server.cpp 198 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  99. bool return_tokens = false;
  100. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  101. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  102. int32_t n_predict = -1; // new tokens to predict
  103. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  104. int64_t t_max_prompt_ms = -1; // TODO: implement
  105. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  106. std::vector<common_adapter_lora_info> lora;
  107. std::vector<std::string> antiprompt;
  108. std::vector<std::string> response_fields;
  109. bool timings_per_token = false;
  110. bool post_sampling_probs = false;
  111. struct common_params_sampling sampling;
  112. struct common_params_speculative speculative;
  113. // OAI-compat fields
  114. bool verbose = false;
  115. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  116. std::string oaicompat_model;
  117. std::string oaicompat_cmpl_id;
  118. common_chat_syntax oaicompat_chat_syntax;
  119. // Embeddings
  120. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  121. json to_json() const {
  122. std::vector<std::string> samplers;
  123. samplers.reserve(sampling.samplers.size());
  124. for (const auto & sampler : sampling.samplers) {
  125. samplers.emplace_back(common_sampler_type_to_str(sampler));
  126. }
  127. json lora = json::array();
  128. for (size_t i = 0; i < this->lora.size(); ++i) {
  129. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  130. }
  131. auto grammar_triggers = json::array();
  132. for (const auto & trigger : sampling.grammar_triggers) {
  133. server_grammar_trigger ct(std::move(trigger));
  134. grammar_triggers.push_back(ct.to_json());
  135. }
  136. return json {
  137. {"n_predict", n_predict}, // Server configured n_predict
  138. {"seed", sampling.seed},
  139. {"temperature", sampling.temp},
  140. {"dynatemp_range", sampling.dynatemp_range},
  141. {"dynatemp_exponent", sampling.dynatemp_exponent},
  142. {"top_k", sampling.top_k},
  143. {"top_p", sampling.top_p},
  144. {"min_p", sampling.min_p},
  145. {"top_n_sigma", sampling.top_n_sigma},
  146. {"xtc_probability", sampling.xtc_probability},
  147. {"xtc_threshold", sampling.xtc_threshold},
  148. {"typical_p", sampling.typ_p},
  149. {"repeat_last_n", sampling.penalty_last_n},
  150. {"repeat_penalty", sampling.penalty_repeat},
  151. {"presence_penalty", sampling.penalty_present},
  152. {"frequency_penalty", sampling.penalty_freq},
  153. {"dry_multiplier", sampling.dry_multiplier},
  154. {"dry_base", sampling.dry_base},
  155. {"dry_allowed_length", sampling.dry_allowed_length},
  156. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  157. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  158. {"mirostat", sampling.mirostat},
  159. {"mirostat_tau", sampling.mirostat_tau},
  160. {"mirostat_eta", sampling.mirostat_eta},
  161. {"stop", antiprompt},
  162. {"max_tokens", n_predict}, // User configured n_predict
  163. {"n_keep", n_keep},
  164. {"n_discard", n_discard},
  165. {"ignore_eos", sampling.ignore_eos},
  166. {"stream", stream},
  167. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  168. {"n_probs", sampling.n_probs},
  169. {"min_keep", sampling.min_keep},
  170. {"grammar", sampling.grammar},
  171. {"grammar_lazy", sampling.grammar_lazy},
  172. {"grammar_triggers", grammar_triggers},
  173. {"preserved_tokens", sampling.preserved_tokens},
  174. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  175. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  176. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  177. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  178. {"samplers", samplers},
  179. {"speculative.n_max", speculative.n_max},
  180. {"speculative.n_min", speculative.n_min},
  181. {"speculative.p_min", speculative.p_min},
  182. {"timings_per_token", timings_per_token},
  183. {"post_sampling_probs", post_sampling_probs},
  184. {"lora", lora},
  185. };
  186. }
  187. };
  188. struct server_task {
  189. int id = -1; // to be filled by server_queue
  190. int index = -1; // used when there are multiple prompts (batch request)
  191. server_task_type type;
  192. // used by SERVER_TASK_TYPE_CANCEL
  193. int id_target = -1;
  194. // used by SERVER_TASK_TYPE_INFERENCE
  195. slot_params params;
  196. server_tokens prompt_tokens;
  197. int id_selected_slot = -1;
  198. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  199. struct slot_action {
  200. int slot_id;
  201. std::string filename;
  202. std::string filepath;
  203. };
  204. slot_action slot_action;
  205. // used by SERVER_TASK_TYPE_METRICS
  206. bool metrics_reset_bucket = false;
  207. // used by SERVER_TASK_TYPE_SET_LORA
  208. std::vector<common_adapter_lora_info> set_lora;
  209. server_task(server_task_type type) : type(type) {}
  210. static slot_params params_from_json_cmpl(
  211. const llama_context * ctx,
  212. const common_params & params_base,
  213. const json & data) {
  214. const llama_model * model = llama_get_model(ctx);
  215. const llama_vocab * vocab = llama_model_get_vocab(model);
  216. slot_params params;
  217. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  218. slot_params defaults;
  219. defaults.sampling = params_base.sampling;
  220. defaults.speculative = params_base.speculative;
  221. defaults.n_keep = params_base.n_keep;
  222. defaults.antiprompt = params_base.antiprompt;
  223. // enabling this will output extra debug information in the HTTP responses from the server
  224. params.verbose = params_base.verbosity > 9;
  225. params.timings_per_token = json_value(data, "timings_per_token", false);
  226. params.stream = json_value(data, "stream", false);
  227. params.cache_prompt = json_value(data, "cache_prompt", true);
  228. params.return_tokens = json_value(data, "return_tokens", false);
  229. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  230. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  231. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  232. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  233. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  234. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  235. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  236. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  237. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  238. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  239. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  240. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  241. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  242. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  243. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  244. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  245. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  246. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  247. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  248. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  249. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  250. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  251. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  252. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  253. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  254. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  255. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  256. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  257. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  258. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  259. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  260. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  261. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  262. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  263. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  264. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  265. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  266. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  267. // Use OpenAI API logprobs only if n_probs wasn't provided
  268. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  269. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  270. }
  271. if (data.contains("lora")) {
  272. if (data.at("lora").is_array()) {
  273. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  274. } else {
  275. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  276. }
  277. } else {
  278. params.lora = params_base.lora_adapters;
  279. }
  280. // TODO: add more sanity checks for the input parameters
  281. if (params.sampling.penalty_last_n < -1) {
  282. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  283. }
  284. if (params.sampling.dry_penalty_last_n < -1) {
  285. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  286. }
  287. if (params.sampling.penalty_last_n == -1) {
  288. // note: should be the slot's context and not the full context, but it's ok
  289. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  290. }
  291. if (params.sampling.dry_penalty_last_n == -1) {
  292. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  293. }
  294. if (params.sampling.dry_base < 1.0f) {
  295. params.sampling.dry_base = defaults.sampling.dry_base;
  296. }
  297. // sequence breakers for DRY
  298. {
  299. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  300. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  301. if (data.contains("dry_sequence_breakers")) {
  302. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  303. if (params.sampling.dry_sequence_breakers.empty()) {
  304. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  305. }
  306. }
  307. }
  308. // process "json_schema" and "grammar"
  309. if (data.contains("json_schema") && !data.contains("grammar")) {
  310. try {
  311. auto schema = json_value(data, "json_schema", json::object());
  312. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  313. params.sampling.grammar = json_schema_to_grammar(schema);
  314. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  315. } catch (const std::exception & e) {
  316. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  317. }
  318. } else {
  319. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  320. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  321. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  322. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  323. }
  324. {
  325. auto it = data.find("chat_format");
  326. if (it != data.end()) {
  327. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  328. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  329. } else {
  330. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  331. }
  332. params.oaicompat_chat_syntax.reasoning_format = params_base.reasoning_format;
  333. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (params_base.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  334. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  335. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  336. }
  337. {
  338. const auto preserved_tokens = data.find("preserved_tokens");
  339. if (preserved_tokens != data.end()) {
  340. for (const auto & t : *preserved_tokens) {
  341. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  342. if (ids.size() == 1) {
  343. SRV_DBG("Preserved token: %d\n", ids[0]);
  344. params.sampling.preserved_tokens.insert(ids[0]);
  345. } else {
  346. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  347. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  348. }
  349. }
  350. }
  351. const auto grammar_triggers = data.find("grammar_triggers");
  352. if (grammar_triggers != data.end()) {
  353. for (const auto & t : *grammar_triggers) {
  354. server_grammar_trigger ct(t);
  355. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  356. const auto & word = ct.value.value;
  357. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  358. if (ids.size() == 1) {
  359. auto token = ids[0];
  360. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  361. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  362. }
  363. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  364. common_grammar_trigger trigger;
  365. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  366. trigger.value = word;
  367. trigger.token = token;
  368. params.sampling.grammar_triggers.push_back(std::move(trigger));
  369. } else {
  370. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  371. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  372. }
  373. } else {
  374. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  375. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  376. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  377. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  378. } else {
  379. throw std::runtime_error("Unknown grammar trigger type");
  380. }
