ggml.c 623 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q8_K] = {
  513. .type_name = "q8_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q8_K),
  516. .is_quantized = true,
  517. .from_float = quantize_row_q8_K,
  518. }
  519. };
  520. // For internal test use
  521. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  522. GGML_ASSERT(type < GGML_TYPE_COUNT);
  523. return type_traits[type];
  524. }
  525. //
  526. // simd mappings
  527. //
  528. #if defined(__ARM_NEON)
  529. #if !defined(__aarch64__)
  530. // 64-bit compatibility
  531. inline static float vaddvq_f32(float32x4_t v) {
  532. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  533. }
  534. #endif
  535. #endif
  536. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  537. // we then implement the fundamental computation operations below using only these macros
  538. // adding support for new architectures requires to define the corresponding SIMD macros
  539. //
  540. // GGML_F32_STEP / GGML_F16_STEP
  541. // number of elements to process in a single step
  542. //
  543. // GGML_F32_EPR / GGML_F16_EPR
  544. // number of elements to fit in a single register
  545. //
  546. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  547. #define GGML_SIMD
  548. // F32 NEON
  549. #define GGML_F32_STEP 16
  550. #define GGML_F32_EPR 4
  551. #define GGML_F32x4 float32x4_t
  552. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  553. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  554. #define GGML_F32x4_LOAD vld1q_f32
  555. #define GGML_F32x4_STORE vst1q_f32
  556. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  557. #define GGML_F32x4_ADD vaddq_f32
  558. #define GGML_F32x4_MUL vmulq_f32
  559. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  560. #define GGML_F32x4_REDUCE(res, x) \
  561. { \
  562. int offset = GGML_F32_ARR >> 1; \
  563. for (int i = 0; i < offset; ++i) { \
  564. x[i] = vaddq_f32(x[i], x[offset+i]); \
  565. } \
  566. offset >>= 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f32(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f32(x[i], x[offset+i]); \
  573. } \
  574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  575. }
  576. #define GGML_F32_VEC GGML_F32x4
  577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  585. // F16 NEON
  586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  587. #define GGML_F16_STEP 32
  588. #define GGML_F16_EPR 8
  589. #define GGML_F16x8 float16x8_t
  590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  592. #define GGML_F16x8_LOAD vld1q_f16
  593. #define GGML_F16x8_STORE vst1q_f16
  594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  595. #define GGML_F16x8_ADD vaddq_f16
  596. #define GGML_F16x8_MUL vmulq_f16
  597. #define GGML_F16x8_REDUCE(res, x) \
  598. do { \
  599. int offset = GGML_F16_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f16(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f16(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f16(x[i], x[offset+i]); \
  610. } \
  611. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  612. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  613. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  614. } while (0)
  615. #define GGML_F16_VEC GGML_F16x8
  616. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  617. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  620. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  621. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  622. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  623. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  624. #else
  625. // if FP16 vector arithmetic is not supported, we use FP32 instead
  626. // and take advantage of the vcvt_ functions to convert to/from FP16
  627. #define GGML_F16_STEP 16
  628. #define GGML_F16_EPR 4
  629. #define GGML_F32Cx4 float32x4_t
  630. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  631. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  632. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  633. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  634. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  635. #define GGML_F32Cx4_ADD vaddq_f32
  636. #define GGML_F32Cx4_MUL vmulq_f32
  637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  638. #define GGML_F16_VEC GGML_F32Cx4
  639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  647. #endif
  648. #elif defined(__AVX__)
  649. #define GGML_SIMD
  650. // F32 AVX
  651. #define GGML_F32_STEP 32
  652. #define GGML_F32_EPR 8
  653. #define GGML_F32x8 __m256
  654. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  655. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  656. #define GGML_F32x8_LOAD _mm256_loadu_ps
  657. #define GGML_F32x8_STORE _mm256_storeu_ps
  658. #if defined(__FMA__)
  659. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  660. #else
  661. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  662. #endif
  663. #define GGML_F32x8_ADD _mm256_add_ps
  664. #define GGML_F32x8_MUL _mm256_mul_ps
  665. #define GGML_F32x8_REDUCE(res, x) \
  666. do { \
  667. int offset = GGML_F32_ARR >> 1; \
  668. for (int i = 0; i < offset; ++i) { \
  669. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  670. } \
  671. offset >>= 1; \
  672. for (int i = 0; i < offset; ++i) { \
  673. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  674. } \
  675. offset >>= 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  678. } \
  679. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  680. _mm256_extractf128_ps(x[0], 1)); \
  681. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  682. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  683. } while (0)
  684. // TODO: is this optimal ?
  685. #define GGML_F32_VEC GGML_F32x8
  686. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  687. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  688. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  689. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  690. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  691. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  692. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  693. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  694. // F16 AVX
  695. #define GGML_F16_STEP 32
  696. #define GGML_F16_EPR 8
  697. // F16 arithmetic is not supported by AVX, so we use F32 instead
  698. #define GGML_F32Cx8 __m256
  699. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  700. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  701. #if defined(__F16C__)
  702. // the _mm256_cvt intrinsics require F16C
  703. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  704. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  705. #else
  706. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  707. float tmp[8];
  708. for (int i = 0; i < 8; i++) {
  709. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  710. }
  711. return _mm256_loadu_ps(tmp);
  712. }
  713. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  714. float arr[8];
  715. _mm256_storeu_ps(arr, y);
  716. for (int i = 0; i < 8; i++)
  717. x[i] = GGML_FP32_TO_FP16(arr[i]);
  718. }
  719. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  720. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  721. #endif
  722. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  723. #define GGML_F32Cx8_ADD _mm256_add_ps
  724. #define GGML_F32Cx8_MUL _mm256_mul_ps
  725. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  726. #define GGML_F16_VEC GGML_F32Cx8
  727. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  735. #elif defined(__POWER9_VECTOR__)
  736. #define GGML_SIMD
  737. // F32 POWER9
  738. #define GGML_F32_STEP 32
  739. #define GGML_F32_EPR 4
  740. #define GGML_F32x4 vector float
  741. #define GGML_F32x4_ZERO 0.0f
  742. #define GGML_F32x4_SET1 vec_splats
  743. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  744. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  745. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  746. #define GGML_F32x4_ADD vec_add
  747. #define GGML_F32x4_MUL vec_mul
  748. #define GGML_F32x4_REDUCE(res, x) \
  749. { \
  750. int offset = GGML_F32_ARR >> 1; \
  751. for (int i = 0; i < offset; ++i) { \
  752. x[i] = vec_add(x[i], x[offset+i]); \
  753. } \
  754. offset >>= 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vec_add(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vec_add(x[i], x[offset+i]); \
  761. } \
  762. res = vec_extract(x[0], 0) + \
  763. vec_extract(x[0], 1) + \
  764. vec_extract(x[0], 2) + \
  765. vec_extract(x[0], 3); \
  766. }
  767. #define GGML_F32_VEC GGML_F32x4
  768. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  771. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  772. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  773. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  774. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  775. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  776. // F16 POWER9
  777. #define GGML_F16_STEP GGML_F32_STEP
  778. #define GGML_F16_EPR GGML_F32_EPR
  779. #define GGML_F16_VEC GGML_F32x4
  780. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  781. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  782. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  783. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  784. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  785. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  786. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  787. vec_extract_fp32_from_shortl(vec_xl(0, p))
  788. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  789. #define GGML_F16_VEC_STORE(p, r, i) \
  790. if (i & 0x1) \
  791. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  792. r[i - GGML_ENDIAN_BYTE(0)]), \
  793. 0, p - GGML_F16_EPR)
  794. #elif defined(__wasm_simd128__)
  795. #define GGML_SIMD
  796. // F32 WASM
  797. #define GGML_F32_STEP 16
  798. #define GGML_F32_EPR 4
  799. #define GGML_F32x4 v128_t
  800. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  801. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  802. #define GGML_F32x4_LOAD wasm_v128_load
  803. #define GGML_F32x4_STORE wasm_v128_store
  804. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  805. #define GGML_F32x4_ADD wasm_f32x4_add
  806. #define GGML_F32x4_MUL wasm_f32x4_mul
  807. #define GGML_F32x4_REDUCE(res, x) \
  808. { \
  809. int offset = GGML_F32_ARR >> 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  812. } \
  813. offset >>= 1; \
  814. for (int i = 0; i < offset; ++i) { \
  815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  816. } \
  817. offset >>= 1; \
  818. for (int i = 0; i < offset; ++i) { \
  819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  820. } \
  821. res = wasm_f32x4_extract_lane(x[0], 0) + \
  822. wasm_f32x4_extract_lane(x[0], 1) + \
  823. wasm_f32x4_extract_lane(x[0], 2) + \
  824. wasm_f32x4_extract_lane(x[0], 3); \
  825. }
  826. #define GGML_F32_VEC GGML_F32x4
  827. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  828. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  829. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  830. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  831. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  832. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  833. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  834. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  835. // F16 WASM
  836. #define GGML_F16_STEP 16
  837. #define GGML_F16_EPR 4
  838. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  839. float tmp[4];
  840. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  841. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  842. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  843. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  844. return wasm_v128_load(tmp);
  845. }
  846. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  847. float tmp[4];
  848. wasm_v128_store(tmp, x);
  849. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  850. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  851. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  852. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  853. }
  854. #define GGML_F16x4 v128_t
  855. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  856. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  857. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  858. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  859. #define GGML_F16x4_FMA GGML_F32x4_FMA
  860. #define GGML_F16x4_ADD wasm_f32x4_add
  861. #define GGML_F16x4_MUL wasm_f32x4_mul
  862. #define GGML_F16x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F16_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  875. } \
  876. res = wasm_f32x4_extract_lane(x[0], 0) + \
  877. wasm_f32x4_extract_lane(x[0], 1) + \
  878. wasm_f32x4_extract_lane(x[0], 2) + \
  879. wasm_f32x4_extract_lane(x[0], 3); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x4
  882. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  890. #elif defined(__SSE3__)
  891. #define GGML_SIMD
  892. // F32 SSE
  893. #define GGML_F32_STEP 32
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 __m128
  896. #define GGML_F32x4_ZERO _mm_setzero_ps()
  897. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  898. #define GGML_F32x4_LOAD _mm_loadu_ps
  899. #define GGML_F32x4_STORE _mm_storeu_ps
  900. #if defined(__FMA__)
  901. // TODO: Does this work?
  902. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  903. #else
  904. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  905. #endif
  906. #define GGML_F32x4_ADD _mm_add_ps
  907. #define GGML_F32x4_MUL _mm_mul_ps
  908. #define GGML_F32x4_REDUCE(res, x) \
  909. { \
  910. int offset = GGML_F32_ARR >> 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  913. } \
  914. offset >>= 1; \
  915. for (int i = 0; i < offset; ++i) { \
  916. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  917. } \
  918. offset >>= 1; \
  919. for (int i = 0; i < offset; ++i) { \
  920. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  921. } \
  922. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  923. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  924. }
  925. // TODO: is this optimal ?
  926. #define GGML_F32_VEC GGML_F32x4
  927. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  928. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  929. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  930. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  931. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  933. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  934. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  935. // F16 SSE
  936. #define GGML_F16_STEP 32
  937. #define GGML_F16_EPR 4
  938. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  939. float tmp[4];
  940. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  941. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  942. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  943. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  944. return _mm_loadu_ps(tmp);
  945. }
  946. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  947. float arr[4];
  948. _mm_storeu_ps(arr, y);
  949. x[0] = GGML_FP32_TO_FP16(arr[0]);
  950. x[1] = GGML_FP32_TO_FP16(arr[1]);
  951. x[2] = GGML_FP32_TO_FP16(arr[2]);
  952. x[3] = GGML_FP32_TO_FP16(arr[3]);
  953. }
  954. #define GGML_F32Cx4 __m128
  955. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  956. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  957. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  958. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  959. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  960. #define GGML_F32Cx4_ADD _mm_add_ps
  961. #define GGML_F32Cx4_MUL _mm_mul_ps
  962. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  963. #define GGML_F16_VEC GGML_F32Cx4
  964. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  965. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  966. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  968. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  969. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  970. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  971. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  972. #endif
  973. // GGML_F32_ARR / GGML_F16_ARR
  974. // number of registers to use per step
  975. #ifdef GGML_SIMD
  976. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  977. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  978. #endif
  979. //
  980. // fundamental operations
  981. //
  982. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  983. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  984. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  985. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  987. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  988. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  989. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  990. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  991. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  992. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  993. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  994. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  995. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  996. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  997. #ifdef GGML_SIMD
  998. float sumf = 0.0f;
  999. const int np = (n & ~(GGML_F32_STEP - 1));
  1000. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1001. GGML_F32_VEC ax[GGML_F32_ARR];
  1002. GGML_F32_VEC ay[GGML_F32_ARR];
  1003. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1004. for (int j = 0; j < GGML_F32_ARR; j++) {
  1005. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1006. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1007. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1008. }
  1009. }
  1010. // reduce sum0..sum3 to sum0
  1011. GGML_F32_VEC_REDUCE(sumf, sum);
  1012. // leftovers
  1013. for (int i = np; i < n; ++i) {
  1014. sumf += x[i]*y[i];
  1015. }
  1016. #else
  1017. // scalar
  1018. ggml_float sumf = 0.0;
  1019. for (int i = 0; i < n; ++i) {
  1020. sumf += (ggml_float)(x[i]*y[i]);
  1021. }
  1022. #endif
  1023. *s = sumf;
  1024. }
  1025. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1026. ggml_float sumf = 0.0;
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1037. }
  1038. }
  1039. // reduce sum0..sum3 to sum0
  1040. GGML_F16_VEC_REDUCE(sumf, sum);
  1041. // leftovers
  1042. for (int i = np; i < n; ++i) {
  1043. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1044. }
  1045. #else
  1046. for (int i = 0; i < n; ++i) {
  1047. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1048. }
  1049. #endif
  1050. *s = sumf;
  1051. }
  1052. // compute GGML_VEC_DOT_UNROLL dot products at once
  1053. // xs - x row stride in bytes
  1054. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1055. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1056. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1058. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1059. }
  1060. #if defined(GGML_SIMD)
  1061. const int np = (n & ~(GGML_F16_STEP - 1));
  1062. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1063. GGML_F16_VEC ax[GGML_F16_ARR];
  1064. GGML_F16_VEC ay[GGML_F16_ARR];
  1065. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1066. for (int j = 0; j < GGML_F16_ARR; j++) {
  1067. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1068. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1069. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1070. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1071. }
  1072. }
  1073. }
  1074. // reduce sum0..sum3 to sum0
  1075. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1076. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1077. }
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1081. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1082. }
  1083. }
  1084. #else
  1085. for (int i = 0; i < n; ++i) {
  1086. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1087. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1088. }
  1089. }
  1090. #endif
  1091. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1092. s[i] = sumf[i];
  1093. }
  1094. }
  1095. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1106. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1107. }
  1108. }
  1109. // leftovers
  1110. for (int i = np; i < n; ++i) {
  1111. y[i] += x[i]*v;
  1112. }
  1113. #else
  1114. // scalar
  1115. for (int i = 0; i < n; ++i) {
  1116. y[i] += x[i]*v;
  1117. }
  1118. #endif
  1119. }
  1120. // xs and vs are byte strides of x and v
  1121. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1122. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1123. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1124. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1125. x[i] = (const float *) ((const char *) xv + i*xs);
  1126. v[i] = (const float *) ((const char *) vv + i*vs);
  1127. }
  1128. #if defined(GGML_SIMD)
  1129. const int np = (n & ~(GGML_F32_STEP - 1));
  1130. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1132. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1133. }
  1134. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1140. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1142. }
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1148. for (int i = np; i < n; ++i) {
  1149. y[i] += x[k][i]*v[k][0];
  1150. }
  1151. }
  1152. #else
  1153. // scalar
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. for (int i = 0; i < n; ++i) {
  1156. y[i] += x[k][i]*v[k][0];
  1157. }
  1158. }
  1159. #endif
  1160. }
  1161. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1162. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1163. #if defined(GGML_USE_ACCELERATE)
  1164. vDSP_vsmul(y, 1, &v, y, 1, n);
  1165. #elif defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1173. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1174. }
  1175. }
  1176. // leftovers
  1177. for (int i = np; i < n; ++i) {
  1178. y[i] *= v;
  1179. }
  1180. #else
  1181. // scalar
  1182. for (int i = 0; i < n; ++i) {
  1183. y[i] *= v;
  1184. }
  1185. #endif
  1186. }
  1187. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1188. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1189. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1190. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1191. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1192. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1193. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1194. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1195. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1196. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1197. inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; }
  1198. static const float GELU_COEF_A = 0.044715f;
  1199. static const float GELU_QUICK_COEF = -1.702f;
  1200. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1201. inline static float ggml_gelu_f32(float x) {
  1202. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1203. }
  1204. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1205. const uint16_t * i16 = (const uint16_t *) x;
  1206. for (int i = 0; i < n; ++i) {
  1207. y[i] = ggml_table_gelu_f16[i16[i]];
  1208. }
  1209. }
  1210. #ifdef GGML_GELU_FP16
  1211. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1212. uint16_t t;
  1213. for (int i = 0; i < n; ++i) {
  1214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1215. memcpy(&t, &fp16, sizeof(uint16_t));
  1216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1217. }
  1218. }
  1219. #else
  1220. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_gelu_f32(x[i]);
  1223. }
  1224. }
  1225. #endif
  1226. inline static float ggml_gelu_quick_f32(float x) {
  1227. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1228. }
  1229. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. // const uint16_t * i16 = (const uint16_t *) x;
  1231. // for (int i = 0; i < n; ++i) {
  1232. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1233. // }
  1234. //}
  1235. #ifdef GGML_GELU_QUICK_FP16
  1236. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_quick_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. // Sigmoid Linear Unit (SiLU) function
  1252. inline static float ggml_silu_f32(float x) {
  1253. return x/(1.0f + expf(-x));
  1254. }
  1255. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_silu_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_SILU_FP16
  1262. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_silu_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. inline static float ggml_silu_backward_f32(float x, float dy) {
  1278. const float s = 1.0f/(1.0f + expf(-x));
  1279. return dy*s*(1.0f + x*(1.0f - s));
  1280. }
  1281. #ifdef GGML_SILU_FP16
  1282. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1283. for (int i = 0; i < n; ++i) {
  1284. // we did not use x[i] to compute forward silu but its f16 equivalent
  1285. // take derivative at f16 of x[i]:
  1286. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1287. float usedx = GGML_FP16_TO_FP32(fp16);
  1288. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1289. }
  1290. }
  1291. #else
  1292. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1293. for (int i = 0; i < n; ++i) {
  1294. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1295. }
  1296. }
  1297. #endif
  1298. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1299. #ifndef GGML_USE_ACCELERATE
  1300. ggml_float sum = 0.0;
  1301. for (int i = 0; i < n; ++i) {
  1302. sum += (ggml_float)x[i];
  1303. }
  1304. *s = sum;
  1305. #else
  1306. vDSP_sve(x, 1, s, n);
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1310. ggml_float sum = 0.0;
  1311. for (int i = 0; i < n; ++i) {
  1312. sum += (ggml_float)x[i];
  1313. }
  1314. *s = sum;
  1315. }
  1316. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1317. float sum = 0.0f;
  1318. for (int i = 0; i < n; ++i) {
  1319. sum += GGML_FP16_TO_FP32(x[i]);
  1320. }
  1321. *s = sum;
  1322. }
  1323. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. float max = -INFINITY;
  1326. for (int i = 0; i < n; ++i) {
  1327. max = MAX(max, x[i]);
  1328. }
  1329. *s = max;
  1330. #else
  1331. vDSP_maxv(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1335. ggml_vec_norm_f32(n, s, x);
  1336. *s = 1.f/(*s);
  1337. }
  1338. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1339. float max = -INFINITY;
  1340. int idx = 0;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. if (max == x[i]) { idx = i; }
  1344. }
  1345. *s = idx;
  1346. }
  1347. //
  1348. // data types
  1349. //
  1350. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1351. "NONE",
  1352. "DUP",
  1353. "ADD",
  1354. "ADD1",
  1355. "ACC",
  1356. "SUB",
  1357. "MUL",
  1358. "DIV",
  1359. "SQR",
  1360. "SQRT",
  1361. "LOG",
  1362. "SUM",
  1363. "SUM_ROWS",
  1364. "MEAN",
  1365. "ARGMAX",
  1366. "REPEAT",
  1367. "REPEAT_BACK",
  1368. "CONCAT",
  1369. "SILU_BACK",
  1370. "NORM",
  1371. "RMS_NORM",
  1372. "RMS_NORM_BACK",
  1373. "GROUP_NORM",
  1374. "MUL_MAT",
  1375. "MUL_MAT_ID",
  1376. "OUT_PROD",
  1377. "SCALE",
  1378. "SET",
  1379. "CPY",
  1380. "CONT",
  1381. "RESHAPE",
  1382. "VIEW",
  1383. "PERMUTE",
  1384. "TRANSPOSE",
  1385. "GET_ROWS",
  1386. "GET_ROWS_BACK",
  1387. "DIAG",
  1388. "DIAG_MASK_INF",
  1389. "DIAG_MASK_ZERO",
  1390. "SOFT_MAX",
  1391. "SOFT_MAX_BACK",
  1392. "ROPE",
  1393. "ROPE_BACK",
  1394. "ALIBI",
  1395. "CLAMP",
  1396. "CONV_TRANSPOSE_1D",
  1397. "IM2COL",
  1398. "CONV_TRANSPOSE_2D",
  1399. "POOL_1D",
  1400. "POOL_2D",
  1401. "UPSCALE",
  1402. "ARGSORT",
  1403. "FLASH_ATTN",
  1404. "FLASH_FF",
  1405. "FLASH_ATTN_BACK",
  1406. "WIN_PART",
  1407. "WIN_UNPART",
  1408. "GET_REL_POS",
  1409. "ADD_REL_POS",
  1410. "UNARY",
  1411. "MAP_UNARY",
  1412. "MAP_BINARY",
  1413. "MAP_CUSTOM1_F32",
  1414. "MAP_CUSTOM2_F32",
  1415. "MAP_CUSTOM3_F32",
  1416. "MAP_CUSTOM1",
  1417. "MAP_CUSTOM2",
  1418. "MAP_CUSTOM3",
  1419. "CROSS_ENTROPY_LOSS",
  1420. "CROSS_ENTROPY_LOSS_BACK",
  1421. };
  1422. static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
  1423. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1424. "none",
  1425. "x",
  1426. "x+y",
  1427. "x+y",
  1428. "view(x,nb,offset)+=y->x",
  1429. "x-y",
  1430. "x*y",
  1431. "x/y",
  1432. "x^2",
  1433. "√x",
  1434. "log(x)",
  1435. "Σx",
  1436. "Σx_k",
  1437. "Σx/n",
  1438. "argmax(x)",
  1439. "repeat(x)",
  1440. "repeat_back(x)",
  1441. "concat(x, y)",
  1442. "silu_back(x)",
  1443. "norm(x)",
  1444. "rms_norm(x)",
  1445. "rms_norm_back(x)",
  1446. "group_norm(x)",
  1447. "X*Y",
  1448. "X[i]*Y",
  1449. "X*Y",
  1450. "x*v",
  1451. "y-\\>view(x)",
  1452. "x-\\>y",
  1453. "cont(x)",
  1454. "reshape(x)",
  1455. "view(x)",
  1456. "permute(x)",
  1457. "transpose(x)",
  1458. "get_rows(x)",
  1459. "get_rows_back(x)",
  1460. "diag(x)",
  1461. "diag_mask_inf(x)",
  1462. "diag_mask_zero(x)",
  1463. "soft_max(x)",
  1464. "soft_max_back(x)",
  1465. "rope(x)",
  1466. "rope_back(x)",
  1467. "alibi(x)",
  1468. "clamp(x)",
  1469. "conv_transpose_1d(x)",
  1470. "im2col(x)",
  1471. "conv_transpose_2d(x)",
  1472. "pool_1d(x)",
  1473. "pool_2d(x)",
  1474. "upscale(x)",
  1475. "argsort(x)",
  1476. "flash_attn(x)",
  1477. "flash_ff(x)",
  1478. "flash_attn_back(x)",
  1479. "win_part(x)",
  1480. "win_unpart(x)",
  1481. "get_rel_pos(x)",
  1482. "add_rel_pos(x)",
  1483. "unary(x)",
  1484. "f(x)",
  1485. "f(x,y)",
  1486. "custom_f32(x)",
  1487. "custom_f32(x,y)",
  1488. "custom_f32(x,y,z)",
  1489. "custom(x)",
  1490. "custom(x,y)",
  1491. "custom(x,y,z)",
  1492. "cross_entropy_loss(x,y)",
  1493. "cross_entropy_loss_back(x,y)",
  1494. };
  1495. static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
  1496. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1497. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1498. "ABS",
  1499. "SGN",
  1500. "NEG",
  1501. "STEP",
  1502. "TANH",
  1503. "ELU",
  1504. "RELU",
  1505. "GELU",
  1506. "GELU_QUICK",
  1507. "SILU",
  1508. "LEAKY",
  1509. };
  1510. static_assert(GGML_UNARY_OP_COUNT == 11, "GGML_UNARY_OP_COUNT != 11");
  1511. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1512. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1513. // WARN:
  1514. // Mis-confguration can lead to problem that's hard to reason about:
  1515. // * At best it crash or talks nosense.
  1516. // * At worst it talks slightly difference but hard to perceive.
  1517. //
  1518. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1519. // Take care about compile options (e.g., GGML_USE_xxx).
  1520. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1521. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1522. static void ggml_setup_op_has_task_pass(void) {
  1523. { // INIT
  1524. bool * p = GGML_OP_HAS_INIT;
  1525. p[GGML_OP_ACC ] = true;
  1526. p[GGML_OP_MUL_MAT ] = true;
  1527. p[GGML_OP_MUL_MAT_ID ] = true;
  1528. p[GGML_OP_OUT_PROD ] = true;
  1529. p[GGML_OP_SET ] = true;
  1530. p[GGML_OP_GET_ROWS_BACK ] = true;
  1531. p[GGML_OP_DIAG_MASK_INF ] = true;
  1532. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1533. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1534. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1535. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1536. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1537. p[GGML_OP_ADD_REL_POS ] = true;
  1538. }
  1539. { // FINALIZE
  1540. bool * p = GGML_OP_HAS_FINALIZE;
  1541. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1542. }
  1543. }
  1544. //
  1545. // ggml context
  1546. //
  1547. struct ggml_context {
  1548. size_t mem_size;
  1549. void * mem_buffer;
  1550. bool mem_buffer_owned;
  1551. bool no_alloc;
  1552. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1553. int n_objects;
  1554. struct ggml_object * objects_begin;
  1555. struct ggml_object * objects_end;
  1556. struct ggml_scratch scratch;
  1557. struct ggml_scratch scratch_save;
  1558. };
  1559. struct ggml_context_container {
  1560. bool used;
  1561. struct ggml_context context;
  1562. };
  1563. //
  1564. // NUMA support
  1565. //
  1566. #define GGML_NUMA_MAX_NODES 8
  1567. #define GGML_NUMA_MAX_CPUS 512
  1568. struct ggml_numa_node {
  1569. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1570. uint32_t n_cpus;
  1571. };
  1572. struct ggml_numa_nodes {
  1573. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1574. uint32_t n_nodes;
  1575. uint32_t total_cpus; // hardware threads on system
  1576. };
  1577. //
  1578. // ggml state
  1579. //
  1580. struct ggml_state {
  1581. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1582. struct ggml_numa_nodes numa;
  1583. };
  1584. // global state
  1585. static struct ggml_state g_state;
  1586. static atomic_int g_state_barrier = 0;
  1587. // barrier via spin lock
  1588. inline static void ggml_critical_section_start(void) {
  1589. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1590. while (processing > 0) {
  1591. // wait for other threads to finish
  1592. atomic_fetch_sub(&g_state_barrier, 1);
  1593. sched_yield(); // TODO: reconsider this
  1594. processing = atomic_fetch_add(&g_state_barrier, 1);
  1595. }
  1596. }
  1597. // TODO: make this somehow automatically executed
  1598. // some sort of "sentry" mechanism
  1599. inline static void ggml_critical_section_end(void) {
  1600. atomic_fetch_sub(&g_state_barrier, 1);
  1601. }
  1602. void ggml_numa_init(void) {
  1603. if (g_state.numa.n_nodes > 0) {
  1604. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1605. return;
  1606. }
  1607. #ifdef __linux__
  1608. struct stat st;
  1609. char path[256];
  1610. int rv;
  1611. // enumerate nodes
  1612. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1613. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1614. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1615. if (stat(path, &st) != 0) { break; }
  1616. ++g_state.numa.n_nodes;
  1617. }
  1618. // enumerate CPUs
  1619. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1620. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1621. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1622. if (stat(path, &st) != 0) { break; }
  1623. ++g_state.numa.total_cpus;
  1624. }
  1625. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1626. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1627. g_state.numa.n_nodes = 0;
  1628. return;
  1629. }
  1630. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1631. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1632. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1633. node->n_cpus = 0;
  1634. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1635. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1636. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1637. if (stat(path, &st) == 0) {
  1638. node->cpus[node->n_cpus++] = c;
  1639. GGML_PRINT_DEBUG(" %u", c);
  1640. }
  1641. }
  1642. GGML_PRINT_DEBUG("\n");
  1643. }
  1644. if (ggml_is_numa()) {
  1645. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1646. if (fptr != NULL) {
  1647. char buf[42];
  1648. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1649. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1650. }
  1651. fclose(fptr);
  1652. }
  1653. }
  1654. #else
  1655. // TODO
  1656. #endif
  1657. }
  1658. bool ggml_is_numa(void) {
  1659. return g_state.numa.n_nodes > 1;
  1660. }
  1661. ////////////////////////////////////////////////////////////////////////////////
  1662. void ggml_print_object(const struct ggml_object * obj) {
  1663. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1664. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1665. }
  1666. void ggml_print_objects(const struct ggml_context * ctx) {
  1667. struct ggml_object * obj = ctx->objects_begin;
  1668. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1669. while (obj != NULL) {
  1670. ggml_print_object(obj);
  1671. obj = obj->next;
  1672. }
  1673. GGML_PRINT("%s: --- end ---\n", __func__);
  1674. }
  1675. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1676. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1677. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1678. }
  1679. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1680. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1681. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1682. }
  1683. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1684. size_t nbytes;
  1685. size_t blck_size = ggml_blck_size(tensor->type);
  1686. if (blck_size == 1) {
  1687. nbytes = ggml_type_size(tensor->type);
  1688. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1689. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1690. }
  1691. }
  1692. else {
  1693. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1694. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1695. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1696. }
  1697. }
  1698. return nbytes;
  1699. }
  1700. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1701. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1702. }
  1703. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1705. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1706. }
  1707. int ggml_blck_size(enum ggml_type type) {
  1708. return type_traits[type].blck_size;
  1709. }
  1710. size_t ggml_type_size(enum ggml_type type) {
  1711. return type_traits[type].type_size;
  1712. }
  1713. float ggml_type_sizef(enum ggml_type type) {
  1714. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1715. }
  1716. const char * ggml_type_name(enum ggml_type type) {
  1717. return type_traits[type].type_name;
  1718. }
  1719. bool ggml_is_quantized(enum ggml_type type) {
  1720. return type_traits[type].is_quantized;
  1721. }
  1722. const char * ggml_op_name(enum ggml_op op) {
  1723. return GGML_OP_NAME[op];
  1724. }
  1725. const char * ggml_op_symbol(enum ggml_op op) {
  1726. return GGML_OP_SYMBOL[op];
  1727. }
  1728. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1729. return GGML_UNARY_OP_NAME[op];
  1730. }
  1731. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1732. if (t->op == GGML_OP_UNARY) {
  1733. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1734. return ggml_unary_op_name(uop);
  1735. }
  1736. else {
  1737. return ggml_op_name(t->op);
  1738. }
  1739. }
  1740. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1741. return ggml_type_size(tensor->type);
  1742. }
  1743. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1744. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1745. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1746. }
  1747. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1748. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1749. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1750. }
  1751. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1752. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1753. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1754. }
  1755. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1756. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1757. return (t0->ne[0] == t1->ne[0]) &&
  1758. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1759. (t1->ne[3]%t0->ne[3] == 0);
  1760. }
  1761. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1762. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1763. return (t0->ne[1] == t1->ne[1]) &&
  1764. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1765. (t1->ne[3]%t0->ne[3] == 0);
  1766. }
  1767. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1768. enum ggml_type wtype = GGML_TYPE_COUNT;
  1769. switch (ftype) {
  1770. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1771. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1772. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1773. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1774. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1775. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1776. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1777. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1778. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1779. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1780. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1781. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1782. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1783. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1784. }
  1785. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1786. return wtype;
  1787. }
  1788. size_t ggml_tensor_overhead(void) {
  1789. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1790. }
  1791. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1792. return tensor->nb[0] > tensor->nb[1];
  1793. }
  1794. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1795. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1796. return
  1797. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1798. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1799. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1800. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1801. }
  1802. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1803. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1804. return
  1805. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1806. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1807. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1808. }
  1809. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1810. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1811. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1812. }
  1813. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1815. return
  1816. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1817. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1818. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1819. }
  1820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1822. return
  1823. (t0->ne[0] == t1->ne[0] ) &&
  1824. (t0->ne[1] == t1->ne[1] ) &&
  1825. (t0->ne[2] == t1->ne[2] ) &&
  1826. (t0->ne[3] == t1->ne[3] );
  1827. }
  1828. // check if t1 can be represented as a repeatition of t0
  1829. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1831. return
  1832. (t1->ne[0]%t0->ne[0] == 0) &&
  1833. (t1->ne[1]%t0->ne[1] == 0) &&
  1834. (t1->ne[2]%t0->ne[2] == 0) &&
  1835. (t1->ne[3]%t0->ne[3] == 0);
  1836. }
  1837. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1839. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1840. }
  1841. static inline int ggml_up32(int n) {
  1842. return (n + 31) & ~31;
  1843. }
  1844. //static inline int ggml_up64(int n) {
  1845. // return (n + 63) & ~63;
  1846. //}
  1847. static inline int ggml_up(int n, int m) {
  1848. // assert m is a power of 2
  1849. GGML_ASSERT((m & (m - 1)) == 0);
  1850. return (n + m - 1) & ~(m - 1);
  1851. }
  1852. // assert that pointer is aligned to GGML_MEM_ALIGN
  1853. #define ggml_assert_aligned(ptr) \
  1854. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1855. ////////////////////////////////////////////////////////////////////////////////
  1856. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1857. // make this function thread safe
  1858. ggml_critical_section_start();
  1859. static bool is_first_call = true;
  1860. if (is_first_call) {
  1861. // initialize time system (required on Windows)
  1862. ggml_time_init();
  1863. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1864. {
  1865. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1866. ggml_fp16_t ii;
  1867. for (int i = 0; i < (1 << 16); ++i) {
  1868. uint16_t ui = i;
  1869. memcpy(&ii, &ui, sizeof(ii));
  1870. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1871. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1872. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1873. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1874. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1875. }
  1876. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1877. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1878. }
  1879. // initialize g_state
  1880. {
  1881. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1882. g_state = (struct ggml_state) {
  1883. /*.contexts =*/ { { 0 } },
  1884. /*.numa =*/ {
  1885. .n_nodes = 0,
  1886. .total_cpus = 0,
  1887. },
  1888. };
  1889. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1890. g_state.contexts[i].used = false;
  1891. }
  1892. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1893. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1894. }
  1895. #if defined(GGML_USE_CUBLAS)
  1896. ggml_init_cublas();
  1897. #elif defined(GGML_USE_CLBLAST)
  1898. ggml_cl_init();
  1899. #endif
  1900. ggml_setup_op_has_task_pass();
  1901. is_first_call = false;
  1902. }
  1903. // find non-used context in g_state
  1904. struct ggml_context * ctx = NULL;
  1905. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1906. if (!g_state.contexts[i].used) {
  1907. g_state.contexts[i].used = true;
  1908. ctx = &g_state.contexts[i].context;
  1909. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1910. break;
  1911. }
  1912. }
  1913. if (ctx == NULL) {
  1914. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1915. ggml_critical_section_end();
  1916. return NULL;
  1917. }
  1918. // allow to call ggml_init with 0 size
  1919. if (params.mem_size == 0) {
  1920. params.mem_size = GGML_MEM_ALIGN;
  1921. }
  1922. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1923. *ctx = (struct ggml_context) {
  1924. /*.mem_size =*/ mem_size,
  1925. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1926. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1927. /*.no_alloc =*/ params.no_alloc,
  1928. /*.no_alloc_save =*/ params.no_alloc,
  1929. /*.n_objects =*/ 0,
  1930. /*.objects_begin =*/ NULL,
  1931. /*.objects_end =*/ NULL,
  1932. /*.scratch =*/ { 0, 0, NULL, },
  1933. /*.scratch_save =*/ { 0, 0, NULL, },
  1934. };
  1935. GGML_ASSERT(ctx->mem_buffer != NULL);
  1936. ggml_assert_aligned(ctx->mem_buffer);
  1937. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1938. ggml_critical_section_end();
  1939. return ctx;
  1940. }
  1941. void ggml_free(struct ggml_context * ctx) {
  1942. // make this function thread safe
  1943. ggml_critical_section_start();
  1944. bool found = false;
  1945. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1946. if (&g_state.contexts[i].context == ctx) {
  1947. g_state.contexts[i].used = false;
  1948. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1949. __func__, i, ggml_used_mem(ctx));
  1950. if (ctx->mem_buffer_owned) {
  1951. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1952. }
  1953. found = true;
  1954. break;
  1955. }
  1956. }
  1957. if (!found) {
  1958. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1959. }
  1960. ggml_critical_section_end();
  1961. }
  1962. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1963. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1964. }
  1965. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1966. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1967. ctx->scratch = scratch;
  1968. return result;
  1969. }
  1970. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1971. return ctx->no_alloc;
  1972. }
  1973. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1974. ctx->no_alloc = no_alloc;
  1975. }
  1976. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1977. return ctx->mem_buffer;
  1978. }
  1979. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1980. return ctx->mem_size;
  1981. }
  1982. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1983. size_t max_size = 0;
  1984. struct ggml_object * obj = ctx->objects_begin;
  1985. while (obj != NULL) {
  1986. if (obj->type == GGML_OBJECT_TENSOR) {
  1987. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1988. const size_t size = ggml_nbytes(tensor);
  1989. if (max_size < size) {
  1990. max_size = size;
  1991. }
  1992. }
  1993. obj = obj->next;
  1994. }
  1995. return max_size;
  1996. }
  1997. // IMPORTANT:
  1998. // when creating "opt" tensors, always save and load the scratch buffer
  1999. // this is an error prone process, but it is necessary to support inplace
  2000. // operators when using scratch buffers
  2001. // TODO: implement a better way
  2002. static void ggml_scratch_save(struct ggml_context * ctx) {
  2003. // this is needed to allow opt tensors to store their data
  2004. // TODO: again, need to find a better way
  2005. ctx->no_alloc_save = ctx->no_alloc;
  2006. ctx->no_alloc = false;
  2007. ctx->scratch_save = ctx->scratch;
  2008. ctx->scratch.data = NULL;
  2009. }
  2010. static void ggml_scratch_load(struct ggml_context * ctx) {
  2011. ctx->no_alloc = ctx->no_alloc_save;
  2012. ctx->scratch = ctx->scratch_save;
  2013. }
  2014. ////////////////////////////////////////////////////////////////////////////////
  2015. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2016. // always insert objects at the end of the context's memory pool
  2017. struct ggml_object * obj_cur = ctx->objects_end;
  2018. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2019. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2020. const size_t cur_end = cur_offs + cur_size;
  2021. // align to GGML_MEM_ALIGN
  2022. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2023. char * const mem_buffer = ctx->mem_buffer;
  2024. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2025. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2026. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2027. __func__, cur_end + size_needed, ctx->mem_size);
  2028. assert(false);
  2029. return NULL;
  2030. }
  2031. *obj_new = (struct ggml_object) {
  2032. .offs = cur_end + GGML_OBJECT_SIZE,
  2033. .size = size_needed,
  2034. .next = NULL,
  2035. .type = type,
  2036. };
  2037. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2038. if (obj_cur != NULL) {
  2039. obj_cur->next = obj_new;
  2040. } else {
  2041. // this is the first object in this context
  2042. ctx->objects_begin = obj_new;
  2043. }
  2044. ctx->objects_end = obj_new;
  2045. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2046. return obj_new;
  2047. }
  2048. static struct ggml_tensor * ggml_new_tensor_impl(
  2049. struct ggml_context * ctx,
  2050. enum ggml_type type,
  2051. int n_dims,
  2052. const int64_t * ne,
  2053. struct ggml_tensor * view_src,
  2054. size_t view_offs) {
  2055. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2056. // find the base tensor and absolute offset
  2057. if (view_src != NULL && view_src->view_src != NULL) {
  2058. view_offs += view_src->view_offs;
  2059. view_src = view_src->view_src;
  2060. }
  2061. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2062. for (int i = 1; i < n_dims; i++) {
  2063. data_size *= ne[i];
  2064. }
  2065. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2066. void * data = view_src != NULL ? view_src->data : NULL;
  2067. if (data != NULL) {
  2068. data = (char *) data + view_offs;
  2069. }
  2070. size_t obj_alloc_size = 0;
  2071. if (view_src == NULL && !ctx->no_alloc) {
  2072. if (ctx->scratch.data != NULL) {
  2073. // allocate tensor data in the scratch buffer
  2074. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2075. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2076. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2077. assert(false);
  2078. return NULL;
  2079. }
  2080. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2081. ctx->scratch.offs += data_size;
  2082. } else {
  2083. // allocate tensor data in the context's memory pool
  2084. obj_alloc_size = data_size;
  2085. }
  2086. }
  2087. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2088. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2089. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2090. *result = (struct ggml_tensor) {
  2091. /*.type =*/ type,
  2092. /*.backend =*/ GGML_BACKEND_CPU,
  2093. /*.buffer =*/ NULL,
  2094. /*.n_dims =*/ n_dims,
  2095. /*.ne =*/ { 1, 1, 1, 1 },
  2096. /*.nb =*/ { 0, 0, 0, 0 },
  2097. /*.op =*/ GGML_OP_NONE,
  2098. /*.op_params =*/ { 0 },
  2099. /*.is_param =*/ false,
  2100. /*.grad =*/ NULL,
  2101. /*.src =*/ { NULL },
  2102. /*.perf_runs =*/ 0,
  2103. /*.perf_cycles =*/ 0,
  2104. /*.perf_time_us =*/ 0,
  2105. /*.view_src =*/ view_src,
  2106. /*.view_offs =*/ view_offs,
  2107. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2108. /*.name =*/ { 0 },
  2109. /*.extra =*/ NULL,
  2110. /*.padding =*/ { 0 },
  2111. };
  2112. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2113. //ggml_assert_aligned(result->data);
  2114. for (int i = 0; i < n_dims; i++) {
  2115. result->ne[i] = ne[i];
  2116. }
  2117. result->nb[0] = ggml_type_size(type);
  2118. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2119. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2120. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2121. }
  2122. ctx->n_objects++;
  2123. return result;
  2124. }
  2125. struct ggml_tensor * ggml_new_tensor(
  2126. struct ggml_context * ctx,
  2127. enum ggml_type type,
  2128. int n_dims,
  2129. const int64_t * ne) {
  2130. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2131. }
  2132. struct ggml_tensor * ggml_new_tensor_1d(
  2133. struct ggml_context * ctx,
  2134. enum ggml_type type,
  2135. int64_t ne0) {
  2136. return ggml_new_tensor(ctx, type, 1, &ne0);
  2137. }
  2138. struct ggml_tensor * ggml_new_tensor_2d(
  2139. struct ggml_context * ctx,
  2140. enum ggml_type type,
  2141. int64_t ne0,
  2142. int64_t ne1) {
  2143. const int64_t ne[2] = { ne0, ne1 };
  2144. return ggml_new_tensor(ctx, type, 2, ne);
  2145. }
  2146. struct ggml_tensor * ggml_new_tensor_3d(
  2147. struct ggml_context * ctx,
  2148. enum ggml_type type,
  2149. int64_t ne0,
  2150. int64_t ne1,
  2151. int64_t ne2) {
  2152. const int64_t ne[3] = { ne0, ne1, ne2 };
  2153. return ggml_new_tensor(ctx, type, 3, ne);
  2154. }
  2155. struct ggml_tensor * ggml_new_tensor_4d(
  2156. struct ggml_context * ctx,
  2157. enum ggml_type type,
  2158. int64_t ne0,
  2159. int64_t ne1,
  2160. int64_t ne2,
  2161. int64_t ne3) {
  2162. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2163. return ggml_new_tensor(ctx, type, 4, ne);
  2164. }
  2165. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2166. ggml_scratch_save(ctx);
  2167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2168. ggml_scratch_load(ctx);
  2169. ggml_set_i32(result, value);
  2170. return result;
  2171. }
  2172. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2173. ggml_scratch_save(ctx);
  2174. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2175. ggml_scratch_load(ctx);
  2176. ggml_set_f32(result, value);
  2177. return result;
  2178. }
  2179. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2180. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2181. }
  2182. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2183. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2184. assert(params_size <= GGML_MAX_OP_PARAMS);
  2185. memcpy(tensor->op_params, params, params_size);
  2186. }
  2187. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2188. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2189. return ((const int32_t *)(tensor->op_params))[i];
  2190. }
  2191. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2192. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2193. ((int32_t *)(tensor->op_params))[i] = value;
  2194. }
  2195. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2196. memset(tensor->data, 0, ggml_nbytes(tensor));
  2197. return tensor;
  2198. }
  2199. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2200. const int n = ggml_nrows(tensor);
  2201. const int nc = tensor->ne[0];
  2202. const size_t n1 = tensor->nb[1];
  2203. char * const data = tensor->data;
  2204. switch (tensor->type) {
  2205. case GGML_TYPE_I8:
  2206. {
  2207. assert(tensor->nb[0] == sizeof(int8_t));
  2208. for (int i = 0; i < n; i++) {
  2209. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2210. }
  2211. } break;
  2212. case GGML_TYPE_I16:
  2213. {
  2214. assert(tensor->nb[0] == sizeof(int16_t));
  2215. for (int i = 0; i < n; i++) {
  2216. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2217. }
  2218. } break;
  2219. case GGML_TYPE_I32:
  2220. {
  2221. assert(tensor->nb[0] == sizeof(int32_t));
  2222. for (int i = 0; i < n; i++) {
  2223. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2224. }
  2225. } break;
  2226. case GGML_TYPE_F16:
  2227. {
  2228. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2229. for (int i = 0; i < n; i++) {
  2230. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2231. }
  2232. } break;
  2233. case GGML_TYPE_F32:
  2234. {
  2235. assert(tensor->nb[0] == sizeof(float));
  2236. for (int i = 0; i < n; i++) {
  2237. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2238. }
  2239. } break;
  2240. default:
  2241. {
  2242. GGML_ASSERT(false);
  2243. } break;
  2244. }
  2245. return tensor;
  2246. }
  2247. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2248. const int n = ggml_nrows(tensor);
  2249. const int nc = tensor->ne[0];
  2250. const size_t n1 = tensor->nb[1];
  2251. char * const data = tensor->data;
  2252. switch (tensor->type) {
  2253. case GGML_TYPE_I8:
  2254. {
  2255. assert(tensor->nb[0] == sizeof(int8_t));
  2256. for (int i = 0; i < n; i++) {
  2257. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2258. }
  2259. } break;
  2260. case GGML_TYPE_I16:
  2261. {
  2262. assert(tensor->nb[0] == sizeof(int16_t));
  2263. for (int i = 0; i < n; i++) {
  2264. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2265. }
  2266. } break;
  2267. case GGML_TYPE_I32:
  2268. {
  2269. assert(tensor->nb[0] == sizeof(int32_t));
  2270. for (int i = 0; i < n; i++) {
  2271. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2272. }
  2273. } break;
  2274. case GGML_TYPE_F16:
  2275. {
  2276. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2277. for (int i = 0; i < n; i++) {
  2278. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2279. }
  2280. } break;
  2281. case GGML_TYPE_F32:
  2282. {
  2283. assert(tensor->nb[0] == sizeof(float));
  2284. for (int i = 0; i < n; i++) {
  2285. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2286. }
  2287. } break;
  2288. default:
  2289. {
  2290. GGML_ASSERT(false);
  2291. } break;
  2292. }
  2293. return tensor;
  2294. }
  2295. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2296. const int64_t ne2 = tensor->ne[2];
  2297. const int64_t ne1 = tensor->ne[1];
  2298. const int64_t ne0 = tensor->ne[0];
  2299. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2300. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2301. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2302. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2303. if (i0) {
  2304. * i0 = i0_;
  2305. }
  2306. if (i1) {
  2307. * i1 = i1_;
  2308. }
  2309. if (i2) {
  2310. * i2 = i2_;
  2311. }
  2312. if (i3) {
  2313. * i3 = i3_;
  2314. }
  2315. }
  2316. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2317. if (!ggml_is_contiguous(tensor)) {
  2318. int64_t id[4] = { 0, 0, 0, 0 };
  2319. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2320. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2321. }
  2322. switch (tensor->type) {
  2323. case GGML_TYPE_I8:
  2324. {
  2325. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2326. return ((int8_t *)(tensor->data))[i];
  2327. }
  2328. case GGML_TYPE_I16:
  2329. {
  2330. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2331. return ((int16_t *)(tensor->data))[i];
  2332. }
  2333. case GGML_TYPE_I32:
  2334. {
  2335. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2336. return ((int32_t *)(tensor->data))[i];
  2337. }
  2338. case GGML_TYPE_F16:
  2339. {
  2340. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2341. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2342. }
  2343. case GGML_TYPE_F32:
  2344. {
  2345. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2346. return ((float *)(tensor->data))[i];
  2347. }
  2348. default:
  2349. {
  2350. GGML_ASSERT(false);
  2351. }
  2352. }
  2353. return 0.0f;
  2354. }
  2355. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2356. if (!ggml_is_contiguous(tensor)) {
  2357. int64_t id[4] = { 0, 0, 0, 0 };
  2358. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2359. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2360. return;
  2361. }
  2362. switch (tensor->type) {
  2363. case GGML_TYPE_I8:
  2364. {
  2365. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2366. ((int8_t *)(tensor->data))[i] = value;
  2367. } break;
  2368. case GGML_TYPE_I16:
  2369. {
  2370. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2371. ((int16_t *)(tensor->data))[i] = value;
  2372. } break;
  2373. case GGML_TYPE_I32:
  2374. {
  2375. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2376. ((int32_t *)(tensor->data))[i] = value;
  2377. } break;
  2378. case GGML_TYPE_F16:
  2379. {
  2380. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2381. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2382. } break;
  2383. case GGML_TYPE_F32:
  2384. {
  2385. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2386. ((float *)(tensor->data))[i] = value;
  2387. } break;
  2388. default:
  2389. {
  2390. GGML_ASSERT(false);
  2391. } break;
  2392. }
  2393. }
  2394. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2395. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2396. switch (tensor->type) {
  2397. case GGML_TYPE_I8:
  2398. return ((int8_t *) data)[0];
  2399. case GGML_TYPE_I16:
  2400. return ((int16_t *) data)[0];
  2401. case GGML_TYPE_I32:
  2402. return ((int32_t *) data)[0];
  2403. case GGML_TYPE_F16:
  2404. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2405. case GGML_TYPE_F32:
  2406. return ((float *) data)[0];
  2407. default:
  2408. GGML_ASSERT(false);
  2409. }
  2410. return 0.0f;
  2411. }
  2412. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2413. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2414. switch (tensor->type) {
  2415. case GGML_TYPE_I8:
  2416. {
  2417. ((int8_t *)(data))[0] = value;
  2418. } break;
  2419. case GGML_TYPE_I16:
  2420. {
  2421. ((int16_t *)(data))[0] = value;
  2422. } break;
  2423. case GGML_TYPE_I32:
  2424. {
  2425. ((int32_t *)(data))[0] = value;
  2426. } break;
  2427. case GGML_TYPE_F16:
  2428. {
  2429. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2430. } break;
  2431. case GGML_TYPE_F32:
  2432. {
  2433. ((float *)(data))[0] = value;
  2434. } break;
  2435. default:
  2436. {
  2437. GGML_ASSERT(false);
  2438. } break;
  2439. }
  2440. }
  2441. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2442. if (!ggml_is_contiguous(tensor)) {
  2443. int64_t id[4] = { 0, 0, 0, 0 };
  2444. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2445. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2446. }
  2447. switch (tensor->type) {
  2448. case GGML_TYPE_I8:
  2449. {
  2450. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2451. return ((int8_t *)(tensor->data))[i];
  2452. }
  2453. case GGML_TYPE_I16:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2456. return ((int16_t *)(tensor->data))[i];
  2457. }
  2458. case GGML_TYPE_I32:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2461. return ((int32_t *)(tensor->data))[i];
  2462. }
  2463. case GGML_TYPE_F16:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2466. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2467. }
  2468. case GGML_TYPE_F32:
  2469. {
  2470. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2471. return ((float *)(tensor->data))[i];
  2472. }
  2473. default:
  2474. {
  2475. GGML_ASSERT(false);
  2476. }
  2477. }
  2478. return 0.0f;
  2479. }
  2480. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2481. if (!ggml_is_contiguous(tensor)) {
  2482. int64_t id[4] = { 0, 0, 0, 0 };
  2483. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2484. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2485. return;
  2486. }
  2487. switch (tensor->type) {
  2488. case GGML_TYPE_I8:
  2489. {
  2490. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2491. ((int8_t *)(tensor->data))[i] = value;
  2492. } break;
  2493. case GGML_TYPE_I16:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2496. ((int16_t *)(tensor->data))[i] = value;
  2497. } break;
  2498. case GGML_TYPE_I32:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2501. ((int32_t *)(tensor->data))[i] = value;
  2502. } break;
  2503. case GGML_TYPE_F16:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2506. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2507. } break;
  2508. case GGML_TYPE_F32:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2511. ((float *)(tensor->data))[i] = value;
  2512. } break;
  2513. default:
