| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157 |
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
- #include "clip.h"
- #include "clip-impl.h"
- #include "ggml.h"
- #include "ggml-cpp.h"
- #include "ggml-cpu.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "gguf.h"
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <unordered_set>
- #include <vector>
- #include <sstream>
- #include <cinttypes>
- #include <limits>
- #include <array>
- #include <numeric>
- #include <functional>
- struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
- enum ffn_op_type {
- FFN_GELU,
- FFN_GELU_ERF,
- FFN_SILU,
- FFN_GELU_QUICK,
- };
- enum norm_type {
- NORM_TYPE_NORMAL,
- NORM_TYPE_RMS,
- };
- //#define CLIP_DEBUG_FUNCTIONS
- #ifdef CLIP_DEBUG_FUNCTIONS
- static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- // PPM header: P6 format, width, height, and max color value
- file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
- // Write pixel data
- for (size_t i = 0; i < img.buf.size(); i += 3) {
- // PPM expects binary data in RGB format, which matches our image buffer
- file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
- }
- file.close();
- }
- static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
- int bytesPerPixel = 3;
- int widthInBytes = img.nx * bytesPerPixel;
- int paddingAmount = (4 - (widthInBytes % 4)) % 4;
- int stride = widthInBytes + paddingAmount;
- // Bitmap file header
- unsigned char fileHeader[14] = {
- 'B','M', // Signature
- 0,0,0,0, // Image file size in bytes
- 0,0,0,0, // Reserved
- 54,0,0,0 // Start of pixel array
- };
- // Total file size
- fileSize = 54 + (stride * img.ny);
- fileHeader[2] = (unsigned char)(fileSize);
- fileHeader[3] = (unsigned char)(fileSize >> 8);
- fileHeader[4] = (unsigned char)(fileSize >> 16);
- fileHeader[5] = (unsigned char)(fileSize >> 24);
- // Bitmap information header (BITMAPINFOHEADER)
- unsigned char infoHeader[40] = {
- 40,0,0,0, // Size of this header (40 bytes)
- 0,0,0,0, // Image width
- 0,0,0,0, // Image height
- 1,0, // Number of color planes
- 24,0, // Bits per pixel
- 0,0,0,0, // No compression
- 0,0,0,0, // Image size (can be 0 for no compression)
- 0,0,0,0, // X pixels per meter (not specified)
- 0,0,0,0, // Y pixels per meter (not specified)
- 0,0,0,0, // Total colors (color table not used)
- 0,0,0,0 // Important colors (all are important)
- };
- // Width and height in the information header
- infoHeader[4] = (unsigned char)(img.nx);
- infoHeader[5] = (unsigned char)(img.nx >> 8);
- infoHeader[6] = (unsigned char)(img.nx >> 16);
- infoHeader[7] = (unsigned char)(img.nx >> 24);
- infoHeader[8] = (unsigned char)(img.ny);
- infoHeader[9] = (unsigned char)(img.ny >> 8);
- infoHeader[10] = (unsigned char)(img.ny >> 16);
- infoHeader[11] = (unsigned char)(img.ny >> 24);
- // Write file headers
- file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
- file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
- // Pixel data
- std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
- for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
- for (int x = 0; x < img.nx; ++x) {
- // Each pixel
- size_t pixelIndex = (y * img.nx + x) * 3;
- unsigned char pixel[3] = {
- img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
- img.buf[pixelIndex + 1],
- img.buf[pixelIndex]
- };
- file.write(reinterpret_cast<char*>(pixel), 3);
- }
- // Write padding for the row
- file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
- }
- file.close();
- }
- // debug function to convert f32 to u8
- static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(3 * src.nx * src.ny);
- for (size_t i = 0; i < src.buf.size(); ++i) {
- dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
- }
- }
- #endif
- //
- // clip layers
- //
- enum patch_merge_type {
- PATCH_MERGE_FLAT,
- PATCH_MERGE_SPATIAL_UNPAD,
- };
- struct clip_hparams {
- int32_t image_size;
- int32_t patch_size;
- int32_t n_embd;
- int32_t n_ff;
- int32_t projection_dim;
- int32_t n_head;
- int32_t n_layer;
- int32_t proj_scale_factor = 0; // idefics3
- float image_mean[3];
- float image_std[3];
- // for models using dynamic image size, we need to have a smaller image size to warmup
- // otherwise, user will get OOM everytime they load the model
- int32_t warmup_image_size = 0;
- int32_t warmup_audio_size = 3000;
- ffn_op_type ffn_op = FFN_GELU;
- patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
- float eps = 1e-6;
- float rope_theta = 0.0;
- std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
- int32_t image_crop_resolution;
- std::unordered_set<int32_t> vision_feature_layer;
- int32_t attn_window_size = 0;
- int32_t n_wa_pattern = 0;
- int32_t spatial_merge_size = 0;
- // audio
- int32_t n_mel_bins = 0; // whisper preprocessor
- int32_t proj_stack_factor = 0; // ultravox
- // legacy
- bool has_llava_projector = false;
- int minicpmv_version = 0;
- };
- struct clip_layer {
- // attention
- ggml_tensor * k_w = nullptr;
- ggml_tensor * k_b = nullptr;
- ggml_tensor * q_w = nullptr;
- ggml_tensor * q_b = nullptr;
- ggml_tensor * v_w = nullptr;
- ggml_tensor * v_b = nullptr;
- ggml_tensor * o_w = nullptr;
- ggml_tensor * o_b = nullptr;
- ggml_tensor * k_norm = nullptr;
- ggml_tensor * q_norm = nullptr;
- // layernorm 1
- ggml_tensor * ln_1_w = nullptr;
- ggml_tensor * ln_1_b = nullptr;
- ggml_tensor * ff_up_w = nullptr;
- ggml_tensor * ff_up_b = nullptr;
- ggml_tensor * ff_gate_w = nullptr;
- ggml_tensor * ff_gate_b = nullptr;
- ggml_tensor * ff_down_w = nullptr;
- ggml_tensor * ff_down_b = nullptr;
- // layernorm 2
- ggml_tensor * ln_2_w = nullptr;
- ggml_tensor * ln_2_b = nullptr;
- // layer scale (no bias)
- ggml_tensor * ls_1_w = nullptr;
- ggml_tensor * ls_2_w = nullptr;
- };
- struct clip_model {
- clip_modality modality = CLIP_MODALITY_VISION;
- projector_type proj_type = PROJECTOR_TYPE_MLP;
- clip_hparams hparams;
- // embeddings
- ggml_tensor * class_embedding = nullptr;
- ggml_tensor * patch_embeddings_0 = nullptr;
- ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
- ggml_tensor * patch_bias = nullptr;
- ggml_tensor * position_embeddings = nullptr;
- ggml_tensor * pre_ln_w = nullptr;
- ggml_tensor * pre_ln_b = nullptr;
- std::vector<clip_layer> layers;
- ggml_tensor * post_ln_w;
- ggml_tensor * post_ln_b;
- ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
- ggml_tensor * mm_fc_w;
- ggml_tensor * mm_fc_b;
- // LLaVA projection
- ggml_tensor * mm_input_norm_w = nullptr;
- ggml_tensor * mm_0_w = nullptr;
- ggml_tensor * mm_0_b = nullptr;
- ggml_tensor * mm_2_w = nullptr;
- ggml_tensor * mm_2_b = nullptr;
- ggml_tensor * image_newline = nullptr;
- // Yi type models with mlp+normalization projection
- ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
- ggml_tensor * mm_1_b = nullptr;
- ggml_tensor * mm_3_w = nullptr;
- ggml_tensor * mm_3_b = nullptr;
- ggml_tensor * mm_4_w = nullptr;
- ggml_tensor * mm_4_b = nullptr;
- // GLMV-Edge projection
- ggml_tensor * mm_model_adapter_conv_w = nullptr;
- ggml_tensor * mm_model_adapter_conv_b = nullptr;
- ggml_tensor * mm_glm_tok_boi = nullptr;
- ggml_tensor * mm_glm_tok_eoi = nullptr;
- // MobileVLM projection
- ggml_tensor * mm_model_mlp_1_w = nullptr;
- ggml_tensor * mm_model_mlp_1_b = nullptr;
- ggml_tensor * mm_model_mlp_3_w = nullptr;
- ggml_tensor * mm_model_mlp_3_b = nullptr;
- ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
- ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
- ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
- ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
- ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
- ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
- ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
- ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
- ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
- ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
- ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
- ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
- // MobileVLM_V2 projection
- ggml_tensor * mm_model_mlp_0_w = nullptr;
- ggml_tensor * mm_model_mlp_0_b = nullptr;
- ggml_tensor * mm_model_mlp_2_w = nullptr;
- ggml_tensor * mm_model_mlp_2_b = nullptr;
- ggml_tensor * mm_model_peg_0_w = nullptr;
- ggml_tensor * mm_model_peg_0_b = nullptr;
- // MINICPMV projection
- ggml_tensor * mm_model_pos_embed_k = nullptr;
- ggml_tensor * mm_model_query = nullptr;
- ggml_tensor * mm_model_proj = nullptr;
- ggml_tensor * mm_model_kv_proj = nullptr;
- ggml_tensor * mm_model_attn_q_w = nullptr;
- ggml_tensor * mm_model_attn_q_b = nullptr;
- ggml_tensor * mm_model_attn_k_w = nullptr;
- ggml_tensor * mm_model_attn_k_b = nullptr;
- ggml_tensor * mm_model_attn_v_w = nullptr;
- ggml_tensor * mm_model_attn_v_b = nullptr;
- ggml_tensor * mm_model_attn_o_w = nullptr;
- ggml_tensor * mm_model_attn_o_b = nullptr;
- ggml_tensor * mm_model_ln_q_w = nullptr;
- ggml_tensor * mm_model_ln_q_b = nullptr;
- ggml_tensor * mm_model_ln_kv_w = nullptr;
- ggml_tensor * mm_model_ln_kv_b = nullptr;
- ggml_tensor * mm_model_ln_post_w = nullptr;
- ggml_tensor * mm_model_ln_post_b = nullptr;
- // gemma3
- ggml_tensor * mm_input_proj_w = nullptr;
- ggml_tensor * mm_soft_emb_norm_w = nullptr;
- // pixtral
- ggml_tensor * token_embd_img_break = nullptr;
- ggml_tensor * mm_patch_merger_w = nullptr;
- // ultravox / whisper encoder
- ggml_tensor * conv1d_1_w = nullptr;
- ggml_tensor * conv1d_1_b = nullptr;
- ggml_tensor * conv1d_2_w = nullptr;
- ggml_tensor * conv1d_2_b = nullptr;
- ggml_tensor * mm_norm_pre_w = nullptr;
- ggml_tensor * mm_norm_mid_w = nullptr;
- };
- struct clip_ctx {
- clip_model model;
- gguf_context_ptr ctx_gguf;
- ggml_context_ptr ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- std::vector<ggml_backend_t> backend_ptrs;
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- ggml_backend_t backend;
- ggml_backend_t backend_cpu;
- ggml_backend_buffer_ptr buf;
- int max_nodes = 8192;
- ggml_backend_sched_ptr sched;
- // for debugging
- bool debug_graph = false;
- std::vector<ggml_tensor *> debug_print_tensors;
- clip_ctx(clip_context_params & ctx_params) {
- debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
- backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
- if (!backend_cpu) {
- throw std::runtime_error("failed to initialize CPU backend");
- }
- backend = ctx_params.use_gpu
- ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
- : nullptr;
- if (backend) {
- LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
- backend_ptrs.push_back(backend);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- } else {
- backend = backend_cpu;
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
- }
- backend_ptrs.push_back(backend_cpu);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
- sched.reset(
- ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
- );
- }
- ~clip_ctx() {
- ggml_backend_free(backend);
- if (backend != backend_cpu) {
- ggml_backend_free(backend_cpu);
- }
- }
- // this function is added so that we don't change too much of the existing code
- projector_type proj_type() const {
- return model.proj_type;
- }
- };
- struct clip_graph {
- clip_ctx * ctx;
- const clip_model & model;
- const clip_hparams & hparams;
- // we only support single image per batch
- const clip_image_f32 & img;
- const int patch_size;
- const int n_patches_x;
- const int n_patches_y;
- const int n_patches;
- const int n_embd;
- const int n_head;
- const int d_head;
- const int n_layer;
- const float eps;
- const float kq_scale;
- ggml_context_ptr ctx0_ptr;
- ggml_context * ctx0;
- ggml_cgraph * gf;
- clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
- ctx(ctx),
- model(ctx->model),
- hparams(model.hparams),
- img(img),
- patch_size(hparams.patch_size),
- n_patches_x(img.nx / patch_size),
- n_patches_y(img.ny / patch_size),
- n_patches(n_patches_x * n_patches_y),
- n_embd(hparams.n_embd),
- n_head(hparams.n_head),
- d_head(n_embd / n_head),
- n_layer(hparams.n_layer),