  381. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  382. }
  383. }
  384. }
  385. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  386. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  387. }
  388. }
  389. {
  390. params.sampling.logit_bias.clear();
  391. const auto & logit_bias = data.find("logit_bias");
  392. if (logit_bias != data.end() && logit_bias->is_array()) {
  393. const int n_vocab = llama_vocab_n_tokens(vocab);
  394. for (const auto & el : *logit_bias) {
  395. // TODO: we may want to throw errors here, in case "el" is incorrect
  396. if (el.is_array() && el.size() == 2) {
  397. float bias;
  398. if (el[1].is_number()) {
  399. bias = el[1].get<float>();
  400. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  401. bias = -INFINITY;
  402. } else {
  403. continue;
  404. }
  405. if (el[0].is_number_integer()) {
  406. llama_token tok = el[0].get<llama_token>();
  407. if (tok >= 0 && tok < n_vocab) {
  408. params.sampling.logit_bias.push_back({tok, bias});
  409. }
  410. } else if (el[0].is_string()) {
  411. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  412. for (auto tok : toks) {
  413. params.sampling.logit_bias.push_back({tok, bias});
  414. }
  415. }
  416. }
  417. }
  418. }
  419. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  420. if (params.sampling.ignore_eos) {
  421. params.sampling.logit_bias.insert(
  422. params.sampling.logit_bias.end(),
  423. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  424. }
  425. }
  426. {
  427. params.antiprompt.clear();
  428. const auto & stop = data.find("stop");
  429. if (stop != data.end() && stop->is_array()) {
  430. for (const auto & word : *stop) {
  431. if (!word.empty()) {
  432. params.antiprompt.push_back(word);
  433. }
  434. }
  435. }
  436. // set reverse prompt from cli args if not set in the request
  437. if (params.antiprompt.empty()) {
  438. params.antiprompt = defaults.antiprompt;
  439. }
  440. }
  441. {
  442. const auto samplers = data.find("samplers");
  443. if (samplers != data.end()) {
  444. if (samplers->is_array()) {
  445. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  446. } else if (samplers->is_string()){
  447. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  448. }
  449. } else {
  450. params.sampling.samplers = defaults.sampling.samplers;
  451. }
  452. }
  453. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  454. params.oaicompat_model = json_value(data, "model", model_name);
  455. return params;
  456. }
  457. // utility function
  458. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  459. std::unordered_set<int> ids(tasks.size());
  460. for (size_t i = 0; i < tasks.size(); i++) {
  461. ids.insert(tasks[i].id);
  462. }
  463. return ids;
  464. }
  465. };
  466. struct result_timings {
  467. int32_t prompt_n = -1;
  468. double prompt_ms;
  469. double prompt_per_token_ms;
  470. double prompt_per_second;
  471. int32_t predicted_n = -1;
  472. double predicted_ms;
  473. double predicted_per_token_ms;
  474. double predicted_per_second;
  475. // Optional speculative metrics - only included when > 0
  476. int32_t draft_n = 0;
  477. int32_t draft_n_accepted = 0;
  478. json to_json() const {
  479. json base = {
  480. {"prompt_n", prompt_n},
  481. {"prompt_ms", prompt_ms},
  482. {"prompt_per_token_ms", prompt_per_token_ms},
  483. {"prompt_per_second", prompt_per_second},
  484. {"predicted_n", predicted_n},
  485. {"predicted_ms", predicted_ms},
  486. {"predicted_per_token_ms", predicted_per_token_ms},
  487. {"predicted_per_second", predicted_per_second},
  488. };
  489. if (draft_n > 0) {
  490. base["draft_n"] = draft_n;
  491. base["draft_n_accepted"] = draft_n_accepted;
  492. }
  493. return base;
  494. }
  495. };
  496. struct server_task_result {
  497. int id = -1;
  498. int id_slot = -1;
  499. virtual bool is_error() {
  500. // only used by server_task_result_error
  501. return false;
  502. }
  503. virtual bool is_stop() {
  504. // only used by server_task_result_cmpl_*
  505. return false;
  506. }
  507. virtual int get_index() {
  508. return -1;
  509. }
  510. virtual json to_json() = 0;
  511. virtual ~server_task_result() = default;
  512. };
  513. // using shared_ptr for polymorphism of server_task_result
  514. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  515. inline std::string stop_type_to_str(stop_type type) {
  516. switch (type) {
  517. case STOP_TYPE_EOS: return "eos";
  518. case STOP_TYPE_WORD: return "word";
  519. case STOP_TYPE_LIMIT: return "limit";
  520. default: return "none";
  521. }
  522. }
  523. struct completion_token_output {
  524. llama_token tok;
  525. float prob;
  526. std::string text_to_send;
  527. struct prob_info {
  528. llama_token tok;
  529. std::string txt;
  530. float prob;
  531. };
  532. std::vector<prob_info> probs;
  533. json to_json(bool post_sampling_probs) const {
  534. json probs_for_token = json::array();
  535. for (const auto & p : probs) {
  536. std::string txt(p.txt);
  537. txt.resize(validate_utf8(txt));
  538. probs_for_token.push_back(json {
  539. {"id", p.tok},
  540. {"token", txt},
  541. {"bytes", str_to_bytes(p.txt)},
  542. {
  543. post_sampling_probs ? "prob" : "logprob",
  544. post_sampling_probs ? p.prob : logarithm(p.prob)
  545. },
  546. });
  547. }
  548. return probs_for_token;
  549. }
  550. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  551. json out = json::array();
  552. for (const auto & p : probs) {
  553. std::string txt(p.text_to_send);
  554. txt.resize(validate_utf8(txt));
  555. out.push_back(json {
  556. {"id", p.tok},
  557. {"token", txt},
  558. {"bytes", str_to_bytes(p.text_to_send)},
  559. {
  560. post_sampling_probs ? "prob" : "logprob",
  561. post_sampling_probs ? p.prob : logarithm(p.prob)
  562. },
  563. {
  564. post_sampling_probs ? "top_probs" : "top_logprobs",
  565. p.to_json(post_sampling_probs)
  566. },
  567. });
  568. }
  569. return out;
  570. }
  571. static float logarithm(float x) {
  572. // nlohmann::json converts -inf to null, so we need to prevent that
  573. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  574. }
  575. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  576. std::vector<unsigned char> bytes;
  577. for (unsigned char c : str) {
  578. bytes.push_back(c);
  579. }
  580. return bytes;
  581. }
  582. };
  583. struct server_task_result_cmpl_final : server_task_result {
  584. int index = 0;
  585. std::string content;
  586. llama_tokens tokens;
  587. bool stream;
  588. result_timings timings;
  589. std::string prompt;
  590. bool truncated;
  591. int32_t n_decoded;
  592. int32_t n_prompt_tokens;
  593. int32_t n_tokens_cached;
  594. bool has_new_line;
  595. std::string stopping_word;
  596. stop_type stop = STOP_TYPE_NONE;
  597. bool post_sampling_probs;
  598. std::vector<completion_token_output> probs_output;
  599. std::vector<std::string> response_fields;
  600. slot_params generation_params;
  601. // OAI-compat fields
  602. bool verbose = false;
  603. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  604. std::string oaicompat_model;
  605. std::string oaicompat_cmpl_id;
  606. common_chat_msg oaicompat_msg;
  607. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  608. virtual int get_index() override {
  609. return index;
  610. }
  611. virtual bool is_stop() override {
  612. return true; // in stream mode, final responses are considered stop
  613. }
  614. virtual json to_json() override {
  615. switch (oaicompat) {
  616. case OAICOMPAT_TYPE_NONE:
  617. return to_json_non_oaicompat();
  618. case OAICOMPAT_TYPE_COMPLETION:
  619. return to_json_oaicompat();
  620. case OAICOMPAT_TYPE_CHAT:
  621. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  622. default:
  623. GGML_ASSERT(false && "Invalid oaicompat_type");
  624. }
  625. }
  626. json to_json_non_oaicompat() {
  627. json res = json {
  628. {"index", index},
  629. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  630. {"tokens", stream ? llama_tokens {} : tokens},
  631. {"id_slot", id_slot},
  632. {"stop", true},
  633. {"model", oaicompat_model},
  634. {"tokens_predicted", n_decoded},
  635. {"tokens_evaluated", n_prompt_tokens},
  636. {"generation_settings", generation_params.to_json()},
  637. {"prompt", prompt},
  638. {"has_new_line", has_new_line},
  639. {"truncated", truncated},
  640. {"stop_type", stop_type_to_str(stop)},
  641. {"stopping_word", stopping_word},
  642. {"tokens_cached", n_tokens_cached},
  643. {"timings", timings.to_json()},
  644. };
  645. if (!stream && !probs_output.empty()) {
  646. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  647. }
  648. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  649. }
  650. json to_json_oaicompat() {
  651. std::time_t t = std::time(0);
  652. json logprobs = json(nullptr); // OAI default to null
  653. if (!stream && probs_output.size() > 0) {
  654. logprobs = json{
  655. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  656. };
  657. }
  658. json finish_reason = "length";
  659. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  660. finish_reason = "stop";
  661. }
  662. json res = json {
  663. {"choices", json::array({
  664. json{
  665. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  666. {"index", index},
  667. {"logprobs", logprobs},
  668. {"finish_reason", finish_reason},
  669. }
  670. })},
  671. {"created", t},
  672. {"model", oaicompat_model},
  673. {"system_fingerprint", build_info},
  674. {"object", "text_completion"},
  675. {"usage", json {
  676. {"completion_tokens", n_decoded},
  677. {"prompt_tokens", n_prompt_tokens},
  678. {"total_tokens", n_decoded + n_prompt_tokens}
  679. }},
  680. {"id", oaicompat_cmpl_id}
  681. };
  682. // extra fields for debugging purposes
  683. if (verbose) {
  684. res["__verbose"] = to_json_non_oaicompat();
  685. }
  686. if (timings.prompt_n >= 0) {
  687. res.push_back({"timings", timings.to_json()});
  688. }
  689. return res;
  690. }
  691. json to_json_oaicompat_chat() {
  692. std::string finish_reason = "length";
  693. common_chat_msg msg;
  694. if (!oaicompat_msg.empty()) {
  695. msg = oaicompat_msg;
  696. } else {
  697. msg.role = "assistant";
  698. msg.content = content;
  699. }
  700. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  701. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  702. }
  703. json choice {
  704. {"finish_reason", finish_reason},
  705. {"index", 0},
  706. {"message", msg.to_json_oaicompat<json>()},
  707. };
  708. if (!stream && probs_output.size() > 0) {
  709. choice["logprobs"] = json{
  710. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  711. };
  712. }
  713. std::time_t t = std::time(0);
  714. json res = json {
  715. {"choices", json::array({choice})},
  716. {"created", t},
  717. {"model", oaicompat_model},
  718. {"system_fingerprint", build_info},
  719. {"object", "chat.completion"},
  720. {"usage", json {
  721. {"completion_tokens", n_decoded},
  722. {"prompt_tokens", n_prompt_tokens},
  723. {"total_tokens", n_decoded + n_prompt_tokens}
  724. }},
  725. {"id", oaicompat_cmpl_id}
  726. };
  727. // extra fields for debugging purposes
  728. if (verbose) {
  729. res["__verbose"] = to_json_non_oaicompat();
  730. }
  731. if (timings.prompt_n >= 0) {
  732. res.push_back({"timings", timings.to_json()});
  733. }
  734. return res;
  735. }
  736. json to_json_oaicompat_chat_stream() {
  737. std::time_t t = std::time(0);
  738. std::string finish_reason = "length";
  739. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  740. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  741. }
  742. json deltas = json::array();
  743. for (const auto & diff : oaicompat_msg_diffs) {
  744. deltas.push_back({
  745. {"choices", json::array({
  746. json {
  747. {"finish_reason", nullptr},
  748. {"index", 0},
  749. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  750. },
  751. })},
  752. {"created", t},
  753. {"id", oaicompat_cmpl_id},
  754. {"model", oaicompat_model},
  755. {"system_fingerprint", build_info},
  756. {"object", "chat.completion.chunk"},
  757. });
  758. }
  759. deltas.push_back({
  760. {"choices", json::array({
  761. json {
  762. {"finish_reason", finish_reason},
  763. {"index", 0},
  764. {"delta", json::object()},
  765. },
  766. })},
  767. {"created", t},
  768. {"id", oaicompat_cmpl_id},
  769. {"model", oaicompat_model},
  770. {"system_fingerprint", build_info},
  771. {"object", "chat.completion.chunk"},
  772. {"usage", json {
  773. {"completion_tokens", n_decoded},
  774. {"prompt_tokens", n_prompt_tokens},
  775. {"total_tokens", n_decoded + n_prompt_tokens},
  776. }},
  777. });
  778. if (timings.prompt_n >= 0) {
  779. deltas.back().push_back({"timings", timings.to_json()});
  780. }
  781. // extra fields for debugging purposes
  782. if (verbose && !deltas.empty()) {
  783. deltas.front()["__verbose"] = to_json_non_oaicompat();