  2514. {
  2515. GGML_ASSERT(false);
  2516. } break;
  2517. }
  2518. }
  2519. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2520. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2521. switch (tensor->type) {
  2522. case GGML_TYPE_I8:
  2523. return ((int8_t *) data)[0];
  2524. case GGML_TYPE_I16:
  2525. return ((int16_t *) data)[0];
  2526. case GGML_TYPE_I32:
  2527. return ((int32_t *) data)[0];
  2528. case GGML_TYPE_F16:
  2529. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2530. case GGML_TYPE_F32:
  2531. return ((float *) data)[0];
  2532. default:
  2533. GGML_ASSERT(false);
  2534. }
  2535. return 0.0f;
  2536. }
  2537. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2538. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2539. switch (tensor->type) {
  2540. case GGML_TYPE_I8:
  2541. {
  2542. ((int8_t *)(data))[0] = value;
  2543. } break;
  2544. case GGML_TYPE_I16:
  2545. {
  2546. ((int16_t *)(data))[0] = value;
  2547. } break;
  2548. case GGML_TYPE_I32:
  2549. {
  2550. ((int32_t *)(data))[0] = value;
  2551. } break;
  2552. case GGML_TYPE_F16:
  2553. {
  2554. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2555. } break;
  2556. case GGML_TYPE_F32:
  2557. {
  2558. ((float *)(data))[0] = value;
  2559. } break;
  2560. default:
  2561. {
  2562. GGML_ASSERT(false);
  2563. } break;
  2564. }
  2565. }
  2566. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2567. return tensor->data;
  2568. }
  2569. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2570. assert(tensor->type == GGML_TYPE_F32);
  2571. return (float *)(tensor->data);
  2572. }
  2573. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2574. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2575. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2576. }
  2577. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2578. return tensor->name;
  2579. }
  2580. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2581. strncpy(tensor->name, name, sizeof(tensor->name));
  2582. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2583. return tensor;
  2584. }
  2585. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2586. va_list args;
  2587. va_start(args, fmt);
  2588. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2589. va_end(args);
  2590. return tensor;
  2591. }
  2592. struct ggml_tensor * ggml_view_tensor(
  2593. struct ggml_context * ctx,
  2594. struct ggml_tensor * src) {
  2595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2596. ggml_format_name(result, "%s (view)", src->name);
  2597. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2598. result->nb[i] = src->nb[i];
  2599. }
  2600. return result;
  2601. }
  2602. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2603. struct ggml_object * obj = ctx->objects_begin;
  2604. char * const mem_buffer = ctx->mem_buffer;
  2605. while (obj != NULL) {
  2606. if (obj->type == GGML_OBJECT_TENSOR) {
  2607. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2608. }
  2609. obj = obj->next;
  2610. }
  2611. return NULL;
  2612. }
  2613. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2614. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2615. obj = obj->next;
  2616. char * const mem_buffer = ctx->mem_buffer;
  2617. while (obj != NULL) {
  2618. if (obj->type == GGML_OBJECT_TENSOR) {
  2619. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2620. }
  2621. obj = obj->next;
  2622. }
  2623. return NULL;
  2624. }
  2625. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2626. struct ggml_object * obj = ctx->objects_begin;
  2627. char * const mem_buffer = ctx->mem_buffer;
  2628. while (obj != NULL) {
  2629. if (obj->type == GGML_OBJECT_TENSOR) {
  2630. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2631. if (strcmp(cur->name, name) == 0) {
  2632. return cur;
  2633. }
  2634. }
  2635. obj = obj->next;
  2636. }
  2637. return NULL;
  2638. }
  2639. ////////////////////////////////////////////////////////////////////////////////
  2640. // ggml_dup
  2641. static struct ggml_tensor * ggml_dup_impl(
  2642. struct ggml_context * ctx,
  2643. struct ggml_tensor * a,
  2644. bool inplace) {
  2645. bool is_node = false;
  2646. if (!inplace && (a->grad)) {
  2647. is_node = true;
  2648. }
  2649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2650. result->op = GGML_OP_DUP;
  2651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2652. result->src[0] = a;
  2653. return result;
  2654. }
  2655. struct ggml_tensor * ggml_dup(
  2656. struct ggml_context * ctx,
  2657. struct ggml_tensor * a) {
  2658. return ggml_dup_impl(ctx, a, false);
  2659. }
  2660. struct ggml_tensor * ggml_dup_inplace(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a) {
  2663. return ggml_dup_impl(ctx, a, true);
  2664. }
  2665. // ggml_add
  2666. static struct ggml_tensor * ggml_add_impl(
  2667. struct ggml_context * ctx,
  2668. struct ggml_tensor * a,
  2669. struct ggml_tensor * b,
  2670. bool inplace) {
  2671. GGML_ASSERT(ggml_can_repeat(b, a));
  2672. bool is_node = false;
  2673. if (!inplace && (a->grad || b->grad)) {
  2674. // TODO: support backward pass for broadcasting
  2675. GGML_ASSERT(ggml_are_same_shape(a, b));
  2676. is_node = true;
  2677. }
  2678. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2679. result->op = GGML_OP_ADD;
  2680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2681. result->src[0] = a;
  2682. result->src[1] = b;
  2683. return result;
  2684. }
  2685. struct ggml_tensor * ggml_add(
  2686. struct ggml_context * ctx,
  2687. struct ggml_tensor * a,
  2688. struct ggml_tensor * b) {
  2689. return ggml_add_impl(ctx, a, b, false);
  2690. }
  2691. struct ggml_tensor * ggml_add_inplace(
  2692. struct ggml_context * ctx,
  2693. struct ggml_tensor * a,
  2694. struct ggml_tensor * b) {
  2695. return ggml_add_impl(ctx, a, b, true);
  2696. }
  2697. // ggml_add_cast
  2698. static struct ggml_tensor * ggml_add_cast_impl(
  2699. struct ggml_context * ctx,
  2700. struct ggml_tensor * a,
  2701. struct ggml_tensor * b,
  2702. enum ggml_type type) {
  2703. // TODO: support less-strict constraint
  2704. // GGML_ASSERT(ggml_can_repeat(b, a));
  2705. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2706. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2707. bool is_node = false;
  2708. if (a->grad || b->grad) {
  2709. // TODO: support backward pass for broadcasting
  2710. GGML_ASSERT(ggml_are_same_shape(a, b));
  2711. is_node = true;
  2712. }
  2713. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2714. result->op = GGML_OP_ADD;
  2715. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2716. result->src[0] = a;
  2717. result->src[1] = b;
  2718. return result;
  2719. }
  2720. struct ggml_tensor * ggml_add_cast(
  2721. struct ggml_context * ctx,
  2722. struct ggml_tensor * a,
  2723. struct ggml_tensor * b,
  2724. enum ggml_type type) {
  2725. return ggml_add_cast_impl(ctx, a, b, type);
  2726. }
  2727. // ggml_add1
  2728. static struct ggml_tensor * ggml_add1_impl(
  2729. struct ggml_context * ctx,
  2730. struct ggml_tensor * a,
  2731. struct ggml_tensor * b,
  2732. bool inplace) {
  2733. GGML_ASSERT(ggml_is_scalar(b));
  2734. GGML_ASSERT(ggml_is_padded_1d(a));
  2735. bool is_node = false;
  2736. if (a->grad || b->grad) {
  2737. is_node = true;
  2738. }
  2739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2740. result->op = GGML_OP_ADD1;
  2741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2742. result->src[0] = a;
  2743. result->src[1] = b;
  2744. return result;
  2745. }
  2746. struct ggml_tensor * ggml_add1(
  2747. struct ggml_context * ctx,
  2748. struct ggml_tensor * a,
  2749. struct ggml_tensor * b) {
  2750. return ggml_add1_impl(ctx, a, b, false);
  2751. }
  2752. struct ggml_tensor * ggml_add1_inplace(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b) {
  2756. return ggml_add1_impl(ctx, a, b, true);
  2757. }
  2758. // ggml_acc
  2759. static struct ggml_tensor * ggml_acc_impl(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b,
  2763. size_t nb1,
  2764. size_t nb2,
  2765. size_t nb3,
  2766. size_t offset,
  2767. bool inplace) {
  2768. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2769. GGML_ASSERT(ggml_is_contiguous(a));
  2770. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2771. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2772. bool is_node = false;
  2773. if (!inplace && (a->grad || b->grad)) {
  2774. is_node = true;
  2775. }
  2776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2777. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2778. ggml_set_op_params(result, params, sizeof(params));
  2779. result->op = GGML_OP_ACC;
  2780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2781. result->src[0] = a;
  2782. result->src[1] = b;
  2783. return result;
  2784. }
  2785. struct ggml_tensor * ggml_acc(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b,
  2789. size_t nb1,
  2790. size_t nb2,
  2791. size_t nb3,
  2792. size_t offset) {
  2793. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2794. }
  2795. struct ggml_tensor * ggml_acc_inplace(
  2796. struct ggml_context * ctx,
  2797. struct ggml_tensor * a,
  2798. struct ggml_tensor * b,
  2799. size_t nb1,
  2800. size_t nb2,
  2801. size_t nb3,
  2802. size_t offset) {
  2803. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2804. }
  2805. // ggml_sub
  2806. static struct ggml_tensor * ggml_sub_impl(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a,
  2809. struct ggml_tensor * b,
  2810. bool inplace) {
  2811. GGML_ASSERT(ggml_are_same_shape(a, b));
  2812. bool is_node = false;
  2813. if (!inplace && (a->grad || b->grad)) {
  2814. is_node = true;
  2815. }
  2816. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2817. result->op = GGML_OP_SUB;
  2818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2819. result->src[0] = a;
  2820. result->src[1] = b;
  2821. return result;
  2822. }
  2823. struct ggml_tensor * ggml_sub(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b) {
  2827. return ggml_sub_impl(ctx, a, b, false);
  2828. }
  2829. struct ggml_tensor * ggml_sub_inplace(
  2830. struct ggml_context * ctx,
  2831. struct ggml_tensor * a,
  2832. struct ggml_tensor * b) {
  2833. return ggml_sub_impl(ctx, a, b, true);
  2834. }
  2835. // ggml_mul
  2836. static struct ggml_tensor * ggml_mul_impl(
  2837. struct ggml_context * ctx,
  2838. struct ggml_tensor * a,
  2839. struct ggml_tensor * b,
  2840. bool inplace) {
  2841. GGML_ASSERT(ggml_can_repeat(b, a));
  2842. bool is_node = false;
  2843. if (!inplace && (a->grad || b->grad)) {
  2844. // TODO: support backward pass for broadcasting
  2845. GGML_ASSERT(ggml_are_same_shape(a, b));
  2846. is_node = true;
  2847. }
  2848. if (inplace) {
  2849. GGML_ASSERT(!is_node);
  2850. }
  2851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2852. result->op = GGML_OP_MUL;
  2853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2854. result->src[0] = a;
  2855. result->src[1] = b;
  2856. return result;
  2857. }
  2858. struct ggml_tensor * ggml_mul(
  2859. struct ggml_context * ctx,
  2860. struct ggml_tensor * a,
  2861. struct ggml_tensor * b) {
  2862. return ggml_mul_impl(ctx, a, b, false);
  2863. }
  2864. struct ggml_tensor * ggml_mul_inplace(
  2865. struct ggml_context * ctx,
  2866. struct ggml_tensor * a,
  2867. struct ggml_tensor * b) {
  2868. return ggml_mul_impl(ctx, a, b, true);
  2869. }
  2870. // ggml_div
  2871. static struct ggml_tensor * ggml_div_impl(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. struct ggml_tensor * b,
  2875. bool inplace) {
  2876. GGML_ASSERT(ggml_can_repeat(b, a));
  2877. bool is_node = false;
  2878. if (!inplace && (a->grad || b->grad)) {
  2879. is_node = true;
  2880. }
  2881. if (inplace) {
  2882. GGML_ASSERT(!is_node);
  2883. }
  2884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2885. result->op = GGML_OP_DIV;
  2886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2887. result->src[0] = a;
  2888. result->src[1] = b;
  2889. return result;
  2890. }
  2891. struct ggml_tensor * ggml_div(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a,
  2894. struct ggml_tensor * b) {
  2895. return ggml_div_impl(ctx, a, b, false);
  2896. }
  2897. struct ggml_tensor * ggml_div_inplace(
  2898. struct ggml_context * ctx,
  2899. struct ggml_tensor * a,
  2900. struct ggml_tensor * b) {
  2901. return ggml_div_impl(ctx, a, b, true);
  2902. }
  2903. // ggml_sqr
  2904. static struct ggml_tensor * ggml_sqr_impl(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a,
  2907. bool inplace) {
  2908. bool is_node = false;
  2909. if (!inplace && (a->grad)) {
  2910. is_node = true;
  2911. }
  2912. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2913. result->op = GGML_OP_SQR;
  2914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2915. result->src[0] = a;
  2916. return result;
  2917. }
  2918. struct ggml_tensor * ggml_sqr(
  2919. struct ggml_context * ctx,
  2920. struct ggml_tensor * a) {
  2921. return ggml_sqr_impl(ctx, a, false);
  2922. }
  2923. struct ggml_tensor * ggml_sqr_inplace(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_sqr_impl(ctx, a, true);
  2927. }
  2928. // ggml_sqrt
  2929. static struct ggml_tensor * ggml_sqrt_impl(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a,
  2932. bool inplace) {
  2933. bool is_node = false;
  2934. if (!inplace && (a->grad)) {
  2935. is_node = true;
  2936. }
  2937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2938. result->op = GGML_OP_SQRT;
  2939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2940. result->src[0] = a;
  2941. return result;
  2942. }
  2943. struct ggml_tensor * ggml_sqrt(
  2944. struct ggml_context * ctx,
  2945. struct ggml_tensor * a) {
  2946. return ggml_sqrt_impl(ctx, a, false);
  2947. }
  2948. struct ggml_tensor * ggml_sqrt_inplace(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_sqrt_impl(ctx, a, true);
  2952. }
  2953. // ggml_log
  2954. static struct ggml_tensor * ggml_log_impl(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a,
  2957. bool inplace) {
  2958. bool is_node = false;
  2959. if (!inplace && (a->grad)) {
  2960. is_node = true;
  2961. }
  2962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2963. result->op = GGML_OP_LOG;
  2964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2965. result->src[0] = a;
  2966. return result;
  2967. }
  2968. struct ggml_tensor * ggml_log(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a) {
  2971. return ggml_log_impl(ctx, a, false);
  2972. }
  2973. struct ggml_tensor * ggml_log_inplace(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a) {
  2976. return ggml_log_impl(ctx, a, true);
  2977. }
  2978. // ggml_sum
  2979. struct ggml_tensor * ggml_sum(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. bool is_node = false;
  2983. if (a->grad) {
  2984. is_node = true;
  2985. }
  2986. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2987. result->op = GGML_OP_SUM;
  2988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2989. result->src[0] = a;
  2990. return result;
  2991. }
  2992. // ggml_sum_rows
  2993. struct ggml_tensor * ggml_sum_rows(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a) {
  2996. bool is_node = false;
  2997. if (a->grad) {
  2998. is_node = true;
  2999. }
  3000. int64_t ne[4] = {1,1,1,1};
  3001. for (int i=1; i<a->n_dims; ++i) {
  3002. ne[i] = a->ne[i];
  3003. }
  3004. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3005. result->op = GGML_OP_SUM_ROWS;
  3006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3007. result->src[0] = a;
  3008. return result;
  3009. }
  3010. // ggml_mean
  3011. struct ggml_tensor * ggml_mean(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a) {
  3014. bool is_node = false;
  3015. if (a->grad) {
  3016. GGML_ASSERT(false); // TODO: implement
  3017. is_node = true;
  3018. }
  3019. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3020. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3021. result->op = GGML_OP_MEAN;
  3022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3023. result->src[0] = a;
  3024. return result;
  3025. }
  3026. // ggml_argmax
  3027. struct ggml_tensor * ggml_argmax(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a) {
  3030. GGML_ASSERT(ggml_is_matrix(a));
  3031. bool is_node = false;
  3032. if (a->grad) {
  3033. GGML_ASSERT(false);
  3034. is_node = true;
  3035. }
  3036. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3038. result->op = GGML_OP_ARGMAX;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src[0] = a;
  3041. return result;
  3042. }
  3043. // ggml_repeat
  3044. struct ggml_tensor * ggml_repeat(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. struct ggml_tensor * b) {
  3048. GGML_ASSERT(ggml_can_repeat(a, b));
  3049. bool is_node = false;
  3050. if (a->grad) {
  3051. is_node = true;
  3052. }
  3053. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3054. result->op = GGML_OP_REPEAT;
  3055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3056. result->src[0] = a;
  3057. return result;
  3058. }
  3059. // ggml_repeat_back
  3060. struct ggml_tensor * ggml_repeat_back(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a,
  3063. struct ggml_tensor * b) {
  3064. GGML_ASSERT(ggml_can_repeat(b, a));
  3065. bool is_node = false;
  3066. if (a->grad) {
  3067. is_node = true;
  3068. }
  3069. if (ggml_are_same_shape(a, b) && !is_node) {
  3070. return a;
  3071. }
  3072. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3073. result->op = GGML_OP_REPEAT_BACK;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. // ggml_concat
  3079. struct ggml_tensor * ggml_concat(
  3080. struct ggml_context* ctx,
  3081. struct ggml_tensor* a,
  3082. struct ggml_tensor* b) {
  3083. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3084. bool is_node = false;
  3085. if (a->grad || b->grad) {
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3089. result->op = GGML_OP_CONCAT;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. result->src[1] = b;
  3093. return result;
  3094. }
  3095. // ggml_abs
  3096. struct ggml_tensor * ggml_abs(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a) {
  3099. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3100. }
  3101. struct ggml_tensor * ggml_abs_inplace(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a) {
  3104. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3105. }
  3106. // ggml_sgn
  3107. struct ggml_tensor * ggml_sgn(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a) {
  3110. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3111. }
  3112. struct ggml_tensor * ggml_sgn_inplace(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3116. }
  3117. // ggml_neg
  3118. struct ggml_tensor * ggml_neg(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a) {
  3121. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3122. }
  3123. struct ggml_tensor * ggml_neg_inplace(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3127. }
  3128. // ggml_step
  3129. struct ggml_tensor * ggml_step(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3133. }
  3134. struct ggml_tensor * ggml_step_inplace(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3138. }
  3139. // ggml_tanh
  3140. struct ggml_tensor * ggml_tanh(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3144. }
  3145. struct ggml_tensor * ggml_tanh_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3149. }
  3150. // ggml_elu
  3151. struct ggml_tensor * ggml_elu(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3155. }
  3156. struct ggml_tensor * ggml_elu_inplace(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3160. }
  3161. // ggml_relu
  3162. struct ggml_tensor * ggml_relu(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a) {
  3165. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3166. }
  3167. struct ggml_tensor * ggml_relu_inplace(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3171. }
  3172. // ggml_leaky
  3173. struct ggml_tensor * ggml_leaky(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY);
  3177. }
  3178. // ggml_gelu
  3179. struct ggml_tensor * ggml_gelu(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a) {
  3182. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3183. }
  3184. struct ggml_tensor * ggml_gelu_inplace(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3188. }
  3189. // ggml_gelu_quick
  3190. struct ggml_tensor * ggml_gelu_quick(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3194. }
  3195. struct ggml_tensor * ggml_gelu_quick_inplace(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a) {
  3198. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3199. }
  3200. // ggml_silu
  3201. struct ggml_tensor * ggml_silu(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3205. }
  3206. struct ggml_tensor * ggml_silu_inplace(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3210. }
  3211. // ggml_silu_back
  3212. struct ggml_tensor * ggml_silu_back(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a,
  3215. struct ggml_tensor * b) {
  3216. bool is_node = false;
  3217. if (a->grad || b->grad) {
  3218. // TODO: implement backward
  3219. is_node = true;
  3220. }
  3221. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3222. result->op = GGML_OP_SILU_BACK;
  3223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3224. result->src[0] = a;
  3225. result->src[1] = b;
  3226. return result;
  3227. }
  3228. // ggml_norm
  3229. static struct ggml_tensor * ggml_norm_impl(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. float eps,
  3233. bool inplace) {
  3234. bool is_node = false;
  3235. if (!inplace && (a->grad)) {
  3236. GGML_ASSERT(false); // TODO: implement backward
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3240. ggml_set_op_params(result, &eps, sizeof(eps));
  3241. result->op = GGML_OP_NORM;
  3242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3243. result->src[0] = a;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_norm(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a,
  3249. float eps) {
  3250. return ggml_norm_impl(ctx, a, eps, false);
  3251. }
  3252. struct ggml_tensor * ggml_norm_inplace(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. float eps) {
  3256. return ggml_norm_impl(ctx, a, eps, true);
  3257. }
  3258. // ggml_rms_norm
  3259. static struct ggml_tensor * ggml_rms_norm_impl(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. float eps,
  3263. bool inplace) {
  3264. bool is_node = false;
  3265. if (!inplace && (a->grad)) {
  3266. is_node = true;
  3267. }
  3268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3269. ggml_set_op_params(result, &eps, sizeof(eps));
  3270. result->op = GGML_OP_RMS_NORM;
  3271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3272. result->src[0] = a;
  3273. return result;
  3274. }
  3275. struct ggml_tensor * ggml_rms_norm(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a,
  3278. float eps) {
  3279. return ggml_rms_norm_impl(ctx, a, eps, false);
  3280. }
  3281. struct ggml_tensor * ggml_rms_norm_inplace(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. float eps) {
  3285. return ggml_rms_norm_impl(ctx, a, eps, true);
  3286. }
  3287. // ggml_rms_norm_back
  3288. struct ggml_tensor * ggml_rms_norm_back(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b,
  3292. float eps) {
  3293. bool is_node = false;
  3294. if (a->grad) {
  3295. // TODO: implement backward
  3296. is_node = true;
  3297. }
  3298. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3299. ggml_set_op_params(result, &eps, sizeof(eps));
  3300. result->op = GGML_OP_RMS_NORM_BACK;
  3301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3302. result->src[0] = a;
  3303. result->src[1] = b;
  3304. return result;
  3305. }
  3306. // ggml_group_norm
  3307. static struct ggml_tensor * ggml_group_norm_impl(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. int n_groups,
  3311. bool inplace) {
  3312. bool is_node = false;
  3313. if (!inplace && (a->grad)) {
  3314. GGML_ASSERT(false); // TODO: implement backward
  3315. is_node = true;
  3316. }
  3317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3318. result->op = GGML_OP_GROUP_NORM;
  3319. result->op_params[0] = n_groups;
  3320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3321. result->src[0] = a;
  3322. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3323. return result;
  3324. }
  3325. struct ggml_tensor * ggml_group_norm(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. int n_groups) {
  3329. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3330. }
  3331. struct ggml_tensor * ggml_group_norm_inplace(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. int n_groups) {
  3335. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3336. }
  3337. // ggml_mul_mat
  3338. struct ggml_tensor * ggml_mul_mat(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a,
  3341. struct ggml_tensor * b) {
  3342. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3343. GGML_ASSERT(!ggml_is_transposed(a));
  3344. bool is_node = false;
  3345. if (a->grad || b->grad) {
  3346. is_node = true;
  3347. }
  3348. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3349. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3350. result->op = GGML_OP_MUL_MAT;
  3351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3352. result->src[0] = a;
  3353. result->src[1] = b;
  3354. return result;
  3355. }
  3356. // ggml_mul_mat_id
  3357. struct ggml_tensor * ggml_mul_mat_id(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * as[],
  3360. struct ggml_tensor * ids,
  3361. int id,
  3362. struct ggml_tensor * b) {
  3363. int64_t n_as = ids->ne[0];
  3364. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3365. GGML_ASSERT(ggml_is_vector(ids));
  3366. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3367. GGML_ASSERT(id >= 0 && id < n_as);
  3368. bool is_node = false;
  3369. if (as[0]->grad || b->grad) {
  3370. is_node = true;
  3371. }
  3372. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
  3374. ggml_set_op_params_i32(result, 0, id);
  3375. result->op = GGML_OP_MUL_MAT_ID;
  3376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3377. result->src[0] = ids;
  3378. result->src[1] = b;
  3379. for (int64_t i = 0; i < n_as; i++) {
  3380. struct ggml_tensor * a = as[i];
  3381. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3382. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3383. GGML_ASSERT(!ggml_is_transposed(a));
  3384. result->src[i + 2] = a;
  3385. }
  3386. return result;
  3387. }
  3388. // ggml_out_prod
  3389. struct ggml_tensor * ggml_out_prod(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a,
  3392. struct ggml_tensor * b) {
  3393. GGML_ASSERT(ggml_can_out_prod(a, b));
  3394. GGML_ASSERT(!ggml_is_transposed(a));
  3395. bool is_node = false;
  3396. if (a->grad || b->grad) {
  3397. is_node = true;
  3398. }
  3399. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3400. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3401. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3402. result->op = GGML_OP_OUT_PROD;
  3403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3404. result->src[0] = a;
  3405. result->src[1] = b;
  3406. return result;
  3407. }
  3408. // ggml_scale
  3409. static struct ggml_tensor * ggml_scale_impl(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. struct ggml_tensor * b,
  3413. bool inplace) {
  3414. GGML_ASSERT(ggml_is_scalar(b));
  3415. GGML_ASSERT(ggml_is_padded_1d(a));
  3416. bool is_node = false;
  3417. if (a->grad || b->grad) {
  3418. is_node = true;
  3419. }
  3420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3421. result->op = GGML_OP_SCALE;
  3422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3423. result->src[0] = a;
  3424. result->src[1] = b;
  3425. return result;
  3426. }
  3427. struct ggml_tensor * ggml_scale(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * a,
  3430. struct ggml_tensor * b) {
  3431. return ggml_scale_impl(ctx, a, b, false);
  3432. }
  3433. struct ggml_tensor * ggml_scale_inplace(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a,
  3436. struct ggml_tensor * b) {
  3437. return ggml_scale_impl(ctx, a, b, true);
  3438. }
  3439. // ggml_set
  3440. static struct ggml_tensor * ggml_set_impl(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b,
  3444. size_t nb1,
  3445. size_t nb2,
  3446. size_t nb3,
  3447. size_t offset,
  3448. bool inplace) {
  3449. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3450. bool is_node = false;
  3451. if (a->grad || b->grad) {
  3452. is_node = true;
  3453. }
  3454. // make a view of the destination
  3455. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3456. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3457. ggml_set_op_params(result, params, sizeof(params));
  3458. result->op = GGML_OP_SET;
  3459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3460. result->src[0] = a;
  3461. result->src[1] = b;
  3462. return result;
  3463. }
  3464. struct ggml_tensor * ggml_set(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a,
  3467. struct ggml_tensor * b,
  3468. size_t nb1,
  3469. size_t nb2,
  3470. size_t nb3,
  3471. size_t offset) {
  3472. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3473. }
  3474. struct ggml_tensor * ggml_set_inplace(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. struct ggml_tensor * b,
  3478. size_t nb1,
  3479. size_t nb2,
  3480. size_t nb3,
  3481. size_t offset) {
  3482. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3483. }
  3484. struct ggml_tensor * ggml_set_1d(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b,
  3488. size_t offset) {
  3489. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3490. }
  3491. struct ggml_tensor * ggml_set_1d_inplace(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b,
  3495. size_t offset) {
  3496. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3497. }
  3498. struct ggml_tensor * ggml_set_2d(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. struct ggml_tensor * b,
  3502. size_t nb1,
  3503. size_t offset) {
  3504. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3505. }
  3506. struct ggml_tensor * ggml_set_2d_inplace(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b,
  3510. size_t nb1,
  3511. size_t offset) {
  3512. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3513. }
  3514. // ggml_cpy
  3515. static struct ggml_tensor * ggml_cpy_impl(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b,
  3519. bool inplace) {
  3520. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3521. bool is_node = false;
  3522. if (!inplace && (a->grad || b->grad)) {
  3523. is_node = true;
  3524. }
  3525. // make a view of the destination
  3526. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3527. if (strlen(b->name) > 0) {
  3528. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3529. } else {
  3530. ggml_format_name(result, "%s (copy)", a->name);
  3531. }
  3532. result->op = GGML_OP_CPY;
  3533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3534. result->src[0] = a;
  3535. result->src[1] = b;
  3536. return result;
  3537. }
  3538. struct ggml_tensor * ggml_cpy(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b) {
  3542. return ggml_cpy_impl(ctx, a, b, false);
  3543. }
  3544. struct ggml_tensor * ggml_cpy_inplace(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. struct ggml_tensor * b) {
  3548. return ggml_cpy_impl(ctx, a, b, true);
  3549. }
  3550. // ggml_cont
  3551. static struct ggml_tensor * ggml_cont_impl(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a,
  3554. bool inplace) {
  3555. bool is_node = false;
  3556. if (!inplace && a->grad) {
  3557. is_node = true;
  3558. }
  3559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3560. ggml_format_name(result, "%s (cont)", a->name);
  3561. result->op = GGML_OP_CONT;
  3562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3563. result->src[0] = a;
  3564. return result;
  3565. }
  3566. struct ggml_tensor * ggml_cont(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a) {
  3569. return ggml_cont_impl(ctx, a, false);
  3570. }
  3571. struct ggml_tensor * ggml_cont_inplace(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a) {
  3574. return ggml_cont_impl(ctx, a, true);
  3575. }
  3576. // make contiguous, with new shape
  3577. GGML_API struct ggml_tensor * ggml_cont_1d(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. int64_t ne0) {
  3581. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3582. }
  3583. GGML_API struct ggml_tensor * ggml_cont_2d(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. int64_t ne0,
  3587. int64_t ne1) {
  3588. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3589. }
  3590. GGML_API struct ggml_tensor * ggml_cont_3d(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. int64_t ne0,
  3594. int64_t ne1,
  3595. int64_t ne2) {
  3596. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3597. }
  3598. struct ggml_tensor * ggml_cont_4d(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. int64_t ne0,
  3602. int64_t ne1,
  3603. int64_t ne2,
  3604. int64_t ne3) {
  3605. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3606. bool is_node = false;
  3607. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3608. ggml_format_name(result, "%s (cont)", a->name);
  3609. result->op = GGML_OP_CONT;
  3610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3611. result->src[0] = a;
  3612. return result;
  3613. }
  3614. // ggml_reshape
  3615. struct ggml_tensor * ggml_reshape(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. struct ggml_tensor * b) {
  3619. GGML_ASSERT(ggml_is_contiguous(a));
  3620. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3621. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3622. bool is_node = false;
  3623. if (a->grad) {
  3624. is_node = true;
  3625. }
  3626. if (b->grad) {
  3627. // gradient propagation is not supported
  3628. //GGML_ASSERT(false);
  3629. }
  3630. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3631. ggml_format_name(result, "%s (reshaped)", a->name);
  3632. result->op = GGML_OP_RESHAPE;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src[0] = a;
  3635. return result;
  3636. }
  3637. struct ggml_tensor * ggml_reshape_1d(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a,
  3640. int64_t ne0) {
  3641. GGML_ASSERT(ggml_is_contiguous(a));
  3642. GGML_ASSERT(ggml_nelements(a) == ne0);
  3643. bool is_node = false;
  3644. if (a->grad) {
  3645. is_node = true;
  3646. }
  3647. const int64_t ne[1] = { ne0 };
  3648. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3649. ggml_format_name(result, "%s (reshaped)", a->name);
  3650. result->op = GGML_OP_RESHAPE;
  3651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3652. result->src[0] = a;
  3653. return result;
  3654. }
  3655. struct ggml_tensor * ggml_reshape_2d(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a,
  3658. int64_t ne0,
  3659. int64_t ne1) {
  3660. GGML_ASSERT(ggml_is_contiguous(a));
  3661. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3662. bool is_node = false;
  3663. if (a->grad) {
  3664. is_node = true;
  3665. }
  3666. const int64_t ne[2] = { ne0, ne1 };
  3667. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3668. ggml_format_name(result, "%s (reshaped)", a->name);
  3669. result->op = GGML_OP_RESHAPE;
  3670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3671. result->src[0] = a;
  3672. return result;
  3673. }
  3674. struct ggml_tensor * ggml_reshape_3d(
  3675. struct ggml_context * ctx,
  3676. struct ggml_tensor * a,
  3677. int64_t ne0,
  3678. int64_t ne1,
  3679. int64_t ne2) {
  3680. GGML_ASSERT(ggml_is_contiguous(a));
  3681. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3682. bool is_node = false;
  3683. if (a->grad) {
  3684. is_node = true;
  3685. }
  3686. const int64_t ne[3] = { ne0, ne1, ne2 };
  3687. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3688. ggml_format_name(result, "%s (reshaped)", a->name);
  3689. result->op = GGML_OP_RESHAPE;
  3690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3691. result->src[0] = a;
  3692. return result;
  3693. }
  3694. struct ggml_tensor * ggml_reshape_4d(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int64_t ne0,
  3698. int64_t ne1,
  3699. int64_t ne2,
  3700. int64_t ne3) {
  3701. GGML_ASSERT(ggml_is_contiguous(a));
  3702. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3703. bool is_node = false;
  3704. if (a->grad) {
  3705. is_node = true;
  3706. }
  3707. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3708. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3709. ggml_format_name(result, "%s (reshaped)", a->name);
  3710. result->op = GGML_OP_RESHAPE;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src[0] = a;
  3713. return result;
  3714. }
  3715. static struct ggml_tensor * ggml_view_impl(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. int n_dims,
  3719. const int64_t * ne,
  3720. size_t offset) {
  3721. bool is_node = false;
  3722. if (a->grad) {
  3723. is_node = true;
  3724. }
  3725. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3726. ggml_format_name(result, "%s (view)", a->name);
  3727. ggml_set_op_params(result, &offset, sizeof(offset));
  3728. result->op = GGML_OP_VIEW;
  3729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3730. result->src[0] = a;
  3731. return result;
  3732. }
  3733. // ggml_view_1d
  3734. struct ggml_tensor * ggml_view_1d(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. int64_t ne0,
  3738. size_t offset) {
  3739. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3740. return result;
  3741. }
  3742. // ggml_view_2d
  3743. struct ggml_tensor * ggml_view_2d(
  3744. struct ggml_context * ctx,
  3745. struct ggml_tensor * a,
  3746. int64_t ne0,
  3747. int64_t ne1,
  3748. size_t nb1,
  3749. size_t offset) {
  3750. const int64_t ne[2] = { ne0, ne1 };
  3751. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3752. result->nb[1] = nb1;
  3753. result->nb[2] = result->nb[1]*ne1;
  3754. result->nb[3] = result->nb[2];
  3755. return result;
  3756. }
  3757. // ggml_view_3d
  3758. struct ggml_tensor * ggml_view_3d(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. int64_t ne0,
  3762. int64_t ne1,
  3763. int64_t ne2,
  3764. size_t nb1,
  3765. size_t nb2,
  3766. size_t offset) {
  3767. const int64_t ne[3] = { ne0, ne1, ne2 };
  3768. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3769. result->nb[1] = nb1;
  3770. result->nb[2] = nb2;
  3771. result->nb[3] = result->nb[2]*ne2;
  3772. return result;
  3773. }
  3774. // ggml_view_4d
  3775. struct ggml_tensor * ggml_view_4d(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. int64_t ne2,
  3781. int64_t ne3,
  3782. size_t nb1,
  3783. size_t nb2,
  3784. size_t nb3,
  3785. size_t offset) {
  3786. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3787. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3788. result->nb[1] = nb1;
  3789. result->nb[2] = nb2;
  3790. result->nb[3] = nb3;
  3791. return result;
  3792. }
  3793. // ggml_permute
  3794. struct ggml_tensor * ggml_permute(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. int axis0,
  3798. int axis1,
  3799. int axis2,
  3800. int axis3) {
  3801. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3802. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3803. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3804. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3805. GGML_ASSERT(axis0 != axis1);
  3806. GGML_ASSERT(axis0 != axis2);
  3807. GGML_ASSERT(axis0 != axis3);
  3808. GGML_ASSERT(axis1 != axis2);
  3809. GGML_ASSERT(axis1 != axis3);
  3810. GGML_ASSERT(axis2 != axis3);
  3811. bool is_node = false;
  3812. if (a->grad) {
  3813. is_node = true;
  3814. }
  3815. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3816. ggml_format_name(result, "%s (permuted)", a->name);
  3817. int ne[GGML_MAX_DIMS];
  3818. int nb[GGML_MAX_DIMS];
  3819. ne[axis0] = a->ne[0];
  3820. ne[axis1] = a->ne[1];
  3821. ne[axis2] = a->ne[2];
  3822. ne[axis3] = a->ne[3];
  3823. nb[axis0] = a->nb[0];
  3824. nb[axis1] = a->nb[1];
  3825. nb[axis2] = a->nb[2];
  3826. nb[axis3] = a->nb[3];
  3827. result->ne[0] = ne[0];
  3828. result->ne[1] = ne[1];
  3829. result->ne[2] = ne[2];
  3830. result->ne[3] = ne[3];
  3831. result->nb[0] = nb[0];
  3832. result->nb[1] = nb[1];
  3833. result->nb[2] = nb[2];
  3834. result->nb[3] = nb[3];
  3835. result->op = GGML_OP_PERMUTE;
  3836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3837. result->src[0] = a;
  3838. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3839. ggml_set_op_params(result, params, sizeof(params));
  3840. return result;
  3841. }
  3842. // ggml_transpose
  3843. struct ggml_tensor * ggml_transpose(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a) {
  3846. bool is_node = false;
  3847. if (a->grad) {
  3848. is_node = true;
  3849. }
  3850. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3851. ggml_format_name(result, "%s (transposed)", a->name);
  3852. result->ne[0] = a->ne[1];
  3853. result->ne[1] = a->ne[0];
  3854. result->nb[0] = a->nb[1];
  3855. result->nb[1] = a->nb[0];
  3856. result->op = GGML_OP_TRANSPOSE;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. return result;
  3860. }
  3861. // ggml_get_rows
  3862. struct ggml_tensor * ggml_get_rows(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. struct ggml_tensor * b) {
  3866. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3867. bool is_node = false;
  3868. if (a->grad || b->grad) {
  3869. is_node = true;
  3870. }
  3871. // TODO: implement non F32 return
  3872. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3873. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3874. result->op = GGML_OP_GET_ROWS;
  3875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3876. result->src[0] = a;
  3877. result->src[1] = b;
  3878. return result;
  3879. }
  3880. // ggml_get_rows_back
  3881. struct ggml_tensor * ggml_get_rows_back(
  3882. struct ggml_context * ctx,
  3883. struct ggml_tensor * a,
  3884. struct ggml_tensor * b,
  3885. struct ggml_tensor * c) {
  3886. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3887. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3888. bool is_node = false;
  3889. if (a->grad || b->grad) {
  3890. is_node = true;
  3891. }
  3892. // TODO: implement non F32 return
  3893. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3894. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3895. result->op = GGML_OP_GET_ROWS_BACK;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src[0] = a;
  3898. result->src[1] = b;
  3899. return result;
  3900. }
  3901. // ggml_diag
  3902. struct ggml_tensor * ggml_diag(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a) {
  3905. GGML_ASSERT(a->ne[1] == 1);
  3906. bool is_node = false;
  3907. if (a->grad) {
  3908. is_node = true;
  3909. }
  3910. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3911. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3912. result->op = GGML_OP_DIAG;
  3913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3914. result->src[0] = a;
  3915. return result;
  3916. }
  3917. // ggml_diag_mask_inf
  3918. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a,
  3921. int n_past,
  3922. bool inplace) {
  3923. bool is_node = false;
  3924. if (a->grad) {
  3925. is_node = true;
  3926. }
  3927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3928. int32_t params[] = { n_past };
  3929. ggml_set_op_params(result, params, sizeof(params));
  3930. result->op = GGML_OP_DIAG_MASK_INF;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src[0] = a;
  3933. return result;
  3934. }
  3935. struct ggml_tensor * ggml_diag_mask_inf(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. int n_past) {
  3939. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3940. }
  3941. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. int n_past) {
  3945. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3946. }
  3947. // ggml_diag_mask_zero
  3948. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. int n_past,
  3952. bool inplace) {
  3953. bool is_node = false;
  3954. if (a->grad) {
  3955. is_node = true;
  3956. }
  3957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3958. int32_t params[] = { n_past };
  3959. ggml_set_op_params(result, params, sizeof(params));
  3960. result->op = GGML_OP_DIAG_MASK_ZERO;
  3961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3962. result->src[0] = a;
  3963. return result;
  3964. }
  3965. struct ggml_tensor * ggml_diag_mask_zero(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. int n_past) {
  3969. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3970. }
  3971. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. int n_past) {
  3975. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3976. }
  3977. // ggml_soft_max
  3978. static struct ggml_tensor * ggml_soft_max_impl(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. struct ggml_tensor * mask,
  3982. float scale,
  3983. bool inplace) {
  3984. GGML_ASSERT(ggml_is_contiguous(a));
  3985. if (mask) {
  3986. GGML_ASSERT(ggml_is_contiguous(mask));
  3987. GGML_ASSERT(mask->ne[2] == 1);
  3988. GGML_ASSERT(mask->ne[3] == 1);
  3989. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  3990. }
  3991. bool is_node = false;
  3992. if (a->grad) {
  3993. is_node = true;
  3994. }
  3995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3996. float params[] = { scale };
  3997. ggml_set_op_params(result, params, sizeof(params));
  3998. result->op = GGML_OP_SOFT_MAX;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src[0] = a;
  4001. result->src[1] = mask;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_soft_max(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a) {
  4007. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4008. }
  4009. struct ggml_tensor * ggml_soft_max_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4013. }
  4014. struct ggml_tensor * ggml_soft_max_ext(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a,
  4017. struct ggml_tensor * mask,
  4018. float scale) {
  4019. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4020. }
  4021. // ggml_soft_max_back
  4022. static struct ggml_tensor * ggml_soft_max_back_impl(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a,
  4025. struct ggml_tensor * b,
  4026. bool inplace) {
  4027. bool is_node = false;
  4028. if (a->grad || b->grad) {
  4029. is_node = true; // TODO : implement backward pass
  4030. }
  4031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4032. result->op = GGML_OP_SOFT_MAX_BACK;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src[0] = a;
  4035. result->src[1] = b;
  4036. return result;
  4037. }
  4038. struct ggml_tensor * ggml_soft_max_back(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. struct ggml_tensor * b) {
  4042. return ggml_soft_max_back_impl(ctx, a, b, false);
  4043. }
  4044. struct ggml_tensor * ggml_soft_max_back_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. struct ggml_tensor * b) {
  4048. return ggml_soft_max_back_impl(ctx, a, b, true);
  4049. }
  4050. // ggml_rope
  4051. static struct ggml_tensor * ggml_rope_impl(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. int n_dims,
  4056. int mode,
  4057. int n_ctx,
  4058. int n_orig_ctx,
  4059. float freq_base,
  4060. float freq_scale,
  4061. float ext_factor,
  4062. float attn_factor,
  4063. float beta_fast,
  4064. float beta_slow,
  4065. float xpos_base,
  4066. bool xpos_down,
  4067. bool inplace) {
  4068. GGML_ASSERT(ggml_is_vector(b));
  4069. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4070. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4071. bool is_node = false;
  4072. if (a->grad) {
  4073. is_node = true;
  4074. }
  4075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4076. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4077. memcpy(params + 5, &freq_base, sizeof(float));
  4078. memcpy(params + 6, &freq_scale, sizeof(float));
  4079. memcpy(params + 7, &ext_factor, sizeof(float));
  4080. memcpy(params + 8, &attn_factor, sizeof(float));
  4081. memcpy(params + 9, &beta_fast, sizeof(float));
  4082. memcpy(params + 10, &beta_slow, sizeof(float));
  4083. memcpy(params + 11, &xpos_base, sizeof(float));
  4084. memcpy(params + 12, &xpos_down, sizeof(bool));
  4085. ggml_set_op_params(result, params, sizeof(params));
  4086. result->op = GGML_OP_ROPE;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src[0] = a;
  4089. result->src[1] = b;
  4090. return result;
  4091. }
  4092. struct ggml_tensor * ggml_rope(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. struct ggml_tensor * b,
  4096. int n_dims,
  4097. int mode,
  4098. int n_ctx) {
  4099. return ggml_rope_impl(
  4100. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4101. );
  4102. }
  4103. struct ggml_tensor * ggml_rope_inplace(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. struct ggml_tensor * b,
  4107. int n_dims,
  4108. int mode,
  4109. int n_ctx) {
  4110. return ggml_rope_impl(
  4111. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4112. );
  4113. }
  4114. struct ggml_tensor * ggml_rope_custom(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. struct ggml_tensor * b,
  4118. int n_dims,
  4119. int mode,
  4120. int n_ctx,
  4121. int n_orig_ctx,
  4122. float freq_base,
  4123. float freq_scale,
  4124. float ext_factor,
  4125. float attn_factor,
  4126. float beta_fast,
  4127. float beta_slow) {
  4128. return ggml_rope_impl(
  4129. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4130. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4131. );
  4132. }
  4133. struct ggml_tensor * ggml_rope_custom_inplace(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. struct ggml_tensor * b,
  4137. int n_dims,
  4138. int mode,
  4139. int n_ctx,
  4140. int n_orig_ctx,
  4141. float freq_base,
  4142. float freq_scale,
  4143. float ext_factor,
  4144. float attn_factor,
  4145. float beta_fast,
  4146. float beta_slow) {
  4147. return ggml_rope_impl(
  4148. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4149. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4150. );
  4151. }
  4152. struct ggml_tensor * ggml_rope_xpos_inplace(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a,
  4155. struct ggml_tensor * b,
  4156. int n_dims,
  4157. float base,
  4158. bool down) {
  4159. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4160. }
  4161. // ggml_rope_back
  4162. struct ggml_tensor * ggml_rope_back(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b,
  4166. int n_dims,
  4167. int mode,
  4168. int n_ctx,
  4169. int n_orig_ctx,
  4170. float freq_base,
  4171. float freq_scale,
  4172. float ext_factor,
  4173. float attn_factor,
  4174. float beta_fast,
  4175. float beta_slow,
  4176. float xpos_base,
  4177. bool xpos_down) {
  4178. GGML_ASSERT(ggml_is_vector(b));
  4179. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4180. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4181. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4182. bool is_node = false;
  4183. if (a->grad) {
  4184. is_node = false; // TODO: implement backward
  4185. }
  4186. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4187. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4188. memcpy(params + 5, &freq_base, sizeof(float));
  4189. memcpy(params + 6, &freq_scale, sizeof(float));
  4190. memcpy(params + 7, &ext_factor, sizeof(float));
  4191. memcpy(params + 8, &attn_factor, sizeof(float));
  4192. memcpy(params + 9, &beta_fast, sizeof(float));
  4193. memcpy(params + 10, &beta_slow, sizeof(float));
  4194. memcpy(params + 11, &xpos_base, sizeof(float));
  4195. memcpy(params + 12, &xpos_down, sizeof(bool));
  4196. ggml_set_op_params(result, params, sizeof(params));
  4197. result->op = GGML_OP_ROPE_BACK;
  4198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4199. result->src[0] = a;
  4200. result->src[1] = b;
  4201. return result;
  4202. }
  4203. // ggml_alibi
  4204. struct ggml_tensor * ggml_alibi(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. int n_past,
  4208. int n_head,
  4209. float bias_max) {
  4210. GGML_ASSERT(n_past >= 0);
  4211. bool is_node = false;
  4212. if (a->grad) {
  4213. GGML_ASSERT(false); // TODO: implement backward
  4214. is_node = true;
  4215. }
  4216. // TODO: when implement backward, fix this:
  4217. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4218. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4219. int32_t op_params[3] = { n_past, n_head };
  4220. memcpy(op_params + 2, &bias_max, sizeof(float));
  4221. ggml_set_op_params(result, op_params, sizeof(op_params));
  4222. result->op = GGML_OP_ALIBI;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src[0] = a;
  4225. return result;
  4226. }
  4227. // ggml_clamp
  4228. struct ggml_tensor * ggml_clamp(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a,
  4231. float min,
  4232. float max) {
  4233. bool is_node = false;
  4234. if (a->grad) {
  4235. GGML_ASSERT(false); // TODO: implement backward
  4236. is_node = true;
  4237. }
  4238. // TODO: when implement backward, fix this:
  4239. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4240. float params[] = { min, max };
  4241. ggml_set_op_params(result, params, sizeof(params));
  4242. result->op = GGML_OP_CLAMP;
  4243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4244. result->src[0] = a;
  4245. return result;
  4246. }
  4247. // ggml_conv_1d
  4248. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4249. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4250. }
  4251. GGML_API struct ggml_tensor * ggml_conv_1d(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b,
  4255. int s0,
  4256. int p0,
  4257. int d0) {
  4258. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4259. struct ggml_tensor * result =
  4260. ggml_mul_mat(ctx,
  4261. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4262. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4263. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4264. return result;
  4265. }
  4266. // ggml_conv_1d_ph
  4267. struct ggml_tensor* ggml_conv_1d_ph(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a,
  4270. struct ggml_tensor * b,
  4271. int s,
  4272. int d) {
  4273. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4274. }
  4275. // ggml_conv_transpose_1d
  4276. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4277. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4278. }
  4279. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. struct ggml_tensor * b,
  4283. int s0,
  4284. int p0,
  4285. int d0) {
  4286. GGML_ASSERT(ggml_is_matrix(b));
  4287. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4288. GGML_ASSERT(a->ne[3] == 1);
  4289. GGML_ASSERT(p0 == 0);
  4290. GGML_ASSERT(d0 == 1);
  4291. bool is_node = false;
  4292. if (a->grad || b->grad) {
  4293. GGML_ASSERT(false); // TODO: implement backward
  4294. is_node = true;
  4295. }
  4296. const int64_t ne[4] = {
  4297. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4298. a->ne[1], b->ne[2], 1,
  4299. };
  4300. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4301. int32_t params[] = { s0, p0, d0 };
  4302. ggml_set_op_params(result, params, sizeof(params));
  4303. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4305. result->src[0] = a;
  4306. result->src[1] = b;
  4307. return result;
  4308. }
  4309. // ggml_conv_2d
  4310. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4311. // a: [OC,IC, KH, KW]
  4312. // b: [N, IC, IH, IW]
  4313. // result: [N, OH, OW, IC*KH*KW]
  4314. struct ggml_tensor * ggml_im2col(
  4315. struct ggml_context * ctx,
  4316. struct ggml_tensor * a,
  4317. struct ggml_tensor * b,
  4318. int s0,
  4319. int s1,
  4320. int p0,
  4321. int p1,
  4322. int d0,
  4323. int d1,
  4324. bool is_2D) {
  4325. if(is_2D) {
  4326. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4327. } else {
  4328. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4329. }
  4330. bool is_node = false;
  4331. if (a->grad || b->grad) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4336. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4337. const int64_t ne[4] = {
  4338. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4339. OW,
  4340. is_2D ? OH : b->ne[2],
  4341. is_2D ? b->ne[3] : 1,
  4342. };
  4343. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4344. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4345. ggml_set_op_params(result, params, sizeof(params));
  4346. result->op = GGML_OP_IM2COL;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src[0] = a;
  4349. result->src[1] = b;
  4350. return result;
  4351. }
  4352. // a: [OC,IC, KH, KW]
  4353. // b: [N, IC, IH, IW]
  4354. // result: [N, OC, OH, OW]
  4355. struct ggml_tensor * ggml_conv_2d(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b,
  4359. int s0,
  4360. int s1,
  4361. int p0,
  4362. int p1,
  4363. int d0,
  4364. int d1) {
  4365. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4366. struct ggml_tensor * result =
  4367. ggml_mul_mat(ctx,
  4368. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4369. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4370. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4371. return result;
  4372. }
  4373. // ggml_conv_2d_sk_p0
  4374. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b) {
  4378. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4379. }
  4380. // ggml_conv_2d_s1_ph
  4381. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. struct ggml_tensor * b) {
  4385. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4386. }
  4387. // ggml_conv_transpose_2d_p0
  4388. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4389. return (ins - 1) * s - 2 * p + ks;
  4390. }
  4391. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. struct ggml_tensor * b,
  4395. int stride) {
  4396. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4397. bool is_node = false;
  4398. if (a->grad || b->grad) {
  4399. GGML_ASSERT(false); // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. const int64_t ne[4] = {
  4403. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4404. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4405. a->ne[2], b->ne[3],
  4406. };
  4407. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4408. ggml_set_op_params_i32(result, 0, stride);
  4409. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. result->src[1] = b;
  4413. return result;
  4414. }
  4415. // ggml_pool_*
  4416. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4417. return (ins + 2 * p - ks) / s + 1;
  4418. }
  4419. // ggml_pool_1d
  4420. struct ggml_tensor * ggml_pool_1d(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. enum ggml_op_pool op,
  4424. int k0,
  4425. int s0,
  4426. int p0) {
  4427. bool is_node = false;
  4428. if (a->grad) {
  4429. GGML_ASSERT(false); // TODO: implement backward
  4430. is_node = true;
  4431. }
  4432. const int64_t ne[3] = {
  4433. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4434. a->ne[1],
  4435. };
  4436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4437. int32_t params[] = { op, k0, s0, p0 };
  4438. ggml_set_op_params(result, params, sizeof(params));
  4439. result->op = GGML_OP_POOL_1D;
  4440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4441. result->src[0] = a;
  4442. return result;
  4443. }
  4444. // ggml_pool_2d
  4445. struct ggml_tensor * ggml_pool_2d(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. enum ggml_op_pool op,
  4449. int k0,
  4450. int k1,
  4451. int s0,
  4452. int s1,
  4453. float p0,
  4454. float p1) {
  4455. bool is_node = false;
  4456. if (a->grad) {
  4457. GGML_ASSERT(false); // TODO: implement backward
  4458. is_node = true;
  4459. }
  4460. const int64_t ne[3] = {
  4461. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4462. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4463. a->ne[2],
  4464. };
  4465. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4466. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4467. ggml_set_op_params(result, params, sizeof(params));
  4468. result->op = GGML_OP_POOL_2D;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src[0] = a;
  4471. return result;
  4472. }
  4473. // ggml_upscale
  4474. static struct ggml_tensor * ggml_upscale_impl(
  4475. struct ggml_context * ctx,
  4476. struct ggml_tensor * a,
  4477. int scale_factor) {
  4478. bool is_node = false;
  4479. if (a->grad) {
  4480. GGML_ASSERT(false); // TODO: implement backward
  4481. is_node = true;
  4482. }
  4483. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4484. a->ne[0] * scale_factor,
  4485. a->ne[1] * scale_factor,
  4486. a->ne[2], a->ne[3]);
  4487. result->op = GGML_OP_UPSCALE;
  4488. result->op_params[0] = scale_factor;
  4489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4490. result->src[0] = a;
  4491. result->src[1] = NULL;
  4492. return result;
  4493. }
  4494. struct ggml_tensor * ggml_upscale(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. int scale_factor) {
  4498. return ggml_upscale_impl(ctx, a, scale_factor);
  4499. }
  4500. // ggml_argsort
  4501. struct ggml_tensor * ggml_argsort(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a,
  4504. enum ggml_sort_order order) {
  4505. bool is_node = false;
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, a->ne);
  4507. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4508. result->op = GGML_OP_ARGSORT;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. return result;
  4512. }
  4513. // ggml_top_k
  4514. struct ggml_tensor * ggml_top_k(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. int k) {
  4518. GGML_ASSERT(a->ne[0] >= k);
  4519. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4520. result = ggml_view_4d(ctx, result,
  4521. k, result->ne[1], result->ne[2], result->ne[3],
  4522. result->nb[1], result->nb[2], result->nb[3],
  4523. 0);
  4524. return result;
  4525. }
  4526. // ggml_flash_attn
  4527. struct ggml_tensor * ggml_flash_attn(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * q,
  4530. struct ggml_tensor * k,
  4531. struct ggml_tensor * v,
  4532. bool masked) {
  4533. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4534. // TODO: check if vT can be multiplied by (k*qT)
  4535. bool is_node = false;
  4536. if (q->grad || k->grad || v->grad) {
  4537. is_node = true;
  4538. }
  4539. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4540. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4541. int32_t t = masked ? 1 : 0;
  4542. ggml_set_op_params(result, &t, sizeof(t));
  4543. result->op = GGML_OP_FLASH_ATTN;
  4544. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4545. result->src[0] = q;
  4546. result->src[1] = k;
  4547. result->src[2] = v;
  4548. return result;
  4549. }
  4550. // ggml_flash_ff
  4551. struct ggml_tensor * ggml_flash_ff(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. struct ggml_tensor * b0,
  4555. struct ggml_tensor * b1,
  4556. struct ggml_tensor * c0,
  4557. struct ggml_tensor * c1) {
  4558. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4559. // TODO: more checks
  4560. bool is_node = false;
  4561. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4562. is_node = true;
  4563. }
  4564. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4565. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4566. result->op = GGML_OP_FLASH_FF;
  4567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4568. result->src[0] = a;
  4569. result->src[1] = b0;
  4570. result->src[2] = b1;
  4571. result->src[3] = c0;
  4572. result->src[4] = c1;
  4573. return result;
  4574. }
  4575. // ggml_flash_attn_back
  4576. struct ggml_tensor * ggml_flash_attn_back(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * q,
  4579. struct ggml_tensor * k,
  4580. struct ggml_tensor * v,
  4581. struct ggml_tensor * d,
  4582. bool masked) {
  4583. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4584. // TODO: check if vT can be multiplied by (k*qT)
  4585. // d shape [D,N,ne2,ne3]
  4586. // q shape [D,N,ne2,ne3]
  4587. // k shape [D,M,kvne2,ne3]
  4588. // v shape [M,D,kvne2,ne3]
  4589. const int64_t D = q->ne[0];
  4590. const int64_t N = q->ne[1];
  4591. const int64_t M = k->ne[1];
  4592. const int64_t ne2 = q->ne[2];
  4593. const int64_t ne3 = q->ne[3];
  4594. const int64_t kvne2 = k->ne[2];
  4595. GGML_ASSERT(k->ne[0] == D);
  4596. GGML_ASSERT(v->ne[0] == M);
  4597. GGML_ASSERT(v->ne[1] == D);
  4598. GGML_ASSERT(d->ne[0] == D);
  4599. GGML_ASSERT(d->ne[1] == N);
  4600. GGML_ASSERT(k->ne[2] == kvne2);
  4601. GGML_ASSERT(k->ne[3] == ne3);
  4602. GGML_ASSERT(v->ne[2] == kvne2);
  4603. GGML_ASSERT(v->ne[3] == ne3);
  4604. GGML_ASSERT(d->ne[2] == ne2);
  4605. GGML_ASSERT(d->ne[3] == ne3);
  4606. GGML_ASSERT(ne2 % kvne2 == 0);
  4607. bool is_node = false;
  4608. if (q->grad || k->grad || v->grad) {
  4609. // when using this operation (in backwards pass) these grads are set.
  4610. // we don't want to create (big) grad of our result, so is_node is false.
  4611. is_node = false;
  4612. }
  4613. // store gradients of q, k and v as continuous tensors concatenated in result.
