  7692. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7693. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7694. }
  7695. GGML_PRINT("========================================\n");
  7696. }
  7697. // check if node is part of the graph
  7698. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7699. if (cgraph == NULL) {
  7700. return true;
  7701. }
  7702. for (int i = 0; i < cgraph->n_nodes; i++) {
  7703. if (cgraph->nodes[i] == node) {
  7704. return true;
  7705. }
  7706. }
  7707. return false;
  7708. }
  7709. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7710. for (int i = 0; i < cgraph->n_nodes; i++) {
  7711. struct ggml_tensor * parent = cgraph->nodes[i];
  7712. if (parent->grad == node) {
  7713. return parent;
  7714. }
  7715. }
  7716. return NULL;
  7717. }
  7718. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7719. char color[16];
  7720. FILE * fp = fopen(filename, "w");
  7721. GGML_ASSERT(fp);
  7722. fprintf(fp, "digraph G {\n");
  7723. fprintf(fp, " newrank = true;\n");
  7724. fprintf(fp, " rankdir = LR;\n");
  7725. for (int i = 0; i < gb->n_nodes; i++) {
  7726. struct ggml_tensor * node = gb->nodes[i];
  7727. if (ggml_graph_get_parent(gb, node) != NULL) {
  7728. continue;
  7729. }
  7730. if (node->is_param) {
  7731. snprintf(color, sizeof(color), "yellow");
  7732. } else if (node->grad) {
  7733. if (ggml_graph_find(gf, node)) {
  7734. snprintf(color, sizeof(color), "green");
  7735. } else {
  7736. snprintf(color, sizeof(color), "lightblue");
  7737. }
  7738. } else {
  7739. snprintf(color, sizeof(color), "white");
  7740. }
  7741. fprintf(fp, " \"%p\" [ \
  7742. style = filled; fillcolor = %s; shape = record; \
  7743. label=\"%d [%d, %d] | <x>%s",
  7744. (void *) node, color,
  7745. i, node->ne[0], node->ne[1],
  7746. GGML_OP_SYMBOL[node->op]);
  7747. if (node->grad) {
  7748. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7749. } else {
  7750. fprintf(fp, "\"; ]\n");
  7751. }
  7752. }
  7753. for (int i = 0; i < gb->n_leafs; i++) {
  7754. struct ggml_tensor * node = gb->leafs[i];
  7755. snprintf(color, sizeof(color), "pink");
  7756. if (ggml_nelements(node) == 1) {
  7757. fprintf(fp, " \"%p\" [ \
  7758. style = filled; fillcolor = %s; shape = record; \
  7759. label=\"<x>%.1e\"; ]\n",
  7760. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7761. } else {
  7762. fprintf(fp, " \"%p\" [ \
  7763. style = filled; fillcolor = %s; shape = record; \
  7764. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7765. (void *) node, color,
  7766. i, node->ne[0], node->ne[1]);
  7767. }
  7768. }
  7769. for (int i = 0; i < gb->n_nodes; i++) {
  7770. struct ggml_tensor * node = gb->nodes[i];
  7771. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7772. if (node->src0) {
  7773. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7774. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7775. parent0 ? (void *) parent0 : (void *) node->src0,
  7776. parent0 ? "g" : "x",
  7777. parent ? (void *) parent : (void *) node,
  7778. parent ? "g" : "x",
  7779. parent ? "empty" : "vee",
  7780. parent ? "dashed" : "solid");
  7781. }
  7782. if (node->src1) {
  7783. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7784. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7785. parent1 ? (void *) parent1 : (void *) node->src1,
  7786. parent1 ? "g" : "x",
  7787. parent ? (void *) parent : (void *) node,
  7788. parent ? "g" : "x",
  7789. parent ? "empty" : "vee",
  7790. parent ? "dashed" : "solid");
  7791. }
  7792. }
  7793. for (int i = 0; i < gb->n_leafs; i++) {
