ggml-rpc.cpp 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-cpp.h"
  5. #include <cinttypes>
  6. #include <string>
  7. #include <vector>
  8. #include <memory>
  9. #include <mutex>
  10. #include <unordered_map>
  11. #include <unordered_set>
  12. #ifdef _WIN32
  13. # define WIN32_LEAN_AND_MEAN
  14. # ifndef NOMINMAX
  15. # define NOMINMAX
  16. # endif
  17. # include <windows.h>
  18. # include <winsock2.h>
  19. #else
  20. # include <arpa/inet.h>
  21. # include <sys/socket.h>
  22. # include <sys/types.h>
  23. # include <netinet/in.h>
  24. # include <netinet/tcp.h>
  25. # include <netdb.h>
  26. # include <unistd.h>
  27. #endif
  28. #include <cstring>
  29. #include <fstream>
  30. #include <filesystem>
  31. #include <algorithm>
  32. static const char * RPC_DEBUG = std::getenv("GGML_RPC_DEBUG");
  33. #define LOG_DBG(...) \
  34. do { if (RPC_DEBUG) GGML_LOG_DEBUG(__VA_ARGS__); } while (0)
  35. namespace fs = std::filesystem;
  36. static constexpr size_t MAX_CHUNK_SIZE = 1024ull * 1024ull * 1024ull; // 1 GiB
  37. #ifdef _WIN32
  38. typedef SOCKET sockfd_t;
  39. using ssize_t = __int64;
  40. #else
  41. typedef int sockfd_t;
  42. #endif
  43. // cross-platform socket
  44. struct socket_t {
  45. sockfd_t fd;
  46. socket_t(sockfd_t fd) : fd(fd) {}
  47. ~socket_t() {
  48. LOG_DBG("[%s] closing socket %d\n", __func__, this->fd);
  49. #ifdef _WIN32
  50. closesocket(this->fd);
  51. #else
  52. close(this->fd);
  53. #endif
  54. }
  55. };
  56. // macro for nicer error messages on server crash
  57. #define RPC_STATUS_ASSERT(x) if (!(x)) GGML_ABORT("Remote RPC server crashed or returned malformed response")
  58. // all RPC structures must be packed
  59. #pragma pack(push, 1)
  60. // ggml_tensor is serialized into rpc_tensor
  61. struct rpc_tensor {
  62. uint64_t id;
  63. uint32_t type;
  64. uint64_t buffer;
  65. uint32_t ne[GGML_MAX_DIMS];
  66. uint32_t nb[GGML_MAX_DIMS];
  67. uint32_t op;
  68. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  69. int32_t flags;
  70. uint64_t src[GGML_MAX_SRC];
  71. uint64_t view_src;
  72. uint64_t view_offs;
  73. uint64_t data;
  74. char name[GGML_MAX_NAME];
  75. char padding[4];
  76. };
  77. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  78. // RPC commands
  79. enum rpc_cmd {
  80. RPC_CMD_ALLOC_BUFFER = 0,
  81. RPC_CMD_GET_ALIGNMENT,
  82. RPC_CMD_GET_MAX_SIZE,
  83. RPC_CMD_BUFFER_GET_BASE,
  84. RPC_CMD_FREE_BUFFER,
  85. RPC_CMD_BUFFER_CLEAR,
  86. RPC_CMD_SET_TENSOR,
  87. RPC_CMD_SET_TENSOR_HASH,
  88. RPC_CMD_GET_TENSOR,
  89. RPC_CMD_COPY_TENSOR,
  90. RPC_CMD_GRAPH_COMPUTE,
  91. RPC_CMD_GET_DEVICE_MEMORY,
  92. RPC_CMD_INIT_TENSOR,
  93. RPC_CMD_GET_ALLOC_SIZE,
  94. RPC_CMD_HELLO,
  95. RPC_CMD_DEVICE_COUNT,
  96. RPC_CMD_COUNT,
  97. };
  98. static_assert(RPC_CMD_HELLO == 14, "RPC_CMD_HELLO must be always 14");
  99. // Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
  100. const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
  101. struct rpc_msg_hello_rsp {
  102. uint8_t major;
  103. uint8_t minor;
  104. uint8_t patch;
  105. };
  106. struct rpc_msg_device_count_rsp {
  107. uint32_t device_count;
  108. };
  109. struct rpc_msg_get_alloc_size_req {
  110. uint32_t device;
  111. rpc_tensor tensor;
  112. };
  113. struct rpc_msg_get_alloc_size_rsp {
  114. uint64_t alloc_size;
  115. };
  116. struct rpc_msg_init_tensor_req {
  117. rpc_tensor tensor;
  118. };
  119. struct rpc_msg_alloc_buffer_req {
  120. uint32_t device;
  121. uint64_t size;
  122. };
  123. struct rpc_msg_alloc_buffer_rsp {
  124. uint64_t remote_ptr;
  125. uint64_t remote_size;
  126. };
  127. struct rpc_msg_get_alignment_req {
  128. uint32_t device;
  129. };
  130. struct rpc_msg_get_alignment_rsp {
  131. uint64_t alignment;
  132. };
  133. struct rpc_msg_get_max_size_req {
  134. uint32_t device;
  135. };
  136. struct rpc_msg_get_max_size_rsp {
  137. uint64_t max_size;
  138. };
  139. struct rpc_msg_buffer_get_base_req {
  140. uint64_t remote_ptr;
  141. };
  142. struct rpc_msg_buffer_get_base_rsp {
  143. uint64_t base_ptr;
  144. };
  145. struct rpc_msg_free_buffer_req {
  146. uint64_t remote_ptr;
  147. };
  148. struct rpc_msg_buffer_clear_req {
  149. uint64_t remote_ptr;
  150. uint8_t value;
  151. };
  152. struct rpc_msg_set_tensor_hash_req {
  153. rpc_tensor tensor;
  154. uint64_t offset;
  155. uint64_t hash;
  156. };
  157. struct rpc_msg_set_tensor_hash_rsp {
  158. uint8_t result;
  159. };
  160. struct rpc_msg_get_tensor_req {
  161. rpc_tensor tensor;
  162. uint64_t offset;
  163. uint64_t size;
  164. };
  165. struct rpc_msg_copy_tensor_req {
  166. rpc_tensor src;
  167. rpc_tensor dst;
  168. };
  169. struct rpc_msg_copy_tensor_rsp {
  170. uint8_t result;
  171. };
  172. struct rpc_msg_graph_compute_rsp {
  173. uint8_t result;
  174. };
  175. struct rpc_msg_get_device_memory_req {
  176. uint32_t device;
  177. };
  178. struct rpc_msg_get_device_memory_rsp {
  179. uint64_t free_mem;
  180. uint64_t total_mem;
  181. };
  182. #pragma pack(pop)
  183. // RPC data structures
  184. static ggml_guid_t ggml_backend_rpc_guid() {
  185. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  186. return &guid;
  187. }
  188. struct ggml_backend_rpc_buffer_type_context {
  189. std::string endpoint;
  190. uint32_t device;
  191. std::string name;
  192. size_t alignment;
  193. size_t max_size;
  194. };
  195. struct ggml_backend_rpc_context {
  196. std::string endpoint;
  197. uint32_t device;
  198. std::string name;
  199. };
  200. struct ggml_backend_rpc_buffer_context {
  201. std::shared_ptr<socket_t> sock;
  202. void * base_ptr;
  203. uint64_t remote_ptr;
  204. };
  205. // RPC helper functions
  206. // Computes FNV-1a hash of the data
  207. static uint64_t fnv_hash(const uint8_t * data, size_t len) {
  208. const uint64_t fnv_prime = 0x100000001b3ULL;
  209. uint64_t hash = 0xcbf29ce484222325ULL;
  210. for (size_t i = 0; i < len; ++i) {
  211. hash ^= data[i];
  212. hash *= fnv_prime;
  213. }
  214. return hash;
  215. }
  216. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  217. #ifdef _WIN32
  218. if (fd == INVALID_SOCKET) {
  219. return nullptr;
  220. }
  221. #else
  222. if (fd < 0) {
  223. return nullptr;
  224. }
  225. #endif
  226. return std::make_shared<socket_t>(fd);
  227. }
  228. static bool set_no_delay(sockfd_t sockfd) {
  229. int flag = 1;
  230. // set TCP_NODELAY to disable Nagle's algorithm
  231. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  232. return ret == 0;
  233. }
  234. static bool set_reuse_addr(sockfd_t sockfd) {
  235. int flag = 1;
  236. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  237. return ret == 0;
  238. }
  239. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  240. struct sockaddr_in addr;
  241. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  242. auto sock_ptr = make_socket(sockfd);
  243. if (sock_ptr == nullptr) {
  244. return nullptr;
  245. }
  246. if (!set_no_delay(sockfd)) {
  247. GGML_LOG_ERROR("Failed to set TCP_NODELAY\n");
  248. return nullptr;
  249. }
  250. addr.sin_family = AF_INET;
  251. addr.sin_port = htons(port);
  252. struct hostent * server = gethostbyname(host);
  253. if (server == NULL) {
  254. GGML_LOG_ERROR("Cannot resolve host '%s'\n", host);
  255. return nullptr;
  256. }
  257. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  258. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  259. return nullptr;
  260. }
  261. return sock_ptr;
  262. }
  263. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  264. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  265. auto client_socket = make_socket(client_socket_fd);
  266. if (client_socket == nullptr) {
  267. return nullptr;
  268. }
  269. if (!set_no_delay(client_socket_fd)) {
  270. GGML_LOG_ERROR("Failed to set TCP_NODELAY\n");
  271. return nullptr;
  272. }
  273. return client_socket;
  274. }
  275. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  276. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  277. auto sock = make_socket(sockfd);
  278. if (sock == nullptr) {
  279. return nullptr;
  280. }
  281. if (!set_reuse_addr(sockfd)) {