  4614. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4615. const int64_t elem_q = ggml_nelements(q);
  4616. const int64_t elem_k = ggml_nelements(k);
  4617. const int64_t elem_v = ggml_nelements(v);
  4618. enum ggml_type result_type = GGML_TYPE_F32;
  4619. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4620. const size_t tsize = ggml_type_size(result_type);
  4621. const size_t offs_q = 0;
  4622. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4623. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4624. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4625. const size_t nelements = (end + tsize - 1)/tsize;
  4626. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4627. int32_t masked_i = masked ? 1 : 0;
  4628. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4629. result->op = GGML_OP_FLASH_ATTN_BACK;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src[0] = q;
  4632. result->src[1] = k;
  4633. result->src[2] = v;
  4634. result->src[3] = d;
  4635. return result;
  4636. }
  4637. // ggml_win_part
  4638. struct ggml_tensor * ggml_win_part(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. int w) {
  4642. GGML_ASSERT(a->ne[3] == 1);
  4643. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4644. bool is_node = false;
  4645. if (a->grad) {
  4646. GGML_ASSERT(false); // TODO: implement backward
  4647. is_node = true;
  4648. }
  4649. // padding
  4650. const int px = (w - a->ne[1]%w)%w;
  4651. const int py = (w - a->ne[2]%w)%w;
  4652. const int npx = (px + a->ne[1])/w;
  4653. const int npy = (py + a->ne[2])/w;
  4654. const int np = npx*npy;
  4655. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4656. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4657. int32_t params[] = { npx, npy, w };
  4658. ggml_set_op_params(result, params, sizeof(params));
  4659. result->op = GGML_OP_WIN_PART;
  4660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4661. result->src[0] = a;
  4662. return result;
  4663. }
  4664. // ggml_win_unpart
  4665. struct ggml_tensor * ggml_win_unpart(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. int w0,
  4669. int h0,
  4670. int w) {
  4671. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4672. bool is_node = false;
  4673. if (a->grad) {
  4674. GGML_ASSERT(false); // TODO: implement backward
  4675. is_node = true;
  4676. }
  4677. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4678. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4679. int32_t params[] = { w };
  4680. ggml_set_op_params(result, params, sizeof(params));
  4681. result->op = GGML_OP_WIN_UNPART;
  4682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4683. result->src[0] = a;
  4684. return result;
  4685. }
  4686. // ggml_get_rel_pos
  4687. struct ggml_tensor * ggml_get_rel_pos(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. int qh,
  4691. int kh) {
  4692. GGML_ASSERT(qh == kh);
  4693. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4694. bool is_node = false;
  4695. if (a->grad) {
  4696. GGML_ASSERT(false); // TODO: implement backward
  4697. is_node = true;
  4698. }
  4699. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4700. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4701. result->op = GGML_OP_GET_REL_POS;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src[0] = a;
  4704. result->src[1] = NULL;
  4705. return result;
  4706. }
  4707. // ggml_add_rel_pos
  4708. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. struct ggml_tensor * pw,
  4712. struct ggml_tensor * ph,
  4713. bool inplace) {
  4714. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4715. GGML_ASSERT(ggml_is_contiguous(a));
  4716. GGML_ASSERT(ggml_is_contiguous(pw));
  4717. GGML_ASSERT(ggml_is_contiguous(ph));
  4718. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4719. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4720. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4721. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4722. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4723. bool is_node = false;
  4724. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4725. is_node = true;
  4726. }
  4727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4728. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4729. result->op = GGML_OP_ADD_REL_POS;
  4730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4731. result->src[0] = a;
  4732. result->src[1] = pw;
  4733. result->src[2] = ph;
  4734. return result;
  4735. }
  4736. struct ggml_tensor * ggml_add_rel_pos(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * pw,
  4740. struct ggml_tensor * ph) {
  4741. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4742. }
  4743. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. struct ggml_tensor * pw,
  4747. struct ggml_tensor * ph) {
  4748. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4749. }
  4750. // gmml_unary
  4751. static struct ggml_tensor * ggml_unary_impl(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. enum ggml_unary_op op,
  4755. bool inplace) {
  4756. bool is_node = false;
  4757. if (!inplace && (a->grad)) {
  4758. is_node = true;
  4759. }
  4760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4761. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4762. result->op = GGML_OP_UNARY;
  4763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4764. result->src[0] = a;
  4765. return result;
  4766. }
  4767. struct ggml_tensor * ggml_unary(
  4768. struct ggml_context * ctx,
  4769. struct ggml_tensor * a,
  4770. enum ggml_unary_op op) {
  4771. return ggml_unary_impl(ctx, a, op, false);
  4772. }
  4773. struct ggml_tensor * ggml_unary_inplace(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a,
  4776. enum ggml_unary_op op) {
  4777. return ggml_unary_impl(ctx, a, op, true);
  4778. }
  4779. // ggml_map_unary
  4780. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. const ggml_unary_op_f32_t fun,
  4784. bool inplace) {
  4785. bool is_node = false;
  4786. if (!inplace && a->grad) {
  4787. is_node = true;
  4788. }
  4789. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4790. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4791. result->op = GGML_OP_MAP_UNARY;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src[0] = a;
  4794. return result;
  4795. }
  4796. struct ggml_tensor * ggml_map_unary_f32(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a,
  4799. const ggml_unary_op_f32_t fun) {
  4800. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4801. }
  4802. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a,
  4805. const ggml_unary_op_f32_t fun) {
  4806. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4807. }
  4808. // ggml_map_binary
  4809. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b,
  4813. const ggml_binary_op_f32_t fun,
  4814. bool inplace) {
  4815. GGML_ASSERT(ggml_are_same_shape(a, b));
  4816. bool is_node = false;
  4817. if (!inplace && (a->grad || b->grad)) {
  4818. is_node = true;
  4819. }
  4820. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4821. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4822. result->op = GGML_OP_MAP_BINARY;
  4823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4824. result->src[0] = a;
  4825. result->src[1] = b;
  4826. return result;
  4827. }
  4828. struct ggml_tensor * ggml_map_binary_f32(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a,
  4831. struct ggml_tensor * b,
  4832. const ggml_binary_op_f32_t fun) {
  4833. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4834. }
  4835. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. struct ggml_tensor * b,
  4839. const ggml_binary_op_f32_t fun) {
  4840. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4841. }
  4842. // ggml_map_custom1_f32
  4843. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * a,
  4846. const ggml_custom1_op_f32_t fun,
  4847. bool inplace) {
  4848. bool is_node = false;
  4849. if (!inplace && a->grad) {
  4850. is_node = true;
  4851. }
  4852. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4853. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4854. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4856. result->src[0] = a;
  4857. return result;
  4858. }
  4859. struct ggml_tensor * ggml_map_custom1_f32(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. const ggml_custom1_op_f32_t fun) {
  4863. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4864. }
  4865. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. const ggml_custom1_op_f32_t fun) {
  4869. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4870. }
  4871. // ggml_map_custom2_f32
  4872. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. struct ggml_tensor * b,
  4876. const ggml_custom2_op_f32_t fun,
  4877. bool inplace) {
  4878. bool is_node = false;
  4879. if (!inplace && (a->grad || b->grad)) {
  4880. is_node = true;
  4881. }
  4882. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4883. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4884. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4886. result->src[0] = a;
  4887. result->src[1] = b;
  4888. return result;
  4889. }
  4890. struct ggml_tensor * ggml_map_custom2_f32(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. struct ggml_tensor * b,
  4894. const ggml_custom2_op_f32_t fun) {
  4895. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4896. }
  4897. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. struct ggml_tensor * b,
  4901. const ggml_custom2_op_f32_t fun) {
  4902. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4903. }
  4904. // ggml_map_custom3_f32
  4905. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. struct ggml_tensor * b,
  4909. struct ggml_tensor * c,
  4910. const ggml_custom3_op_f32_t fun,
  4911. bool inplace) {
  4912. bool is_node = false;
  4913. if (!inplace && (a->grad || b->grad || c->grad)) {
  4914. is_node = true;
  4915. }
  4916. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4917. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4918. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4920. result->src[0] = a;
  4921. result->src[1] = b;
  4922. result->src[2] = c;
  4923. return result;
  4924. }
  4925. struct ggml_tensor * ggml_map_custom3_f32(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b,
  4929. struct ggml_tensor * c,
  4930. const ggml_custom3_op_f32_t fun) {
  4931. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4932. }
  4933. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b,
  4937. struct ggml_tensor * c,
  4938. const ggml_custom3_op_f32_t fun) {
  4939. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4940. }
  4941. // ggml_map_custom1
  4942. struct ggml_map_custom1_op_params {
  4943. ggml_custom1_op_t fun;
  4944. int n_tasks;
  4945. void * userdata;
  4946. };
  4947. static struct ggml_tensor * ggml_map_custom1_impl(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a,
  4950. const ggml_custom1_op_t fun,
  4951. int n_tasks,
  4952. void * userdata,
  4953. bool inplace) {
  4954. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4955. bool is_node = false;
  4956. if (!inplace && a->grad) {
  4957. is_node = true;
  4958. }
  4959. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4960. struct ggml_map_custom1_op_params params = {
  4961. /*.fun =*/ fun,
  4962. /*.n_tasks =*/ n_tasks,
  4963. /*.userdata =*/ userdata
  4964. };
  4965. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4966. result->op = GGML_OP_MAP_CUSTOM1;
  4967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4968. result->src[0] = a;
  4969. return result;
  4970. }
  4971. struct ggml_tensor * ggml_map_custom1(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. const ggml_custom1_op_t fun,
  4975. int n_tasks,
  4976. void * userdata) {
  4977. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4978. }
  4979. struct ggml_tensor * ggml_map_custom1_inplace(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. const ggml_custom1_op_t fun,
  4983. int n_tasks,
  4984. void * userdata) {
  4985. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  4986. }
  4987. // ggml_map_custom2
  4988. struct ggml_map_custom2_op_params {
  4989. ggml_custom2_op_t fun;
  4990. int n_tasks;
  4991. void * userdata;
  4992. };
  4993. static struct ggml_tensor * ggml_map_custom2_impl(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. const ggml_custom2_op_t fun,
  4998. int n_tasks,
  4999. void * userdata,
  5000. bool inplace) {
  5001. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5002. bool is_node = false;
  5003. if (!inplace && (a->grad || b->grad)) {
  5004. is_node = true;
  5005. }
  5006. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5007. struct ggml_map_custom2_op_params params = {
  5008. /*.fun =*/ fun,
  5009. /*.n_tasks =*/ n_tasks,
  5010. /*.userdata =*/ userdata
  5011. };
  5012. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5013. result->op = GGML_OP_MAP_CUSTOM2;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src[0] = a;
  5016. result->src[1] = b;
  5017. return result;
  5018. }
  5019. struct ggml_tensor * ggml_map_custom2(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a,
  5022. struct ggml_tensor * b,
  5023. const ggml_custom2_op_t fun,
  5024. int n_tasks,
  5025. void * userdata) {
  5026. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5027. }
  5028. struct ggml_tensor * ggml_map_custom2_inplace(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. struct ggml_tensor * b,
  5032. const ggml_custom2_op_t fun,
  5033. int n_tasks,
  5034. void * userdata) {
  5035. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5036. }
  5037. // ggml_map_custom3
  5038. struct ggml_map_custom3_op_params {
  5039. ggml_custom3_op_t fun;
  5040. int n_tasks;
  5041. void * userdata;
  5042. };
  5043. static struct ggml_tensor * ggml_map_custom3_impl(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. struct ggml_tensor * b,
  5047. struct ggml_tensor * c,
  5048. const ggml_custom3_op_t fun,
  5049. int n_tasks,
  5050. void * userdata,
  5051. bool inplace) {
  5052. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5053. bool is_node = false;
  5054. if (!inplace && (a->grad || b->grad || c->grad)) {
  5055. is_node = true;
  5056. }
  5057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5058. struct ggml_map_custom3_op_params params = {
  5059. /*.fun =*/ fun,
  5060. /*.n_tasks =*/ n_tasks,
  5061. /*.userdata =*/ userdata
  5062. };
  5063. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5064. result->op = GGML_OP_MAP_CUSTOM3;
  5065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5066. result->src[0] = a;
  5067. result->src[1] = b;
  5068. result->src[2] = c;
  5069. return result;
  5070. }
  5071. struct ggml_tensor * ggml_map_custom3(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a,
  5074. struct ggml_tensor * b,
  5075. struct ggml_tensor * c,
  5076. const ggml_custom3_op_t fun,
  5077. int n_tasks,
  5078. void * userdata) {
  5079. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5080. }
  5081. struct ggml_tensor * ggml_map_custom3_inplace(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. struct ggml_tensor * b,
  5085. struct ggml_tensor * c,
  5086. const ggml_custom3_op_t fun,
  5087. int n_tasks,
  5088. void * userdata) {
  5089. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5090. }
  5091. // ggml_cross_entropy_loss
  5092. struct ggml_tensor * ggml_cross_entropy_loss(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. struct ggml_tensor * b) {
  5096. GGML_ASSERT(ggml_are_same_shape(a, b));
  5097. bool is_node = false;
  5098. if (a->grad || b->grad) {
  5099. is_node = true;
  5100. }
  5101. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5102. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5104. result->src[0] = a;
  5105. result->src[1] = b;
  5106. return result;
  5107. }
  5108. // ggml_cross_entropy_loss_back
  5109. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. struct ggml_tensor * b,
  5113. struct ggml_tensor * c) {
  5114. GGML_ASSERT(ggml_are_same_shape(a, b));
  5115. GGML_ASSERT(ggml_is_scalar(c));
  5116. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5117. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5118. result->grad = NULL;
  5119. result->src[0] = a;
  5120. result->src[1] = b;
  5121. result->src[2] = c;
  5122. return result;
  5123. }
  5124. ////////////////////////////////////////////////////////////////////////////////
  5125. void ggml_set_param(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * tensor) {
  5128. tensor->is_param = true;
  5129. GGML_ASSERT(tensor->grad == NULL);
  5130. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5131. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5132. }
  5133. // ggml_compute_forward_dup
  5134. static void ggml_compute_forward_dup_same_cont(
  5135. const struct ggml_compute_params * params,
  5136. const struct ggml_tensor * src0,
  5137. struct ggml_tensor * dst) {
  5138. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5139. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5140. GGML_ASSERT(src0->type == dst->type);
  5141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5142. return;
  5143. }
  5144. const size_t nb00 = src0->nb[0];
  5145. const size_t nb0 = dst->nb[0];
  5146. const int ith = params->ith; // thread index
  5147. const int nth = params->nth; // number of threads
  5148. // parallelize by elements
  5149. const int ne = ggml_nelements(dst);
  5150. const int dr = (ne + nth - 1) / nth;
  5151. const int ie0 = dr * ith;
  5152. const int ie1 = MIN(ie0 + dr, ne);
  5153. if (ie0 < ie1) {
  5154. memcpy(
  5155. ((char *) dst->data + ie0*nb0),
  5156. ((char *) src0->data + ie0*nb00),
  5157. (ie1 - ie0) * ggml_type_size(src0->type));
  5158. }
  5159. }
  5160. static void ggml_compute_forward_dup_f16(
  5161. const struct ggml_compute_params * params,
  5162. const struct ggml_tensor * src0,
  5163. struct ggml_tensor * dst) {
  5164. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5166. return;
  5167. }
  5168. GGML_TENSOR_UNARY_OP_LOCALS
  5169. const int ith = params->ith; // thread index
  5170. const int nth = params->nth; // number of threads
  5171. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5172. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5173. return;
  5174. }
  5175. // parallelize by rows
  5176. const int nr = ne01;
  5177. // number of rows per thread
  5178. const int dr = (nr + nth - 1) / nth;
  5179. // row range for this thread
  5180. const int ir0 = dr * ith;
  5181. const int ir1 = MIN(ir0 + dr, nr);
  5182. if (src0->type == dst->type &&
  5183. ne00 == ne0 &&
  5184. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5185. // copy by rows
  5186. const size_t rs = ne00*nb00;
  5187. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5188. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5189. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5190. memcpy(
  5191. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5192. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5193. rs);
  5194. }
  5195. }
  5196. }
  5197. return;
  5198. }
  5199. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5200. if (ggml_is_contiguous(dst)) {
  5201. if (nb00 == sizeof(ggml_fp16_t)) {
  5202. if (dst->type == GGML_TYPE_F16) {
  5203. size_t id = 0;
  5204. const size_t rs = ne00 * nb00;
  5205. char * dst_ptr = (char *) dst->data;
  5206. for (int i03 = 0; i03 < ne03; i03++) {
  5207. for (int i02 = 0; i02 < ne02; i02++) {
  5208. id += rs * ir0;
  5209. for (int i01 = ir0; i01 < ir1; i01++) {
  5210. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5211. memcpy(dst_ptr + id, src0_ptr, rs);
  5212. id += rs;
  5213. }
  5214. id += rs * (ne01 - ir1);
  5215. }
  5216. }
  5217. } else if (dst->type == GGML_TYPE_F32) {
  5218. size_t id = 0;
  5219. float * dst_ptr = (float *) dst->data;
  5220. for (int i03 = 0; i03 < ne03; i03++) {
  5221. for (int i02 = 0; i02 < ne02; i02++) {
  5222. id += ne00 * ir0;
  5223. for (int i01 = ir0; i01 < ir1; i01++) {
  5224. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5225. for (int i00 = 0; i00 < ne00; i00++) {
  5226. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5227. id++;
  5228. }
  5229. }
  5230. id += ne00 * (ne01 - ir1);
  5231. }
  5232. }
  5233. } else if (type_traits[dst->type].from_float) {
  5234. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5235. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5236. size_t id = 0;
  5237. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5238. char * dst_ptr = (char *) dst->data;
  5239. for (int i03 = 0; i03 < ne03; i03++) {
  5240. for (int i02 = 0; i02 < ne02; i02++) {
  5241. id += rs * ir0;
  5242. for (int i01 = ir0; i01 < ir1; i01++) {
  5243. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5244. for (int i00 = 0; i00 < ne00; i00++) {
  5245. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5246. }
  5247. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5248. id += rs;
  5249. }
  5250. id += rs * (ne01 - ir1);
  5251. }
  5252. }
  5253. } else {
  5254. GGML_ASSERT(false); // TODO: implement
  5255. }
  5256. } else {
  5257. //printf("%s: this is not optimal - fix me\n", __func__);
  5258. if (dst->type == GGML_TYPE_F32) {
  5259. size_t id = 0;
  5260. float * dst_ptr = (float *) dst->data;
  5261. for (int i03 = 0; i03 < ne03; i03++) {
  5262. for (int i02 = 0; i02 < ne02; i02++) {
  5263. id += ne00 * ir0;
  5264. for (int i01 = ir0; i01 < ir1; i01++) {
  5265. for (int i00 = 0; i00 < ne00; i00++) {
  5266. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5267. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5268. id++;
  5269. }
  5270. }
  5271. id += ne00 * (ne01 - ir1);
  5272. }
  5273. }
  5274. } else if (dst->type == GGML_TYPE_F16) {
  5275. size_t id = 0;
  5276. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5277. for (int i03 = 0; i03 < ne03; i03++) {
  5278. for (int i02 = 0; i02 < ne02; i02++) {
  5279. id += ne00 * ir0;
  5280. for (int i01 = ir0; i01 < ir1; i01++) {
  5281. for (int i00 = 0; i00 < ne00; i00++) {
  5282. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5283. dst_ptr[id] = *src0_ptr;
  5284. id++;
  5285. }
  5286. }
  5287. id += ne00 * (ne01 - ir1);
  5288. }
  5289. }
  5290. } else {
  5291. GGML_ASSERT(false); // TODO: implement
  5292. }
  5293. }
  5294. return;
  5295. }
  5296. // dst counters
  5297. int64_t i10 = 0;
  5298. int64_t i11 = 0;
  5299. int64_t i12 = 0;
  5300. int64_t i13 = 0;
  5301. if (dst->type == GGML_TYPE_F16) {
  5302. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5303. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5304. i10 += ne00 * ir0;
  5305. while (i10 >= ne0) {
  5306. i10 -= ne0;
  5307. if (++i11 == ne1) {
  5308. i11 = 0;
  5309. if (++i12 == ne2) {
  5310. i12 = 0;
  5311. if (++i13 == ne3) {
  5312. i13 = 0;
  5313. }
  5314. }
  5315. }
  5316. }
  5317. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5318. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5319. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5320. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5321. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5322. if (++i10 == ne00) {
  5323. i10 = 0;
  5324. if (++i11 == ne01) {
  5325. i11 = 0;
  5326. if (++i12 == ne02) {
  5327. i12 = 0;
  5328. if (++i13 == ne03) {
  5329. i13 = 0;
  5330. }
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. i10 += ne00 * (ne01 - ir1);
  5337. while (i10 >= ne0) {
  5338. i10 -= ne0;
  5339. if (++i11 == ne1) {
  5340. i11 = 0;
  5341. if (++i12 == ne2) {
  5342. i12 = 0;
  5343. if (++i13 == ne3) {
  5344. i13 = 0;
  5345. }
  5346. }
  5347. }
  5348. }
  5349. }
  5350. }
  5351. } else if (dst->type == GGML_TYPE_F32) {
  5352. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5353. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5354. i10 += ne00 * ir0;
  5355. while (i10 >= ne0) {
  5356. i10 -= ne0;
  5357. if (++i11 == ne1) {
  5358. i11 = 0;
  5359. if (++i12 == ne2) {
  5360. i12 = 0;
  5361. if (++i13 == ne3) {
  5362. i13 = 0;
  5363. }
  5364. }
  5365. }
  5366. }
  5367. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5368. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5369. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5370. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5371. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5372. if (++i10 == ne0) {
  5373. i10 = 0;
  5374. if (++i11 == ne1) {
  5375. i11 = 0;
  5376. if (++i12 == ne2) {
  5377. i12 = 0;
  5378. if (++i13 == ne3) {
  5379. i13 = 0;
  5380. }
  5381. }
  5382. }
  5383. }
  5384. }
  5385. }
  5386. i10 += ne00 * (ne01 - ir1);
  5387. while (i10 >= ne0) {
  5388. i10 -= ne0;
  5389. if (++i11 == ne1) {
  5390. i11 = 0;
  5391. if (++i12 == ne2) {
  5392. i12 = 0;
  5393. if (++i13 == ne3) {
  5394. i13 = 0;
  5395. }
  5396. }
  5397. }
  5398. }
  5399. }
  5400. }
  5401. } else {
  5402. GGML_ASSERT(false); // TODO: implement
  5403. }
  5404. }
  5405. static void ggml_compute_forward_dup_f32(
  5406. const struct ggml_compute_params * params,
  5407. const struct ggml_tensor * src0,
  5408. struct ggml_tensor * dst) {
  5409. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5411. return;
  5412. }
  5413. GGML_TENSOR_UNARY_OP_LOCALS
  5414. const int ith = params->ith; // thread index
  5415. const int nth = params->nth; // number of threads
  5416. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5417. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5418. return;
  5419. }
  5420. // parallelize by rows
  5421. const int nr = ne01;
  5422. // number of rows per thread
  5423. const int dr = (nr + nth - 1) / nth;
  5424. // row range for this thread
  5425. const int ir0 = dr * ith;
  5426. const int ir1 = MIN(ir0 + dr, nr);
  5427. if (src0->type == dst->type &&
  5428. ne00 == ne0 &&
  5429. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5430. // copy by rows
  5431. const size_t rs = ne00*nb00;
  5432. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5433. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5434. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5435. memcpy(
  5436. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5437. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5438. rs);
  5439. }
  5440. }
  5441. }
  5442. return;
  5443. }
  5444. if (ggml_is_contiguous(dst)) {
  5445. // TODO: simplify
  5446. if (nb00 == sizeof(float)) {
  5447. if (dst->type == GGML_TYPE_F32) {
  5448. size_t id = 0;
  5449. const size_t rs = ne00 * nb00;
  5450. char * dst_ptr = (char *) dst->data;
  5451. for (int i03 = 0; i03 < ne03; i03++) {
  5452. for (int i02 = 0; i02 < ne02; i02++) {
  5453. id += rs * ir0;
  5454. for (int i01 = ir0; i01 < ir1; i01++) {
  5455. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5456. memcpy(dst_ptr + id, src0_ptr, rs);
  5457. id += rs;
  5458. }
  5459. id += rs * (ne01 - ir1);
  5460. }
  5461. }
  5462. } else if (type_traits[dst->type].from_float) {
  5463. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5464. size_t id = 0;
  5465. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5466. char * dst_ptr = (char *) dst->data;
  5467. for (int i03 = 0; i03 < ne03; i03++) {
  5468. for (int i02 = 0; i02 < ne02; i02++) {
  5469. id += rs * ir0;
  5470. for (int i01 = ir0; i01 < ir1; i01++) {
  5471. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5472. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5473. id += rs;
  5474. }
  5475. id += rs * (ne01 - ir1);
  5476. }
  5477. }
  5478. } else {
  5479. GGML_ASSERT(false); // TODO: implement
  5480. }
  5481. } else {
  5482. //printf("%s: this is not optimal - fix me\n", __func__);
  5483. if (dst->type == GGML_TYPE_F32) {
  5484. size_t id = 0;
  5485. float * dst_ptr = (float *) dst->data;
  5486. for (int i03 = 0; i03 < ne03; i03++) {
  5487. for (int i02 = 0; i02 < ne02; i02++) {
  5488. id += ne00 * ir0;
  5489. for (int i01 = ir0; i01 < ir1; i01++) {
  5490. for (int i00 = 0; i00 < ne00; i00++) {
  5491. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5492. dst_ptr[id] = *src0_ptr;
  5493. id++;
  5494. }
  5495. }
  5496. id += ne00 * (ne01 - ir1);
  5497. }
  5498. }
  5499. } else if (dst->type == GGML_TYPE_F16) {
  5500. size_t id = 0;
  5501. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5502. for (int i03 = 0; i03 < ne03; i03++) {
  5503. for (int i02 = 0; i02 < ne02; i02++) {
  5504. id += ne00 * ir0;
  5505. for (int i01 = ir0; i01 < ir1; i01++) {
  5506. for (int i00 = 0; i00 < ne00; i00++) {
  5507. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5508. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5509. id++;
  5510. }
  5511. }
  5512. id += ne00 * (ne01 - ir1);
  5513. }
  5514. }
  5515. } else {
  5516. GGML_ASSERT(false); // TODO: implement
  5517. }
  5518. }
  5519. return;
  5520. }
  5521. // dst counters
  5522. int64_t i10 = 0;
  5523. int64_t i11 = 0;
  5524. int64_t i12 = 0;
  5525. int64_t i13 = 0;
  5526. if (dst->type == GGML_TYPE_F32) {
  5527. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5528. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5529. i10 += ne00 * ir0;
  5530. while (i10 >= ne0) {
  5531. i10 -= ne0;
  5532. if (++i11 == ne1) {
  5533. i11 = 0;
  5534. if (++i12 == ne2) {
  5535. i12 = 0;
  5536. if (++i13 == ne3) {
  5537. i13 = 0;
  5538. }
  5539. }
  5540. }
  5541. }
  5542. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5543. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5544. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5545. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5546. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5547. if (++i10 == ne0) {
  5548. i10 = 0;
  5549. if (++i11 == ne1) {
  5550. i11 = 0;
  5551. if (++i12 == ne2) {
  5552. i12 = 0;
  5553. if (++i13 == ne3) {
  5554. i13 = 0;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. }
  5560. }
  5561. i10 += ne00 * (ne01 - ir1);
  5562. while (i10 >= ne0) {
  5563. i10 -= ne0;
  5564. if (++i11 == ne1) {
  5565. i11 = 0;
  5566. if (++i12 == ne2) {
  5567. i12 = 0;
  5568. if (++i13 == ne3) {
  5569. i13 = 0;
  5570. }
  5571. }
  5572. }
  5573. }
  5574. }
  5575. }
  5576. } else if (dst->type == GGML_TYPE_F16) {
  5577. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5578. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5579. i10 += ne00 * ir0;
  5580. while (i10 >= ne0) {
  5581. i10 -= ne0;
  5582. if (++i11 == ne1) {
  5583. i11 = 0;
  5584. if (++i12 == ne2) {
  5585. i12 = 0;
  5586. if (++i13 == ne3) {
  5587. i13 = 0;
  5588. }
  5589. }
  5590. }
  5591. }
  5592. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5593. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5594. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5595. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5596. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5597. if (++i10 == ne0) {
  5598. i10 = 0;
  5599. if (++i11 == ne1) {
  5600. i11 = 0;
  5601. if (++i12 == ne2) {
  5602. i12 = 0;
  5603. if (++i13 == ne3) {
  5604. i13 = 0;
  5605. }
  5606. }
  5607. }
  5608. }
  5609. }
  5610. }
  5611. i10 += ne00 * (ne01 - ir1);
  5612. while (i10 >= ne0) {
  5613. i10 -= ne0;
  5614. if (++i11 == ne1) {
  5615. i11 = 0;
  5616. if (++i12 == ne2) {
  5617. i12 = 0;
  5618. if (++i13 == ne3) {
  5619. i13 = 0;
  5620. }
  5621. }
  5622. }
  5623. }
  5624. }
  5625. }
  5626. } else {
  5627. GGML_ASSERT(false); // TODO: implement
  5628. }
  5629. }
  5630. static void ggml_compute_forward_dup(
  5631. const struct ggml_compute_params * params,
  5632. const struct ggml_tensor * src0,
  5633. struct ggml_tensor * dst) {
  5634. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5635. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5636. return;
  5637. }
  5638. switch (src0->type) {
  5639. case GGML_TYPE_F16:
  5640. {
  5641. ggml_compute_forward_dup_f16(params, src0, dst);
  5642. } break;
  5643. case GGML_TYPE_F32:
  5644. {
  5645. ggml_compute_forward_dup_f32(params, src0, dst);
  5646. } break;
  5647. default:
  5648. {
  5649. GGML_ASSERT(false);
  5650. } break;
  5651. }
  5652. }
  5653. // ggml_compute_forward_add
  5654. static void ggml_compute_forward_add_f32(
  5655. const struct ggml_compute_params * params,
  5656. const struct ggml_tensor * src0,
  5657. const struct ggml_tensor * src1,
  5658. struct ggml_tensor * dst) {
  5659. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5661. return;
  5662. }
  5663. const int ith = params->ith;
  5664. const int nth = params->nth;
  5665. const int nr = ggml_nrows(src0);
  5666. GGML_TENSOR_BINARY_OP_LOCALS
  5667. GGML_ASSERT( nb0 == sizeof(float));
  5668. GGML_ASSERT(nb00 == sizeof(float));
  5669. // rows per thread
  5670. const int dr = (nr + nth - 1)/nth;
  5671. // row range for this thread
  5672. const int ir0 = dr*ith;
  5673. const int ir1 = MIN(ir0 + dr, nr);
  5674. if (nb10 == sizeof(float)) {
  5675. for (int ir = ir0; ir < ir1; ++ir) {
  5676. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5677. const int64_t i03 = ir/(ne02*ne01);
  5678. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5679. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5680. const int64_t i13 = i03 % ne13;
  5681. const int64_t i12 = i02 % ne12;
  5682. const int64_t i11 = i01 % ne11;
  5683. const int64_t nr0 = ne00 / ne10;
  5684. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5685. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5686. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5687. for (int64_t r = 0; r < nr0; ++r) {
  5688. #ifdef GGML_USE_ACCELERATE
  5689. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5690. #else
  5691. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5692. #endif
  5693. }
  5694. }
  5695. } else {
  5696. // src1 is not contiguous
  5697. for (int ir = ir0; ir < ir1; ++ir) {
  5698. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5699. const int64_t i03 = ir/(ne02*ne01);
  5700. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5701. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5702. const int64_t i13 = i03 % ne13;
  5703. const int64_t i12 = i02 % ne12;
  5704. const int64_t i11 = i01 % ne11;
  5705. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5706. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5707. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5708. const int64_t i10 = i0 % ne10;
  5709. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5710. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5711. }
  5712. }
  5713. }
  5714. }
  5715. static void ggml_compute_forward_add_f16_f32(
  5716. const struct ggml_compute_params * params,
  5717. const struct ggml_tensor * src0,
  5718. const struct ggml_tensor * src1,
  5719. struct ggml_tensor * dst) {
  5720. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5721. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5722. return;
  5723. }
  5724. const int ith = params->ith;
  5725. const int nth = params->nth;
  5726. const int nr = ggml_nrows(src0);
  5727. GGML_TENSOR_BINARY_OP_LOCALS
  5728. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5729. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5730. if (dst->type == GGML_TYPE_F32) {
  5731. GGML_ASSERT( nb0 == sizeof(float));
  5732. }
  5733. else {
  5734. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5735. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5736. }
  5737. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5738. // rows per thread
  5739. const int dr = (nr + nth - 1)/nth;
  5740. // row range for this thread
  5741. const int ir0 = dr*ith;
  5742. const int ir1 = MIN(ir0 + dr, nr);
  5743. if (nb10 == sizeof(float)) {
  5744. if (dst->type == GGML_TYPE_F16) {
  5745. for (int ir = ir0; ir < ir1; ++ir) {
  5746. // src0, src1 and dst are same shape => same indices
  5747. const int i3 = ir/(ne2*ne1);
  5748. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5749. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5750. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5751. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5752. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5753. for (int i = 0; i < ne0; i++) {
  5754. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5755. }
  5756. }
  5757. } else {
  5758. for (int ir = ir0; ir < ir1; ++ir) {
  5759. // src0, src1 and dst are same shape => same indices
  5760. const int i3 = ir/(ne2*ne1);
  5761. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5762. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5763. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5764. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5765. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5766. for (int i = 0; i < ne0; i++) {
  5767. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5768. }
  5769. }
  5770. }
  5771. }
  5772. else {
  5773. // src1 is not contiguous
  5774. GGML_ASSERT(false);
  5775. }
  5776. }
  5777. static void ggml_compute_forward_add_f16_f16(
  5778. const struct ggml_compute_params * params,
  5779. const struct ggml_tensor * src0,
  5780. const struct ggml_tensor * src1,
  5781. struct ggml_tensor * dst) {
  5782. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5783. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5784. return;
  5785. }
  5786. const int ith = params->ith;
  5787. const int nth = params->nth;
  5788. const int nr = ggml_nrows(src0);
  5789. GGML_TENSOR_BINARY_OP_LOCALS
  5790. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5791. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5792. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5793. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5794. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5795. // rows per thread
  5796. const int dr = (nr + nth - 1)/nth;
  5797. // row range for this thread
  5798. const int ir0 = dr*ith;
  5799. const int ir1 = MIN(ir0 + dr, nr);
  5800. if (nb10 == sizeof(ggml_fp16_t)) {
  5801. for (int ir = ir0; ir < ir1; ++ir) {
  5802. // src0, src1 and dst are same shape => same indices
  5803. const int i3 = ir/(ne2*ne1);
  5804. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5805. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5806. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5807. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5808. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5809. for (int i = 0; i < ne0; i++) {
  5810. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5811. }
  5812. }
  5813. }
  5814. else {
  5815. // src1 is not contiguous
  5816. GGML_ASSERT(false);
  5817. }
  5818. }
  5819. static void ggml_compute_forward_add_q_f32(
  5820. const struct ggml_compute_params * params,
  5821. const struct ggml_tensor * src0,
  5822. const struct ggml_tensor * src1,
  5823. struct ggml_tensor * dst) {
  5824. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5825. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5826. return;
  5827. }
  5828. const int nr = ggml_nrows(src0);
  5829. GGML_TENSOR_BINARY_OP_LOCALS
  5830. const int ith = params->ith;
  5831. const int nth = params->nth;
  5832. const enum ggml_type type = src0->type;
  5833. const enum ggml_type dtype = dst->type;
  5834. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5835. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5836. // we don't support permuted src0 or src1
  5837. GGML_ASSERT(nb00 == ggml_type_size(type));
  5838. GGML_ASSERT(nb10 == sizeof(float));
  5839. // dst cannot be transposed or permuted
  5840. GGML_ASSERT(nb0 <= nb1);
  5841. GGML_ASSERT(nb1 <= nb2);
  5842. GGML_ASSERT(nb2 <= nb3);
  5843. GGML_ASSERT(ggml_is_quantized(src0->type));
  5844. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5845. // rows per thread
  5846. const int dr = (nr + nth - 1)/nth;
  5847. // row range for this thread
  5848. const int ir0 = dr*ith;
  5849. const int ir1 = MIN(ir0 + dr, nr);
  5850. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5851. for (int ir = ir0; ir < ir1; ++ir) {
  5852. // src0 indices
  5853. const int i03 = ir/(ne02*ne01);
  5854. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5855. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5856. // src1 and dst are same shape as src0 => same indices
  5857. const int i13 = i03;
  5858. const int i12 = i02;
  5859. const int i11 = i01;
  5860. const int i3 = i03;
  5861. const int i2 = i02;
  5862. const int i1 = i01;
  5863. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5864. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5865. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5866. assert(ne00 % 32 == 0);
  5867. // unquantize row from src0 to temp buffer
  5868. dequantize_row_q(src0_row, wdata, ne00);
  5869. // add src1
  5870. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5871. // quantize row to dst
  5872. if (quantize_row_q != NULL) {
  5873. quantize_row_q(wdata, dst_row, ne00);
  5874. } else {
  5875. memcpy(dst_row, wdata, ne0*nb0);
  5876. }
  5877. }
  5878. }
  5879. static void ggml_compute_forward_add(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. const struct ggml_tensor * src1,
  5883. struct ggml_tensor * dst) {
  5884. switch (src0->type) {
  5885. case GGML_TYPE_F32:
  5886. {
  5887. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5888. } break;
  5889. case GGML_TYPE_F16:
  5890. {
  5891. if (src1->type == GGML_TYPE_F16) {
  5892. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5893. }
  5894. else if (src1->type == GGML_TYPE_F32) {
  5895. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5896. }
  5897. else {
  5898. GGML_ASSERT(false);
  5899. }
  5900. } break;
  5901. case GGML_TYPE_Q4_0:
  5902. case GGML_TYPE_Q4_1:
  5903. case GGML_TYPE_Q5_0:
  5904. case GGML_TYPE_Q5_1:
  5905. case GGML_TYPE_Q8_0:
  5906. case GGML_TYPE_Q2_K:
  5907. case GGML_TYPE_Q3_K:
  5908. case GGML_TYPE_Q4_K:
  5909. case GGML_TYPE_Q5_K:
  5910. case GGML_TYPE_Q6_K:
  5911. {
  5912. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5913. } break;
  5914. default:
  5915. {
  5916. GGML_ASSERT(false);
  5917. } break;
  5918. }
  5919. }
  5920. // ggml_compute_forward_add1
  5921. static void ggml_compute_forward_add1_f32(
  5922. const struct ggml_compute_params * params,
  5923. const struct ggml_tensor * src0,
  5924. const struct ggml_tensor * src1,
  5925. struct ggml_tensor * dst) {
  5926. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5927. GGML_ASSERT(ggml_is_scalar(src1));
  5928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5929. return;
  5930. }
  5931. const int ith = params->ith;
  5932. const int nth = params->nth;
  5933. const int nr = ggml_nrows(src0);
  5934. GGML_TENSOR_UNARY_OP_LOCALS
  5935. GGML_ASSERT( nb0 == sizeof(float));
  5936. GGML_ASSERT(nb00 == sizeof(float));
  5937. // rows per thread
  5938. const int dr = (nr + nth - 1)/nth;
  5939. // row range for this thread
  5940. const int ir0 = dr*ith;
  5941. const int ir1 = MIN(ir0 + dr, nr);
  5942. for (int ir = ir0; ir < ir1; ++ir) {
  5943. // src0 and dst are same shape => same indices
  5944. const int i3 = ir/(ne2*ne1);
  5945. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5946. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5947. #ifdef GGML_USE_ACCELERATE
  5948. UNUSED(ggml_vec_add1_f32);
  5949. vDSP_vadd(
  5950. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5951. (float *) ((char *) src1->data), 0,
  5952. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5953. ne0);
  5954. #else
  5955. ggml_vec_add1_f32(ne0,
  5956. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5957. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5958. *(float *) src1->data);
  5959. #endif
  5960. }
  5961. }
  5962. static void ggml_compute_forward_add1_f16_f32(
  5963. const struct ggml_compute_params * params,
  5964. const struct ggml_tensor * src0,
  5965. const struct ggml_tensor * src1,
  5966. struct ggml_tensor * dst) {
  5967. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5968. GGML_ASSERT(ggml_is_scalar(src1));
  5969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5970. return;
  5971. }
  5972. // scalar to add
  5973. const float v = *(float *) src1->data;
  5974. const int ith = params->ith;
  5975. const int nth = params->nth;
  5976. const int nr = ggml_nrows(src0);
  5977. GGML_TENSOR_UNARY_OP_LOCALS
  5978. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5979. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5980. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5981. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5982. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5983. // rows per thread
  5984. const int dr = (nr + nth - 1)/nth;
  5985. // row range for this thread
  5986. const int ir0 = dr*ith;
  5987. const int ir1 = MIN(ir0 + dr, nr);
  5988. for (int ir = ir0; ir < ir1; ++ir) {
  5989. // src0 and dst are same shape => same indices
  5990. const int i3 = ir/(ne2*ne1);
  5991. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5992. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5993. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5994. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5995. for (int i = 0; i < ne0; i++) {
  5996. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5997. }
  5998. }
  5999. }
  6000. static void ggml_compute_forward_add1_f16_f16(
  6001. const struct ggml_compute_params * params,
  6002. const struct ggml_tensor * src0,
  6003. const struct ggml_tensor * src1,
  6004. struct ggml_tensor * dst) {
  6005. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6006. GGML_ASSERT(ggml_is_scalar(src1));
  6007. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6008. return;
  6009. }
  6010. // scalar to add
  6011. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6012. const int ith = params->ith;
  6013. const int nth = params->nth;
  6014. const int nr = ggml_nrows(src0);
  6015. GGML_TENSOR_UNARY_OP_LOCALS
  6016. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6017. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6018. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6019. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6021. // rows per thread
  6022. const int dr = (nr + nth - 1)/nth;
  6023. // row range for this thread
  6024. const int ir0 = dr*ith;
  6025. const int ir1 = MIN(ir0 + dr, nr);
  6026. for (int ir = ir0; ir < ir1; ++ir) {
  6027. // src0 and dst are same shape => same indices
  6028. const int i3 = ir/(ne2*ne1);
  6029. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6030. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6031. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6032. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6033. for (int i = 0; i < ne0; i++) {
  6034. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6035. }
  6036. }
  6037. }
  6038. static void ggml_compute_forward_add1_q_f32(
  6039. const struct ggml_compute_params * params,
  6040. const struct ggml_tensor * src0,
  6041. const struct ggml_tensor * src1,
  6042. struct ggml_tensor * dst) {
  6043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6044. GGML_ASSERT(ggml_is_scalar(src1));
  6045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6046. return;
  6047. }
  6048. // scalar to add
  6049. const float v = *(float *) src1->data;
  6050. const int ith = params->ith;
  6051. const int nth = params->nth;
  6052. const int nr = ggml_nrows(src0);
  6053. GGML_TENSOR_UNARY_OP_LOCALS
  6054. const enum ggml_type type = src0->type;
  6055. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6056. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6057. // we don't support permuted src0
  6058. GGML_ASSERT(nb00 == ggml_type_size(type));
  6059. // dst cannot be transposed or permuted
  6060. GGML_ASSERT(nb0 <= nb1);
  6061. GGML_ASSERT(nb1 <= nb2);
  6062. GGML_ASSERT(nb2 <= nb3);
  6063. GGML_ASSERT(ggml_is_quantized(src0->type));
  6064. GGML_ASSERT(dst->type == src0->type);
  6065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6066. // rows per thread
  6067. const int dr = (nr + nth - 1)/nth;
  6068. // row range for this thread
  6069. const int ir0 = dr*ith;
  6070. const int ir1 = MIN(ir0 + dr, nr);
  6071. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6072. for (int ir = ir0; ir < ir1; ++ir) {
  6073. // src0 and dst are same shape => same indices
  6074. const int i3 = ir/(ne2*ne1);
  6075. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6076. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6077. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6078. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6079. assert(ne0 % 32 == 0);
  6080. // unquantize row from src0 to temp buffer
  6081. dequantize_row_q(src0_row, wdata, ne0);
  6082. // add src1
  6083. ggml_vec_acc1_f32(ne0, wdata, v);
  6084. // quantize row to dst
  6085. quantize_row_q(wdata, dst_row, ne0);
  6086. }
  6087. }
  6088. static void ggml_compute_forward_add1(
  6089. const struct ggml_compute_params * params,
  6090. const struct ggml_tensor * src0,
  6091. const struct ggml_tensor * src1,
  6092. struct ggml_tensor * dst) {
  6093. switch (src0->type) {
  6094. case GGML_TYPE_F32:
  6095. {
  6096. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6097. } break;
  6098. case GGML_TYPE_F16:
  6099. {
  6100. if (src1->type == GGML_TYPE_F16) {
  6101. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6102. }
  6103. else if (src1->type == GGML_TYPE_F32) {
  6104. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6105. }
  6106. else {
  6107. GGML_ASSERT(false);
  6108. }
  6109. } break;
  6110. case GGML_TYPE_Q4_0:
  6111. case GGML_TYPE_Q4_1:
  6112. case GGML_TYPE_Q5_0:
  6113. case GGML_TYPE_Q5_1:
  6114. case GGML_TYPE_Q8_0:
  6115. case GGML_TYPE_Q8_1:
  6116. case GGML_TYPE_Q2_K:
  6117. case GGML_TYPE_Q3_K:
  6118. case GGML_TYPE_Q4_K:
  6119. case GGML_TYPE_Q5_K:
  6120. case GGML_TYPE_Q6_K:
  6121. {
  6122. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6123. } break;
  6124. default:
  6125. {
  6126. GGML_ASSERT(false);
  6127. } break;
  6128. }
  6129. }
  6130. // ggml_compute_forward_acc
  6131. static void ggml_compute_forward_acc_f32(
  6132. const struct ggml_compute_params * params,
  6133. const struct ggml_tensor * src0,
  6134. const struct ggml_tensor * src1,
  6135. struct ggml_tensor * dst) {
  6136. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6137. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6138. // view src0 and dst with these strides and data offset inbytes during acc
  6139. // nb0 is implicitely element_size because src0 and dst are contiguous
  6140. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6141. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6142. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6143. size_t offset = ((int32_t *) dst->op_params)[3];
  6144. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6145. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6146. // memcpy needs to be synchronized across threads to avoid race conditions.
  6147. // => do it in INIT phase
  6148. memcpy(
  6149. ((char *) dst->data),
  6150. ((char *) src0->data),
  6151. ggml_nbytes(dst));
  6152. }
  6153. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6154. return;
  6155. }
  6156. const int ith = params->ith;
  6157. const int nth = params->nth;
  6158. const int nr = ggml_nrows(src1);
  6159. const int nc = src1->ne[0];
  6160. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6161. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6162. // src0 and dst as viewed during acc
  6163. const size_t nb0 = ggml_element_size(src0);
  6164. const size_t nb00 = nb0;
  6165. const size_t nb01 = nb1;
  6166. const size_t nb02 = nb2;
  6167. const size_t nb03 = nb3;
  6168. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6169. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6170. GGML_ASSERT(nb10 == sizeof(float));
  6171. // rows per thread
  6172. const int dr = (nr + nth - 1)/nth;
  6173. // row range for this thread
  6174. const int ir0 = dr*ith;
  6175. const int ir1 = MIN(ir0 + dr, nr);
  6176. for (int ir = ir0; ir < ir1; ++ir) {
  6177. // src0 and dst are viewed with shape of src1 and offset
  6178. // => same indices
  6179. const int i3 = ir/(ne12*ne11);
  6180. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6181. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6182. #ifdef GGML_USE_ACCELERATE
  6183. vDSP_vadd(
  6184. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6185. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6186. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6187. #else
  6188. ggml_vec_add_f32(nc,
  6189. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6190. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6191. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6192. #endif
  6193. }
  6194. }
  6195. static void ggml_compute_forward_acc(
  6196. const struct ggml_compute_params * params,
  6197. const struct ggml_tensor * src0,
  6198. const struct ggml_tensor * src1,
  6199. struct ggml_tensor * dst) {
  6200. switch (src0->type) {
  6201. case GGML_TYPE_F32:
  6202. {
  6203. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6204. } break;
  6205. case GGML_TYPE_F16:
  6206. case GGML_TYPE_Q4_0:
  6207. case GGML_TYPE_Q4_1:
  6208. case GGML_TYPE_Q5_0:
  6209. case GGML_TYPE_Q5_1:
  6210. case GGML_TYPE_Q8_0:
  6211. case GGML_TYPE_Q8_1:
  6212. case GGML_TYPE_Q2_K:
  6213. case GGML_TYPE_Q3_K:
  6214. case GGML_TYPE_Q4_K:
  6215. case GGML_TYPE_Q5_K:
  6216. case GGML_TYPE_Q6_K:
  6217. default:
  6218. {
  6219. GGML_ASSERT(false);
  6220. } break;
  6221. }
  6222. }
  6223. // ggml_compute_forward_sub
  6224. static void ggml_compute_forward_sub_f32(
  6225. const struct ggml_compute_params * params,
  6226. const struct ggml_tensor * src0,
  6227. const struct ggml_tensor * src1,
  6228. struct ggml_tensor * dst) {
  6229. assert(params->ith == 0);
  6230. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6232. return;
  6233. }
  6234. const int nr = ggml_nrows(src0);
  6235. GGML_TENSOR_BINARY_OP_LOCALS
  6236. GGML_ASSERT( nb0 == sizeof(float));
  6237. GGML_ASSERT(nb00 == sizeof(float));
  6238. if (nb10 == sizeof(float)) {
  6239. for (int ir = 0; ir < nr; ++ir) {
  6240. // src0, src1 and dst are same shape => same indices
  6241. const int i3 = ir/(ne2*ne1);
  6242. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6243. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6244. #ifdef GGML_USE_ACCELERATE
  6245. vDSP_vsub(
  6246. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6247. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6248. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6249. ne0);
  6250. #else
  6251. ggml_vec_sub_f32(ne0,
  6252. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6253. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6254. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6255. #endif
  6256. // }
  6257. // }
  6258. }
  6259. } else {
  6260. // src1 is not contiguous
  6261. for (int ir = 0; ir < nr; ++ir) {
  6262. // src0, src1 and dst are same shape => same indices
  6263. const int i3 = ir/(ne2*ne1);
  6264. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6265. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6266. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6267. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6268. for (int i0 = 0; i0 < ne0; i0++) {
  6269. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6270. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6271. }
  6272. }
  6273. }
  6274. }
  6275. static void ggml_compute_forward_sub(
  6276. const struct ggml_compute_params * params,
  6277. const struct ggml_tensor * src0,
  6278. const struct ggml_tensor * src1,
  6279. struct ggml_tensor * dst) {
  6280. switch (src0->type) {
  6281. case GGML_TYPE_F32:
  6282. {
  6283. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6284. } break;
  6285. default:
  6286. {
  6287. GGML_ASSERT(false);
  6288. } break;
  6289. }
  6290. }
  6291. // ggml_compute_forward_mul
  6292. static void ggml_compute_forward_mul_f32(
  6293. const struct ggml_compute_params * params,
  6294. const struct ggml_tensor * src0,
  6295. const struct ggml_tensor * src1,
  6296. struct ggml_tensor * dst) {
  6297. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6299. return;
  6300. }
  6301. const int ith = params->ith;
  6302. const int nth = params->nth;
  6303. #ifdef GGML_USE_CLBLAST
  6304. if (src1->backend == GGML_BACKEND_GPU) {
  6305. if (ith == 0) {
  6306. ggml_cl_mul(src0, src1, dst);
  6307. }
  6308. return;
  6309. }
  6310. #endif
  6311. const int64_t nr = ggml_nrows(src0);
  6312. GGML_TENSOR_BINARY_OP_LOCALS
  6313. GGML_ASSERT( nb0 == sizeof(float));
  6314. GGML_ASSERT(nb00 == sizeof(float));
  6315. if (nb10 == sizeof(float)) {
  6316. for (int64_t ir = ith; ir < nr; ir += nth) {
  6317. // src0 and dst are same shape => same indices
  6318. const int64_t i03 = ir/(ne02*ne01);
  6319. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6320. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6321. const int64_t i13 = i03 % ne13;
  6322. const int64_t i12 = i02 % ne12;
  6323. const int64_t i11 = i01 % ne11;
  6324. const int64_t nr0 = ne00 / ne10;
  6325. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6326. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6327. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6328. for (int64_t r = 0 ; r < nr0; ++r) {
  6329. #ifdef GGML_USE_ACCELERATE
  6330. UNUSED(ggml_vec_mul_f32);
  6331. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6332. #else
  6333. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6334. #endif
  6335. }
  6336. }
  6337. } else {
  6338. // src1 is not contiguous
  6339. for (int64_t ir = ith; ir < nr; ir += nth) {
  6340. // src0 and dst are same shape => same indices
  6341. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6342. const int64_t i03 = ir/(ne02*ne01);
  6343. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6344. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6345. const int64_t i13 = i03 % ne13;
  6346. const int64_t i12 = i02 % ne12;
  6347. const int64_t i11 = i01 % ne11;
  6348. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6349. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6350. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6351. const int64_t i10 = i0 % ne10;
  6352. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6353. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6354. }
  6355. }
  6356. }
  6357. }
  6358. static void ggml_compute_forward_mul(
  6359. const struct ggml_compute_params * params,
  6360. const struct ggml_tensor * src0,
  6361. const struct ggml_tensor * src1,
  6362. struct ggml_tensor * dst) {
  6363. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6364. switch (src0->type) {
  6365. case GGML_TYPE_F32:
  6366. {
  6367. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6368. } break;
  6369. default:
  6370. {
  6371. GGML_ASSERT(false);
  6372. } break;
  6373. }
  6374. }
  6375. // ggml_compute_forward_div
  6376. static void ggml_compute_forward_div_f32(
  6377. const struct ggml_compute_params * params,
  6378. const struct ggml_tensor * src0,
  6379. const struct ggml_tensor * src1,
  6380. struct ggml_tensor * dst) {
  6381. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6383. return;
  6384. }
  6385. const int ith = params->ith;
  6386. const int nth = params->nth;
  6387. const int64_t nr = ggml_nrows(src0);
  6388. GGML_TENSOR_BINARY_OP_LOCALS
  6389. GGML_ASSERT( nb0 == sizeof(float));
  6390. GGML_ASSERT(nb00 == sizeof(float));
  6391. if (nb10 == sizeof(float)) {
  6392. for (int64_t ir = ith; ir < nr; ir += nth) {
  6393. // src0 and dst are same shape => same indices
  6394. const int64_t i03 = ir/(ne02*ne01);
  6395. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6396. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6397. const int64_t i13 = i03 % ne13;
  6398. const int64_t i12 = i02 % ne12;
  6399. const int64_t i11 = i01 % ne11;
  6400. const int64_t nr0 = ne00 / ne10;
  6401. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6402. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6403. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6404. for (int64_t r = 0; r < nr0; ++r) {
  6405. #ifdef GGML_USE_ACCELERATE
  6406. UNUSED(ggml_vec_div_f32);
  6407. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6408. #else
  6409. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6410. #endif
  6411. }
  6412. }
  6413. } else {
  6414. // src1 is not contiguous
  6415. for (int64_t ir = ith; ir < nr; ir += nth) {
  6416. // src0 and dst are same shape => same indices
  6417. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6418. const int64_t i03 = ir/(ne02*ne01);
  6419. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6420. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6421. const int64_t i13 = i03 % ne13;
  6422. const int64_t i12 = i02 % ne12;
  6423. const int64_t i11 = i01 % ne11;
  6424. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6425. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6426. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6427. const int64_t i10 = i0 % ne10;
  6428. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6429. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6430. }
  6431. }
  6432. }
  6433. }
  6434. static void ggml_compute_forward_div(
  6435. const struct ggml_compute_params * params,
  6436. const struct ggml_tensor * src0,
  6437. const struct ggml_tensor * src1,
  6438. struct ggml_tensor * dst) {
  6439. switch (src0->type) {
  6440. case GGML_TYPE_F32:
  6441. {
  6442. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6443. } break;
  6444. default:
  6445. {
  6446. GGML_ASSERT(false);
  6447. } break;
  6448. }
  6449. }
  6450. // ggml_compute_forward_sqr
  6451. static void ggml_compute_forward_sqr_f32(
  6452. const struct ggml_compute_params * params,
  6453. const struct ggml_tensor * src0,
  6454. struct ggml_tensor * dst) {
  6455. assert(params->ith == 0);
  6456. assert(ggml_are_same_shape(src0, dst));
  6457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6458. return;
  6459. }
  6460. const int n = ggml_nrows(src0);
  6461. const int nc = src0->ne[0];
  6462. assert( dst->nb[0] == sizeof(float));
  6463. assert(src0->nb[0] == sizeof(float));
  6464. for (int i = 0; i < n; i++) {
  6465. ggml_vec_sqr_f32(nc,
  6466. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6467. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6468. }
  6469. }
  6470. static void ggml_compute_forward_sqr(
  6471. const struct ggml_compute_params * params,
  6472. const struct ggml_tensor * src0,
  6473. struct ggml_tensor * dst) {
  6474. switch (src0->type) {
  6475. case GGML_TYPE_F32:
  6476. {
  6477. ggml_compute_forward_sqr_f32(params, src0, dst);
  6478. } break;
  6479. default:
  6480. {
  6481. GGML_ASSERT(false);
  6482. } break;
  6483. }
  6484. }
  6485. // ggml_compute_forward_sqrt
  6486. static void ggml_compute_forward_sqrt_f32(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * src0,
  6489. struct ggml_tensor * dst) {
  6490. assert(params->ith == 0);
  6491. assert(ggml_are_same_shape(src0, dst));
  6492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6493. return;
  6494. }
  6495. const int n = ggml_nrows(src0);
  6496. const int nc = src0->ne[0];
  6497. assert( dst->nb[0] == sizeof(float));
  6498. assert(src0->nb[0] == sizeof(float));
  6499. for (int i = 0; i < n; i++) {
  6500. ggml_vec_sqrt_f32(nc,
  6501. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6502. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6503. }
  6504. }
  6505. static void ggml_compute_forward_sqrt(
  6506. const struct ggml_compute_params * params,
  6507. const struct ggml_tensor * src0,
  6508. struct ggml_tensor * dst) {
  6509. switch (src0->type) {
  6510. case GGML_TYPE_F32:
  6511. {
  6512. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6513. } break;
  6514. default:
  6515. {
  6516. GGML_ASSERT(false);
  6517. } break;
  6518. }
  6519. }
  6520. // ggml_compute_forward_log
  6521. static void ggml_compute_forward_log_f32(
  6522. const struct ggml_compute_params * params,
  6523. const struct ggml_tensor * src0,
  6524. struct ggml_tensor * dst) {
  6525. GGML_ASSERT(params->ith == 0);
  6526. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6528. return;
  6529. }
  6530. const int n = ggml_nrows(src0);
  6531. const int nc = src0->ne[0];
  6532. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6533. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6534. for (int i = 0; i < n; i++) {
  6535. ggml_vec_log_f32(nc,
  6536. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6537. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6538. }
  6539. }
  6540. static void ggml_compute_forward_log(
  6541. const struct ggml_compute_params * params,
  6542. const struct ggml_tensor * src0,
  6543. struct ggml_tensor * dst) {
  6544. switch (src0->type) {
  6545. case GGML_TYPE_F32:
  6546. {
  6547. ggml_compute_forward_log_f32(params, src0, dst);
  6548. } break;
  6549. default:
  6550. {
  6551. GGML_ASSERT(false);
  6552. } break;
  6553. }
  6554. }
  6555. // ggml_compute_forward_sum
  6556. static void ggml_compute_forward_sum_f32(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. struct ggml_tensor * dst) {
  6560. assert(params->ith == 0);
  6561. assert(ggml_is_scalar(dst));
  6562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6563. return;
  6564. }
  6565. assert(ggml_is_scalar(dst));
  6566. assert(src0->nb[0] == sizeof(float));
  6567. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6568. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6569. ggml_float sum = 0;
  6570. ggml_float row_sum = 0;
  6571. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6572. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6573. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6574. ggml_vec_sum_f32_ggf(ne00,
  6575. &row_sum,
  6576. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6577. sum += row_sum;
  6578. }
  6579. }
  6580. }
  6581. ((float *) dst->data)[0] = sum;
  6582. }
  6583. static void ggml_compute_forward_sum_f16(
  6584. const struct ggml_compute_params * params,
  6585. const struct ggml_tensor * src0,
  6586. struct ggml_tensor * dst) {
  6587. assert(params->ith == 0);
  6588. assert(ggml_is_scalar(dst));
  6589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6590. return;
  6591. }
  6592. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6593. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6594. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6595. float sum = 0;
  6596. float row_sum = 0;
  6597. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6598. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6599. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6600. ggml_vec_sum_f16_ggf(ne00,
  6601. &row_sum,
  6602. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6603. sum += row_sum;
  6604. }
  6605. }
  6606. }
  6607. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6608. }
  6609. static void ggml_compute_forward_sum(
  6610. const struct ggml_compute_params * params,
  6611. const struct ggml_tensor * src0,
  6612. struct ggml_tensor * dst) {
  6613. switch (src0->type) {
  6614. case GGML_TYPE_F32:
  6615. {
  6616. ggml_compute_forward_sum_f32(params, src0, dst);
  6617. } break;
  6618. case GGML_TYPE_F16:
  6619. {
  6620. ggml_compute_forward_sum_f16(params, src0, dst);
  6621. } break;
  6622. default:
  6623. {
  6624. GGML_ASSERT(false);
  6625. } break;
  6626. }
  6627. }
  6628. // ggml_compute_forward_sum_rows
  6629. static void ggml_compute_forward_sum_rows_f32(
  6630. const struct ggml_compute_params * params,
  6631. const struct ggml_tensor * src0,
  6632. struct ggml_tensor * dst) {
  6633. GGML_ASSERT(params->ith == 0);
  6634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6635. return;
  6636. }
  6637. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6638. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6639. GGML_TENSOR_UNARY_OP_LOCALS
  6640. GGML_ASSERT(ne0 == 1);
  6641. GGML_ASSERT(ne1 == ne01);
  6642. GGML_ASSERT(ne2 == ne02);
  6643. GGML_ASSERT(ne3 == ne03);
  6644. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6645. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6646. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6647. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6648. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6649. float row_sum = 0;
  6650. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6651. dst_row[0] = row_sum;
  6652. }
  6653. }
  6654. }
  6655. }
  6656. static void ggml_compute_forward_sum_rows(
  6657. const struct ggml_compute_params * params,
  6658. const struct ggml_tensor * src0,
  6659. struct ggml_tensor * dst) {
  6660. switch (src0->type) {
  6661. case GGML_TYPE_F32:
  6662. {
  6663. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6664. } break;
  6665. default:
  6666. {
  6667. GGML_ASSERT(false);
  6668. } break;
  6669. }
  6670. }
  6671. // ggml_compute_forward_mean
  6672. static void ggml_compute_forward_mean_f32(
  6673. const struct ggml_compute_params * params,
  6674. const struct ggml_tensor * src0,
  6675. struct ggml_tensor * dst) {
  6676. assert(params->ith == 0);
  6677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6678. return;
  6679. }
  6680. assert(src0->nb[0] == sizeof(float));
  6681. GGML_TENSOR_UNARY_OP_LOCALS
  6682. assert(ne0 == 1);
  6683. assert(ne1 == ne01);
  6684. assert(ne2 == ne02);
  6685. assert(ne3 == ne03);
  6686. UNUSED(ne0);
  6687. UNUSED(ne1);
  6688. UNUSED(ne2);
  6689. UNUSED(ne3);
  6690. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6692. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6693. ggml_vec_sum_f32(ne00,
  6694. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6695. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6696. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6697. }
  6698. }
  6699. }
  6700. }
  6701. static void ggml_compute_forward_mean(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0,
  6704. struct ggml_tensor * dst) {
  6705. switch (src0->type) {
  6706. case GGML_TYPE_F32:
  6707. {
  6708. ggml_compute_forward_mean_f32(params, src0, dst);
  6709. } break;
  6710. default:
  6711. {
  6712. GGML_ASSERT(false);
  6713. } break;
  6714. }
  6715. }
  6716. // ggml_compute_forward_argmax
  6717. static void ggml_compute_forward_argmax_f32(
  6718. const struct ggml_compute_params * params,
  6719. const struct ggml_tensor * src0,
  6720. struct ggml_tensor * dst) {
  6721. assert(params->ith == 0);
  6722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6723. return;
  6724. }
  6725. assert(src0->nb[0] == sizeof(float));
  6726. assert(dst->nb[0] == sizeof(float));
  6727. const int64_t ne00 = src0->ne[0];
  6728. const int64_t ne01 = src0->ne[1];
  6729. const size_t nb01 = src0->nb[1];
  6730. const size_t nb0 = dst->nb[0];
  6731. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6732. float * src = (float *) ((char *) src0->data + i1*nb01);
  6733. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6734. int v = 0;
  6735. ggml_vec_argmax_f32(ne00, &v, src);
  6736. dst_[0] = v;
  6737. }
  6738. }
  6739. static void ggml_compute_forward_argmax(
  6740. const struct ggml_compute_params * params,
  6741. const struct ggml_tensor * src0,
  6742. struct ggml_tensor * dst) {
  6743. switch (src0->type) {
  6744. case GGML_TYPE_F32:
  6745. {
  6746. ggml_compute_forward_argmax_f32(params, src0, dst);
  6747. } break;
  6748. default:
  6749. {
  6750. GGML_ASSERT(false);
  6751. } break;
  6752. }
  6753. }
  6754. // ggml_compute_forward_repeat
  6755. static void ggml_compute_forward_repeat_f32(
  6756. const struct ggml_compute_params * params,
  6757. const struct ggml_tensor * src0,
  6758. struct ggml_tensor * dst) {
  6759. GGML_ASSERT(params->ith == 0);
  6760. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6762. return;
  6763. }
  6764. GGML_TENSOR_UNARY_OP_LOCALS
  6765. // guaranteed to be an integer due to the check in ggml_can_repeat
  6766. const int nr0 = (int)(ne0/ne00);
  6767. const int nr1 = (int)(ne1/ne01);
  6768. const int nr2 = (int)(ne2/ne02);
  6769. const int nr3 = (int)(ne3/ne03);
  6770. // TODO: support for transposed / permuted tensors
  6771. GGML_ASSERT(nb0 == sizeof(float));
  6772. GGML_ASSERT(nb00 == sizeof(float));
  6773. // TODO: maybe this is not optimal?