  7794. struct ggml_tensor * node = gb->leafs[i];
  7795. if (node->src0) {
  7796. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7797. (void *) node->src0, "x",
  7798. (void *) node, "x");
  7799. }
  7800. if (node->src1) {
  7801. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7802. (void *) node->src1, "x",
  7803. (void *) node, "x");
  7804. }
  7805. }
  7806. fprintf(fp, "}\n");
  7807. fclose(fp);
  7808. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7809. }
  7810. ////////////////////////////////////////////////////////////////////////////////
  7811. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7812. int i = 0;
  7813. for (int p = 0; p < np; ++p) {
  7814. const int ne = ggml_nelements(ps[p]) ;
  7815. // TODO: add function to set tensor from array
  7816. for (int j = 0; j < ne; ++j) {
  7817. ggml_set_f32_1d(ps[p], j, x[i++]);
  7818. }
  7819. }
  7820. }
  7821. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7822. int i = 0;
  7823. for (int p = 0; p < np; ++p) {
  7824. const int ne = ggml_nelements(ps[p]) ;
  7825. // TODO: add function to get all elements at once
  7826. for (int j = 0; j < ne; ++j) {
  7827. x[i++] = ggml_get_f32_1d(ps[p], j);
  7828. }
  7829. }
  7830. }
  7831. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7832. int i = 0;
  7833. for (int p = 0; p < np; ++p) {
  7834. const int ne = ggml_nelements(ps[p]) ;
  7835. // TODO: add function to get all elements at once
  7836. for (int j = 0; j < ne; ++j) {
  7837. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7838. }
  7839. }
  7840. }
  7841. //
  7842. // ADAM
  7843. //
  7844. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7845. //
  7846. static enum ggml_opt_result ggml_opt_adam(
  7847. struct ggml_context * ctx,
  7848. struct ggml_opt_params params,
  7849. struct ggml_tensor * f,
  7850. struct ggml_cgraph * gf,
  7851. struct ggml_cgraph * gb) {
  7852. GGML_ASSERT(ggml_is_scalar(f));
  7853. gf->n_threads = params.n_threads;
  7854. gb->n_threads = params.n_threads;
  7855. // these will store the parameters we want to optimize
  7856. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7857. int np = 0;
  7858. int nx = 0;
  7859. for (int i = 0; i < gf->n_nodes; ++i) {
  7860. if (gf->nodes[i]->is_param) {
  7861. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7862. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7863. ps[np++] = gf->nodes[i];
  7864. nx += ggml_nelements(gf->nodes[i]);
  7865. }
  7866. }
  7867. // constants
  7868. const float alpha = params.adam.alpha;
  7869. const float beta1 = params.adam.beta1;
  7870. const float beta2 = params.adam.beta2;
  7871. const float eps = params.adam.eps;
  7872. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7873. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7874. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7875. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7876. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7877. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7878. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7879. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7880. // initialize
  7881. ggml_vec_set_f32(nx, m, 0.0f);
  7882. ggml_vec_set_f32(nx, v, 0.0f);
  7883. // update view
  7884. ggml_opt_get_params(np, ps, x);
  7885. // compute the function value
  7886. ggml_graph_reset (gf);
  7887. ggml_set_f32 (f->grad, 1.0f);
  7888. ggml_graph_compute(ctx, gb);
  7889. float fx_prev = ggml_get_f32_1d(f, 0);
  7890. if (pf) {
  7891. pf[0] = fx_prev;
  7892. }
  7893. int n_no_improvement = 0;
  7894. float fx_best = fx_prev;