  282. GGML_LOG_ERROR("Failed to set SO_REUSEADDR\n");
  283. return nullptr;
  284. }
  285. if (inet_addr(host) == INADDR_NONE) {
  286. GGML_LOG_ERROR("Invalid host address: %s\n", host);
  287. return nullptr;
  288. }
  289. struct sockaddr_in serv_addr;
  290. serv_addr.sin_family = AF_INET;
  291. serv_addr.sin_addr.s_addr = inet_addr(host);
  292. serv_addr.sin_port = htons(port);
  293. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  294. return nullptr;
  295. }
  296. if (listen(sockfd, 1) < 0) {
  297. return nullptr;
  298. }
  299. return sock;
  300. }
  301. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  302. size_t bytes_sent = 0;
  303. while (bytes_sent < size) {
  304. size_t size_to_send = std::min(size - bytes_sent, MAX_CHUNK_SIZE);
  305. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size_to_send, 0);
  306. if (n < 0) {
  307. GGML_LOG_ERROR("send failed (bytes_sent=%zu, size_to_send=%zu)\n",
  308. bytes_sent, size_to_send);
  309. return false;
  310. }
  311. bytes_sent += (size_t)n;
  312. }
  313. return true;
  314. }
  315. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  316. size_t bytes_recv = 0;
  317. while (bytes_recv < size) {
  318. size_t size_to_recv = std::min(size - bytes_recv, MAX_CHUNK_SIZE);
  319. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size_to_recv, 0);
  320. if (n < 0) {
  321. GGML_LOG_ERROR("recv failed (bytes_recv=%zu, size_to_recv=%zu)\n",
  322. bytes_recv, size_to_recv);
  323. return false;
  324. }
  325. if (n == 0) {
  326. LOG_DBG("recv returned 0 (peer closed?)\n");
  327. return false;
  328. }
  329. bytes_recv += (size_t)n;
  330. }
  331. return true;
  332. }
  333. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  334. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  335. return false;
  336. }
  337. return send_data(sockfd, msg, msg_size);
  338. }
  339. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  340. uint64_t size;
  341. if (!recv_data(sockfd, &size, sizeof(size))) {
  342. return false;
  343. }
  344. if (size != msg_size) {
  345. return false;
  346. }
  347. return recv_data(sockfd, msg, msg_size);
  348. }
  349. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  350. uint64_t size;
  351. if (!recv_data(sockfd, &size, sizeof(size))) {
  352. return false;
  353. }
  354. try {
  355. input.resize(size);
  356. } catch (const std::bad_alloc & e) {
  357. GGML_LOG_ERROR("Failed to allocate input buffer of size %" PRIu64 "\n", size);
  358. return false;
  359. }
  360. return recv_data(sockfd, input.data(), size);
  361. }
  362. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  363. size_t pos = endpoint.find(':');
  364. if (pos == std::string::npos) {
  365. return false;
  366. }
  367. host = endpoint.substr(0, pos);
  368. port = std::stoi(endpoint.substr(pos + 1));
  369. return true;
  370. }
  371. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  372. // No response
  373. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size) {
  374. uint8_t cmd_byte = cmd;
  375. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  376. return false;
  377. }
  378. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  379. return false;
  380. }
  381. if (!send_data(sock->fd, input, input_size)) {
  382. return false;
  383. }
  384. return true;
  385. }
  386. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  387. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  388. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  389. if (!send_rpc_cmd(sock, cmd, input, input_size)) {
  390. return false;
  391. }
  392. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  393. // even if we do, we can skip sending output_size from the server for commands with known output size
  394. uint64_t out_size;
  395. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  396. return false;
  397. }
  398. if (out_size != output_size) {
  399. return false;
  400. }
  401. if (!recv_data(sock->fd, output, output_size)) {
  402. return false;
  403. }
  404. return true;
  405. }
  406. // RPC client-side implementation
  407. static bool check_server_version(const std::shared_ptr<socket_t> & sock) {
  408. rpc_msg_hello_rsp response;
  409. bool status = send_rpc_cmd(sock, RPC_CMD_HELLO, nullptr, 0, &response, sizeof(response));
  410. RPC_STATUS_ASSERT(status);
  411. if (response.major != RPC_PROTO_MAJOR_VERSION || response.minor > RPC_PROTO_MINOR_VERSION) {
  412. GGML_LOG_ERROR("RPC server version mismatch: %d.%d.%d\n", response.major, response.minor, response.patch);
  413. return false;
  414. }
  415. if (response.minor != RPC_PROTO_MINOR_VERSION || response.patch != RPC_PROTO_PATCH_VERSION) {
  416. GGML_LOG_INFO("WARNING: RPC server version mismatch: %d.%d.%d\n", response.major, response.minor, response.patch);
  417. }
  418. return true;
  419. }
  420. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  421. static std::mutex mutex;
  422. std::lock_guard<std::mutex> lock(mutex);
  423. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  424. static bool initialized = false;
  425. auto it = sockets.find(endpoint);
  426. if (it != sockets.end()) {
  427. if (auto sock = it->second.lock()) {
  428. return sock;
  429. }
  430. }
  431. std::string host;
  432. int port;
  433. if (!parse_endpoint(endpoint, host, port)) {
  434. return nullptr;
  435. }
  436. #ifdef _WIN32
  437. if (!initialized) {
  438. WSADATA wsaData;
  439. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  440. if (res != 0) {
  441. return nullptr;
  442. }
  443. initialized = true;
  444. }
  445. #else
  446. GGML_UNUSED(initialized);
  447. #endif
  448. auto sock = socket_connect(host.c_str(), port);
  449. if (sock == nullptr) {
  450. return nullptr;
  451. }
  452. if (!check_server_version(sock)) {
  453. return nullptr;
  454. }
  455. LOG_DBG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  456. sockets[endpoint] = sock;
  457. return sock;
  458. }
  459. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  460. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  461. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  462. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  463. RPC_STATUS_ASSERT(status);
  464. delete ctx;
  465. }
  466. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  467. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  468. if (ctx->base_ptr != nullptr) {
  469. return ctx->base_ptr;
  470. }
  471. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  472. rpc_msg_buffer_get_base_rsp response;
  473. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  474. RPC_STATUS_ASSERT(status);
  475. ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
  476. return ctx->base_ptr;
  477. }
  478. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  479. rpc_tensor result;
  480. result.id = reinterpret_cast<uint64_t>(tensor);
  481. result.type = tensor->type;
  482. if (tensor->buffer) {
  483. ggml_backend_buffer_t buffer = tensor->buffer;
  484. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  485. result.buffer = ctx->remote_ptr;
  486. } else {
  487. result.buffer = 0;
  488. }
  489. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  490. result.ne[i] = tensor->ne[i];
  491. result.nb[i] = tensor->nb[i];
  492. }
  493. result.op = tensor->op;
  494. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  495. result.op_params[i] = tensor->op_params[i];
  496. }
  497. result.flags = tensor->flags;
  498. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  499. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  500. }
  501. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  502. result.view_offs = tensor->view_offs;
  503. result.data = reinterpret_cast<uint64_t>(tensor->data);
  504. // Avoid sending uninitialized data over the wire
  505. memset(result.name, 0, sizeof(result.name));
  506. memset(result.padding, 0, sizeof(result.padding));
  507. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  508. return result;
  509. }
  510. static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  511. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  512. // CUDA backend on the server pads everything to 512 due to CUDA limitations.