  784. }
  785. return deltas;
  786. }
  787. };
  788. struct server_task_result_cmpl_partial : server_task_result {
  789. int index = 0;
  790. std::string content;
  791. llama_tokens tokens;
  792. int32_t n_decoded;
  793. int32_t n_prompt_tokens;
  794. bool post_sampling_probs;
  795. completion_token_output prob_output;
  796. result_timings timings;
  797. // OAI-compat fields
  798. bool verbose = false;
  799. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  800. std::string oaicompat_model;
  801. std::string oaicompat_cmpl_id;
  802. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  803. virtual int get_index() override {
  804. return index;
  805. }
  806. virtual bool is_stop() override {
  807. return false; // in stream mode, partial responses are not considered stop
  808. }
  809. virtual json to_json() override {
  810. switch (oaicompat) {
  811. case OAICOMPAT_TYPE_NONE:
  812. return to_json_non_oaicompat();
  813. case OAICOMPAT_TYPE_COMPLETION:
  814. return to_json_oaicompat();
  815. case OAICOMPAT_TYPE_CHAT:
  816. return to_json_oaicompat_chat();
  817. default:
  818. GGML_ASSERT(false && "Invalid oaicompat_type");
  819. }
  820. }
  821. json to_json_non_oaicompat() {
  822. // non-OAI-compat JSON
  823. json res = json {
  824. {"index", index},
  825. {"content", content},
  826. {"tokens", tokens},
  827. {"stop", false},
  828. {"id_slot", id_slot},
  829. {"tokens_predicted", n_decoded},
  830. {"tokens_evaluated", n_prompt_tokens},
  831. };
  832. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  833. if (timings.prompt_n > 0) {
  834. res.push_back({"timings", timings.to_json()});
  835. }
  836. if (!prob_output.probs.empty()) {
  837. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  838. }
  839. return res;
  840. }
  841. json to_json_oaicompat() {
  842. std::time_t t = std::time(0);
  843. json logprobs = json(nullptr); // OAI default to null
  844. if (prob_output.probs.size() > 0) {
  845. logprobs = json{
  846. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  847. };
  848. }
  849. json res = json {
  850. {"choices", json::array({
  851. json{
  852. {"text", content},
  853. {"index", index},
  854. {"logprobs", logprobs},
  855. {"finish_reason", nullptr},
  856. }
  857. })},
  858. {"created", t},
  859. {"model", oaicompat_model},
  860. {"system_fingerprint", build_info},
  861. {"object", "text_completion"},
  862. {"id", oaicompat_cmpl_id}
  863. };
  864. // extra fields for debugging purposes
  865. if (verbose) {
  866. res["__verbose"] = to_json_non_oaicompat();
  867. }
  868. if (timings.prompt_n >= 0) {
  869. res.push_back({"timings", timings.to_json()});
  870. }
  871. return res;
  872. }
  873. json to_json_oaicompat_chat() {
  874. bool first = n_decoded == 1;
  875. std::time_t t = std::time(0);
  876. json choices;
  877. std::vector<json> deltas;
  878. auto add_delta = [&](const json & delta) {
  879. deltas.push_back({
  880. {"choices", json::array({
  881. json {
  882. {"finish_reason", nullptr},
  883. {"index", 0},
  884. {"delta", delta},
  885. },
  886. })},
  887. {"created", t},
  888. {"id", oaicompat_cmpl_id},
  889. {"model", oaicompat_model},
  890. {"system_fingerprint", build_info},
  891. {"object", "chat.completion.chunk"},
  892. });
  893. };
  894. // We have to send an initial update to conform to openai behavior
  895. if (first) {
  896. add_delta({
  897. {"role", "assistant"},
  898. {"content", nullptr},
  899. });
  900. }
  901. for (const auto & diff : oaicompat_msg_diffs) {
  902. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  903. }
  904. if (!deltas.empty()) {
  905. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  906. if (prob_output.probs.size() > 0) {
  907. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  908. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  909. };
  910. }
  911. if (timings.prompt_n >= 0) {
  912. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  913. }
  914. }
  915. return deltas;
  916. }
  917. };
  918. struct server_task_result_embd : server_task_result {
  919. int index = 0;
  920. std::vector<std::vector<float>> embedding;
  921. int32_t n_tokens;
  922. // OAI-compat fields
  923. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  924. virtual int get_index() override {
  925. return index;
  926. }
  927. virtual json to_json() override {
  928. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  929. ? to_json_oaicompat()
  930. : to_json_non_oaicompat();
  931. }
  932. json to_json_non_oaicompat() {
  933. return json {
  934. {"index", index},
  935. {"embedding", embedding},
  936. };
  937. }
  938. json to_json_oaicompat() {
  939. return json {
  940. {"index", index},
  941. {"embedding", embedding[0]},
  942. {"tokens_evaluated", n_tokens},
  943. };
  944. }
  945. };
  946. struct server_task_result_rerank : server_task_result {
  947. int index = 0;
  948. float score = -1e6;
  949. int32_t n_tokens;
  950. virtual int get_index() override {
  951. return index;
  952. }
  953. virtual json to_json() override {
  954. return json {
  955. {"index", index},
  956. {"score", score},
  957. {"tokens_evaluated", n_tokens},
  958. };
  959. }
  960. };
  961. // this function maybe used outside of server_task_result_error
  962. static json format_error_response(const std::string & message, const enum error_type type) {
  963. std::string type_str;
  964. int code = 500;
  965. switch (type) {
  966. case ERROR_TYPE_INVALID_REQUEST:
  967. type_str = "invalid_request_error";
  968. code = 400;
  969. break;
  970. case ERROR_TYPE_AUTHENTICATION:
  971. type_str = "authentication_error";
  972. code = 401;
  973. break;
  974. case ERROR_TYPE_NOT_FOUND:
  975. type_str = "not_found_error";
  976. code = 404;
  977. break;
  978. case ERROR_TYPE_SERVER:
  979. type_str = "server_error";
  980. code = 500;
  981. break;
  982. case ERROR_TYPE_PERMISSION:
  983. type_str = "permission_error";
  984. code = 403;
  985. break;
  986. case ERROR_TYPE_NOT_SUPPORTED:
  987. type_str = "not_supported_error";
  988. code = 501;
  989. break;
  990. case ERROR_TYPE_UNAVAILABLE:
  991. type_str = "unavailable_error";
  992. code = 503;
  993. break;
  994. }
  995. return json {
  996. {"code", code},
  997. {"message", message},
  998. {"type", type_str},
  999. };
  1000. }
  1001. struct server_task_result_error : server_task_result {
  1002. int index = 0;
  1003. error_type err_type = ERROR_TYPE_SERVER;
  1004. std::string err_msg;
  1005. virtual bool is_error() override {
  1006. return true;
  1007. }
  1008. virtual json to_json() override {
  1009. return format_error_response(err_msg, err_type);
  1010. }
  1011. };
  1012. struct server_task_result_metrics : server_task_result {
  1013. int n_idle_slots;
  1014. int n_processing_slots;
  1015. int n_tasks_deferred;
  1016. int64_t t_start;
  1017. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1018. uint64_t n_prompt_tokens_processed_total = 0;
  1019. uint64_t t_prompt_processing_total = 0;
  1020. uint64_t n_tokens_predicted_total = 0;
  1021. uint64_t t_tokens_generation_total = 0;
  1022. uint64_t n_prompt_tokens_processed = 0;
  1023. uint64_t t_prompt_processing = 0;
  1024. uint64_t n_tokens_predicted = 0;
  1025. uint64_t t_tokens_generation = 0;
  1026. uint64_t n_decode_total = 0;
  1027. uint64_t n_busy_slots_total = 0;
  1028. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1029. // therefore, we use json to temporarily store the slot.to_json() result
  1030. json slots_data = json::array();
  1031. virtual json to_json() override {
  1032. return json {
  1033. { "idle", n_idle_slots },
  1034. { "processing", n_processing_slots },
  1035. { "deferred", n_tasks_deferred },
  1036. { "t_start", t_start },
  1037. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1038. { "t_tokens_generation_total", t_tokens_generation_total },
  1039. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1040. { "t_prompt_processing_total", t_prompt_processing_total },
  1041. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1042. { "t_prompt_processing", t_prompt_processing },
  1043. { "n_tokens_predicted", n_tokens_predicted },
  1044. { "t_tokens_generation", t_tokens_generation },
  1045. { "n_decode_total", n_decode_total },
  1046. { "n_busy_slots_total", n_busy_slots_total },
  1047. { "slots", slots_data },
  1048. };
  1049. }
  1050. };
  1051. struct server_task_result_slot_save_load : server_task_result {
  1052. std::string filename;
  1053. bool is_save; // true = save, false = load
  1054. size_t n_tokens;
  1055. size_t n_bytes;
  1056. double t_ms;
  1057. virtual json to_json() override {
  1058. if (is_save) {
  1059. return json {
  1060. { "id_slot", id_slot },
  1061. { "filename", filename },
  1062. { "n_saved", n_tokens },
  1063. { "n_written", n_bytes },
  1064. { "timings", {
  1065. { "save_ms", t_ms }
  1066. }},
  1067. };
  1068. } else {
  1069. return json {
  1070. { "id_slot", id_slot },
  1071. { "filename", filename },
  1072. { "n_restored", n_tokens },
  1073. { "n_read", n_bytes },
  1074. { "timings", {
  1075. { "restore_ms", t_ms }
  1076. }},
  1077. };
  1078. }
  1079. }
  1080. };
  1081. struct server_task_result_slot_erase : server_task_result {
  1082. size_t n_erased;
  1083. virtual json to_json() override {
  1084. return json {
  1085. { "id_slot", id_slot },
  1086. { "n_erased", n_erased },
  1087. };
  1088. }
  1089. };
  1090. struct server_task_result_apply_lora : server_task_result {
  1091. virtual json to_json() override {
  1092. return json {{ "success", true }};
  1093. }
  1094. };
  1095. struct server_slot {
  1096. int id;
  1097. int id_task = -1;
  1098. // only used for completion/embedding/infill/rerank
  1099. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1100. llama_batch batch_spec = {};
  1101. llama_context * ctx = nullptr;
  1102. llama_context * ctx_dft = nullptr;
  1103. // multimodal
  1104. mtmd_context * mctx = nullptr;
  1105. common_speculative * spec = nullptr;
  1106. std::vector<common_adapter_lora_info> lora;
  1107. // the index relative to completion multi-task request
  1108. size_t index = 0;
  1109. struct slot_params params;
  1110. slot_state state = SLOT_STATE_IDLE;
  1111. // used to determine the slot that has been used the longest
  1112. int64_t t_last_used = -1;
  1113. // generation props
  1114. int32_t n_ctx = 0; // context size per slot
  1115. int32_t n_past = 0;
  1116. int32_t n_decoded = 0;
  1117. int32_t n_remaining = -1;
  1118. int32_t i_batch = -1;
  1119. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1120. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1121. int32_t n_prompt_tokens = 0;
  1122. int32_t n_prompt_tokens_processed = 0;
  1123. // input prompt tokens
  1124. server_tokens prompt_tokens;
  1125. size_t last_nl_pos = 0;
  1126. std::string generated_text;
  1127. llama_tokens generated_tokens;
  1128. common_chat_msg chat_msg;
  1129. server_tokens cache_tokens;
  1130. std::vector<completion_token_output> generated_token_probs;
  1131. bool has_next_token = true;
  1132. bool has_new_line = false;
  1133. bool truncated = false;
  1134. stop_type stop;
  1135. std::string stopping_word;
  1136. // sampling
  1137. json json_schema;
  1138. struct common_sampler * smpl = nullptr;
  1139. llama_token sampled;
  1140. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1141. std::vector<std::string> generated_tool_call_ids;
  1142. // stats
  1143. size_t n_sent_text = 0; // number of sent text character
  1144. int64_t t_start_process_prompt;
  1145. int64_t t_start_generation;
  1146. double t_prompt_processing; // ms
  1147. double t_token_generation; // ms
  1148. std::function<void(int)> callback_on_release;
  1149. // Speculative decoding stats
  1150. int32_t n_draft_total = 0; // Total draft tokens generated
  1151. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1152. void reset() {
  1153. SLT_DBG(*this, "%s", "\n");
  1154. n_prompt_tokens = 0;
  1155. last_nl_pos = 0;
  1156. generated_text = "";
  1157. has_new_line = false;
  1158. truncated = false;
  1159. stop = STOP_TYPE_NONE;
  1160. stopping_word = "";
  1161. n_past = 0;
  1162. n_sent_text = 0;
  1163. task_type = SERVER_TASK_TYPE_COMPLETION;
  1164. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1165. generated_tokens.clear();
  1166. generated_token_probs.clear();
  1167. chat_msg = {};
  1168. json_schema = json();
  1169. generated_tool_call_ids.clear();
  1170. // clear speculative decoding stats
  1171. n_draft_total = 0;
  1172. n_draft_accepted = 0;
  1173. }
  1174. bool need_embd() const {
  1175. return server_task_type_need_embd(task_type);
  1176. }
  1177. bool need_logits() const {
  1178. return server_task_type_need_logits(task_type);
  1179. }
  1180. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1181. // also we cannot split if the pooling would require any past tokens