  7895. // run the optimizer
  7896. for (int t = 0; t < params.adam.n_iter; ++t) {
  7897. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7898. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7899. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7900. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7901. for (int i = 0; i < np; ++i) {
  7902. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7903. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7904. }
  7905. const int64_t t_start_wall = ggml_time_us();
  7906. const int64_t t_start_cpu = ggml_cycles();
  7907. UNUSED(t_start_wall);
  7908. UNUSED(t_start_cpu);
  7909. {
  7910. // update the gradient
  7911. ggml_opt_get_grad(np, ps, g1);
  7912. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  7913. ggml_vec_scale_f32(nx, m, beta1);
  7914. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  7915. // g2 = g1^2
  7916. ggml_vec_sqr_f32 (nx, g2, g1);
  7917. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  7918. ggml_vec_scale_f32(nx, v, beta2);
  7919. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  7920. // m^hat = m_t / (1 - beta1^t)
  7921. // v^hat = v_t / (1 - beta2^t)
  7922. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  7923. ggml_vec_cpy_f32 (nx, mh, m);
  7924. ggml_vec_cpy_f32 (nx, vh, v);
  7925. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  7926. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  7927. ggml_vec_sqrt_f32 (nx, vh, vh);
  7928. ggml_vec_acc1_f32 (nx, vh, eps);
  7929. ggml_vec_div_f32 (nx, mh, mh, vh);
  7930. ggml_vec_sub_f32 (nx, x, x, mh);
  7931. // update the parameters
  7932. ggml_opt_set_params(np, ps, x);
  7933. }
  7934. ggml_graph_reset (gf);
  7935. ggml_set_f32 (f->grad, 1.0f);
  7936. ggml_graph_compute(ctx, gb);
  7937. const float fx = ggml_get_f32_1d(f, 0);
  7938. // check convergence
  7939. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  7940. GGML_PRINT_DEBUG("converged\n");
  7941. return GGML_OPT_OK;
  7942. }
  7943. // delta-based convergence test
  7944. if (pf != NULL) {
  7945. // need at least params.past iterations to start checking for convergence
  7946. if (params.past <= t) {
  7947. const float rate = (pf[t%params.past] - fx)/fx;
  7948. if (fabsf(rate) < params.delta) {
  7949. return GGML_OPT_OK;
  7950. }
  7951. }
  7952. pf[t%params.past] = fx;
  7953. }
  7954. // check for improvement
  7955. if (params.max_no_improvement > 0) {
  7956. if (fx_best > fx) {
  7957. fx_best = fx;
  7958. n_no_improvement = 0;
  7959. } else {
  7960. ++n_no_improvement;
  7961. if (n_no_improvement >= params.max_no_improvement) {
  7962. return GGML_OPT_OK;
  7963. }
  7964. }
  7965. }
  7966. fx_prev = fx;
  7967. {
  7968. const int64_t t_end_cpu = ggml_cycles();
  7969. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  7970. UNUSED(t_end_cpu);
  7971. const int64_t t_end_wall = ggml_time_us();
  7972. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  7973. UNUSED(t_end_wall);
  7974. }
  7975. }
  7976. return GGML_OPT_DID_NOT_CONVERGE;
  7977. }
  7978. //
  7979. // L-BFGS
  7980. //
  7981. // the L-BFGS implementation below is based on the following implementation:
  7982. //
  7983. // https://github.com/chokkan/liblbfgs
  7984. //
  7985. struct ggml_lbfgs_iteration_data {
  7986. float alpha;
  7987. float ys;
  7988. float * s;
  7989. float * y;
  7990. };
  7991. static enum ggml_opt_result linesearch_backtracking(
  7992. struct ggml_context * ctx,
  7993. const struct ggml_opt_params * params,
  7994. int nx,
  7995. float * x,
  7996. float * fx,
  7997. float * g,
  7998. float * d,