  6774. for (int i3 = 0; i3 < nr3; i3++) {
  6775. for (int k3 = 0; k3 < ne03; k3++) {
  6776. for (int i2 = 0; i2 < nr2; i2++) {
  6777. for (int k2 = 0; k2 < ne02; k2++) {
  6778. for (int i1 = 0; i1 < nr1; i1++) {
  6779. for (int k1 = 0; k1 < ne01; k1++) {
  6780. for (int i0 = 0; i0 < nr0; i0++) {
  6781. ggml_vec_cpy_f32(ne00,
  6782. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6783. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6784. }
  6785. }
  6786. }
  6787. }
  6788. }
  6789. }
  6790. }
  6791. }
  6792. static void ggml_compute_forward_repeat_f16(
  6793. const struct ggml_compute_params * params,
  6794. const struct ggml_tensor * src0,
  6795. struct ggml_tensor * dst) {
  6796. GGML_ASSERT(params->ith == 0);
  6797. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6799. return;
  6800. }
  6801. GGML_TENSOR_UNARY_OP_LOCALS
  6802. // guaranteed to be an integer due to the check in ggml_can_repeat
  6803. const int nr0 = (int)(ne0/ne00);
  6804. const int nr1 = (int)(ne1/ne01);
  6805. const int nr2 = (int)(ne2/ne02);
  6806. const int nr3 = (int)(ne3/ne03);
  6807. // TODO: support for transposed / permuted tensors
  6808. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6809. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6810. // TODO: maybe this is not optimal?
  6811. for (int i3 = 0; i3 < nr3; i3++) {
  6812. for (int k3 = 0; k3 < ne03; k3++) {
  6813. for (int i2 = 0; i2 < nr2; i2++) {
  6814. for (int k2 = 0; k2 < ne02; k2++) {
  6815. for (int i1 = 0; i1 < nr1; i1++) {
  6816. for (int k1 = 0; k1 < ne01; k1++) {
  6817. for (int i0 = 0; i0 < nr0; i0++) {
  6818. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6819. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6820. // ggml_vec_cpy_f16(ne00, y, x)
  6821. for (int i = 0; i < ne00; ++i) {
  6822. y[i] = x[i];
  6823. }
  6824. }
  6825. }
  6826. }
  6827. }
  6828. }
  6829. }
  6830. }
  6831. }
  6832. static void ggml_compute_forward_repeat(
  6833. const struct ggml_compute_params * params,
  6834. const struct ggml_tensor * src0,
  6835. struct ggml_tensor * dst) {
  6836. switch (src0->type) {
  6837. case GGML_TYPE_F16:
  6838. {
  6839. ggml_compute_forward_repeat_f16(params, src0, dst);
  6840. } break;
  6841. case GGML_TYPE_F32:
  6842. {
  6843. ggml_compute_forward_repeat_f32(params, src0, dst);
  6844. } break;
  6845. default:
  6846. {
  6847. GGML_ASSERT(false);
  6848. } break;
  6849. }
  6850. }
  6851. // ggml_compute_forward_repeat_back
  6852. static void ggml_compute_forward_repeat_back_f32(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * src0,
  6855. struct ggml_tensor * dst) {
  6856. GGML_ASSERT(params->ith == 0);
  6857. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6859. return;
  6860. }
  6861. GGML_TENSOR_UNARY_OP_LOCALS
  6862. // guaranteed to be an integer due to the check in ggml_can_repeat
  6863. const int nr0 = (int)(ne00/ne0);
  6864. const int nr1 = (int)(ne01/ne1);
  6865. const int nr2 = (int)(ne02/ne2);
  6866. const int nr3 = (int)(ne03/ne3);
  6867. // TODO: support for transposed / permuted tensors
  6868. GGML_ASSERT(nb0 == sizeof(float));
  6869. GGML_ASSERT(nb00 == sizeof(float));
  6870. if (ggml_is_contiguous(dst)) {
  6871. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6872. } else {
  6873. for (int k3 = 0; k3 < ne3; k3++) {
  6874. for (int k2 = 0; k2 < ne2; k2++) {
  6875. for (int k1 = 0; k1 < ne1; k1++) {
  6876. ggml_vec_set_f32(ne0,
  6877. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6878. 0);
  6879. }
  6880. }
  6881. }
  6882. }
  6883. // TODO: maybe this is not optimal?
  6884. for (int i3 = 0; i3 < nr3; i3++) {
  6885. for (int k3 = 0; k3 < ne3; k3++) {
  6886. for (int i2 = 0; i2 < nr2; i2++) {
  6887. for (int k2 = 0; k2 < ne2; k2++) {
  6888. for (int i1 = 0; i1 < nr1; i1++) {
  6889. for (int k1 = 0; k1 < ne1; k1++) {
  6890. for (int i0 = 0; i0 < nr0; i0++) {
  6891. ggml_vec_acc_f32(ne0,
  6892. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6893. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6894. }
  6895. }
  6896. }
  6897. }
  6898. }
  6899. }
  6900. }
  6901. }
  6902. static void ggml_compute_forward_repeat_back(
  6903. const struct ggml_compute_params * params,
  6904. const struct ggml_tensor * src0,
  6905. struct ggml_tensor * dst) {
  6906. switch (src0->type) {
  6907. case GGML_TYPE_F32:
  6908. {
  6909. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6910. } break;
  6911. default:
  6912. {
  6913. GGML_ASSERT(false);
  6914. } break;
  6915. }
  6916. }
  6917. // ggml_compute_forward_concat
  6918. static void ggml_compute_forward_concat_f32(
  6919. const struct ggml_compute_params * params,
  6920. const struct ggml_tensor * src0,
  6921. const struct ggml_tensor * src1,
  6922. struct ggml_tensor * dst) {
  6923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6924. return;
  6925. }
  6926. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6927. const int ith = params->ith;
  6928. const int nth = params->nth;
  6929. GGML_TENSOR_BINARY_OP_LOCALS
  6930. // TODO: support for transposed / permuted tensors
  6931. GGML_ASSERT(nb0 == sizeof(float));
  6932. GGML_ASSERT(nb00 == sizeof(float));
  6933. GGML_ASSERT(nb10 == sizeof(float));
  6934. for (int i3 = 0; i3 < ne3; i3++) {
  6935. for (int i2 = ith; i2 < ne2; i2 += nth) {
  6936. if (i2 < ne02) { // src0
  6937. for (int i1 = 0; i1 < ne1; i1++) {
  6938. for (int i0 = 0; i0 < ne0; i0++) {
  6939. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6940. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6941. *y = *x;
  6942. }
  6943. }
  6944. } // src1
  6945. else {
  6946. for (int i1 = 0; i1 < ne1; i1++) {
  6947. for (int i0 = 0; i0 < ne0; i0++) {
  6948. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6949. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6950. *y = *x;
  6951. }
  6952. }
  6953. }
  6954. }
  6955. }
  6956. }
  6957. static void ggml_compute_forward_concat(
  6958. const struct ggml_compute_params* params,
  6959. const struct ggml_tensor* src0,
  6960. const struct ggml_tensor* src1,
  6961. struct ggml_tensor* dst) {
  6962. switch (src0->type) {
  6963. case GGML_TYPE_F32:
  6964. {
  6965. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6966. } break;
  6967. default:
  6968. {
  6969. GGML_ASSERT(false);
  6970. } break;
  6971. }
  6972. }
  6973. // ggml_compute_forward_abs
  6974. static void ggml_compute_forward_abs_f32(
  6975. const struct ggml_compute_params * params,
  6976. const struct ggml_tensor * src0,
  6977. struct ggml_tensor * dst) {
  6978. assert(params->ith == 0);
  6979. assert(ggml_are_same_shape(src0, dst));
  6980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6981. return;
  6982. }
  6983. const int n = ggml_nrows(src0);
  6984. const int nc = src0->ne[0];
  6985. assert(dst->nb[0] == sizeof(float));
  6986. assert(src0->nb[0] == sizeof(float));
  6987. for (int i = 0; i < n; i++) {
  6988. ggml_vec_abs_f32(nc,
  6989. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6990. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6991. }
  6992. }
  6993. static void ggml_compute_forward_abs(
  6994. const struct ggml_compute_params * params,
  6995. const struct ggml_tensor * src0,
  6996. struct ggml_tensor * dst) {
  6997. switch (src0->type) {
  6998. case GGML_TYPE_F32:
  6999. {
  7000. ggml_compute_forward_abs_f32(params, src0, dst);
  7001. } break;
  7002. default:
  7003. {
  7004. GGML_ASSERT(false);
  7005. } break;
  7006. }
  7007. }
  7008. // ggml_compute_forward_sgn
  7009. static void ggml_compute_forward_sgn_f32(
  7010. const struct ggml_compute_params * params,
  7011. const struct ggml_tensor * src0,
  7012. struct ggml_tensor * dst) {
  7013. assert(params->ith == 0);
  7014. assert(ggml_are_same_shape(src0, dst));
  7015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7016. return;
  7017. }
  7018. const int n = ggml_nrows(src0);
  7019. const int nc = src0->ne[0];
  7020. assert(dst->nb[0] == sizeof(float));
  7021. assert(src0->nb[0] == sizeof(float));
  7022. for (int i = 0; i < n; i++) {
  7023. ggml_vec_sgn_f32(nc,
  7024. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7025. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7026. }
  7027. }
  7028. static void ggml_compute_forward_sgn(
  7029. const struct ggml_compute_params * params,
  7030. const struct ggml_tensor * src0,
  7031. struct ggml_tensor * dst) {
  7032. switch (src0->type) {
  7033. case GGML_TYPE_F32:
  7034. {
  7035. ggml_compute_forward_sgn_f32(params, src0, dst);
  7036. } break;
  7037. default:
  7038. {
  7039. GGML_ASSERT(false);
  7040. } break;
  7041. }
  7042. }
  7043. // ggml_compute_forward_neg
  7044. static void ggml_compute_forward_neg_f32(
  7045. const struct ggml_compute_params * params,
  7046. const struct ggml_tensor * src0,
  7047. struct ggml_tensor * dst) {
  7048. assert(params->ith == 0);
  7049. assert(ggml_are_same_shape(src0, dst));
  7050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7051. return;
  7052. }
  7053. const int n = ggml_nrows(src0);
  7054. const int nc = src0->ne[0];
  7055. assert(dst->nb[0] == sizeof(float));
  7056. assert(src0->nb[0] == sizeof(float));
  7057. for (int i = 0; i < n; i++) {
  7058. ggml_vec_neg_f32(nc,
  7059. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7060. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7061. }
  7062. }
  7063. static void ggml_compute_forward_neg(
  7064. const struct ggml_compute_params * params,
  7065. const struct ggml_tensor * src0,
  7066. struct ggml_tensor * dst) {
  7067. switch (src0->type) {
  7068. case GGML_TYPE_F32:
  7069. {
  7070. ggml_compute_forward_neg_f32(params, src0, dst);
  7071. } break;
  7072. default:
  7073. {
  7074. GGML_ASSERT(false);
  7075. } break;
  7076. }
  7077. }
  7078. // ggml_compute_forward_step
  7079. static void ggml_compute_forward_step_f32(
  7080. const struct ggml_compute_params * params,
  7081. const struct ggml_tensor * src0,
  7082. struct ggml_tensor * dst) {
  7083. assert(params->ith == 0);
  7084. assert(ggml_are_same_shape(src0, dst));
  7085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7086. return;
  7087. }
  7088. const int n = ggml_nrows(src0);
  7089. const int nc = src0->ne[0];
  7090. assert(dst->nb[0] == sizeof(float));
  7091. assert(src0->nb[0] == sizeof(float));
  7092. for (int i = 0; i < n; i++) {
  7093. ggml_vec_step_f32(nc,
  7094. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7095. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7096. }
  7097. }
  7098. static void ggml_compute_forward_step(
  7099. const struct ggml_compute_params * params,
  7100. const struct ggml_tensor * src0,
  7101. struct ggml_tensor * dst) {
  7102. switch (src0->type) {
  7103. case GGML_TYPE_F32:
  7104. {
  7105. ggml_compute_forward_step_f32(params, src0, dst);
  7106. } break;
  7107. default:
  7108. {
  7109. GGML_ASSERT(false);
  7110. } break;
  7111. }
  7112. }
  7113. // ggml_compute_forward_tanh
  7114. static void ggml_compute_forward_tanh_f32(
  7115. const struct ggml_compute_params * params,
  7116. const struct ggml_tensor * src0,
  7117. struct ggml_tensor * dst) {
  7118. assert(params->ith == 0);
  7119. assert(ggml_are_same_shape(src0, dst));
  7120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7121. return;
  7122. }
  7123. const int n = ggml_nrows(src0);
  7124. const int nc = src0->ne[0];
  7125. assert(dst->nb[0] == sizeof(float));
  7126. assert(src0->nb[0] == sizeof(float));
  7127. for (int i = 0; i < n; i++) {
  7128. ggml_vec_tanh_f32(nc,
  7129. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7130. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7131. }
  7132. }
  7133. static void ggml_compute_forward_tanh(
  7134. const struct ggml_compute_params * params,
  7135. const struct ggml_tensor * src0,
  7136. struct ggml_tensor * dst) {
  7137. switch (src0->type) {
  7138. case GGML_TYPE_F32:
  7139. {
  7140. ggml_compute_forward_tanh_f32(params, src0, dst);
  7141. } break;
  7142. default:
  7143. {
  7144. GGML_ASSERT(false);
  7145. } break;
  7146. }
  7147. }
  7148. // ggml_compute_forward_elu
  7149. static void ggml_compute_forward_elu_f32(
  7150. const struct ggml_compute_params * params,
  7151. const struct ggml_tensor * src0,
  7152. struct ggml_tensor * dst) {
  7153. assert(params->ith == 0);
  7154. assert(ggml_are_same_shape(src0, dst));
  7155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7156. return;
  7157. }
  7158. const int n = ggml_nrows(src0);
  7159. const int nc = src0->ne[0];
  7160. assert(dst->nb[0] == sizeof(float));
  7161. assert(src0->nb[0] == sizeof(float));
  7162. for (int i = 0; i < n; i++) {
  7163. ggml_vec_elu_f32(nc,
  7164. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7165. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7166. }
  7167. }
  7168. static void ggml_compute_forward_elu(
  7169. const struct ggml_compute_params * params,
  7170. const struct ggml_tensor * src0,
  7171. struct ggml_tensor * dst) {
  7172. switch (src0->type) {
  7173. case GGML_TYPE_F32:
  7174. {
  7175. ggml_compute_forward_elu_f32(params, src0, dst);
  7176. } break;
  7177. default:
  7178. {
  7179. GGML_ASSERT(false);
  7180. } break;
  7181. }
  7182. }
  7183. // ggml_compute_forward_relu
  7184. static void ggml_compute_forward_relu_f32(
  7185. const struct ggml_compute_params * params,
  7186. const struct ggml_tensor * src0,
  7187. struct ggml_tensor * dst) {
  7188. assert(params->ith == 0);
  7189. assert(ggml_are_same_shape(src0, dst));
  7190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7191. return;
  7192. }
  7193. const int n = ggml_nrows(src0);
  7194. const int nc = src0->ne[0];
  7195. assert(dst->nb[0] == sizeof(float));
  7196. assert(src0->nb[0] == sizeof(float));
  7197. for (int i = 0; i < n; i++) {
  7198. ggml_vec_relu_f32(nc,
  7199. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7200. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7201. }
  7202. }
  7203. static void ggml_compute_forward_relu(
  7204. const struct ggml_compute_params * params,
  7205. const struct ggml_tensor * src0,
  7206. struct ggml_tensor * dst) {
  7207. switch (src0->type) {
  7208. case GGML_TYPE_F32:
  7209. {
  7210. ggml_compute_forward_relu_f32(params, src0, dst);
  7211. } break;
  7212. default:
  7213. {
  7214. GGML_ASSERT(false);
  7215. } break;
  7216. }
  7217. }
  7218. // ggml_compute_forward_gelu
  7219. static void ggml_compute_forward_gelu_f32(
  7220. const struct ggml_compute_params * params,
  7221. const struct ggml_tensor * src0,
  7222. struct ggml_tensor * dst) {
  7223. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7224. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7225. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7227. return;
  7228. }
  7229. const int ith = params->ith;
  7230. const int nth = params->nth;
  7231. const int nc = src0->ne[0];
  7232. const int nr = ggml_nrows(src0);
  7233. // rows per thread
  7234. const int dr = (nr + nth - 1)/nth;
  7235. // row range for this thread
  7236. const int ir0 = dr*ith;
  7237. const int ir1 = MIN(ir0 + dr, nr);
  7238. for (int i1 = ir0; i1 < ir1; i1++) {
  7239. ggml_vec_gelu_f32(nc,
  7240. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7241. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7242. #ifndef NDEBUG
  7243. for (int k = 0; k < nc; k++) {
  7244. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7245. UNUSED(x);
  7246. assert(!isnan(x));
  7247. assert(!isinf(x));
  7248. }
  7249. #endif
  7250. }
  7251. }
  7252. static void ggml_compute_forward_gelu(
  7253. const struct ggml_compute_params * params,
  7254. const struct ggml_tensor * src0,
  7255. struct ggml_tensor * dst) {
  7256. switch (src0->type) {
  7257. case GGML_TYPE_F32:
  7258. {
  7259. ggml_compute_forward_gelu_f32(params, src0, dst);
  7260. } break;
  7261. default:
  7262. {
  7263. GGML_ASSERT(false);
  7264. } break;
  7265. }
  7266. }
  7267. // ggml_compute_forward_gelu_quick
  7268. static void ggml_compute_forward_gelu_quick_f32(
  7269. const struct ggml_compute_params * params,
  7270. const struct ggml_tensor * src0,
  7271. struct ggml_tensor * dst) {
  7272. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7273. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7274. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7276. return;
  7277. }
  7278. const int ith = params->ith;
  7279. const int nth = params->nth;
  7280. const int nc = src0->ne[0];
  7281. const int nr = ggml_nrows(src0);
  7282. // rows per thread
  7283. const int dr = (nr + nth - 1)/nth;
  7284. // row range for this thread
  7285. const int ir0 = dr*ith;
  7286. const int ir1 = MIN(ir0 + dr, nr);
  7287. for (int i1 = ir0; i1 < ir1; i1++) {
  7288. ggml_vec_gelu_quick_f32(nc,
  7289. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7290. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7291. #ifndef NDEBUG
  7292. for (int k = 0; k < nc; k++) {
  7293. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7294. UNUSED(x);
  7295. assert(!isnan(x));
  7296. assert(!isinf(x));
  7297. }
  7298. #endif
  7299. }
  7300. }
  7301. static void ggml_compute_forward_gelu_quick(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. struct ggml_tensor * dst) {
  7305. switch (src0->type) {
  7306. case GGML_TYPE_F32:
  7307. {
  7308. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7309. } break;
  7310. default:
  7311. {
  7312. GGML_ASSERT(false);
  7313. } break;
  7314. }
  7315. }
  7316. // ggml_compute_forward_silu
  7317. static void ggml_compute_forward_silu_f32(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. struct ggml_tensor * dst) {
  7321. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7322. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7323. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7325. return;
  7326. }
  7327. const int ith = params->ith;
  7328. const int nth = params->nth;
  7329. const int nc = src0->ne[0];
  7330. const int nr = ggml_nrows(src0);
  7331. // rows per thread
  7332. const int dr = (nr + nth - 1)/nth;
  7333. // row range for this thread
  7334. const int ir0 = dr*ith;
  7335. const int ir1 = MIN(ir0 + dr, nr);
  7336. for (int i1 = ir0; i1 < ir1; i1++) {
  7337. ggml_vec_silu_f32(nc,
  7338. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7339. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7340. #ifndef NDEBUG
  7341. for (int k = 0; k < nc; k++) {
  7342. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7343. UNUSED(x);
  7344. assert(!isnan(x));
  7345. assert(!isinf(x));
  7346. }
  7347. #endif
  7348. }
  7349. }
  7350. static void ggml_compute_forward_silu(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_silu_f32(params, src0, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_leaky
  7366. static void ggml_compute_forward_leaky_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. struct ggml_tensor * dst) {
  7370. assert(params->ith == 0);
  7371. assert(ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. const int n = ggml_nrows(src0);
  7376. const int nc = src0->ne[0];
  7377. assert(dst->nb[0] == sizeof(float));
  7378. assert(src0->nb[0] == sizeof(float));
  7379. for (int i = 0; i < n; i++) {
  7380. ggml_vec_leaky_f32(nc,
  7381. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7382. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7383. }
  7384. }
  7385. static void ggml_compute_forward_leaky(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. switch (src0->type) {
  7390. case GGML_TYPE_F32:
  7391. {
  7392. ggml_compute_forward_leaky_f32(params, src0, dst);
  7393. } break;
  7394. default:
  7395. {
  7396. GGML_ASSERT(false);
  7397. } break;
  7398. }
  7399. }
  7400. // ggml_compute_forward_silu_back
  7401. static void ggml_compute_forward_silu_back_f32(
  7402. const struct ggml_compute_params * params,
  7403. const struct ggml_tensor * src0,
  7404. const struct ggml_tensor * grad,
  7405. struct ggml_tensor * dst) {
  7406. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7407. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7408. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7409. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7410. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7412. return;
  7413. }
  7414. const int ith = params->ith;
  7415. const int nth = params->nth;
  7416. const int nc = src0->ne[0];
  7417. const int nr = ggml_nrows(src0);
  7418. // rows per thread
  7419. const int dr = (nr + nth - 1)/nth;
  7420. // row range for this thread
  7421. const int ir0 = dr*ith;
  7422. const int ir1 = MIN(ir0 + dr, nr);
  7423. for (int i1 = ir0; i1 < ir1; i1++) {
  7424. ggml_vec_silu_backward_f32(nc,
  7425. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7426. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7427. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7428. #ifndef NDEBUG
  7429. for (int k = 0; k < nc; k++) {
  7430. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7431. UNUSED(x);
  7432. assert(!isnan(x));
  7433. assert(!isinf(x));
  7434. }
  7435. #endif
  7436. }
  7437. }
  7438. static void ggml_compute_forward_silu_back(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. const struct ggml_tensor * grad,
  7442. struct ggml_tensor * dst) {
  7443. switch (src0->type) {
  7444. case GGML_TYPE_F32:
  7445. {
  7446. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7447. } break;
  7448. default:
  7449. {
  7450. GGML_ASSERT(false);
  7451. } break;
  7452. }
  7453. }
  7454. // ggml_compute_forward_norm
  7455. static void ggml_compute_forward_norm_f32(
  7456. const struct ggml_compute_params * params,
  7457. const struct ggml_tensor * src0,
  7458. struct ggml_tensor * dst) {
  7459. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7461. return;
  7462. }
  7463. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7464. const int ith = params->ith;
  7465. const int nth = params->nth;
  7466. GGML_TENSOR_UNARY_OP_LOCALS
  7467. float eps;
  7468. memcpy(&eps, dst->op_params, sizeof(float));
  7469. // TODO: optimize
  7470. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7471. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7472. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7473. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7474. ggml_float sum = 0.0;
  7475. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7476. sum += (ggml_float)x[i00];
  7477. }
  7478. float mean = sum/ne00;
  7479. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7480. ggml_float sum2 = 0.0;
  7481. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7482. float v = x[i00] - mean;
  7483. y[i00] = v;
  7484. sum2 += (ggml_float)(v*v);
  7485. }
  7486. float variance = sum2/ne00;
  7487. const float scale = 1.0f/sqrtf(variance + eps);
  7488. ggml_vec_scale_f32(ne00, y, scale);
  7489. }
  7490. }
  7491. }
  7492. }
  7493. static void ggml_compute_forward_norm(
  7494. const struct ggml_compute_params * params,
  7495. const struct ggml_tensor * src0,
  7496. struct ggml_tensor * dst) {
  7497. switch (src0->type) {
  7498. case GGML_TYPE_F32:
  7499. {
  7500. ggml_compute_forward_norm_f32(params, src0, dst);
  7501. } break;
  7502. default:
  7503. {
  7504. GGML_ASSERT(false);
  7505. } break;
  7506. }
  7507. }
  7508. // ggml_compute_forward_group_rms_norm
  7509. static void ggml_compute_forward_rms_norm_f32(
  7510. const struct ggml_compute_params * params,
  7511. const struct ggml_tensor * src0,
  7512. struct ggml_tensor * dst) {
  7513. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7515. return;
  7516. }
  7517. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7518. const int ith = params->ith;
  7519. const int nth = params->nth;
  7520. GGML_TENSOR_UNARY_OP_LOCALS
  7521. float eps;
  7522. memcpy(&eps, dst->op_params, sizeof(float));
  7523. // TODO: optimize
  7524. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7525. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7526. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7527. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7528. ggml_float sum = 0.0;
  7529. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7530. sum += (ggml_float)(x[i00] * x[i00]);
  7531. }
  7532. const float mean = sum/ne00;
  7533. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7534. memcpy(y, x, ne00 * sizeof(float));
  7535. // for (int i00 = 0; i00 < ne00; i00++) {
  7536. // y[i00] = x[i00];
  7537. // }
  7538. const float scale = 1.0f/sqrtf(mean + eps);
  7539. ggml_vec_scale_f32(ne00, y, scale);
  7540. }
  7541. }
  7542. }
  7543. }
  7544. static void ggml_compute_forward_rms_norm(
  7545. const struct ggml_compute_params * params,
  7546. const struct ggml_tensor * src0,
  7547. struct ggml_tensor * dst) {
  7548. switch (src0->type) {
  7549. case GGML_TYPE_F32:
  7550. {
  7551. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7552. } break;
  7553. default:
  7554. {
  7555. GGML_ASSERT(false);
  7556. } break;
  7557. }
  7558. }
  7559. static void ggml_compute_forward_rms_norm_back_f32(
  7560. const struct ggml_compute_params * params,
  7561. const struct ggml_tensor * src0,
  7562. const struct ggml_tensor * src1,
  7563. struct ggml_tensor * dst) {
  7564. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7566. return;
  7567. }
  7568. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7569. const int ith = params->ith;
  7570. const int nth = params->nth;
  7571. GGML_TENSOR_BINARY_OP_LOCALS
  7572. float eps;
  7573. memcpy(&eps, dst->op_params, sizeof(float));
  7574. // TODO: optimize
  7575. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7576. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7577. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7578. // src1 is same shape as src0 => same indices
  7579. const int64_t i11 = i01;
  7580. const int64_t i12 = i02;
  7581. const int64_t i13 = i03;
  7582. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7583. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7584. ggml_float sum_xx = 0.0;
  7585. ggml_float sum_xdz = 0.0;
  7586. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7587. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7588. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7589. }
  7590. //const float mean = (float)(sum_xx)/ne00;
  7591. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7592. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7593. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7594. // we could cache rms from forward pass to improve performance.
  7595. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7596. //const float rms = sqrtf(mean_eps);
  7597. const float rrms = 1.0f / sqrtf(mean_eps);
  7598. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7599. {
  7600. // z = rms_norm(x)
  7601. //
  7602. // rms_norm(src0) =
  7603. // scale(
  7604. // src0,
  7605. // div(
  7606. // 1,
  7607. // sqrt(
  7608. // add(
  7609. // scale(
  7610. // sum(
  7611. // sqr(
  7612. // src0)),
  7613. // (1.0/N)),
  7614. // eps))));
  7615. // postorder:
  7616. // ## op args grad
  7617. // 00 param src0 grad[#00]
  7618. // 01 const 1
  7619. // 02 sqr (#00) grad[#02]
  7620. // 03 sum (#02) grad[#03]
  7621. // 04 const 1/N
  7622. // 05 scale (#03, #04) grad[#05]
  7623. // 06 const eps
  7624. // 07 add (#05, #06) grad[#07]
  7625. // 08 sqrt (#07) grad[#08]
  7626. // 09 div (#01,#08) grad[#09]
  7627. // 10 scale (#00,#09) grad[#10]
  7628. //
  7629. // backward pass, given grad[#10]
  7630. // #10: scale
  7631. // grad[#00] += scale(grad[#10],#09)
  7632. // grad[#09] += sum(mul(grad[#10],#00))
  7633. // #09: div
  7634. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7635. // #08: sqrt
  7636. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7637. // #07: add
  7638. // grad[#05] += grad[#07]
  7639. // #05: scale
  7640. // grad[#03] += scale(grad[#05],#04)
  7641. // #03: sum
  7642. // grad[#02] += repeat(grad[#03], #02)
  7643. // #02:
  7644. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7645. //
  7646. // substitute and simplify:
  7647. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7648. // grad[#02] = repeat(grad[#03], #02)
  7649. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7650. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7651. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7652. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7653. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7654. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7655. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7656. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7657. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7658. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7659. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7660. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7661. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7662. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7663. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7664. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7665. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7666. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7667. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7668. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7669. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7670. // a = b*c + d*e
  7671. // a = b*c*f/f + d*e*f/f
  7672. // a = (b*c*f + d*e*f)*(1/f)
  7673. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7674. // a = (b + d*e/c)*c
  7675. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7676. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7677. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7678. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7679. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7680. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7681. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7682. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7683. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7684. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7685. }
  7686. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7687. // post-order:
  7688. // dx := x
  7689. // dx := scale(dx,-mean_xdz/mean_eps)
  7690. // dx := add(dx, dz)
  7691. // dx := scale(dx, rrms)
  7692. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7693. ggml_vec_cpy_f32 (ne00, dx, x);
  7694. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7695. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7696. ggml_vec_acc_f32 (ne00, dx, dz);
  7697. ggml_vec_scale_f32(ne00, dx, rrms);
  7698. }
  7699. }
  7700. }
  7701. }
  7702. static void ggml_compute_forward_rms_norm_back(
  7703. const struct ggml_compute_params * params,
  7704. const struct ggml_tensor * src0,
  7705. const struct ggml_tensor * src1,
  7706. struct ggml_tensor * dst) {
  7707. switch (src0->type) {
  7708. case GGML_TYPE_F32:
  7709. {
  7710. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7711. } break;
  7712. default:
  7713. {
  7714. GGML_ASSERT(false);
  7715. } break;
  7716. }
  7717. }
  7718. // ggml_compute_forward_group_norm
  7719. static void ggml_compute_forward_group_norm_f32(
  7720. const struct ggml_compute_params * params,
  7721. const struct ggml_tensor * src0,
  7722. struct ggml_tensor * dst) {
  7723. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7725. return;
  7726. }
  7727. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7728. const int ith = params->ith;
  7729. const int nth = params->nth;
  7730. GGML_TENSOR_UNARY_OP_LOCALS
  7731. const float eps = 1e-6f; // TODO: make this a parameter
  7732. // TODO: optimize
  7733. int n_channels = src0->ne[2];
  7734. int n_groups = dst->op_params[0];
  7735. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7736. for (int i = ith; i < n_groups; i+=nth) {
  7737. int start = i * n_channels_per_group;
  7738. int end = start + n_channels_per_group;
  7739. if (end > n_channels) {
  7740. end = n_channels;
  7741. }
  7742. int step = end - start;
  7743. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7744. ggml_float sum = 0.0;
  7745. for (int64_t i02 = start; i02 < end; i02++) {
  7746. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7747. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7748. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7749. sum += (ggml_float)x[i00];
  7750. }
  7751. }
  7752. }
  7753. float mean = sum / (ne00 * ne01 * step);
  7754. ggml_float sum2 = 0.0;
  7755. for (int64_t i02 = start; i02 < end; i02++) {
  7756. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7757. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7758. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7759. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7760. float v = x[i00] - mean;
  7761. y[i00] = v;
  7762. sum2 += (ggml_float)(v * v);
  7763. }
  7764. }
  7765. }
  7766. float variance = sum2 / (ne00 * ne01 * step);
  7767. const float scale = 1.0f / sqrtf(variance + eps);
  7768. for (int64_t i02 = start; i02 < end; i02++) {
  7769. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7770. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7771. ggml_vec_scale_f32(ne00, y, scale);
  7772. }
  7773. }
  7774. }
  7775. }
  7776. }
  7777. static void ggml_compute_forward_group_norm(
  7778. const struct ggml_compute_params * params,
  7779. const struct ggml_tensor * src0,
  7780. struct ggml_tensor * dst) {
  7781. switch (src0->type) {
  7782. case GGML_TYPE_F32:
  7783. {
  7784. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7785. } break;
  7786. default:
  7787. {
  7788. GGML_ASSERT(false);
  7789. } break;
  7790. }
  7791. }
  7792. // ggml_compute_forward_mul_mat
  7793. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7794. // helper function to determine if it is better to use BLAS or not
  7795. // for large matrices, BLAS is faster
  7796. static bool ggml_compute_forward_mul_mat_use_blas(
  7797. const struct ggml_tensor * src0,
  7798. const struct ggml_tensor * src1,
  7799. struct ggml_tensor * dst) {
  7800. //const int64_t ne00 = src0->ne[0];
  7801. //const int64_t ne01 = src0->ne[1];
  7802. const int64_t ne10 = src1->ne[0];
  7803. const int64_t ne0 = dst->ne[0];
  7804. const int64_t ne1 = dst->ne[1];
  7805. // TODO: find the optimal values for these
  7806. if (ggml_is_contiguous(src0) &&
  7807. ggml_is_contiguous(src1) &&
  7808. //src0->type == GGML_TYPE_F32 &&
  7809. src1->type == GGML_TYPE_F32 &&
  7810. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7811. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7812. return true;
  7813. }
  7814. return false;
  7815. }
  7816. #endif
  7817. static void ggml_compute_forward_mul_mat(
  7818. const struct ggml_compute_params * params,
  7819. const struct ggml_tensor * src0,
  7820. const struct ggml_tensor * src1,
  7821. struct ggml_tensor * dst) {
  7822. int64_t t0 = ggml_perf_time_us();
  7823. UNUSED(t0);
  7824. GGML_TENSOR_BINARY_OP_LOCALS
  7825. const int ith = params->ith;
  7826. const int nth = params->nth;
  7827. const enum ggml_type type = src0->type;
  7828. const bool src1_cont = ggml_is_contiguous(src1);
  7829. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7830. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7831. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7832. GGML_ASSERT(ne0 == ne01);
  7833. GGML_ASSERT(ne1 == ne11);
  7834. GGML_ASSERT(ne2 == ne12);
  7835. GGML_ASSERT(ne3 == ne13);
  7836. // we don't support permuted src0 or src1
  7837. GGML_ASSERT(nb00 == ggml_type_size(type));
  7838. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7839. // dst cannot be transposed or permuted
  7840. GGML_ASSERT(nb0 == sizeof(float));
  7841. GGML_ASSERT(nb0 <= nb1);
  7842. GGML_ASSERT(nb1 <= nb2);
  7843. GGML_ASSERT(nb2 <= nb3);
  7844. // broadcast factors
  7845. const int64_t r2 = ne12/ne02;
  7846. const int64_t r3 = ne13/ne03;
  7847. // nb01 >= nb00 - src0 is not transposed
  7848. // compute by src0 rows
  7849. #if defined(GGML_USE_CLBLAST)
  7850. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7851. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7852. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7853. }
  7854. return;
  7855. }
  7856. #endif
  7857. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7858. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7859. if (params->ith != 0) {
  7860. return;
  7861. }
  7862. if (params->type == GGML_TASK_INIT) {
  7863. return;
  7864. }
  7865. if (params->type == GGML_TASK_FINALIZE) {
  7866. return;
  7867. }
  7868. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7869. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7870. // broadcast src0 into src1 across 2nd,3rd dimension
  7871. const int64_t i03 = i13/r3;
  7872. const int64_t i02 = i12/r2;
  7873. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7874. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7875. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7876. if (type != GGML_TYPE_F32) {
  7877. float * const wdata = params->wdata;
  7878. ggml_to_float_t const to_float = type_traits[type].to_float;
  7879. size_t id = 0;
  7880. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7881. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7882. id += ne00;
  7883. }
  7884. assert(id*sizeof(float) <= params->wsize);
  7885. x = wdata;
  7886. }
  7887. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7888. ne11, ne01, ne10,
  7889. 1.0f, y, ne10,
  7890. x, ne00,
  7891. 0.0f, d, ne01);
  7892. }
  7893. }
  7894. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7895. return;
  7896. }
  7897. #endif
  7898. if (params->type == GGML_TASK_INIT) {
  7899. if (src1->type != vec_dot_type) {
  7900. char * wdata = params->wdata;
  7901. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7902. assert(params->wsize >= ne11*ne12*ne13*row_size);
  7903. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7904. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7905. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7906. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7907. wdata += row_size;
  7908. }
  7909. }
  7910. }
  7911. }
  7912. return;
  7913. }
  7914. if (params->type == GGML_TASK_FINALIZE) {
  7915. return;
  7916. }
  7917. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7918. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7919. const int64_t nr0 = ne01; // src0 rows
  7920. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7921. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7922. // distribute the thread work across the inner or outer loop based on which one is larger
  7923. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7924. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7925. const int64_t ith0 = ith % nth0;
  7926. const int64_t ith1 = ith / nth0;
  7927. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7928. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7929. const int64_t ir010 = dr0*ith0;
  7930. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7931. const int64_t ir110 = dr1*ith1;
  7932. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7933. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7934. // threads with no work simply yield (not sure if it helps)
  7935. if (ir010 >= ir011 || ir110 >= ir111) {
  7936. sched_yield();
  7937. return;
  7938. }
  7939. assert(ne12 % ne02 == 0);
  7940. assert(ne13 % ne03 == 0);
  7941. // block-tiling attempt
  7942. const int64_t blck_0 = 16;
  7943. const int64_t blck_1 = 16;
  7944. // attempt to reduce false-sharing (does not seem to make a difference)
  7945. float tmp[16];
  7946. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7947. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7948. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7949. const int64_t i13 = (ir1/(ne12*ne11));
  7950. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7951. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7952. // broadcast src0 into src1
  7953. const int64_t i03 = i13/r3;
  7954. const int64_t i02 = i12/r2;
  7955. const int64_t i1 = i11;
  7956. const int64_t i2 = i12;
  7957. const int64_t i3 = i13;
  7958. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7959. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7960. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7961. // the original src1 data pointer, so we should index using the indices directly
  7962. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7963. const char * src1_col = (const char *) wdata +
  7964. (src1_cont || src1->type != vec_dot_type
  7965. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7966. : (i11*nb11 + i12*nb12 + i13*nb13));
  7967. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7968. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7969. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7970. //}
  7971. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7972. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7973. }
  7974. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7975. }
  7976. }
  7977. }
  7978. }
  7979. // ggml_compute_forward_mul_mat_id
  7980. static void ggml_compute_forward_mul_mat_id(
  7981. const struct ggml_compute_params * params,
  7982. struct ggml_tensor * dst) {
  7983. const struct ggml_tensor * ids = dst->src[0];
  7984. const struct ggml_tensor * src1 = dst->src[1];
  7985. const int id = ggml_get_op_params_i32(dst, 0);
  7986. const int a_id = ((int32_t *)ids->data)[id];
  7987. GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
  7988. const struct ggml_tensor * src0 = dst->src[a_id + 2];
  7989. ggml_compute_forward_mul_mat(params, src0, src1, dst);
  7990. }
  7991. // ggml_compute_forward_out_prod
  7992. static void ggml_compute_forward_out_prod_f32(
  7993. const struct ggml_compute_params * params,
  7994. const struct ggml_tensor * src0,
  7995. const struct ggml_tensor * src1,
  7996. struct ggml_tensor * dst) {
  7997. // int64_t t0 = ggml_perf_time_us();
  7998. // UNUSED(t0);
  7999. GGML_TENSOR_BINARY_OP_LOCALS
  8000. const int ith = params->ith;
  8001. const int nth = params->nth;
  8002. GGML_ASSERT(ne0 == ne00);
  8003. GGML_ASSERT(ne1 == ne10);
  8004. GGML_ASSERT(ne2 == ne02);
  8005. GGML_ASSERT(ne02 == ne12);
  8006. GGML_ASSERT(ne3 == ne13);
  8007. GGML_ASSERT(ne03 == ne13);
  8008. // we don't support permuted src0 or src1
  8009. GGML_ASSERT(nb00 == sizeof(float));
  8010. // dst cannot be transposed or permuted
  8011. GGML_ASSERT(nb0 == sizeof(float));
  8012. // GGML_ASSERT(nb0 <= nb1);
  8013. // GGML_ASSERT(nb1 <= nb2);
  8014. // GGML_ASSERT(nb2 <= nb3);
  8015. // nb01 >= nb00 - src0 is not transposed
  8016. // compute by src0 rows
  8017. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8018. // TODO: #if defined(GGML_USE_CLBLAST)
  8019. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8020. bool use_blas = ggml_is_matrix(src0) &&
  8021. ggml_is_matrix(src1) &&
  8022. ggml_is_contiguous(src0) &&
  8023. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8024. #endif
  8025. if (params->type == GGML_TASK_INIT) {
  8026. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8027. if (use_blas) {
  8028. return;
  8029. }
  8030. #endif
  8031. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8032. return;
  8033. }
  8034. if (params->type == GGML_TASK_FINALIZE) {
  8035. return;
  8036. }
  8037. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8038. if (use_blas) {
  8039. if (params->ith != 0) { // All threads other than the first do no work.
  8040. return;
  8041. }
  8042. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8043. // src0: (k,n)
  8044. // src1: (k,m)
  8045. // dst: (m,n)
  8046. //
  8047. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8048. // Also expressed as (major,minor)
  8049. // a: (m,k): so src1 transposed
  8050. // b: (k,n): so src0
  8051. // c: (m,n)
  8052. //
  8053. // However, if ggml_is_transposed(src1) is true, then
  8054. // src1->data already contains a transposed version, so sgemm mustn't
  8055. // transpose it further.
  8056. int n = src0->ne[0];
  8057. int k = src0->ne[1];
  8058. int m = src1->ne[0];
  8059. int transposeA, lda;
  8060. if (!ggml_is_transposed(src1)) {
  8061. transposeA = CblasTrans;
  8062. lda = m;
  8063. } else {
  8064. transposeA = CblasNoTrans;
  8065. lda = k;
  8066. }
  8067. float * a = (float *) ((char *) src1->data);
  8068. float * b = (float *) ((char *) src0->data);
  8069. float * c = (float *) ((char *) dst->data);
  8070. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8071. return;
  8072. }
  8073. #endif
  8074. // dst[:,:,:,:] = 0
  8075. // for i2,i3:
  8076. // for i1:
  8077. // for i01:
  8078. // for i0:
  8079. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8080. // parallelize by last three dimensions
  8081. // total rows in dst
  8082. const int64_t nr = ne1*ne2*ne3;
  8083. // rows per thread
  8084. const int64_t dr = (nr + nth - 1)/nth;
  8085. // row range for this thread
  8086. const int64_t ir0 = dr*ith;
  8087. const int64_t ir1 = MIN(ir0 + dr, nr);
  8088. // block-tiling attempt
  8089. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8090. const int64_t blck_1 = 16;
  8091. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8092. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8093. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8094. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8095. for (int64_t ir = bir; ir < bir1; ++ir) {
  8096. // dst indices
  8097. const int64_t i3 = ir/(ne2*ne1);
  8098. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8099. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8100. const int64_t i02 = i2;
  8101. const int64_t i03 = i3;
  8102. //const int64_t i10 = i1;
  8103. const int64_t i12 = i2;
  8104. const int64_t i13 = i3;
  8105. #if GGML_VEC_MAD_UNROLL > 2
  8106. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8107. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8108. const int64_t i11 = i01;
  8109. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8110. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8111. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8112. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8113. }
  8114. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8115. const int64_t i11 = i01;
  8116. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8117. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8118. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8119. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8120. }
  8121. #else
  8122. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8123. const int64_t i11 = i01;
  8124. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8125. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8126. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8127. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8128. }
  8129. #endif
  8130. }
  8131. }
  8132. }
  8133. //int64_t t1 = ggml_perf_time_us();
  8134. //static int64_t acc = 0;
  8135. //acc += t1 - t0;
  8136. //if (t1 - t0 > 10) {
  8137. // printf("\n");
  8138. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8139. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8140. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8141. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8142. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8143. //}
  8144. }
  8145. static void ggml_compute_forward_out_prod_q_f32(
  8146. const struct ggml_compute_params * params,
  8147. const struct ggml_tensor * src0,
  8148. const struct ggml_tensor * src1,
  8149. struct ggml_tensor * dst) {
  8150. // int64_t t0 = ggml_perf_time_us();
  8151. // UNUSED(t0);
  8152. GGML_TENSOR_BINARY_OP_LOCALS;
  8153. const int ith = params->ith;
  8154. const int nth = params->nth;
  8155. const enum ggml_type type = src0->type;
  8156. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8157. GGML_ASSERT(ne02 == ne12);
  8158. GGML_ASSERT(ne03 == ne13);
  8159. GGML_ASSERT(ne2 == ne12);
  8160. GGML_ASSERT(ne3 == ne13);
  8161. // we don't support permuted src0 dim0
  8162. GGML_ASSERT(nb00 == ggml_type_size(type));
  8163. // dst dim0 cannot be transposed or permuted
  8164. GGML_ASSERT(nb0 == sizeof(float));
  8165. // GGML_ASSERT(nb0 <= nb1);
  8166. // GGML_ASSERT(nb1 <= nb2);
  8167. // GGML_ASSERT(nb2 <= nb3);
  8168. GGML_ASSERT(ne0 == ne00);
  8169. GGML_ASSERT(ne1 == ne10);
  8170. GGML_ASSERT(ne2 == ne02);
  8171. GGML_ASSERT(ne3 == ne03);
  8172. // nb01 >= nb00 - src0 is not transposed
  8173. // compute by src0 rows
  8174. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8175. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8176. if (params->type == GGML_TASK_INIT) {
  8177. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8178. return;
  8179. }
  8180. if (params->type == GGML_TASK_FINALIZE) {
  8181. return;
  8182. }
  8183. // parallelize by last three dimensions
  8184. // total rows in dst
  8185. const int64_t nr = ne1*ne2*ne3;
  8186. // rows per thread
  8187. const int64_t dr = (nr + nth - 1)/nth;
  8188. // row range for this thread
  8189. const int64_t ir0 = dr*ith;
  8190. const int64_t ir1 = MIN(ir0 + dr, nr);
  8191. // dst[:,:,:,:] = 0
  8192. // for i2,i3:
  8193. // for i1:
  8194. // for i01:
  8195. // for i0:
  8196. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8197. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8198. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8199. // dst indices
  8200. const int64_t i3 = ir/(ne2*ne1);
  8201. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8202. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8203. const int64_t i02 = i2;
  8204. const int64_t i03 = i3;
  8205. //const int64_t i10 = i1;
  8206. const int64_t i12 = i2;
  8207. const int64_t i13 = i3;
  8208. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8209. const int64_t i11 = i01;
  8210. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8211. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8212. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8213. dequantize_row_q(s0, wdata, ne0);
  8214. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8215. }
  8216. }
  8217. //int64_t t1 = ggml_perf_time_us();
  8218. //static int64_t acc = 0;
  8219. //acc += t1 - t0;
  8220. //if (t1 - t0 > 10) {
  8221. // printf("\n");
  8222. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8223. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8224. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8225. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8226. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8227. //}
  8228. }
  8229. static void ggml_compute_forward_out_prod(
  8230. const struct ggml_compute_params * params,
  8231. const struct ggml_tensor * src0,
  8232. const struct ggml_tensor * src1,
  8233. struct ggml_tensor * dst) {
  8234. switch (src0->type) {
  8235. case GGML_TYPE_Q4_0:
  8236. case GGML_TYPE_Q4_1:
  8237. case GGML_TYPE_Q5_0:
  8238. case GGML_TYPE_Q5_1:
  8239. case GGML_TYPE_Q8_0:
  8240. case GGML_TYPE_Q2_K:
  8241. case GGML_TYPE_Q3_K:
  8242. case GGML_TYPE_Q4_K:
  8243. case GGML_TYPE_Q5_K:
  8244. case GGML_TYPE_Q6_K:
  8245. {
  8246. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8247. } break;
  8248. case GGML_TYPE_F16:
  8249. {
  8250. GGML_ASSERT(false); // todo
  8251. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8252. } break;
  8253. case GGML_TYPE_F32:
  8254. {
  8255. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8256. } break;
  8257. default:
  8258. {
  8259. GGML_ASSERT(false);
  8260. } break;
  8261. }
  8262. }
  8263. // ggml_compute_forward_scale
  8264. static void ggml_compute_forward_scale_f32(
  8265. const struct ggml_compute_params * params,
  8266. const struct ggml_tensor * src0,
  8267. const struct ggml_tensor * src1,
  8268. struct ggml_tensor * dst) {
  8269. GGML_ASSERT(ggml_is_contiguous(src0));
  8270. GGML_ASSERT(ggml_is_contiguous(dst));
  8271. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8272. GGML_ASSERT(ggml_is_scalar(src1));
  8273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8274. return;
  8275. }
  8276. // scale factor
  8277. const float v = *(float *) src1->data;
  8278. const int ith = params->ith;
  8279. const int nth = params->nth;
  8280. const int nc = src0->ne[0];
  8281. const int nr = ggml_nrows(src0);
  8282. // rows per thread
  8283. const int dr = (nr + nth - 1)/nth;
  8284. // row range for this thread
  8285. const int ir0 = dr*ith;
  8286. const int ir1 = MIN(ir0 + dr, nr);
  8287. const size_t nb01 = src0->nb[1];
  8288. const size_t nb1 = dst->nb[1];
  8289. for (int i1 = ir0; i1 < ir1; i1++) {
  8290. if (dst->data != src0->data) {
  8291. // src0 is same shape as dst => same indices
  8292. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8293. }
  8294. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8295. }
  8296. }
  8297. static void ggml_compute_forward_scale(
  8298. const struct ggml_compute_params * params,
  8299. const struct ggml_tensor * src0,
  8300. const struct ggml_tensor * src1,
  8301. struct ggml_tensor * dst) {
  8302. switch (src0->type) {
  8303. case GGML_TYPE_F32:
  8304. {
  8305. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8306. } break;
  8307. default:
  8308. {
  8309. GGML_ASSERT(false);
  8310. } break;
  8311. }
  8312. }
  8313. // ggml_compute_forward_set
  8314. static void ggml_compute_forward_set_f32(
  8315. const struct ggml_compute_params * params,
  8316. const struct ggml_tensor * src0,
  8317. const struct ggml_tensor * src1,
  8318. struct ggml_tensor * dst) {
  8319. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8320. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8321. // view src0 and dst with these strides and data offset inbytes during set
  8322. // nb0 is implicitely element_size because src0 and dst are contiguous
  8323. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8324. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8325. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8326. size_t offset = ((int32_t *) dst->op_params)[3];
  8327. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8328. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8329. // memcpy needs to be synchronized across threads to avoid race conditions.
  8330. // => do it in INIT phase
  8331. memcpy(
  8332. ((char *) dst->data),
  8333. ((char *) src0->data),
  8334. ggml_nbytes(dst));
  8335. }
  8336. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8337. return;
  8338. }
  8339. const int ith = params->ith;
  8340. const int nth = params->nth;
  8341. const int nr = ggml_nrows(src1);
  8342. const int nc = src1->ne[0];
  8343. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8344. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8345. // src0 and dst as viewed during set
  8346. const size_t nb0 = ggml_element_size(src0);
  8347. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8348. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8349. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8350. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8351. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8352. GGML_ASSERT(nb10 == sizeof(float));
  8353. // rows per thread
  8354. const int dr = (nr + nth - 1)/nth;
  8355. // row range for this thread
  8356. const int ir0 = dr*ith;
  8357. const int ir1 = MIN(ir0 + dr, nr);
  8358. for (int ir = ir0; ir < ir1; ++ir) {
  8359. // src0 and dst are viewed with shape of src1 and offset
  8360. // => same indices
  8361. const int i3 = ir/(ne12*ne11);
  8362. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8363. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8364. ggml_vec_cpy_f32(nc,
  8365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8366. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8367. }
  8368. }
  8369. static void ggml_compute_forward_set(
  8370. const struct ggml_compute_params * params,
  8371. const struct ggml_tensor * src0,
  8372. const struct ggml_tensor * src1,
  8373. struct ggml_tensor * dst) {
  8374. switch (src0->type) {
  8375. case GGML_TYPE_F32:
  8376. {
  8377. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8378. } break;
  8379. case GGML_TYPE_F16:
  8380. case GGML_TYPE_Q4_0:
  8381. case GGML_TYPE_Q4_1:
  8382. case GGML_TYPE_Q5_0:
  8383. case GGML_TYPE_Q5_1:
  8384. case GGML_TYPE_Q8_0:
  8385. case GGML_TYPE_Q8_1:
  8386. case GGML_TYPE_Q2_K:
  8387. case GGML_TYPE_Q3_K:
  8388. case GGML_TYPE_Q4_K:
  8389. case GGML_TYPE_Q5_K:
  8390. case GGML_TYPE_Q6_K:
  8391. default:
  8392. {
  8393. GGML_ASSERT(false);
  8394. } break;
  8395. }
  8396. }
  8397. // ggml_compute_forward_cpy
  8398. static void ggml_compute_forward_cpy(
  8399. const struct ggml_compute_params * params,
  8400. const struct ggml_tensor * src0,
  8401. struct ggml_tensor * dst) {
  8402. ggml_compute_forward_dup(params, src0, dst);
  8403. }
  8404. // ggml_compute_forward_cont
  8405. static void ggml_compute_forward_cont(
  8406. const struct ggml_compute_params * params,
  8407. const struct ggml_tensor * src0,
  8408. struct ggml_tensor * dst) {
  8409. ggml_compute_forward_dup(params, src0, dst);
  8410. }
  8411. // ggml_compute_forward_reshape
  8412. static void ggml_compute_forward_reshape(
  8413. const struct ggml_compute_params * params,
  8414. const struct ggml_tensor * src0,
  8415. struct ggml_tensor * dst) {
  8416. // NOP
  8417. UNUSED(params);
  8418. UNUSED(src0);
  8419. UNUSED(dst);
  8420. }
  8421. // ggml_compute_forward_view
  8422. static void ggml_compute_forward_view(
  8423. const struct ggml_compute_params * params,
  8424. const struct ggml_tensor * src0) {
  8425. // NOP
  8426. UNUSED(params);
  8427. UNUSED(src0);
  8428. }
  8429. // ggml_compute_forward_permute
  8430. static void ggml_compute_forward_permute(
  8431. const struct ggml_compute_params * params,
  8432. const struct ggml_tensor * src0) {
  8433. // NOP
  8434. UNUSED(params);
  8435. UNUSED(src0);
  8436. }
  8437. // ggml_compute_forward_transpose
  8438. static void ggml_compute_forward_transpose(
  8439. const struct ggml_compute_params * params,
  8440. const struct ggml_tensor * src0) {
  8441. // NOP
  8442. UNUSED(params);
  8443. UNUSED(src0);
  8444. }
  8445. // ggml_compute_forward_get_rows
  8446. static void ggml_compute_forward_get_rows_q(
  8447. const struct ggml_compute_params * params,
  8448. const struct ggml_tensor * src0,
  8449. const struct ggml_tensor * src1,
  8450. struct ggml_tensor * dst) {
  8451. assert(params->ith == 0);
  8452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8453. return;
  8454. }
  8455. const int nc = src0->ne[0];
  8456. const int nr = ggml_nelements(src1);
  8457. const enum ggml_type type = src0->type;
  8458. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8459. assert( dst->ne[0] == nc);
  8460. assert( dst->ne[1] == nr);
  8461. assert(src0->nb[0] == ggml_type_size(type));
  8462. for (int i = 0; i < nr; ++i) {
  8463. const int r = ((int32_t *) src1->data)[i];
  8464. dequantize_row_q(
  8465. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8466. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8467. }
  8468. }
  8469. static void ggml_compute_forward_get_rows_f16(
  8470. const struct ggml_compute_params * params,
  8471. const struct ggml_tensor * src0,
  8472. const struct ggml_tensor * src1,
  8473. struct ggml_tensor * dst) {
  8474. assert(params->ith == 0);
  8475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8476. return;
  8477. }
  8478. const int nc = src0->ne[0];
  8479. const int nr = ggml_nelements(src1);
  8480. assert( dst->ne[0] == nc);
  8481. assert( dst->ne[1] == nr);
  8482. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8483. for (int i = 0; i < nr; ++i) {
  8484. const int r = ((int32_t *) src1->data)[i];
  8485. for (int j = 0; j < nc; ++j) {
  8486. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8487. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8488. }
  8489. }
  8490. }
  8491. static void ggml_compute_forward_get_rows_f32(
  8492. const struct ggml_compute_params * params,
  8493. const struct ggml_tensor * src0,
  8494. const struct ggml_tensor * src1,
  8495. struct ggml_tensor * dst) {
  8496. assert(params->ith == 0);
  8497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8498. return;
  8499. }
  8500. const int nc = src0->ne[0];
  8501. const int nr = ggml_nelements(src1);
  8502. assert( dst->ne[0] == nc);
  8503. assert( dst->ne[1] == nr);
  8504. assert(src0->nb[0] == sizeof(float));
  8505. for (int i = 0; i < nr; ++i) {
  8506. const int r = ((int32_t *) src1->data)[i];
  8507. ggml_vec_cpy_f32(nc,
  8508. (float *) ((char *) dst->data + i*dst->nb[1]),
  8509. (float *) ((char *) src0->data + r*src0->nb[1]));
  8510. }
  8511. }
  8512. static void ggml_compute_forward_get_rows(
  8513. const struct ggml_compute_params * params,
  8514. const struct ggml_tensor * src0,
  8515. const struct ggml_tensor * src1,
  8516. struct ggml_tensor * dst) {
  8517. switch (src0->type) {
  8518. case GGML_TYPE_Q4_0:
  8519. case GGML_TYPE_Q4_1:
  8520. case GGML_TYPE_Q5_0:
  8521. case GGML_TYPE_Q5_1:
  8522. case GGML_TYPE_Q8_0:
  8523. case GGML_TYPE_Q8_1:
  8524. case GGML_TYPE_Q2_K:
  8525. case GGML_TYPE_Q3_K:
  8526. case GGML_TYPE_Q4_K:
  8527. case GGML_TYPE_Q5_K:
  8528. case GGML_TYPE_Q6_K:
  8529. {
  8530. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8531. } break;
  8532. case GGML_TYPE_F16:
  8533. {
  8534. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8535. } break;
  8536. case GGML_TYPE_F32:
  8537. {
  8538. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8539. } break;
  8540. default:
  8541. {
  8542. GGML_ASSERT(false);
  8543. } break;
  8544. }
  8545. //static bool first = true;
  8546. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8547. //if (first) {
  8548. // first = false;
  8549. //} else {
  8550. // for (int k = 0; k < dst->ne[1]; ++k) {
  8551. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8552. // for (int i = 0; i < 16; ++i) {
  8553. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8554. // }
  8555. // printf("\n");
  8556. // }
  8557. // printf("\n");
  8558. // }
  8559. // printf("\n");
  8560. // exit(0);
  8561. //}
  8562. }
  8563. // ggml_compute_forward_get_rows_back
  8564. static void ggml_compute_forward_get_rows_back_f32_f16(
  8565. const struct ggml_compute_params * params,
  8566. const struct ggml_tensor * src0,
  8567. const struct ggml_tensor * src1,
  8568. struct ggml_tensor * dst) {
  8569. GGML_ASSERT(params->ith == 0);
  8570. GGML_ASSERT(ggml_is_contiguous(dst));
  8571. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8572. if (params->type == GGML_TASK_INIT) {
  8573. memset(dst->data, 0, ggml_nbytes(dst));
  8574. }
  8575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8576. return;
  8577. }
  8578. const int nc = src0->ne[0];
  8579. const int nr = ggml_nelements(src1);
  8580. GGML_ASSERT( dst->ne[0] == nc);
  8581. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8582. for (int i = 0; i < nr; ++i) {
  8583. const int r = ((int32_t *) src1->data)[i];
  8584. for (int j = 0; j < nc; ++j) {
  8585. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8586. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8587. }
  8588. }
  8589. }
  8590. static void ggml_compute_forward_get_rows_back_f32(
  8591. const struct ggml_compute_params * params,
  8592. const struct ggml_tensor * src0,
  8593. const struct ggml_tensor * src1,
  8594. struct ggml_tensor * dst) {
  8595. GGML_ASSERT(params->ith == 0);
  8596. GGML_ASSERT(ggml_is_contiguous(dst));
  8597. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8598. if (params->type == GGML_TASK_INIT) {
  8599. memset(dst->data, 0, ggml_nbytes(dst));
  8600. }
  8601. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8602. return;
  8603. }
  8604. const int nc = src0->ne[0];
  8605. const int nr = ggml_nelements(src1);
  8606. GGML_ASSERT( dst->ne[0] == nc);
  8607. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8608. for (int i = 0; i < nr; ++i) {
  8609. const int r = ((int32_t *) src1->data)[i];
  8610. ggml_vec_add_f32(nc,
  8611. (float *) ((char *) dst->data + r*dst->nb[1]),
  8612. (float *) ((char *) dst->data + r*dst->nb[1]),
  8613. (float *) ((char *) src0->data + i*src0->nb[1]));
  8614. }
  8615. }
  8616. static void ggml_compute_forward_get_rows_back(
  8617. const struct ggml_compute_params * params,
  8618. const struct ggml_tensor * src0,
  8619. const struct ggml_tensor * src1,
  8620. struct ggml_tensor * dst) {
  8621. switch (src0->type) {
  8622. case GGML_TYPE_F16:
  8623. {
  8624. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8625. } break;
  8626. case GGML_TYPE_F32:
  8627. {
  8628. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8629. } break;
  8630. default:
  8631. {
  8632. GGML_ASSERT(false);
  8633. } break;
  8634. }
  8635. //static bool first = true;
  8636. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8637. //if (first) {
  8638. // first = false;
  8639. //} else {
  8640. // for (int k = 0; k < dst->ne[1]; ++k) {
  8641. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8642. // for (int i = 0; i < 16; ++i) {
  8643. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8644. // }
  8645. // printf("\n");
  8646. // }
  8647. // printf("\n");
  8648. // }
  8649. // printf("\n");
  8650. // exit(0);
  8651. //}
  8652. }
  8653. // ggml_compute_forward_diag
  8654. static void ggml_compute_forward_diag_f32(
  8655. const struct ggml_compute_params * params,
  8656. const struct ggml_tensor * src0,
  8657. struct ggml_tensor * dst) {
  8658. GGML_ASSERT(params->ith == 0);
  8659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8660. return;
  8661. }
  8662. // TODO: handle transposed/permuted matrices
  8663. GGML_TENSOR_UNARY_OP_LOCALS
  8664. GGML_ASSERT(ne00 == ne0);
  8665. GGML_ASSERT(ne00 == ne1);
  8666. GGML_ASSERT(ne01 == 1);
  8667. GGML_ASSERT(ne02 == ne2);
  8668. GGML_ASSERT(ne03 == ne3);
  8669. GGML_ASSERT(nb00 == sizeof(float));
  8670. GGML_ASSERT(nb0 == sizeof(float));
  8671. for (int i3 = 0; i3 < ne3; i3++) {
  8672. for (int i2 = 0; i2 < ne2; i2++) {
  8673. for (int i1 = 0; i1 < ne1; i1++) {
  8674. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8675. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8676. for (int i0 = 0; i0 < i1; i0++) {
  8677. d[i0] = 0;
  8678. }
  8679. d[i1] = s[i1];
  8680. for (int i0 = i1+1; i0 < ne0; i0++) {
  8681. d[i0] = 0;
  8682. }
  8683. }
  8684. }
  8685. }
  8686. }
  8687. static void ggml_compute_forward_diag(
  8688. const struct ggml_compute_params * params,
  8689. const struct ggml_tensor * src0,
  8690. struct ggml_tensor * dst) {
  8691. switch (src0->type) {
  8692. case GGML_TYPE_F32:
  8693. {
  8694. ggml_compute_forward_diag_f32(params, src0, dst);
  8695. } break;
  8696. default:
  8697. {
  8698. GGML_ASSERT(false);
  8699. } break;
  8700. }
  8701. }
  8702. // ggml_compute_forward_diag_mask_inf
  8703. static void ggml_compute_forward_diag_mask_f32(
  8704. const struct ggml_compute_params * params,
  8705. const struct ggml_tensor * src0,
  8706. struct ggml_tensor * dst,
  8707. const float value) {
  8708. const int ith = params->ith;
  8709. const int nth = params->nth;
  8710. const int n_past = ((int32_t *) dst->op_params)[0];
  8711. const bool inplace = src0->data == dst->data;
  8712. GGML_ASSERT(n_past >= 0);
  8713. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8714. // memcpy needs to be synchronized across threads to avoid race conditions.