- eps(hparams.eps),
- kq_scale(1.0f / sqrtf((float)d_head)) {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ctx0_ptr.reset(ggml_init(params));
- ctx0 = ctx0_ptr.get();
- gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
- }
- ggml_cgraph * build_siglip() {
- ggml_tensor * inp = build_inp();
- ggml_tensor * cur = build_vit(
- inp, n_patches,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- model.position_embeddings,
- nullptr);
- if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
- const int batch_size = 1;
- GGML_ASSERT(n_patches_x == n_patches_y);
- const int patches_per_image = n_patches_x;
- const int kernel_size = hparams.proj_scale_factor;
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
- // doing a pool2d to reduce the number of output tokens
- cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- // apply norm before projection
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
- // apply projection
- cur = ggml_mul_mat(ctx0,
- ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
- cur);
- } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
- // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
- const int scale_factor = model.hparams.proj_scale_factor;
- const int n_embd = cur->ne[0];
- const int seq = cur->ne[1];
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- const int height = std::sqrt(seq);
- const int width = std::sqrt(seq);
- GGML_ASSERT(scale_factor != 0);
- cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- height / scale_factor,
- width / scale_factor,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- seq / (scale_factor * scale_factor),
- bsz);
- cur = ggml_mul_mat(ctx0, model.projection, cur);
- } else {
- GGML_ABORT("SigLIP: Unsupported projector type");
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- ggml_cgraph * build_pixtral() {
- const int n_merge = hparams.spatial_merge_size;
- // 2D input positions
- ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
- return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
- };
- ggml_tensor * inp = build_inp();
- ggml_tensor * cur = build_vit(
- inp, n_patches,
- NORM_TYPE_RMS,
- hparams.ffn_op,
- nullptr, // no learned pos embd
- add_pos);
- // mistral small 3.1 patch merger
- // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
- if (model.mm_patch_merger_w) {
- GGML_ASSERT(hparams.spatial_merge_size > 0);
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
- // reshape image tokens to 2D grid
- cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
- cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
- cur = ggml_cont(ctx0, cur);
- // torch.nn.functional.unfold is just an im2col under the hood
- // we just need a dummy kernel to make it work
- ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
- cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
- // project to n_embd
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
- cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
- }
- // LlavaMultiModalProjector (always using GELU activation)
- {
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- if (model.mm_1_b) {
- cur = ggml_add(ctx0, cur, model.mm_1_b);
- }
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- if (model.mm_2_b) {
- cur = ggml_add(ctx0, cur, model.mm_2_b);
- }
- }
- // arrangement of the [IMG_BREAK] token
- {
- // not efficient, but works
- // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
- // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
- // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
- const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
- const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
- const int p_total = p_x * p_y;
- const int n_embd_text = cur->ne[0];
- const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
- ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
- ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
- tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
- tok = ggml_add(ctx0, tok, model.token_embd_img_break);
- tmp = ggml_concat(ctx0, tmp, tok, 1);
- cur = ggml_view_2d(ctx0, tmp,
- n_embd_text, n_tokens_output,
- ggml_row_size(tmp->type, n_embd_text), 0);
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // Qwen2VL and Qwen2.5VL use M-RoPE
- ggml_cgraph * build_qwen2vl() {
- GGML_ASSERT(model.patch_bias == nullptr);
- GGML_ASSERT(model.class_embedding == nullptr);
- const int batch_size = 1;
- const bool use_window_attn = hparams.n_wa_pattern > 0;
- const int n_wa_pattern = hparams.n_wa_pattern;
- const int n_pos = n_patches;
- const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
- norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
- ? NORM_TYPE_RMS // qwen 2.5 vl
- : NORM_TYPE_NORMAL; // qwen 2 vl
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- ggml_tensor * inp_raw = build_inp_raw();
- ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- GGML_ASSERT(img.nx % (patch_size * 2) == 0);
- GGML_ASSERT(img.ny % (patch_size * 2) == 0);
- // second conv dimension
- {
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
- inp = ggml_reshape_3d(
- ctx0, inp,
- n_embd, n_patches_x * n_patches_y, batch_size);
- }
- ggml_tensor * inpL = inp;
- ggml_tensor * window_mask = nullptr;
- ggml_tensor * window_idx = nullptr;
- ggml_tensor * inv_window_idx = nullptr;
- ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
- }
- if (use_window_attn) {
- // handle window attention inputs
- inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
- ggml_set_name(inv_window_idx, "inv_window_idx");
- ggml_set_input(inv_window_idx);
- // mask for window attention
- window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
- ggml_set_name(window_mask, "window_mask");
- ggml_set_input(window_mask);
- // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
- GGML_ASSERT(batch_size == 1);
- inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
- inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
- }
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- auto & layer = model.layers[il];
- const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
- cb(cur, "ln1", il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
- ggml_tensor * Kcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
- ggml_tensor * Vcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // apply M-RoPE
- Qcur = ggml_rope_multi(
- ctx0, Qcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- Kcur = ggml_rope_multi(
- ctx0, Kcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- cb(Qcur, "Qcur_rope", il);
- cb(Kcur, "Kcur_rope", il);
- ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- cb(cur, "ffn_out", il);
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
- }
- // multimodal projection
- ggml_tensor * embeddings = inpL;
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- if (use_window_attn) {
- window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
- ggml_set_name(window_idx, "window_idx");
- ggml_set_input(window_idx);
- // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
- embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- ggml_cgraph * build_minicpmv() {
- const int batch_size = 1;
- GGML_ASSERT(model.class_embedding == nullptr);
- const int n_pos = n_patches;
- // position embeddings for the projector (not for ViT)
- int n_output_dim = clip_n_mmproj_embd(ctx);
- ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
- // for selecting learned pos embd, used by ViT
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
- ggml_tensor * inp = build_inp();
- ggml_tensor * embeddings = build_vit(
- inp, n_patches,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- learned_pos_embd,
- nullptr);
- // resampler projector (it is just another transformer)
- ggml_tensor * q = model.mm_model_query;
- ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- // norm
- q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
- v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
- // k = v + pos_embed
- ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
- // attention
- {
- int n_embd = clip_n_mmproj_embd(ctx);
- const int d_head = 128;
- int n_head = n_embd/d_head;
- int num_query = 96;
- if (ctx->model.hparams.minicpmv_version == 2) {
- num_query = 96;
- } else if (ctx->model.hparams.minicpmv_version == 3) {
- num_query = 64;
- } else if (ctx->model.hparams.minicpmv_version == 4) {
- num_query = 64;
- }
- ggml_tensor * Q = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
- model.mm_model_attn_q_b);
- ggml_tensor * K = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
- model.mm_model_attn_k_b);
- ggml_tensor * V = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
- model.mm_model_attn_v_b);
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
- cb(Q, "resampler_Q", -1);
- cb(K, "resampler_K", -1);
- cb(V, "resampler_V", -1);
- embeddings = build_attn(
- model.mm_model_attn_o_w,
- model.mm_model_attn_o_b,
- Q, K, V, nullptr, kq_scale, -1);
- cb(embeddings, "resampler_attn_out", -1);
- }
- // layernorm
- embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
- // projection
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- ggml_cgraph * build_internvl() {
- GGML_ASSERT(model.class_embedding != nullptr);
- GGML_ASSERT(model.position_embeddings != nullptr);
- const int n_pos = n_patches + 1;
- ggml_tensor * inp = build_inp();
- // add CLS token
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- // The larger models use a different ViT, which uses RMS norm instead of layer norm
- // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
- norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
- ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
- : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
- ggml_tensor * cur = build_vit(
- inp, n_pos,
- norm_t,
- hparams.ffn_op,
- model.position_embeddings,
- nullptr);
- // remove CLS token
- cur = ggml_view_2d(ctx0, cur,
- n_embd, n_patches,
- ggml_row_size(cur->type, n_embd), 0);
- // pixel shuffle
- {
- const int scale_factor = model.hparams.proj_scale_factor;
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- const int height = n_patches_y;
- const int width = n_patches_x;
- GGML_ASSERT(scale_factor > 0);
- cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- height / scale_factor,
- width / scale_factor,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- // flatten to 2D
- cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- cur->ne[1] * cur->ne[2]);
- }
- // projector (always using GELU activation)
- {
- // projector LayerNorm uses pytorch's default eps = 1e-5
- // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
- cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_1_b);
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_3_b);
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- ggml_cgraph * build_llama4() {
- GGML_ASSERT(model.class_embedding != nullptr);
- GGML_ASSERT(model.position_embeddings != nullptr);
- const int n_pos = n_patches + 1; // +1 for [CLS]
- // 2D input positions
- ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- ggml_tensor * inp = build_inp_raw();
- // Llama4UnfoldConvolution
- {
- ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
- patch_size, patch_size, 3, n_embd);
- inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
- inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
- inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
- cb(inp, "patch_conv", -1);
- }
- // add CLS token
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- // build ViT with 2D position embeddings
- auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
- // first half is X axis and second half is Y axis
- // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
- // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
- return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
- };
- ggml_tensor * cur = build_vit(
- inp, n_pos,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- model.position_embeddings,