  7999. float * step,
  8000. const float * xp,
  8001. struct ggml_tensor * f,
  8002. struct ggml_cgraph * gf,
  8003. struct ggml_cgraph * gb,
  8004. const int np,
  8005. struct ggml_tensor * ps[]) {
  8006. int count = 0;
  8007. float width = 0.0f;
  8008. float dg = 0.0f;
  8009. float finit = 0.0f;
  8010. float dginit = 0.0f;
  8011. float dgtest = 0.0f;
  8012. const float dec = 0.5f;
  8013. const float inc = 2.1f;
  8014. if (*step <= 0.f) {
  8015. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8016. }
  8017. // compute the initial gradient in the search direction
  8018. ggml_vec_dot_f32(nx, &dginit, g, d);
  8019. // make sure that d points to a descent direction
  8020. if (0 < dginit) {
  8021. return GGML_LINESEARCH_FAIL;
  8022. }
  8023. // initialize local variables
  8024. finit = *fx;
  8025. dgtest = params->lbfgs.ftol*dginit;
  8026. while (true) {
  8027. ggml_vec_cpy_f32(nx, x, xp);
  8028. ggml_vec_mad_f32(nx, x, d, *step);
  8029. // evaluate the function and gradient values
  8030. {
  8031. ggml_opt_set_params(np, ps, x);
  8032. ggml_graph_reset (gf);
  8033. ggml_set_f32 (f->grad, 1.0f);
  8034. ggml_graph_compute(ctx, gb);
  8035. ggml_opt_get_grad(np, ps, g);
  8036. *fx = ggml_get_f32_1d(f, 0);
  8037. }
  8038. ++count;
  8039. if (*fx > finit + (*step)*dgtest) {
  8040. width = dec;
  8041. } else {
  8042. // Armijo condition is satisfied
  8043. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8044. return count;
  8045. }
  8046. ggml_vec_dot_f32(nx, &dg, g, d);
  8047. // check the Wolfe condition
  8048. if (dg < params->lbfgs.wolfe * dginit) {
  8049. width = inc;
  8050. } else {
  8051. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8052. // regular Wolfe conditions
  8053. return count;
  8054. }
  8055. if(dg > -params->lbfgs.wolfe*dginit) {
  8056. width = dec;
  8057. } else {
  8058. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8059. return count;
  8060. }
  8061. return count;
  8062. }
  8063. }
  8064. if (*step < params->lbfgs.min_step) {
  8065. return GGML_LINESEARCH_MINIMUM_STEP;
  8066. }
  8067. if (*step > params->lbfgs.max_step) {
  8068. return GGML_LINESEARCH_MAXIMUM_STEP;
  8069. }
  8070. if (params->lbfgs.max_linesearch <= count) {
  8071. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8072. }
  8073. (*step) *= width;
  8074. }
  8075. return GGML_LINESEARCH_FAIL;
  8076. }
  8077. static enum ggml_opt_result ggml_opt_lbfgs(
  8078. struct ggml_context * ctx,
  8079. struct ggml_opt_params params,
  8080. struct ggml_tensor * f,
  8081. struct ggml_cgraph * gf,
  8082. struct ggml_cgraph * gb) {
  8083. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8084. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8085. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8086. return GGML_OPT_INVALID_WOLFE;
  8087. }
  8088. }
  8089. gf->n_threads = params.n_threads;
  8090. gb->n_threads = params.n_threads;
  8091. const int m = params.lbfgs.m;
  8092. // these will store the parameters we want to optimize
  8093. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8094. int np = 0;
  8095. int nx = 0;
  8096. for (int i = 0; i < gf->n_nodes; ++i) {
  8097. if (gf->nodes[i]->is_param) {
  8098. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8099. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8100. ps[np++] = gf->nodes[i];
  8101. nx += ggml_nelements(gf->nodes[i]);
  8102. }
  8103. }