  8715. // => do it in INIT phase
  8716. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8717. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8718. memcpy(
  8719. ((char *) dst->data),
  8720. ((char *) src0->data),
  8721. ggml_nbytes(dst));
  8722. }
  8723. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8724. return;
  8725. }
  8726. // TODO: handle transposed/permuted matrices
  8727. const int n = ggml_nrows(src0);
  8728. const int nc = src0->ne[0];
  8729. const int nr = src0->ne[1];
  8730. const int nz = n/nr;
  8731. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8732. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8733. for (int k = 0; k < nz; k++) {
  8734. for (int j = ith; j < nr; j += nth) {
  8735. for (int i = n_past; i < nc; i++) {
  8736. if (i > n_past + j) {
  8737. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8738. }
  8739. }
  8740. }
  8741. }
  8742. }
  8743. static void ggml_compute_forward_diag_mask_inf(
  8744. const struct ggml_compute_params * params,
  8745. const struct ggml_tensor * src0,
  8746. struct ggml_tensor * dst) {
  8747. switch (src0->type) {
  8748. case GGML_TYPE_F32:
  8749. {
  8750. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8751. } break;
  8752. default:
  8753. {
  8754. GGML_ASSERT(false);
  8755. } break;
  8756. }
  8757. }
  8758. static void ggml_compute_forward_diag_mask_zero(
  8759. const struct ggml_compute_params * params,
  8760. const struct ggml_tensor * src0,
  8761. struct ggml_tensor * dst) {
  8762. switch (src0->type) {
  8763. case GGML_TYPE_F32:
  8764. {
  8765. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8766. } break;
  8767. default:
  8768. {
  8769. GGML_ASSERT(false);
  8770. } break;
  8771. }
  8772. }
  8773. // ggml_compute_forward_soft_max
  8774. static void ggml_compute_forward_soft_max_f32(
  8775. const struct ggml_compute_params * params,
  8776. const struct ggml_tensor * src0,
  8777. const struct ggml_tensor * src1,
  8778. struct ggml_tensor * dst) {
  8779. assert(ggml_is_contiguous(dst));
  8780. assert(ggml_are_same_shape(src0, dst));
  8781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8782. return;
  8783. }
  8784. float scale = 1.0f;
  8785. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8786. // TODO: handle transposed/permuted matrices
  8787. const int ith = params->ith;
  8788. const int nth = params->nth;
  8789. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  8790. const int nc = src0->ne[0];
  8791. const int nr = ggml_nrows(src0);
  8792. // rows per thread
  8793. const int dr = (nr + nth - 1)/nth;
  8794. // row range for this thread
  8795. const int ir0 = dr*ith;
  8796. const int ir1 = MIN(ir0 + dr, nr);
  8797. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  8798. for (int i1 = ir0; i1 < ir1; i1++) {
  8799. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8800. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8801. // broadcast the mask across rows
  8802. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  8803. ggml_vec_cpy_f32 (nc, wp, sp);
  8804. ggml_vec_scale_f32(nc, wp, scale);
  8805. if (mp) {
  8806. ggml_vec_acc_f32(nc, wp, mp);
  8807. }
  8808. #ifndef NDEBUG
  8809. for (int i = 0; i < nc; ++i) {
  8810. //printf("p[%d] = %f\n", i, p[i]);
  8811. assert(!isnan(wp[i]));
  8812. }
  8813. #endif
  8814. float max = -INFINITY;
  8815. ggml_vec_max_f32(nc, &max, wp);
  8816. ggml_float sum = 0.0;
  8817. uint16_t scvt;
  8818. for (int i = 0; i < nc; i++) {
  8819. if (wp[i] == -INFINITY) {
  8820. dp[i] = 0.0f;
  8821. } else {
  8822. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  8823. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  8824. memcpy(&scvt, &s, sizeof(scvt));
  8825. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8826. sum += (ggml_float)val;
  8827. dp[i] = val;
  8828. }
  8829. }
  8830. assert(sum > 0.0);
  8831. sum = 1.0/sum;
  8832. ggml_vec_scale_f32(nc, dp, sum);
  8833. #ifndef NDEBUG
  8834. for (int i = 0; i < nc; ++i) {
  8835. assert(!isnan(dp[i]));
  8836. assert(!isinf(dp[i]));
  8837. }
  8838. #endif
  8839. }
  8840. }
  8841. static void ggml_compute_forward_soft_max(
  8842. const struct ggml_compute_params * params,
  8843. const struct ggml_tensor * src0,
  8844. const struct ggml_tensor * src1,
  8845. struct ggml_tensor * dst) {
  8846. switch (src0->type) {
  8847. case GGML_TYPE_F32:
  8848. {
  8849. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  8850. } break;
  8851. default:
  8852. {
  8853. GGML_ASSERT(false);
  8854. } break;
  8855. }
  8856. }
  8857. // ggml_compute_forward_soft_max_back
  8858. static void ggml_compute_forward_soft_max_back_f32(
  8859. const struct ggml_compute_params * params,
  8860. const struct ggml_tensor * src0,
  8861. const struct ggml_tensor * src1,
  8862. struct ggml_tensor * dst) {
  8863. GGML_ASSERT(ggml_is_contiguous(src0));
  8864. GGML_ASSERT(ggml_is_contiguous(src1));
  8865. GGML_ASSERT(ggml_is_contiguous(dst));
  8866. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8867. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8869. return;
  8870. }
  8871. // TODO: handle transposed/permuted matrices
  8872. const int ith = params->ith;
  8873. const int nth = params->nth;
  8874. const int nc = src0->ne[0];
  8875. const int nr = ggml_nrows(src0);
  8876. // rows per thread
  8877. const int dr = (nr + nth - 1)/nth;
  8878. // row range for this thread
  8879. const int ir0 = dr*ith;
  8880. const int ir1 = MIN(ir0 + dr, nr);
  8881. for (int i1 = ir0; i1 < ir1; i1++) {
  8882. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8883. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8884. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8885. #ifndef NDEBUG
  8886. for (int i = 0; i < nc; ++i) {
  8887. //printf("p[%d] = %f\n", i, p[i]);
  8888. assert(!isnan(dy[i]));
  8889. assert(!isnan(y[i]));
  8890. }
  8891. #endif
  8892. // Jii = yi - yi*yi
  8893. // Jij = -yi*yj
  8894. // J = diag(y)-y.T*y
  8895. // dx = J * dy
  8896. // dxk = sum_i(Jki * dyi)
  8897. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8898. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8899. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8900. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8901. // dxk = -yk * dot(y, dy) + yk*dyk
  8902. // dxk = yk * (- dot(y, dy) + dyk)
  8903. // dxk = yk * (dyk - dot(y, dy))
  8904. //
  8905. // post-order:
  8906. // dot_y_dy := dot(y, dy)
  8907. // dx := dy
  8908. // dx := dx - dot_y_dy
  8909. // dx := dx * y
  8910. // linear runtime, no additional memory
  8911. float dot_y_dy = 0;
  8912. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8913. ggml_vec_cpy_f32 (nc, dx, dy);
  8914. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8915. ggml_vec_mul_f32 (nc, dx, dx, y);
  8916. #ifndef NDEBUG
  8917. for (int i = 0; i < nc; ++i) {
  8918. assert(!isnan(dx[i]));
  8919. assert(!isinf(dx[i]));
  8920. }
  8921. #endif
  8922. }
  8923. }
  8924. static void ggml_compute_forward_soft_max_back(
  8925. const struct ggml_compute_params * params,
  8926. const struct ggml_tensor * src0,
  8927. const struct ggml_tensor * src1,
  8928. struct ggml_tensor * dst) {
  8929. switch (src0->type) {
  8930. case GGML_TYPE_F32:
  8931. {
  8932. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8933. } break;
  8934. default:
  8935. {
  8936. GGML_ASSERT(false);
  8937. } break;
  8938. }
  8939. }
  8940. // ggml_compute_forward_alibi
  8941. static void ggml_compute_forward_alibi_f32(
  8942. const struct ggml_compute_params * params,
  8943. const struct ggml_tensor * src0,
  8944. struct ggml_tensor * dst) {
  8945. assert(params->ith == 0);
  8946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8947. return;
  8948. }
  8949. //const int n_past = ((int32_t *) dst->op_params)[0];
  8950. const int n_head = ((int32_t *) dst->op_params)[1];
  8951. float max_bias;
  8952. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8953. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8954. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8955. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8956. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8957. const int64_t n = ggml_nrows(src0);
  8958. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8959. const size_t nb0 = src0->nb[0];
  8960. const size_t nb1 = src0->nb[1];
  8961. const size_t nb2 = src0->nb[2];
  8962. //const int nb3 = src0->nb[3];
  8963. GGML_ASSERT(nb0 == sizeof(float));
  8964. GGML_ASSERT(n_head == ne2);
  8965. // add alibi to src0 (KQ_scaled)
  8966. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8967. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8968. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8969. for (int64_t i = 0; i < ne0; i++) {
  8970. for (int64_t j = 0; j < ne1; j++) {
  8971. for (int64_t k = 0; k < ne2_ne3; k++) {
  8972. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8973. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8974. // TODO: k*nb2 or k*nb3
  8975. float m_k;
  8976. if (k < n_heads_log2_floor) {
  8977. m_k = powf(m0, k + 1);
  8978. } else {
  8979. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8980. }
  8981. pdst[0] = i * m_k + src[0];
  8982. }
  8983. }
  8984. }
  8985. }
  8986. static void ggml_compute_forward_alibi_f16(
  8987. const struct ggml_compute_params * params,
  8988. const struct ggml_tensor * src0,
  8989. struct ggml_tensor * dst) {
  8990. assert(params->ith == 0);
  8991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8992. return;
  8993. }
  8994. //const int n_past = ((int32_t *) dst->op_params)[0];
  8995. const int n_head = ((int32_t *) dst->op_params)[1];
  8996. float max_bias;
  8997. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8998. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8999. const int ne1 = src0->ne[1]; // seq_len_without_past
  9000. const int ne2 = src0->ne[2]; // n_head -> this is k
  9001. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9002. const int n = ggml_nrows(src0);
  9003. const int ne2_ne3 = n/ne1; // ne2*ne3
  9004. const int nb0 = src0->nb[0];
  9005. const int nb1 = src0->nb[1];
  9006. const int nb2 = src0->nb[2];
  9007. //const int nb3 = src0->nb[3];
  9008. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9009. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9010. GGML_ASSERT(n_head == ne2);
  9011. // add alibi to src0 (KQ_scaled)
  9012. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9013. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9014. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9015. for (int i = 0; i < ne0; i++) {
  9016. for (int j = 0; j < ne1; j++) {
  9017. for (int k = 0; k < ne2_ne3; k++) {
  9018. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9019. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9020. // TODO: k*nb2 or k*nb3
  9021. float m_k;
  9022. if (k < n_heads_log2_floor) {
  9023. m_k = powf(m0, k + 1);
  9024. } else {
  9025. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9026. }
  9027. // we return F32
  9028. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9029. }
  9030. }
  9031. }
  9032. }
  9033. static void ggml_compute_forward_alibi(
  9034. const struct ggml_compute_params * params,
  9035. const struct ggml_tensor * src0,
  9036. struct ggml_tensor * dst) {
  9037. switch (src0->type) {
  9038. case GGML_TYPE_F16:
  9039. {
  9040. ggml_compute_forward_alibi_f16(params, src0, dst);
  9041. } break;
  9042. case GGML_TYPE_F32:
  9043. {
  9044. ggml_compute_forward_alibi_f32(params, src0, dst);
  9045. } break;
  9046. case GGML_TYPE_Q4_0:
  9047. case GGML_TYPE_Q4_1:
  9048. case GGML_TYPE_Q5_0:
  9049. case GGML_TYPE_Q5_1:
  9050. case GGML_TYPE_Q8_0:
  9051. case GGML_TYPE_Q8_1:
  9052. case GGML_TYPE_Q2_K:
  9053. case GGML_TYPE_Q3_K:
  9054. case GGML_TYPE_Q4_K:
  9055. case GGML_TYPE_Q5_K:
  9056. case GGML_TYPE_Q6_K:
  9057. case GGML_TYPE_Q8_K:
  9058. case GGML_TYPE_I8:
  9059. case GGML_TYPE_I16:
  9060. case GGML_TYPE_I32:
  9061. case GGML_TYPE_COUNT:
  9062. {
  9063. GGML_ASSERT(false);
  9064. } break;
  9065. }
  9066. }
  9067. // ggml_compute_forward_clamp
  9068. static void ggml_compute_forward_clamp_f32(
  9069. const struct ggml_compute_params * params,
  9070. const struct ggml_tensor * src0,
  9071. struct ggml_tensor * dst) {
  9072. assert(params->ith == 0);
  9073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9074. return;
  9075. }
  9076. float min;
  9077. float max;
  9078. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9079. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9080. const int ith = params->ith;
  9081. const int nth = params->nth;
  9082. const int n = ggml_nrows(src0);
  9083. const int nc = src0->ne[0];
  9084. const size_t nb00 = src0->nb[0];
  9085. const size_t nb01 = src0->nb[1];
  9086. const size_t nb0 = dst->nb[0];
  9087. const size_t nb1 = dst->nb[1];
  9088. GGML_ASSERT( nb0 == sizeof(float));
  9089. GGML_ASSERT(nb00 == sizeof(float));
  9090. for (int j = ith; j < n; j += nth) {
  9091. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9092. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9093. for (int i = 0; i < nc; i++) {
  9094. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9095. }
  9096. }
  9097. }
  9098. static void ggml_compute_forward_clamp(
  9099. const struct ggml_compute_params * params,
  9100. const struct ggml_tensor * src0,
  9101. struct ggml_tensor * dst) {
  9102. switch (src0->type) {
  9103. case GGML_TYPE_F32:
  9104. {
  9105. ggml_compute_forward_clamp_f32(params, src0, dst);
  9106. } break;
  9107. case GGML_TYPE_F16:
  9108. case GGML_TYPE_Q4_0:
  9109. case GGML_TYPE_Q4_1:
  9110. case GGML_TYPE_Q5_0:
  9111. case GGML_TYPE_Q5_1:
  9112. case GGML_TYPE_Q8_0:
  9113. case GGML_TYPE_Q8_1:
  9114. case GGML_TYPE_Q2_K:
  9115. case GGML_TYPE_Q3_K:
  9116. case GGML_TYPE_Q4_K:
  9117. case GGML_TYPE_Q5_K:
  9118. case GGML_TYPE_Q6_K:
  9119. case GGML_TYPE_Q8_K:
  9120. case GGML_TYPE_I8:
  9121. case GGML_TYPE_I16:
  9122. case GGML_TYPE_I32:
  9123. case GGML_TYPE_COUNT:
  9124. {
  9125. GGML_ASSERT(false);
  9126. } break;
  9127. }
  9128. }
  9129. // ggml_compute_forward_rope
  9130. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9131. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9132. return 1 - MIN(1, MAX(0, y));
  9133. }
  9134. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9135. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9136. static void rope_yarn(
  9137. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9138. float * cos_theta, float * sin_theta
  9139. ) {
  9140. // Get n-d rotational scaling corrected for extrapolation
  9141. float theta_interp = freq_scale * theta_extrap;
  9142. float theta = theta_interp;
  9143. if (ext_factor != 0.0f) {
  9144. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9145. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9146. // Get n-d magnitude scaling corrected for interpolation
  9147. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9148. }
  9149. *cos_theta = cosf(theta) * mscale;
  9150. *sin_theta = sinf(theta) * mscale;
  9151. }
  9152. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9153. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9154. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9155. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9156. }
  9157. void ggml_rope_yarn_corr_dims(
  9158. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9159. ) {
  9160. // start and end correction dims
  9161. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9162. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9163. }
  9164. static void ggml_compute_forward_rope_f32(
  9165. const struct ggml_compute_params * params,
  9166. const struct ggml_tensor * src0,
  9167. const struct ggml_tensor * src1,
  9168. struct ggml_tensor * dst,
  9169. const bool forward) {
  9170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9171. return;
  9172. }
  9173. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9174. // these two only relevant for xPos RoPE:
  9175. float xpos_base;
  9176. bool xpos_down;
  9177. //const int n_past = ((int32_t *) dst->op_params)[0];
  9178. const int n_dims = ((int32_t *) dst->op_params)[1];
  9179. const int mode = ((int32_t *) dst->op_params)[2];
  9180. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9181. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9182. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9183. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9184. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9185. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9186. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9187. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9188. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9189. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9190. GGML_TENSOR_UNARY_OP_LOCALS
  9191. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9192. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9193. GGML_ASSERT(nb00 == sizeof(float));
  9194. const int ith = params->ith;
  9195. const int nth = params->nth;
  9196. const int nr = ggml_nrows(dst);
  9197. GGML_ASSERT(n_dims <= ne0);
  9198. GGML_ASSERT(n_dims % 2 == 0);
  9199. // rows per thread
  9200. const int dr = (nr + nth - 1)/nth;
  9201. // row range for this thread
  9202. const int ir0 = dr*ith;
  9203. const int ir1 = MIN(ir0 + dr, nr);
  9204. // row index used to determine which thread to use
  9205. int ir = 0;
  9206. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9207. const float inv_ndims = -1.f/n_dims;
  9208. float corr_dims[2];
  9209. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9210. const bool is_neox = mode & 2;
  9211. const bool is_glm = mode & 4;
  9212. // backward process uses inverse rotation by cos and sin.
  9213. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9214. // this essentially just switches the sign of sin.
  9215. const float sin_sign = forward ? 1.0f : -1.0f;
  9216. const int32_t * pos = (const int32_t *) src1->data;
  9217. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9218. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9219. const int64_t p = pos[i2];
  9220. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9221. if (ir++ < ir0) continue;
  9222. if (ir > ir1) break;
  9223. float theta_base = (float)p;
  9224. if (is_glm) {
  9225. theta_base = MIN(p, n_ctx - 2);
  9226. float block_theta = MAX(p - (n_ctx - 2), 0);
  9227. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9228. const float cos_theta = cosf(theta_base);
  9229. const float sin_theta = sinf(theta_base) * sin_sign;
  9230. const float cos_block_theta = cosf(block_theta);
  9231. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9232. theta_base *= theta_scale;
  9233. block_theta *= theta_scale;
  9234. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9235. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9236. const float x0 = src[0];
  9237. const float x1 = src[n_dims/2];
  9238. const float x2 = src[n_dims];
  9239. const float x3 = src[n_dims/2*3];
  9240. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9241. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9242. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9243. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9244. }
  9245. } else if (!is_neox) {
  9246. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9247. float cos_theta, sin_theta;
  9248. rope_yarn(
  9249. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9250. );
  9251. sin_theta *= sin_sign;
  9252. // zeta scaling for xPos only:
  9253. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9254. if (xpos_down) zeta = 1.0f / zeta;
  9255. theta_base *= theta_scale;
  9256. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9257. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9258. const float x0 = src[0];
  9259. const float x1 = src[1];
  9260. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9261. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9262. }
  9263. } else {
  9264. // TODO: this might be wrong for ne0 != n_dims - need double check
  9265. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9266. theta_base *= freq_scale;
  9267. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9268. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9269. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9270. float cur_rot = inv_ndims * ic - ib;
  9271. float cos_theta, sin_theta;
  9272. rope_yarn(
  9273. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9274. &cos_theta, &sin_theta
  9275. );
  9276. sin_theta *= sin_sign;
  9277. theta_base *= theta_scale;
  9278. const int64_t i0 = ib*n_dims + ic/2;
  9279. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9280. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9281. const float x0 = src[0];
  9282. const float x1 = src[n_dims/2];
  9283. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9284. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9285. }
  9286. }
  9287. }
  9288. }
  9289. }
  9290. }
  9291. }
  9292. static void ggml_compute_forward_rope_f16(
  9293. const struct ggml_compute_params * params,
  9294. const struct ggml_tensor * src0,
  9295. const struct ggml_tensor * src1,
  9296. struct ggml_tensor * dst,
  9297. const bool forward) {
  9298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9299. return;
  9300. }
  9301. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9302. //const int n_past = ((int32_t *) dst->op_params)[0];
  9303. const int n_dims = ((int32_t *) dst->op_params)[1];
  9304. const int mode = ((int32_t *) dst->op_params)[2];
  9305. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9306. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9307. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9308. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9309. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9310. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9311. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9312. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9313. GGML_TENSOR_UNARY_OP_LOCALS
  9314. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9315. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9316. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9317. const int ith = params->ith;
  9318. const int nth = params->nth;
  9319. const int nr = ggml_nrows(dst);
  9320. GGML_ASSERT(n_dims <= ne0);
  9321. GGML_ASSERT(n_dims % 2 == 0);
  9322. // rows per thread
  9323. const int dr = (nr + nth - 1)/nth;
  9324. // row range for this thread
  9325. const int ir0 = dr*ith;
  9326. const int ir1 = MIN(ir0 + dr, nr);
  9327. // row index used to determine which thread to use
  9328. int ir = 0;
  9329. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9330. const float inv_ndims = -1.f/n_dims;
  9331. float corr_dims[2];
  9332. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9333. const bool is_neox = mode & 2;
  9334. const bool is_glm = mode & 4;
  9335. // backward process uses inverse rotation by cos and sin.
  9336. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9337. // this essentially just switches the sign of sin.
  9338. const float sin_sign = forward ? 1.0f : -1.0f;
  9339. const int32_t * pos = (const int32_t *) src1->data;
  9340. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9341. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9342. const int64_t p = pos[i2];
  9343. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9344. if (ir++ < ir0) continue;
  9345. if (ir > ir1) break;
  9346. float theta_base = (float)p;
  9347. if (is_glm) {
  9348. theta_base = MIN(p, n_ctx - 2);
  9349. float block_theta = MAX(p - (n_ctx - 2), 0);
  9350. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9351. const float cos_theta = cosf(theta_base);
  9352. const float sin_theta = sinf(theta_base) * sin_sign;
  9353. const float cos_block_theta = cosf(block_theta);
  9354. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9355. theta_base *= theta_scale;
  9356. block_theta *= theta_scale;
  9357. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9358. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9359. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9360. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9361. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9362. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9363. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9364. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9365. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9366. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9367. }
  9368. } else if (!is_neox) {
  9369. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9370. float cos_theta, sin_theta;
  9371. rope_yarn(
  9372. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9373. );
  9374. sin_theta *= sin_sign;
  9375. theta_base *= theta_scale;
  9376. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9377. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9378. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9379. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9380. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9381. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9382. }
  9383. } else {
  9384. // TODO: this might be wrong for ne0 != n_dims - need double check
  9385. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9386. theta_base *= freq_scale;
  9387. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9388. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9389. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9390. float cur_rot = inv_ndims * ic - ib;
  9391. float cos_theta, sin_theta;
  9392. rope_yarn(
  9393. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9394. &cos_theta, &sin_theta
  9395. );
  9396. sin_theta *= sin_sign;
  9397. theta_base *= theta_scale;
  9398. const int64_t i0 = ib*n_dims + ic/2;
  9399. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9400. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9401. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9402. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9403. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9404. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9405. }
  9406. }
  9407. }
  9408. }
  9409. }
  9410. }
  9411. }
  9412. static void ggml_compute_forward_rope(
  9413. const struct ggml_compute_params * params,
  9414. const struct ggml_tensor * src0,
  9415. const struct ggml_tensor * src1,
  9416. struct ggml_tensor * dst) {
  9417. switch (src0->type) {
  9418. case GGML_TYPE_F16:
  9419. {
  9420. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9421. } break;
  9422. case GGML_TYPE_F32:
  9423. {
  9424. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9425. } break;
  9426. default:
  9427. {
  9428. GGML_ASSERT(false);
  9429. } break;
  9430. }
  9431. }
  9432. // ggml_compute_forward_rope_back
  9433. static void ggml_compute_forward_rope_back(
  9434. const struct ggml_compute_params * params,
  9435. const struct ggml_tensor * src0,
  9436. const struct ggml_tensor * src1,
  9437. struct ggml_tensor * dst) {
  9438. switch (src0->type) {
  9439. case GGML_TYPE_F16:
  9440. {
  9441. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9442. } break;
  9443. case GGML_TYPE_F32:
  9444. {
  9445. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9446. } break;
  9447. default:
  9448. {
  9449. GGML_ASSERT(false);
  9450. } break;
  9451. }
  9452. }
  9453. // ggml_compute_forward_conv_transpose_1d
  9454. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9455. const struct ggml_compute_params * params,
  9456. const struct ggml_tensor * src0,
  9457. const struct ggml_tensor * src1,
  9458. struct ggml_tensor * dst) {
  9459. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9460. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9461. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9462. int64_t t0 = ggml_perf_time_us();
  9463. UNUSED(t0);
  9464. GGML_TENSOR_BINARY_OP_LOCALS
  9465. const int ith = params->ith;
  9466. const int nth = params->nth;
  9467. const int nk = ne00*ne01*ne02;
  9468. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9469. GGML_ASSERT(nb10 == sizeof(float));
  9470. if (params->type == GGML_TASK_INIT) {
  9471. memset(params->wdata, 0, params->wsize);
  9472. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9473. {
  9474. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9476. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9477. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9478. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9479. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9480. dst_data[i00*ne02 + i02] = src[i00];
  9481. }
  9482. }
  9483. }
  9484. }
  9485. // permute source data (src1) from (L x Cin) to (Cin x L)
  9486. {
  9487. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9488. ggml_fp16_t * dst_data = wdata;
  9489. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9490. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9491. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9492. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9493. }
  9494. }
  9495. }
  9496. // need to zero dst since we are accumulating into it
  9497. memset(dst->data, 0, ggml_nbytes(dst));
  9498. return;
  9499. }
  9500. if (params->type == GGML_TASK_FINALIZE) {
  9501. return;
  9502. }
  9503. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9504. // total rows in dst
  9505. const int nr = ne1;
  9506. // rows per thread
  9507. const int dr = (nr + nth - 1)/nth;
  9508. // row range for this thread
  9509. const int ir0 = dr*ith;
  9510. const int ir1 = MIN(ir0 + dr, nr);
  9511. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9512. ggml_fp16_t * const wdata_src = wdata + nk;
  9513. for (int i1 = ir0; i1 < ir1; i1++) {
  9514. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9515. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9516. for (int i10 = 0; i10 < ne10; i10++) {
  9517. const int i1n = i10*ne11;
  9518. for (int i00 = 0; i00 < ne00; i00++) {
  9519. float v = 0;
  9520. ggml_vec_dot_f16(ne02, &v,
  9521. (ggml_fp16_t *) wdata_src + i1n,
  9522. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9523. dst_data[i10*s0 + i00] += v;
  9524. }
  9525. }
  9526. }
  9527. }
  9528. static void ggml_compute_forward_conv_transpose_1d_f32(
  9529. const struct ggml_compute_params * params,
  9530. const struct ggml_tensor * src0,
  9531. const struct ggml_tensor * src1,
  9532. struct ggml_tensor * dst) {
  9533. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9534. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9535. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9536. int64_t t0 = ggml_perf_time_us();
  9537. UNUSED(t0);
  9538. GGML_TENSOR_BINARY_OP_LOCALS
  9539. const int ith = params->ith;
  9540. const int nth = params->nth;
  9541. const int nk = ne00*ne01*ne02;
  9542. GGML_ASSERT(nb00 == sizeof(float));
  9543. GGML_ASSERT(nb10 == sizeof(float));
  9544. if (params->type == GGML_TASK_INIT) {
  9545. memset(params->wdata, 0, params->wsize);
  9546. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9547. {
  9548. float * const wdata = (float *) params->wdata + 0;
  9549. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9550. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9551. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9552. float * dst_data = wdata + i01*ne00*ne02;
  9553. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9554. dst_data[i00*ne02 + i02] = src[i00];
  9555. }
  9556. }
  9557. }
  9558. }
  9559. // prepare source data (src1)
  9560. {
  9561. float * const wdata = (float *) params->wdata + nk;
  9562. float * dst_data = wdata;
  9563. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9564. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9565. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9566. dst_data[i10*ne11 + i11] = src[i10];
  9567. }
  9568. }
  9569. }
  9570. // need to zero dst since we are accumulating into it
  9571. memset(dst->data, 0, ggml_nbytes(dst));
  9572. return;
  9573. }
  9574. if (params->type == GGML_TASK_FINALIZE) {
  9575. return;
  9576. }
  9577. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9578. // total rows in dst
  9579. const int nr = ne1;
  9580. // rows per thread
  9581. const int dr = (nr + nth - 1)/nth;
  9582. // row range for this thread
  9583. const int ir0 = dr*ith;
  9584. const int ir1 = MIN(ir0 + dr, nr);
  9585. float * const wdata = (float *) params->wdata + 0;
  9586. float * const wdata_src = wdata + nk;
  9587. for (int i1 = ir0; i1 < ir1; i1++) {
  9588. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9589. float * wdata_kernel = wdata + i1*ne02*ne00;
  9590. for (int i10 = 0; i10 < ne10; i10++) {
  9591. const int i1n = i10*ne11;
  9592. for (int i00 = 0; i00 < ne00; i00++) {
  9593. float v = 0;
  9594. ggml_vec_dot_f32(ne02, &v,
  9595. wdata_src + i1n,
  9596. wdata_kernel + i00*ne02);
  9597. dst_data[i10*s0 + i00] += v;
  9598. }
  9599. }
  9600. }
  9601. }
  9602. static void ggml_compute_forward_conv_transpose_1d(
  9603. const struct ggml_compute_params * params,
  9604. const struct ggml_tensor * src0,
  9605. const struct ggml_tensor * src1,
  9606. struct ggml_tensor * dst) {
  9607. switch (src0->type) {
  9608. case GGML_TYPE_F16:
  9609. {
  9610. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9611. } break;
  9612. case GGML_TYPE_F32:
  9613. {
  9614. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9615. } break;
  9616. default:
  9617. {
  9618. GGML_ASSERT(false);
  9619. } break;
  9620. }
  9621. }
  9622. // src0: kernel [OC, IC, KH, KW]
  9623. // src1: image [N, IC, IH, IW]
  9624. // dst: result [N, OH, OW, IC*KH*KW]
  9625. static void ggml_compute_forward_im2col_f16(
  9626. const struct ggml_compute_params * params,
  9627. const struct ggml_tensor * src0,
  9628. const struct ggml_tensor * src1,
  9629. struct ggml_tensor * dst) {
  9630. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9631. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9632. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9633. int64_t t0 = ggml_perf_time_us();
  9634. UNUSED(t0);
  9635. GGML_TENSOR_BINARY_OP_LOCALS;
  9636. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9637. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9638. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9639. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9640. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9641. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9642. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9643. const int ith = params->ith;
  9644. const int nth = params->nth;
  9645. const int64_t N = is_2D ? ne13 : ne12;
  9646. const int64_t IC = is_2D ? ne12 : ne11;
  9647. const int64_t IH = is_2D ? ne11 : 1;
  9648. const int64_t IW = ne10;
  9649. const int64_t KH = is_2D ? ne01 : 1;
  9650. const int64_t KW = ne00;
  9651. const int64_t OH = is_2D ? ne2 : 1;
  9652. const int64_t OW = ne1;
  9653. int ofs0 = is_2D ? nb13 : nb12;
  9654. int ofs1 = is_2D ? nb12 : nb11;
  9655. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9656. GGML_ASSERT(nb10 == sizeof(float));
  9657. if (params->type == GGML_TASK_INIT) {
  9658. return;
  9659. }
  9660. if (params->type == GGML_TASK_FINALIZE) {
  9661. return;
  9662. }
  9663. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9664. {
  9665. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9666. for (int64_t in = 0; in < N; in++) {
  9667. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9668. for (int64_t iow = 0; iow < OW; iow++) {
  9669. for (int64_t iic = ith; iic < IC; iic += nth) {
  9670. // micro kernel
  9671. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9672. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9673. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9674. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9675. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9676. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9677. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9678. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9679. } else {
  9680. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9681. }
  9682. }
  9683. }
  9684. }
  9685. }
  9686. }
  9687. }
  9688. }
  9689. }
  9690. static void ggml_compute_forward_im2col(
  9691. const struct ggml_compute_params * params,
  9692. const struct ggml_tensor * src0,
  9693. const struct ggml_tensor * src1,
  9694. struct ggml_tensor * dst) {
  9695. switch (src0->type) {
  9696. case GGML_TYPE_F16:
  9697. {
  9698. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9699. } break;
  9700. case GGML_TYPE_F32:
  9701. {
  9702. GGML_ASSERT(false);
  9703. } break;
  9704. default:
  9705. {
  9706. GGML_ASSERT(false);
  9707. } break;
  9708. }
  9709. }
  9710. // ggml_compute_forward_conv_transpose_2d
  9711. static void ggml_compute_forward_conv_transpose_2d(
  9712. const struct ggml_compute_params * params,
  9713. const struct ggml_tensor * src0,
  9714. const struct ggml_tensor * src1,
  9715. struct ggml_tensor * dst) {
  9716. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9717. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9718. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9719. int64_t t0 = ggml_perf_time_us();
  9720. UNUSED(t0);
  9721. GGML_TENSOR_BINARY_OP_LOCALS
  9722. const int ith = params->ith;
  9723. const int nth = params->nth;
  9724. const int nk = ne00*ne01*ne02*ne03;
  9725. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9726. GGML_ASSERT(nb10 == sizeof(float));
  9727. if (params->type == GGML_TASK_INIT) {
  9728. memset(params->wdata, 0, params->wsize);
  9729. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9730. {
  9731. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9732. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9733. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9734. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9735. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9736. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9737. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9738. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9739. }
  9740. }
  9741. }
  9742. }
  9743. }
  9744. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9745. {
  9746. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9747. for (int i12 = 0; i12 < ne12; i12++) {
  9748. for (int i11 = 0; i11 < ne11; i11++) {
  9749. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9750. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9751. for (int i10 = 0; i10 < ne10; i10++) {
  9752. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9753. }
  9754. }
  9755. }
  9756. }
  9757. memset(dst->data, 0, ggml_nbytes(dst));
  9758. return;
  9759. }
  9760. if (params->type == GGML_TASK_FINALIZE) {
  9761. return;
  9762. }
  9763. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9764. // total patches in dst
  9765. const int np = ne2;
  9766. // patches per thread
  9767. const int dp = (np + nth - 1)/nth;
  9768. // patch range for this thread
  9769. const int ip0 = dp*ith;
  9770. const int ip1 = MIN(ip0 + dp, np);
  9771. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9772. ggml_fp16_t * const wdata_src = wdata + nk;
  9773. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9774. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9775. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9776. for (int i11 = 0; i11 < ne11; i11++) {
  9777. for (int i10 = 0; i10 < ne10; i10++) {
  9778. const int i1n = i11*ne10*ne12 + i10*ne12;
  9779. for (int i01 = 0; i01 < ne01; i01++) {
  9780. for (int i00 = 0; i00 < ne00; i00++) {
  9781. float v = 0;
  9782. ggml_vec_dot_f16(ne03, &v,
  9783. wdata_src + i1n,
  9784. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9785. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9786. }
  9787. }
  9788. }
  9789. }
  9790. }
  9791. }
  9792. // ggml_compute_forward_pool_1d_sk_p0
  9793. static void ggml_compute_forward_pool_1d_sk_p0(
  9794. const struct ggml_compute_params * params,
  9795. const enum ggml_op_pool op,
  9796. const struct ggml_tensor * src,
  9797. const int k,
  9798. struct ggml_tensor * dst) {
  9799. assert(src->type == GGML_TYPE_F32);
  9800. assert(params->ith == 0);
  9801. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9802. return;
  9803. }
  9804. const char * cdata = (const char *)src->data;
  9805. const char * const data_end = cdata + ggml_nbytes(src);
  9806. float * drow = (float *)dst->data;
  9807. const int64_t rs = dst->ne[0];
  9808. while (cdata < data_end) {
  9809. const float * const srow = (const float *)cdata;
  9810. int j = 0;
  9811. for (int64_t i = 0; i < rs; ++i) {
  9812. switch (op) {
  9813. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  9814. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  9815. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9816. }
  9817. for (int ki = 0; ki < k; ++ki) {
  9818. switch (op) {
  9819. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  9820. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  9821. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9822. }
  9823. ++j;
  9824. }
  9825. switch (op) {
  9826. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  9827. case GGML_OP_POOL_MAX: break;
  9828. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9829. }
  9830. }
  9831. cdata += src->nb[1];
  9832. drow += rs;
  9833. }
  9834. }
  9835. // ggml_compute_forward_pool_1d
  9836. static void ggml_compute_forward_pool_1d(
  9837. const struct ggml_compute_params * params,
  9838. const struct ggml_tensor * src0,
  9839. struct ggml_tensor * dst) {
  9840. const int32_t * opts = (const int32_t *)dst->op_params;
  9841. enum ggml_op_pool op = opts[0];
  9842. const int k0 = opts[1];
  9843. const int s0 = opts[2];
  9844. const int p0 = opts[3];
  9845. GGML_ASSERT(p0 == 0); // padding not supported
  9846. GGML_ASSERT(k0 == s0); // only s = k supported
  9847. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  9848. }
  9849. // ggml_compute_forward_pool_2d
  9850. static void ggml_compute_forward_pool_2d(
  9851. const struct ggml_compute_params * params,
  9852. const struct ggml_tensor * src,
  9853. struct ggml_tensor * dst) {
  9854. assert(src->type == GGML_TYPE_F32);
  9855. assert(params->ith == 0);
  9856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9857. return;
  9858. }
  9859. const int32_t * opts = (const int32_t *)dst->op_params;
  9860. enum ggml_op_pool op = opts[0];
  9861. const int k0 = opts[1];
  9862. const int k1 = opts[2];
  9863. const int s0 = opts[3];
  9864. const int s1 = opts[4];
  9865. const int p0 = opts[5];
  9866. const int p1 = opts[6];
  9867. const char * cdata = (const char*)src->data;
  9868. const char * const data_end = cdata + ggml_nbytes(src);
  9869. const int64_t px = dst->ne[0];
  9870. const int64_t py = dst->ne[1];
  9871. const int64_t pa = px * py;
  9872. float * dplane = (float *)dst->data;
  9873. const int ka = k0 * k1;
  9874. const int offset0 = -p0;
  9875. const int offset1 = -p1;
  9876. while (cdata < data_end) {
  9877. for (int oy = 0; oy < py; ++oy) {
  9878. float * const drow = dplane + oy * px;
  9879. for (int ox = 0; ox < px; ++ox) {
  9880. float * const out = drow + ox;
  9881. switch (op) {
  9882. case GGML_OP_POOL_AVG: *out = 0; break;
  9883. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  9884. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9885. }
  9886. const int ix = offset0 + ox * s0;
  9887. const int iy = offset1 + oy * s1;
  9888. for (int ky = 0; ky < k1; ++ky) {
  9889. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  9890. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  9891. for (int kx = 0; kx < k0; ++kx) {
  9892. int j = ix + kx;
  9893. if (j < 0 || j >= src->ne[0]) continue;
  9894. switch (op) {
  9895. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  9896. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  9897. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9898. }
  9899. }
  9900. }
  9901. switch (op) {
  9902. case GGML_OP_POOL_AVG: *out /= ka; break;
  9903. case GGML_OP_POOL_MAX: break;
  9904. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9905. }
  9906. }
  9907. }
  9908. cdata += src->nb[2];
  9909. dplane += pa;
  9910. }
  9911. }
  9912. // ggml_compute_forward_upscale
  9913. static void ggml_compute_forward_upscale_f32(
  9914. const struct ggml_compute_params * params,
  9915. const struct ggml_tensor * src0,
  9916. struct ggml_tensor * dst) {
  9917. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9918. return;
  9919. }
  9920. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9921. const int ith = params->ith;
  9922. GGML_TENSOR_UNARY_OP_LOCALS
  9923. const int scale_factor = dst->op_params[0];
  9924. // TODO: optimize
  9925. for (int i03 = 0; i03 < ne03; i03++) {
  9926. for (int i02 = ith; i02 < ne02; i02++) {
  9927. for (int m = 0; m < dst->ne[1]; m++) {
  9928. int i01 = m / scale_factor;
  9929. for (int n = 0; n < dst->ne[0]; n++) {
  9930. int i00 = n / scale_factor;
  9931. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  9932. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  9933. *y = *x;
  9934. }
  9935. }
  9936. }
  9937. }
  9938. }
  9939. static void ggml_compute_forward_upscale(
  9940. const struct ggml_compute_params * params,
  9941. const struct ggml_tensor * src0,
  9942. struct ggml_tensor * dst) {
  9943. switch (src0->type) {
  9944. case GGML_TYPE_F32:
  9945. {
  9946. ggml_compute_forward_upscale_f32(params, src0, dst);
  9947. } break;
  9948. default:
  9949. {
  9950. GGML_ASSERT(false);
  9951. } break;
  9952. }
  9953. }
  9954. // ggml_compute_forward_argsort
  9955. static void ggml_compute_forward_argsort_f32(
  9956. const struct ggml_compute_params * params,
  9957. const struct ggml_tensor * src0,
  9958. struct ggml_tensor * dst) {
  9959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9960. return;
  9961. }
  9962. GGML_TENSOR_UNARY_OP_LOCALS
  9963. GGML_ASSERT(nb0 == sizeof(float));
  9964. const int ith = params->ith;
  9965. const int nth = params->nth;
  9966. const int64_t nr = ggml_nrows(src0);
  9967. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  9968. for (int64_t i = ith; i < nr; i += nth) {
  9969. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  9970. const float * src_data = (float *)((char *) src0->data + i*nb01);
  9971. for (int64_t j = 0; j < ne0; j++) {
  9972. dst_data[j] = j;
  9973. }
  9974. // C doesn't have a functional sort, so we do a bubble sort instead
  9975. for (int64_t j = 0; j < ne0; j++) {
  9976. for (int64_t k = j + 1; k < ne0; k++) {
  9977. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  9978. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  9979. int32_t tmp = dst_data[j];
  9980. dst_data[j] = dst_data[k];
  9981. dst_data[k] = tmp;
  9982. }
  9983. }
  9984. }
  9985. }
  9986. }
  9987. static void ggml_compute_forward_argsort(
  9988. const struct ggml_compute_params * params,
  9989. const struct ggml_tensor * src0,
  9990. struct ggml_tensor * dst) {
  9991. switch (src0->type) {
  9992. case GGML_TYPE_F32:
  9993. {
  9994. ggml_compute_forward_argsort_f32(params, src0, dst);
  9995. } break;
  9996. default:
  9997. {
  9998. GGML_ASSERT(false);
  9999. } break;
  10000. }
  10001. }
  10002. // ggml_compute_forward_flash_attn
  10003. static void ggml_compute_forward_flash_attn_f32(
  10004. const struct ggml_compute_params * params,
  10005. const struct ggml_tensor * q,
  10006. const struct ggml_tensor * k,
  10007. const struct ggml_tensor * v,
  10008. const bool masked,
  10009. struct ggml_tensor * dst) {
  10010. int64_t t0 = ggml_perf_time_us();
  10011. UNUSED(t0);
  10012. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10013. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10014. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10015. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10016. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10017. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10018. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10019. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10020. const int ith = params->ith;
  10021. const int nth = params->nth;
  10022. const int64_t D = neq0;
  10023. const int64_t N = neq1;
  10024. const int64_t P = nek1 - N;
  10025. const int64_t M = P + N;
  10026. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10027. GGML_ASSERT(ne0 == D);
  10028. GGML_ASSERT(ne1 == N);
  10029. GGML_ASSERT(P >= 0);
  10030. GGML_ASSERT(nbq0 == sizeof(float));
  10031. GGML_ASSERT(nbk0 == sizeof(float));
  10032. GGML_ASSERT(nbv0 == sizeof(float));
  10033. GGML_ASSERT(neq0 == D);
  10034. GGML_ASSERT(nek0 == D);
  10035. GGML_ASSERT(nev1 == D);
  10036. GGML_ASSERT(neq1 == N);
  10037. GGML_ASSERT(nek1 == N + P);
  10038. GGML_ASSERT(nev1 == D);
  10039. // dst cannot be transposed or permuted
  10040. GGML_ASSERT(nb0 == sizeof(float));
  10041. GGML_ASSERT(nb0 <= nb1);
  10042. GGML_ASSERT(nb1 <= nb2);
  10043. GGML_ASSERT(nb2 <= nb3);
  10044. if (params->type == GGML_TASK_INIT) {
  10045. return;
  10046. }
  10047. if (params->type == GGML_TASK_FINALIZE) {
  10048. return;
  10049. }
  10050. // parallelize by q rows using ggml_vec_dot_f32
  10051. // total rows in q
  10052. const int nr = neq1*neq2*neq3;
  10053. // rows per thread
  10054. const int dr = (nr + nth - 1)/nth;
  10055. // row range for this thread
  10056. const int ir0 = dr*ith;
  10057. const int ir1 = MIN(ir0 + dr, nr);
  10058. const float scale = 1.0f/sqrtf(D);
  10059. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10060. for (int ir = ir0; ir < ir1; ++ir) {
  10061. // q indices
  10062. const int iq3 = ir/(neq2*neq1);
  10063. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10064. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10065. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10066. for (int i = M; i < Mup; ++i) {
  10067. S[i] = -INFINITY;
  10068. }
  10069. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10070. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10071. // k indices
  10072. const int ik3 = iq3;
  10073. const int ik2 = iq2 % nek2;
  10074. const int ik1 = ic;
  10075. // S indices
  10076. const int i1 = ik1;
  10077. ggml_vec_dot_f32(neq0,
  10078. S + i1,
  10079. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10080. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10081. }
  10082. // scale
  10083. ggml_vec_scale_f32(masked_begin, S, scale);
  10084. for (int64_t i = masked_begin; i < M; i++) {
  10085. S[i] = -INFINITY;
  10086. }
  10087. // softmax
  10088. // exclude known -INF S[..] values from max and loop
  10089. // dont forget to set their SW values to zero
  10090. {
  10091. float max = -INFINITY;
  10092. ggml_vec_max_f32(masked_begin, &max, S);
  10093. ggml_float sum = 0.0;
  10094. {
  10095. #ifdef GGML_SOFT_MAX_ACCELERATE
  10096. max = -max;
  10097. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10098. vvexpf(S, S, &Mup);
  10099. ggml_vec_sum_f32(Mup, &sum, S);
  10100. #else
  10101. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10102. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10103. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10104. if (i >= masked_begin) {
  10105. break;
  10106. }
  10107. float * SS = S + i;
  10108. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10109. if (i + j >= masked_begin) {
  10110. break;
  10111. } else if (SS[j] == -INFINITY) {
  10112. SS[j] = 0.0f;
  10113. } else {
  10114. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10115. const float val = expf(SS[j] - max);
  10116. #else
  10117. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10118. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10119. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10120. #endif
  10121. sump[j] += (ggml_float)val;
  10122. SS[j] = val;
  10123. }
  10124. }
  10125. }
  10126. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10127. sum += sump[i];
  10128. }
  10129. #endif
  10130. }
  10131. assert(sum > 0.0);
  10132. sum = 1.0/sum;
  10133. ggml_vec_scale_f32(masked_begin, S, sum);
  10134. #ifndef NDEBUG
  10135. for (int i = 0; i < masked_begin; ++i) {
  10136. assert(!isnan(S[i]));
  10137. assert(!isinf(S[i]));
  10138. }
  10139. #endif
  10140. }
  10141. for (int64_t ic = 0; ic < nev1; ++ic) {
  10142. // dst indices
  10143. const int i1 = iq1;
  10144. const int i2 = iq2;
  10145. const int i3 = iq3;
  10146. // v indices
  10147. const int iv2 = iq2 % nev2;
  10148. const int iv3 = iq3;
  10149. ggml_vec_dot_f32(masked_begin,
  10150. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10151. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10152. S);
  10153. }
  10154. }
  10155. }
  10156. static void ggml_compute_forward_flash_attn_f16(
  10157. const struct ggml_compute_params * params,
  10158. const struct ggml_tensor * q,
  10159. const struct ggml_tensor * k,
  10160. const struct ggml_tensor * v,
  10161. const bool masked,
  10162. struct ggml_tensor * dst) {
  10163. int64_t t0 = ggml_perf_time_us();
  10164. UNUSED(t0);
  10165. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10166. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10167. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10168. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10169. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10170. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10171. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10172. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10173. const int ith = params->ith;
  10174. const int nth = params->nth;
  10175. const int64_t D = neq0;
  10176. const int64_t N = neq1;
  10177. const int64_t P = nek1 - N;
  10178. const int64_t M = P + N;
  10179. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10180. GGML_ASSERT(ne0 == D);
  10181. GGML_ASSERT(ne1 == N);
  10182. GGML_ASSERT(P >= 0);
  10183. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10184. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10185. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10186. GGML_ASSERT(neq0 == D);
  10187. GGML_ASSERT(nek0 == D);
  10188. GGML_ASSERT(nev1 == D);
  10189. GGML_ASSERT(neq1 == N);
  10190. GGML_ASSERT(nek1 == N + P);
  10191. GGML_ASSERT(nev1 == D);
  10192. // dst cannot be transposed or permuted
  10193. GGML_ASSERT(nb0 == sizeof(float));
  10194. GGML_ASSERT(nb0 <= nb1);
  10195. GGML_ASSERT(nb1 <= nb2);
  10196. GGML_ASSERT(nb2 <= nb3);
  10197. if (params->type == GGML_TASK_INIT) {
  10198. return;
  10199. }
  10200. if (params->type == GGML_TASK_FINALIZE) {
  10201. return;
  10202. }
  10203. // parallelize by q rows using ggml_vec_dot_f32
  10204. // total rows in q
  10205. const int nr = neq1*neq2*neq3;
  10206. // rows per thread
  10207. const int dr = (nr + nth - 1)/nth;
  10208. // row range for this thread
  10209. const int ir0 = dr*ith;
  10210. const int ir1 = MIN(ir0 + dr, nr);
  10211. const float scale = 1.0f/sqrtf(D);
  10212. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10213. for (int ir = ir0; ir < ir1; ++ir) {
  10214. // q indices
  10215. const int iq3 = ir/(neq2*neq1);
  10216. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10217. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10218. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10219. for (int i = M; i < Mup; ++i) {
  10220. S[i] = -INFINITY;
  10221. }
  10222. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10223. for (int64_t ic = 0; ic < nek1; ++ic) {
  10224. // k indices
  10225. const int ik3 = iq3;
  10226. const int ik2 = iq2 % nek2;
  10227. const int ik1 = ic;
  10228. // S indices
  10229. const int i1 = ik1;
  10230. ggml_vec_dot_f16(neq0,
  10231. S + i1,
  10232. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10233. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10234. }
  10235. } else {
  10236. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10237. // k indices
  10238. const int ik3 = iq3;
  10239. const int ik2 = iq2 % nek2;
  10240. const int ik1 = ic;
  10241. // S indices
  10242. const int i1 = ik1;
  10243. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10244. S + i1,
  10245. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10246. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10247. }
  10248. }
  10249. // scale
  10250. ggml_vec_scale_f32(nek1, S, scale);
  10251. if (masked) {
  10252. for (int64_t i = P; i < M; i++) {
  10253. if (i > P + iq1) {
  10254. S[i] = -INFINITY;
  10255. }
  10256. }
  10257. }
  10258. // softmax
  10259. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10260. // dont forget to set their S values to zero
  10261. {
  10262. float max = -INFINITY;
  10263. ggml_vec_max_f32(M, &max, S);
  10264. ggml_float sum = 0.0;
  10265. {
  10266. #ifdef GGML_SOFT_MAX_ACCELERATE
  10267. max = -max;
  10268. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10269. vvexpf(S, S, &Mup);
  10270. ggml_vec_sum_f32(Mup, &sum, S);
  10271. #else
  10272. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10273. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10274. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10275. float * SS = S + i;
  10276. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10277. if (SS[j] == -INFINITY) {
  10278. SS[j] = 0.0f;
  10279. } else {
  10280. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10281. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10282. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10283. sump[j] += (ggml_float)val;
  10284. SS[j] = val;
  10285. }
  10286. }
  10287. }
  10288. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10289. sum += sump[i];
  10290. }
  10291. #endif
  10292. }
  10293. assert(sum > 0.0);
  10294. sum = 1.0/sum;
  10295. ggml_vec_scale_f32(M, S, sum);
  10296. #ifndef NDEBUG
  10297. for (int i = 0; i < M; ++i) {
  10298. assert(!isnan(S[i]));
  10299. assert(!isinf(S[i]));
  10300. }
  10301. #endif
  10302. }
  10303. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10304. for (int64_t i = 0; i < M; i++) {
  10305. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10306. }
  10307. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10308. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10309. for (int64_t ic = 0; ic < nev1; ++ic) {
  10310. // dst indices
  10311. const int i1 = iq1;
  10312. const int i2 = iq2;
  10313. const int i3 = iq3;
  10314. // v indices
  10315. const int iv2 = iq2 % nev2;
  10316. const int iv3 = iq3;
  10317. ggml_vec_dot_f16(nev0,
  10318. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10319. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10320. S16);
  10321. }
  10322. } else {
  10323. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10324. // dst indices
  10325. const int i1 = iq1;
  10326. const int i2 = iq2;
  10327. const int i3 = iq3;
  10328. // v indices
  10329. const int iv2 = iq2 % nev2;
  10330. const int iv3 = iq3;
  10331. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10332. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10333. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10334. S16);
  10335. }
  10336. }
  10337. }
  10338. }
  10339. static void ggml_compute_forward_flash_attn(
  10340. const struct ggml_compute_params * params,
  10341. const struct ggml_tensor * q,
  10342. const struct ggml_tensor * k,
  10343. const struct ggml_tensor * v,
  10344. const bool masked,
  10345. struct ggml_tensor * dst) {
  10346. switch (q->type) {
  10347. case GGML_TYPE_F16:
  10348. {
  10349. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10350. } break;
  10351. case GGML_TYPE_F32:
  10352. {
  10353. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10354. } break;
  10355. default:
  10356. {
  10357. GGML_ASSERT(false);
  10358. } break;
  10359. }
  10360. }
  10361. // ggml_compute_forward_flash_ff
  10362. static void ggml_compute_forward_flash_ff_f16(
  10363. const struct ggml_compute_params * params,
  10364. const struct ggml_tensor * a, // F16
  10365. const struct ggml_tensor * b0, // F16 fc_w
  10366. const struct ggml_tensor * b1, // F32 fc_b
  10367. const struct ggml_tensor * c0, // F16 proj_w
  10368. const struct ggml_tensor * c1, // F32 proj_b
  10369. struct ggml_tensor * dst) {
  10370. int64_t t0 = ggml_perf_time_us();
  10371. UNUSED(t0);
  10372. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10373. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10374. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10375. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10376. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10377. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10378. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10379. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10380. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10381. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10382. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10383. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10384. const int ith = params->ith;
  10385. const int nth = params->nth;
  10386. const int64_t D = nea0;
  10387. //const int64_t N = nea1;
  10388. const int64_t M = neb01;
  10389. GGML_ASSERT(ne0 == nea0);
  10390. GGML_ASSERT(ne1 == nea1);
  10391. GGML_ASSERT(ne2 == nea2);
  10392. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10393. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10394. GGML_ASSERT(nbb10 == sizeof(float));
  10395. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10396. GGML_ASSERT(nbc10 == sizeof(float));
  10397. GGML_ASSERT(neb00 == D);
  10398. GGML_ASSERT(neb01 == M);
  10399. GGML_ASSERT(neb10 == M);
  10400. GGML_ASSERT(neb11 == 1);
  10401. GGML_ASSERT(nec00 == M);
  10402. GGML_ASSERT(nec01 == D);
  10403. GGML_ASSERT(nec10 == D);
  10404. GGML_ASSERT(nec11 == 1);
  10405. // dst cannot be transposed or permuted
  10406. GGML_ASSERT(nb0 == sizeof(float));
  10407. GGML_ASSERT(nb0 <= nb1);
  10408. GGML_ASSERT(nb1 <= nb2);
  10409. GGML_ASSERT(nb2 <= nb3);
  10410. if (params->type == GGML_TASK_INIT) {
  10411. return;
  10412. }
  10413. if (params->type == GGML_TASK_FINALIZE) {
  10414. return;
  10415. }
  10416. // parallelize by a rows using ggml_vec_dot_f32
  10417. // total rows in a
  10418. const int nr = nea1*nea2*nea3;
  10419. // rows per thread
  10420. const int dr = (nr + nth - 1)/nth;
  10421. // row range for this thread
  10422. const int ir0 = dr*ith;
  10423. const int ir1 = MIN(ir0 + dr, nr);
  10424. for (int ir = ir0; ir < ir1; ++ir) {
  10425. // a indices
  10426. const int ia3 = ir/(nea2*nea1);
  10427. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10428. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10429. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10430. for (int64_t ic = 0; ic < neb01; ++ic) {
  10431. // b0 indices
  10432. const int ib03 = ia3;
  10433. const int ib02 = ia2;
  10434. const int ib01 = ic;
  10435. // S indices
  10436. const int i1 = ib01;
  10437. ggml_vec_dot_f16(nea0,
  10438. S + i1,
  10439. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10440. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10441. }
  10442. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10443. //ggml_vec_gelu_f32(neb01, S, S);
  10444. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10445. for (int64_t i = 0; i < M; i++) {
  10446. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10447. }
  10448. ggml_vec_gelu_f16(neb01, S16, S16);
  10449. {
  10450. // dst indices
  10451. const int i1 = ia1;
  10452. const int i2 = ia2;
  10453. const int i3 = ia3;
  10454. for (int64_t ic = 0; ic < nec01; ++ic) {
  10455. ggml_vec_dot_f16(neb01,
  10456. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10457. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10458. S16);
  10459. }
  10460. ggml_vec_add_f32(nec01,
  10461. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10462. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10463. (float *) c1->data);
  10464. }
  10465. }
  10466. }
  10467. static void ggml_compute_forward_flash_ff(
  10468. const struct ggml_compute_params * params,
  10469. const struct ggml_tensor * a,
  10470. const struct ggml_tensor * b0,
  10471. const struct ggml_tensor * b1,
  10472. const struct ggml_tensor * c0,
  10473. const struct ggml_tensor * c1,
  10474. struct ggml_tensor * dst) {
  10475. switch (b0->type) {
  10476. case GGML_TYPE_F16:
  10477. {
  10478. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10479. } break;
  10480. case GGML_TYPE_F32:
  10481. {
  10482. GGML_ASSERT(false); // TODO
  10483. } break;
  10484. default:
  10485. {
  10486. GGML_ASSERT(false);
  10487. } break;
  10488. }
  10489. }
  10490. // ggml_compute_forward_flash_attn_back
  10491. static void ggml_compute_forward_flash_attn_back_f32(
  10492. const struct ggml_compute_params * params,
  10493. const struct ggml_tensor * q,
  10494. const struct ggml_tensor * k,
  10495. const struct ggml_tensor * v,
  10496. const struct ggml_tensor * d,
  10497. const bool masked,
  10498. struct ggml_tensor * dst) {
  10499. int64_t t0 = ggml_perf_time_us();
  10500. UNUSED(t0);
  10501. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10502. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10503. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10504. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10505. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10506. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10507. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10508. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10509. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10510. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10511. const int ith = params->ith;
  10512. const int nth = params->nth;
  10513. const int64_t D = neq0;
  10514. const int64_t N = neq1;
  10515. const int64_t P = nek1 - N;
  10516. const int64_t M = P + N;
  10517. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10518. const int mxDM = MAX(D, Mup);
  10519. // GGML_ASSERT(ne0 == D);
  10520. // GGML_ASSERT(ne1 == N);
  10521. GGML_ASSERT(P >= 0);
  10522. GGML_ASSERT(nbq0 == sizeof(float));
  10523. GGML_ASSERT(nbk0 == sizeof(float));
  10524. GGML_ASSERT(nbv0 == sizeof(float));
  10525. GGML_ASSERT(neq0 == D);
  10526. GGML_ASSERT(nek0 == D);
  10527. GGML_ASSERT(nev1 == D);
  10528. GGML_ASSERT(ned0 == D);
  10529. GGML_ASSERT(neq1 == N);
  10530. GGML_ASSERT(nek1 == N + P);
  10531. GGML_ASSERT(nev1 == D);
  10532. GGML_ASSERT(ned1 == N);
  10533. // dst cannot be transposed or permuted
  10534. GGML_ASSERT(nb0 == sizeof(float));
  10535. GGML_ASSERT(nb0 <= nb1);
  10536. GGML_ASSERT(nb1 <= nb2);
  10537. GGML_ASSERT(nb2 <= nb3);
  10538. if (params->type == GGML_TASK_INIT) {
  10539. if (ith == 0) {
  10540. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10541. }
  10542. return;
  10543. }
  10544. if (params->type == GGML_TASK_FINALIZE) {
  10545. return;
  10546. }
  10547. const int64_t elem_q = ggml_nelements(q);
  10548. const int64_t elem_k = ggml_nelements(k);
  10549. enum ggml_type result_type = dst->type;
  10550. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10551. const size_t tsize = ggml_type_size(result_type);
  10552. const size_t offs_q = 0;
  10553. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10554. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10555. void * grad_q = (char *) dst->data;
  10556. void * grad_k = (char *) dst->data + offs_k;
  10557. void * grad_v = (char *) dst->data + offs_v;
  10558. const size_t nbgq1 = nb0*neq0;
  10559. const size_t nbgq2 = nb0*neq0*neq1;
  10560. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10561. const size_t nbgk1 = nb0*nek0;
  10562. const size_t nbgk2 = nb0*nek0*nek1;
  10563. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10564. const size_t nbgv1 = nb0*nev0;
  10565. const size_t nbgv2 = nb0*nev0*nev1;
  10566. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10567. // parallelize by k rows using ggml_vec_dot_f32
  10568. // total rows in k
  10569. const int nr = nek2*nek3;
  10570. // rows per thread
  10571. const int dr = (nr + nth - 1)/nth;
  10572. // row range for this thread
  10573. const int ir0 = dr*ith;
  10574. const int ir1 = MIN(ir0 + dr, nr);
  10575. const float scale = 1.0f/sqrtf(D);
  10576. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10577. // how often k2 (and v2) is repeated in q2
  10578. int nrep = neq2/nek2;
  10579. for (int ir = ir0; ir < ir1; ++ir) {
  10580. // q indices
  10581. const int ik3 = ir/(nek2);
  10582. const int ik2 = ir - ik3*nek2;
  10583. const int iq3 = ik3;
  10584. const int id3 = ik3;
  10585. const int iv3 = ik3;
  10586. const int iv2 = ik2;
  10587. for (int irep = 0; irep < nrep; ++irep) {
  10588. const int iq2 = ik2 + irep*nek2;
  10589. const int id2 = iq2;
  10590. // (ik2 + irep*nek2) % nek2 == ik2
  10591. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10592. const int id1 = iq1;
  10593. // not sure about CACHE_LINE_SIZE_F32..