  1182. bool can_split() const {
  1183. return
  1184. !need_embd() ||
  1185. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1186. }
  1187. bool can_batch_with(server_slot & other_slot) const {
  1188. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1189. }
  1190. bool has_budget(const common_params & global_params) {
  1191. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1192. return true; // limitless
  1193. }
  1194. n_remaining = -1;
  1195. if (params.n_predict != -1) {
  1196. n_remaining = params.n_predict - n_decoded;
  1197. } else if (global_params.n_predict != -1) {
  1198. n_remaining = global_params.n_predict - n_decoded;
  1199. }
  1200. return n_remaining > 0; // no budget
  1201. }
  1202. bool is_processing() const {
  1203. return state != SLOT_STATE_IDLE;
  1204. }
  1205. bool can_speculate() const {
  1206. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1207. }
  1208. void add_token(const completion_token_output & token) {
  1209. if (!is_processing()) {
  1210. SLT_WRN(*this, "%s", "slot is not processing\n");
  1211. return;
  1212. }
  1213. generated_token_probs.push_back(token);
  1214. }
  1215. void release() {
  1216. if (is_processing()) {
  1217. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1218. t_last_used = ggml_time_us();
  1219. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1220. state = SLOT_STATE_IDLE;
  1221. callback_on_release(id);
  1222. }
  1223. }
  1224. result_timings get_timings() const {
  1225. result_timings timings;
  1226. timings.prompt_n = n_prompt_tokens_processed;
  1227. timings.prompt_ms = t_prompt_processing;
  1228. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1229. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1230. timings.predicted_n = n_decoded;
  1231. timings.predicted_ms = t_token_generation;
  1232. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1233. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1234. // Add speculative metrics
  1235. if (n_draft_total > 0) {
  1236. timings.draft_n = n_draft_total;
  1237. timings.draft_n_accepted = n_draft_accepted;
  1238. }
  1239. return timings;
  1240. }
  1241. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1242. auto previous_msg = chat_msg;
  1243. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1244. auto new_msg = common_chat_parse(
  1245. generated_text,
  1246. /* is_partial= */ stop != STOP_TYPE_EOS,
  1247. params.oaicompat_chat_syntax);
  1248. if (!new_msg.empty()) {
  1249. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1250. chat_msg = new_msg;
  1251. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1252. }
  1253. return chat_msg;
  1254. }
  1255. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1256. size_t stop_pos = std::string::npos;
  1257. for (const std::string & word : params.antiprompt) {
  1258. size_t pos;
  1259. if (is_full_stop) {
  1260. const size_t tmp = word.size() + last_token_size;
  1261. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1262. pos = text.find(word, from_pos);
  1263. } else {
  1264. // otherwise, partial stop
  1265. pos = string_find_partial_stop(text, word);
  1266. }
  1267. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1268. if (is_full_stop) {
  1269. stop = STOP_TYPE_WORD;
  1270. stopping_word = word;
  1271. has_next_token = false;
  1272. }
  1273. stop_pos = pos;
  1274. }
  1275. }
  1276. return stop_pos;
  1277. }
  1278. void print_timings() const {
  1279. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1280. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1281. const double t_gen = t_token_generation / n_decoded;
  1282. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1283. SLT_INF(*this,
  1284. "\n"
  1285. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1286. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1287. " total time = %10.2f ms / %5d tokens\n",
  1288. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1289. t_token_generation, n_decoded, t_gen, n_gen_second,
  1290. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1291. if (n_draft_total > 0) {
  1292. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1293. SLT_INF(*this,
  1294. "\n"
  1295. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1296. draft_ratio, n_draft_accepted, n_draft_total
  1297. );
  1298. }
  1299. }
  1300. json to_json() const {
  1301. return json {
  1302. {"id", id},
  1303. {"id_task", id_task},
  1304. {"n_ctx", n_ctx},
  1305. {"speculative", can_speculate()},
  1306. {"is_processing", is_processing()},
  1307. {"params", params.to_json()},
  1308. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1309. {"next_token",
  1310. {
  1311. {"has_next_token", has_next_token},
  1312. {"has_new_line", has_new_line},
  1313. {"n_remain", n_remaining},
  1314. {"n_decoded", n_decoded},
  1315. {"stopping_word", stopping_word},
  1316. }
  1317. },
  1318. };
  1319. }
  1320. };
  1321. struct server_metrics {
  1322. int64_t t_start = 0;
  1323. uint64_t n_prompt_tokens_processed_total = 0;
  1324. uint64_t t_prompt_processing_total = 0;
  1325. uint64_t n_tokens_predicted_total = 0;
  1326. uint64_t t_tokens_generation_total = 0;
  1327. uint64_t n_prompt_tokens_processed = 0;
  1328. uint64_t t_prompt_processing = 0;
  1329. uint64_t n_tokens_predicted = 0;
  1330. uint64_t t_tokens_generation = 0;
  1331. uint64_t n_decode_total = 0;
  1332. uint64_t n_busy_slots_total = 0;
  1333. void init() {
  1334. t_start = ggml_time_us();
  1335. }
  1336. void on_prompt_eval(const server_slot & slot) {
  1337. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1338. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1339. t_prompt_processing += slot.t_prompt_processing;
  1340. t_prompt_processing_total += slot.t_prompt_processing;
  1341. }
  1342. void on_prediction(const server_slot & slot) {
  1343. n_tokens_predicted_total += slot.n_decoded;
  1344. n_tokens_predicted += slot.n_decoded;
  1345. t_tokens_generation += slot.t_token_generation;
  1346. t_tokens_generation_total += slot.t_token_generation;
  1347. }
  1348. void on_decoded(const std::vector<server_slot> & slots) {
  1349. n_decode_total++;
  1350. for (const auto & slot : slots) {
  1351. if (slot.is_processing()) {
  1352. n_busy_slots_total++;
  1353. }
  1354. }
  1355. }
  1356. void reset_bucket() {
  1357. n_prompt_tokens_processed = 0;
  1358. t_prompt_processing = 0;
  1359. n_tokens_predicted = 0;
  1360. t_tokens_generation = 0;
  1361. }
  1362. };
  1363. struct server_queue {
  1364. int id = 0;
  1365. bool running;
  1366. // queues
  1367. std::deque<server_task> queue_tasks;
  1368. std::deque<server_task> queue_tasks_deferred;
  1369. std::mutex mutex_tasks;
  1370. std::condition_variable condition_tasks;
  1371. // callback functions
  1372. std::function<void(server_task &&)> callback_new_task;
  1373. std::function<void(void)> callback_update_slots;
  1374. // Add a new task to the end of the queue
  1375. int post(server_task && task, bool front = false) {
  1376. std::unique_lock<std::mutex> lock(mutex_tasks);
  1377. GGML_ASSERT(task.id != -1);
  1378. // if this is cancel task make sure to clean up pending tasks
  1379. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1380. cleanup_pending_task(task.id_target);
  1381. }
  1382. const int task_id = task.id;
  1383. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1384. if (front) {
  1385. queue_tasks.push_front(std::move(task));
  1386. } else {
  1387. queue_tasks.push_back(std::move(task));
  1388. }
  1389. condition_tasks.notify_one();
  1390. return task_id;
  1391. }
  1392. // multi-task version of post()
  1393. int post(std::vector<server_task> && tasks, bool front = false) {
  1394. std::unique_lock<std::mutex> lock(mutex_tasks);
  1395. for (auto & task : tasks) {
  1396. if (task.id == -1) {
  1397. task.id = id++;
  1398. }
  1399. // if this is cancel task make sure to clean up pending tasks
  1400. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1401. cleanup_pending_task(task.id_target);
  1402. }
  1403. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1404. if (front) {
  1405. queue_tasks.push_front(std::move(task));
  1406. } else {
  1407. queue_tasks.push_back(std::move(task));
  1408. }
  1409. }
  1410. condition_tasks.notify_one();
  1411. return 0;
  1412. }
  1413. // Add a new task, but defer until one slot is available
  1414. void defer(server_task && task) {
  1415. std::unique_lock<std::mutex> lock(mutex_tasks);
  1416. QUE_DBG("defer task, id = %d\n", task.id);
  1417. queue_tasks_deferred.push_back(std::move(task));
  1418. condition_tasks.notify_one();
  1419. }
  1420. // Get the next id for creating a new task
  1421. int get_new_id() {
  1422. std::unique_lock<std::mutex> lock(mutex_tasks);
  1423. int new_id = id++;
  1424. return new_id;
  1425. }
  1426. // Register function to process a new task
  1427. void on_new_task(std::function<void(server_task &&)> callback) {
  1428. callback_new_task = std::move(callback);
  1429. }
  1430. // Register the function to be called when all slots data is ready to be processed
  1431. void on_update_slots(std::function<void(void)> callback) {
  1432. callback_update_slots = std::move(callback);
  1433. }
  1434. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1435. void pop_deferred_task() {
  1436. std::unique_lock<std::mutex> lock(mutex_tasks);
  1437. if (!queue_tasks_deferred.empty()) {
  1438. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1439. queue_tasks_deferred.pop_front();
  1440. }
  1441. condition_tasks.notify_one();
  1442. }
  1443. // end the start_loop routine
  1444. void terminate() {
  1445. std::unique_lock<std::mutex> lock(mutex_tasks);
  1446. running = false;
  1447. condition_tasks.notify_all();
  1448. }
  1449. /**
  1450. * Main loop consists of these steps:
  1451. * - Wait until a new task arrives
  1452. * - Process the task (i.e. maybe copy data into slot)
  1453. * - Check if multitask is finished
  1454. * - Update all slots
  1455. */
  1456. void start_loop() {
  1457. running = true;
  1458. while (true) {
  1459. QUE_DBG("%s", "processing new tasks\n");
  1460. while (true) {
  1461. std::unique_lock<std::mutex> lock(mutex_tasks);
  1462. if (!running) {
  1463. QUE_DBG("%s", "terminate\n");
  1464. return;
  1465. }
  1466. if (queue_tasks.empty()) {
  1467. lock.unlock();
  1468. break;
  1469. }
  1470. server_task task = std::move(queue_tasks.front());
  1471. queue_tasks.pop_front();
  1472. lock.unlock();
  1473. QUE_DBG("processing task, id = %d\n", task.id);
  1474. callback_new_task(std::move(task));
  1475. }
  1476. // all tasks in the current loop is processed, slots data is now ready
  1477. QUE_DBG("%s", "update slots\n");
  1478. callback_update_slots();
  1479. QUE_DBG("%s", "waiting for new tasks\n");
  1480. {
  1481. std::unique_lock<std::mutex> lock(mutex_tasks);
  1482. if (!running) {
  1483. QUE_DBG("%s", "terminate\n");
  1484. return;
  1485. }
  1486. if (queue_tasks.empty()) {
  1487. condition_tasks.wait(lock, [&]{
  1488. return (!queue_tasks.empty() || !running);
  1489. });
  1490. }
  1491. }
  1492. }
  1493. }
  1494. private:
  1495. void cleanup_pending_task(int id_target) {
  1496. // no need lock because this is called exclusively by post()
  1497. auto rm_func = [id_target](const server_task & task) {
  1498. return task.id_target == id_target;
  1499. };
  1500. queue_tasks.erase(
  1501. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1502. queue_tasks.end());
  1503. queue_tasks_deferred.erase(
  1504. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1505. queue_tasks_deferred.end());
  1506. }
  1507. };
  1508. struct server_response {
  1509. bool running = true;
  1510. // for keeping track of all tasks waiting for the result
  1511. std::unordered_set<int> waiting_task_ids;
  1512. // the main result queue (using ptr for polymorphism)
  1513. std::vector<server_task_result_ptr> queue_results;
  1514. std::mutex mutex_results;
  1515. std::condition_variable condition_results;
  1516. // add the id_task to the list of tasks waiting for response
  1517. void add_waiting_task_id(int id_task) {
  1518. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1519. std::unique_lock<std::mutex> lock(mutex_results);
  1520. waiting_task_ids.insert(id_task);
  1521. }
  1522. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1523. std::unique_lock<std::mutex> lock(mutex_results);
  1524. for (const auto & task : tasks) {
  1525. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1526. waiting_task_ids.insert(task.id);
  1527. }
  1528. }
  1529. // when the request is finished, we can remove task associated with it
  1530. void remove_waiting_task_id(int id_task) {
  1531. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1532. std::unique_lock<std::mutex> lock(mutex_results);
  1533. waiting_task_ids.erase(id_task);