  8104. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8105. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8106. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8107. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8108. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8109. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8110. float fx = 0.0f; // cost function value
  8111. float xnorm = 0.0f; // ||x||
  8112. float gnorm = 0.0f; // ||g||
  8113. float step = 0.0f;
  8114. // initialize x from the graph nodes
  8115. ggml_opt_get_params(np, ps, x);
  8116. // the L-BFGS memory
  8117. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8118. for (int i = 0; i < m; ++i) {
  8119. lm[i].alpha = 0.0f;
  8120. lm[i].ys = 0.0f;
  8121. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8122. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8123. }
  8124. // evaluate the function value and its gradient
  8125. {
  8126. ggml_opt_set_params(np, ps, x);
  8127. ggml_graph_reset (gf);
  8128. ggml_set_f32 (f->grad, 1.0f);
  8129. ggml_graph_compute(ctx, gb);
  8130. ggml_opt_get_grad(np, ps, g);
  8131. fx = ggml_get_f32_1d(f, 0);
  8132. }
  8133. if (pf) {
  8134. pf[0] = fx;
  8135. }
  8136. float fx_best = fx;
  8137. // search direction = -gradient
  8138. ggml_vec_neg_f32(nx, d, g);
  8139. // ||x||, ||g||
  8140. ggml_vec_norm_f32(nx, &xnorm, x);
  8141. ggml_vec_norm_f32(nx, &gnorm, g);
  8142. if (xnorm < 1.0f) {
  8143. xnorm = 1.0f;
  8144. }
  8145. // already optimized
  8146. if (gnorm/xnorm <= params.lbfgs.eps) {
  8147. return GGML_OPT_OK;
  8148. }
  8149. // initial step
  8150. ggml_vec_norm_inv_f32(nx, &step, d);
  8151. int j = 0;
  8152. int k = 1;
  8153. int ls = 0;
  8154. int end = 0;
  8155. int bound = 0;
  8156. int n_no_improvement = 0;
  8157. float ys = 0.0f;
  8158. float yy = 0.0f;
  8159. float beta = 0.0f;
  8160. while (true) {
  8161. // store the current position and gradient vectors
  8162. ggml_vec_cpy_f32(nx, xp, x);
  8163. ggml_vec_cpy_f32(nx, gp, g);
  8164. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8165. if (ls < 0) {
  8166. // linesearch failed - go back to the previous point and return
  8167. ggml_vec_cpy_f32(nx, x, xp);
  8168. ggml_vec_cpy_f32(nx, g, gp);
  8169. return ls;
  8170. }
  8171. ggml_vec_norm_f32(nx, &xnorm, x);
  8172. ggml_vec_norm_f32(nx, &gnorm, g);
  8173. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8174. if (xnorm < 1.0f) {
  8175. xnorm = 1.0f;
  8176. }
  8177. if (gnorm/xnorm <= params.lbfgs.eps) {
  8178. // converged
  8179. return GGML_OPT_OK;
  8180. }
  8181. // delta-based convergence test
  8182. if (pf != NULL) {
  8183. // need at least params.past iterations to start checking for convergence
  8184. if (params.past <= k) {
  8185. const float rate = (pf[k%params.past] - fx)/fx;
  8186. if (fabsf(rate) < params.delta) {
  8187. return GGML_OPT_OK;
  8188. }
  8189. }
  8190. pf[k%params.past] = fx;
  8191. }
  8192. // check for improvement
  8193. if (params.max_no_improvement > 0) {
  8194. if (fx < fx_best) {
  8195. fx_best = fx;
  8196. n_no_improvement = 0;
  8197. } else {
  8198. n_no_improvement++;
  8199. if (n_no_improvement >= params.max_no_improvement) {
  8200. return GGML_OPT_OK;
  8201. }
  8202. }
  8203. }
  8204. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8205. // reached the maximum number of iterations
  8206. return GGML_OPT_DID_NOT_CONVERGE;
  8207. }
  8208. // update vectors s and y:
  8209. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8210. // y_{k+1} = g_{k+1} - g_{k}.
  8211. //
  8212. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8213. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8214. // compute scalars ys and yy:
  8215. // ys = y^t \cdot s -> 1 / \rho.
  8216. // yy = y^t \cdot y.