- add_pos);
- // remove CLS token
- cur = ggml_view_2d(ctx0, cur,
- n_embd, n_patches,
- ggml_row_size(cur->type, n_embd), 0);
- // pixel shuffle
- // based on Llama4VisionPixelShuffleMLP
- // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
- {
- const int scale_factor = model.hparams.proj_scale_factor;
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- GGML_ASSERT(scale_factor > 0);
- GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
- cur = ggml_reshape_4d(ctx0, cur,
- n_embd * scale_factor,
- n_patches_x / scale_factor,
- n_patches_y,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- n_patches_x / scale_factor,
- n_patches_y / scale_factor,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- // flatten to 2D
- cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
- n_embd * scale_factor * scale_factor,
- n_patches / scale_factor / scale_factor);
- cb(cur, "pixel_shuffle", -1);
- }
- // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
- {
- cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "adapter_mlp", -1);
- }
- // Llama4MultiModalProjector
- cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
- cb(cur, "projected", -1);
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // this graph is used by llava, granite and glm
- // due to having embedding_stack (used by granite), we cannot reuse build_vit
- ggml_cgraph * build_llava() {
- const int batch_size = 1;
- const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
- GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
- // Calculate the deepest feature layer based on hparams and projector type
- int max_feature_layer = n_layer;
- {
- // Get the index of the second to last layer; this is the default for models that have a llava projector
- int il_last = hparams.n_layer - 1;
- int deepest_feature_layer = -1;
- if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
- il_last += 1;
- }
- // If we set explicit vision feature layers, only go up to the deepest one
- // NOTE: only used by granite-vision models for now
- for (const auto & feature_layer : hparams.vision_feature_layer) {
- if (feature_layer > deepest_feature_layer) {
- deepest_feature_layer = feature_layer;
- }
- }
- max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
- }
- ggml_tensor * inp = build_inp();
- // concat class_embeddings and patch_embeddings
- if (model.class_embedding) {
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- }
- ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
- ggml_tensor * inpL = inp;
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
- cb(inpL, "pre_ln", -1);
- }
- std::vector<ggml_tensor *> embedding_stack;
- const auto & vision_feature_layer = hparams.vision_feature_layer;
- // loop over layers
- for (int il = 0; il < max_feature_layer; il++) {
- auto & layer = model.layers[il];
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // If this is an embedding feature layer, save the output.
- // NOTE: 0 index here refers to the input to the encoder.
- if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
- embedding_stack.push_back(cur);
- }
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
- cb(cur, "layer_inp_normed", il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
- if (layer.q_b) {
- Qcur = ggml_add(ctx0, Qcur, layer.q_b);
- }
- ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
- if (layer.k_b) {
- Kcur = ggml_add(ctx0, Kcur, layer.k_b);
- }
- ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
- if (layer.v_b) {
- Vcur = ggml_add(ctx0, Vcur, layer.v_b);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- cb(cur, "ffn_out", il);
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
- }
- ggml_tensor * embeddings = inpL;
- // process vision feature layers (used by granite)
- {
- // final layer is a vision feature layer
- if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
- embedding_stack.push_back(inpL);
- }
- // If feature layers are explicitly set, stack them (if we have multiple)
- if (!embedding_stack.empty()) {
- embeddings = embedding_stack[0];
- for (size_t i = 1; i < embedding_stack.size(); i++) {
- embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
- }
- }
- }
- // llava projector (also used by granite)
- if (ctx->model.hparams.has_llava_projector) {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(patches, "patches");
- ggml_set_input(patches);
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // print_tensor_info(embeddings, "embeddings");
- // llava projector
- if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- if (model.mm_2_w) {
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
- // First LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
- model.mm_1_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
- // Second LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
- model.mm_4_b);
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
- // block 1
- ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
- mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
- {
- int n_patch = 24;
- ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
- mlp_0 = ggml_gelu(ctx0, mlp_0);
- ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
- mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
- // mlp_2 ne = [2048, 576, 1, 1]
- // // AVG Pool Layer 2*2, strides = 2
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
- // mlp_2 ne = [576, 2048, 1, 1]
- mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
- // mlp_2 ne [24, 24, 2048, 1]
- mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
- // weight ne = [3, 3, 2048, 1]
- ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
- peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, mlp_2);
- peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
- embeddings = peg_0;
- }
- else {
- GGML_ABORT("fatal error");
- }
- }
- // glm projector
- else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
- size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
- embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
- embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
- embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
- embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
- // GLU
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- embeddings = ggml_gelu_inplace(ctx0, embeddings);
- ggml_tensor * x = embeddings;
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
- x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
- embeddings = ggml_silu_inplace(ctx0, embeddings);
- embeddings = ggml_mul(ctx0, embeddings,x);
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
- }
- // arrangement of BOI/EOI token embeddings
- // note: these embeddings are not present in text model, hence we cannot process them as text tokens
- // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
- {
- embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
- embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
- }
- }
- else {
- GGML_ABORT("llava: unknown projector type");
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- // whisper encoder with custom projector
- ggml_cgraph * build_whisper_enc() {
- const int n_frames = img.nx;
- const int n_pos = n_frames / 2;
- GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
- ggml_tensor * inp = build_inp_raw(1);
- // conv1d block
- {
- // convolution + gelu
- ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
- cur = ggml_add(ctx0, cur, model.conv1d_1_b);
- cur = ggml_gelu_erf(ctx0, cur);
- cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
- cur = ggml_add(ctx0, cur, model.conv1d_2_b);
- cur = ggml_gelu_erf(ctx0, cur);
- // transpose
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- cb(inp, "after_conv1d", -1);
- }
- // sanity check (only check one layer, but it should be the same for all)
- GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
- GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
- GGML_ASSERT(model.layers[0].q_b);
- GGML_ASSERT(model.layers[0].v_b);
- GGML_ASSERT(!model.layers[0].k_b); // no bias for k
- GGML_ASSERT(model.post_ln_w && model.post_ln_b);
- ggml_tensor * pos_embd_selected = ggml_view_2d(
- ctx0, model.position_embeddings,
- model.position_embeddings->ne[0], n_pos,
- model.position_embeddings->nb[1], 0
- );
- ggml_tensor * cur = build_vit(
- inp, n_pos,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- pos_embd_selected,
- nullptr);
- cb(cur, "after_transformer", -1);
- if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
- // StackAudioFrames
- // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
- {
- int64_t stride = n_embd * hparams.proj_stack_factor;
- int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
- int64_t pad = padded_len - ggml_nelements(cur);
- if (pad > 0) {
- cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
- cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
- }
- cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
- ggml_row_size(cur->type, stride), 0);
- }
- cb(cur, "after_stacked", -1);
- // UltravoxProjector
- {
- // pre-norm
- cur = ggml_rms_norm(ctx0, cur, 1e-6);
- cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
- // ffn in
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- // swiglu
- {
- int64_t split_point = cur->ne[0] / 2;
- ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
- ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
- // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
- x1 = ggml_silu(ctx0, x1);
- cur = ggml_mul(ctx0, x0, x1);
- }
- // mid-norm
- cur = ggml_rms_norm(ctx0, cur, 1e-6);
- cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
- // ffn out
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- }
- } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
- // projector
- cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_fc_b);
- } else {
- GGML_ABORT("%s: unknown projector type", __func__);
- }
- cb(cur, "projected", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- private:
- //
- // utility functions
- //
- void cb(ggml_tensor * cur0, const char * name, int il) const {
- if (ctx->debug_graph) {
- ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
- std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
- ggml_set_name(cur, cur_name.c_str());
- ggml_set_output(cur);
- ggml_build_forward_expand(gf, cur);
- ctx->debug_print_tensors.push_back(cur);
- }
- }
- // build vision transformer (ViT) cgraph
- // this function should cover most of the models
- // if your model has specific features, you should probably duplicate this function
- ggml_tensor * build_vit(
- ggml_tensor * inp,
- int64_t n_pos,
- norm_type norm_t,
- ffn_op_type ffn_t,
- ggml_tensor * learned_pos_embd,
- std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
- ) {
- if (learned_pos_embd) {
- inp = ggml_add(ctx0, inp, learned_pos_embd);
- cb(inp, "pos_embed", -1);
- }
- ggml_tensor * inpL = inp;
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
- cb(inpL, "pre_ln", -1);
- }
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- auto & layer = model.layers[il];
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
- cb(cur, "layer_inp_normed", il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
- if (layer.q_b) {
- Qcur = ggml_add(ctx0, Qcur, layer.q_b);
- }
- ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
- if (layer.k_b) {
- Kcur = ggml_add(ctx0, Kcur, layer.k_b);
- }
- ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
- if (layer.v_b) {
- Vcur = ggml_add(ctx0, Vcur, layer.v_b);
- }
- if (layer.q_norm) {
- Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
- cb(Qcur, "Qcur_norm", il);
- }
- if (layer.k_norm) {
- Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
- cb(Kcur, "Kcur_norm", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- if (add_pos) {
- Qcur = add_pos(Qcur, layer);
- Kcur = add_pos(Kcur, layer);
- cb(Qcur, "Qcur_pos", il);
- cb(Kcur, "Kcur_pos", il);
- }