  1534. // make sure to clean up all pending results
  1535. queue_results.erase(
  1536. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1537. return res->id == id_task;
  1538. }),
  1539. queue_results.end());
  1540. }
  1541. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1542. std::unique_lock<std::mutex> lock(mutex_results);
  1543. for (const auto & id_task : id_tasks) {
  1544. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1545. waiting_task_ids.erase(id_task);
  1546. }
  1547. }
  1548. // This function blocks the thread until there is a response for one of the id_tasks
  1549. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1550. while (true) {
  1551. std::unique_lock<std::mutex> lock(mutex_results);
  1552. condition_results.wait(lock, [&]{
  1553. if (!running) {
  1554. SRV_DBG("%s : queue result stop\n", __func__);
  1555. std::terminate(); // we cannot return here since the caller is HTTP code
  1556. }
  1557. return !queue_results.empty();
  1558. });
  1559. for (size_t i = 0; i < queue_results.size(); i++) {
  1560. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1561. server_task_result_ptr res = std::move(queue_results[i]);
  1562. queue_results.erase(queue_results.begin() + i);
  1563. return res;
  1564. }
  1565. }
  1566. }
  1567. // should never reach here
  1568. }
  1569. // same as recv(), but have timeout in seconds
  1570. // if timeout is reached, nullptr is returned
  1571. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1572. while (true) {
  1573. std::unique_lock<std::mutex> lock(mutex_results);
  1574. for (int i = 0; i < (int) queue_results.size(); i++) {
  1575. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1576. server_task_result_ptr res = std::move(queue_results[i]);
  1577. queue_results.erase(queue_results.begin() + i);
  1578. return res;
  1579. }
  1580. }
  1581. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1582. if (!running) {
  1583. SRV_DBG("%s : queue result stop\n", __func__);
  1584. std::terminate(); // we cannot return here since the caller is HTTP code
  1585. }
  1586. if (cr_res == std::cv_status::timeout) {
  1587. return nullptr;
  1588. }
  1589. }
  1590. // should never reach here
  1591. }
  1592. // single-task version of recv()
  1593. server_task_result_ptr recv(int id_task) {
  1594. std::unordered_set<int> id_tasks = {id_task};
  1595. return recv(id_tasks);
  1596. }
  1597. // Send a new result to a waiting id_task
  1598. void send(server_task_result_ptr && result) {
  1599. SRV_DBG("sending result for task id = %d\n", result->id);
  1600. std::unique_lock<std::mutex> lock(mutex_results);
  1601. for (const auto & id_task : waiting_task_ids) {
  1602. if (result->id == id_task) {
  1603. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1604. queue_results.emplace_back(std::move(result));
  1605. condition_results.notify_all();
  1606. return;
  1607. }
  1608. }
  1609. }
  1610. // terminate the waiting loop
  1611. void terminate() {
  1612. running = false;
  1613. condition_results.notify_all();
  1614. }
  1615. };
  1616. struct server_context {
  1617. common_params params_base;
  1618. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1619. common_init_result llama_init;
  1620. common_init_result llama_init_dft;
  1621. llama_model * model = nullptr;
  1622. llama_context * ctx = nullptr;
  1623. // multimodal
  1624. mtmd_context * mctx = nullptr;
  1625. const llama_vocab * vocab = nullptr;
  1626. llama_model * model_dft = nullptr;
  1627. llama_context_params cparams_dft;
  1628. llama_batch batch {};
  1629. bool clean_kv_cache = true;
  1630. bool add_bos_token = true;
  1631. int32_t n_ctx; // total context for all clients / slots
  1632. // slots / clients
  1633. std::vector<server_slot> slots;
  1634. json default_generation_settings_for_props;
  1635. server_queue queue_tasks;
  1636. server_response queue_results;
  1637. server_metrics metrics;
  1638. // Necessary similarity of prompt for slot selection
  1639. float slot_prompt_similarity = 0.0f;
  1640. common_chat_templates_ptr chat_templates;
  1641. oaicompat_parser_options oai_parser_opt;
  1642. ~server_context() {
  1643. mtmd_free(mctx);
  1644. // Clear any sampling context
  1645. for (server_slot & slot : slots) {
  1646. common_sampler_free(slot.smpl);
  1647. slot.smpl = nullptr;
  1648. llama_free(slot.ctx_dft);
  1649. slot.ctx_dft = nullptr;
  1650. common_speculative_free(slot.spec);
  1651. slot.spec = nullptr;
  1652. llama_batch_free(slot.batch_spec);
  1653. }
  1654. llama_batch_free(batch);
  1655. }
  1656. bool load_model(const common_params & params) {
  1657. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1658. params_base = params;
  1659. llama_init = common_init_from_params(params_base);
  1660. model = llama_init.model.get();
  1661. ctx = llama_init.context.get();
  1662. if (model == nullptr) {
  1663. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1664. return false;
  1665. }
  1666. vocab = llama_model_get_vocab(model);
  1667. n_ctx = llama_n_ctx(ctx);
  1668. add_bos_token = llama_vocab_get_add_bos(vocab);
  1669. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1670. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1671. auto params_dft = params_base;
  1672. params_dft.devices = params_base.speculative.devices;
  1673. params_dft.model = params_base.speculative.model;
  1674. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1675. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1676. params_dft.n_parallel = 1;
  1677. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1678. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1679. llama_init_dft = common_init_from_params(params_dft);
  1680. model_dft = llama_init_dft.model.get();
  1681. if (model_dft == nullptr) {
  1682. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1683. return false;
  1684. }
  1685. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1686. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1687. return false;
  1688. }
  1689. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1690. cparams_dft = common_context_params_to_llama(params_dft);
  1691. cparams_dft.n_batch = n_ctx_dft;
  1692. // the context is not needed - we will create one for each slot
  1693. llama_init_dft.context.reset();
  1694. }
  1695. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1696. try {
  1697. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1698. } catch (const std::exception & e) {
  1699. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1700. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1701. chat_templates = common_chat_templates_init(model, "chatml");
  1702. }
  1703. std::string & mmproj_path = params_base.mmproj.path;
  1704. if (!mmproj_path.empty()) {
  1705. mtmd_context_params mparams = mtmd_context_params_default();
  1706. mparams.use_gpu = params_base.mmproj_use_gpu;
  1707. mparams.print_timings = false;
  1708. mparams.n_threads = params_base.cpuparams.n_threads;
  1709. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1710. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1711. if (mctx == nullptr) {
  1712. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1713. return false;
  1714. }
  1715. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1716. if (params_base.ctx_shift) {
  1717. params_base.ctx_shift = false;
  1718. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1719. }
  1720. if (params_base.n_cache_reuse) {
  1721. params_base.n_cache_reuse = 0;
  1722. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1723. }
  1724. if (!params_base.speculative.model.path.empty()) {
  1725. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1726. return false;
  1727. }
  1728. }
  1729. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1730. if (params_base.ctx_shift) {
  1731. params_base.ctx_shift = false;
  1732. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1733. }
  1734. if (params_base.n_cache_reuse) {
  1735. params_base.n_cache_reuse = 0;
  1736. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1737. }
  1738. }
  1739. return true;
  1740. }
  1741. void init() {
  1742. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1743. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1744. for (int i = 0; i < params_base.n_parallel; i++) {
  1745. server_slot slot;
  1746. slot.id = i;
  1747. slot.ctx = ctx;
  1748. slot.n_ctx = n_ctx_slot;
  1749. slot.n_predict = params_base.n_predict;
  1750. slot.mctx = mctx;
  1751. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1752. if (model_dft) {
  1753. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1754. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1755. if (slot.ctx_dft == nullptr) {
  1756. SRV_ERR("%s", "failed to create draft context\n");
  1757. return;
  1758. }
  1759. slot.spec = common_speculative_init(slot.ctx_dft);
  1760. if (slot.spec == nullptr) {
  1761. SRV_ERR("%s", "failed to create speculator\n");
  1762. return;
  1763. }
  1764. }
  1765. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1766. slot.params.sampling = params_base.sampling;
  1767. slot.params.n_keep = params_base.n_keep;
  1768. slot.callback_on_release = [this](int) {
  1769. queue_tasks.pop_deferred_task();
  1770. };
  1771. slot.reset();
  1772. slots.push_back(std::move(slot));
  1773. }
  1774. default_generation_settings_for_props = slots[0].to_json();
  1775. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1776. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1777. {
  1778. const int32_t n_batch = llama_n_batch(ctx);
  1779. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1780. }
  1781. metrics.init();
  1782. oai_parser_opt = {
  1783. /* use_jinja */ params_base.use_jinja,
  1784. /* prefill_assistant */ params_base.prefill_assistant,
  1785. /* reasoning_format */ params_base.reasoning_format,
  1786. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1787. /* common_chat_templates */ chat_templates.get(),
  1788. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1789. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1790. /* enable_thinking */ params_base.reasoning_budget != 0,
  1791. };
  1792. }
  1793. server_slot * get_slot_by_id(int id) {
  1794. for (server_slot & slot : slots) {
  1795. if (slot.id == id) {
  1796. return &slot;
  1797. }
  1798. }
  1799. return nullptr;
  1800. }
  1801. server_slot * get_available_slot(const server_task & task) {
  1802. server_slot * ret = nullptr;
  1803. // find the slot that has at least n% prompt similarity
  1804. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1805. int lcs_len = 0;
  1806. float similarity = 0;
  1807. for (server_slot & slot : slots) {
  1808. // skip the slot if it is not available
  1809. if (slot.is_processing()) {
  1810. continue;
  1811. }
  1812. // skip the slot if it does not contains cached tokens
  1813. if (slot.cache_tokens.empty()) {
  1814. continue;
  1815. }
  1816. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1817. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1818. // fraction of the common subsequence length compared to the current slot's prompt length
  1819. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1820. // select the current slot if the criteria match
  1821. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1822. lcs_len = cur_lcs_len;
  1823. similarity = cur_similarity;
  1824. ret = &slot;
  1825. }
  1826. }
  1827. if (ret != nullptr) {
  1828. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1829. }
  1830. }
  1831. // find the slot that has been least recently used
  1832. if (ret == nullptr) {
  1833. int64_t t_last = -1;
  1834. for (server_slot & slot : slots) {
  1835. // skip the slot if it is not available
  1836. if (slot.is_processing()) {
  1837. continue;
  1838. }
  1839. // select the current slot if the criteria match
  1840. if (!ret || slot.t_last_used <= t_last) {
  1841. t_last = slot.t_last_used;
  1842. ret = &slot;
  1843. }
  1844. }
  1845. if (ret != nullptr) {
  1846. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1847. }
  1848. }
  1849. return ret;
  1850. }
  1851. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1852. slot.reset();
  1853. slot.id_task = task.id;
  1854. slot.index = task.index;
  1855. slot.task_type = task.type;
  1856. slot.params = std::move(task.params);
  1857. slot.prompt_tokens = std::move(task.prompt_tokens);
  1858. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1859. // if lora is changed, we cannot reuse cached tokens
  1860. slot.cache_tokens.clear();
  1861. slot.lora = slot.params.lora;
  1862. }
  1863. if (!slot.prompt_tokens.validate(ctx)) {
  1864. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1865. return false;
  1866. }
  1867. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1868. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1869. // Might be better to reject the request with a 400 ?