  513. // Due to bandwidth constraints, we only call the server init tensor functions if necessary.
  514. // In particular, only quantized tensors need padding
  515. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  516. rpc_msg_init_tensor_req request;
  517. request.tensor = serialize_tensor(tensor);
  518. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
  519. RPC_STATUS_ASSERT(status);
  520. }
  521. return GGML_STATUS_SUCCESS;
  522. }
  523. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  524. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  525. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  526. if (size > HASH_THRESHOLD) {
  527. rpc_msg_set_tensor_hash_req request;
  528. request.tensor = rpc_tensor;
  529. request.offset = offset;
  530. request.hash = fnv_hash((const uint8_t*)data, size);
  531. rpc_msg_set_tensor_hash_rsp response;
  532. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, &request, sizeof(request), &response, sizeof(response));
  533. RPC_STATUS_ASSERT(status);
  534. if (response.result) {
  535. // the server has the same data, no need to send it
  536. return;
  537. }
  538. }
  539. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
  540. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  541. std::vector<uint8_t> input(input_size, 0);
  542. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  543. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  544. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  545. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size());
  546. RPC_STATUS_ASSERT(status);
  547. }
  548. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  549. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  550. rpc_msg_get_tensor_req request;
  551. request.tensor = serialize_tensor(tensor);
  552. request.offset = offset;
  553. request.size = size;
  554. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  555. RPC_STATUS_ASSERT(status);
  556. }
  557. static bool ggml_backend_buffer_is_rpc(ggml_backend_buffer_t buffer) {
  558. return buffer->iface.free_buffer == ggml_backend_rpc_buffer_free_buffer;
  559. }
  560. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  561. if (ggml_backend_buffer_is_rpc(src->buffer)) {
  562. // check if src and dst are on the same server
  563. ggml_backend_buffer_t src_buffer = src->buffer;
  564. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  565. ggml_backend_buffer_t dst_buffer = dst->buffer;
  566. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  567. if (src_ctx->sock != dst_ctx->sock) {
  568. return false;
  569. }
  570. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  571. rpc_msg_copy_tensor_req request;
  572. request.src = serialize_tensor(src);
  573. request.dst = serialize_tensor(dst);
  574. rpc_msg_copy_tensor_rsp response;
  575. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  576. RPC_STATUS_ASSERT(status);
  577. return response.result;
  578. }
  579. return false;
  580. }
  581. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  582. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  583. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  584. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  585. RPC_STATUS_ASSERT(status);
  586. }
  587. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  588. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  589. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  590. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  591. /* .memset_tensor = */ NULL,
  592. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  593. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  594. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  595. /* .clear = */ ggml_backend_rpc_buffer_clear,
  596. /* .reset = */ NULL,
  597. };
  598. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  599. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  600. return buft_ctx->name.c_str();
  601. }
  602. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  603. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  604. rpc_msg_alloc_buffer_req request = {buft_ctx->device, size};
  605. rpc_msg_alloc_buffer_rsp response;
  606. auto sock = get_socket(buft_ctx->endpoint);
  607. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  608. RPC_STATUS_ASSERT(status);
  609. if (response.remote_ptr != 0) {
  610. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  611. ggml_backend_rpc_buffer_interface,
  612. new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
  613. response.remote_size);
  614. return buffer;
  615. } else {
  616. return nullptr;
  617. }
  618. }
  619. static size_t get_alignment(const std::shared_ptr<socket_t> & sock, uint32_t device) {
  620. rpc_msg_get_alignment_req request = {device};
  621. rpc_msg_get_alignment_rsp response;
  622. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, &request, sizeof(request), &response, sizeof(response));
  623. RPC_STATUS_ASSERT(status);
  624. return response.alignment;
  625. }
  626. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  627. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  628. return buft_ctx->alignment;
  629. }
  630. static size_t get_max_size(const std::shared_ptr<socket_t> & sock, uint32_t device) {
  631. rpc_msg_get_max_size_req request = {device};
  632. rpc_msg_get_max_size_rsp response;
  633. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, &request, sizeof(request), &response, sizeof(response));
  634. RPC_STATUS_ASSERT(status);
  635. return response.max_size;
  636. }
  637. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  638. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  639. return buft_ctx->max_size;
  640. }
  641. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  642. // See comments in init_tensor.