  10594. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10595. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10596. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10597. for (int i = M; i < Mup; ++i) {
  10598. S[i] = -INFINITY;
  10599. }
  10600. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10601. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10602. // k indices
  10603. const int ik1 = ic;
  10604. // S indices
  10605. const int i1 = ik1;
  10606. ggml_vec_dot_f32(neq0,
  10607. S + i1,
  10608. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10609. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10610. }
  10611. // scale
  10612. ggml_vec_scale_f32(masked_begin, S, scale);
  10613. for (int64_t i = masked_begin; i < M; i++) {
  10614. S[i] = -INFINITY;
  10615. }
  10616. // softmax
  10617. // exclude known -INF S[..] values from max and loop
  10618. // dont forget to set their SM values to zero
  10619. {
  10620. float max = -INFINITY;
  10621. ggml_vec_max_f32(masked_begin, &max, S);
  10622. ggml_float sum = 0.0;
  10623. {
  10624. #ifdef GGML_SOFT_MAX_ACCELERATE
  10625. max = -max;
  10626. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10627. vvexpf(SM, SM, &Mup);
  10628. ggml_vec_sum_f32(Mup, &sum, SM);
  10629. #else
  10630. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10631. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10632. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10633. if (i >= masked_begin) {
  10634. break;
  10635. }
  10636. float * SR = S + i;
  10637. float * SW = SM + i;
  10638. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10639. if (i + j >= masked_begin) {
  10640. break;
  10641. } else if (SR[j] == -INFINITY) {
  10642. SW[j] = 0.0f;
  10643. } else {
  10644. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10645. const float val = expf(SR[j] - max);
  10646. #else
  10647. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10648. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10649. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10650. #endif
  10651. sump[j] += (ggml_float)val;
  10652. SW[j] = val;
  10653. }
  10654. }
  10655. }
  10656. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10657. sum += sump[i];
  10658. }
  10659. #endif
  10660. }
  10661. assert(sum > 0.0);
  10662. sum = 1.0/sum;
  10663. ggml_vec_scale_f32(masked_begin, SM, sum);
  10664. }
  10665. // step-by-step explanation
  10666. {
  10667. // forward-process shape grads from backward process
  10668. // parallel_for ik2,ik3:
  10669. // for irep:
  10670. // iq2 = ik2 + irep*nek2
  10671. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10672. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10673. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10674. // for iq1:
  10675. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10676. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10677. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10678. // S0 = -Inf [D,1,1,1]
  10679. // ~S1[i] = dot(kcur[:D,i], qcur)
  10680. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10681. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10682. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10683. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10684. // ~S5[i] = dot(vcur[:,i], S4)
  10685. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10686. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10687. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10688. // dst backward-/ grad[dst] = d
  10689. //
  10690. // output gradients with their dependencies:
  10691. //
  10692. // grad[kcur] = grad[S1].T @ qcur
  10693. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10694. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10695. // grad[S4] = grad[S5] @ vcur
  10696. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10697. // grad[qcur] = grad[S1] @ kcur
  10698. // grad[vcur] = grad[S5].T @ S4
  10699. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10700. //
  10701. // in post-order:
  10702. //
  10703. // S1 = qcur @ kcur.T
  10704. // S2 = S1 * scale
  10705. // S3 = diag_mask_inf(S2, P)
  10706. // S4 = softmax(S3)
  10707. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10708. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10709. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10710. // grad[qcur] = grad[S1] @ kcur
  10711. // grad[kcur] = grad[S1].T @ qcur
  10712. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10713. //
  10714. // using less variables (SM=S4):
  10715. //
  10716. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10717. // SM = softmax(S)
  10718. // S = d[:D,iq1,iq2,iq3] @ vcur
  10719. // dot_SM_gradSM = dot(SM, S)
  10720. // S = SM * (S - dot(SM, S))
  10721. // S = diag_mask_zero(S, P) * scale
  10722. //
  10723. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10724. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10725. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10726. }
  10727. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10728. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10729. // for ic:
  10730. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10731. // exclude known future zero S[..] values from operation
  10732. ggml_vec_set_f32(masked_begin, S, 0);
  10733. for (int64_t ic = 0; ic < D; ++ic) {
  10734. ggml_vec_mad_f32(masked_begin,
  10735. S,
  10736. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10737. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10738. }
  10739. // S = SM * (S - dot(SM, S))
  10740. float dot_SM_gradSM = 0;
  10741. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  10742. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  10743. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  10744. // S = diag_mask_zero(S, P) * scale
  10745. // already done by above ggml_vec_set_f32
  10746. // exclude known zero S[..] values from operation
  10747. ggml_vec_scale_f32(masked_begin, S, scale);
  10748. // S shape [M,1]
  10749. // SM shape [M,1]
  10750. // kcur shape [D,M]
  10751. // qcur shape [D,1]
  10752. // vcur shape [M,D]
  10753. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10754. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  10755. // for ic:
  10756. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  10757. // exclude known zero S[..] values from loop
  10758. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10759. ggml_vec_mad_f32(D,
  10760. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  10761. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10762. S[ic]);
  10763. }
  10764. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  10765. // for ic:
  10766. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  10767. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  10768. // exclude known zero S[..] values from loop
  10769. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10770. ggml_vec_mad_f32(D,
  10771. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  10772. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  10773. S[ic]);
  10774. }
  10775. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10776. // for ic:
  10777. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  10778. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  10779. // exclude known zero SM[..] values from mad
  10780. for (int64_t ic = 0; ic < D; ++ic) {
  10781. ggml_vec_mad_f32(masked_begin,
  10782. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  10783. SM,
  10784. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10785. }
  10786. }
  10787. }
  10788. }
  10789. }
  10790. static void ggml_compute_forward_flash_attn_back(
  10791. const struct ggml_compute_params * params,
  10792. const struct ggml_tensor * q,
  10793. const struct ggml_tensor * k,
  10794. const struct ggml_tensor * v,
  10795. const struct ggml_tensor * d,
  10796. const bool masked,
  10797. struct ggml_tensor * dst) {
  10798. switch (q->type) {
  10799. case GGML_TYPE_F32:
  10800. {
  10801. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  10802. } break;
  10803. default:
  10804. {
  10805. GGML_ASSERT(false);
  10806. } break;
  10807. }
  10808. }
  10809. // ggml_compute_forward_win_part
  10810. static void ggml_compute_forward_win_part_f32(
  10811. const struct ggml_compute_params * params,
  10812. const struct ggml_tensor * src0,
  10813. struct ggml_tensor * dst) {
  10814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10815. return;
  10816. }
  10817. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10818. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10819. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  10820. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  10821. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  10822. assert(ne00 == ne0);
  10823. assert(ne3 == nep0*nep1);
  10824. // TODO: optimize / multi-thread
  10825. for (int py = 0; py < nep1; ++py) {
  10826. for (int px = 0; px < nep0; ++px) {
  10827. const int64_t i3 = py*nep0 + px;
  10828. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10829. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10830. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10831. const int64_t i02 = py*w + i2;
  10832. const int64_t i01 = px*w + i1;
  10833. const int64_t i00 = i0;
  10834. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  10835. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  10836. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  10837. ((float *) dst->data)[i] = 0.0f;
  10838. } else {
  10839. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  10840. }
  10841. }
  10842. }
  10843. }
  10844. }
  10845. }
  10846. }
  10847. static void ggml_compute_forward_win_part(
  10848. const struct ggml_compute_params * params,
  10849. const struct ggml_tensor * src0,
  10850. struct ggml_tensor * dst) {
  10851. switch (src0->type) {
  10852. case GGML_TYPE_F32:
  10853. {
  10854. ggml_compute_forward_win_part_f32(params, src0, dst);
  10855. } break;
  10856. default:
  10857. {
  10858. GGML_ASSERT(false);
  10859. } break;
  10860. }
  10861. }
  10862. // ggml_compute_forward_win_unpart
  10863. static void ggml_compute_forward_win_unpart_f32(
  10864. const struct ggml_compute_params * params,
  10865. const struct ggml_tensor * src0,
  10866. struct ggml_tensor * dst) {
  10867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10868. return;
  10869. }
  10870. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10871. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10872. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  10873. // padding
  10874. const int px = (w - ne1%w)%w;
  10875. //const int py = (w - ne2%w)%w;
  10876. const int npx = (px + ne1)/w;
  10877. //const int npy = (py + ne2)/w;
  10878. assert(ne0 == ne00);
  10879. // TODO: optimize / multi-thread
  10880. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10881. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10882. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10883. const int ip2 = i2/w;
  10884. const int ip1 = i1/w;
  10885. const int64_t i02 = i2%w;
  10886. const int64_t i01 = i1%w;
  10887. const int64_t i00 = i0;
  10888. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  10889. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  10890. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  10891. }
  10892. }
  10893. }
  10894. }
  10895. static void ggml_compute_forward_win_unpart(
  10896. const struct ggml_compute_params * params,
  10897. const struct ggml_tensor * src0,
  10898. struct ggml_tensor * dst) {
  10899. switch (src0->type) {
  10900. case GGML_TYPE_F32:
  10901. {
  10902. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  10903. } break;
  10904. default:
  10905. {
  10906. GGML_ASSERT(false);
  10907. } break;
  10908. }
  10909. }
  10910. //gmml_compute_forward_unary
  10911. static void ggml_compute_forward_unary(
  10912. const struct ggml_compute_params * params,
  10913. const struct ggml_tensor * src0,
  10914. struct ggml_tensor * dst) {
  10915. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  10916. switch (op) {
  10917. case GGML_UNARY_OP_ABS:
  10918. {
  10919. ggml_compute_forward_abs(params, src0, dst);
  10920. } break;
  10921. case GGML_UNARY_OP_SGN:
  10922. {
  10923. ggml_compute_forward_sgn(params, src0, dst);
  10924. } break;
  10925. case GGML_UNARY_OP_NEG:
  10926. {
  10927. ggml_compute_forward_neg(params, src0, dst);
  10928. } break;
  10929. case GGML_UNARY_OP_STEP:
  10930. {
  10931. ggml_compute_forward_step(params, src0, dst);
  10932. } break;
  10933. case GGML_UNARY_OP_TANH:
  10934. {
  10935. ggml_compute_forward_tanh(params, src0, dst);
  10936. } break;
  10937. case GGML_UNARY_OP_ELU:
  10938. {
  10939. ggml_compute_forward_elu(params, src0, dst);
  10940. } break;
  10941. case GGML_UNARY_OP_RELU:
  10942. {
  10943. ggml_compute_forward_relu(params, src0, dst);
  10944. } break;
  10945. case GGML_UNARY_OP_GELU:
  10946. {
  10947. ggml_compute_forward_gelu(params, src0, dst);
  10948. } break;
  10949. case GGML_UNARY_OP_GELU_QUICK:
  10950. {
  10951. ggml_compute_forward_gelu_quick(params, src0, dst);
  10952. } break;
  10953. case GGML_UNARY_OP_SILU:
  10954. {
  10955. ggml_compute_forward_silu(params, src0, dst);
  10956. } break;
  10957. case GGML_UNARY_OP_LEAKY:
  10958. {
  10959. ggml_compute_forward_leaky(params, src0, dst);
  10960. } break;
  10961. default:
  10962. {
  10963. GGML_ASSERT(false);
  10964. } break;
  10965. }
  10966. }
  10967. // ggml_compute_forward_get_rel_pos
  10968. static void ggml_compute_forward_get_rel_pos_f16(
  10969. const struct ggml_compute_params * params,
  10970. const struct ggml_tensor * src0,
  10971. struct ggml_tensor * dst) {
  10972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10973. return;
  10974. }
  10975. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  10976. GGML_TENSOR_UNARY_OP_LOCALS
  10977. const int64_t w = ne1;
  10978. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  10979. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  10980. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10981. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10982. const int64_t pos = (w - i1 - 1) + i2;
  10983. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10984. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  10985. }
  10986. }
  10987. }
  10988. }
  10989. static void ggml_compute_forward_get_rel_pos(
  10990. const struct ggml_compute_params * params,
  10991. const struct ggml_tensor * src0,
  10992. struct ggml_tensor * dst) {
  10993. switch (src0->type) {
  10994. case GGML_TYPE_F16:
  10995. {
  10996. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  10997. } break;
  10998. default:
  10999. {
  11000. GGML_ASSERT(false);
  11001. } break;
  11002. }
  11003. }
  11004. // ggml_compute_forward_add_rel_pos
  11005. static void ggml_compute_forward_add_rel_pos_f32(
  11006. const struct ggml_compute_params * params,
  11007. const struct ggml_tensor * src0,
  11008. const struct ggml_tensor * src1,
  11009. const struct ggml_tensor * src2,
  11010. struct ggml_tensor * dst) {
  11011. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11012. if (!inplace && params->type == GGML_TASK_INIT) {
  11013. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11014. return;
  11015. }
  11016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11017. return;
  11018. }
  11019. int64_t t0 = ggml_perf_time_us();
  11020. UNUSED(t0);
  11021. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11022. float * src1_data = (float *) src1->data;
  11023. float * src2_data = (float *) src2->data;
  11024. float * dst_data = (float *) dst->data;
  11025. const int64_t ne10 = src1->ne[0];
  11026. const int64_t ne11 = src1->ne[1];
  11027. const int64_t ne12 = src1->ne[2];
  11028. const int64_t ne13 = src1->ne[3];
  11029. const int ith = params->ith;
  11030. const int nth = params->nth;
  11031. // total patches in dst
  11032. const int np = ne13;
  11033. // patches per thread
  11034. const int dp = (np + nth - 1)/nth;
  11035. // patch range for this thread
  11036. const int ip0 = dp*ith;
  11037. const int ip1 = MIN(ip0 + dp, np);
  11038. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11039. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11040. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11041. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11042. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11043. const int64_t jp0 = jp1 + i10;
  11044. const float src1_e = src1_data[jp0];
  11045. const float src2_e = src2_data[jp0];
  11046. const int64_t jdh = jp0 * ne10;
  11047. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11048. for (int64_t j = 0; j < ne10; ++j) {
  11049. dst_data[jdh + j ] += src2_e;
  11050. dst_data[jdw + j*ne10] += src1_e;
  11051. }
  11052. }
  11053. }
  11054. }
  11055. }
  11056. }
  11057. static void ggml_compute_forward_add_rel_pos(
  11058. const struct ggml_compute_params * params,
  11059. const struct ggml_tensor * src0,
  11060. const struct ggml_tensor * src1,
  11061. const struct ggml_tensor * src2,
  11062. struct ggml_tensor * dst) {
  11063. switch (src0->type) {
  11064. case GGML_TYPE_F32:
  11065. {
  11066. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11067. } break;
  11068. default:
  11069. {
  11070. GGML_ASSERT(false);
  11071. } break;
  11072. }
  11073. }
  11074. // ggml_compute_forward_map_unary
  11075. static void ggml_compute_forward_map_unary_f32(
  11076. const struct ggml_compute_params * params,
  11077. const struct ggml_tensor * src0,
  11078. struct ggml_tensor * dst,
  11079. const ggml_unary_op_f32_t fun) {
  11080. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11082. return;
  11083. }
  11084. const int n = ggml_nrows(src0);
  11085. const int nc = src0->ne[0];
  11086. assert( dst->nb[0] == sizeof(float));
  11087. assert(src0->nb[0] == sizeof(float));
  11088. for (int i = 0; i < n; i++) {
  11089. fun(nc,
  11090. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11091. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11092. }
  11093. }
  11094. static void ggml_compute_forward_map_unary(
  11095. const struct ggml_compute_params * params,
  11096. const struct ggml_tensor * src0,
  11097. struct ggml_tensor * dst,
  11098. const ggml_unary_op_f32_t fun) {
  11099. switch (src0->type) {
  11100. case GGML_TYPE_F32:
  11101. {
  11102. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11103. } break;
  11104. default:
  11105. {
  11106. GGML_ASSERT(false);
  11107. } break;
  11108. }
  11109. }
  11110. // ggml_compute_forward_map_binary
  11111. static void ggml_compute_forward_map_binary_f32(
  11112. const struct ggml_compute_params * params,
  11113. const struct ggml_tensor * src0,
  11114. const struct ggml_tensor * src1,
  11115. struct ggml_tensor * dst,
  11116. const ggml_binary_op_f32_t fun) {
  11117. assert(params->ith == 0);
  11118. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11120. return;
  11121. }
  11122. const int n = ggml_nrows(src0);
  11123. const int nc = src0->ne[0];
  11124. assert( dst->nb[0] == sizeof(float));
  11125. assert(src0->nb[0] == sizeof(float));
  11126. assert(src1->nb[0] == sizeof(float));
  11127. for (int i = 0; i < n; i++) {
  11128. fun(nc,
  11129. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11130. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11131. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11132. }
  11133. }
  11134. static void ggml_compute_forward_map_binary(
  11135. const struct ggml_compute_params * params,
  11136. const struct ggml_tensor * src0,
  11137. const struct ggml_tensor * src1,
  11138. struct ggml_tensor * dst,
  11139. const ggml_binary_op_f32_t fun) {
  11140. switch (src0->type) {
  11141. case GGML_TYPE_F32:
  11142. {
  11143. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11144. } break;
  11145. default:
  11146. {
  11147. GGML_ASSERT(false);
  11148. } break;
  11149. }
  11150. }
  11151. // ggml_compute_forward_map_custom1
  11152. static void ggml_compute_forward_map_custom1_f32(
  11153. const struct ggml_compute_params * params,
  11154. const struct ggml_tensor * a,
  11155. struct ggml_tensor * dst,
  11156. const ggml_custom1_op_f32_t fun) {
  11157. assert(params->ith == 0);
  11158. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11159. return;
  11160. }
  11161. fun(dst, a);
  11162. }
  11163. // ggml_compute_forward_map_custom2
  11164. static void ggml_compute_forward_map_custom2_f32(
  11165. const struct ggml_compute_params * params,
  11166. const struct ggml_tensor * a,
  11167. const struct ggml_tensor * b,
  11168. struct ggml_tensor * dst,
  11169. const ggml_custom2_op_f32_t fun) {
  11170. assert(params->ith == 0);
  11171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11172. return;
  11173. }
  11174. fun(dst, a, b);
  11175. }
  11176. // ggml_compute_forward_map_custom3
  11177. static void ggml_compute_forward_map_custom3_f32(
  11178. const struct ggml_compute_params * params,
  11179. const struct ggml_tensor * a,
  11180. const struct ggml_tensor * b,
  11181. const struct ggml_tensor * c,
  11182. struct ggml_tensor * dst,
  11183. const ggml_custom3_op_f32_t fun) {
  11184. assert(params->ith == 0);
  11185. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11186. return;
  11187. }
  11188. fun(dst, a, b, c);
  11189. }
  11190. // ggml_compute_forward_map_custom1
  11191. static void ggml_compute_forward_map_custom1(
  11192. const struct ggml_compute_params * params,
  11193. const struct ggml_tensor * a,
  11194. struct ggml_tensor * dst) {
  11195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11196. return;
  11197. }
  11198. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11199. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11200. }
  11201. // ggml_compute_forward_map_custom2
  11202. static void ggml_compute_forward_map_custom2(
  11203. const struct ggml_compute_params * params,
  11204. const struct ggml_tensor * a,
  11205. const struct ggml_tensor * b,
  11206. struct ggml_tensor * dst) {
  11207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11208. return;
  11209. }
  11210. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11211. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11212. }
  11213. // ggml_compute_forward_map_custom3
  11214. static void ggml_compute_forward_map_custom3(
  11215. const struct ggml_compute_params * params,
  11216. const struct ggml_tensor * a,
  11217. const struct ggml_tensor * b,
  11218. const struct ggml_tensor * c,
  11219. struct ggml_tensor * dst) {
  11220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11221. return;
  11222. }
  11223. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11224. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11225. }
  11226. // ggml_compute_forward_cross_entropy_loss
  11227. static void ggml_compute_forward_cross_entropy_loss_f32(
  11228. const struct ggml_compute_params * params,
  11229. const struct ggml_tensor * src0,
  11230. const struct ggml_tensor * src1,
  11231. struct ggml_tensor * dst) {
  11232. GGML_ASSERT(ggml_is_contiguous(src0));
  11233. GGML_ASSERT(ggml_is_contiguous(src1));
  11234. GGML_ASSERT(ggml_is_scalar(dst));
  11235. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11236. const int ith = params->ith;
  11237. const int nth = params->nth;
  11238. float * sums = (float *) params->wdata;
  11239. // TODO: handle transposed/permuted matrices
  11240. const int nc = src0->ne[0];
  11241. const int nr = ggml_nrows(src0);
  11242. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11243. if (params->type == GGML_TASK_INIT) {
  11244. if (ith == 0) {
  11245. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11246. }
  11247. return;
  11248. }
  11249. if (params->type == GGML_TASK_FINALIZE) {
  11250. if (ith == 0) {
  11251. float * dp = (float *) dst->data;
  11252. ggml_vec_sum_f32(nth, dp, sums);
  11253. dp[0] *= -1.0f / (float) nr;
  11254. }
  11255. return;
  11256. }
  11257. const double eps = 1e-9;
  11258. // rows per thread
  11259. const int dr = (nr + nth - 1)/nth;
  11260. // row range for this thread
  11261. const int ir0 = dr*ith;
  11262. const int ir1 = MIN(ir0 + dr, nr);
  11263. for (int i1 = ir0; i1 < ir1; i1++) {
  11264. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11265. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11266. float * st = ((float *) params->wdata) + nth + ith*nc;
  11267. #ifndef NDEBUG
  11268. for (int i = 0; i < nc; ++i) {
  11269. //printf("p[%d] = %f\n", i, p[i]);
  11270. assert(!isnan(s0[i]));
  11271. assert(!isnan(s1[i]));
  11272. }
  11273. #endif
  11274. // soft_max
  11275. ggml_float sum = 0.0;
  11276. {
  11277. float max = -INFINITY;
  11278. ggml_vec_max_f32(nc, &max, s0);
  11279. uint16_t scvt; UNUSED(scvt);
  11280. for (int i = 0; i < nc; i++) {
  11281. if (s0[i] == -INFINITY) {
  11282. st[i] = 0.0f;
  11283. } else {
  11284. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11285. const float s = s0[i] - max;
  11286. const float val = expf(s);
  11287. #else
  11288. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11289. memcpy(&scvt, &s, sizeof(scvt));
  11290. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11291. #endif
  11292. sum += (ggml_float)val;
  11293. st[i] = val;
  11294. }
  11295. }
  11296. assert(sum > 0.0);
  11297. // sum = 1.0/sum;
  11298. }
  11299. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11300. sum = (1.0 - eps) / sum;
  11301. ggml_vec_scale_f32(nc, st, sum);
  11302. ggml_vec_add1_f32(nc, st, st, eps);
  11303. ggml_vec_log_f32(nc, st, st);
  11304. ggml_vec_mul_f32(nc, st, st, s1);
  11305. float st_sum = 0;
  11306. ggml_vec_sum_f32(nc, &st_sum, st);
  11307. sums[ith] += st_sum;
  11308. #ifndef NDEBUG
  11309. for (int i = 0; i < nc; ++i) {
  11310. assert(!isnan(st[i]));
  11311. assert(!isinf(st[i]));
  11312. }
  11313. #endif
  11314. }
  11315. }
  11316. static void ggml_compute_forward_cross_entropy_loss(
  11317. const struct ggml_compute_params * params,
  11318. const struct ggml_tensor * src0,
  11319. const struct ggml_tensor * src1,
  11320. struct ggml_tensor * dst) {
  11321. switch (src0->type) {
  11322. case GGML_TYPE_F32:
  11323. {
  11324. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11325. } break;
  11326. default:
  11327. {
  11328. GGML_ASSERT(false);
  11329. } break;
  11330. }
  11331. }
  11332. // ggml_compute_forward_cross_entropy_loss_back
  11333. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11334. const struct ggml_compute_params * params,
  11335. const struct ggml_tensor * src0,
  11336. const struct ggml_tensor * src1,
  11337. const struct ggml_tensor * opt0,
  11338. struct ggml_tensor * dst) {
  11339. GGML_ASSERT(ggml_is_contiguous(dst));
  11340. GGML_ASSERT(ggml_is_contiguous(src0));
  11341. GGML_ASSERT(ggml_is_contiguous(src1));
  11342. GGML_ASSERT(ggml_is_contiguous(opt0));
  11343. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11344. const int64_t ith = params->ith;
  11345. const int64_t nth = params->nth;
  11346. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11347. return;
  11348. }
  11349. const double eps = 1e-9;
  11350. // TODO: handle transposed/permuted matrices
  11351. const int64_t nc = src0->ne[0];
  11352. const int64_t nr = ggml_nrows(src0);
  11353. // rows per thread
  11354. const int64_t dr = (nr + nth - 1)/nth;
  11355. // row range for this thread
  11356. const int64_t ir0 = dr*ith;
  11357. const int64_t ir1 = MIN(ir0 + dr, nr);
  11358. float * d = (float *) opt0->data;
  11359. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11360. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11361. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11362. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11363. #ifndef NDEBUG
  11364. for (int i = 0; i < nc; ++i) {
  11365. //printf("p[%d] = %f\n", i, p[i]);
  11366. assert(!isnan(s0[i]));
  11367. assert(!isnan(s1[i]));
  11368. }
  11369. #endif
  11370. // soft_max
  11371. ggml_float sum = 0.0;
  11372. {
  11373. float max = -INFINITY;
  11374. ggml_vec_max_f32(nc, &max, s0);
  11375. uint16_t scvt; UNUSED(scvt);
  11376. for (int i = 0; i < nc; i++) {
  11377. if (s0[i] == -INFINITY) {
  11378. ds0[i] = 0.0f;
  11379. } else {
  11380. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11381. const float s = s0[i] - max;
  11382. const float val = expf(s);
  11383. #else
  11384. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11385. memcpy(&scvt, &s, sizeof(scvt));
  11386. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11387. #endif
  11388. sum += (ggml_float)val;
  11389. ds0[i] = val;
  11390. }
  11391. }
  11392. assert(sum > 0.0);
  11393. sum = (1.0 - eps)/sum;
  11394. }
  11395. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11396. ggml_vec_scale_f32(nc, ds0, sum);
  11397. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11398. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11399. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11400. #ifndef NDEBUG
  11401. for (int i = 0; i < nc; ++i) {
  11402. assert(!isnan(ds0[i]));
  11403. assert(!isinf(ds0[i]));
  11404. }
  11405. #endif
  11406. }
  11407. }
  11408. static void ggml_compute_forward_cross_entropy_loss_back(
  11409. const struct ggml_compute_params * params,
  11410. const struct ggml_tensor * src0,
  11411. const struct ggml_tensor * src1,
  11412. const struct ggml_tensor * opt0,
  11413. struct ggml_tensor * dst) {
  11414. switch (src0->type) {
  11415. case GGML_TYPE_F32:
  11416. {
  11417. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11418. } break;
  11419. default:
  11420. {
  11421. GGML_ASSERT(false);
  11422. } break;
  11423. }
  11424. }
  11425. /////////////////////////////////
  11426. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11427. GGML_ASSERT(params);
  11428. if (tensor->op == GGML_OP_NONE) {
  11429. return;
  11430. }
  11431. #ifdef GGML_USE_CUBLAS
  11432. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11433. if (skip_cpu) {
  11434. return;
  11435. }
  11436. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11437. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11438. #endif // GGML_USE_CUBLAS
  11439. switch (tensor->op) {
  11440. case GGML_OP_DUP:
  11441. {
  11442. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11443. } break;
  11444. case GGML_OP_ADD:
  11445. {
  11446. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11447. } break;
  11448. case GGML_OP_ADD1:
  11449. {
  11450. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11451. } break;
  11452. case GGML_OP_ACC:
  11453. {
  11454. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11455. } break;
  11456. case GGML_OP_SUB:
  11457. {
  11458. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11459. } break;
  11460. case GGML_OP_MUL:
  11461. {
  11462. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11463. } break;
  11464. case GGML_OP_DIV:
  11465. {
  11466. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11467. } break;
  11468. case GGML_OP_SQR:
  11469. {
  11470. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11471. } break;
  11472. case GGML_OP_SQRT:
  11473. {
  11474. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11475. } break;
  11476. case GGML_OP_LOG:
  11477. {
  11478. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11479. } break;
  11480. case GGML_OP_SUM:
  11481. {
  11482. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11483. } break;
  11484. case GGML_OP_SUM_ROWS:
  11485. {
  11486. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11487. } break;
  11488. case GGML_OP_MEAN:
  11489. {
  11490. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11491. } break;
  11492. case GGML_OP_ARGMAX:
  11493. {
  11494. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11495. } break;
  11496. case GGML_OP_REPEAT:
  11497. {
  11498. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11499. } break;
  11500. case GGML_OP_REPEAT_BACK:
  11501. {
  11502. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11503. } break;
  11504. case GGML_OP_CONCAT:
  11505. {
  11506. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11507. } break;
  11508. case GGML_OP_SILU_BACK:
  11509. {
  11510. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11511. } break;
  11512. case GGML_OP_NORM:
  11513. {
  11514. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11515. } break;
  11516. case GGML_OP_RMS_NORM:
  11517. {
  11518. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11519. } break;
  11520. case GGML_OP_RMS_NORM_BACK:
  11521. {
  11522. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11523. } break;
  11524. case GGML_OP_GROUP_NORM:
  11525. {
  11526. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11527. } break;
  11528. case GGML_OP_MUL_MAT:
  11529. {
  11530. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11531. } break;
  11532. case GGML_OP_MUL_MAT_ID:
  11533. {
  11534. ggml_compute_forward_mul_mat_id(params, tensor);
  11535. } break;
  11536. case GGML_OP_OUT_PROD:
  11537. {
  11538. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11539. } break;
  11540. case GGML_OP_SCALE:
  11541. {
  11542. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11543. } break;
  11544. case GGML_OP_SET:
  11545. {
  11546. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11547. } break;
  11548. case GGML_OP_CPY:
  11549. {
  11550. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11551. } break;
  11552. case GGML_OP_CONT:
  11553. {
  11554. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11555. } break;
  11556. case GGML_OP_RESHAPE:
  11557. {
  11558. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11559. } break;
  11560. case GGML_OP_VIEW:
  11561. {
  11562. ggml_compute_forward_view(params, tensor->src[0]);
  11563. } break;
  11564. case GGML_OP_PERMUTE:
  11565. {
  11566. ggml_compute_forward_permute(params, tensor->src[0]);
  11567. } break;
  11568. case GGML_OP_TRANSPOSE:
  11569. {
  11570. ggml_compute_forward_transpose(params, tensor->src[0]);
  11571. } break;
  11572. case GGML_OP_GET_ROWS:
  11573. {
  11574. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11575. } break;
  11576. case GGML_OP_GET_ROWS_BACK:
  11577. {
  11578. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11579. } break;
  11580. case GGML_OP_DIAG:
  11581. {
  11582. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11583. } break;
  11584. case GGML_OP_DIAG_MASK_INF:
  11585. {
  11586. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11587. } break;
  11588. case GGML_OP_DIAG_MASK_ZERO:
  11589. {
  11590. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11591. } break;
  11592. case GGML_OP_SOFT_MAX:
  11593. {
  11594. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11595. } break;
  11596. case GGML_OP_SOFT_MAX_BACK:
  11597. {
  11598. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11599. } break;
  11600. case GGML_OP_ROPE:
  11601. {
  11602. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11603. } break;
  11604. case GGML_OP_ROPE_BACK:
  11605. {
  11606. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11607. } break;
  11608. case GGML_OP_ALIBI:
  11609. {
  11610. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11611. } break;
  11612. case GGML_OP_CLAMP:
  11613. {
  11614. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11615. } break;
  11616. case GGML_OP_CONV_TRANSPOSE_1D:
  11617. {
  11618. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11619. } break;
  11620. case GGML_OP_IM2COL:
  11621. {
  11622. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11623. } break;
  11624. case GGML_OP_CONV_TRANSPOSE_2D:
  11625. {
  11626. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11627. } break;
  11628. case GGML_OP_POOL_1D:
  11629. {
  11630. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11631. } break;
  11632. case GGML_OP_POOL_2D:
  11633. {
  11634. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11635. } break;
  11636. case GGML_OP_UPSCALE:
  11637. {
  11638. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11639. } break;
  11640. case GGML_OP_ARGSORT:
  11641. {
  11642. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  11643. } break;
  11644. case GGML_OP_FLASH_ATTN:
  11645. {
  11646. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11647. GGML_ASSERT(t == 0 || t == 1);
  11648. const bool masked = t != 0;
  11649. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11650. } break;
  11651. case GGML_OP_FLASH_FF:
  11652. {
  11653. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11654. } break;
  11655. case GGML_OP_FLASH_ATTN_BACK:
  11656. {
  11657. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11658. GGML_ASSERT(t == 0 || t == 1);
  11659. bool masked = t != 0;
  11660. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11661. } break;
  11662. case GGML_OP_WIN_PART:
  11663. {
  11664. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11665. } break;
  11666. case GGML_OP_WIN_UNPART:
  11667. {
  11668. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11669. } break;
  11670. case GGML_OP_UNARY:
  11671. {
  11672. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11673. } break;
  11674. case GGML_OP_GET_REL_POS:
  11675. {
  11676. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11677. } break;
  11678. case GGML_OP_ADD_REL_POS:
  11679. {
  11680. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11681. } break;
  11682. case GGML_OP_MAP_UNARY:
  11683. {
  11684. ggml_unary_op_f32_t fun;
  11685. memcpy(&fun, tensor->op_params, sizeof(fun));
  11686. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11687. }
  11688. break;
  11689. case GGML_OP_MAP_BINARY:
  11690. {
  11691. ggml_binary_op_f32_t fun;
  11692. memcpy(&fun, tensor->op_params, sizeof(fun));
  11693. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11694. }
  11695. break;
  11696. case GGML_OP_MAP_CUSTOM1_F32:
  11697. {
  11698. ggml_custom1_op_f32_t fun;
  11699. memcpy(&fun, tensor->op_params, sizeof(fun));
  11700. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11701. }
  11702. break;
  11703. case GGML_OP_MAP_CUSTOM2_F32:
  11704. {
  11705. ggml_custom2_op_f32_t fun;
  11706. memcpy(&fun, tensor->op_params, sizeof(fun));
  11707. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11708. }
  11709. break;
  11710. case GGML_OP_MAP_CUSTOM3_F32:
  11711. {
  11712. ggml_custom3_op_f32_t fun;
  11713. memcpy(&fun, tensor->op_params, sizeof(fun));
  11714. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11715. }
  11716. break;
  11717. case GGML_OP_MAP_CUSTOM1:
  11718. {
  11719. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11720. }
  11721. break;
  11722. case GGML_OP_MAP_CUSTOM2:
  11723. {
  11724. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11725. }
  11726. break;
  11727. case GGML_OP_MAP_CUSTOM3:
  11728. {
  11729. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11730. }
  11731. break;
  11732. case GGML_OP_CROSS_ENTROPY_LOSS:
  11733. {
  11734. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  11735. }
  11736. break;
  11737. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11738. {
  11739. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11740. }
  11741. break;
  11742. case GGML_OP_NONE:
  11743. {
  11744. // nop
  11745. } break;
  11746. case GGML_OP_COUNT:
  11747. {
  11748. GGML_ASSERT(false);
  11749. } break;
  11750. }
  11751. }
  11752. ////////////////////////////////////////////////////////////////////////////////
  11753. static size_t ggml_hash_size(size_t min_sz) {
  11754. // next primes after powers of two
  11755. static const size_t primes[] = {
  11756. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  11757. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  11758. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  11759. 16777259, 33554467, 67108879, 134217757, 268435459,
  11760. 536870923, 1073741827, 2147483659
  11761. };
  11762. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  11763. // find the smallest prime that is larger or equal to min_sz
  11764. size_t l = 0;
  11765. size_t r = n_primes;
  11766. while (l < r) {
  11767. size_t m = (l + r)/2;
  11768. if (primes[m] < min_sz) {
  11769. l = m + 1;
  11770. } else {
  11771. r = m;
  11772. }
  11773. }
  11774. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  11775. return sz;
  11776. }
  11777. static size_t ggml_hash(const void * p) {
  11778. return (size_t)p;
  11779. }
  11780. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11781. size_t h = ggml_hash(key) % hash_set.size;
  11782. // linear probing
  11783. size_t i = h;
  11784. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  11785. i = (i + 1) % hash_set.size;
  11786. if (i == h) {
  11787. // visited all hash table entries -> not found
  11788. return GGML_HASHTABLE_FULL;
  11789. }
  11790. }
  11791. return i;
  11792. }
  11793. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11794. size_t i = ggml_hash_find(hash_set, key);
  11795. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  11796. }
  11797. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11798. size_t i = ggml_hash_find(hash_set, key);
  11799. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11800. if (hash_set.keys[i] == key) {
  11801. return GGML_HASHTABLE_ALREADY_EXISTS;
  11802. }
  11803. // insert
  11804. GGML_ASSERT(hash_set.keys[i] == NULL);
  11805. hash_set.keys[i] = key;
  11806. return i;
  11807. }
  11808. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11809. size_t i = ggml_hash_find(hash_set, key);
  11810. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11811. hash_set.keys[i] = key;
  11812. return i;
  11813. }
  11814. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  11815. size = ggml_hash_size(size);
  11816. struct ggml_hash_set result;
  11817. result.size = size;
  11818. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  11819. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  11820. return result;
  11821. }
  11822. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  11823. free(hash_set.keys);
  11824. }
  11825. struct hash_map {
  11826. struct ggml_hash_set set;
  11827. struct ggml_tensor ** vals;
  11828. };
  11829. static struct hash_map * ggml_new_hash_map(size_t size) {
  11830. struct hash_map * result = malloc(sizeof(struct hash_map));
  11831. result->set = ggml_hash_set_new(size);
  11832. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  11833. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  11834. return result;
  11835. }
  11836. static void ggml_hash_map_free(struct hash_map * map) {
  11837. ggml_hash_set_free(map->set);
  11838. free(map->vals);
  11839. free(map);
  11840. }
  11841. // gradient checkpointing
  11842. static struct ggml_tensor * ggml_recompute_graph_node(
  11843. struct ggml_context * ctx,
  11844. struct ggml_cgraph * graph,
  11845. struct hash_map * replacements,
  11846. struct ggml_tensor * node) {
  11847. if (node == NULL) {
  11848. return NULL;
  11849. }
  11850. if (node->is_param) {
  11851. return node;
  11852. }
  11853. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  11854. return node;
  11855. }
  11856. int count_children = 0;
  11857. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11858. if (node->src[k]) {
  11859. ++count_children;
  11860. }
  11861. }
  11862. if (count_children == 0) {
  11863. return node;
  11864. }
  11865. size_t i = ggml_hash_find(replacements->set, node);
  11866. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  11867. if (replacements->set.keys[i] == node) {
  11868. return replacements->vals[i];
  11869. }
  11870. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  11871. // insert clone into replacements
  11872. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  11873. replacements->set.keys[i] = node;
  11874. replacements->vals[i] = clone;
  11875. clone->op = node->op;
  11876. clone->grad = node->grad;
  11877. clone->is_param = node->is_param;
  11878. clone->extra = node->extra;
  11879. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  11880. clone->nb[k] = node->nb[k];
  11881. }
  11882. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11883. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  11884. }
  11885. if (node->view_src != NULL) {
  11886. clone->data = (node->view_src->data == NULL)
  11887. ? NULL // view_src not yet allocated
  11888. : (char *) node->view_src->data // view_src already allocated
  11889. + node->view_offs;
  11890. clone->view_src = node->view_src;
  11891. clone->view_offs = node->view_offs;
  11892. }
  11893. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  11894. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  11895. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  11896. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  11897. return clone;
  11898. }
  11899. void ggml_build_backward_gradient_checkpointing(
  11900. struct ggml_context * ctx,
  11901. struct ggml_cgraph * gf,
  11902. struct ggml_cgraph * gb,
  11903. struct ggml_cgraph * gb_tmp,
  11904. struct ggml_tensor * * checkpoints,
  11905. int n_checkpoints) {
  11906. ggml_graph_cpy(gf, gb_tmp);
  11907. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  11908. if (n_checkpoints <= 0) {
  11909. ggml_graph_cpy(gb_tmp, gb);
  11910. return;
  11911. }
  11912. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  11913. // insert checkpoints in replacements
  11914. for (int i = 0; i < n_checkpoints; ++i) {
  11915. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  11916. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  11917. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  11918. replacements->set.keys[k] = checkpoints[i];
  11919. replacements->vals[k] = checkpoints[i];
  11920. }
  11921. ggml_graph_cpy(gf, gb);
  11922. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  11923. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  11924. // by recomputing them from checkpoints
  11925. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  11926. struct ggml_tensor * node = gb_tmp->nodes[i];
  11927. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  11928. // insert new tensors recomputing src, reusing already made replacements,
  11929. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  11930. // recurse for input tensors,
  11931. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  11932. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  11933. }
  11934. // insert rewritten backward node with replacements made into resulting backward graph gb
  11935. ggml_build_forward_expand(gb, node);
  11936. }
  11937. ggml_hash_map_free(replacements);
  11938. }
  11939. // functions to change gradients considering the case that input a might be initial gradient with zero value
  11940. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11941. if (ggml_hash_contains(zero_table, a)) {
  11942. return b;
  11943. } else {
  11944. return ggml_add_impl(ctx, a, b, false);
  11945. }
  11946. }
  11947. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  11948. if (ggml_hash_contains(zero_table, a)) {
  11949. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  11950. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  11951. } else {
  11952. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  11953. }
  11954. }
  11955. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11956. if (ggml_hash_contains(zero_table, a)) {
  11957. return ggml_repeat(ctx, b, a);
  11958. } else {
  11959. return ggml_add1_impl(ctx, a, b, false);
  11960. }
  11961. }
  11962. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  11963. if (ggml_hash_contains(zero_table, a)) {
  11964. return ggml_neg(ctx, b);
  11965. } else {
  11966. return ggml_sub_impl(ctx, a, b, false);
  11967. }
  11968. }
  11969. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  11970. struct ggml_tensor * src0 = tensor->src[0];
  11971. struct ggml_tensor * src1 = tensor->src[1];
  11972. switch (tensor->op) {
  11973. case GGML_OP_DUP:
  11974. {
  11975. if (src0->grad) {
  11976. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11977. }
  11978. } break;
  11979. case GGML_OP_ADD:
  11980. {
  11981. if (src0->grad) {
  11982. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11983. }
  11984. if (src1->grad) {
  11985. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  11986. }
  11987. } break;
  11988. case GGML_OP_ADD1:
  11989. {
  11990. if (src0->grad) {
  11991. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  11992. }
  11993. if (src1->grad) {
  11994. src1->grad = ggml_add_or_set(ctx,
  11995. src1->grad,
  11996. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11997. zero_table);
  11998. }
  11999. } break;
  12000. case GGML_OP_ACC:
  12001. {
  12002. if (src0->grad) {
  12003. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12004. }
  12005. if (src1->grad) {
  12006. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12007. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12008. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12009. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12010. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12011. tensor->grad,
  12012. src1->grad->ne[0],
  12013. src1->grad->ne[1],
  12014. src1->grad->ne[2],
  12015. src1->grad->ne[3],
  12016. nb1, nb2, nb3, offset);
  12017. src1->grad =
  12018. ggml_add_or_set(ctx,
  12019. src1->grad,
  12020. ggml_reshape(ctx,
  12021. ggml_cont(ctx, tensor_grad_view),
  12022. src1->grad),
  12023. zero_table);
  12024. }
  12025. } break;
  12026. case GGML_OP_SUB:
  12027. {
  12028. if (src0->grad) {
  12029. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12030. }
  12031. if (src1->grad) {
  12032. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12033. }
  12034. } break;
  12035. case GGML_OP_MUL:
  12036. {
  12037. if (src0->grad) {
  12038. src0->grad =
  12039. ggml_add_or_set(ctx,
  12040. src0->grad,
  12041. ggml_mul(ctx, src1, tensor->grad),
  12042. zero_table);
  12043. }
  12044. if (src1->grad) {
  12045. src1->grad =
  12046. ggml_add_or_set(ctx,
  12047. src1->grad,
  12048. ggml_mul(ctx, src0, tensor->grad),
  12049. zero_table);
  12050. }
  12051. } break;
  12052. case GGML_OP_DIV:
  12053. {
  12054. if (src0->grad) {
  12055. src0->grad =
  12056. ggml_add_or_set(ctx,
  12057. src0->grad,
  12058. ggml_div(ctx, tensor->grad, src1),
  12059. zero_table);
  12060. }
  12061. if (src1->grad) {
  12062. src1->grad =
  12063. ggml_sub_or_set(ctx,
  12064. src1->grad,
  12065. ggml_mul(ctx,
  12066. tensor->grad,
  12067. ggml_div(ctx, tensor, src1)),
  12068. zero_table);
  12069. }
  12070. } break;
  12071. case GGML_OP_SQR:
  12072. {
  12073. if (src0->grad) {
  12074. src0->grad =
  12075. ggml_add_or_set(ctx,
  12076. src0->grad,
  12077. ggml_scale(ctx,
  12078. ggml_mul(ctx, src0, tensor->grad),
  12079. ggml_new_f32(ctx, 2.0f)),
  12080. zero_table);
  12081. }
  12082. } break;
  12083. case GGML_OP_SQRT:
  12084. {
  12085. if (src0->grad) {
  12086. src0->grad =
  12087. ggml_add_or_set(ctx,
  12088. src0->grad,
  12089. ggml_scale(ctx,
  12090. ggml_div(ctx,
  12091. tensor->grad,
  12092. tensor),
  12093. ggml_new_f32(ctx, 0.5f)),
  12094. zero_table);
  12095. }
  12096. } break;
  12097. case GGML_OP_LOG:
  12098. {
  12099. if (src0->grad) {
  12100. src0->grad =
  12101. ggml_add_or_set(ctx,
  12102. src0->grad,
  12103. ggml_div(ctx,
  12104. tensor->grad,
  12105. src0),
  12106. zero_table);
  12107. }
  12108. } break;
  12109. case GGML_OP_SUM:
  12110. {
  12111. if (src0->grad) {
  12112. src0->grad =
  12113. ggml_add1_or_set(ctx,
  12114. src0->grad,
  12115. tensor->grad,
  12116. zero_table);
  12117. }
  12118. } break;
  12119. case GGML_OP_SUM_ROWS:
  12120. {
  12121. if (src0->grad) {
  12122. src0->grad =
  12123. ggml_add_or_set(ctx,
  12124. src0->grad,
  12125. ggml_repeat(ctx,
  12126. tensor->grad,
  12127. src0->grad),
  12128. zero_table);
  12129. }
  12130. } break;
  12131. case GGML_OP_MEAN:
  12132. case GGML_OP_ARGMAX:
  12133. {
  12134. GGML_ASSERT(false); // TODO: implement
  12135. } break;
  12136. case GGML_OP_REPEAT:
  12137. {
  12138. // necessary for llama
  12139. if (src0->grad) {