  1870. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1871. slot.params.n_predict = slot.n_predict;
  1872. }
  1873. {
  1874. if (slot.smpl != nullptr) {
  1875. common_sampler_free(slot.smpl);
  1876. }
  1877. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1878. if (slot.smpl == nullptr) {
  1879. // for now, the only error that may happen here is invalid grammar
  1880. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1881. return false;
  1882. }
  1883. }
  1884. if (slot.ctx_dft) {
  1885. llama_batch_free(slot.batch_spec);
  1886. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1887. }
  1888. slot.state = SLOT_STATE_STARTED;
  1889. SLT_INF(slot, "%s", "processing task\n");
  1890. return true;
  1891. }
  1892. void kv_cache_clear() {
  1893. SRV_DBG("%s", "clearing KV cache\n");
  1894. // clear the entire KV cache
  1895. llama_memory_clear(llama_get_memory(ctx), true);
  1896. clean_kv_cache = false;
  1897. }
  1898. bool process_token(completion_token_output & result, server_slot & slot) {
  1899. // remember which tokens were sampled - used for repetition penalties during sampling
  1900. const std::string token_str = result.text_to_send;
  1901. slot.sampled = result.tok;
  1902. slot.generated_text += token_str;
  1903. if (slot.params.return_tokens) {
  1904. slot.generated_tokens.push_back(result.tok);
  1905. }
  1906. slot.has_next_token = true;
  1907. // check if there is incomplete UTF-8 character at the end
  1908. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1909. // search stop word and delete it
  1910. if (!incomplete) {
  1911. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1912. const std::string str_test = slot.generated_text.substr(pos);
  1913. bool send_text = true;
  1914. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1915. if (stop_pos != std::string::npos) {
  1916. slot.generated_text.erase(
  1917. slot.generated_text.begin() + pos + stop_pos,
  1918. slot.generated_text.end());
  1919. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1920. } else if (slot.has_next_token) {
  1921. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1922. send_text = stop_pos == std::string::npos;
  1923. }
  1924. // check if there is any token to predict
  1925. if (send_text) {
  1926. // no send the stop word in the response
  1927. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1928. slot.n_sent_text += result.text_to_send.size();
  1929. // add the token to slot queue and cache
  1930. } else {
  1931. result.text_to_send = "";
  1932. }
  1933. slot.add_token(result);
  1934. if (slot.params.stream) {
  1935. send_partial_response(slot, result);
  1936. }
  1937. }
  1938. if (incomplete) {
  1939. slot.has_next_token = true;
  1940. }
  1941. // if context shifting is disabled, make sure that we don't run out of context
  1942. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  1943. slot.stop = STOP_TYPE_LIMIT;
  1944. slot.has_next_token = false;
  1945. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  1946. }
  1947. // check the limits
  1948. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1949. slot.stop = STOP_TYPE_LIMIT;
  1950. slot.has_next_token = false;
  1951. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1952. }
  1953. if (slot.has_new_line) {
  1954. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1955. if (slot.params.n_indent > 0) {
  1956. // check the current indentation
  1957. // TODO: improve by not doing it more than once for each new line
  1958. if (slot.last_nl_pos > 0) {
  1959. size_t pos = slot.last_nl_pos;
  1960. int n_indent = 0;
  1961. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1962. n_indent++;
  1963. pos++;
  1964. }
  1965. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1966. slot.stop = STOP_TYPE_LIMIT;
  1967. slot.has_next_token = false;
  1968. // cut the last line
  1969. slot.generated_text.erase(pos, std::string::npos);
  1970. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1971. }
  1972. }
  1973. // find the next new line
  1974. {
  1975. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1976. if (pos != std::string::npos) {
  1977. slot.last_nl_pos = pos + 1;
  1978. }
  1979. }
  1980. }
  1981. }
  1982. // check if there is a new line in the generated text
  1983. if (result.text_to_send.find('\n') != std::string::npos) {
  1984. slot.has_new_line = true;
  1985. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1986. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1987. slot.stop = STOP_TYPE_LIMIT;
  1988. slot.has_next_token = false;
  1989. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1990. }
  1991. }
  1992. // if context shift is disabled, we stop when it reaches the context limit
  1993. if (slot.n_past >= slot.n_ctx) {
  1994. slot.truncated = true;
  1995. slot.stop = STOP_TYPE_LIMIT;
  1996. slot.has_next_token = false;
  1997. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1998. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1999. }
  2000. if (llama_vocab_is_eog(vocab, result.tok)) {
  2001. slot.stop = STOP_TYPE_EOS;
  2002. slot.has_next_token = false;
  2003. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2004. }
  2005. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2006. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2007. slot.truncated = true;
  2008. slot.stop = STOP_TYPE_LIMIT;
  2009. slot.has_next_token = false; // stop prediction
  2010. SLT_WRN(slot,
  2011. "n_predict (%d) is set for infinite generation. "
  2012. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2013. slot.params.n_predict, n_ctx_train);
  2014. }
  2015. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2016. return slot.has_next_token; // continue
  2017. }
  2018. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  2019. size_t n_probs = slot.params.sampling.n_probs;
  2020. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2021. if (post_sampling) {
  2022. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2023. const size_t max_probs = cur_p->size;
  2024. // set probability for sampled token
  2025. for (size_t i = 0; i < max_probs; i++) {
  2026. if (cur_p->data[i].id == result.tok) {
  2027. result.prob = cur_p->data[i].p;
  2028. break;
  2029. }
  2030. }
  2031. // set probability for top n_probs tokens
  2032. result.probs.reserve(max_probs);
  2033. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2034. result.probs.push_back({
  2035. cur_p->data[i].id,
  2036. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2037. cur_p->data[i].p
  2038. });
  2039. }
  2040. } else {
  2041. // TODO: optimize this with min-p optimization
  2042. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2043. // set probability for sampled token
  2044. for (size_t i = 0; i < n_vocab; i++) {
  2045. // set probability for sampled token
  2046. if (cur[i].id == result.tok) {
  2047. result.prob = cur[i].p;
  2048. break;
  2049. }
  2050. }
  2051. // set probability for top n_probs tokens
  2052. result.probs.reserve(n_probs);
  2053. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2054. result.probs.push_back({
  2055. cur[i].id,
  2056. common_token_to_piece(ctx, cur[i].id, special),
  2057. cur[i].p
  2058. });
  2059. }
  2060. }
  2061. }
  2062. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2063. send_error(task.id, error, type);
  2064. }
  2065. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2066. send_error(slot.id_task, error, type);
  2067. }
  2068. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2069. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2070. auto res = std::make_unique<server_task_result_error>();
  2071. res->id = id_task;
  2072. res->err_type = type;
  2073. res->err_msg = error;
  2074. queue_results.send(std::move(res));
  2075. }
  2076. // if multimodal is enabled, send an error and return false
  2077. bool ensure_no_mtmd(const int id_task) {
  2078. if (mctx) {
  2079. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2080. return false;
  2081. }
  2082. return true;
  2083. }
  2084. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2085. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2086. res->id = slot.id_task;
  2087. res->index = slot.index;
  2088. res->content = tkn.text_to_send;
  2089. res->tokens = { tkn.tok };
  2090. res->n_decoded = slot.n_decoded;
  2091. res->n_prompt_tokens = slot.n_prompt_tokens;
  2092. res->post_sampling_probs = slot.params.post_sampling_probs;
  2093. res->verbose = slot.params.verbose;
  2094. res->oaicompat = slot.params.oaicompat;
  2095. res->oaicompat_model = slot.params.oaicompat_model;
  2096. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2097. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2098. // populate res.probs_output
  2099. if (slot.params.sampling.n_probs > 0) {
  2100. res->prob_output = tkn; // copy the token probs
  2101. }
  2102. // populate timings if this is final response or timings_per_token is enabled
  2103. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2104. res->timings = slot.get_timings();
  2105. }
  2106. queue_results.send(std::move(res));
  2107. }
  2108. void send_final_response(server_slot & slot) {
  2109. auto res = std::make_unique<server_task_result_cmpl_final>();
  2110. res->id = slot.id_task;
  2111. res->id_slot = slot.id;
  2112. res->index = slot.index;
  2113. res->content = slot.generated_text;
  2114. res->tokens = std::move(slot.generated_tokens);
  2115. res->timings = slot.get_timings();
  2116. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2117. res->response_fields = std::move(slot.params.response_fields);
  2118. res->truncated = slot.truncated;
  2119. res->n_decoded = slot.n_decoded;
  2120. res->n_prompt_tokens = slot.n_prompt_tokens;
  2121. res->n_tokens_cached = slot.n_past;
  2122. res->has_new_line = slot.has_new_line;
  2123. res->stopping_word = slot.stopping_word;
  2124. res->stop = slot.stop;
  2125. res->post_sampling_probs = slot.params.post_sampling_probs;
  2126. res->verbose = slot.params.verbose;
  2127. res->stream = slot.params.stream;
  2128. res->oaicompat = slot.params.oaicompat;
  2129. res->oaicompat_model = slot.params.oaicompat_model;
  2130. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2131. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2132. // populate res.probs_output
  2133. if (slot.params.sampling.n_probs > 0) {
  2134. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2135. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2136. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2137. res->probs_output = std::vector<completion_token_output>(
  2138. slot.generated_token_probs.begin(),
  2139. slot.generated_token_probs.end() - safe_offset);
  2140. } else {
  2141. res->probs_output = std::vector<completion_token_output>(
  2142. slot.generated_token_probs.begin(),
  2143. slot.generated_token_probs.end());
  2144. }
  2145. }
  2146. res->generation_params = slot.params; // copy the parameters
  2147. queue_results.send(std::move(res));
  2148. }
  2149. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2150. auto res = std::make_unique<server_task_result_embd>();
  2151. res->id = slot.id_task;
  2152. res->index = slot.index;
  2153. res->n_tokens = slot.n_prompt_tokens;
  2154. res->oaicompat = slot.params.oaicompat;
  2155. const int n_embd = llama_model_n_embd(model);
  2156. std::vector<float> embd_res(n_embd, 0.0f);
  2157. for (int i = 0; i < batch.n_tokens; ++i) {
  2158. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2159. continue;
  2160. }
  2161. const float * embd = nullptr;
  2162. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2163. embd = llama_get_embeddings_ith(ctx, i);
  2164. } else {
  2165. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2166. }
  2167. if (embd == nullptr) {
  2168. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2169. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2170. continue;
  2171. }
  2172. // normalize only when there is pooling
  2173. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2174. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2175. res->embedding.push_back(embd_res);
  2176. break;
  2177. } else {
  2178. res->embedding.emplace_back(embd, embd + n_embd);
  2179. }
  2180. }
  2181. SLT_DBG(slot, "%s", "sending embeddings\n");
  2182. queue_results.send(std::move(res));
  2183. }
  2184. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2185. auto res = std::make_unique<server_task_result_rerank>();
  2186. res->id = slot.id_task;
  2187. res->index = slot.index;
  2188. res->n_tokens = slot.n_prompt_tokens;
  2189. for (int i = 0; i < batch.n_tokens; ++i) {
  2190. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2191. continue;
  2192. }
  2193. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2194. if (embd == NULL) {
  2195. embd = llama_get_embeddings_ith(ctx, i);
  2196. }
  2197. if (embd == NULL) {
  2198. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2199. res->score = -1e6;
  2200. continue;
  2201. }
  2202. res->score = embd[0];
  2203. }
  2204. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2205. queue_results.send(std::move(res));
  2206. }
  2207. //
  2208. // Functions to create new task(s) and receive result(s)
  2209. //
  2210. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2211. std::vector<server_task> cancel_tasks;
  2212. cancel_tasks.reserve(id_tasks.size());
  2213. for (const auto & id_task : id_tasks) {
  2214. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2215. server_task task(SERVER_TASK_TYPE_CANCEL);
  2216. task.id_target = id_task;
  2217. queue_results.remove_waiting_task_id(id_task);
  2218. cancel_tasks.push_back(std::move(task));
  2219. }
  2220. // push to beginning of the queue, so it has highest priority
  2221. queue_tasks.post(std::move(cancel_tasks), true);
  2222. }
  2223. // receive the results from task(s)
  2224. void receive_multi_results(
  2225. const std::unordered_set<int> & id_tasks,
  2226. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2227. const std::function<void(json)> & error_handler,
  2228. const std::function<bool()> & is_connection_closed) {
  2229. std::vector<server_task_result_ptr> results(id_tasks.size());
  2230. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2231. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2232. if (is_connection_closed()) {
  2233. cancel_tasks(id_tasks);
  2234. return;
  2235. }
  2236. if (result == nullptr) {
  2237. i--; // retry
  2238. continue;
  2239. }
  2240. if (result->is_error()) {
  2241. error_handler(result->to_json());
  2242. cancel_tasks(id_tasks);
  2243. return;
  2244. }
  2245. GGML_ASSERT(
  2246. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2247. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2248. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2249. );
  2250. const size_t idx = result->get_index();
  2251. GGML_ASSERT(idx < results.size() && "index out of range");
  2252. results[idx] = std::move(result);
  2253. }
  2254. result_handler(results);
  2255. }
  2256. // receive the results from task(s), in stream mode
  2257. void receive_cmpl_results_stream(
  2258. const std::unordered_set<int> & id_tasks,
  2259. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2260. const std::function<void(json)> & error_handler,
  2261. const std::function<bool()> & is_connection_closed) {
  2262. size_t n_finished = 0;