  643. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  644. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  645. auto sock = get_socket(buft_ctx->endpoint);
  646. rpc_msg_get_alloc_size_req request;
  647. request.device = buft_ctx->device;
  648. request.tensor = serialize_tensor(tensor);
  649. rpc_msg_get_alloc_size_rsp response;
  650. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
  651. RPC_STATUS_ASSERT(status);
  652. return response.alloc_size;
  653. } else {
  654. return ggml_nbytes(tensor);
  655. }
  656. }
  657. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  658. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  659. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  660. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  661. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  662. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  663. /* .is_host = */ NULL,
  664. };
  665. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  666. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  667. return rpc_ctx->name.c_str();
  668. }
  669. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  670. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  671. delete rpc_ctx;
  672. delete backend;
  673. }
  674. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  675. GGML_UNUSED(backend);
  676. // this is no-op because we don't have any async operations
  677. }
  678. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  679. if (tensor == nullptr) {
  680. return;
  681. }
  682. if (visited.find(tensor) != visited.end()) {
  683. return;
  684. }
  685. visited.insert(tensor);
  686. for (int i = 0; i < GGML_MAX_SRC; i++) {
  687. add_tensor(tensor->src[i], tensors, visited);
  688. }
  689. add_tensor(tensor->view_src, tensors, visited);
  690. tensors.push_back(serialize_tensor(tensor));
  691. }
  692. static void serialize_graph(uint32_t device, const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  693. uint32_t n_nodes = cgraph->n_nodes;
  694. std::vector<rpc_tensor> tensors;
  695. std::unordered_set<ggml_tensor*> visited;
  696. for (uint32_t i = 0; i < n_nodes; i++) {
  697. add_tensor(cgraph->nodes[i], tensors, visited);
  698. }
  699. // serialization format:
  700. // | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  701. uint32_t n_tensors = tensors.size();
  702. int output_size = 2*sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  703. output.resize(output_size, 0);
  704. uint8_t * dest = output.data();
  705. memcpy(dest, &device, sizeof(device));
  706. dest += sizeof(device);
  707. memcpy(dest, &n_nodes, sizeof(n_nodes));
  708. dest += sizeof(n_nodes);
  709. for (uint32_t i = 0; i < n_nodes; i++) {
  710. memcpy(dest + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  711. }
  712. dest += n_nodes * sizeof(uint64_t);
  713. memcpy(dest, &n_tensors, sizeof(n_tensors));
  714. dest += sizeof(n_tensors);
  715. rpc_tensor * out_tensors = (rpc_tensor *)dest;
  716. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  717. }
  718. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  719. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  720. std::vector<uint8_t> input;
  721. serialize_graph(rpc_ctx->device, cgraph, input);
  722. rpc_msg_graph_compute_rsp response;
  723. auto sock = get_socket(rpc_ctx->endpoint);
  724. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
  725. RPC_STATUS_ASSERT(status);
  726. return (enum ggml_status)response.result;
  727. }
  728. static ggml_backend_i ggml_backend_rpc_interface = {
  729. /* .get_name = */ ggml_backend_rpc_name,
  730. /* .free = */ ggml_backend_rpc_free,
  731. /* .set_tensor_async = */ NULL,
  732. /* .get_tensor_async = */ NULL,
  733. /* .cpy_tensor_async = */ NULL,
  734. /* .synchronize = */ ggml_backend_rpc_synchronize,
  735. /* .graph_plan_create = */ NULL,
  736. /* .graph_plan_free = */ NULL,
  737. /* .graph_plan_update = */ NULL,
  738. /* .graph_plan_compute = */ NULL,
  739. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  740. /* .event_record = */ NULL,
  741. /* .event_wait = */ NULL,
  742. /* .graph_optimize = */ NULL,
  743. };
  744. ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device) {
  745. static std::mutex mutex;
  746. std::lock_guard<std::mutex> lock(mutex);
  747. std::string buft_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
  748. // NOTE: buffer types are allocated and never freed; this is by design
  749. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  750. auto it = buft_map.find(buft_name);
  751. if (it != buft_map.end()) {
  752. return it->second;
  753. }
  754. auto sock = get_socket(endpoint);
  755. if (sock == nullptr) {
  756. GGML_LOG_ERROR("Failed to connect to %s\n", endpoint);
  757. return nullptr;
  758. }
  759. size_t alignment = get_alignment(sock, device);
  760. size_t max_size = get_max_size(sock, device);
  761. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  762. /* .endpoint = */ endpoint,
  763. /* .device = */ device,
  764. /* .name = */ buft_name,
  765. /* .alignment = */ alignment,
  766. /* .max_size = */ max_size
  767. };
  768. auto reg = ggml_backend_rpc_add_server(endpoint);
  769. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  770. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  771. /* .device = */ ggml_backend_reg_dev_get(reg, device),
  772. /* .context = */ buft_ctx
  773. };
  774. buft_map[buft_name] = buft;
  775. return buft;
  776. }
  777. ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device) {
  778. std::string dev_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
  779. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  780. /* .endpoint = */ endpoint,
  781. /* .device = */ device,
  782. /* .name = */ dev_name
  783. };
  784. auto reg = ggml_backend_rpc_add_server(endpoint);
  785. ggml_backend_t backend = new ggml_backend {
  786. /* .guid = */ ggml_backend_rpc_guid(),
  787. /* .iface = */ ggml_backend_rpc_interface,
  788. /* .device = */ ggml_backend_reg_dev_get(reg, device),
  789. /* .context = */ ctx
  790. };
  791. return backend;
  792. }
  793. bool ggml_backend_is_rpc(ggml_backend_t backend) {
  794. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  795. }
  796. static void get_device_memory(const std::shared_ptr<socket_t> & sock, uint32_t device, size_t * free, size_t * total) {
  797. rpc_msg_get_device_memory_req request;
  798. request.device = device;
  799. rpc_msg_get_device_memory_rsp response;
  800. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, &request, sizeof(request), &response, sizeof(response));
  801. RPC_STATUS_ASSERT(status);
  802. *free = response.free_mem;
  803. *total = response.total_mem;
  804. }
  805. void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total) {
  806. auto sock = get_socket(endpoint);
  807. if (sock == nullptr) {
  808. *free = 0;
  809. *total = 0;
  810. return;
  811. }
  812. get_device_memory(sock, device, free, total);
  813. }
  814. // RPC server-side implementation
  815. class rpc_server {
  816. public:
  817. rpc_server(std::vector<ggml_backend_t> backends, const char * cache_dir)
  818. : backends(std::move(backends)), cache_dir(cache_dir) {
  819. }
  820. ~rpc_server();
  821. void hello(rpc_msg_hello_rsp & response);
  822. bool alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  823. bool get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response);
  824. bool get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response);
  825. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  826. bool free_buffer(const rpc_msg_free_buffer_req & request);
  827. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  828. bool set_tensor(const std::vector<uint8_t> & input);
  829. bool set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response);
  830. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  831. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  832. bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
  833. bool init_tensor(const rpc_msg_init_tensor_req & request);
  834. bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
  835. bool get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response);
  836. private:
  837. bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
  838. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  839. ggml_tensor * create_node(uint64_t id,
  840. struct ggml_context * ctx,
  841. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  842. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  843. std::vector<ggml_backend_t> backends;
  844. const char * cache_dir;
  845. std::unordered_set<ggml_backend_buffer_t> buffers;
  846. };
  847. void rpc_server::hello(rpc_msg_hello_rsp & response) {
  848. response.major = RPC_PROTO_MAJOR_VERSION;
  849. response.minor = RPC_PROTO_MINOR_VERSION;
  850. response.patch = RPC_PROTO_PATCH_VERSION;
  851. LOG_DBG("[%s] version: %d.%d.%d\n", __func__, response.major, response.minor, response.patch);
  852. }
  853. bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
  854. uint32_t dev_id = request.device;
  855. if (dev_id >= backends.size()) {
  856. return false;
  857. }
  858. ggml_backend_buffer_type_t buft;
  859. struct ggml_init_params params {
  860. /*.mem_size =*/ ggml_tensor_overhead(),
  861. /*.mem_buffer =*/ NULL,
  862. /*.no_alloc =*/ true,
  863. };
  864. ggml_context_ptr ctx_ptr { ggml_init(params) };
  865. GGML_ASSERT(ctx_ptr != nullptr);
  866. ggml_context * ctx = ctx_ptr.get();
  867. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  868. if (tensor == nullptr) {
  869. GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
  870. return false;
  871. }
  872. LOG_DBG("[%s] device: %d, buffer: %p, data: %p\n", __func__, dev_id, (void*)tensor->buffer, tensor->data);
  873. if (tensor->buffer == nullptr) {
  874. //No buffer allocated.