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (layer.ls_1_w) {
- cur = ggml_mul(ctx0, cur, layer.ls_1_w);
- cb(cur, "attn_out_scaled", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- ffn_t, il);
- cb(cur, "ffn_out", il);
- if (layer.ls_2_w) {
- cur = ggml_mul(ctx0, cur, layer.ls_2_w);
- cb(cur, "ffn_out_scaled", il);
- }
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- // TODO @ngxson : find a way to move this outside
- if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
- ggml_tensor * cur = inpL;
- cur = ggml_transpose(ctx0, cur);
- cur = ggml_cont(ctx0, cur);
- cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
- cur = ggml_transpose(ctx0, cur);
- cur = ggml_cont(ctx0, cur);
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
- }
- return inpL;
- }
- // build the input after conv2d (inp_raw --> patches)
- // returns tensor with shape [n_embd, n_patches]
- ggml_tensor * build_inp() {
- ggml_tensor * inp_raw = build_inp_raw();
- ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- if (model.patch_bias) {
- inp = ggml_add(ctx0, inp, model.patch_bias);
- cb(inp, "patch_bias", -1);
- }
- return inp;
- }
- ggml_tensor * build_inp_raw(int channels = 3) {
- ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- return inp_raw;
- }
- ggml_tensor * build_norm(
- ggml_tensor * cur,
- ggml_tensor * mw,
- ggml_tensor * mb,
- norm_type type,
- float norm_eps,
- int il) const {
- cur = type == NORM_TYPE_RMS
- ? ggml_rms_norm(ctx0, cur, norm_eps)
- : ggml_norm(ctx0, cur, norm_eps);
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx0, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx0, cur, mb);
- }
- return cur;
- }
- ggml_tensor * build_ffn(
- ggml_tensor * cur,
- ggml_tensor * up,
- ggml_tensor * up_b,
- ggml_tensor * gate,
- ggml_tensor * gate_b,
- ggml_tensor * down,
- ggml_tensor * down_b,
- ffn_op_type type_op,
- int il) const {
- ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx0, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (gate) {
- cur = ggml_mul_mat(ctx0, gate, cur);
- cb(cur, "ffn_gate", il);
- if (gate_b) {
- cur = ggml_add(ctx0, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- } else {
- cur = tmp;
- }
- switch (type_op) {
- case FFN_SILU:
- {
- cur = ggml_silu(ctx0, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case FFN_GELU:
- {
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "ffn_gelu", il);
- } break;
- case FFN_GELU_ERF:
- {
- cur = ggml_gelu_erf(ctx0, cur);
- cb(cur, "ggml_gelu_erf", il);
- } break;
- case FFN_GELU_QUICK:
- {
- cur = ggml_gelu_quick(ctx0, cur);
- cb(cur, "ffn_relu", il);
- } break;
- }
- // we only support parallel ffn for now
- if (gate) {
- cur = ggml_mul(ctx0, cur, tmp);
- cb(cur, "ffn_gate_par", il);
- }
- if (down) {
- cur = ggml_mul_mat(ctx0, down, cur);
- }
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx0, cur, down_b);
- }
- return cur;
- }
- ggml_tensor * build_attn(
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_mask,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
- //cb(q, "q", il);
- ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
- //cb(k, "k", il);
- ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
- v = ggml_cont(ctx0, v);
- //cb(k, "v", il);
- ggml_tensor * cur;
- // TODO @ngxson : support flash attention
- {
- const auto n_tokens = q->ne[1];
- const auto n_head = q->ne[2];
- // const auto n_kv = k->ne[1]; // for flash attention
- ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- // F32 may not needed for vision encoders?
- // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
- ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
- cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
- }
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = ggml_mul_mat(ctx0, wo, cur);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- // implementation of the 2D RoPE without adding a new op in ggml
- // this is not efficient (use double the memory), but works on all backends
- // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
- static ggml_tensor * build_rope_2d(
- ggml_context * ctx0,
- ggml_tensor * cur,
- ggml_tensor * pos_a, // first half
- ggml_tensor * pos_b, // second half
- const float freq_base,
- const bool interleave_freq
- ) {
- const int64_t n_dim = cur->ne[0];
- const int64_t n_head = cur->ne[1];
- const int64_t n_pos = cur->ne[2];
- // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
- // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
- // first half of cur will use 1e-0, 1e-2 (even)
- // second half of cur will use 1e-1, 1e-3 (odd)
- // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
- // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
- // then for the second half, we use freq_scale to shift the inv_freq
- // ^ why? replace (2i) with (2i+1) in the above equation
- const float freq_scale_odd = interleave_freq
- ? std::pow(freq_base, (float)-2/n_dim)
- : 1.0;
- // first half
- ggml_tensor * first;
- {
- first = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- 0);
- first = ggml_rope_ext(
- ctx0,
- first,
- pos_a, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
- // second half
- ggml_tensor * second;
- {
- second = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- n_dim/2 * ggml_element_size(cur));
- second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
- second = ggml_rope_ext(
- ctx0,
- second,
- pos_b, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- freq_scale_odd,
- 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
- cur = ggml_concat(ctx0, first, second, 0);
- return cur;
- }
- };
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
- GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
- clip_graph graph(ctx, *imgs.entries[0]);
- ggml_cgraph * res;
- switch (ctx->proj_type()) {
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- {
- res = graph.build_siglip();
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- res = graph.build_pixtral();
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- {
- res = graph.build_qwen2vl();
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- res = graph.build_minicpmv();
- } break;
- case PROJECTOR_TYPE_INTERNVL:
- {
- res = graph.build_internvl();
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- res = graph.build_llama4();
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_QWEN2A:
- {
- res = graph.build_whisper_enc();
- } break;
- default:
- {
- res = graph.build_llava();
- } break;
- }
- return res;
- }
- struct clip_model_loader {
- ggml_context_ptr ctx_meta;
- gguf_context_ptr ctx_gguf;
- std::string fname;
- size_t model_size = 0; // in bytes
- bool has_vision = false;
- bool has_audio = false;
- // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
- clip_model_loader(const char * fname) : fname(fname) {
- struct ggml_context * meta = nullptr;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
- if (!ctx_gguf.get()) {
- throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- ctx_meta.reset(meta);
- const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
- // print gguf info
- {
- std::string name;
- get_string(KEY_NAME, name, false);
- std::string description;
- get_string(KEY_DESCRIPTION, description, false);
- LOG_INF("%s: model name: %s\n", __func__, name.c_str());
- LOG_INF("%s: description: %s\n", __func__, description.c_str());
- LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
- LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
- LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
- LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
- LOG_INF("\n");
- }
- // modalities
- {
- get_bool(KEY_HAS_VISION_ENC, has_vision, false);
- get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
- if (has_vision) {
- LOG_INF("%s: has vision encoder\n", __func__);
- }
- if (has_audio) {
- LOG_INF("%s: has audio encoder\n", __func__);
- }
- }
- // tensors
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
- enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
- ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- model_size += tensor_size;
- LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
- __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
- }
- }
- }
- void load_hparams(clip_model & model, clip_modality modality) {
- auto & hparams = model.hparams;
- std::string log_ffn_op; // for logging
- // sanity check
- if (modality == CLIP_MODALITY_VISION) {
- GGML_ASSERT(has_vision);
- } else if (modality == CLIP_MODALITY_AUDIO) {
- GGML_ASSERT(has_audio);
- }
- model.modality = modality;
- // projector type
- std::string proj_type;
- {
- get_string(KEY_PROJ_TYPE, proj_type, false);
- if (!proj_type.empty()) {
- model.proj_type = clip_projector_type_from_string(proj_type);
- }
- if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
- throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
- }
- // correct arch for multimodal models
- if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
- model.proj_type = modality == CLIP_MODALITY_VISION
- ? PROJECTOR_TYPE_QWEN25VL
- : PROJECTOR_TYPE_QWEN2A;
- }
- }
- const bool is_vision = model.modality == CLIP_MODALITY_VISION;
- const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
- // other hparams
- {
- const char * prefix = is_vision ? "vision" : "audio";
- get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
- get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
- get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
- get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
- get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
- get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
- if (is_vision) {
- get_u32(KEY_IMAGE_SIZE, hparams.image_size);
- get_u32(KEY_PATCH_SIZE, hparams.patch_size);
- get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
- get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
- } else if (is_audio) {
- get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
- } else {
- GGML_ASSERT(false && "unknown modality");
- }
- // for pinpoints, we need to convert it into a list of resolution candidates
- {
- std::vector<int> pinpoints;
- get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
- if (!pinpoints.empty()) {
- for (size_t i = 0; i < pinpoints.size(); i += 2) {
- hparams.image_res_candidates.push_back({
- pinpoints[i],
- pinpoints[i+1],
- });
- }
- }
- }
- // default warmup value
- hparams.warmup_image_size = hparams.image_size;
- hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
- || model.proj_type == PROJECTOR_TYPE_MLP_NORM
- || model.proj_type == PROJECTOR_TYPE_LDP
- || model.proj_type == PROJECTOR_TYPE_LDPV2;
- {
- bool use_gelu = false;
- bool use_silu = false;
- get_bool(KEY_USE_GELU, use_gelu, false);
- get_bool(KEY_USE_SILU, use_silu, false);
- if (use_gelu && use_silu) {
- throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
- }
- if (use_gelu) {
- hparams.ffn_op = FFN_GELU;
- log_ffn_op = "gelu";
- } else if (use_silu) {
- hparams.ffn_op = FFN_SILU;
- log_ffn_op = "silu";
- } else {
- hparams.ffn_op = FFN_GELU_QUICK;
- log_ffn_op = "gelu_quick";
- }
- }
- {
- std::string mm_patch_merge_type;
- get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
- if (mm_patch_merge_type == "spatial_unpad") {
- hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
- }
- }
- if (is_vision) {
- int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
- int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
- GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
- GGML_ASSERT(idx_std >= 0 && "image_std not found");
- const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
- const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
- for (int i = 0; i < 3; ++i) {
- hparams.image_mean[i] = mean_data[i];
- hparams.image_std[i] = std_data[i];
- }
- }
- // Load the vision feature layer indices if they are explicitly provided;
- // if multiple vision feature layers are present, the values will be concatenated
- // to form the final visual features.