  2263. while (true) {
  2264. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2265. if (is_connection_closed()) {
  2266. cancel_tasks(id_tasks);
  2267. return;
  2268. }
  2269. if (result == nullptr) {
  2270. continue; // retry
  2271. }
  2272. if (result->is_error()) {
  2273. error_handler(result->to_json());
  2274. cancel_tasks(id_tasks);
  2275. return;
  2276. }
  2277. GGML_ASSERT(
  2278. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2279. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2280. );
  2281. if (!result_handler(result)) {
  2282. cancel_tasks(id_tasks);
  2283. break;
  2284. }
  2285. if (result->is_stop()) {
  2286. if (++n_finished == id_tasks.size()) {
  2287. break;
  2288. }
  2289. }
  2290. }
  2291. }
  2292. //
  2293. // Functions to process the task
  2294. //
  2295. void process_single_task(server_task && task) {
  2296. switch (task.type) {
  2297. case SERVER_TASK_TYPE_COMPLETION:
  2298. case SERVER_TASK_TYPE_INFILL:
  2299. case SERVER_TASK_TYPE_EMBEDDING:
  2300. case SERVER_TASK_TYPE_RERANK:
  2301. {
  2302. const int id_slot = task.id_selected_slot;
  2303. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2304. if (slot == nullptr) {
  2305. // if no slot is available, we defer this task for processing later
  2306. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2307. queue_tasks.defer(std::move(task));
  2308. break;
  2309. }
  2310. if (slot->is_processing()) {
  2311. // if requested slot is unavailable, we defer this task for processing later
  2312. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2313. queue_tasks.defer(std::move(task));
  2314. break;
  2315. }
  2316. if (!launch_slot_with_task(*slot, std::move(task))) {
  2317. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2318. break;
  2319. }
  2320. } break;
  2321. case SERVER_TASK_TYPE_CANCEL:
  2322. {
  2323. // release slot linked with the task id
  2324. for (auto & slot : slots) {
  2325. if (slot.id_task == task.id_target) {
  2326. slot.release();
  2327. break;
  2328. }
  2329. }
  2330. } break;
  2331. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2332. {
  2333. // do nothing
  2334. } break;
  2335. case SERVER_TASK_TYPE_METRICS:
  2336. {
  2337. json slots_data = json::array();
  2338. int n_idle_slots = 0;
  2339. int n_processing_slots = 0;
  2340. for (server_slot & slot : slots) {
  2341. json slot_data = slot.to_json();
  2342. if (slot.is_processing()) {
  2343. n_processing_slots++;
  2344. } else {
  2345. n_idle_slots++;
  2346. }
  2347. slots_data.push_back(slot_data);
  2348. }
  2349. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2350. auto res = std::make_unique<server_task_result_metrics>();
  2351. res->id = task.id;
  2352. res->slots_data = std::move(slots_data);
  2353. res->n_idle_slots = n_idle_slots;
  2354. res->n_processing_slots = n_processing_slots;
  2355. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2356. res->t_start = metrics.t_start;
  2357. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2358. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2359. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2360. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2361. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2362. res->t_prompt_processing = metrics.t_prompt_processing;
  2363. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2364. res->t_tokens_generation = metrics.t_tokens_generation;
  2365. res->n_decode_total = metrics.n_decode_total;
  2366. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2367. if (task.metrics_reset_bucket) {
  2368. metrics.reset_bucket();
  2369. }
  2370. queue_results.send(std::move(res));
  2371. } break;
  2372. case SERVER_TASK_TYPE_SLOT_SAVE:
  2373. {
  2374. if (!ensure_no_mtmd(task.id)) {
  2375. break;
  2376. }
  2377. int id_slot = task.slot_action.slot_id;
  2378. server_slot * slot = get_slot_by_id(id_slot);
  2379. if (slot == nullptr) {
  2380. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2381. break;
  2382. }
  2383. if (slot->is_processing()) {
  2384. // if requested slot is unavailable, we defer this task for processing later
  2385. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2386. queue_tasks.defer(std::move(task));
  2387. break;
  2388. }
  2389. const size_t token_count = slot->cache_tokens.size();
  2390. const int64_t t_start = ggml_time_us();
  2391. std::string filename = task.slot_action.filename;
  2392. std::string filepath = task.slot_action.filepath;
  2393. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2394. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2395. const int64_t t_end = ggml_time_us();
  2396. const double t_save_ms = (t_end - t_start) / 1000.0;
  2397. auto res = std::make_unique<server_task_result_slot_save_load>();
  2398. res->id = task.id;
  2399. res->id_slot = id_slot;
  2400. res->filename = filename;
  2401. res->is_save = true;
  2402. res->n_tokens = token_count;
  2403. res->n_bytes = nwrite;
  2404. res->t_ms = t_save_ms;
  2405. queue_results.send(std::move(res));
  2406. } break;
  2407. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2408. {
  2409. if (!ensure_no_mtmd(task.id)) break;
  2410. int id_slot = task.slot_action.slot_id;
  2411. server_slot * slot = get_slot_by_id(id_slot);
  2412. if (slot == nullptr) {
  2413. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2414. break;
  2415. }
  2416. if (slot->is_processing()) {
  2417. // if requested slot is unavailable, we defer this task for processing later
  2418. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2419. queue_tasks.defer(std::move(task));
  2420. break;
  2421. }
  2422. const int64_t t_start = ggml_time_us();
  2423. std::string filename = task.slot_action.filename;
  2424. std::string filepath = task.slot_action.filepath;
  2425. llama_tokens tokens;
  2426. tokens.resize(slot->n_ctx);
  2427. size_t token_count = 0;
  2428. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2429. if (nread == 0) {
  2430. slot->cache_tokens.clear(); // KV may already been invalidated?
  2431. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2432. break;
  2433. }
  2434. tokens.resize(token_count);
  2435. slot->cache_tokens.clear();
  2436. slot->cache_tokens.insert(tokens);
  2437. const int64_t t_end = ggml_time_us();
  2438. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2439. auto res = std::make_unique<server_task_result_slot_save_load>();
  2440. res->id = task.id;
  2441. res->id_slot = id_slot;
  2442. res->filename = filename;
  2443. res->is_save = false;
  2444. res->n_tokens = token_count;
  2445. res->n_bytes = nread;
  2446. res->t_ms = t_restore_ms;
  2447. queue_results.send(std::move(res));
  2448. } break;
  2449. case SERVER_TASK_TYPE_SLOT_ERASE:
  2450. {
  2451. if (!ensure_no_mtmd(task.id)) break;
  2452. int id_slot = task.slot_action.slot_id;
  2453. server_slot * slot = get_slot_by_id(id_slot);
  2454. if (slot == nullptr) {
  2455. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2456. break;
  2457. }
  2458. if (slot->is_processing()) {
  2459. // if requested slot is unavailable, we defer this task for processing later
  2460. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2461. queue_tasks.defer(std::move(task));
  2462. break;
  2463. }
  2464. // Erase token cache
  2465. const size_t n_erased = slot->cache_tokens.size();
  2466. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2467. slot->cache_tokens.clear();
  2468. auto res = std::make_unique<server_task_result_slot_erase>();
  2469. res->id = task.id;
  2470. res->id_slot = id_slot;
  2471. res->n_erased = n_erased;
  2472. queue_results.send(std::move(res));
  2473. } break;
  2474. case SERVER_TASK_TYPE_SET_LORA:
  2475. {
  2476. params_base.lora_adapters = std::move(task.set_lora);
  2477. auto res = std::make_unique<server_task_result_apply_lora>();
  2478. res->id = task.id;
  2479. queue_results.send(std::move(res));
  2480. } break;
  2481. }
  2482. }
  2483. void update_slots() {
  2484. // check if all slots are idle
  2485. {
  2486. bool all_idle = true;
  2487. for (auto & slot : slots) {
  2488. if (slot.is_processing()) {
  2489. all_idle = false;
  2490. break;
  2491. }
  2492. }
  2493. if (all_idle) {
  2494. SRV_INF("%s", "all slots are idle\n");
  2495. if (clean_kv_cache) {
  2496. kv_cache_clear();
  2497. }
  2498. return;
  2499. }
  2500. }
  2501. {
  2502. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2503. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2504. task.id = queue_tasks.get_new_id();
  2505. queue_tasks.post(std::move(task));
  2506. }
  2507. // apply context-shift if needed
  2508. // TODO: simplify and improve
  2509. for (server_slot & slot : slots) {
  2510. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2511. if (!params_base.ctx_shift) {
  2512. // this check is redundant (for good)
  2513. // we should never get here, because generation should already stopped in process_token()
  2514. slot.release();
  2515. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2516. continue;
  2517. }
  2518. if (mctx) {
  2519. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2520. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2521. GGML_ABORT("not supported by multimodal");
  2522. }
  2523. // Shift context
  2524. const int n_keep = slot.params.n_keep + add_bos_token;
  2525. const int n_left = slot.n_past - n_keep;
  2526. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2527. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2528. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2529. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2530. // add generated tokens to cache
  2531. {
  2532. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2533. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2534. new_tokens[i - n_discard] = new_tokens[i];
  2535. }
  2536. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2537. slot.cache_tokens.clear();
  2538. slot.cache_tokens.insert(new_tokens);
  2539. }
  2540. slot.n_past -= n_discard;
  2541. slot.truncated = true;
  2542. }
  2543. }
  2544. // start populating the batch for this iteration
  2545. common_batch_clear(batch);
  2546. // track if given slot can be batched with slots already in the batch
  2547. server_slot * slot_batched = nullptr;
  2548. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2549. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2550. };
  2551. // frist, add sampled tokens from any ongoing sequences
  2552. for (auto & slot : slots) {
  2553. if (slot.state != SLOT_STATE_GENERATING) {
  2554. continue;
  2555. }
  2556. // check if we can batch this slot with the previous one
  2557. if (!slot_batched) {
  2558. slot_batched = &slot;
  2559. } else if (!slot_batched->can_batch_with(slot)) {
  2560. continue;
  2561. }
  2562. slot.i_batch = batch.n_tokens;
  2563. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2564. slot.n_past += 1;
  2565. slot.cache_tokens.push_back(slot.sampled);
  2566. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2567. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2568. }
  2569. // process in chunks of params.n_batch
  2570. int32_t n_batch = llama_n_batch(ctx);
  2571. int32_t n_ubatch = llama_n_ubatch(ctx);
  2572. // next, batch any pending prompts without exceeding n_batch
  2573. if (params_base.cont_batching || batch.n_tokens == 0) {
  2574. for (auto & slot : slots) {
  2575. // check if we can batch this slot with the previous one
  2576. if (slot.is_processing()) {
  2577. if (!slot_batched) {
  2578. slot_batched = &slot;
  2579. } else if (!slot_batched->can_batch_with(slot)) {
  2580. continue;
  2581. }
  2582. }
  2583. // this slot still has a prompt to be processed
  2584. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2585. auto & prompt_tokens = slot.prompt_tokens;
  2586. // TODO: maybe move branch to outside of this loop in the future
  2587. if (slot.state == SLOT_STATE_STARTED) {
  2588. slot.t_start_process_prompt = ggml_time_us();
  2589. slot.t_start_generation = 0;
  2590. slot.n_past = 0;
  2591. slot.n_prompt_tokens = prompt_tokens.size();
  2592. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2593. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2594. // print prompt tokens (for debugging)
  2595. /*if (1) {
  2596. // first 16 tokens (avoid flooding logs)
  2597. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2598. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2599. }
  2600. } else {
  2601. // all
  2602. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2603. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2604. }
  2605. }*/
  2606. // empty prompt passed -> release the slot and send empty response
  2607. if (prompt_tokens.empty()) {
  2608. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2609. slot.release();
  2610. slot.print_timings();
  2611. send_final_response(slot);
  2612. continue;
  2613. }
  2614. // TODO: support memory-less logits computation
  2615. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2616. slot.release();
  2617. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2618. continue;
  2619. }
  2620. if (!slot.can_split()) {
  2621. if (slot.n_prompt_tokens > n_ubatch) {
  2622. slot.release();
  2623. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2624. continue;
  2625. }
  2626. if (slot.n_prompt_tokens > slot.n_ctx) {
  2627. slot.release();
  2628. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2629. continue;
  2630. }
  2631. } else {
  2632. if (!params_base.ctx_shift) {
  2633. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2634. // TODO: there should be a separate parameter that control prompt truncation
  2635. // context shift should be applied only during the generation phase
  2636. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2637. slot.release();
  2638. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2639. continue;
  2640. }
  2641. }
  2642. if (slot.params.n_keep < 0) {
  2643. slot.params.n_keep = slot.n_prompt_tokens;
  2644. }
  2645. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2646. // if input prompt is too big, truncate it
  2647. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2648. if (mctx) {
  2649. // we should never reach this
  2650. GGML_ABORT("not supported by multimodal");
  2651. }
  2652. const int n_left = slot.n_ctx - slot.params.n_keep;
  2653. const int n_block_size = n_left / 2;
  2654. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2655. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2656. llama_tokens new_tokens(
  2657. curr_tokens.begin(),
  2658. curr_tokens.begin() + slot.params.n_keep);
  2659. new_tokens.insert(
  2660. new_tokens.end(),
  2661. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2662. curr_tokens.end());
  2663. prompt_tokens.clear();
  2664. prompt_tokens.insert(new_tokens);
  2665. slot.truncated = true;
  2666. slot.n_prompt_tokens = prompt_tokens.size();
  2667. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2668. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2669. }
  2670. if (slot.params.cache_prompt) {
  2671. // reuse any previously computed tokens that are common with the new prompt
  2672. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2673. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2674. if (params_base.n_cache_reuse > 0) {
  2675. size_t head_c = slot.n_past; // cache