  875. buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  876. } else {
  877. buft = tensor->buffer->buft;
  878. }
  879. response.alloc_size = ggml_backend_buft_get_alloc_size(buft, tensor);
  880. return true;
  881. }
  882. bool rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  883. uint32_t dev_id = request.device;
  884. if (dev_id >= backends.size()) {
  885. return false;
  886. }
  887. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  888. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  889. response.remote_ptr = 0;
  890. response.remote_size = 0;
  891. if (buffer != nullptr) {
  892. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  893. response.remote_size = buffer->size;
  894. LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n",
  895. __func__, dev_id, request.size, response.remote_ptr, response.remote_size);
  896. buffers.insert(buffer);
  897. } else {
  898. LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> failed\n", __func__, dev_id, request.size);
  899. }
  900. return true;
  901. }
  902. bool rpc_server::get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response) {
  903. uint32_t dev_id = request.device;
  904. if (dev_id >= backends.size()) {
  905. return false;
  906. }
  907. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  908. size_t alignment = ggml_backend_buft_get_alignment(buft);
  909. LOG_DBG("[%s] device: %d, alignment: %lu\n", __func__, dev_id, alignment);
  910. response.alignment = alignment;
  911. return true;
  912. }
  913. bool rpc_server::get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response) {
  914. uint32_t dev_id = request.device;
  915. if (dev_id >= backends.size()) {
  916. return false;
  917. }
  918. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  919. size_t max_size = ggml_backend_buft_get_max_size(buft);
  920. LOG_DBG("[%s] device: %d, max_size: %lu\n", __func__, dev_id, max_size);
  921. response.max_size = max_size;
  922. return true;
  923. }
  924. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  925. LOG_DBG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  926. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  927. if (buffers.find(buffer) == buffers.end()) {
  928. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  929. return false;
  930. }
  931. void * base = ggml_backend_buffer_get_base(buffer);
  932. response.base_ptr = reinterpret_cast<uint64_t>(base);
  933. return true;
  934. }
  935. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  936. LOG_DBG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  937. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  938. if (buffers.find(buffer) == buffers.end()) {
  939. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  940. return false;
  941. }
  942. ggml_backend_buffer_free(buffer);
  943. buffers.erase(buffer);
  944. return true;
  945. }
  946. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  947. LOG_DBG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  948. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  949. if (buffers.find(buffer) == buffers.end()) {
  950. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  951. return false;
  952. }
  953. ggml_backend_buffer_clear(buffer, request.value);
  954. return true;
  955. }
  956. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  957. // Validate tensor type before using it
  958. if (tensor->type >= GGML_TYPE_COUNT) {
  959. GGML_LOG_ERROR("[%s] invalid tensor type received: %u\n", __func__, tensor->type);
  960. return nullptr;
  961. }
  962. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  963. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  964. // ggml_new_tensor_4d might fail if dimensions are invalid, although less likely to crash than invalid type
  965. if (result == nullptr) {
  966. GGML_LOG_ERROR("[%s] ggml_new_tensor_4d failed for type %u\\n", __func__, tensor->type);
  967. return nullptr;
  968. }
  969. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  970. result->nb[i] = tensor->nb[i];
  971. }
  972. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  973. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  974. result->buffer = nullptr;
  975. }
  976. if (result->buffer) {
  977. // require that the tensor data does not go beyond the buffer end
  978. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  979. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  980. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  981. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  982. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  983. }
  984. result->op = (ggml_op) tensor->op;
  985. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  986. result->op_params[i] = tensor->op_params[i];
  987. }
  988. result->flags = tensor->flags;
  989. result->data = reinterpret_cast<void *>(tensor->data);
  990. ggml_set_name(result, tensor->name);
  991. return result;
  992. }
  993. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  994. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  995. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  996. return false;
  997. }
  998. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  999. uint64_t offset;
  1000. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  1001. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  1002. struct ggml_init_params params {
  1003. /*.mem_size =*/ ggml_tensor_overhead(),
  1004. /*.mem_buffer =*/ NULL,
  1005. /*.no_alloc =*/ true,
  1006. };
  1007. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1008. GGML_ASSERT(ctx_ptr != nullptr);
  1009. ggml_context * ctx = ctx_ptr.get();
  1010. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  1011. if (tensor == nullptr || tensor->buffer == nullptr) {
  1012. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1013. return false;
  1014. }
  1015. LOG_DBG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  1016. // sanitize tensor->data
  1017. {
  1018. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1019. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1020. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  1021. GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu) out of buffer bounds [0x%zx, 0x%zx)\n",
  1022. __func__, in_tensor->data, offset, size, p0, p1);
  1023. return false;
  1024. }
  1025. }
  1026. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  1027. if (cache_dir && size > HASH_THRESHOLD) {
  1028. uint64_t hash = fnv_hash((const uint8_t*)data, size);
  1029. char hash_str[17];
  1030. snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
  1031. // save to cache_dir/hash_str
  1032. fs::path cache_file = fs::path(cache_dir) / hash_str;
  1033. std::ofstream ofs(cache_file, std::ios::binary);
  1034. ofs.write((const char *)data, size);
  1035. GGML_LOG_INFO("[%s] saved to '%s'\n", __func__, cache_file.c_str());
  1036. }
  1037. ggml_backend_tensor_set(tensor, data, offset, size);
  1038. return true;
  1039. }
  1040. bool rpc_server::get_cached_file(uint64_t hash, std::vector<uint8_t> & data) {
  1041. if (!cache_dir) {
  1042. return false;
  1043. }
  1044. char hash_str[17];
  1045. snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
  1046. fs::path cache_file = fs::path(cache_dir) / hash_str;
  1047. if (!fs::exists(cache_file)) {
  1048. return false;
  1049. }
  1050. std::ifstream ifs(cache_file, std::ios::binary);
  1051. ifs.seekg(0, std::ios::end);
  1052. size_t size = ifs.tellg();
  1053. ifs.seekg(0, std::ios::beg);
  1054. data.resize(size);
  1055. ifs.read((char *)data.data(), size);
  1056. return true;
  1057. }
  1058. bool rpc_server::set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response)
  1059. {
  1060. std::vector<uint8_t> cached_file;
  1061. if (!get_cached_file(request.hash, cached_file)) {
  1062. response.result = 0;
  1063. return true;
  1064. }
  1065. size_t size = cached_file.size();
  1066. struct ggml_init_params params {
  1067. /*.mem_size =*/ ggml_tensor_overhead(),
  1068. /*.mem_buffer =*/ NULL,
  1069. /*.no_alloc =*/ true,
  1070. };
  1071. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1072. GGML_ASSERT(ctx_ptr != nullptr);
  1073. ggml_context * ctx = ctx_ptr.get();
  1074. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1075. if (tensor == nullptr || tensor->buffer == nullptr) {
  1076. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1077. return false;
  1078. }
  1079. LOG_DBG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n",
  1080. __func__, (void*)tensor->buffer, tensor->data, request.offset, size, request.hash);
  1081. // sanitize tensor->data
  1082. {
  1083. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1084. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1085. if (request.tensor.data + request.offset < p0
  1086. || request.tensor.data + request.offset >= p1
  1087. || size > (p1 - request.tensor.data - request.offset)) {
  1088. GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu, hash=0x%" PRIx64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
  1089. __func__, request.tensor.data, request.offset, size, request.hash, p0, p1);
  1090. return false;
  1091. }
  1092. }
  1093. ggml_backend_tensor_set(tensor, cached_file.data(), request.offset, size);
  1094. response.result = 1;
  1095. return true;
  1096. }
  1097. bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
  1098. struct ggml_init_params params {
  1099. /*.mem_size =*/ ggml_tensor_overhead(),
  1100. /*.mem_buffer =*/ NULL,
  1101. /*.no_alloc =*/ true,
  1102. };
  1103. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1104. GGML_ASSERT(ctx_ptr != nullptr);
  1105. ggml_context * ctx = ctx_ptr.get();
  1106. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1107. if (tensor == nullptr) {
  1108. GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
  1109. return false;
  1110. }
  1111. LOG_DBG("[%s] buffer: %p, data: %p\n", __func__, (void*)tensor->buffer, tensor->data);
  1112. // Call the backend's buffer_init_tensor function
  1113. ggml_backend_buffer_t buffer = tensor->buffer;
  1114. if (buffer && buffer->iface.init_tensor) {
  1115. buffer->iface.init_tensor(buffer, tensor);
  1116. } else {
  1117. GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n");
  1118. }
  1119. if (tensor->extra != nullptr) {
  1120. // This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
  1121. // Currently unimplemented.