- // NOTE: gguf conversions should standardize the values of the vision feature layer to
- // be non-negative, since we use -1 to mark values as unset here.
- std::vector<int> vision_feature_layer;
- get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
- // convert std::vector to std::unordered_set
- for (auto & layer : vision_feature_layer) {
- hparams.vision_feature_layer.insert(layer);
- }
- // model-specific params
- switch (model.proj_type) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- if (hparams.minicpmv_version == 0) {
- hparams.minicpmv_version = 2; // default to 2 if not set
- }
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- case PROJECTOR_TYPE_INTERNVL:
- {
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- hparams.rope_theta = 10000.0f;
- hparams.warmup_image_size = hparams.patch_size * 8;
- get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- // default value (used by all model sizes in gemma 3 family)
- // number of patches for each **side** is reduced by a factor of 4
- hparams.proj_scale_factor = 4;
- // test model (tinygemma3) has a different value, we optionally read it
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- {
- // max image size = sqrt(max_pixels) = 3584
- // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
- // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
- // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
- hparams.image_size = 1024;
- hparams.warmup_image_size = hparams.patch_size * 8;
- } break;
- case PROJECTOR_TYPE_QWEN25VL:
- {
- // max image size = sqrt(max_pixels)
- // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
- // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
- // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
- hparams.image_size = 1024;
- hparams.warmup_image_size = hparams.patch_size * 8;
- get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- hparams.rope_theta = 10000.0f;
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
- set_llava_uhd_res_candidates(model, 3);
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_QWEN2A:
- {
- bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX;
- get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
- if (hparams.n_mel_bins != 128) {
- throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
- }
- hparams.ffn_op = FFN_GELU_ERF;
- log_ffn_op = "gelu_erf"; // temporary solution for logging
- } break;
- default:
- break;
- }
- LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
- LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
- LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
- LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
- LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
- LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
- LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
- if (is_vision) {
- LOG_INF("\n--- vision hparams ---\n");
- LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
- LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
- LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
- LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
- LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
- LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
- } else if (is_audio) {
- LOG_INF("\n--- audio hparams ---\n");
- LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
- LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
- }
- LOG_INF("\n");
- LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
- LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
- }
- }
- void load_tensors(clip_ctx & ctx_clip) {
- auto & model = ctx_clip.model;
- auto & hparams = model.hparams;
- std::map<std::string, size_t> tensor_offset;
- std::vector<ggml_tensor *> tensors_to_load;
- // TODO @ngxson : support both audio and video in the future
- const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
- // get offsets
- for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
- }
- // create data context
- struct ggml_init_params params = {
- /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_clip.ctx_data.reset(ggml_init(params));
- if (!ctx_clip.ctx_data) {
- throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
- }
- // helper function
- auto get_tensor = [&](const std::string & name, bool required = true) {
- ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
- if (!cur && required) {
- throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- if (cur) {
- tensors_to_load.push_back(cur);
- // add tensors to context
- ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
- ggml_set_name(data_tensor, cur->name);
- cur = data_tensor;
- }
- return cur;
- };
- model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
- model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
- model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
- model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
- model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
- model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
- model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
- model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
- model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
- // layers
- model.layers.resize(hparams.n_layer);
- for (int il = 0; il < hparams.n_layer; ++il) {
- auto & layer = model.layers[il];
- layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
- layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
- layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
- layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
- layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
- layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
- layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
- layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
- layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
- layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
- layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
- layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
- layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
- layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
- layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
- layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
- // ffn
- layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
- layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
- layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
- layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
- layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
- layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
- // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
- // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
- if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
- // swap up and down weights
- ggml_tensor * tmp = layer.ff_up_w;
- layer.ff_up_w = layer.ff_down_w;
- layer.ff_down_w = tmp;
- // swap up and down biases
- tmp = layer.ff_up_b;
- layer.ff_up_b = layer.ff_down_b;
- layer.ff_down_b = tmp;
- }
- }
- switch (model.proj_type) {
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- {
- // LLaVA projection
- model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
- model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
- // Yi-type llava
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- // missing in Yi-type llava
- model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
- model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // Yi-type llava
- model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
- model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
- model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
- model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
- if (model.mm_3_w) {
- // TODO: this is a hack to support Yi-type llava
- model.proj_type = PROJECTOR_TYPE_MLP_NORM;
- }
- model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
- } break;
- case PROJECTOR_TYPE_LDP:
- {
- // MobileVLM projection
- model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
- model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
- model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
- model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
- model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
- model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
- model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
- model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
- model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
- model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
- model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
- model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
- model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
- model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
- model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
- model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
- model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
- model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
- model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
- model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
- model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
- model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
- model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
- } break;
- case PROJECTOR_TYPE_LDPV2:
- {
- // MobilVLM_V2 projection
- model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
- model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
- model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
- model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
- model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
- model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
- model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
- model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
- model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
- model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
- model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
- model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
- model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
- model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
- model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
- model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
- model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
- model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
- model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
- model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
- model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
- model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
- model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
- model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
- model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
- model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
- model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
- model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
- model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
- model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
- model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
- model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
- model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- {
- model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
- model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
- model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- {
- model.projection = get_tensor(TN_MM_PROJECTOR);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // [IMG_BREAK] token embedding
- model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
- // for mistral small 3.1
- model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
- model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- {
- model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
- model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
- model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
- model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
- model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
- model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
- model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
- } break;
- case PROJECTOR_TYPE_QWEN2A:
- {
- model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
- model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
- model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
- model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
- model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
- model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
- } break;
- case PROJECTOR_TYPE_INTERNVL:
- {
- model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
- model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
- model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
- model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
- model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
- } break;
- default:
- GGML_ASSERT(false && "unknown projector type");
- }
- // load data
- {
- std::vector<uint8_t> read_buf;
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
- }
- // alloc memory and offload data
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
- ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
- ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- for (auto & t : tensors_to_load) {
- ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
- const size_t offset = tensor_offset[t->name];
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
- }
- size_t num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buft_is_host(buft)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- fin.close();
- LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
- }
- }
- void alloc_compute_meta(clip_ctx & ctx_clip) {
- const auto & hparams = ctx_clip.model.hparams;
- ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
- // create a fake batch
- clip_image_f32_batch batch;
- clip_image_f32_ptr img(clip_image_f32_init());
- if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
- img->nx = hparams.warmup_image_size;
- img->ny = hparams.warmup_image_size;
- } else {
- img->nx = hparams.warmup_audio_size;
- img->ny = hparams.n_mel_bins;
- }
- batch.entries.push_back(std::move(img));
- ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
- ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
- for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
- ggml_backend_t backend = ctx_clip.backend_ptrs[i];
- ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
- size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
- if (size > 1) {
- LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buft_name(buft),
- size / 1024.0 / 1024.0);
- }
- }
- }