  12140. src0->grad = ggml_add_or_set(ctx,
  12141. src0->grad,
  12142. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12143. zero_table);
  12144. }
  12145. } break;
  12146. case GGML_OP_REPEAT_BACK:
  12147. {
  12148. if (src0->grad) {
  12149. // TODO: test this
  12150. src0->grad = ggml_add_or_set(ctx,
  12151. src0->grad,
  12152. ggml_repeat(ctx, tensor->grad, src0->grad),
  12153. zero_table);
  12154. }
  12155. } break;
  12156. case GGML_OP_CONCAT:
  12157. {
  12158. GGML_ASSERT(false); // TODO: implement
  12159. } break;
  12160. case GGML_OP_SILU_BACK:
  12161. {
  12162. GGML_ASSERT(false); // TODO: not implemented
  12163. } break;
  12164. case GGML_OP_NORM:
  12165. {
  12166. GGML_ASSERT(false); // TODO: not implemented
  12167. } break;
  12168. case GGML_OP_RMS_NORM:
  12169. {
  12170. // necessary for llama
  12171. if (src0->grad) {
  12172. float eps;
  12173. memcpy(&eps, tensor->op_params, sizeof(float));
  12174. src0->grad = ggml_add_or_set(ctx,
  12175. src0->grad,
  12176. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12177. zero_table);
  12178. }
  12179. } break;
  12180. case GGML_OP_RMS_NORM_BACK:
  12181. {
  12182. GGML_ASSERT(false); // TODO: not implemented
  12183. } break;
  12184. case GGML_OP_GROUP_NORM:
  12185. {
  12186. GGML_ASSERT(false); // TODO: not implemented
  12187. } break;
  12188. case GGML_OP_MUL_MAT:
  12189. {
  12190. // https://cs231n.github.io/optimization-2/#staged
  12191. // # forward pass
  12192. // s0 = np.random.randn(5, 10)
  12193. // s1 = np.random.randn(10, 3)
  12194. // t = s0.dot(s1)
  12195. // # now suppose we had the gradient on t from above in the circuit
  12196. // dt = np.random.randn(*t.shape) # same shape as t
  12197. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12198. // ds1 = t.T.dot(dt)
  12199. // tensor.shape [m,p,qq,rr]
  12200. // src0.shape [n,m,q1,r1]
  12201. // src1.shape [n,p,qq,rr]
  12202. // necessary for llama
  12203. if (src0->grad) {
  12204. struct ggml_tensor * s1_tg =
  12205. ggml_out_prod(ctx, // [n,m,qq,rr]
  12206. src1, // [n,p,qq,rr]
  12207. tensor->grad); // [m,p,qq,rr]
  12208. const int64_t qq = s1_tg->ne[2];
  12209. const int64_t rr = s1_tg->ne[3];
  12210. const int64_t q1 = src0->ne[2];
  12211. const int64_t r1 = src0->ne[3];
  12212. const bool ne2_broadcasted = qq > q1;
  12213. const bool ne3_broadcasted = rr > r1;
  12214. if (ne2_broadcasted || ne3_broadcasted) {
  12215. // sum broadcast repetitions of s1_tg into shape of src0
  12216. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12217. }
  12218. src0->grad =
  12219. ggml_add_or_set(ctx,
  12220. src0->grad, // [n,m,q1,r1]
  12221. s1_tg, // [n,m,q1,r1]
  12222. zero_table);
  12223. }
  12224. if (src1->grad) {
  12225. src1->grad =
  12226. ggml_add_or_set(ctx,
  12227. src1->grad, // [n,p,qq,rr]
  12228. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12229. // ggml_cont(ctx, // [m,n,q1,r1]
  12230. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12231. // tensor->grad), // [m,p,qq,rr]
  12232. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12233. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12234. // // and then use ggml_out_prod
  12235. ggml_out_prod(ctx, // [n,p,qq,rr]
  12236. src0, // [n,m,q1,r1]
  12237. ggml_transpose(ctx, // [p,m,qq,rr]
  12238. tensor->grad)), // [m,p,qq,rr]
  12239. zero_table);
  12240. }
  12241. } break;
  12242. case GGML_OP_MUL_MAT_ID:
  12243. {
  12244. GGML_ASSERT(false); // TODO: not implemented
  12245. } break;
  12246. case GGML_OP_OUT_PROD:
  12247. {
  12248. GGML_ASSERT(false); // TODO: not implemented
  12249. } break;
  12250. case GGML_OP_SCALE:
  12251. {
  12252. // necessary for llama
  12253. if (src0->grad) {
  12254. src0->grad =
  12255. ggml_add_or_set(ctx,
  12256. src0->grad,
  12257. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12258. zero_table);
  12259. }
  12260. if (src1->grad) {
  12261. src1->grad =
  12262. ggml_add_or_set(ctx,
  12263. src1->grad,
  12264. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12265. zero_table);
  12266. }
  12267. } break;
  12268. case GGML_OP_SET:
  12269. {
  12270. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12271. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12272. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12273. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12274. struct ggml_tensor * tensor_grad_view = NULL;
  12275. if (src0->grad || src1->grad) {
  12276. GGML_ASSERT(src0->type == tensor->type);
  12277. GGML_ASSERT(tensor->grad->type == tensor->type);
  12278. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12279. tensor_grad_view = ggml_view_4d(ctx,
  12280. tensor->grad,
  12281. src1->grad->ne[0],
  12282. src1->grad->ne[1],
  12283. src1->grad->ne[2],
  12284. src1->grad->ne[3],
  12285. nb1, nb2, nb3, offset);
  12286. }
  12287. if (src0->grad) {
  12288. src0->grad = ggml_add_or_set(ctx,
  12289. src0->grad,
  12290. ggml_acc_impl(ctx,
  12291. tensor->grad,
  12292. ggml_neg(ctx, tensor_grad_view),
  12293. nb1, nb2, nb3, offset, false),
  12294. zero_table);
  12295. }
  12296. if (src1->grad) {
  12297. src1->grad =
  12298. ggml_add_or_set(ctx,
  12299. src1->grad,
  12300. ggml_reshape(ctx,
  12301. ggml_cont(ctx, tensor_grad_view),
  12302. src1->grad),
  12303. zero_table);
  12304. }
  12305. } break;
  12306. case GGML_OP_CPY:
  12307. {
  12308. // necessary for llama
  12309. // cpy overwrites value of src1 by src0 and returns view(src1)
  12310. // the overwriting is mathematically equivalent to:
  12311. // tensor = src0 * 1 + src1 * 0
  12312. if (src0->grad) {
  12313. // dsrc0 = dtensor * 1
  12314. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12315. }
  12316. if (src1->grad) {
  12317. // dsrc1 = dtensor * 0 -> noop
  12318. }
  12319. } break;
  12320. case GGML_OP_CONT:
  12321. {
  12322. // same as cpy
  12323. if (src0->grad) {
  12324. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12325. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12326. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12327. }
  12328. } break;
  12329. case GGML_OP_RESHAPE:
  12330. {
  12331. // necessary for llama
  12332. if (src0->grad) {
  12333. src0->grad =
  12334. ggml_add_or_set(ctx, src0->grad,
  12335. ggml_reshape(ctx,
  12336. ggml_is_contiguous(tensor->grad)
  12337. ? tensor->grad
  12338. : ggml_cont(ctx, tensor->grad),
  12339. src0->grad),
  12340. zero_table);
  12341. }
  12342. } break;
  12343. case GGML_OP_VIEW:
  12344. {
  12345. // necessary for llama
  12346. if (src0->grad) {
  12347. size_t offset;
  12348. memcpy(&offset, tensor->op_params, sizeof(offset));
  12349. size_t nb1 = tensor->nb[1];
  12350. size_t nb2 = tensor->nb[2];
  12351. size_t nb3 = tensor->nb[3];
  12352. if (src0->type != src0->grad->type) {
  12353. // gradient is typically F32, but src0 could be other type
  12354. size_t ng = ggml_element_size(src0->grad);
  12355. size_t n0 = ggml_element_size(src0);
  12356. GGML_ASSERT(offset % n0 == 0);
  12357. GGML_ASSERT(nb1 % n0 == 0);
  12358. GGML_ASSERT(nb2 % n0 == 0);
  12359. GGML_ASSERT(nb3 % n0 == 0);
  12360. offset = (offset / n0) * ng;
  12361. nb1 = (nb1 / n0) * ng;
  12362. nb2 = (nb2 / n0) * ng;
  12363. nb3 = (nb3 / n0) * ng;
  12364. }
  12365. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12366. }
  12367. } break;
  12368. case GGML_OP_PERMUTE:
  12369. {
  12370. // necessary for llama
  12371. if (src0->grad) {
  12372. int32_t * axes = (int32_t *) tensor->op_params;
  12373. int axis0 = axes[0] & 0x3;
  12374. int axis1 = axes[1] & 0x3;
  12375. int axis2 = axes[2] & 0x3;
  12376. int axis3 = axes[3] & 0x3;
  12377. int axes_backward[4] = {0,0,0,0};
  12378. axes_backward[axis0] = 0;
  12379. axes_backward[axis1] = 1;
  12380. axes_backward[axis2] = 2;
  12381. axes_backward[axis3] = 3;
  12382. src0->grad =
  12383. ggml_add_or_set(ctx, src0->grad,
  12384. ggml_permute(ctx,
  12385. tensor->grad,
  12386. axes_backward[0],
  12387. axes_backward[1],
  12388. axes_backward[2],
  12389. axes_backward[3]),
  12390. zero_table);
  12391. }
  12392. } break;
  12393. case GGML_OP_TRANSPOSE:
  12394. {
  12395. // necessary for llama
  12396. if (src0->grad) {
  12397. src0->grad =
  12398. ggml_add_or_set(ctx, src0->grad,
  12399. ggml_transpose(ctx, tensor->grad),
  12400. zero_table);
  12401. }
  12402. } break;
  12403. case GGML_OP_GET_ROWS:
  12404. {
  12405. // necessary for llama (only for tokenizer)
  12406. if (src0->grad) {
  12407. src0->grad =
  12408. ggml_add_or_set(ctx, src0->grad,
  12409. // last ggml_get_rows_back argument src0->grad is only
  12410. // necessary to setup correct output shape
  12411. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12412. zero_table);
  12413. }
  12414. if (src1->grad) {
  12415. // noop
  12416. }
  12417. } break;
  12418. case GGML_OP_GET_ROWS_BACK:
  12419. {
  12420. GGML_ASSERT(false); // TODO: not implemented
  12421. } break;
  12422. case GGML_OP_DIAG:
  12423. {
  12424. GGML_ASSERT(false); // TODO: not implemented
  12425. } break;
  12426. case GGML_OP_DIAG_MASK_INF:
  12427. {
  12428. // necessary for llama
  12429. if (src0->grad) {
  12430. const int n_past = ((int32_t *) tensor->op_params)[0];
  12431. src0->grad =
  12432. ggml_add_or_set(ctx, src0->grad,
  12433. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12434. zero_table);
  12435. }
  12436. } break;
  12437. case GGML_OP_DIAG_MASK_ZERO:
  12438. {
  12439. // necessary for llama
  12440. if (src0->grad) {
  12441. const int n_past = ((int32_t *) tensor->op_params)[0];
  12442. src0->grad =
  12443. ggml_add_or_set(ctx, src0->grad,
  12444. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12445. zero_table);
  12446. }
  12447. } break;
  12448. case GGML_OP_SOFT_MAX:
  12449. {
  12450. // necessary for llama
  12451. if (src0->grad) {
  12452. src0->grad =
  12453. ggml_add_or_set(ctx, src0->grad,
  12454. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12455. zero_table);
  12456. }
  12457. } break;
  12458. case GGML_OP_SOFT_MAX_BACK:
  12459. {
  12460. GGML_ASSERT(false); // TODO: not implemented
  12461. } break;
  12462. case GGML_OP_ROPE:
  12463. {
  12464. // necessary for llama
  12465. if (src0->grad) {
  12466. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12467. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12468. const int mode = ((int32_t *) tensor->op_params)[2];
  12469. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12470. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12471. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12472. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12473. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12474. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12475. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12476. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12477. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12478. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12479. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12480. src0->grad = ggml_add_or_set(ctx,
  12481. src0->grad,
  12482. ggml_rope_back(ctx,
  12483. tensor->grad,
  12484. src1,
  12485. n_dims,
  12486. mode,
  12487. n_ctx,
  12488. n_orig_ctx,
  12489. freq_base,
  12490. freq_scale,
  12491. ext_factor,
  12492. attn_factor,
  12493. beta_fast,
  12494. beta_slow,
  12495. xpos_base,
  12496. xpos_down),
  12497. zero_table);
  12498. }
  12499. } break;
  12500. case GGML_OP_ROPE_BACK:
  12501. {
  12502. if (src0->grad) {
  12503. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12504. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12505. const int mode = ((int32_t *) tensor->op_params)[2];
  12506. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12507. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12508. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12509. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12510. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12511. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12512. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12513. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12514. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12515. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12516. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12517. src0->grad = ggml_add_or_set(ctx,
  12518. src0->grad,
  12519. ggml_rope_impl(ctx,
  12520. tensor->grad,
  12521. src1,
  12522. n_dims,
  12523. mode,
  12524. n_ctx,
  12525. n_orig_ctx,
  12526. freq_base,
  12527. freq_scale,
  12528. ext_factor,
  12529. attn_factor,
  12530. beta_fast,
  12531. beta_slow,
  12532. xpos_base,
  12533. xpos_down,
  12534. false),
  12535. zero_table);
  12536. }
  12537. } break;
  12538. case GGML_OP_ALIBI:
  12539. {
  12540. GGML_ASSERT(false); // TODO: not implemented
  12541. } break;
  12542. case GGML_OP_CLAMP:
  12543. {
  12544. GGML_ASSERT(false); // TODO: not implemented
  12545. } break;
  12546. case GGML_OP_CONV_TRANSPOSE_1D:
  12547. {
  12548. GGML_ASSERT(false); // TODO: not implemented
  12549. } break;
  12550. case GGML_OP_IM2COL:
  12551. {
  12552. GGML_ASSERT(false); // TODO: not implemented
  12553. } break;
  12554. case GGML_OP_CONV_TRANSPOSE_2D:
  12555. {
  12556. GGML_ASSERT(false); // TODO: not implemented
  12557. } break;
  12558. case GGML_OP_POOL_1D:
  12559. {
  12560. GGML_ASSERT(false); // TODO: not implemented
  12561. } break;
  12562. case GGML_OP_POOL_2D:
  12563. {
  12564. GGML_ASSERT(false); // TODO: not implemented
  12565. } break;
  12566. case GGML_OP_UPSCALE:
  12567. {
  12568. GGML_ASSERT(false); // TODO: not implemented
  12569. } break;
  12570. case GGML_OP_ARGSORT:
  12571. {
  12572. GGML_ASSERT(false); // TODO: not implemented
  12573. } break;
  12574. case GGML_OP_FLASH_ATTN:
  12575. {
  12576. struct ggml_tensor * flash_grad = NULL;
  12577. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12578. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12579. GGML_ASSERT(t == 0 || t == 1);
  12580. bool masked = t != 0;
  12581. flash_grad =
  12582. ggml_flash_attn_back(ctx,
  12583. src0,
  12584. src1,
  12585. tensor->src[2],
  12586. tensor->grad,
  12587. masked);
  12588. }
  12589. struct ggml_tensor * src2 = tensor->src[2];
  12590. const int64_t elem_q = ggml_nelements(src0);
  12591. const int64_t elem_k = ggml_nelements(src1);
  12592. const int64_t elem_v = ggml_nelements(src2);
  12593. enum ggml_type result_type = flash_grad->type;
  12594. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12595. const size_t tsize = ggml_type_size(result_type);
  12596. const size_t offs_q = 0;
  12597. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12598. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12599. if (src0->grad) {
  12600. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12601. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12602. src0->grad = ggml_add_or_set(ctx,
  12603. src0->grad,
  12604. grad_q,
  12605. zero_table);
  12606. }
  12607. if (src1->grad) {
  12608. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12609. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12610. src1->grad = ggml_add_or_set(ctx,
  12611. src1->grad,
  12612. grad_k,
  12613. zero_table);
  12614. }
  12615. if (src2->grad) {
  12616. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12617. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12618. src2->grad = ggml_add_or_set(ctx,
  12619. src2->grad,
  12620. grad_v,
  12621. zero_table);
  12622. }
  12623. } break;
  12624. case GGML_OP_FLASH_FF:
  12625. {
  12626. GGML_ASSERT(false); // not supported
  12627. } break;
  12628. case GGML_OP_FLASH_ATTN_BACK:
  12629. {
  12630. GGML_ASSERT(false); // not supported
  12631. } break;
  12632. case GGML_OP_WIN_PART:
  12633. case GGML_OP_WIN_UNPART:
  12634. case GGML_OP_UNARY:
  12635. {
  12636. switch (ggml_get_unary_op(tensor)) {
  12637. case GGML_UNARY_OP_ABS:
  12638. {
  12639. if (src0->grad) {
  12640. src0->grad =
  12641. ggml_add_or_set(ctx,
  12642. src0->grad,
  12643. ggml_mul(ctx,
  12644. ggml_sgn(ctx, src0),
  12645. tensor->grad),
  12646. zero_table);
  12647. }
  12648. } break;
  12649. case GGML_UNARY_OP_SGN:
  12650. {
  12651. if (src0->grad) {
  12652. // noop
  12653. }
  12654. } break;
  12655. case GGML_UNARY_OP_NEG:
  12656. {
  12657. if (src0->grad) {
  12658. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12659. }
  12660. } break;
  12661. case GGML_UNARY_OP_STEP:
  12662. {
  12663. if (src0->grad) {
  12664. // noop
  12665. }
  12666. } break;
  12667. case GGML_UNARY_OP_TANH:
  12668. {
  12669. GGML_ASSERT(false); // TODO: not implemented
  12670. } break;
  12671. case GGML_UNARY_OP_ELU:
  12672. {
  12673. GGML_ASSERT(false); // TODO: not implemented
  12674. } break;
  12675. case GGML_UNARY_OP_RELU:
  12676. {
  12677. if (src0->grad) {
  12678. src0->grad = ggml_add_or_set(ctx,
  12679. src0->grad,
  12680. ggml_mul(ctx,
  12681. ggml_step(ctx, src0),
  12682. tensor->grad),
  12683. zero_table);
  12684. }
  12685. } break;
  12686. case GGML_UNARY_OP_GELU:
  12687. {
  12688. GGML_ASSERT(false); // TODO: not implemented
  12689. } break;
  12690. case GGML_UNARY_OP_GELU_QUICK:
  12691. {
  12692. GGML_ASSERT(false); // TODO: not implemented
  12693. } break;
  12694. case GGML_UNARY_OP_SILU:
  12695. {
  12696. // necessary for llama
  12697. if (src0->grad) {
  12698. src0->grad = ggml_add_or_set(ctx,
  12699. src0->grad,
  12700. ggml_silu_back(ctx, src0, tensor->grad),
  12701. zero_table);
  12702. }
  12703. } break;
  12704. default:
  12705. GGML_ASSERT(false);
  12706. }
  12707. } break;
  12708. case GGML_OP_GET_REL_POS:
  12709. case GGML_OP_ADD_REL_POS:
  12710. case GGML_OP_MAP_UNARY:
  12711. case GGML_OP_MAP_BINARY:
  12712. case GGML_OP_MAP_CUSTOM1_F32:
  12713. case GGML_OP_MAP_CUSTOM2_F32:
  12714. case GGML_OP_MAP_CUSTOM3_F32:
  12715. case GGML_OP_MAP_CUSTOM1:
  12716. case GGML_OP_MAP_CUSTOM2:
  12717. case GGML_OP_MAP_CUSTOM3:
  12718. {
  12719. GGML_ASSERT(false); // not supported
  12720. } break;
  12721. case GGML_OP_CROSS_ENTROPY_LOSS:
  12722. {
  12723. if (src0->grad) {
  12724. src0->grad = ggml_add_or_set(ctx,
  12725. src0->grad,
  12726. ggml_cross_entropy_loss_back(ctx,
  12727. src0,
  12728. src1,
  12729. tensor->grad),
  12730. zero_table);
  12731. }
  12732. } break;
  12733. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12734. {
  12735. GGML_ASSERT(false); // not supported
  12736. } break;
  12737. case GGML_OP_NONE:
  12738. {
  12739. // nop
  12740. } break;
  12741. case GGML_OP_COUNT:
  12742. {
  12743. GGML_ASSERT(false);
  12744. } break;
  12745. }
  12746. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12747. if (tensor->src[i] && tensor->src[i]->grad) {
  12748. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  12749. }
  12750. }
  12751. }
  12752. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12753. if (node->grad == NULL) {
  12754. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12755. // it can also happen during forward pass, if the user performs computations with constants
  12756. if (node->op != GGML_OP_NONE) {
  12757. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12758. }
  12759. }
  12760. // check if already visited
  12761. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  12762. return;
  12763. }
  12764. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12765. const int k =
  12766. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  12767. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  12768. /* unknown order, just fall back to using i*/ i;
  12769. if (node->src[k]) {
  12770. ggml_visit_parents(cgraph, node->src[k]);
  12771. }
  12772. }
  12773. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12774. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12775. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  12776. if (strlen(node->name) == 0) {
  12777. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12778. }
  12779. cgraph->leafs[cgraph->n_leafs] = node;
  12780. cgraph->n_leafs++;
  12781. } else {
  12782. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  12783. if (strlen(node->name) == 0) {
  12784. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12785. }
  12786. cgraph->nodes[cgraph->n_nodes] = node;
  12787. if (cgraph->grads) {
  12788. cgraph->grads[cgraph->n_nodes] = node->grad;
  12789. }
  12790. cgraph->n_nodes++;
  12791. }
  12792. }
  12793. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12794. if (!expand) {
  12795. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  12796. ggml_graph_clear(cgraph);
  12797. }
  12798. const int n0 = cgraph->n_nodes;
  12799. UNUSED(n0);
  12800. ggml_visit_parents(cgraph, tensor);
  12801. const int n_new = cgraph->n_nodes - n0;
  12802. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12803. if (n_new > 0) {
  12804. // the last added node should always be starting point
  12805. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12806. }
  12807. }
  12808. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12809. ggml_build_forward_impl(cgraph, tensor, true);
  12810. }
  12811. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  12812. GGML_ASSERT(gf->n_nodes > 0);
  12813. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12814. if (keep) {
  12815. for (int i = 0; i < gf->n_nodes; i++) {
  12816. struct ggml_tensor * node = gf->nodes[i];
  12817. if (node->grad) {
  12818. node->grad = ggml_dup_tensor(ctx, node);
  12819. gf->grads[i] = node->grad;
  12820. }
  12821. }
  12822. }
  12823. // remember original gradients which start with zero values
  12824. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  12825. for (int i = 0; i < gf->n_nodes; i++) {
  12826. if (gf->grads[i]) {
  12827. ggml_hash_insert(zero_table, gf->grads[i]);
  12828. }
  12829. }
  12830. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12831. struct ggml_tensor * node = gf->nodes[i];
  12832. // inplace operations to add gradients are not created by ggml_compute_backward
  12833. // use allocator to automatically make inplace operations
  12834. if (node->grad) {
  12835. ggml_compute_backward(ctx, node, zero_table);
  12836. }
  12837. }
  12838. for (int i = 0; i < gf->n_nodes; i++) {
  12839. struct ggml_tensor * node = gf->nodes[i];
  12840. if (node->is_param) {
  12841. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12842. ggml_build_forward_expand(gb, node->grad);
  12843. }
  12844. }
  12845. ggml_hash_set_free(zero_table);
  12846. }
  12847. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  12848. size_t nbytes = sizeof(struct ggml_cgraph);
  12849. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  12850. if (grads) {
  12851. nbytes += size * sizeof(struct ggml_tensor *); // grads
  12852. }
  12853. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  12854. return nbytes;
  12855. }
  12856. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  12857. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  12858. }
  12859. size_t ggml_graph_overhead(void) {
  12860. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  12861. }
  12862. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  12863. const size_t obj_size = ggml_graph_nbytes(size, grads);
  12864. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  12865. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  12866. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  12867. size_t hash_size = ggml_hash_size(size * 2);
  12868. struct ggml_tensor ** nodes_ptr = data_start;
  12869. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  12870. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  12871. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  12872. // check that we allocated the correct amount of memory
  12873. assert(obj_size == (size_t) (
  12874. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  12875. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  12876. *cgraph = (struct ggml_cgraph) {
  12877. /*.size =*/ size,
  12878. /*.n_nodes =*/ 0,
  12879. /*.n_leafs =*/ 0,
  12880. /*.nodes =*/ nodes_ptr,
  12881. /*.grads =*/ grads_ptr,
  12882. /*.leafs =*/ leafs_ptr,
  12883. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  12884. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  12885. /*.perf_runs =*/ 0,
  12886. /*.perf_cycles =*/ 0,
  12887. /*.perf_time_us =*/ 0,
  12888. };
  12889. return cgraph;
  12890. }
  12891. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  12892. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  12893. }
  12894. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  12895. struct ggml_cgraph cgraph = {
  12896. /*.size =*/ 0,
  12897. /*.n_nodes =*/ i1 - i0,
  12898. /*.n_leafs =*/ 0,
  12899. /*.nodes =*/ cgraph0->nodes + i0,
  12900. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  12901. /*.leafs =*/ NULL,
  12902. /*.hash_table =*/ { 0, NULL },
  12903. /*.order =*/ cgraph0->order,
  12904. /*.perf_runs =*/ 0,
  12905. /*.perf_cycles =*/ 0,
  12906. /*.perf_time_us =*/ 0,
  12907. };
  12908. return cgraph;
  12909. }
  12910. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  12911. GGML_ASSERT(dst->size >= src->n_leafs);
  12912. GGML_ASSERT(dst->size >= src->n_nodes);
  12913. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  12914. dst->n_leafs = src->n_leafs;
  12915. dst->n_nodes = src->n_nodes;
  12916. dst->order = src->order;
  12917. for (int i = 0; i < src->n_leafs; ++i) {
  12918. dst->leafs[i] = src->leafs[i];
  12919. }
  12920. for (int i = 0; i < src->n_nodes; ++i) {
  12921. dst->nodes[i] = src->nodes[i];
  12922. }
  12923. if (src->grads) {
  12924. GGML_ASSERT(dst->grads != NULL);
  12925. for (int i = 0; i < src->n_nodes; ++i) {
  12926. dst->grads[i] = src->grads[i];
  12927. }
  12928. }
  12929. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  12930. if (src->visited_hash_table.keys[i]) {
  12931. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  12932. }
  12933. }
  12934. }
  12935. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12936. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  12937. ggml_graph_cpy(cgraph, result);
  12938. return result;
  12939. }
  12940. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12941. GGML_ASSERT(cgraph->grads != NULL);
  12942. for (int i = 0; i < cgraph->n_nodes; i++) {
  12943. struct ggml_tensor * grad = cgraph->grads[i];
  12944. if (grad) {
  12945. ggml_set_zero(grad);
  12946. }
  12947. }
  12948. }
  12949. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  12950. cgraph->n_leafs = 0;
  12951. cgraph->n_nodes = 0;
  12952. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  12953. }
  12954. //
  12955. // thread data
  12956. //
  12957. // synchronization is done via busy loops
  12958. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12959. //
  12960. #ifdef __APPLE__
  12961. //#include <os/lock.h>
  12962. //
  12963. //typedef os_unfair_lock ggml_lock_t;
  12964. //
  12965. //#define ggml_lock_init(x) UNUSED(x)
  12966. //#define ggml_lock_destroy(x) UNUSED(x)
  12967. //#define ggml_lock_lock os_unfair_lock_lock
  12968. //#define ggml_lock_unlock os_unfair_lock_unlock
  12969. //
  12970. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12971. typedef int ggml_lock_t;
  12972. #define ggml_lock_init(x) UNUSED(x)
  12973. #define ggml_lock_destroy(x) UNUSED(x)
  12974. #define ggml_lock_lock(x) UNUSED(x)
  12975. #define ggml_lock_unlock(x) UNUSED(x)
  12976. #define GGML_LOCK_INITIALIZER 0
  12977. typedef pthread_t ggml_thread_t;
  12978. #define ggml_thread_create pthread_create
  12979. #define ggml_thread_join pthread_join
  12980. #else
  12981. //typedef pthread_spinlock_t ggml_lock_t;
  12982. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12983. //#define ggml_lock_destroy pthread_spin_destroy
  12984. //#define ggml_lock_lock pthread_spin_lock
  12985. //#define ggml_lock_unlock pthread_spin_unlock
  12986. typedef int ggml_lock_t;
  12987. #define ggml_lock_init(x) UNUSED(x)
  12988. #define ggml_lock_destroy(x) UNUSED(x)
  12989. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12990. #define ggml_lock_lock(x) _mm_pause()
  12991. #else
  12992. #define ggml_lock_lock(x) UNUSED(x)
  12993. #endif
  12994. #define ggml_lock_unlock(x) UNUSED(x)
  12995. #define GGML_LOCK_INITIALIZER 0
  12996. typedef pthread_t ggml_thread_t;
  12997. #define ggml_thread_create pthread_create
  12998. #define ggml_thread_join pthread_join
  12999. #endif
  13000. // Android's libc implementation "bionic" does not support setting affinity
  13001. #if defined(__linux__) && !defined(__BIONIC__)
  13002. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13003. if (!ggml_is_numa()) {
  13004. return;
  13005. }
  13006. // run thread on node_num thread_n / (threads per node)
  13007. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13008. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13009. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13010. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13011. CPU_ZERO_S(setsize, cpus);
  13012. for (size_t i = 0; i < node->n_cpus; ++i) {
  13013. CPU_SET_S(node->cpus[i], setsize, cpus);
  13014. }
  13015. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13016. if (rv) {
  13017. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13018. strerror(rv));
  13019. }
  13020. CPU_FREE(cpus);
  13021. }
  13022. static void clear_numa_thread_affinity(void) {
  13023. if (!ggml_is_numa()) {
  13024. return;
  13025. }
  13026. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13027. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13028. CPU_ZERO_S(setsize, cpus);
  13029. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13030. CPU_SET_S(i, setsize, cpus);
  13031. }
  13032. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13033. if (rv) {
  13034. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13035. strerror(rv));
  13036. }
  13037. CPU_FREE(cpus);
  13038. }
  13039. #else
  13040. // TODO: Windows etc.
  13041. // (the linux implementation may also work on BSD, someone should test)
  13042. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13043. static void clear_numa_thread_affinity(void) {}
  13044. #endif
  13045. struct ggml_compute_state_shared {
  13046. const struct ggml_cgraph * cgraph;
  13047. const struct ggml_cplan * cplan;
  13048. int64_t perf_node_start_cycles;
  13049. int64_t perf_node_start_time_us;
  13050. const int n_threads;
  13051. // synchronization primitives
  13052. atomic_int n_active; // num active threads
  13053. atomic_int node_n; // active graph node
  13054. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13055. void * abort_callback_data;
  13056. };
  13057. struct ggml_compute_state {
  13058. ggml_thread_t thrd;
  13059. int ith;
  13060. struct ggml_compute_state_shared * shared;
  13061. };
  13062. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13063. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13064. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13065. node->perf_runs++;
  13066. node->perf_cycles += cycles_cur;
  13067. node->perf_time_us += time_us_cur;
  13068. }
  13069. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13070. int n_tasks = 0;
  13071. switch (node->op) {
  13072. case GGML_OP_CPY:
  13073. case GGML_OP_DUP:
  13074. case GGML_OP_ADD:
  13075. case GGML_OP_ADD1:
  13076. case GGML_OP_ACC:
  13077. {
  13078. n_tasks = n_threads;
  13079. } break;
  13080. case GGML_OP_SUB:
  13081. case GGML_OP_SQR:
  13082. case GGML_OP_SQRT:
  13083. case GGML_OP_LOG:
  13084. case GGML_OP_SUM:
  13085. case GGML_OP_SUM_ROWS:
  13086. case GGML_OP_MEAN:
  13087. case GGML_OP_ARGMAX:
  13088. case GGML_OP_REPEAT:
  13089. case GGML_OP_REPEAT_BACK:
  13090. {
  13091. n_tasks = 1;
  13092. } break;
  13093. case GGML_OP_UNARY:
  13094. switch (ggml_get_unary_op(node)) {
  13095. case GGML_UNARY_OP_ABS:
  13096. case GGML_UNARY_OP_SGN:
  13097. case GGML_UNARY_OP_NEG:
  13098. case GGML_UNARY_OP_STEP:
  13099. case GGML_UNARY_OP_TANH:
  13100. case GGML_UNARY_OP_ELU:
  13101. case GGML_UNARY_OP_RELU:
  13102. case GGML_UNARY_OP_LEAKY:
  13103. {
  13104. n_tasks = 1;
  13105. } break;
  13106. case GGML_UNARY_OP_GELU:
  13107. case GGML_UNARY_OP_GELU_QUICK:
  13108. case GGML_UNARY_OP_SILU:
  13109. {
  13110. n_tasks = n_threads;
  13111. } break;
  13112. default:
  13113. GGML_ASSERT(false);
  13114. }
  13115. break;
  13116. case GGML_OP_SILU_BACK:
  13117. case GGML_OP_MUL:
  13118. case GGML_OP_DIV:
  13119. case GGML_OP_NORM:
  13120. case GGML_OP_RMS_NORM:
  13121. case GGML_OP_RMS_NORM_BACK:
  13122. case GGML_OP_GROUP_NORM:
  13123. case GGML_OP_CONCAT:
  13124. {
  13125. n_tasks = n_threads;
  13126. } break;
  13127. case GGML_OP_MUL_MAT:
  13128. {
  13129. n_tasks = n_threads;
  13130. // TODO: use different scheduling for different matrix sizes
  13131. //const int nr0 = ggml_nrows(node->src[0]);
  13132. //const int nr1 = ggml_nrows(node->src[1]);
  13133. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13134. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13135. #if defined(GGML_USE_CUBLAS)
  13136. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13137. n_tasks = 1; // TODO: this actually is doing nothing
  13138. // the threads are still spinning
  13139. }
  13140. #elif defined(GGML_USE_CLBLAST)
  13141. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13142. n_tasks = 1; // TODO: this actually is doing nothing
  13143. // the threads are still spinning
  13144. }
  13145. #endif
  13146. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13147. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13148. n_tasks = 1; // TODO: this actually is doing nothing
  13149. // the threads are still spinning
  13150. }
  13151. #endif
  13152. } break;
  13153. case GGML_OP_MUL_MAT_ID:
  13154. {
  13155. // FIXME: blas
  13156. n_tasks = n_threads;
  13157. } break;
  13158. case GGML_OP_OUT_PROD:
  13159. {
  13160. n_tasks = n_threads;
  13161. } break;
  13162. case GGML_OP_SCALE:
  13163. case GGML_OP_SET:
  13164. case GGML_OP_CONT:
  13165. case GGML_OP_RESHAPE:
  13166. case GGML_OP_VIEW:
  13167. case GGML_OP_PERMUTE:
  13168. case GGML_OP_TRANSPOSE:
  13169. case GGML_OP_GET_ROWS:
  13170. case GGML_OP_GET_ROWS_BACK:
  13171. case GGML_OP_DIAG:
  13172. {
  13173. n_tasks = 1;
  13174. } break;
  13175. case GGML_OP_DIAG_MASK_ZERO:
  13176. case GGML_OP_DIAG_MASK_INF:
  13177. case GGML_OP_SOFT_MAX_BACK:
  13178. case GGML_OP_ROPE:
  13179. case GGML_OP_ROPE_BACK:
  13180. case GGML_OP_ADD_REL_POS:
  13181. {
  13182. n_tasks = n_threads;
  13183. } break;
  13184. case GGML_OP_ALIBI:
  13185. {
  13186. n_tasks = 1; //TODO
  13187. } break;
  13188. case GGML_OP_CLAMP:
  13189. {
  13190. n_tasks = 1; //TODO
  13191. } break;
  13192. case GGML_OP_SOFT_MAX:
  13193. {
  13194. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13195. } break;
  13196. case GGML_OP_CONV_TRANSPOSE_1D:
  13197. {
  13198. n_tasks = n_threads;
  13199. } break;
  13200. case GGML_OP_IM2COL:
  13201. {
  13202. n_tasks = n_threads;
  13203. } break;
  13204. case GGML_OP_CONV_TRANSPOSE_2D:
  13205. {
  13206. n_tasks = n_threads;
  13207. } break;
  13208. case GGML_OP_POOL_1D:
  13209. case GGML_OP_POOL_2D:
  13210. {
  13211. n_tasks = 1;
  13212. } break;
  13213. case GGML_OP_UPSCALE:
  13214. {
  13215. n_tasks = n_threads;
  13216. } break;
  13217. case GGML_OP_ARGSORT:
  13218. {
  13219. n_tasks = n_threads;
  13220. } break;
  13221. case GGML_OP_FLASH_ATTN:
  13222. {
  13223. n_tasks = n_threads;
  13224. } break;
  13225. case GGML_OP_FLASH_FF:
  13226. {
  13227. n_tasks = n_threads;
  13228. } break;
  13229. case GGML_OP_FLASH_ATTN_BACK:
  13230. {
  13231. n_tasks = n_threads;
  13232. } break;
  13233. case GGML_OP_WIN_PART:
  13234. case GGML_OP_WIN_UNPART:
  13235. case GGML_OP_GET_REL_POS:
  13236. case GGML_OP_MAP_UNARY:
  13237. case GGML_OP_MAP_BINARY:
  13238. case GGML_OP_MAP_CUSTOM1_F32:
  13239. case GGML_OP_MAP_CUSTOM2_F32:
  13240. case GGML_OP_MAP_CUSTOM3_F32:
  13241. {
  13242. n_tasks = 1;
  13243. } break;
  13244. case GGML_OP_MAP_CUSTOM1:
  13245. {
  13246. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13247. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13248. n_tasks = n_threads;
  13249. } else {
  13250. n_tasks = MIN(p->n_tasks, n_threads);
  13251. }
  13252. } break;
  13253. case GGML_OP_MAP_CUSTOM2:
  13254. {
  13255. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13256. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13257. n_tasks = n_threads;
  13258. } else {
  13259. n_tasks = MIN(p->n_tasks, n_threads);
  13260. }
  13261. } break;
  13262. case GGML_OP_MAP_CUSTOM3:
  13263. {
  13264. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13265. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13266. n_tasks = n_threads;
  13267. } else {
  13268. n_tasks = MIN(p->n_tasks, n_threads);
  13269. }
  13270. } break;
  13271. case GGML_OP_CROSS_ENTROPY_LOSS:
  13272. {
  13273. n_tasks = n_threads;
  13274. } break;
  13275. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13276. {
  13277. n_tasks = n_threads;
  13278. } break;
  13279. case GGML_OP_NONE:
  13280. {
  13281. n_tasks = 1;
  13282. } break;
  13283. case GGML_OP_COUNT:
  13284. {
  13285. GGML_ASSERT(false);
  13286. } break;
  13287. default:
  13288. {
  13289. fprintf(stderr, "%s: op not implemented: ", __func__);
  13290. if (node->op < GGML_OP_COUNT) {
  13291. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13292. } else {
  13293. fprintf(stderr, "%d\n", node->op);
  13294. }
  13295. GGML_ASSERT(false);
  13296. } break;
  13297. }
  13298. assert(n_tasks > 0);
  13299. return n_tasks;
  13300. }
  13301. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13302. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13303. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13304. const struct ggml_cplan * cplan = state->shared->cplan;
  13305. const int n_threads = state->shared->n_threads;
  13306. set_numa_thread_affinity(state->ith, n_threads);
  13307. int node_n = -1;
  13308. while (true) {
  13309. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13310. state->shared->node_n += 1;
  13311. return (thread_ret_t) GGML_EXIT_ABORTED;
  13312. }
  13313. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13314. // all other threads are finished and spinning
  13315. // do finalize and init here so we don't have synchronize again
  13316. struct ggml_compute_params params = {
  13317. /*.type =*/ GGML_TASK_FINALIZE,
  13318. /*.ith =*/ 0,
  13319. /*.nth =*/ 0,
  13320. /*.wsize =*/ cplan->work_size,
  13321. /*.wdata =*/ cplan->work_data,
  13322. };
  13323. if (node_n != -1) {
  13324. /* FINALIZE */
  13325. struct ggml_tensor * node = cgraph->nodes[node_n];
  13326. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13327. params.nth = ggml_get_n_tasks(node, n_threads);
  13328. ggml_compute_forward(&params, node);
  13329. }
  13330. ggml_graph_compute_perf_stats_node(node, state->shared);
  13331. }
  13332. // distribute new work or execute it direct if 1T
  13333. while (++node_n < cgraph->n_nodes) {
  13334. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13335. struct ggml_tensor * node = cgraph->nodes[node_n];
  13336. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13337. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13338. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13339. params.nth = n_tasks;
  13340. /* INIT */
  13341. if (GGML_OP_HAS_INIT[node->op]) {
  13342. params.type = GGML_TASK_INIT;
  13343. ggml_compute_forward(&params, node);
  13344. }
  13345. if (n_tasks == 1) {
  13346. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13347. // they do something more efficient than spinning (?)
  13348. params.type = GGML_TASK_COMPUTE;
  13349. ggml_compute_forward(&params, node);
  13350. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13351. params.type = GGML_TASK_FINALIZE;
  13352. ggml_compute_forward(&params, node);
  13353. }
  13354. ggml_graph_compute_perf_stats_node(node, state->shared);
  13355. } else {
  13356. break;
  13357. }
  13358. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13359. break;
  13360. }
  13361. }
  13362. atomic_store(&state->shared->n_active, n_threads);
  13363. atomic_store(&state->shared->node_n, node_n);
  13364. } else {
  13365. // wait for other threads to finish
  13366. const int last = node_n;
  13367. while (true) {
  13368. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13369. // depending on the workload and the operating system.
  13370. // since it is not clear what is the best approach, it should potentially become user-configurable
  13371. // ref: https://github.com/ggerganov/ggml/issues/291
  13372. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13373. sched_yield();
  13374. #endif
  13375. node_n = atomic_load(&state->shared->node_n);
  13376. if (node_n != last) break;
  13377. };
  13378. }
  13379. // check if we should stop
  13380. if (node_n >= cgraph->n_nodes) break;
  13381. /* COMPUTE */
  13382. struct ggml_tensor * node = cgraph->nodes[node_n];
  13383. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13384. struct ggml_compute_params params = {
  13385. /*.type =*/ GGML_TASK_COMPUTE,
  13386. /*.ith =*/ state->ith,
  13387. /*.nth =*/ n_tasks,
  13388. /*.wsize =*/ cplan->work_size,
  13389. /*.wdata =*/ cplan->work_data,
  13390. };
  13391. if (state->ith < n_tasks) {
  13392. ggml_compute_forward(&params, node);
  13393. }
  13394. }
  13395. return GGML_EXIT_SUCCESS;
  13396. }
  13397. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13398. if (n_threads <= 0) {
  13399. n_threads = GGML_DEFAULT_N_THREADS;
  13400. }
  13401. size_t work_size = 0;
  13402. struct ggml_cplan cplan;
  13403. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13404. // thread scheduling for the different operations + work buffer size estimation
  13405. for (int i = 0; i < cgraph->n_nodes; i++) {
  13406. struct ggml_tensor * node = cgraph->nodes[i];
  13407. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13408. size_t cur = 0;
  13409. switch (node->op) {
  13410. case GGML_OP_CPY:
  13411. case GGML_OP_DUP:
  13412. {
  13413. if (ggml_is_quantized(node->type)) {
  13414. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13415. }
  13416. } break;
  13417. case GGML_OP_ADD:
  13418. case GGML_OP_ADD1:
  13419. {
  13420. if (ggml_is_quantized(node->src[0]->type)) {
  13421. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13422. }
  13423. } break;
  13424. case GGML_OP_ACC:
  13425. {
  13426. if (ggml_is_quantized(node->src[0]->type)) {
  13427. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13428. }
  13429. } break;
  13430. case GGML_OP_MUL_MAT:
  13431. {
  13432. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13433. #if defined(GGML_USE_CLBLAST)
  13434. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13435. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13436. } else
  13437. #endif
  13438. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13439. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13440. if (node->src[0]->type != GGML_TYPE_F32) {
  13441. // here we need memory just for single 2D matrix from src0
  13442. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13443. }
  13444. } else
  13445. #endif
  13446. if (node->src[1]->type != vec_dot_type) {
  13447. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13448. }
  13449. } break;
  13450. case GGML_OP_MUL_MAT_ID:
  13451. {
  13452. const struct ggml_tensor * a = node->src[2];
  13453. const struct ggml_tensor * b = node->src[1];
  13454. const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type;
  13455. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13456. if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) {
  13457. if (a->type != GGML_TYPE_F32) {
  13458. // here we need memory just for single 2D matrix from src0
  13459. cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
  13460. }
  13461. } else
  13462. #endif
  13463. if (b->type != vec_dot_type) {
  13464. cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
  13465. }
  13466. } break;
  13467. case GGML_OP_OUT_PROD:
  13468. {
  13469. if (ggml_is_quantized(node->src[0]->type)) {
  13470. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13471. }
  13472. } break;
  13473. case GGML_OP_SOFT_MAX:
  13474. {
  13475. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13476. } break;
  13477. case GGML_OP_CONV_TRANSPOSE_1D:
  13478. {
  13479. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13480. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13481. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13482. const int64_t ne00 = node->src[0]->ne[0]; // K
  13483. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13484. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13485. const int64_t ne10 = node->src[1]->ne[0]; // L
  13486. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13487. if (node->src[0]->type == GGML_TYPE_F16 &&
  13488. node->src[1]->type == GGML_TYPE_F32) {
  13489. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13490. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13491. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13492. node->src[1]->type == GGML_TYPE_F32) {
  13493. cur += sizeof(float)*ne00*ne01*ne02;
  13494. cur += sizeof(float)*ne10*ne11;
  13495. } else {
  13496. GGML_ASSERT(false);
  13497. }
  13498. } break;
  13499. case GGML_OP_CONV_TRANSPOSE_2D:
  13500. {
  13501. const int64_t ne00 = node->src[0]->ne[0]; // W
  13502. const int64_t ne01 = node->src[0]->ne[1]; // H
  13503. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13504. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13505. const int64_t ne10 = node->src[1]->ne[0]; // W
  13506. const int64_t ne11 = node->src[1]->ne[1]; // H
  13507. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13508. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13509. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13510. } break;
  13511. case GGML_OP_FLASH_ATTN:
  13512. {
  13513. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13514. if (node->src[1]->type == GGML_TYPE_F32) {
  13515. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13516. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13517. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13518. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13519. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13520. }
  13521. } break;
  13522. case GGML_OP_FLASH_FF:
  13523. {
  13524. if (node->src[1]->type == GGML_TYPE_F32) {
  13525. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13526. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13527. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13528. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13529. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13530. }
  13531. } break;
  13532. case GGML_OP_FLASH_ATTN_BACK:
  13533. {
  13534. const int64_t D = node->src[0]->ne[0];
  13535. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13536. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13537. if (node->src[1]->type == GGML_TYPE_F32) {
  13538. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13539. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13540. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13541. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13542. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13543. }
  13544. } break;
  13545. case GGML_OP_CROSS_ENTROPY_LOSS:
  13546. {
  13547. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13548. } break;
  13549. case GGML_OP_COUNT:
  13550. {
  13551. GGML_ASSERT(false);
  13552. } break;
  13553. default:
  13554. break;
  13555. }
  13556. work_size = MAX(work_size, cur);
  13557. }
  13558. if (work_size > 0) {
  13559. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13560. }
  13561. cplan.n_threads = n_threads;
  13562. cplan.work_size = work_size;
  13563. cplan.work_data = NULL;
  13564. return cplan;
  13565. }
  13566. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13567. {
  13568. GGML_ASSERT(cplan);
  13569. GGML_ASSERT(cplan->n_threads > 0);
  13570. if (cplan->work_size > 0) {
  13571. GGML_ASSERT(cplan->work_data);
  13572. }
  13573. }
  13574. const int n_threads = cplan->n_threads;
  13575. struct ggml_compute_state_shared state_shared = {
  13576. /*.cgraph =*/ cgraph,
  13577. /*.cgraph_plan =*/ cplan,
  13578. /*.perf_node_start_cycles =*/ 0,
  13579. /*.perf_node_start_time_us =*/ 0,
  13580. /*.n_threads =*/ n_threads,
  13581. /*.n_active =*/ n_threads,
  13582. /*.node_n =*/ -1,
  13583. /*.abort_callback =*/ NULL,
  13584. /*.abort_callback_data =*/ NULL,
  13585. };
  13586. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13587. // create thread pool
  13588. if (n_threads > 1) {
  13589. for (int j = 1; j < n_threads; ++j) {
  13590. workers[j] = (struct ggml_compute_state) {
  13591. .thrd = 0,
  13592. .ith = j,
  13593. .shared = &state_shared,
  13594. };
  13595. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13596. GGML_ASSERT(rc == 0);
  13597. UNUSED(rc);
  13598. }
  13599. }
  13600. workers[0].ith = 0;
  13601. workers[0].shared = &state_shared;
  13602. const int64_t perf_start_cycles = ggml_perf_cycles();
  13603. const int64_t perf_start_time_us = ggml_perf_time_us();
  13604. // this is a work thread too
  13605. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13606. // don't leave affinity set on the main thread
  13607. clear_numa_thread_affinity();
  13608. // join or kill thread pool
  13609. if (n_threads > 1) {
  13610. for (int j = 1; j < n_threads; j++) {
  13611. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13612. GGML_ASSERT(rc == 0);
  13613. }
  13614. }
  13615. // performance stats (graph)
  13616. {
  13617. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13618. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13619. cgraph->perf_runs++;
  13620. cgraph->perf_cycles += perf_cycles_cur;
  13621. cgraph->perf_time_us += perf_time_us_cur;
  13622. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13623. __func__, cgraph->perf_runs,
  13624. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13625. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13626. (double) perf_time_us_cur / 1000.0,
  13627. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13628. }
  13629. return compute_status;
  13630. }
  13631. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13632. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13633. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13634. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13635. ggml_graph_compute(cgraph, &cplan);
  13636. }
  13637. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13638. for (int i = 0; i < cgraph->n_leafs; i++) {
  13639. struct ggml_tensor * leaf = cgraph->leafs[i];
  13640. if (strcmp(leaf->name, name) == 0) {
  13641. return leaf;
  13642. }
  13643. }
  13644. for (int i = 0; i < cgraph->n_nodes; i++) {
  13645. struct ggml_tensor * node = cgraph->nodes[i];
  13646. if (strcmp(node->name, name) == 0) {
  13647. return node;
  13648. }
  13649. }
  13650. return NULL;
  13651. }
  13652. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13653. const int64_t * ne = tensor->ne;
  13654. const size_t * nb = tensor->nb;
  13655. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13656. ggml_type_name(tensor->type),
  13657. ggml_op_name (tensor->op),
  13658. tensor->n_dims,
  13659. ne[0], ne[1], ne[2], ne[3],
  13660. nb[0], nb[1], nb[2], nb[3],
  13661. tensor->data,
  13662. tensor->name);
  13663. }
  13664. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13665. const int64_t * ne = tensor->ne;
  13666. const size_t * nb = tensor->nb;
  13667. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13668. arg,
  13669. ggml_type_name(tensor->type),
  13670. ggml_op_name (tensor->op),
  13671. tensor->n_dims,
  13672. ne[0], ne[1], ne[2], ne[3],
  13673. nb[0], nb[1], nb[2], nb[3],
  13674. tensor->data,
  13675. tensor->name);
  13676. }
  13677. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13678. uint64_t size_eval = 0;
  13679. // compute size of intermediate results
  13680. // TODO: does not take into account scratch buffers !!!!