  1122. GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
  1123. return false;
  1124. }
  1125. return true;
  1126. }
  1127. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  1128. struct ggml_init_params params {
  1129. /*.mem_size =*/ ggml_tensor_overhead(),
  1130. /*.mem_buffer =*/ NULL,
  1131. /*.no_alloc =*/ true,
  1132. };
  1133. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1134. GGML_ASSERT(ctx_ptr != nullptr);
  1135. ggml_context * ctx = ctx_ptr.get();
  1136. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1137. if (tensor == nullptr || tensor->buffer == nullptr) {
  1138. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1139. return false;
  1140. }
  1141. LOG_DBG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  1142. // sanitize tensor->data
  1143. {
  1144. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1145. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1146. if (request.tensor.data + request.offset < p0 ||
  1147. request.tensor.data + request.offset >= p1 ||
  1148. request.size > (p1 - request.tensor.data - request.offset)) {
  1149. GGML_LOG_ERROR("[%s] requested tensor region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%" PRIu64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
  1150. __func__, request.tensor.data, request.offset, request.size, p0, p1);
  1151. return false;
  1152. }
  1153. }
  1154. response.resize(request.size, 0);
  1155. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  1156. return true;
  1157. }
  1158. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  1159. struct ggml_init_params params {
  1160. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  1161. /*.mem_buffer =*/ NULL,
  1162. /*.no_alloc =*/ true,
  1163. };
  1164. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1165. GGML_ASSERT(ctx_ptr != nullptr);
  1166. ggml_context * ctx = ctx_ptr.get();
  1167. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  1168. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  1169. if (src == nullptr || dst == nullptr || src->buffer == nullptr || dst->buffer == nullptr) {
  1170. GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__);
  1171. return false;
  1172. }
  1173. uint64_t src_size = (uint64_t) ggml_nbytes(src);
  1174. uint64_t dst_data = (uint64_t) dst->data;
  1175. uint64_t dst_base = (uint64_t) ggml_backend_buffer_get_base(dst->buffer);
  1176. uint64_t dst_buf_sz = (uint64_t) ggml_backend_buffer_get_size(dst->buffer);
  1177. if (dst_data + src_size > dst_base + dst_buf_sz) {
  1178. GGML_LOG_ERROR("[%s] out-of-bounds write in rpc_server::copy_tensor:\n"
  1179. " write range : [0x%" PRIx64 ", 0x%" PRIx64 "]\n"
  1180. " buffer base: [0x%" PRIx64 ", 0x%" PRIx64 "]\n",
  1181. __func__,
  1182. dst_data,
  1183. dst_data + src_size,
  1184. dst_base,
  1185. dst_base + dst_buf_sz);
  1186. return false;
  1187. }
  1188. LOG_DBG("[%s] src->buffer: %p, dst->buffer: %p\n",
  1189. __func__, (void*) src->buffer, (void*) dst->buffer);
  1190. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  1191. return true;
  1192. }
  1193. ggml_tensor * rpc_server::create_node(uint64_t id,
  1194. struct ggml_context * ctx,
  1195. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  1196. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  1197. if (tensor_map.find(id) != tensor_map.end()) {
  1198. return tensor_map[id];
  1199. }
  1200. // Safely find the tensor pointer
  1201. auto it_ptr = tensor_ptrs.find(id);
  1202. if (it_ptr == tensor_ptrs.end()) {
  1203. return nullptr;
  1204. }
  1205. const rpc_tensor * tensor = it_ptr->second;
  1206. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  1207. if (result == nullptr) {
  1208. return nullptr;
  1209. }
  1210. tensor_map[id] = result;
  1211. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1212. // Check if the source ID is 0 before calling create_node recursively
  1213. if (tensor->src[i] == 0) {
  1214. result->src[i] = nullptr;
  1215. } else {
  1216. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  1217. // If the recursive call failed for a non-zero ID, propagate the error
  1218. if (result->src[i] == nullptr) {
  1219. GGML_LOG_ERROR("[%s] failed to create source node %d (src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
  1220. __func__, i, tensor->src[i], id);
  1221. // Must return nullptr to signal failure up the call stack
  1222. return nullptr;
  1223. }
  1224. }
  1225. }
  1226. // Handle view_src similarly
  1227. if (tensor->view_src == 0) {
  1228. result->view_src = nullptr;
  1229. } else {
  1230. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  1231. // If the recursive call failed for a non-zero ID, propagate the error
  1232. if (result->view_src == nullptr) {
  1233. GGML_LOG_ERROR("[%s] failed to create view_src node (view_src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
  1234. __func__, tensor->view_src, id);
  1235. // Must return nullptr to signal failure up the call stack
  1236. return nullptr;
  1237. }
  1238. }
  1239. result->view_offs = tensor->view_offs;
  1240. return result;
  1241. }
  1242. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
  1243. // serialization format:
  1244. // | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  1245. if (input.size() < 2*sizeof(uint32_t)) {
  1246. return false;
  1247. }
  1248. const uint8_t * src = input.data();
  1249. uint32_t device;
  1250. memcpy(&device, src, sizeof(device));
  1251. src += sizeof(device);
  1252. if (device >= backends.size()) {
  1253. return false;
  1254. }
  1255. uint32_t n_nodes;
  1256. memcpy(&n_nodes, src, sizeof(n_nodes));
  1257. src += sizeof(n_nodes);
  1258. if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  1259. return false;
  1260. }
  1261. const uint64_t * nodes = (const uint64_t *)src;
  1262. src += n_nodes*sizeof(uint64_t);
  1263. uint32_t n_tensors;
  1264. memcpy(&n_tensors, src, sizeof(n_tensors));
  1265. src += sizeof(n_tensors);
  1266. if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  1267. return false;
  1268. }
  1269. const rpc_tensor * tensors = (const rpc_tensor *)src;
  1270. LOG_DBG("[%s] device: %u, n_nodes: %u, n_tensors: %u\n", __func__, device, n_nodes, n_tensors);
  1271. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  1272. struct ggml_init_params params = {
  1273. /*.mem_size =*/ buf_size,
  1274. /*.mem_buffer =*/ NULL,
  1275. /*.no_alloc =*/ true,
  1276. };
  1277. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1278. GGML_ASSERT(ctx_ptr != nullptr);
  1279. ggml_context * ctx = ctx_ptr.get();
  1280. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  1281. graph->n_nodes = n_nodes;
  1282. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  1283. for (uint32_t i = 0; i < n_tensors; i++) {
  1284. tensor_ptrs[tensors[i].id] = &tensors[i];
  1285. }
  1286. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  1287. for (uint32_t i = 0; i < n_nodes; i++) {
  1288. int64_t id;
  1289. memcpy(&id, &nodes[i], sizeof(id));
  1290. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  1291. // Check if create_node failed for a *non-zero* ID.
  1292. // If id was 0, create_node returning nullptr is expected.
  1293. // If id was non-zero and create_node returned nullptr, it indicates a deserialization error.