- void get_bool(const std::string & key, bool & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_bool(ctx_gguf.get(), i);
- }
- void get_i32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_i32(ctx_gguf.get(), i);
- }
- void get_u32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_u32(ctx_gguf.get(), i);
- }
- void get_f32(const std::string & key, float & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_f32(ctx_gguf.get(), i);
- }
- void get_string(const std::string & key, std::string & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
- }
- void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- int n = gguf_get_arr_n(ctx_gguf.get(), i);
- output.resize(n);
- const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
- for (int i = 0; i < n; ++i) {
- output[i] = values[i];
- }
- }
- void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
- auto & hparams = model.hparams;
- for (int x = 1; x <= max_patches_per_side; x++) {
- for (int y = 1; y <= max_patches_per_side; y++) {
- if (x == 1 && y == 1) {
- continue; // skip the first point
- }
- hparams.image_res_candidates.push_back(clip_image_size{
- x*hparams.image_size,
- y*hparams.image_size,
- });
- }
- }
- }
- };
- struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
- g_logger_state.verbosity_thold = ctx_params.verbosity;
- clip_ctx * ctx_vision = nullptr;
- clip_ctx * ctx_audio = nullptr;
- try {
- clip_model_loader loader(fname);
- if (loader.has_vision) {
- ctx_vision = new clip_ctx(ctx_params);
- loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
- loader.load_tensors(*ctx_vision);
- loader.alloc_compute_meta(*ctx_vision);
- }
- if (loader.has_audio) {
- ctx_audio = new clip_ctx(ctx_params);
- loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
- loader.load_tensors(*ctx_audio);
- loader.alloc_compute_meta(*ctx_audio);
- }
- } catch (const std::exception & e) {
- LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
- if (ctx_vision) {
- delete ctx_vision;
- }
- if (ctx_audio) {
- delete ctx_audio;
- }
- return {nullptr, nullptr};
- }
- return {ctx_vision, ctx_audio};
- }
- struct clip_image_size * clip_image_size_init() {
- struct clip_image_size * load_image_size = new struct clip_image_size();
- load_image_size->width = 448;
- load_image_size->height = 448;
- return load_image_size;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- struct clip_image_f32_batch * clip_image_f32_batch_init() {
- return new clip_image_f32_batch();
- }
- unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
- if (nx) *nx = img->nx;
- if (ny) *ny = img->ny;
- return img->buf.data();
- }
- void clip_image_size_free(struct clip_image_size * load_image_size) {
- if (load_image_size == nullptr) {
- return;
- }
- delete load_image_size;
- }
- void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
- void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
- void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
- size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
- return batch->entries.size();
- }
- size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->nx;
- }
- size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->ny;
- }
- clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return nullptr;
- }
- return batch->entries[idx].get();
- }
- void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), rgb_pixels, img->buf.size());
- }
- // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
- static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(src.buf.size());
- // TODO @ngxson : seems like this could be done more efficiently on cgraph
- for (size_t i = 0; i < src.buf.size(); ++i) {
- int c = i % 3; // rgb
- dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
- }
- }
- // set of tools to manupulate images
- // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
- struct image_manipulation {
- // Bilinear resize function
- static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float x_ratio = static_cast<float>(src.nx - 1) / target_width;
- float y_ratio = static_cast<float>(src.ny - 1) / target_height;
- for (int y = 0; y < target_height; y++) {
- for (int x = 0; x < target_width; x++) {
- float px = x_ratio * x;
- float py = y_ratio * y;
- int x_floor = static_cast<int>(px);
- int y_floor = static_cast<int>(py);
- float x_lerp = px - x_floor;
- float y_lerp = py - y_floor;
- for (int c = 0; c < 3; c++) {
- float top = lerp(
- static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- float bottom = lerp(
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
- }
- }
- }
- }
- // Bicubic resize function
- // part of image will be cropped if the aspect ratio is different
- static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
- const int nx = img.nx;
- const int ny = img.ny;
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float Cc;
- float C[5];
- float d0, d2, d3, a0, a1, a2, a3;
- int i, j, k, jj;
- int x, y;
- float dx, dy;
- float tx, ty;
- tx = (float)nx / (float)target_width;
- ty = (float)ny / (float)target_height;
- // Bicubic interpolation; adapted from ViT.cpp, inspired from :
- // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
- // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
- for (i = 0; i < target_height; i++) {
- for (j = 0; j < target_width; j++) {
- x = (int)(tx * j);
- y = (int)(ty * i);
- dx = tx * j - x;
- dy = ty * i - y;
- for (k = 0; k < 3; k++) {
- for (jj = 0; jj <= 3; jj++) {
- d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
- d0 = C[0] - C[1];
- d2 = C[2] - C[1];
- d3 = C[3] - C[1];
- a0 = C[1];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
- const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
- dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
- }
- }
- }
- }
- return true;
- }
- // llava-1.6 type of resize_and_pad
- // if the ratio is not 1:1, padding with pad_color will be applied
- // pad_color is single channel, default is 0 (black)
- static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
- int target_width = target_resolution.width;
- int target_height = target_resolution.height;
- float scale_w = static_cast<float>(target_width) / image.nx;
- float scale_h = static_cast<float>(target_height) / image.ny;
- int new_width, new_height;
- if (scale_w < scale_h) {
- new_width = target_width;
- new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
- } else {
- new_height = target_height;
- new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
- }
- clip_image_u8 resized_image;
- bicubic_resize(image, resized_image, new_width, new_height);
- clip_image_u8 padded_image;
- padded_image.nx = target_width;
- padded_image.ny = target_height;
- padded_image.buf.resize(3 * target_width * target_height);
- // Fill the padded image with the fill color
- for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
- padded_image.buf[i] = pad_color[0];
- padded_image.buf[i + 1] = pad_color[1];
- padded_image.buf[i + 2] = pad_color[2];
- }
- // Calculate padding offsets
- int pad_x = (target_width - new_width) / 2;
- int pad_y = (target_height - new_height) / 2;
- // Copy the resized image into the center of the padded buffer
- for (int y = 0; y < new_height; ++y) {
- for (int x = 0; x < new_width; ++x) {
- for (int c = 0; c < 3; ++c) {
- padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
- }
- }
- }
- dst = std::move(padded_image);
- }
- static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
- dst.nx = w;
- dst.ny = h;
- dst.buf.resize(3 * w * h);
- for (int i = 0; i < h; ++i) {
- for (int j = 0; j < w; ++j) {
- int src_idx = 3 * ((y + i)*image.nx + (x + j));
- int dst_idx = 3 * (i*w + j);
- dst.buf[dst_idx] = image.buf[src_idx];
- dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
- dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
- }
- }
- }
- // calculate the size of the **resized** image, while preserving the aspect ratio
- // the calculated size will be aligned to the nearest multiple of align_size
- // if H or W size is larger than max_dimension, it will be resized to max_dimension
- static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
- if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
- return {0, 0};
- }
- float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
- static_cast<float>(max_dimension) / inp_size.height));
- float target_width_f = static_cast<float>(inp_size.width) * scale;
- float target_height_f = static_cast<float>(inp_size.height) * scale;
- int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
- int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
- return {aligned_width, aligned_height};
- }
- private:
- static inline int clip(int x, int lower, int upper) {
- return std::max(lower, std::min(x, upper));
- }
- // Linear interpolation between two points
- static inline float lerp(float s, float e, float t) {
- return s + (e - s) * t;
- }
- };
- /**
- * implementation of LLaVA-UHD:
- * - https://arxiv.org/pdf/2403.11703
- * - https://github.com/thunlp/LLaVA-UHD
- * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
- *
- * overview:
- * - an image always have a single overview (downscaled image)
- * - an image can have 0 or multiple slices, depending on the image size
- * - each slice can then be considered as a separate image
- *
- * for example:
- *
- * [overview] --> [slice 1] --> [slice 2]
- * | |
- * +--> [slice 3] --> [slice 4]
- */
- struct llava_uhd {
- struct slice_coordinates {
- int x;
- int y;
- clip_image_size size;
- };
- struct slice_instructions {
- clip_image_size overview_size; // size of downscaled image
- clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
- clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
- std::vector<slice_coordinates> slices;
- bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
- };
- static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
- slice_instructions res;
- const int patch_size = clip_get_patch_size(ctx);
- const int slice_size = clip_get_image_size(ctx);
- const int original_width = original_size.width;
- const int original_height = original_size.height;
- const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
- const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
- if (!has_slices) {
- // skip slicing logic
- res.overview_size = clip_image_size{slice_size, slice_size};
- res.refined_size = clip_image_size{0, 0};
- res.grid_size = clip_image_size{0, 0};
- return res;
- }
- if (has_pinpoints) {
- // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
- auto refine_size = llava_uhd::select_best_resolution(
- original_size,
- ctx->model.hparams.image_res_candidates);
- res.overview_size = clip_image_size{slice_size, slice_size};
- res.refined_size = refine_size;
- res.grid_size = clip_image_size{0, 0};
- res.padding_refined = true;
- LOG_DBG("%s: using pinpoints for slicing\n", __func__);
- LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
- __func__, original_width, original_height,
- res.overview_size.width, res.overview_size.height,
- res.refined_size.width, res.refined_size.height);
- for (int y = 0; y < refine_size.height; y += slice_size) {
- for (int x = 0; x < refine_size.width; x += slice_size) {
- slice_coordinates slice;
- slice.x = x;
- slice.y = y;
- slice.size.width = std::min(slice_size, refine_size.width - x);
- slice.size.height = std::min(slice_size, refine_size.height - y);
- res.slices.push_back(slice);
- LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
- __func__, (int)res.slices.size() - 1,
- slice.x, slice.y, slice.size.width, slice.size.height);
- }
- }
- res.grid_size.height = refine_size.height / slice_size;
- res.grid_size.width = refine_size.width / slice_size;
- LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
- return res;
- }
- // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
- auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
- res.overview_size = best_size;
- {
- const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
- const float log_ratio = log((float)original_width / original_height);
- const float ratio = (float)original_width * original_height / (slice_size * slice_size);
- const int multiple = fmin(ceil(ratio), max_slice_nums);
- auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
- auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
- res.grid_size = best_grid;
- res.refined_size = refine_size;
- LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
- __func__, original_width, original_height,
- res.overview_size.width, res.overview_size.height,
- res.refined_size.width, res.refined_size.height,
- res.grid_size.width, res.grid_size.height);
- int width = refine_size.width;
- int height = refine_size.height;
- int grid_x = int(width / best_grid.width);
- int grid_y = int(height / best_grid.height);
- for (int patches_y = 0, ic = 0;
- patches_y < refine_size.height && ic < best_grid.height;
- patches_y += grid_y, ic += 1) {
- for (int patches_x = 0, jc = 0;
- patches_x < refine_size.width && jc < best_grid.width;
- patches_x += grid_x, jc += 1) {
- slice_coordinates slice;
- slice.x = patches_x;
- slice.y = patches_y;
- slice.size.width = grid_x;
- slice.size.height = grid_y;
- res.slices.push_back(slice);
- LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
- __func__, (int)res.slices.size() - 1,
- slice.x, slice.y, slice.size.width, slice.size.height);
- }
- }
- }
- return res;
- }
- static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
- std::vector<clip_image_u8_ptr> output;
- // resize to overview size
- clip_image_u8_ptr resized_img(clip_image_u8_init());
- image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
- output.push_back(std::move(resized_img));
- if (inst.slices.empty()) {
- // no slices, just return the resized image
- return output;
- }
- // resize to refined size
- clip_image_u8_ptr refined_img(clip_image_u8_init());
- if (inst.padding_refined) {
- image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
- } else {
- image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
- }
- // create slices
- for (const auto & slice : inst.slices) {
- int x = slice.x;
- int y = slice.y;
- int w = slice.size.width;
- int h = slice.size.height;
- clip_image_u8_ptr img_slice(clip_image_u8_init());
- image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
- output.push_back(std::move(img_slice));
- }
- return output;
- }
- private:
- static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
- float r = static_cast<float>(width) / height;
- height = static_cast<int>(scale_resolution / std::sqrt(r));
- width = static_cast<int>(height * r);
- }
- clip_image_size res;
- res.width = ensure_divide(width, patch_size);
- res.height = ensure_divide(height, patch_size);
- return res;
- }
- static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
- float scale_width = static_cast<float>(target_max.width) / orig.width;
- float scale_height = static_cast<float>(target_max.height) / orig.height;
- float scale = std::min(scale_width, scale_height);
- return clip_image_size{
- static_cast<int>(orig.width * scale),
- static_cast<int>(orig.height * scale),
- };
- }
- /**
- * Selects the best resolution from a list of possible resolutions based on the original size.