  8217. //
  8218. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8219. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8220. lm[end].ys = ys;
  8221. // find new search direction
  8222. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8223. bound = (m <= k) ? m : k;
  8224. k++;
  8225. end = (end + 1)%m;
  8226. // initialize search direction with -g
  8227. ggml_vec_neg_f32(nx, d, g);
  8228. j = end;
  8229. for (int i = 0; i < bound; ++i) {
  8230. j = (j + m - 1) % m;
  8231. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8232. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8233. lm[j].alpha /= lm[j].ys;
  8234. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8235. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8236. }
  8237. ggml_vec_scale_f32(nx, d, ys/yy);
  8238. for (int i = 0; i < bound; ++i) {
  8239. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8240. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8241. beta /= lm[j].ys;
  8242. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8243. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8244. j = (j + 1)%m;
  8245. }
  8246. step = 1.0;
  8247. }
  8248. return GGML_OPT_DID_NOT_CONVERGE;
  8249. }
  8250. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8251. struct ggml_opt_params result;
  8252. switch (type) {
  8253. case GGML_OPT_ADAM:
  8254. {
  8255. result = (struct ggml_opt_params) {
  8256. .type = GGML_OPT_ADAM,
  8257. .n_threads = 1,
  8258. .past = 0,
  8259. .delta = 1e-5f,
  8260. .max_no_improvement = 100,
  8261. .print_forward_graph = true,
  8262. .print_backward_graph = true,
  8263. .adam = {
  8264. .n_iter = 10000,
  8265. .alpha = 0.001f,
  8266. .beta1 = 0.9f,
  8267. .beta2 = 0.999f,
  8268. .eps = 1e-8f,
  8269. .eps_f = 1e-5f,
  8270. .eps_g = 1e-3f,
  8271. },
  8272. };
  8273. } break;
  8274. case GGML_OPT_LBFGS:
  8275. {
  8276. result = (struct ggml_opt_params) {
  8277. .type = GGML_OPT_LBFGS,
  8278. .n_threads = 1,
  8279. .past = 0,
  8280. .delta = 1e-5f,
  8281. .max_no_improvement = 0,
  8282. .print_forward_graph = true,
  8283. .print_backward_graph = true,
  8284. .lbfgs = {
  8285. .m = 6,
  8286. .n_iter = 100,
  8287. .max_linesearch = 20,
  8288. .eps = 1e-5f,
  8289. .ftol = 1e-4f,
  8290. .wolfe = 0.9f,
  8291. .min_step = 1e-20f,
  8292. .max_step = 1e+20f,
  8293. .linesearch = GGML_LINESEARCH_DEFAULT,
  8294. },
  8295. };
  8296. } break;
  8297. }
  8298. return result;
  8299. }
  8300. enum ggml_opt_result ggml_opt(
  8301. struct ggml_context * ctx,
  8302. struct ggml_opt_params params,
  8303. struct ggml_tensor * f) {
  8304. bool free_ctx = false;
  8305. if (ctx == NULL) {
  8306. struct ggml_init_params params_ctx = {
  8307. .mem_size = 16*1024*1024,
  8308. .mem_buffer = NULL,
  8309. };
  8310. ctx = ggml_init(params_ctx);
  8311. if (ctx == NULL) {
  8312. return GGML_OPT_NO_CONTEXT;
  8313. }
  8314. free_ctx = true;
  8315. }
  8316. enum ggml_opt_result result = GGML_OPT_OK;
  8317. // build forward + backward compute graphs
  8318. struct ggml_cgraph gf = ggml_build_forward (f);
  8319. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8320. switch (params.type) {
  8321. case GGML_OPT_ADAM:
  8322. {
  8323. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8324. } break;
  8325. case GGML_OPT_LBFGS:
  8326. {
  8327. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8328. } break;
  8329. }
  8330. if (params.print_forward_graph) {
  8331. ggml_graph_print (&gf);