  1294. if (graph->nodes[i] == nullptr && id != 0) {
  1295. GGML_LOG_ERROR("[%s] failed to create graph node %d (id=%" PRId64 ")\n", __func__, i, id);
  1296. return false;
  1297. }
  1298. }
  1299. ggml_status status = ggml_backend_graph_compute(backends[device], graph);
  1300. response.result = status;
  1301. return true;
  1302. }
  1303. bool rpc_server::get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response) {
  1304. uint32_t dev_id = request.device;
  1305. if (dev_id >= backends.size()) {
  1306. return false;
  1307. }
  1308. size_t free, total;
  1309. ggml_backend_dev_t dev = ggml_backend_get_device(backends[dev_id]);
  1310. ggml_backend_dev_memory(dev, &free, &total);
  1311. response.free_mem = free;
  1312. response.total_mem = total;
  1313. LOG_DBG("[%s] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", __func__, dev_id, response.free_mem, response.total_mem);
  1314. return true;
  1315. }
  1316. rpc_server::~rpc_server() {
  1317. for (auto buffer : buffers) {
  1318. ggml_backend_buffer_free(buffer);
  1319. }
  1320. }
  1321. static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir,
  1322. sockfd_t sockfd) {
  1323. rpc_server server(backends, cache_dir);
  1324. uint8_t cmd;
  1325. if (!recv_data(sockfd, &cmd, 1)) {
  1326. return;
  1327. }
  1328. // the first command sent by the client must be HELLO
  1329. if (cmd != RPC_CMD_HELLO) {
  1330. GGML_LOG_ERROR("Expected HELLO command, update client\n");
  1331. return;
  1332. }
  1333. if (!recv_msg(sockfd, nullptr, 0)) {
  1334. return;
  1335. }
  1336. rpc_msg_hello_rsp response;
  1337. server.hello(response);
  1338. if (!send_msg(sockfd, &response, sizeof(response))) {
  1339. return;
  1340. }
  1341. while (true) {
  1342. if (!recv_data(sockfd, &cmd, 1)) {
  1343. break;
  1344. }
  1345. if (cmd >= RPC_CMD_COUNT) {
  1346. // fail fast if the command is invalid
  1347. GGML_LOG_ERROR("Unknown command: %d\n", cmd);
  1348. break;
  1349. }
  1350. switch (cmd) {
  1351. case RPC_CMD_HELLO: {
  1352. // HELLO command is handled above
  1353. return;
  1354. }
  1355. case RPC_CMD_DEVICE_COUNT: {
  1356. if (!recv_msg(sockfd, nullptr, 0)) {
  1357. return;
  1358. }
  1359. rpc_msg_device_count_rsp response;
  1360. response.device_count = backends.size();
  1361. if (!send_msg(sockfd, &response, sizeof(response))) {
  1362. return;
  1363. }
  1364. break;
  1365. }
  1366. case RPC_CMD_ALLOC_BUFFER: {
  1367. rpc_msg_alloc_buffer_req request;
  1368. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1369. return;
  1370. }
  1371. rpc_msg_alloc_buffer_rsp response;
  1372. if (!server.alloc_buffer(request, response)) {
  1373. return;
  1374. }
  1375. if (!send_msg(sockfd, &response, sizeof(response))) {
  1376. return;
  1377. }
  1378. break;
  1379. }
  1380. case RPC_CMD_GET_ALLOC_SIZE: {
  1381. rpc_msg_get_alloc_size_req request;
  1382. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1383. return;
  1384. }
  1385. rpc_msg_get_alloc_size_rsp response;
  1386. if (!server.get_alloc_size(request, response)) {
  1387. return;
  1388. }
  1389. if (!send_msg(sockfd, &response, sizeof(response))) {
  1390. return;
  1391. }
  1392. break;
  1393. }
  1394. case RPC_CMD_GET_ALIGNMENT: {
  1395. rpc_msg_get_alignment_req request;
  1396. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1397. return;
  1398. }
  1399. rpc_msg_get_alignment_rsp response;
  1400. if (!server.get_alignment(request, response)) {
  1401. return;
  1402. }
  1403. if (!send_msg(sockfd, &response, sizeof(response))) {
  1404. return;
  1405. }
  1406. break;
  1407. }
  1408. case RPC_CMD_GET_MAX_SIZE: {
  1409. rpc_msg_get_max_size_req request;
  1410. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1411. return;
  1412. }
  1413. rpc_msg_get_max_size_rsp response;
  1414. if (!server.get_max_size(request, response)) {
  1415. return;
  1416. }
  1417. if (!send_msg(sockfd, &response, sizeof(response))) {
  1418. return;
  1419. }
  1420. break;
  1421. }
  1422. case RPC_CMD_BUFFER_GET_BASE: {
  1423. rpc_msg_buffer_get_base_req request;
  1424. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1425. return;
  1426. }
  1427. rpc_msg_buffer_get_base_rsp response;
  1428. if (!server.buffer_get_base(request, response)) {
  1429. return;
  1430. }
  1431. if (!send_msg(sockfd, &response, sizeof(response))) {
  1432. return;
  1433. }
  1434. break;
  1435. }
  1436. case RPC_CMD_FREE_BUFFER: {
  1437. rpc_msg_free_buffer_req request;
  1438. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1439. return;
  1440. }
  1441. if (!server.free_buffer(request)) {
  1442. return;
  1443. }
  1444. if (!send_msg(sockfd, nullptr, 0)) {
  1445. return;
  1446. }
  1447. break;
  1448. }
  1449. case RPC_CMD_BUFFER_CLEAR: {
  1450. rpc_msg_buffer_clear_req request;
  1451. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1452. return;
  1453. }
  1454. if (!server.buffer_clear(request)) {
  1455. return;
  1456. }
  1457. if (!send_msg(sockfd, nullptr, 0)) {
  1458. return;
  1459. }
  1460. break;
  1461. }
  1462. case RPC_CMD_SET_TENSOR: {
  1463. std::vector<uint8_t> input;
  1464. if (!recv_msg(sockfd, input)) {
  1465. return;
  1466. }
  1467. if (!server.set_tensor(input)) {
  1468. return;
  1469. }
  1470. break;
  1471. }
  1472. case RPC_CMD_SET_TENSOR_HASH: {
  1473. rpc_msg_set_tensor_hash_req request;
  1474. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1475. return;
  1476. }
  1477. rpc_msg_set_tensor_hash_rsp response;
  1478. if (!server.set_tensor_hash(request, response)) {
  1479. return;
  1480. }
  1481. if (!send_msg(sockfd, &response, sizeof(response))) {
  1482. return;
  1483. }
  1484. break;
  1485. }
  1486. case RPC_CMD_INIT_TENSOR: {
  1487. rpc_msg_init_tensor_req request;
  1488. if (!recv_msg(sockfd, &request,sizeof(request))) {
  1489. return;
  1490. }
  1491. if (!server.init_tensor(request)) {
  1492. return;
  1493. }
  1494. if (!send_msg(sockfd, nullptr, 0)) {
  1495. return;
  1496. }
  1497. break;
  1498. }
  1499. case RPC_CMD_GET_TENSOR: {
  1500. rpc_msg_get_tensor_req request;
  1501. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1502. return;
  1503. }
  1504. std::vector<uint8_t> response;
  1505. if (!server.get_tensor(request, response)) {
  1506. return;
  1507. }
  1508. if (!send_msg(sockfd, response.data(), response.size())) {
  1509. return;
  1510. }
  1511. break;
  1512. }
  1513. case RPC_CMD_COPY_TENSOR: {
  1514. rpc_msg_copy_tensor_req request;
  1515. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1516. return;
  1517. }
  1518. rpc_msg_copy_tensor_rsp response;
  1519. if (!server.copy_tensor(request, response)) {
  1520. return;
  1521. }
  1522. if (!send_msg(sockfd, &response, sizeof(response))) {
  1523. return;
  1524. }
  1525. break;
  1526. }
  1527. case RPC_CMD_GRAPH_COMPUTE: {
  1528. std::vector<uint8_t> input;
  1529. if (!recv_msg(sockfd, input)) {
  1530. return;
  1531. }
  1532. rpc_msg_graph_compute_rsp response;
  1533. if (!server.graph_compute(input, response)) {
  1534. return;
  1535. }
  1536. if (!send_msg(sockfd, &response, sizeof(response))) {
  1537. return;
  1538. }
  1539. break;
  1540. }
  1541. case RPC_CMD_GET_DEVICE_MEMORY: {
  1542. rpc_msg_get_device_memory_req request;
  1543. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1544. return;
  1545. }
  1546. rpc_msg_get_device_memory_rsp response;
  1547. if (!server.get_device_memory(request, response)) {
  1548. return;
  1549. }
  1550. if (!send_msg(sockfd, &response, sizeof(response))) {
  1551. return;
  1552. }
  1553. break;
  1554. }
  1555. default: {
  1556. GGML_LOG_ERROR("Unknown command: %d\n", cmd);
  1557. return;
  1558. }
  1559. }
  1560. }
  1561. }
  1562. void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
  1563. size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices) {
  1564. if (n_devices == 0 || devices == nullptr) {
  1565. fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n");
  1566. return;
  1567. }
  1568. std::vector<ggml_backend_t> backends;
  1569. printf("Starting RPC server v%d.%d.%d\n",
  1570. RPC_PROTO_MAJOR_VERSION,
  1571. RPC_PROTO_MINOR_VERSION,
  1572. RPC_PROTO_PATCH_VERSION);
  1573. printf(" endpoint : %s\n", endpoint);
  1574. printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
  1575. printf("Devices:\n");
  1576. for (size_t i = 0; i < n_devices; i++) {
  1577. auto dev = devices[i];
  1578. size_t free, total;
  1579. ggml_backend_dev_memory(dev, &free, &total);
  1580. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
  1581. total / 1024 / 1024, free / 1024 / 1024);
  1582. auto backend = ggml_backend_dev_init(dev, nullptr);
  1583. if (!backend) {
  1584. fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev));
  1585. return;
  1586. }
  1587. backends.push_back(backend);