- *
- * For example, when given a list of resolutions:
- * - 100x100
- * - 200x100
- * - 100x200
- * - 200x200
- *
- * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
- *
- * @param original_size The original size of the image
- * @param possible_resolutions A list of possible resolutions
- * @return The best fit resolution
- */
- static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
- clip_image_size best_fit;
- int min_wasted_area = std::numeric_limits<int>::max();
- int max_effective_resolution = 0;
- for (const clip_image_size & candidate : possible_resolutions) {
- auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
- int effective_resolution = std::min(
- target_size.width * target_size.height,
- original_size.width * original_size.height);
- int wasted_area = (candidate.width * candidate.height) - effective_resolution;
- if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
- max_effective_resolution = effective_resolution;
- min_wasted_area = wasted_area;
- best_fit = candidate;
- }
- LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
- }
- return best_fit;
- }
- static int ensure_divide(int length, int patch_size) {
- return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
- }
- static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- int grid_x = grid.width;
- int grid_y = grid.height;
- int refine_width = ensure_divide(width, grid_x);
- int refine_height = ensure_divide(height, grid_y);
- clip_image_size grid_size;
- grid_size.width = refine_width / grid_x;
- grid_size.height = refine_height / grid_y;
- auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
- int best_grid_width = best_grid_size.width;
- int best_grid_height = best_grid_size.height;
- clip_image_size refine_size;
- refine_size.width = best_grid_width * grid_x;
- refine_size.height = best_grid_height * grid_y;
- return refine_size;
- }
- static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
- std::vector<int> candidate_split_grids_nums;
- for (int i : {multiple - 1, multiple, multiple + 1}) {
- if (i == 1 || i > max_slice_nums) {
- continue;
- }
- candidate_split_grids_nums.push_back(i);
- }
- std::vector<clip_image_size> candidate_grids;
- for (int split_grids_nums : candidate_split_grids_nums) {
- int m = 1;
- while (m <= split_grids_nums) {
- if (split_grids_nums % m == 0) {
- candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
- }
- ++m;
- }
- }
- clip_image_size best_grid{1, 1};
- float min_error = std::numeric_limits<float>::infinity();
- for (const auto& grid : candidate_grids) {
- float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
- if (error < min_error) {
- best_grid = grid;
- min_error = error;
- }
- }
- return best_grid;
- }
- };
- // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
- // res_imgs memory is being allocated here, previous allocations will be freed if found
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
- clip_image_size original_size{img->nx, img->ny};
- bool pad_to_square = true;
- auto & params = ctx->model.hparams;
- // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
- if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
- pad_to_square = false;
- }
- if (clip_is_minicpmv(ctx)) {
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- res_imgs->grid_x = inst.grid_size.width;
- res_imgs->grid_y = inst.grid_size.height;
- return true;
- } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
- clip_image_u8 resized;
- auto patch_size = params.patch_size * 2;
- auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
- image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- // clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
- // res_imgs->data[0] = *res;
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
- || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
- || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
- || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
- ) {
- clip_image_u8 resized_image;
- int sz = params.image_size;
- image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- //clip_image_save_to_bmp(resized_image, "resized.bmp");
- normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
- clip_image_u8 resized_image;
- auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
- image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- return true;
- } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
- GGML_ASSERT(!params.image_res_candidates.empty());
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- res_imgs->grid_x = inst.grid_size.width;
- res_imgs->grid_y = inst.grid_size.height;
- return true;
- }
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
- if (pad_to_square) {
- // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- const int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- // background color in RGB from LLaVA (this is the mean rgb color * 255)
- const std::array<uint8_t, 3> pad_color = {122, 116, 104};
- // resize the image to the target_size
- image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- return true;
- } else if (!params.image_res_candidates.empty()) {
- // "spatial_unpad" with "anyres" processing for llava-1.6
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- return true;
- }
- GGML_ASSERT(false && "Unknown image preprocessing type");
- }
- ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
- return ctx->model.image_newline;
- }
- void clip_free(clip_ctx * ctx) {
- if (ctx == nullptr) {
- return;
- }
- delete ctx;
- }
- // deprecated
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- const int32_t nx = ctx->model.hparams.image_size;
- const int32_t ny = ctx->model.hparams.image_size;
- return clip_embd_nbytes_by_img(ctx, nx, ny);
- }
- size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
- clip_image_f32 img;
- img.nx = img_w;
- img.ny = img_h;
- return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
- int32_t clip_get_image_size(const struct clip_ctx * ctx) {
- return ctx->model.hparams.image_size;
- }
- int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
- return ctx->model.hparams.patch_size;
- }
- int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
- return ctx->model.hparams.n_embd;
- }
- const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
- return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
- }
- int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->model.hparams;
- const int n_total = clip_n_output_tokens(ctx, img);
- if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
- return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
- }
- return n_total;
- }
- int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->model.hparams;
- if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
- return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
- }
- return 1;
- }
- int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->model.hparams;
- // only for models using fixed size square images
- int n_patches_sq = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
- projector_type proj = ctx->proj_type();
- switch (proj) {
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- {
- // do nothing
- } break;
- case PROJECTOR_TYPE_LDP:
- case PROJECTOR_TYPE_LDPV2:
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- n_patches_sq /= 4;
- if (ctx->model.mm_glm_tok_boi) {
- n_patches_sq += 2; // for BOI and EOI token embeddings
- }
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- if (params.minicpmv_version == 2) {
- n_patches_sq = 96;
- } else if (params.minicpmv_version == 3) {
- n_patches_sq = 64;
- } else if (params.minicpmv_version == 4) {
- n_patches_sq = 64;
- } else {
- GGML_ABORT("Unknown minicpmv version");
- }
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- {
- // dynamic size
- int patch_size = params.patch_size * 2;
- int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
- int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
- n_patches_sq = x_patch * y_patch;
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- int n_per_side = params.image_size / params.patch_size;
- int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
- n_patches_sq = n_per_side_2d_pool * n_per_side_2d_pool;
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- case PROJECTOR_TYPE_INTERNVL:
- {
- // both W and H are divided by proj_scale_factor
- n_patches_sq /= (params.proj_scale_factor * params.proj_scale_factor);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- // dynamic size
- int n_merge = params.spatial_merge_size;
- int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
- int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
- n_patches_sq = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- int scale_factor = ctx->model.hparams.proj_scale_factor;
- n_patches_sq /= (scale_factor * scale_factor);
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- {
- const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
- const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor);
- n_patches_sq = n_len / proj_stack_factor / 2;
- } break;
- case PROJECTOR_TYPE_QWEN2A:
- {
- // divide by 2 because of whisper
- // another divide by 2 because of nn.AvgPool1d(2, stride=2)
- n_patches_sq = img->nx / 4;
- } break;
- default:
- GGML_ABORT("unsupported projector type");
- }
- return n_patches_sq;
- }
- static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
- assert(embed_dim % 2 == 0);
- int H = pos.size();
- int W = pos[0].size();
- std::vector<float> omega(embed_dim / 2);
- for (int i = 0; i < embed_dim / 2; ++i) {
- omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
- }
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- float out_value = pos[h][w] * omega[d];
- emb[h][w][d] = sin(out_value);
- emb[h][w][d + embed_dim / 2] = cos(out_value);
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
- assert(embed_dim % 2 == 0);
- std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
- std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
- int H = emb_h.size();
- int W = emb_h[0].size();
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- emb[h][w][d] = emb_h[h][w][d];
- emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
- int grid_h_size = image_size.first;
- int grid_w_size = image_size.second;
- std::vector<float> grid_h(grid_h_size);
- std::vector<float> grid_w(grid_w_size);
- for (int i = 0; i < grid_h_size; ++i) {
- grid_h[i] = static_cast<float>(i);
- }
- for (int i = 0; i < grid_w_size; ++i) {
- grid_w[i] = static_cast<float>(i);
- }
- std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid[h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid_2d[0][h][w] = grid_h[h];
- grid_2d[1][h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
- int H = image_size.first;
- int W = image_size.second;
- std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
- }
- }
- return pos_embed_2d;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- clip_image_f32_batch imgs;
- clip_image_f32_ptr img_copy(clip_image_f32_init());
- *img_copy = *img;
- imgs.entries.push_back(std::move(img_copy));
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
- const clip_image_f32_batch & imgs = *imgs_c_ptr;
- int batch_size = imgs.entries.size();
- // TODO @ngxson : implement batch size > 1 as a loop
- // we don't need true batching support because the cgraph will gonna be big anyway
- if (batch_size != 1) {
- return false; // only support batch size of 1
- }
- // build the inference graph
- ctx->debug_print_tensors.clear();
- ggml_backend_sched_reset(ctx->sched.get());
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
- ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
- // set inputs
- const auto & model = ctx->model;
- const auto & hparams = model.hparams;
- const int image_size_width = imgs.entries[0]->nx;
- const int image_size_height = imgs.entries[0]->ny;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
- const int pos_w = image_size_width / patch_size;
- const int pos_h = image_size_height / patch_size;
- const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
- auto get_inp_tensor = [&gf](const char * name) {
- ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
- if (inp == nullptr) {
- GGML_ABORT("Failed to get tensor %s", name);
- }
- if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