  8332. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8333. }
  8334. if (params.print_backward_graph) {
  8335. ggml_graph_print (&gb);
  8336. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8337. }
  8338. if (free_ctx) {
  8339. ggml_free(ctx);
  8340. }
  8341. return result;
  8342. }
  8343. ////////////////////////////////////////////////////////////////////////////////
  8344. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8345. assert(k % QK == 0);
  8346. const int nb = k / QK;
  8347. for (int j = 0; j < n; j += k) {
  8348. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8349. quantize_row_q4_0_reference(src + j, y, k);
  8350. for (int i = 0; i < nb; i++) {
  8351. for (int l = 0; l < QK; l += 2) {
  8352. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8353. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8354. hist[vi0]++;
  8355. hist[vi1]++;
  8356. }
  8357. }
  8358. }
  8359. return (n/QK*sizeof(block_q4_0));
  8360. }
  8361. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8362. assert(k % QK == 0);
  8363. const int nb = k / QK;
  8364. for (int j = 0; j < n; j += k) {
  8365. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8366. quantize_row_q4_1_reference(src + j, y, k);
  8367. for (int i = 0; i < nb; i++) {
  8368. for (int l = 0; l < QK; l += 2) {
  8369. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8370. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8371. hist[vi0]++;
  8372. hist[vi1]++;
  8373. }
  8374. }
  8375. }
  8376. return (n/QK*sizeof(block_q4_1));
  8377. }
  8378. ////////////////////////////////////////////////////////////////////////////////
  8379. int ggml_cpu_has_avx(void) {
  8380. #if defined(__AVX__)
  8381. return 1;
  8382. #else
  8383. return 0;
  8384. #endif
  8385. }
  8386. int ggml_cpu_has_avx2(void) {
  8387. #if defined(__AVX2__)
  8388. return 1;
  8389. #else
  8390. return 0;
  8391. #endif
  8392. }
  8393. int ggml_cpu_has_avx512(void) {
  8394. #if defined(__AVX512F__)
  8395. return 1;
  8396. #else
  8397. return 0;
  8398. #endif
  8399. }
  8400. int ggml_cpu_has_fma(void) {
  8401. #if defined(__FMA__)
  8402. return 1;
  8403. #else
  8404. return 0;
  8405. #endif
  8406. }
  8407. int ggml_cpu_has_neon(void) {
  8408. #if defined(__ARM_NEON)
  8409. return 1;
  8410. #else
  8411. return 0;
  8412. #endif
  8413. }
  8414. int ggml_cpu_has_arm_fma(void) {
  8415. #if defined(__ARM_FEATURE_FMA)
  8416. return 1;
  8417. #else
  8418. return 0;
  8419. #endif
  8420. }
  8421. int ggml_cpu_has_f16c(void) {
  8422. #if defined(__F16C__)
  8423. return 1;
  8424. #else
  8425. return 0;
  8426. #endif
  8427. }
  8428. int ggml_cpu_has_fp16_va(void) {
  8429. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8430. return 1;
  8431. #else
  8432. return 0;
  8433. #endif
  8434. }
  8435. int ggml_cpu_has_wasm_simd(void) {
  8436. #if defined(__wasm_simd128__)
  8437. return 1;
  8438. #else
  8439. return 0;
  8440. #endif
  8441. }
  8442. int ggml_cpu_has_blas(void) {
  8443. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8444. return 1;
  8445. #else
  8446. return 0;
  8447. #endif
  8448. }
  8449. int ggml_cpu_has_sse3(void) {
  8450. #if defined(__SSE3__)
  8451. return 1;
  8452. #else
  8453. return 0;
  8454. #endif
  8455. }
  8456. int ggml_cpu_has_vsx(void) {
  8457. #if defined(__POWER9_VECTOR__)
  8458. return 1;
  8459. #else
  8460. return 0;
  8461. #endif
  8462. }
  8463. ////////////////////////////////////////////////////////////////////////////////