  1588. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  1589. if (reg) {
  1590. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  1591. if (ggml_backend_set_n_threads_fn) {
  1592. ggml_backend_set_n_threads_fn(backend, n_threads);
  1593. }
  1594. }
  1595. }
  1596. std::string host;
  1597. int port;
  1598. if (!parse_endpoint(endpoint, host, port)) {
  1599. return;
  1600. }
  1601. #ifdef _WIN32
  1602. {
  1603. WSADATA wsaData;
  1604. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1605. if (res != 0) {
  1606. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1607. return;
  1608. }
  1609. }
  1610. #endif
  1611. auto server_socket = create_server_socket(host.c_str(), port);
  1612. if (server_socket == nullptr) {
  1613. fprintf(stderr, "Failed to create server socket\n");
  1614. return;
  1615. }
  1616. while (true) {
  1617. auto client_socket = socket_accept(server_socket->fd);
  1618. if (client_socket == nullptr) {
  1619. fprintf(stderr, "Failed to accept client connection\n");
  1620. return;
  1621. }
  1622. printf("Accepted client connection\n");
  1623. fflush(stdout);
  1624. rpc_serve_client(backends, cache_dir, client_socket->fd);
  1625. printf("Client connection closed\n");
  1626. fflush(stdout);
  1627. }
  1628. #ifdef _WIN32
  1629. WSACleanup();
  1630. #endif
  1631. for (auto backend : backends) {
  1632. ggml_backend_free(backend);
  1633. }
  1634. }
  1635. // device interface
  1636. struct ggml_backend_rpc_device_context {
  1637. std::string endpoint;
  1638. uint32_t device;
  1639. std::string name;
  1640. std::string description;
  1641. };
  1642. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1643. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1644. return ctx->name.c_str();
  1645. }
  1646. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1647. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1648. return ctx->description.c_str();
  1649. }
  1650. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1651. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1652. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), ctx->device, free, total);
  1653. }
  1654. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1655. // TODO: obtain value from the server
  1656. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1657. GGML_UNUSED(dev);
  1658. }
  1659. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1660. props->name = ggml_backend_rpc_device_get_name(dev);
  1661. props->description = ggml_backend_rpc_device_get_description(dev);
  1662. props->type = ggml_backend_rpc_device_get_type(dev);
  1663. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1664. props->caps = {
  1665. /* .async = */ false,
  1666. /* .host_buffer = */ false,
  1667. /* .buffer_from_host_ptr = */ false,
  1668. /* .events = */ false,
  1669. };
  1670. }
  1671. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1672. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1673. return ggml_backend_rpc_init(ctx->endpoint.c_str(), ctx->device);
  1674. GGML_UNUSED(params);
  1675. }
  1676. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1677. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1678. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str(), ctx->device);
  1679. GGML_UNUSED(dev);
  1680. }
  1681. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1682. GGML_UNUSED(dev);
  1683. GGML_UNUSED(op);
  1684. //TODO: call the remote backend and cache the results
  1685. return true;
  1686. }
  1687. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1688. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1689. return false;
  1690. }
  1691. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1692. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1693. return buft_ctx->endpoint == dev_ctx->endpoint && buft_ctx->device == dev_ctx->device;
  1694. }
  1695. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1696. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1697. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1698. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1699. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1700. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1701. /* .init_backend = */ ggml_backend_rpc_device_init,
  1702. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1703. /* .get_host_buffer_type = */ NULL,
  1704. /* .buffer_from_host_ptr = */ NULL,
  1705. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1706. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1707. /* .offload_op = */ NULL,
  1708. /* .event_new = */ NULL,
  1709. /* .event_free = */ NULL,
  1710. /* .event_synchronize = */ NULL,
  1711. };
  1712. // backend reg interface
  1713. struct ggml_backend_rpc_reg_context {
  1714. std::string name;
  1715. std::vector<ggml_backend_dev_t> devices;
  1716. };
  1717. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1718. ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
  1719. return ctx ? ctx->name.c_str() : "RPC";
  1720. }
  1721. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1722. ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
  1723. return ctx ? ctx->devices.size() : 0;
  1724. }
  1725. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1726. ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
  1727. if (ctx == nullptr) {
  1728. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_rpc_add_server instead");
  1729. } else {
  1730. GGML_ASSERT(index < ctx->devices.size());
  1731. return ctx->devices[index];
  1732. }
  1733. }
  1734. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1735. if (std::strcmp(name, "ggml_backend_rpc_add_server") == 0) {
  1736. return (void *)ggml_backend_rpc_add_server;
  1737. }
  1738. if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
  1739. return (void *)ggml_backend_rpc_start_server;
  1740. }
  1741. return NULL;
  1742. GGML_UNUSED(reg);
  1743. }
  1744. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1745. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1746. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1747. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1748. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1749. };
  1750. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1751. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1752. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1753. /* .iface = */ ggml_backend_rpc_reg_i,
  1754. /* .context = */ NULL,
  1755. };
  1756. return &ggml_backend_rpc_reg;
  1757. }
  1758. static uint32_t ggml_backend_rpc_get_device_count(const char * endpoint) {
  1759. auto sock = get_socket(endpoint);
  1760. rpc_msg_device_count_rsp response;
  1761. bool status = send_rpc_cmd(sock, RPC_CMD_DEVICE_COUNT, nullptr, 0, &response, sizeof(response));
  1762. RPC_STATUS_ASSERT(status);
  1763. return response.device_count;
  1764. }
  1765. static const ggml_backend_reg_i ggml_backend_rpc_reg_interface = {
  1766. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1767. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1768. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1769. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1770. };
  1771. ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint) {
  1772. static std::unordered_map<std::string, ggml_backend_reg_t> reg_map;
  1773. static std::mutex mutex;
  1774. static uint32_t dev_id = 0;
  1775. std::lock_guard<std::mutex> lock(mutex);
  1776. if (reg_map.find(endpoint) != reg_map.end()) {
  1777. return reg_map[endpoint];
  1778. }
  1779. uint32_t dev_count = ggml_backend_rpc_get_device_count(endpoint);
  1780. if (dev_count == 0) {
  1781. return nullptr;
  1782. }
  1783. ggml_backend_rpc_reg_context * ctx = new ggml_backend_rpc_reg_context;
  1784. ctx->name = "RPC[" + std::string(endpoint) + "]";
  1785. for (uint32_t ind = 0; ind < dev_count; ind++) {
  1786. std::string dev_name = "RPC" + std::to_string(dev_id);
  1787. std::string dev_desc = std::string(endpoint);
  1788. ggml_backend_rpc_device_context * dev_ctx = new ggml_backend_rpc_device_context {
  1789. /* .endpoint = */ endpoint,
  1790. /* .device = */ ind,
  1791. /* .name = */ dev_name,
  1792. /* .description = */ dev_desc
  1793. };
  1794. ggml_backend_dev_t dev = new ggml_backend_device {
  1795. /* .iface = */ ggml_backend_rpc_device_i,
  1796. /* .reg = */ ggml_backend_rpc_reg(),
  1797. /* .context = */ dev_ctx,
  1798. };
  1799. ctx->devices.push_back(dev);
  1800. dev_id++;
  1801. }
  1802. ggml_backend_reg_t reg = new ggml_backend_reg {
  1803. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1804. /* .iface = */ ggml_backend_rpc_reg_interface,
  1805. /* .context = */ ctx
  1806. };
  1807. reg_map[endpoint] = reg;
  1808. return reg;
  1809. }
  1810. GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)