- GGML_ABORT("Tensor %s is not an input tensor", name);
- }
- return inp;
- };
- auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
- ggml_tensor * cur = get_inp_tensor(name);
- GGML_ASSERT(cur->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
- ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
- };
- auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
- ggml_tensor * cur = get_inp_tensor(name);
- GGML_ASSERT(cur->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
- ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
- };
- // set input pixel values
- if (!imgs.is_audio) {
- size_t nelem = 0;
- for (const auto & img : imgs.entries) {
- nelem += img->nx * img->ny * 3;
- }
- std::vector<float> inp_raw(nelem);
- // layout of data (note: the channel dim is unrolled to better visualize the layout):
- //
- // ┌──W──┐
- // │ H │ channel = R
- // ├─────┤ │
- // │ H │ channel = G
- // ├─────┤ │
- // │ H │ channel = B
- // └─────┘ │
- // ──────┘ x B
- for (size_t i = 0; i < imgs.entries.size(); i++) {
- const int nx = imgs.entries[i]->nx;
- const int ny = imgs.entries[i]->ny;
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- float * batch_entry = inp_raw.data() + b * (3*n);
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- size_t base_src = 3*(y * nx + x); // idx of the first channel
- size_t base_dst = y * nx + x; // idx of the first channel
- batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
- batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
- batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
- }
- }
- }
- }
- set_input_f32("inp_raw", inp_raw);
- } else {
- // audio input
- GGML_ASSERT(imgs.entries.size() == 1);
- const auto & mel_inp = imgs.entries[0];
- const int n_step = mel_inp->nx;
- const int n_mel = mel_inp->ny;
- std::vector<float> inp_raw(n_step * n_mel);
- std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
- set_input_f32("inp_raw", inp_raw);
- }
- // set input per projector
- switch (ctx->model.proj_type) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- // inspired from siglip:
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
- std::vector<int32_t> positions(pos_h * pos_w);
- int bucket_coords_h[1024];
- int bucket_coords_w[1024];
- for (int i = 0; i < pos_h; i++){
- bucket_coords_h[i] = std::floor(70.0*i/pos_h);
- }
- for (int i = 0; i < pos_w; i++){
- bucket_coords_w[i] = std::floor(70.0*i/pos_w);
- }
- for (int i = 0, id = 0; i < pos_h; i++){
- for (int j = 0; j < pos_w; j++){
- positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
- }
- }
- set_input_i32("positions", positions);
- // inspired from resampler of Qwen-VL:
- // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
- // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
- int embed_dim = clip_n_mmproj_embd(ctx);
- // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
- auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
- std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
- for(int i = 0; i < pos_w * pos_h; ++i){
- for(int j = 0; j < embed_dim; ++j){
- pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
- }
- }
- set_input_f32("pos_embed", pos_embed);
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- {
- const int merge_ratio = 2;
- const int pw = image_size_width / patch_size;
- const int ph = image_size_height / patch_size;
- std::vector<int> positions(n_pos * 4);
- int ptr = 0;
- for (int y = 0; y < ph; y += merge_ratio) {
- for (int x = 0; x < pw; x += merge_ratio) {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- positions[ ptr] = y + dy;
- positions[ num_patches + ptr] = x + dx;
- positions[2 * num_patches + ptr] = y + dy;
- positions[3 * num_patches + ptr] = x + dx;
- ptr++;
- }
- }
- }
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_QWEN25VL:
- {
- // pw * ph = number of tokens output by ViT after apply patch merger
- // ipw * ipw = number of vision token been processed inside ViT
- const int merge_ratio = 2;
- const int pw = image_size_width / patch_size / merge_ratio;
- const int ph = image_size_height / patch_size / merge_ratio;
- const int ipw = image_size_width / patch_size;
- const int iph = image_size_height / patch_size;
- std::vector<int> idx (ph * pw);
- std::vector<int> inv_idx(ph * pw);
- if (use_window_attn) {
- const int attn_window_size = 112;
- const int grid_window = attn_window_size / patch_size / merge_ratio;
- int dst = 0;
- // [num_vision_tokens, num_vision_tokens] attention mask tensor
- std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
- int mask_row = 0;
- for (int y = 0; y < ph; y += grid_window) {
- for (int x = 0; x < pw; x += grid_window) {
- const int win_h = std::min(grid_window, ph - y);
- const int win_w = std::min(grid_window, pw - x);
- const int dst_0 = dst;
- // group all tokens belong to the same window togather (to a continue range)
- for (int dy = 0; dy < win_h; dy++) {
- for (int dx = 0; dx < win_w; dx++) {
- const int src = (y + dy) * pw + (x + dx);
- GGML_ASSERT(src < (int)idx.size());
- GGML_ASSERT(dst < (int)inv_idx.size());
- idx [src] = dst;
- inv_idx[dst] = src;
- dst++;
- }
- }
- for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
- int row_offset = mask_row * (ipw * iph);
- std::fill(
- mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
- mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
- 0.0);
- mask_row++;
- }
- }
- }
- set_input_i32("window_idx", idx);
- set_input_i32("inv_window_idx", inv_idx);
- set_input_f32("window_mask", mask);
- } else {
- for (int i = 0; i < ph * pw; i++) {
- idx[i] = i;
- }
- }
- const int mpow = merge_ratio * merge_ratio;
- std::vector<int> positions(n_pos * 4);
- int ptr = 0;
- for (int y = 0; y < iph; y += merge_ratio) {
- for (int x = 0; x < ipw; x += merge_ratio) {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- auto remap = idx[ptr / mpow];
- remap = (remap * mpow) + (ptr % mpow);
- positions[ remap] = y + dy;
- positions[ num_patches + remap] = x + dx;
- positions[2 * num_patches + remap] = y + dy;
- positions[3 * num_patches + remap] = x + dx;
- ptr++;
- }
- }
- }
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- // set the 2D positions
- int n_patches_per_col = image_size_width / patch_size;
- std::vector<int> pos_data(n_pos);
- // dimension H
- for (int i = 0; i < n_pos; i++) {
- pos_data[i] = i / n_patches_per_col;
- }
- set_input_i32("pos_h", pos_data);
- // dimension W
- for (int i = 0; i < n_pos; i++) {
- pos_data[i] = i % n_patches_per_col;
- }
- set_input_i32("pos_w", pos_data);
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- // llava and other models
- std::vector<int32_t> positions(n_pos);
- for (int i = 0; i < n_pos; i++) {
- positions[i] = i;
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- case PROJECTOR_TYPE_LDP:
- case PROJECTOR_TYPE_LDPV2:
- {
- // llava and other models
- std::vector<int32_t> positions(n_pos);
- for (int i = 0; i < n_pos; i++) {
- positions[i] = i;
- }
- set_input_i32("positions", positions);
- // The patches vector is used to get rows to index into the embeds with;
- // we should skip dim 0 only if we have CLS to avoid going out of bounds
- // when retrieving the rows.
- int patch_offset = model.class_embedding ? 1 : 0;
- std::vector<int32_t> patches(num_patches);
- for (int i = 0; i < num_patches; i++) {
- patches[i] = i + patch_offset;
- }
- set_input_i32("patches", patches);
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- case PROJECTOR_TYPE_INTERNVL:
- case PROJECTOR_TYPE_QWEN2A:
- case PROJECTOR_TYPE_ULTRAVOX:
- {
- // do nothing
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- // set the 2D positions
- int n_patches_per_col = image_size_width / patch_size;
- std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
- // last pos is always kept 0, it's for CLS
- // dimension H
- for (int i = 0; i < num_patches; i++) {
- pos_data[i] = (i / n_patches_per_col) + 1;
- }
- set_input_i32("pos_h", pos_data);
- // dimension W
- for (int i = 0; i < num_patches; i++) {
- pos_data[i] = (i % n_patches_per_col) + 1;
- }
- set_input_i32("pos_w", pos_data);
- } break;
- default:
- GGML_ABORT("Unknown projector type");
- }
- // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
- ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
- ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
- if (reg) {
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
- }
- }
- auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
- if (status != GGML_STATUS_SUCCESS) {
- LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
- return false;
- }
- // print debug nodes
- if (ctx->debug_graph) {
- LOG_INF("\n\n---\n\n");
- LOG_INF("\n\nDebug graph:\n\n");
- for (ggml_tensor * t : ctx->debug_print_tensors) {
- std::vector<uint8_t> data(ggml_nbytes(t));
- ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
- print_tensor_shape(t);
- print_tensor_data(t, data.data(), 3);
- }
- }
- // the last node is the embedding tensor
- ggml_tensor * embeddings = ggml_graph_node(gf, -1);
- // sanity check (only support batch size of 1 for now)
- const int n_tokens_out = embeddings->ne[1];
- const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
- if (n_tokens_out != expected_n_tokens_out) {
- LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
- GGML_ABORT("Invalid number of output tokens");
- }
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- const auto & hparams = ctx->model.hparams;
- switch (ctx->model.proj_type) {
- case PROJECTOR_TYPE_LDP:
- return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
- case PROJECTOR_TYPE_LDPV2:
- return ctx->model.mm_model_peg_0_b->ne[0];
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_PIXTRAL:
- return ctx->model.mm_2_w->ne[1];
- case PROJECTOR_TYPE_MLP_NORM:
- return ctx->model.mm_3_b->ne[0];
- case PROJECTOR_TYPE_MINICPMV:
- if (hparams.minicpmv_version == 2) {
- return 4096;
- } else if (hparams.minicpmv_version == 3) {
- return 3584;
- } else if (hparams.minicpmv_version == 4) {
- return 3584;
- }
- GGML_ABORT("Unknown minicpmv version");
- case PROJECTOR_TYPE_GLM_EDGE:
- return ctx->model.mm_model_mlp_3_w->ne[1];
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- return ctx->model.mm_1_b->ne[0];
- case PROJECTOR_TYPE_GEMMA3:
- return ctx->model.mm_input_proj_w->ne[0];
- case PROJECTOR_TYPE_IDEFICS3:
- return ctx->model.projection->ne[1];
- case PROJECTOR_TYPE_ULTRAVOX:
- return ctx->model.mm_2_w->ne[1];
- case PROJECTOR_TYPE_INTERNVL:
- return ctx->model.mm_3_w->ne[1];
- case PROJECTOR_TYPE_LLAMA4:
- return ctx->model.mm_model_proj->ne[1];
- case PROJECTOR_TYPE_QWEN2A:
- return ctx->model.mm_fc_w->ne[1];
- default:
- GGML_ABORT("Unknown projector type");
- }
- }
- int clip_is_minicpmv(const struct clip_ctx * ctx) {
- if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
- return ctx->model.hparams.minicpmv_version;
- }
- return 0;
- }
- bool clip_is_glm(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
- }
- bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
- || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
- }
- bool clip_is_llava(const struct clip_ctx * ctx) {
- return ctx->model.hparams.has_llava_projector;
- }
- bool clip_is_gemma3(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
- }
- bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
- return ctx->model.modality == CLIP_MODALITY_VISION;
- }
- bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
- return ctx->model.modality == CLIP_MODALITY_AUDIO;
- }
- bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
- || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A;
- }
- bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
- clip_image_f32 clip_img;
- clip_img.buf.resize(h * w * 3);
- for (int i = 0; i < h*w*3; i++)
- {
- clip_img.buf[i] = img[i];
- }
- clip_img.nx = w;
- clip_img.ny = h;
- clip_image_encode(ctx, n_threads, &clip_img, vec);
- return true;
- }
- //
- // API used internally with mtmd
- //
- projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
- return ctx->proj_type();
- }
- void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
- clip_image_f32 * audio = new clip_image_f32;
- audio->nx = n_frames;
- audio->ny = n_mel;
- audio->buf.resize(n_frames * n_mel);
- std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
- batch->entries.push_back(clip_image_f32_ptr(audio));
- batch->is_audio = true;
- }
|