  13681. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13682. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13683. }
  13684. // print
  13685. {
  13686. FILE * fout = stdout;
  13687. fprintf(fout, "\n");
  13688. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13689. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13690. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13691. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13692. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13693. // header
  13694. fprintf(fout, "\n");
  13695. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13696. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13697. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13698. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13699. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13700. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13701. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13702. }
  13703. // header
  13704. fprintf(fout, "\n");
  13705. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13706. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13707. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13708. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13709. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13710. if (cgraph->nodes[i]->src[j]) {
  13711. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13712. }
  13713. }
  13714. fprintf(fout, "\n");
  13715. }
  13716. fprintf(fout, "\n");
  13717. }
  13718. // write binary data
  13719. {
  13720. FILE * fout = fopen(fname, "wb");
  13721. if (!fout) {
  13722. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13723. return;
  13724. }
  13725. // header
  13726. {
  13727. const uint32_t magic = GGML_FILE_MAGIC;
  13728. const uint32_t version = GGML_FILE_VERSION;
  13729. const uint32_t n_leafs = cgraph->n_leafs;
  13730. const uint32_t n_nodes = cgraph->n_nodes;
  13731. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13732. fwrite(&version, sizeof(uint32_t), 1, fout);
  13733. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13734. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  13735. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13736. }
  13737. // leafs
  13738. {
  13739. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13740. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13741. const uint32_t type = tensor->type;
  13742. const uint32_t op = tensor->op;
  13743. const uint32_t n_dims = tensor->n_dims;
  13744. fwrite(&type, sizeof(uint32_t), 1, fout);
  13745. fwrite(&op, sizeof(uint32_t), 1, fout);
  13746. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13747. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13748. const uint64_t ne = tensor->ne[j];
  13749. const uint64_t nb = tensor->nb[j];
  13750. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13751. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13752. }
  13753. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13754. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13755. // dump the data
  13756. // TODO: pad this to 32 byte boundary
  13757. {
  13758. const size_t size = ggml_nbytes(tensor);
  13759. fwrite(tensor->data, sizeof(char), size, fout);
  13760. }
  13761. }
  13762. }
  13763. // nodes
  13764. {
  13765. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13766. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13767. const uint32_t type = tensor->type;
  13768. const uint32_t op = tensor->op;
  13769. const uint32_t n_dims = tensor->n_dims;
  13770. fwrite(&type, sizeof(uint32_t), 1, fout);
  13771. fwrite(&op, sizeof(uint32_t), 1, fout);
  13772. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13773. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13774. const uint64_t ne = tensor->ne[j];
  13775. const uint64_t nb = tensor->nb[j];
  13776. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13777. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13778. }
  13779. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13780. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13781. // output the op arguments
  13782. {
  13783. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13784. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13785. args[j] = tensor->src[j];
  13786. }
  13787. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13788. if (args[j]) {
  13789. int32_t idx = -1;
  13790. // check if leaf
  13791. {
  13792. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13793. if (args[j] == cgraph->leafs[k]) {
  13794. idx = k;
  13795. break;
  13796. }
  13797. }
  13798. }
  13799. // check if node
  13800. if (idx == -1) {
  13801. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13802. if (args[j] == cgraph->nodes[k]) {
  13803. idx = cgraph->n_leafs + k;
  13804. break;
  13805. }
  13806. }
  13807. }
  13808. if (idx == -1) {
  13809. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13810. fclose(fout);
  13811. return;
  13812. }
  13813. fwrite(&idx, sizeof(int32_t), 1, fout);
  13814. } else {
  13815. const int32_t nul = -1;
  13816. fwrite(&nul, sizeof(int32_t), 1, fout);
  13817. }
  13818. }
  13819. }
  13820. }
  13821. }
  13822. fclose(fout);
  13823. }
  13824. }
  13825. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13826. assert(*ctx_data == NULL);
  13827. assert(*ctx_eval == NULL);
  13828. struct ggml_cgraph * result = NULL;
  13829. struct ggml_tensor * data = NULL;
  13830. // read file into data
  13831. {
  13832. FILE * fin = fopen(fname, "rb");
  13833. if (!fin) {
  13834. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13835. return result;
  13836. }
  13837. size_t fsize = 0;
  13838. fseek(fin, 0, SEEK_END);
  13839. fsize = ftell(fin);
  13840. fseek(fin, 0, SEEK_SET);
  13841. // create the data context
  13842. {
  13843. const size_t overhead = 1*ggml_tensor_overhead();
  13844. struct ggml_init_params params = {
  13845. .mem_size = fsize + overhead,
  13846. .mem_buffer = NULL,
  13847. .no_alloc = false,
  13848. };
  13849. *ctx_data = ggml_init(params);
  13850. if (!*ctx_data) {
  13851. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13852. fclose(fin);
  13853. return result;
  13854. }
  13855. }
  13856. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13857. {
  13858. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13859. if (ret != fsize) {
  13860. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13861. fclose(fin);
  13862. return result;
  13863. }
  13864. }
  13865. fclose(fin);
  13866. }
  13867. // populate result
  13868. {
  13869. char * ptr = (char *) data->data;
  13870. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13871. if (magic != GGML_FILE_MAGIC) {
  13872. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13873. return result;
  13874. }
  13875. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13876. if (version != GGML_FILE_VERSION) {
  13877. fprintf(stderr, "%s: invalid version number\n", __func__);
  13878. return result;
  13879. }
  13880. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13881. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13882. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13883. const int graph_size = MAX(n_leafs, n_nodes);
  13884. // create the data context
  13885. {
  13886. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  13887. struct ggml_init_params params = {
  13888. .mem_size = size_eval + overhead,
  13889. .mem_buffer = NULL,
  13890. .no_alloc = true,
  13891. };
  13892. *ctx_eval = ggml_init(params);
  13893. if (!*ctx_eval) {
  13894. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13895. return result;
  13896. }
  13897. }
  13898. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  13899. result->n_leafs = n_leafs;
  13900. result->n_nodes = n_nodes;
  13901. // leafs
  13902. {
  13903. uint32_t type;
  13904. uint32_t op;
  13905. uint32_t n_dims;
  13906. for (uint32_t i = 0; i < n_leafs; ++i) {
  13907. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13908. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13909. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13910. int64_t ne[GGML_MAX_DIMS];
  13911. size_t nb[GGML_MAX_DIMS];
  13912. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13913. uint64_t ne_cur;
  13914. uint64_t nb_cur;
  13915. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13916. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13917. ne[j] = ne_cur;
  13918. nb[j] = nb_cur;
  13919. }
  13920. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13921. tensor->op = (enum ggml_op) op;
  13922. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13923. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  13924. tensor->data = (void *) ptr;
  13925. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13926. tensor->nb[j] = nb[j];
  13927. }
  13928. result->leafs[i] = tensor;
  13929. ptr += ggml_nbytes(tensor);
  13930. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13931. }
  13932. }
  13933. ggml_set_no_alloc(*ctx_eval, false);
  13934. // nodes
  13935. {
  13936. uint32_t type;
  13937. uint32_t op;
  13938. uint32_t n_dims;
  13939. for (uint32_t i = 0; i < n_nodes; ++i) {
  13940. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13941. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13942. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13943. enum ggml_op eop = (enum ggml_op) op;
  13944. int64_t ne[GGML_MAX_DIMS];
  13945. size_t nb[GGML_MAX_DIMS];
  13946. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13947. uint64_t ne_cur;
  13948. uint64_t nb_cur;
  13949. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13950. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13951. ne[j] = ne_cur;
  13952. nb[j] = nb_cur;
  13953. }
  13954. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13955. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  13956. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13957. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13958. // parse args
  13959. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13960. const int32_t arg_idx = ptr_arg_idx[j];
  13961. if (arg_idx == -1) {
  13962. continue;
  13963. }
  13964. if (arg_idx < result->n_leafs) {
  13965. args[j] = result->leafs[arg_idx];
  13966. } else {
  13967. args[j] = result->nodes[arg_idx - result->n_leafs];
  13968. }
  13969. }
  13970. // create the tensor
  13971. // "view" operations are handled differently
  13972. // TODO: handle inplace ops - currently a copy is always made
  13973. struct ggml_tensor * tensor = NULL;
  13974. switch (eop) {
  13975. // TODO: implement other view ops
  13976. case GGML_OP_RESHAPE:
  13977. {
  13978. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13979. } break;
  13980. case GGML_OP_VIEW:
  13981. {
  13982. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13983. size_t offs;
  13984. memcpy(&offs, ptr_op_params, sizeof(offs));
  13985. tensor->data = ((char *) tensor->data) + offs;
  13986. } break;
  13987. case GGML_OP_TRANSPOSE:
  13988. {
  13989. tensor = ggml_transpose(*ctx_eval, args[0]);
  13990. } break;
  13991. case GGML_OP_PERMUTE:
  13992. {
  13993. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13994. } break;
  13995. default:
  13996. {
  13997. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13998. tensor->op = eop;
  13999. } break;
  14000. }
  14001. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14002. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14003. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14004. tensor->nb[j] = nb[j];
  14005. }
  14006. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14007. tensor->src[j] = args[j];
  14008. }
  14009. result->nodes[i] = tensor;
  14010. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14011. }
  14012. }
  14013. }
  14014. return result;
  14015. }
  14016. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14017. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14018. GGML_PRINT("=== GRAPH ===\n");
  14019. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14020. for (int i = 0; i < cgraph->n_nodes; i++) {
  14021. struct ggml_tensor * node = cgraph->nodes[i];
  14022. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14023. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14024. i,
  14025. node->ne[0], node->ne[1], node->ne[2],
  14026. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14027. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14028. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14029. (double) node->perf_time_us / 1000.0,
  14030. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14031. }
  14032. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14033. for (int i = 0; i < cgraph->n_leafs; i++) {
  14034. struct ggml_tensor * node = cgraph->leafs[i];
  14035. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14036. i,
  14037. node->ne[0], node->ne[1],
  14038. ggml_op_name(node->op),
  14039. ggml_get_name(node));
  14040. }
  14041. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14042. if (perf_total_per_op_us[i] == 0) {
  14043. continue;
  14044. }
  14045. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14046. }
  14047. GGML_PRINT("========================================\n");
  14048. }
  14049. // check if node is part of the graph
  14050. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14051. if (cgraph == NULL) {
  14052. return true;
  14053. }
  14054. for (int i = 0; i < cgraph->n_nodes; i++) {
  14055. if (cgraph->nodes[i] == node) {
  14056. return true;
  14057. }
  14058. }
  14059. return false;
  14060. }
  14061. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14062. for (int i = 0; i < cgraph->n_nodes; i++) {
  14063. struct ggml_tensor * parent = cgraph->nodes[i];
  14064. if (parent->grad == node) {
  14065. return parent;
  14066. }
  14067. }
  14068. return NULL;
  14069. }
  14070. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14071. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14072. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14073. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14074. gparent0 ? (void *) gparent0 : (void *) parent,
  14075. gparent0 ? "g" : "x",
  14076. gparent ? (void *) gparent : (void *) node,
  14077. gparent ? "g" : "x",
  14078. gparent ? "empty" : "vee",
  14079. gparent ? "dashed" : "solid",
  14080. label);
  14081. }
  14082. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14083. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14084. (void *) parent, "x",
  14085. (void *) node, "x",
  14086. label);
  14087. }
  14088. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14089. char color[16];
  14090. FILE * fp = fopen(filename, "w");
  14091. GGML_ASSERT(fp);
  14092. fprintf(fp, "digraph G {\n");
  14093. fprintf(fp, " newrank = true;\n");
  14094. fprintf(fp, " rankdir = LR;\n");
  14095. for (int i = 0; i < gb->n_nodes; i++) {
  14096. struct ggml_tensor * node = gb->nodes[i];
  14097. if (ggml_graph_get_parent(gb, node) != NULL) {
  14098. continue;
  14099. }
  14100. if (node->is_param) {
  14101. snprintf(color, sizeof(color), "yellow");
  14102. } else if (node->grad) {
  14103. if (ggml_graph_find(gf, node)) {
  14104. snprintf(color, sizeof(color), "green");
  14105. } else {
  14106. snprintf(color, sizeof(color), "lightblue");
  14107. }
  14108. } else {
  14109. snprintf(color, sizeof(color), "white");
  14110. }
  14111. fprintf(fp, " \"%p\" [ "
  14112. "style = filled; fillcolor = %s; shape = record; "
  14113. "label=\"",
  14114. (void *) node, color);
  14115. if (strlen(node->name) > 0) {
  14116. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14117. } else {
  14118. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14119. }
  14120. if (node->n_dims == 2) {
  14121. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14122. } else {
  14123. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14124. }
  14125. if (node->grad) {
  14126. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14127. } else {
  14128. fprintf(fp, "\"; ]\n");
  14129. }
  14130. }
  14131. for (int i = 0; i < gb->n_leafs; i++) {
  14132. struct ggml_tensor * node = gb->leafs[i];
  14133. snprintf(color, sizeof(color), "pink");
  14134. fprintf(fp, " \"%p\" [ "
  14135. "style = filled; fillcolor = %s; shape = record; "
  14136. "label=\"<x>",
  14137. (void *) node, color);
  14138. if (strlen(node->name) > 0) {
  14139. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14140. } else {
  14141. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14142. }
  14143. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14144. if (ggml_nelements(node) < 5) {
  14145. fprintf(fp, " | (");
  14146. for (int j = 0; j < ggml_nelements(node); j++) {
  14147. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14148. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14149. }
  14150. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14151. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14152. }
  14153. else {
  14154. fprintf(fp, "#");
  14155. }
  14156. if (j < ggml_nelements(node) - 1) {
  14157. fprintf(fp, ", ");
  14158. }
  14159. }
  14160. fprintf(fp, ")");
  14161. }
  14162. fprintf(fp, "\"; ]\n");
  14163. }
  14164. for (int i = 0; i < gb->n_nodes; i++) {
  14165. struct ggml_tensor * node = gb->nodes[i];
  14166. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14167. if (node->src[j]) {
  14168. char label[16];
  14169. snprintf(label, sizeof(label), "src %d", j);
  14170. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14171. }
  14172. }
  14173. }
  14174. for (int i = 0; i < gb->n_leafs; i++) {
  14175. struct ggml_tensor * node = gb->leafs[i];
  14176. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14177. if (node->src[j]) {
  14178. char label[16];
  14179. snprintf(label, sizeof(label), "src %d", j);
  14180. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14181. }
  14182. }
  14183. }
  14184. fprintf(fp, "}\n");
  14185. fclose(fp);
  14186. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14187. }
  14188. ////////////////////////////////////////////////////////////////////////////////
  14189. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14190. int i = 0;
  14191. for (int p = 0; p < np; ++p) {
  14192. const int64_t ne = ggml_nelements(ps[p]) ;
  14193. // TODO: add function to set tensor from array
  14194. for (int64_t j = 0; j < ne; ++j) {
  14195. ggml_set_f32_1d(ps[p], j, x[i++]);
  14196. }
  14197. }
  14198. }
  14199. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14200. int i = 0;
  14201. for (int p = 0; p < np; ++p) {
  14202. const int64_t ne = ggml_nelements(ps[p]) ;
  14203. // TODO: add function to get all elements at once
  14204. for (int64_t j = 0; j < ne; ++j) {
  14205. x[i++] = ggml_get_f32_1d(ps[p], j);
  14206. }
  14207. }
  14208. }
  14209. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14210. int64_t i = 0;
  14211. for (int p = 0; p < np; ++p) {
  14212. const int64_t ne = ggml_nelements(ps[p]) ;
  14213. // TODO: add function to get all elements at once
  14214. for (int64_t j = 0; j < ne; ++j) {
  14215. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14216. }
  14217. }
  14218. }
  14219. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14220. int64_t i = 0;
  14221. for (int p = 0; p < np; ++p) {
  14222. const int64_t ne = ggml_nelements(ps[p]) ;
  14223. // TODO: add function to get all elements at once
  14224. for (int64_t j = 0; j < ne; ++j) {
  14225. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14226. }
  14227. }
  14228. }
  14229. //
  14230. // ADAM
  14231. //
  14232. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14233. //
  14234. static enum ggml_opt_result ggml_opt_adam(
  14235. struct ggml_context * ctx,
  14236. struct ggml_opt_context * opt,
  14237. struct ggml_opt_params params,
  14238. struct ggml_tensor * f,
  14239. struct ggml_cgraph * gf,
  14240. struct ggml_cgraph * gb,
  14241. ggml_opt_callback callback,
  14242. void * callback_data) {
  14243. GGML_ASSERT(ggml_is_scalar(f));
  14244. // these will store the parameters we want to optimize
  14245. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14246. int np = 0;
  14247. int64_t nx = 0;
  14248. for (int i = 0; i < gf->n_nodes; ++i) {
  14249. if (gf->nodes[i]->is_param) {
  14250. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14251. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14252. ps[np++] = gf->nodes[i];
  14253. nx += ggml_nelements(gf->nodes[i]);
  14254. }
  14255. }
  14256. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14257. int iter = opt->iter;
  14258. ggml_opt_init(opt->ctx, opt, params, nx);
  14259. opt->iter = iter;
  14260. }
  14261. // constants
  14262. float sched = params.adam.sched;
  14263. const float alpha = params.adam.alpha;
  14264. const float decay = params.adam.decay * alpha;
  14265. const float beta1 = params.adam.beta1;
  14266. const float beta2 = params.adam.beta2;
  14267. const float eps = params.adam.eps;
  14268. const float gclip = params.adam.gclip;
  14269. const int decay_min_ndim = params.adam.decay_min_ndim;
  14270. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14271. const float accum_norm = 1.0f / (float) n_accum;
  14272. float * g = opt->adam.g->data; // gradients
  14273. float * m = opt->adam.m->data; // first moment
  14274. float * v = opt->adam.v->data; // second moment
  14275. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14276. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14277. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14278. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14279. bool cancel = false;
  14280. // compute the function value
  14281. float fx = 0;
  14282. ggml_set_zero(opt->adam.g);
  14283. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14284. if (callback) {
  14285. callback(callback_data, accum_step, &sched, &cancel);
  14286. if (cancel) {
  14287. return GGML_OPT_CANCEL;
  14288. }
  14289. }
  14290. // ggml_graph_reset (gf);
  14291. ggml_set_f32 (f->grad, 1.0f);
  14292. ggml_graph_compute(gb, &cplan);
  14293. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14294. fx += ggml_get_f32_1d(f, 0);
  14295. }
  14296. fx *= accum_norm;
  14297. opt->adam.fx_prev = fx;
  14298. opt->adam.fx_best = opt->adam.fx_prev;
  14299. if (pf) {
  14300. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14301. }
  14302. opt->loss_before = opt->adam.fx_prev;
  14303. opt->loss_after = opt->adam.fx_prev;
  14304. // initialize
  14305. if (opt->just_initialized) {
  14306. opt->adam.n_no_improvement = 0;
  14307. opt->just_initialized = false;
  14308. }
  14309. float * fx_best = &opt->adam.fx_best;
  14310. float * fx_prev = &opt->adam.fx_prev;
  14311. int * n_no_improvement = &opt->adam.n_no_improvement;
  14312. int iter0 = opt->iter;
  14313. // run the optimizer
  14314. for (int t = 0; t < params.adam.n_iter; ++t) {
  14315. opt->iter = iter0 + t + 1;
  14316. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14317. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14318. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14319. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14320. for (int i = 0; i < np; ++i) {
  14321. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14322. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14323. }
  14324. const int64_t t_start_wall = ggml_time_us();
  14325. const int64_t t_start_cpu = ggml_cycles();
  14326. UNUSED(t_start_wall);
  14327. UNUSED(t_start_cpu);
  14328. {
  14329. float gnorm = 1.0f;
  14330. if (gclip > 0.0f) {
  14331. // gradient clipping
  14332. ggml_float sum = 0.0;
  14333. for (int64_t i = 0; i < nx; ++i) {
  14334. sum += (ggml_float)(g[i]*g[i]);
  14335. }
  14336. ggml_float norm = sqrt(sum);
  14337. if (norm > (ggml_float) gclip) {
  14338. gnorm = (float) ((ggml_float) gclip / norm);
  14339. }
  14340. }
  14341. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14342. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14343. int64_t i = 0;
  14344. for (int p = 0; p < np; ++p) {
  14345. const int64_t ne = ggml_nelements(ps[p]);
  14346. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14347. for (int64_t j = 0; j < ne; ++j) {
  14348. float x = ggml_get_f32_1d(ps[p], j);
  14349. float g_ = g[i]*gnorm;
  14350. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14351. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14352. float mh = m[i]*beta1h;
  14353. float vh = v[i]*beta2h;
  14354. vh = sqrtf(vh) + eps;
  14355. x = x*(1.0f - p_decay) - mh/vh;
  14356. ggml_set_f32_1d(ps[p], j, x);
  14357. ++i;
  14358. }
  14359. }
  14360. }
  14361. fx = 0;
  14362. ggml_set_zero(opt->adam.g);
  14363. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14364. if (callback) {
  14365. callback(callback_data, accum_step, &sched, &cancel);
  14366. if (cancel) {
  14367. return GGML_OPT_CANCEL;;
  14368. }
  14369. }
  14370. // ggml_graph_reset (gf);
  14371. ggml_set_f32 (f->grad, 1.0f);
  14372. ggml_graph_compute(gb, &cplan);
  14373. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14374. fx += ggml_get_f32_1d(f, 0);
  14375. }
  14376. fx *= accum_norm;
  14377. opt->loss_after = fx;
  14378. // check convergence
  14379. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14380. GGML_PRINT_DEBUG("converged\n");
  14381. return GGML_OPT_OK;
  14382. }
  14383. // delta-based convergence test
  14384. if (pf != NULL) {
  14385. // need at least params.past iterations to start checking for convergence
  14386. if (params.past <= iter0 + t) {
  14387. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14388. if (fabsf(rate) < params.delta) {
  14389. return GGML_OPT_OK;
  14390. }
  14391. }
  14392. pf[(iter0 + t)%params.past] = fx;
  14393. }
  14394. // check for improvement
  14395. if (params.max_no_improvement > 0) {
  14396. if (fx_best[0] > fx) {
  14397. fx_best[0] = fx;
  14398. n_no_improvement[0] = 0;
  14399. } else {
  14400. ++n_no_improvement[0];
  14401. if (n_no_improvement[0] >= params.max_no_improvement) {
  14402. return GGML_OPT_OK;
  14403. }
  14404. }
  14405. }
  14406. fx_prev[0] = fx;
  14407. {
  14408. const int64_t t_end_cpu = ggml_cycles();
  14409. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14410. UNUSED(t_end_cpu);
  14411. const int64_t t_end_wall = ggml_time_us();
  14412. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14413. UNUSED(t_end_wall);
  14414. }
  14415. }
  14416. return GGML_OPT_DID_NOT_CONVERGE;
  14417. }
  14418. //
  14419. // L-BFGS
  14420. //
  14421. // the L-BFGS implementation below is based on the following implementation:
  14422. //
  14423. // https://github.com/chokkan/liblbfgs
  14424. //
  14425. struct ggml_lbfgs_iteration_data {
  14426. float alpha;
  14427. float ys;
  14428. float * s;
  14429. float * y;
  14430. };
  14431. static enum ggml_opt_result linesearch_backtracking(
  14432. const struct ggml_opt_params * params,
  14433. int nx,
  14434. float * x,
  14435. float * fx,
  14436. float * g,
  14437. float * d,
  14438. float * step,
  14439. const float * xp,
  14440. struct ggml_tensor * f,
  14441. struct ggml_cgraph * gb,
  14442. struct ggml_cplan * cplan,
  14443. const int np,
  14444. struct ggml_tensor * ps[],
  14445. bool * cancel,
  14446. ggml_opt_callback callback,
  14447. void * callback_data) {
  14448. int count = 0;
  14449. float width = 0.0f;
  14450. float dg = 0.0f;
  14451. float finit = 0.0f;
  14452. float dginit = 0.0f;
  14453. float dgtest = 0.0f;
  14454. const float dec = 0.5f;
  14455. const float inc = 2.1f;
  14456. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14457. const float accum_norm = 1.0f / (float) n_accum;
  14458. if (*step <= 0.f) {
  14459. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14460. }
  14461. // compute the initial gradient in the search direction
  14462. ggml_vec_dot_f32(nx, &dginit, g, d);
  14463. // make sure that d points to a descent direction
  14464. if (0 < dginit) {
  14465. return GGML_LINESEARCH_FAIL;
  14466. }
  14467. // initialize local variables
  14468. finit = *fx;
  14469. dgtest = params->lbfgs.ftol*dginit;
  14470. while (true) {
  14471. ggml_vec_cpy_f32(nx, x, xp);
  14472. ggml_vec_mad_f32(nx, x, d, *step);
  14473. // evaluate the function and gradient values
  14474. {
  14475. ggml_opt_set_params(np, ps, x);
  14476. *fx = 0;
  14477. memset(g, 0, sizeof(float)*nx);
  14478. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14479. if (callback) {
  14480. // LBFG-S does not support learning rate -> ignore learning schedule
  14481. float sched = 0;
  14482. callback(callback_data, accum_step, &sched, cancel);
  14483. if (*cancel) {
  14484. return GGML_OPT_CANCEL;
  14485. }
  14486. }
  14487. // ggml_graph_reset (gf);
  14488. ggml_set_f32 (f->grad, 1.0f);
  14489. ggml_graph_compute(gb, cplan);
  14490. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14491. *fx += ggml_get_f32_1d(f, 0);
  14492. }
  14493. *fx *= accum_norm;
  14494. }
  14495. ++count;
  14496. if (*fx > finit + (*step)*dgtest) {
  14497. width = dec;
  14498. } else {
  14499. // Armijo condition is satisfied
  14500. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14501. return count;
  14502. }
  14503. ggml_vec_dot_f32(nx, &dg, g, d);
  14504. // check the Wolfe condition
  14505. if (dg < params->lbfgs.wolfe * dginit) {
  14506. width = inc;
  14507. } else {
  14508. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14509. // regular Wolfe conditions
  14510. return count;
  14511. }
  14512. if(dg > -params->lbfgs.wolfe*dginit) {
  14513. width = dec;
  14514. } else {
  14515. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14516. return count;
  14517. }
  14518. }
  14519. }
  14520. if (*step < params->lbfgs.min_step) {
  14521. return GGML_LINESEARCH_MINIMUM_STEP;
  14522. }
  14523. if (*step > params->lbfgs.max_step) {
  14524. return GGML_LINESEARCH_MAXIMUM_STEP;
  14525. }
  14526. if (params->lbfgs.max_linesearch <= count) {
  14527. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14528. }
  14529. (*step) *= width;
  14530. }
  14531. GGML_UNREACHABLE();
  14532. }
  14533. static enum ggml_opt_result ggml_opt_lbfgs(
  14534. struct ggml_context * ctx,
  14535. struct ggml_opt_context * opt,
  14536. struct ggml_opt_params params,
  14537. struct ggml_tensor * f,
  14538. struct ggml_cgraph * gf,
  14539. struct ggml_cgraph * gb,
  14540. ggml_opt_callback callback,
  14541. void * callback_data) {
  14542. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14543. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14544. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14545. return GGML_OPT_INVALID_WOLFE;
  14546. }
  14547. }
  14548. const int m = params.lbfgs.m;
  14549. // these will store the parameters we want to optimize
  14550. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14551. int np = 0;
  14552. int nx = 0;
  14553. for (int i = 0; i < gf->n_nodes; ++i) {
  14554. if (gf->nodes[i]->is_param) {
  14555. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14556. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14557. ps[np++] = gf->nodes[i];
  14558. nx += ggml_nelements(gf->nodes[i]);
  14559. }
  14560. }
  14561. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14562. int iter = opt->iter;
  14563. ggml_opt_init(ctx, opt, params, nx);
  14564. opt->iter = iter;
  14565. }
  14566. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14567. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14568. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14569. float * x = opt->lbfgs.x->data; // current parameters
  14570. float * xp = opt->lbfgs.xp->data; // previous parameters
  14571. float * g = opt->lbfgs.g->data; // current gradient
  14572. float * gp = opt->lbfgs.gp->data; // previous gradient
  14573. float * d = opt->lbfgs.d->data; // search direction
  14574. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14575. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14576. const float accum_norm = 1.0f / (float) n_accum;
  14577. float fx = 0.0f; // cost function value
  14578. float xnorm = 0.0f; // ||x||
  14579. float gnorm = 0.0f; // ||g||
  14580. // initialize x from the graph nodes
  14581. ggml_opt_get_params(np, ps, x);
  14582. // the L-BFGS memory
  14583. float * lm_alpha = opt->lbfgs.lmal->data;
  14584. float * lm_ys = opt->lbfgs.lmys->data;
  14585. float * lm_s = opt->lbfgs.lms->data;
  14586. float * lm_y = opt->lbfgs.lmy->data;
  14587. bool cancel = false;
  14588. // evaluate the function value and its gradient
  14589. {
  14590. ggml_opt_set_params(np, ps, x);
  14591. fx = 0;
  14592. memset(g, 0, sizeof(float)*nx);
  14593. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14594. if (callback) {
  14595. // LBFG-S does not support learning rate -> ignore learning schedule
  14596. float sched = 0;
  14597. callback(callback_data, accum_step, &sched, &cancel);
  14598. if (cancel) {
  14599. return GGML_OPT_CANCEL;
  14600. }
  14601. }
  14602. // ggml_graph_reset (gf);
  14603. ggml_set_f32 (f->grad, 1.0f);
  14604. ggml_graph_compute(gb, &cplan);
  14605. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14606. fx += ggml_get_f32_1d(f, 0);
  14607. }
  14608. fx *= accum_norm;
  14609. opt->loss_before = fx;
  14610. opt->loss_after = fx;
  14611. }
  14612. // search direction = -gradient
  14613. ggml_vec_neg_f32(nx, d, g);
  14614. // ||x||, ||g||
  14615. ggml_vec_norm_f32(nx, &xnorm, x);
  14616. ggml_vec_norm_f32(nx, &gnorm, g);
  14617. if (xnorm < 1.0f) {
  14618. xnorm = 1.0f;
  14619. }
  14620. // already optimized
  14621. if (gnorm/xnorm <= params.lbfgs.eps) {
  14622. return GGML_OPT_OK;
  14623. }
  14624. if (opt->just_initialized) {
  14625. if (pf) {
  14626. pf[0] = fx;
  14627. }
  14628. opt->lbfgs.fx_best = fx;
  14629. // initial step
  14630. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14631. opt->lbfgs.j = 0;
  14632. opt->lbfgs.k = 1;
  14633. opt->lbfgs.end = 0;
  14634. opt->lbfgs.n_no_improvement = 0;
  14635. opt->just_initialized = false;
  14636. }
  14637. float * fx_best = &opt->lbfgs.fx_best;
  14638. float * step = &opt->lbfgs.step;
  14639. int * j = &opt->lbfgs.j;
  14640. int * k = &opt->lbfgs.k;
  14641. int * end = &opt->lbfgs.end;
  14642. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14643. int ls = 0;
  14644. int bound = 0;
  14645. float ys = 0.0f;
  14646. float yy = 0.0f;
  14647. float beta = 0.0f;
  14648. int it = 0;
  14649. while (true) {
  14650. // store the current position and gradient vectors
  14651. ggml_vec_cpy_f32(nx, xp, x);
  14652. ggml_vec_cpy_f32(nx, gp, g);
  14653. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14654. // to determine if the optimization should be cancelled
  14655. // this is a simple change, but not doing this atm, since I don't have a nice
  14656. // way to test and don't want to break something with so many changes lined up
  14657. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14658. if (cancel) {
  14659. return GGML_OPT_CANCEL;
  14660. }
  14661. if (ls < 0) {
  14662. // linesearch failed - go back to the previous point and return
  14663. ggml_vec_cpy_f32(nx, x, xp);
  14664. ggml_vec_cpy_f32(nx, g, gp);
  14665. return ls;
  14666. }
  14667. opt->loss_after = fx;
  14668. ggml_vec_norm_f32(nx, &xnorm, x);
  14669. ggml_vec_norm_f32(nx, &gnorm, g);
  14670. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14671. if (xnorm < 1.0f) {
  14672. xnorm = 1.0f;
  14673. }
  14674. if (gnorm/xnorm <= params.lbfgs.eps) {
  14675. // converged
  14676. return GGML_OPT_OK;
  14677. }
  14678. // delta-based convergence test
  14679. if (pf != NULL) {
  14680. // need at least params.past iterations to start checking for convergence
  14681. if (params.past <= k[0]) {
  14682. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14683. if (fabsf(rate) < params.delta) {
  14684. return GGML_OPT_OK;
  14685. }
  14686. }
  14687. pf[k[0]%params.past] = fx;
  14688. }
  14689. // check for improvement
  14690. if (params.max_no_improvement > 0) {
  14691. if (fx < fx_best[0]) {
  14692. fx_best[0] = fx;
  14693. n_no_improvement[0] = 0;
  14694. } else {
  14695. n_no_improvement[0]++;
  14696. if (n_no_improvement[0] >= params.max_no_improvement) {
  14697. return GGML_OPT_OK;
  14698. }
  14699. }
  14700. }
  14701. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14702. // reached the maximum number of iterations
  14703. return GGML_OPT_DID_NOT_CONVERGE;
  14704. }
  14705. // update vectors s and y:
  14706. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14707. // y_{k+1} = g_{k+1} - g_{k}.
  14708. //
  14709. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14710. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14711. // compute scalars ys and yy:
  14712. // ys = y^t \cdot s -> 1 / \rho.
  14713. // yy = y^t \cdot y.
  14714. //
  14715. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14716. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14717. lm_ys[end[0]] = ys;
  14718. // find new search direction
  14719. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14720. bound = (m <= k[0]) ? m : k[0];
  14721. k[0]++;
  14722. it++;
  14723. end[0] = (end[0] + 1)%m;
  14724. // initialize search direction with -g
  14725. ggml_vec_neg_f32(nx, d, g);
  14726. j[0] = end[0];
  14727. for (int i = 0; i < bound; ++i) {
  14728. j[0] = (j[0] + m - 1) % m;
  14729. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14730. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14731. lm_alpha[j[0]] /= lm_ys[j[0]];
  14732. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14733. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14734. }
  14735. ggml_vec_scale_f32(nx, d, ys/yy);
  14736. for (int i = 0; i < bound; ++i) {
  14737. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14738. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14739. beta /= lm_ys[j[0]];
  14740. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14741. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14742. j[0] = (j[0] + 1)%m;
  14743. }
  14744. step[0] = 1.0;
  14745. }
  14746. GGML_UNREACHABLE();
  14747. }
  14748. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14749. struct ggml_opt_params result;
  14750. switch (type) {
  14751. case GGML_OPT_ADAM:
  14752. {
  14753. result = (struct ggml_opt_params) {
  14754. .type = GGML_OPT_ADAM,
  14755. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14756. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  14757. .past = 0,
  14758. .delta = 1e-5f,
  14759. .max_no_improvement = 100,
  14760. .print_forward_graph = true,
  14761. .print_backward_graph = true,
  14762. .n_gradient_accumulation = 1,
  14763. .adam = {
  14764. .n_iter = 10000,
  14765. .sched = 1.000f,
  14766. .decay = 0.0f,
  14767. .decay_min_ndim = 2,
  14768. .alpha = 0.001f,
  14769. .beta1 = 0.9f,
  14770. .beta2 = 0.999f,
  14771. .eps = 1e-8f,
  14772. .eps_f = 1e-5f,
  14773. .eps_g = 1e-3f,
  14774. .gclip = 0.0f,
  14775. },
  14776. };
  14777. } break;
  14778. case GGML_OPT_LBFGS:
  14779. {
  14780. result = (struct ggml_opt_params) {
  14781. .type = GGML_OPT_LBFGS,
  14782. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14783. .n_threads = 1,
  14784. .past = 0,
  14785. .delta = 1e-5f,
  14786. .max_no_improvement = 0,
  14787. .print_forward_graph = true,
  14788. .print_backward_graph = true,
  14789. .n_gradient_accumulation = 1,
  14790. .lbfgs = {
  14791. .m = 6,
  14792. .n_iter = 100,
  14793. .max_linesearch = 20,
  14794. .eps = 1e-5f,
  14795. .ftol = 1e-4f,
  14796. .wolfe = 0.9f,
  14797. .min_step = 1e-20f,
  14798. .max_step = 1e+20f,
  14799. .linesearch = GGML_LINESEARCH_DEFAULT,
  14800. },
  14801. };
  14802. } break;
  14803. }
  14804. return result;
  14805. }
  14806. GGML_API void ggml_opt_init(
  14807. struct ggml_context * ctx,
  14808. struct ggml_opt_context * opt,
  14809. struct ggml_opt_params params,
  14810. int64_t nx) {
  14811. opt->ctx = ctx;
  14812. opt->params = params;
  14813. opt->iter = 0;
  14814. opt->nx = nx;
  14815. opt->just_initialized = true;
  14816. if (opt->ctx == NULL) {
  14817. struct ggml_init_params ctx_opt_params;
  14818. if (opt->params.type == GGML_OPT_ADAM) {
  14819. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  14820. if (opt->params.past > 0) {
  14821. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14822. }
  14823. } else if (opt->params.type == GGML_OPT_LBFGS) {
  14824. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  14825. if (opt->params.past > 0) {
  14826. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14827. }
  14828. }
  14829. ctx_opt_params.mem_buffer = NULL;
  14830. ctx_opt_params.no_alloc = false;
  14831. opt->ctx = ggml_init(ctx_opt_params);
  14832. }
  14833. switch (opt->params.type) {
  14834. case GGML_OPT_ADAM:
  14835. {
  14836. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14837. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14838. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14839. opt->adam.pf = params.past > 0
  14840. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14841. : NULL;
  14842. ggml_set_zero(opt->adam.m);
  14843. ggml_set_zero(opt->adam.v);
  14844. if (opt->adam.pf) {
  14845. ggml_set_zero(opt->adam.pf);
  14846. }
  14847. } break;
  14848. case GGML_OPT_LBFGS:
  14849. {
  14850. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14851. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14852. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14853. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14854. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14855. opt->lbfgs.pf = params.past > 0
  14856. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14857. : NULL;
  14858. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14859. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  14860. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14861. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14862. ggml_set_zero(opt->lbfgs.x);
  14863. ggml_set_zero(opt->lbfgs.xp);
  14864. ggml_set_zero(opt->lbfgs.g);
  14865. ggml_set_zero(opt->lbfgs.gp);
  14866. ggml_set_zero(opt->lbfgs.d);
  14867. if (opt->lbfgs.pf) {
  14868. ggml_set_zero(opt->lbfgs.pf);
  14869. }
  14870. ggml_set_zero(opt->lbfgs.lmal);
  14871. ggml_set_zero(opt->lbfgs.lmys);
  14872. ggml_set_zero(opt->lbfgs.lms);
  14873. ggml_set_zero(opt->lbfgs.lmy);
  14874. } break;
  14875. }
  14876. }
  14877. enum ggml_opt_result ggml_opt(
  14878. struct ggml_context * ctx,
  14879. struct ggml_opt_params params,
  14880. struct ggml_tensor * f) {
  14881. bool free_ctx = false;
  14882. if (ctx == NULL) {
  14883. struct ggml_init_params params_ctx = {
  14884. .mem_size = 16*1024*1024,
  14885. .mem_buffer = NULL,
  14886. .no_alloc = false,
  14887. };
  14888. ctx = ggml_init(params_ctx);
  14889. if (ctx == NULL) {
  14890. return GGML_OPT_NO_CONTEXT;
  14891. }
  14892. free_ctx = true;
  14893. }
  14894. enum ggml_opt_result result = GGML_OPT_OK;
  14895. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14896. ggml_opt_init(ctx, opt, params, 0);
  14897. result = ggml_opt_resume(ctx, opt, f);
  14898. if (free_ctx) {
  14899. ggml_free(ctx);
  14900. }
  14901. return result;
  14902. }
  14903. enum ggml_opt_result ggml_opt_resume(
  14904. struct ggml_context * ctx,
  14905. struct ggml_opt_context * opt,
  14906. struct ggml_tensor * f) {
  14907. // build forward + backward compute graphs
  14908. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  14909. ggml_build_forward_expand(gf, f);
  14910. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  14911. ggml_build_backward_expand(ctx, gf, gb, true);
  14912. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  14913. }
  14914. enum ggml_opt_result ggml_opt_resume_g(
  14915. struct ggml_context * ctx,
  14916. struct ggml_opt_context * opt,
  14917. struct ggml_tensor * f,
  14918. struct ggml_cgraph * gf,
  14919. struct ggml_cgraph * gb,
  14920. ggml_opt_callback callback,
  14921. void * callback_data) {
  14922. // build forward + backward compute graphs
  14923. enum ggml_opt_result result = GGML_OPT_OK;
  14924. switch (opt->params.type) {
  14925. case GGML_OPT_ADAM:
  14926. {
  14927. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14928. } break;
  14929. case GGML_OPT_LBFGS:
  14930. {
  14931. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  14932. } break;
  14933. }
  14934. if (opt->params.print_forward_graph) {
  14935. ggml_graph_print (gf);
  14936. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14937. }
  14938. if (opt->params.print_backward_graph) {
  14939. ggml_graph_print (gb);
  14940. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14941. }
  14942. return result;
  14943. }
  14944. ////////////////////////////////////////////////////////////////////////////////
  14945. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14946. assert(k % QK4_0 == 0);
  14947. const int nb = k / QK4_0;
  14948. for (int b = 0; b < n; b += k) {
  14949. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14950. quantize_row_q4_0_reference(src + b, y, k);
  14951. for (int i = 0; i < nb; i++) {
  14952. for (int j = 0; j < QK4_0; j += 2) {
  14953. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14954. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14955. hist[vi0]++;
  14956. hist[vi1]++;
  14957. }
  14958. }
  14959. }
  14960. return (n/QK4_0*sizeof(block_q4_0));
  14961. }
  14962. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14963. assert(k % QK4_1 == 0);
  14964. const int nb = k / QK4_1;
  14965. for (int b = 0; b < n; b += k) {
  14966. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14967. quantize_row_q4_1_reference(src + b, y, k);
  14968. for (int i = 0; i < nb; i++) {
  14969. for (int j = 0; j < QK4_1; j += 2) {
  14970. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14971. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14972. hist[vi0]++;
  14973. hist[vi1]++;
  14974. }
  14975. }
  14976. }
  14977. return (n/QK4_1*sizeof(block_q4_1));
  14978. }
  14979. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14980. assert(k % QK5_0 == 0);
  14981. const int nb = k / QK5_0;
  14982. for (int b = 0; b < n; b += k) {
  14983. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14984. quantize_row_q5_0_reference(src + b, y, k);
  14985. for (int i = 0; i < nb; i++) {
  14986. uint32_t qh;
  14987. memcpy(&qh, &y[i].qh, sizeof(qh));
  14988. for (int j = 0; j < QK5_0; j += 2) {
  14989. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  14990. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  14991. // cast to 16 bins
  14992. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14993. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14994. hist[vi0]++;
  14995. hist[vi1]++;
  14996. }
  14997. }
  14998. }
  14999. return (n/QK5_0*sizeof(block_q5_0));
  15000. }
  15001. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15002. assert(k % QK5_1 == 0);
  15003. const int nb = k / QK5_1;
  15004. for (int b = 0; b < n; b += k) {
  15005. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15006. quantize_row_q5_1_reference(src + b, y, k);
  15007. for (int i = 0; i < nb; i++) {
  15008. uint32_t qh;
  15009. memcpy(&qh, &y[i].qh, sizeof(qh));
  15010. for (int j = 0; j < QK5_1; j += 2) {
  15011. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15012. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15013. // cast to 16 bins
  15014. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15015. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15016. hist[vi0]++;
  15017. hist[vi1]++;
  15018. }
  15019. }
  15020. }
  15021. return (n/QK5_1*sizeof(block_q5_1));
  15022. }
  15023. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15024. assert(k % QK8_0 == 0);
  15025. const int nb = k / QK8_0;
  15026. for (int b = 0; b < n; b += k) {
  15027. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15028. quantize_row_q8_0_reference(src + b, y, k);
  15029. for (int i = 0; i < nb; i++) {
  15030. for (int j = 0; j < QK8_0; ++j) {
  15031. const int8_t vi = y[i].qs[j];
  15032. hist[vi/16 + 8]++;
  15033. }
  15034. }
  15035. }
  15036. return (n/QK8_0*sizeof(block_q8_0));
  15037. }
  15038. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15039. size_t result = 0;
  15040. switch (type) {
  15041. case GGML_TYPE_Q4_0:
  15042. {
  15043. GGML_ASSERT(start % QK4_0 == 0);
  15044. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15045. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15046. } break;
  15047. case GGML_TYPE_Q4_1:
  15048. {
  15049. GGML_ASSERT(start % QK4_1 == 0);
  15050. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15051. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15052. } break;
  15053. case GGML_TYPE_Q5_0:
  15054. {
  15055. GGML_ASSERT(start % QK5_0 == 0);
  15056. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15057. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15058. } break;
  15059. case GGML_TYPE_Q5_1:
  15060. {
  15061. GGML_ASSERT(start % QK5_1 == 0);
  15062. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15063. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15064. } break;
  15065. case GGML_TYPE_Q8_0:
  15066. {
  15067. GGML_ASSERT(start % QK8_0 == 0);
  15068. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15069. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15070. } break;
  15071. case GGML_TYPE_Q2_K:
  15072. {
  15073. GGML_ASSERT(start % QK_K == 0);
  15074. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15075. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15076. } break;
  15077. case GGML_TYPE_Q3_K:
  15078. {
  15079. GGML_ASSERT(start % QK_K == 0);
  15080. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15081. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15082. } break;
  15083. case GGML_TYPE_Q4_K:
  15084. {
  15085. GGML_ASSERT(start % QK_K == 0);
  15086. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15087. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15088. } break;
  15089. case GGML_TYPE_Q5_K:
  15090. {
  15091. GGML_ASSERT(start % QK_K == 0);
  15092. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15093. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15094. } break;
  15095. case GGML_TYPE_Q6_K:
  15096. {
  15097. GGML_ASSERT(start % QK_K == 0);
  15098. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15099. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15100. } break;
  15101. case GGML_TYPE_F16:
  15102. {
  15103. int elemsize = sizeof(ggml_fp16_t);
  15104. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15105. result = n * elemsize;
  15106. } break;
  15107. case GGML_TYPE_F32:
  15108. {
  15109. int elemsize = sizeof(float);
  15110. result = n * elemsize;
  15111. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15112. } break;
  15113. default:
  15114. assert(false);
  15115. }
  15116. return result;
  15117. }
  15118. ////////////////////////////////////////////////////////////////////////////////
  15119. struct gguf_str {
  15120. uint64_t n; // GGUFv2
  15121. char * data;
  15122. };
  15123. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15124. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15125. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15126. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15127. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15128. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15129. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15130. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15131. [GGUF_TYPE_BOOL] = sizeof(bool),
  15132. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15133. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15134. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15135. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15136. [GGUF_TYPE_ARRAY] = 0, // undefined
  15137. };
  15138. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15139. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15140. [GGUF_TYPE_UINT8] = "u8",
  15141. [GGUF_TYPE_INT8] = "i8",
  15142. [GGUF_TYPE_UINT16] = "u16",
  15143. [GGUF_TYPE_INT16] = "i16",
  15144. [GGUF_TYPE_UINT32] = "u32",
  15145. [GGUF_TYPE_INT32] = "i32",
  15146. [GGUF_TYPE_FLOAT32] = "f32",
  15147. [GGUF_TYPE_BOOL] = "bool",
  15148. [GGUF_TYPE_STRING] = "str",
  15149. [GGUF_TYPE_ARRAY] = "arr",
  15150. [GGUF_TYPE_UINT64] = "u64",
  15151. [GGUF_TYPE_INT64] = "i64",
  15152. [GGUF_TYPE_FLOAT64] = "f64",
  15153. };
  15154. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15155. union gguf_value {
  15156. uint8_t uint8;
  15157. int8_t int8;
  15158. uint16_t uint16;
  15159. int16_t int16;
  15160. uint32_t uint32;
  15161. int32_t int32;
  15162. float float32;
  15163. uint64_t uint64;
  15164. int64_t int64;
  15165. double float64;
  15166. bool bool_;
  15167. struct gguf_str str;
  15168. struct {
  15169. enum gguf_type type;
  15170. uint64_t n; // GGUFv2
  15171. void * data;
  15172. } arr;
  15173. };
  15174. struct gguf_kv {
  15175. struct gguf_str key;
  15176. enum gguf_type type;
  15177. union gguf_value value;
  15178. };
  15179. struct gguf_header {
  15180. char magic[4];
  15181. uint32_t version;
  15182. uint64_t n_tensors; // GGUFv2
  15183. uint64_t n_kv; // GGUFv2
  15184. };
  15185. struct gguf_tensor_info {
  15186. struct gguf_str name;
  15187. uint32_t n_dims;
  15188. uint64_t ne[GGML_MAX_DIMS];
  15189. enum ggml_type type;
  15190. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15191. // for writing API
  15192. const void * data;
  15193. size_t size;
  15194. };
  15195. struct gguf_context {
  15196. struct gguf_header header;
  15197. struct gguf_kv * kv;
  15198. struct gguf_tensor_info * infos;
  15199. size_t alignment;
  15200. size_t offset; // offset of `data` from beginning of file
  15201. size_t size; // size of `data` in bytes
  15202. //uint8_t * padding;
  15203. void * data;
  15204. };
  15205. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15206. const size_t n = fread(dst, 1, size, file);
  15207. *offset += n;
  15208. return n == size;
  15209. }
  15210. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15211. p->n = 0;
  15212. p->data = NULL;
  15213. bool ok = true;
  15214. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15215. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15216. return ok;
  15217. }
  15218. struct gguf_context * gguf_init_empty(void) {
  15219. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15220. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15221. ctx->header.version = GGUF_VERSION;
  15222. ctx->header.n_tensors = 0;
  15223. ctx->header.n_kv = 0;
  15224. ctx->kv = NULL;
  15225. ctx->infos = NULL;
  15226. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15227. ctx->offset = 0;
  15228. ctx->size = 0;
  15229. ctx->data = NULL;
  15230. return ctx;
  15231. }
  15232. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15233. FILE * file = fopen(fname, "rb");
  15234. if (!file) {
  15235. return NULL;
  15236. }
  15237. // offset from start of file
  15238. size_t offset = 0;
  15239. char magic[4];
  15240. // check the magic before making allocations
  15241. {
  15242. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15243. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15244. if (magic[i] != GGUF_MAGIC[i]) {
  15245. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15246. fclose(file);
  15247. return NULL;
  15248. }
  15249. }
  15250. }
  15251. bool ok = true;
  15252. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15253. // read the header
  15254. {
  15255. strncpy(ctx->header.magic, magic, 4);
  15256. ctx->kv = NULL;
  15257. ctx->infos = NULL;
  15258. ctx->data = NULL;
  15259. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15260. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15261. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15262. if (ctx->header.version == 1) {
  15263. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15264. fclose(file);
  15265. gguf_free(ctx);
  15266. return NULL;
  15267. }
  15268. if (!ok) {
  15269. fprintf(stderr, "%s: failed to read header\n", __func__);
  15270. fclose(file);
  15271. gguf_free(ctx);
  15272. return NULL;
  15273. }
  15274. }
  15275. // read the kv pairs
  15276. {
  15277. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15278. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15279. struct gguf_kv * kv = &ctx->kv[i];
  15280. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15281. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15282. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15283. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15284. switch (kv->type) {
  15285. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15286. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15287. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15288. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15289. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15290. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15291. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15292. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15293. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15294. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15295. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15296. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15297. case GGUF_TYPE_ARRAY:
  15298. {
  15299. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15300. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15301. switch (kv->value.arr.type) {
  15302. case GGUF_TYPE_UINT8:
  15303. case GGUF_TYPE_INT8:
  15304. case GGUF_TYPE_UINT16:
  15305. case GGUF_TYPE_INT16:
  15306. case GGUF_TYPE_UINT32:
  15307. case GGUF_TYPE_INT32:
  15308. case GGUF_TYPE_FLOAT32:
  15309. case GGUF_TYPE_UINT64:
  15310. case GGUF_TYPE_INT64:
  15311. case GGUF_TYPE_FLOAT64:
  15312. case GGUF_TYPE_BOOL:
  15313. {
  15314. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15315. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15316. } break;
  15317. case GGUF_TYPE_STRING:
  15318. {
  15319. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15320. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15321. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15322. }
  15323. } break;
  15324. case GGUF_TYPE_ARRAY:
  15325. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15326. }
  15327. } break;
  15328. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15329. }
  15330. if (!ok) {
  15331. break;
  15332. }
  15333. }
  15334. if (!ok) {
  15335. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15336. fclose(file);
  15337. gguf_free(ctx);
  15338. return NULL;
  15339. }
  15340. }
  15341. // read the tensor infos
  15342. {
  15343. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15344. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15345. struct gguf_tensor_info * info = &ctx->infos[i];
  15346. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15347. info->ne[j] = 1;
  15348. }
  15349. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15350. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15351. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15352. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15353. }
  15354. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15355. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15356. if (!ok) {
  15357. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15358. fclose(file);
  15359. gguf_free(ctx);
  15360. return NULL;
  15361. }
  15362. }
  15363. }
  15364. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15365. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15366. if (alignment_idx != -1) {
  15367. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15368. }
  15369. // we require the data section to be aligned, so take into account any padding
  15370. {
  15371. const size_t offset_pad = offset % ctx->alignment;
  15372. if (offset_pad != 0) {
  15373. offset += ctx->alignment - offset_pad;
  15374. fseek(file, offset, SEEK_SET);
  15375. }
  15376. }
  15377. // store the current file offset - this is where the data section starts
  15378. ctx->offset = offset;
  15379. // compute the total size of the data section, taking into account the alignment
  15380. {
  15381. ctx->size = 0;
  15382. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15383. struct gguf_tensor_info * info = &ctx->infos[i];
  15384. const int64_t ne =
  15385. (int64_t) info->ne[0] *
  15386. (int64_t) info->ne[1] *
  15387. (int64_t) info->ne[2] *
  15388. (int64_t) info->ne[3];
  15389. if (ne % ggml_blck_size(info->type) != 0) {
  15390. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15391. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15392. fclose(file);
  15393. gguf_free(ctx);
  15394. return NULL;
  15395. }
  15396. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15397. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15398. }
  15399. }
  15400. // load the tensor data only if requested
  15401. if (params.ctx != NULL) {
  15402. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15403. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15404. // the ggml_tensor structs to the appropriate locations in the binary blob
  15405. // compute the exact size needed for the new ggml_context
  15406. const size_t mem_size =
  15407. params.no_alloc ?
  15408. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15409. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15410. struct ggml_init_params pdata = {
  15411. .mem_size = mem_size,
  15412. .mem_buffer = NULL,
  15413. .no_alloc = params.no_alloc,
  15414. };
  15415. *params.ctx = ggml_init(pdata);
  15416. struct ggml_context * ctx_data = *params.ctx;
  15417. struct ggml_tensor * data = NULL;
  15418. if (!params.no_alloc) {
  15419. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15420. ok = ok && data != NULL;
  15421. // read the binary blob with the tensor data
  15422. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15423. if (!ok) {
  15424. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15425. fclose(file);
  15426. ggml_free(ctx_data);
  15427. gguf_free(ctx);
  15428. return NULL;
  15429. }
  15430. ctx->data = data->data;
  15431. }
  15432. ggml_set_no_alloc(ctx_data, true);
  15433. // create the tensors
  15434. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15435. const int64_t ne[GGML_MAX_DIMS] = {
  15436. ctx->infos[i].ne[0],
  15437. ctx->infos[i].ne[1],
  15438. ctx->infos[i].ne[2],
  15439. ctx->infos[i].ne[3],
  15440. };
  15441. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15442. ok = ok && cur != NULL;
  15443. ggml_set_name(cur, ctx->infos[i].name.data);
  15444. if (!ok) {
  15445. break;
  15446. }
  15447. // point the data member to the appropriate location in the binary blob using the tensor infos
  15448. if (!params.no_alloc) {
  15449. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15450. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15451. }
  15452. }
  15453. if (!ok) {
  15454. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15455. fclose(file);
  15456. ggml_free(ctx_data);
  15457. gguf_free(ctx);
  15458. return NULL;
  15459. }
  15460. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15461. }
  15462. fclose(file);
  15463. return ctx;
  15464. }
  15465. void gguf_free(struct gguf_context * ctx) {
  15466. if (ctx == NULL) {
  15467. return;
  15468. }
  15469. if (ctx->kv) {
  15470. // free string memory - not great..
  15471. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15472. struct gguf_kv * kv = &ctx->kv[i];
  15473. if (kv->key.data) {
  15474. free(kv->key.data);
  15475. }
  15476. if (kv->type == GGUF_TYPE_STRING) {
  15477. if (kv->value.str.data) {
  15478. free(kv->value.str.data);
  15479. }
  15480. }
  15481. if (kv->type == GGUF_TYPE_ARRAY) {
  15482. if (kv->value.arr.data) {
  15483. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15484. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15485. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15486. if (str->data) {
  15487. free(str->data);
  15488. }
  15489. }
  15490. }
  15491. free(kv->value.arr.data);
  15492. }
  15493. }
  15494. }
  15495. free(ctx->kv);
  15496. }
  15497. if (ctx->infos) {
  15498. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15499. struct gguf_tensor_info * info = &ctx->infos[i];
  15500. if (info->name.data) {
  15501. free(info->name.data);
  15502. }
  15503. }
  15504. free(ctx->infos);
  15505. }
  15506. GGML_ALIGNED_FREE(ctx);
  15507. }
  15508. const char * gguf_type_name(enum gguf_type type) {
  15509. return GGUF_TYPE_NAME[type];
  15510. }
  15511. int gguf_get_version(const struct gguf_context * ctx) {
  15512. return ctx->header.version;
  15513. }
  15514. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15515. return ctx->alignment;
  15516. }
  15517. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15518. return ctx->offset;
  15519. }
  15520. void * gguf_get_data(const struct gguf_context * ctx) {
  15521. return ctx->data;
  15522. }
  15523. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15524. return ctx->header.n_kv;
  15525. }
  15526. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15527. // return -1 if key not found
  15528. int keyfound = -1;
  15529. const int n_kv = gguf_get_n_kv(ctx);
  15530. for (int i = 0; i < n_kv; ++i) {
  15531. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15532. keyfound = i;
  15533. break;
  15534. }
  15535. }
  15536. return keyfound;
  15537. }
  15538. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15539. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15540. return ctx->kv[key_id].key.data;
  15541. }
  15542. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15543. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15544. return ctx->kv[key_id].type;
  15545. }
  15546. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15547. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15548. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15549. return ctx->kv[key_id].value.arr.type;
  15550. }
  15551. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15552. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15553. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15554. return ctx->kv[key_id].value.arr.data;
  15555. }
  15556. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15557. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15558. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15559. struct gguf_kv * kv = &ctx->kv[key_id];
  15560. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15561. return str->data;
  15562. }
  15563. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15564. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15565. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15566. return ctx->kv[key_id].value.arr.n;
  15567. }
  15568. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15569. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15570. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15571. return ctx->kv[key_id].value.uint8;
  15572. }
  15573. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15574. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15575. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15576. return ctx->kv[key_id].value.int8;
  15577. }
  15578. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15579. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15580. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15581. return ctx->kv[key_id].value.uint16;
  15582. }
  15583. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15584. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15585. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15586. return ctx->kv[key_id].value.int16;
  15587. }
  15588. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15589. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15590. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15591. return ctx->kv[key_id].value.uint32;
  15592. }
  15593. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15594. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15595. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15596. return ctx->kv[key_id].value.int32;
  15597. }
  15598. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15599. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15600. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15601. return ctx->kv[key_id].value.float32;
  15602. }
  15603. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15604. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15605. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15606. return ctx->kv[key_id].value.uint64;
  15607. }
  15608. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15609. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15610. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15611. return ctx->kv[key_id].value.int64;
  15612. }
  15613. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15614. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15615. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15616. return ctx->kv[key_id].value.float64;
  15617. }
  15618. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15619. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15620. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15621. return ctx->kv[key_id].value.bool_;
  15622. }
  15623. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15624. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15625. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15626. return ctx->kv[key_id].value.str.data;
  15627. }
  15628. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  15629. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15630. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  15631. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  15632. return &ctx->kv[key_id].value;
  15633. }
  15634. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15635. return ctx->header.n_tensors;
  15636. }
  15637. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15638. // return -1 if tensor not found
  15639. int tensorfound = -1;
  15640. const int n_tensors = gguf_get_n_tensors(ctx);
  15641. for (int i = 0; i < n_tensors; ++i) {
  15642. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15643. tensorfound = i;
  15644. break;
  15645. }
  15646. }
  15647. return tensorfound;
  15648. }
  15649. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15650. return ctx->infos[i].offset;
  15651. }
  15652. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15653. return ctx->infos[i].name.data;
  15654. }
  15655. // returns the index
  15656. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15657. const int idx = gguf_find_key(ctx, key);
  15658. if (idx >= 0) {
  15659. return idx;
  15660. }
  15661. const int n_kv = gguf_get_n_kv(ctx);
  15662. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15663. ctx->kv[n_kv].key.n = strlen(key);
  15664. ctx->kv[n_kv].key.data = strdup(key);
  15665. ctx->header.n_kv++;
  15666. return n_kv;
  15667. }
  15668. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15669. const int idx = gguf_get_or_add_key(ctx, key);
  15670. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15671. ctx->kv[idx].value.uint8 = val;
  15672. }
  15673. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15674. const int idx = gguf_get_or_add_key(ctx, key);
  15675. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15676. ctx->kv[idx].value.int8 = val;
  15677. }
  15678. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15679. const int idx = gguf_get_or_add_key(ctx, key);
  15680. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15681. ctx->kv[idx].value.uint16 = val;
  15682. }
  15683. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15684. const int idx = gguf_get_or_add_key(ctx, key);
  15685. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15686. ctx->kv[idx].value.int16 = val;
  15687. }
  15688. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15689. const int idx = gguf_get_or_add_key(ctx, key);
  15690. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15691. ctx->kv[idx].value.uint32 = val;
  15692. }
  15693. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15694. const int idx = gguf_get_or_add_key(ctx, key);
  15695. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15696. ctx->kv[idx].value.int32 = val;
  15697. }
  15698. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15699. const int idx = gguf_get_or_add_key(ctx, key);
  15700. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15701. ctx->kv[idx].value.float32 = val;
  15702. }
  15703. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15704. const int idx = gguf_get_or_add_key(ctx, key);
  15705. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15706. ctx->kv[idx].value.uint64 = val;
  15707. }
  15708. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15709. const int idx = gguf_get_or_add_key(ctx, key);
  15710. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15711. ctx->kv[idx].value.int64 = val;
  15712. }
  15713. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15714. const int idx = gguf_get_or_add_key(ctx, key);
  15715. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15716. ctx->kv[idx].value.float64 = val;
  15717. }
  15718. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15719. const int idx = gguf_get_or_add_key(ctx, key);
  15720. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15721. ctx->kv[idx].value.bool_ = val;
  15722. }
  15723. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15724. const int idx = gguf_get_or_add_key(ctx, key);
  15725. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15726. ctx->kv[idx].value.str.n = strlen(val);
  15727. ctx->kv[idx].value.str.data = strdup(val);
  15728. }
  15729. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15730. const int idx = gguf_get_or_add_key(ctx, key);
  15731. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15732. ctx->kv[idx].value.arr.type = type;
  15733. ctx->kv[idx].value.arr.n = n;
  15734. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15735. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15736. }
  15737. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15738. const int idx = gguf_get_or_add_key(ctx, key);
  15739. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15740. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15741. ctx->kv[idx].value.arr.n = n;
  15742. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15743. for (int i = 0; i < n; i++) {
  15744. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15745. str->n = strlen(data[i]);
  15746. str->data = strdup(data[i]);
  15747. }
  15748. }
  15749. // set or add KV pairs from another context
  15750. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15751. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15752. switch (src->kv[i].type) {
  15753. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15754. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15755. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15756. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15757. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15758. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15759. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15760. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15761. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15762. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15763. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15764. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15765. case GGUF_TYPE_ARRAY:
  15766. {
  15767. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15768. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15769. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15770. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15771. }
  15772. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15773. free(data);
  15774. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15775. GGML_ASSERT(false && "nested arrays not supported");
  15776. } else {
  15777. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15778. }
  15779. } break;
  15780. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15781. }
  15782. }
  15783. }
  15784. void gguf_add_tensor(
  15785. struct gguf_context * ctx,
  15786. const struct ggml_tensor * tensor) {
  15787. const int idx = ctx->header.n_tensors;
  15788. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15789. ctx->infos[idx].name.n = strlen(tensor->name);
  15790. ctx->infos[idx].name.data = strdup(tensor->name);
  15791. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15792. ctx->infos[idx].ne[i] = 1;
  15793. }
  15794. ctx->infos[idx].n_dims = tensor->n_dims;
  15795. for (int i = 0; i < tensor->n_dims; i++) {
  15796. ctx->infos[idx].ne[i] = tensor->ne[i];
  15797. }
  15798. ctx->infos[idx].type = tensor->type;
  15799. ctx->infos[idx].offset = 0;
  15800. ctx->infos[idx].data = tensor->data;
  15801. ctx->infos[idx].size = ggml_nbytes(tensor);
  15802. if (ctx->header.n_tensors > 0) {
  15803. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15804. }
  15805. ctx->header.n_tensors++;
  15806. }
  15807. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15808. const int idx = gguf_find_tensor(ctx, name);
  15809. if (idx < 0) {
  15810. GGML_ASSERT(false && "tensor not found");
  15811. }
  15812. ctx->infos[idx].type = type;
  15813. }
  15814. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15815. const int idx = gguf_find_tensor(ctx, name);
  15816. if (idx < 0) {
  15817. GGML_ASSERT(false && "tensor not found");
  15818. }
  15819. ctx->infos[idx].data = data;
  15820. ctx->infos[idx].size = size;
  15821. // update offsets
  15822. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15823. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15824. }
  15825. }
  15826. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15827. // fwrite(&val->n, sizeof(val->n), 1, file);
  15828. // fwrite(val->data, sizeof(char), val->n, file);
  15829. //}
  15830. //
  15831. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15832. // fwrite(val, sizeof(char), size, file);
  15833. //}
  15834. struct gguf_buf {
  15835. void * data;
  15836. size_t size;
  15837. size_t offset;
  15838. };
  15839. static struct gguf_buf gguf_buf_init(size_t size) {
  15840. struct gguf_buf buf = {
  15841. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15842. /*buf.size =*/ size,
  15843. /*buf.offset =*/ 0,
  15844. };
  15845. return buf;
  15846. }
  15847. static void gguf_buf_free(struct gguf_buf buf) {
  15848. if (buf.data) {
  15849. free(buf.data);
  15850. }
  15851. }
  15852. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  15853. if (buf->offset + size > buf->size) {
  15854. buf->size = 1.5*(buf->offset + size);
  15855. if (buf->data) {
  15856. buf->data = realloc(buf->data, buf->size);
  15857. }
  15858. }
  15859. }
  15860. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  15861. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  15862. if (buf->data) {
  15863. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  15864. }
  15865. buf->offset += sizeof(val->n);
  15866. if (buf->data) {
  15867. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  15868. }
  15869. buf->offset += val->n;
  15870. }
  15871. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  15872. gguf_buf_grow(buf, el_size);
  15873. if (buf->data) {
  15874. memcpy((char *) buf->data + buf->offset, val, el_size);
  15875. }
  15876. buf->offset += el_size;
  15877. }
  15878. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  15879. // write header
  15880. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  15881. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  15882. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  15883. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  15884. // write key-value pairs
  15885. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15886. struct gguf_kv * kv = &ctx->kv[i];
  15887. gguf_bwrite_str(buf, &kv->key);
  15888. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  15889. switch (kv->type) {
  15890. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  15891. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  15892. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  15893. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  15894. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  15895. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  15896. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  15897. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  15898. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  15899. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  15900. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  15901. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  15902. case GGUF_TYPE_ARRAY:
  15903. {
  15904. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  15905. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  15906. switch (kv->value.arr.type) {
  15907. case GGUF_TYPE_UINT8:
  15908. case GGUF_TYPE_INT8:
  15909. case GGUF_TYPE_UINT16:
  15910. case GGUF_TYPE_INT16:
  15911. case GGUF_TYPE_UINT32:
  15912. case GGUF_TYPE_INT32:
  15913. case GGUF_TYPE_FLOAT32:
  15914. case GGUF_TYPE_UINT64:
  15915. case GGUF_TYPE_INT64:
  15916. case GGUF_TYPE_FLOAT64:
  15917. case GGUF_TYPE_BOOL:
  15918. {
  15919. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15920. } break;
  15921. case GGUF_TYPE_STRING:
  15922. {
  15923. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15924. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  15925. }
  15926. } break;
  15927. case GGUF_TYPE_ARRAY:
  15928. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15929. }
  15930. } break;
  15931. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15932. }
  15933. }
  15934. // write tensor infos
  15935. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15936. struct gguf_tensor_info * info = &ctx->infos[i];
  15937. gguf_bwrite_str(buf, &info->name);
  15938. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  15939. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15940. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  15941. }
  15942. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  15943. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  15944. }
  15945. // we require the data section to be aligned, so take into account any padding
  15946. {
  15947. const size_t offset = buf->offset;
  15948. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  15949. if (offset_pad != offset) {
  15950. uint8_t pad = 0;
  15951. for (size_t i = 0; i < offset_pad - offset; ++i) {
  15952. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15953. }
  15954. }
  15955. }
  15956. if (only_meta) {
  15957. return;
  15958. }
  15959. size_t offset = 0;
  15960. // write tensor data
  15961. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15962. struct gguf_tensor_info * info = &ctx->infos[i];
  15963. const size_t size = info->size;
  15964. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  15965. gguf_bwrite_el(buf, info->data, size);
  15966. if (size_pad != size) {
  15967. uint8_t pad = 0;
  15968. for (size_t j = 0; j < size_pad - size; ++j) {
  15969. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15970. }
  15971. }
  15972. GGML_ASSERT(offset == info->offset);
  15973. offset += size_pad;
  15974. }
  15975. }
  15976. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  15977. FILE * file = fopen(fname, "wb");
  15978. if (!file) {
  15979. GGML_ASSERT(false && "failed to open file for writing");
  15980. }
  15981. struct gguf_buf buf = gguf_buf_init(16*1024);
  15982. gguf_write_to_buf(ctx, &buf, only_meta);
  15983. fwrite(buf.data, 1, buf.offset, file);
  15984. gguf_buf_free(buf);
  15985. fclose(file);
  15986. }
  15987. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  15988. // no allocs - only compute size
  15989. struct gguf_buf buf = gguf_buf_init(0);
  15990. gguf_write_to_buf(ctx, &buf, true);
  15991. return buf.offset;
  15992. }
  15993. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  15994. struct gguf_buf buf = gguf_buf_init(16*1024);
  15995. gguf_write_to_buf(ctx, &buf, true);
  15996. memcpy(data, buf.data, buf.offset);
  15997. gguf_buf_free(buf);
  15998. }
  15999. ////////////////////////////////////////////////////////////////////////////////
  16000. int ggml_cpu_has_avx(void) {
  16001. #if defined(__AVX__)
  16002. return 1;
  16003. #else
  16004. return 0;
  16005. #endif
  16006. }
  16007. int ggml_cpu_has_avx2(void) {
  16008. #if defined(__AVX2__)
  16009. return 1;
  16010. #else
  16011. return 0;
  16012. #endif
  16013. }
  16014. int ggml_cpu_has_avx512(void) {
  16015. #if defined(__AVX512F__)
  16016. return 1;
  16017. #else
  16018. return 0;
  16019. #endif
  16020. }
  16021. int ggml_cpu_has_avx512_vbmi(void) {
  16022. #if defined(__AVX512VBMI__)
  16023. return 1;
  16024. #else
  16025. return 0;
  16026. #endif
  16027. }
  16028. int ggml_cpu_has_avx512_vnni(void) {
  16029. #if defined(__AVX512VNNI__)
  16030. return 1;
  16031. #else
  16032. return 0;
  16033. #endif
  16034. }
  16035. int ggml_cpu_has_fma(void) {
  16036. #if defined(__FMA__)
  16037. return 1;
  16038. #else
  16039. return 0;
  16040. #endif
  16041. }
  16042. int ggml_cpu_has_neon(void) {
  16043. #if defined(__ARM_NEON)
  16044. return 1;
  16045. #else
  16046. return 0;
  16047. #endif
  16048. }
  16049. int ggml_cpu_has_arm_fma(void) {
  16050. #if defined(__ARM_FEATURE_FMA)
  16051. return 1;
  16052. #else
  16053. return 0;
  16054. #endif
  16055. }
  16056. int ggml_cpu_has_metal(void) {
  16057. #if defined(GGML_USE_METAL)
  16058. return 1;
  16059. #else
  16060. return 0;
  16061. #endif
  16062. }
  16063. int ggml_cpu_has_f16c(void) {
  16064. #if defined(__F16C__)
  16065. return 1;
  16066. #else
  16067. return 0;
  16068. #endif
  16069. }
  16070. int ggml_cpu_has_fp16_va(void) {
  16071. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16072. return 1;
  16073. #else
  16074. return 0;
  16075. #endif
  16076. }
  16077. int ggml_cpu_has_wasm_simd(void) {
  16078. #if defined(__wasm_simd128__)
  16079. return 1;
  16080. #else
  16081. return 0;
  16082. #endif
  16083. }
  16084. int ggml_cpu_has_blas(void) {
  16085. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16086. return 1;
  16087. #else
  16088. return 0;
  16089. #endif
  16090. }
  16091. int ggml_cpu_has_cublas(void) {
  16092. #if defined(GGML_USE_CUBLAS)
  16093. return 1;
  16094. #else
  16095. return 0;
  16096. #endif
  16097. }
  16098. int ggml_cpu_has_clblast(void) {
  16099. #if defined(GGML_USE_CLBLAST)
  16100. return 1;
  16101. #else
  16102. return 0;
  16103. #endif
  16104. }
  16105. int ggml_cpu_has_gpublas(void) {
  16106. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16107. }
  16108. int ggml_cpu_has_sse3(void) {
  16109. #if defined(__SSE3__)
  16110. return 1;
  16111. #else
  16112. return 0;
  16113. #endif
  16114. }
  16115. int ggml_cpu_has_ssse3(void) {
  16116. #if defined(__SSSE3__)
  16117. return 1;
  16118. #else
  16119. return 0;
  16120. #endif
  16121. }
  16122. int ggml_cpu_has_vsx(void) {
  16123. #if defined(__POWER9_VECTOR__)
  16124. return 1;
  16125. #else
  16126. return 0;
  16127. #endif
  16128. }
  16129. ////////////////////////////////////////////////////////////////////////////////