  2676. size_t head_p = slot.n_past; // current prompt
  2677. if (mctx) {
  2678. // we should never reach this
  2679. GGML_ABORT("not supported by multimodal");
  2680. }
  2681. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2682. while (head_c < slot.cache_tokens.size() &&
  2683. head_p < prompt_tokens.size()) {
  2684. size_t n_match = 0;
  2685. while (head_c + n_match < slot.cache_tokens.size() &&
  2686. head_p + n_match < prompt_tokens.size() &&
  2687. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2688. n_match++;
  2689. }
  2690. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2691. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2692. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2693. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2694. //}
  2695. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2696. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2697. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2698. for (size_t i = 0; i < n_match; i++) {
  2699. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2700. slot.n_past++;
  2701. }
  2702. head_c += n_match;
  2703. head_p += n_match;
  2704. } else {
  2705. head_c += 1;
  2706. }
  2707. }
  2708. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2709. }
  2710. } else {
  2711. // if we don't cache the prompt, we have to remove the entire KV cache
  2712. slot.n_past = 0;
  2713. }
  2714. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2715. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2716. if (pos_min == -1) {
  2717. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2718. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2719. }
  2720. const auto n_swa = llama_model_n_swa(model);
  2721. if (pos_min > std::max(0, slot.n_past - n_swa)) {
  2722. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2723. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2724. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2725. slot.n_past = 0;
  2726. }
  2727. }
  2728. }
  2729. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2730. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2731. slot.n_past--;
  2732. }
  2733. slot.n_prompt_tokens_processed = 0;
  2734. }
  2735. if (!slot.can_split()) {
  2736. // cannot fit the prompt in the current batch - will try next iter
  2737. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2738. continue;
  2739. }
  2740. }
  2741. // keep only the common part
  2742. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  2743. // could not partially delete (likely using a non-Transformer model)
  2744. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2745. // there is no common part left
  2746. slot.n_past = 0;
  2747. }
  2748. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2749. // remove the non-common part from the cache
  2750. slot.cache_tokens.keep_first(slot.n_past);
  2751. // check if we should process the image
  2752. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2753. // process the image
  2754. int32_t new_n_past;
  2755. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2756. int32_t n_pos = new_n_past - slot.n_past;
  2757. if (res != 0) {
  2758. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2759. slot.release();
  2760. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2761. continue;
  2762. }
  2763. // add the image chunk to cache
  2764. {
  2765. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2766. slot.cache_tokens.push_back(chunk.get()); // copy
  2767. }
  2768. slot.n_past += n_pos;
  2769. slot.n_prompt_tokens_processed += n_pos;
  2770. }
  2771. // add prompt tokens for processing in the current batch
  2772. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2773. // get next token to process
  2774. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2775. if (cur_tok == LLAMA_TOKEN_NULL) {
  2776. break; // end of text chunk
  2777. }
  2778. // embedding requires all tokens in the batch to be output
  2779. const bool need_embd = server_task_type_need_embd(slot.task_type);
  2780. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2781. slot.cache_tokens.push_back(cur_tok);
  2782. slot.n_prompt_tokens_processed++;
  2783. slot.n_past++;
  2784. }
  2785. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2786. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2787. // entire prompt has been processed
  2788. if (slot.n_past == slot.n_prompt_tokens) {
  2789. slot.state = SLOT_STATE_DONE_PROMPT;
  2790. GGML_ASSERT(batch.n_tokens > 0);
  2791. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2792. common_sampler_reset(slot.smpl);
  2793. // Process all prompt tokens through sampler system
  2794. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2795. llama_token id = slot.prompt_tokens[i];
  2796. if (id != LLAMA_TOKEN_NULL) {
  2797. common_sampler_accept(slot.smpl, id, false);
  2798. }
  2799. }
  2800. // extract the logits only for the last token
  2801. batch.logits[batch.n_tokens - 1] = true;
  2802. slot.n_decoded = 0;
  2803. slot.i_batch = batch.n_tokens - 1;
  2804. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2805. }
  2806. }
  2807. if (batch.n_tokens >= n_batch) {
  2808. break;
  2809. }
  2810. }
  2811. }
  2812. if (batch.n_tokens == 0) {
  2813. SRV_WRN("%s", "no tokens to decode\n");
  2814. return;
  2815. }
  2816. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2817. if (slot_batched) {
  2818. // apply lora, only need to do it once per batch
  2819. common_set_adapter_lora(ctx, slot_batched->lora);
  2820. llama_set_embeddings(ctx, slot_batched->need_embd());
  2821. }
  2822. int32_t i_next = 0;
  2823. // process the created batch of tokens
  2824. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2825. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2826. llama_batch batch_view = {
  2827. n_tokens,
  2828. batch.token + i,
  2829. nullptr,
  2830. batch.pos + i,
  2831. batch.n_seq_id + i,
  2832. batch.seq_id + i,
  2833. batch.logits + i,
  2834. };
  2835. const int ret = llama_decode(ctx, batch_view);
  2836. metrics.on_decoded(slots);
  2837. if (ret != 0) {
  2838. {
  2839. std::string err;
  2840. if (n_batch == 1 && ret == 1) {
  2841. err = "Context size has been exceeded.";
  2842. }
  2843. if (ret == -1) {
  2844. err = "Invalid input batch.";
  2845. }
  2846. if (ret < -1) {
  2847. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  2848. err = "Compute error.";
  2849. }
  2850. // TODO: handle ret == 2 (abort) when we start aborting
  2851. if (!err.empty()) {
  2852. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2853. for (auto & slot : slots) {
  2854. slot.release();
  2855. send_error(slot, err);
  2856. }
  2857. break;
  2858. }
  2859. }
  2860. // retry with half the batch size to try to find a free slot in the KV cache
  2861. n_batch /= 2;
  2862. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2863. continue; // continue loop of n_batch
  2864. }
  2865. // move the head of the batch forward with the number of tokens we just processed
  2866. i_next = i + n_tokens;
  2867. // on successful decode, restore the original batch size
  2868. n_batch = llama_n_batch(ctx);
  2869. for (auto & slot : slots) {
  2870. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2871. continue; // continue loop of slots
  2872. }
  2873. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2874. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2875. // prompt evaluated for embedding
  2876. send_embedding(slot, batch_view);
  2877. slot.release();
  2878. slot.i_batch = -1;
  2879. continue; // continue loop of slots
  2880. }
  2881. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2882. send_rerank(slot, batch_view);
  2883. slot.release();
  2884. slot.i_batch = -1;
  2885. continue; // continue loop of slots
  2886. }
  2887. // prompt evaluated for next-token prediction
  2888. slot.state = SLOT_STATE_GENERATING;
  2889. } else if (slot.state != SLOT_STATE_GENERATING) {
  2890. continue; // continue loop of slots
  2891. }
  2892. const int tok_idx = slot.i_batch - i;
  2893. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2894. slot.i_batch = -1;
  2895. common_sampler_accept(slot.smpl, id, true);
  2896. slot.n_decoded += 1;
  2897. const int64_t t_current = ggml_time_us();
  2898. if (slot.n_decoded == 1) {
  2899. slot.t_start_generation = t_current;
  2900. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2901. metrics.on_prompt_eval(slot);
  2902. }
  2903. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2904. completion_token_output result;
  2905. result.tok = id;
  2906. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2907. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2908. if (slot.params.sampling.n_probs > 0) {
  2909. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2910. }
  2911. if (!process_token(result, slot)) {
  2912. // release slot because of stop condition
  2913. slot.release();
  2914. slot.print_timings();
  2915. send_final_response(slot);
  2916. metrics.on_prediction(slot);
  2917. continue;
  2918. }
  2919. }
  2920. // do speculative decoding
  2921. for (auto & slot : slots) {
  2922. if (!slot.is_processing() || !slot.can_speculate()) {
  2923. continue;
  2924. }
  2925. if (slot.state != SLOT_STATE_GENERATING) {
  2926. continue;
  2927. }
  2928. if (mctx) {
  2929. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  2930. GGML_ABORT("not supported by multimodal");
  2931. }
  2932. // determine the max draft that fits the current slot state
  2933. int n_draft_max = slot.params.speculative.n_max;
  2934. // note: n_past is not yet increased for the `id` token sampled above
  2935. // also, need to leave space for 1 extra token to allow context shifts
  2936. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2937. if (slot.n_remaining > 0) {
  2938. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2939. }
  2940. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2941. if (n_draft_max < slot.params.speculative.n_min) {
  2942. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2943. continue;
  2944. }
  2945. llama_token id = slot.sampled;
  2946. struct common_speculative_params params_spec;
  2947. params_spec.n_draft = n_draft_max;
  2948. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2949. params_spec.p_min = slot.params.speculative.p_min;
  2950. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  2951. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  2952. // ignore small drafts
  2953. if (slot.params.speculative.n_min > (int) draft.size()) {
  2954. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2955. continue;
  2956. }
  2957. // keep track of total number of drafted tokens tested
  2958. slot.n_draft_total += draft.size();
  2959. // construct the speculation batch
  2960. common_batch_clear(slot.batch_spec);
  2961. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2962. for (size_t i = 0; i < draft.size(); ++i) {
  2963. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2964. }
  2965. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2966. llama_decode(ctx, slot.batch_spec);
  2967. // the accepted tokens from the speculation
  2968. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2969. slot.n_past += ids.size();
  2970. slot.n_decoded += ids.size();
  2971. // update how many tokens out of those tested were accepted
  2972. slot.n_draft_accepted += ids.size() - 1;
  2973. slot.cache_tokens.push_back(id);
  2974. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  2975. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  2976. for (size_t i = 0; i < ids.size(); ++i) {
  2977. completion_token_output result;
  2978. result.tok = ids[i];
  2979. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2980. result.prob = 1.0f; // set later
  2981. // TODO: set result.probs
  2982. if (!process_token(result, slot)) {
  2983. // release slot because of stop condition
  2984. slot.release();
  2985. slot.print_timings();
  2986. send_final_response(slot);
  2987. metrics.on_prediction(slot);
  2988. break;
  2989. }
  2990. }
  2991. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2992. }
  2993. }
  2994. SRV_DBG("%s", "run slots completed\n");
  2995. }
  2996. json model_meta() const {
  2997. return json {
  2998. {"vocab_type", llama_vocab_type (vocab)},
  2999. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3000. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3001. {"n_embd", llama_model_n_embd (model)},
  3002. {"n_params", llama_model_n_params (model)},
  3003. {"size", llama_model_size (model)},
  3004. };
  3005. }
  3006. };
  3007. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3008. // skip GH copilot requests when using default port
  3009. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3010. return;
  3011. }
  3012. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3013. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3014. SRV_DBG("request: %s\n", req.body.c_str());
  3015. SRV_DBG("response: %s\n", res.body.c_str());
  3016. }
  3017. std::function<void(int)> shutdown_handler;
  3018. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3019. inline void signal_handler(int signal) {
  3020. if (is_terminating.test_and_set()) {
  3021. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3022. // this is for better developer experience, we can remove when the server is stable enough
  3023. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3024. exit(1);
  3025. }
  3026. shutdown_handler(signal);
  3027. }
  3028. int main(int argc, char ** argv) {
  3029. // own arguments required by this example
  3030. common_params params;
  3031. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3032. return 1;
  3033. }
  3034. common_init();
  3035. // struct that contains llama context and inference
  3036. server_context ctx_server;
  3037. llama_backend_init();
  3038. llama_numa_init(params.numa);
  3039. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3040. LOG_INF("\n");
  3041. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3042. LOG_INF("\n");
  3043. std::unique_ptr<httplib::Server> svr;
  3044. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3045. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3046. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3047. svr.reset(
  3048. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3049. );
  3050. } else {
  3051. LOG_INF("Running without SSL\n");
  3052. svr.reset(new httplib::Server());
  3053. }
  3054. #else
  3055. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3056. LOG_ERR("Server is built without SSL support\n");
  3057. return 1;
  3058. }
  3059. svr.reset(new httplib::Server());
  3060. #endif
  3061. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3062. svr->set_default_headers({{"Server", "llama.cpp"}});
  3063. svr->set_logger(log_server_request);
  3064. auto res_error = [](httplib::Response & res, const json & error_data) {
  3065. json final_response {{"error", error_data}};
  3066. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3067. res.status = json_value(error_data, "code", 500);
  3068. };
  3069. auto res_ok = [](httplib::Response & res, const json & data) {
  3070. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3071. res.status = 200;
  3072. };
  3073. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3074. std::string message;
  3075. try {
  3076. std::rethrow_exception(ep);
  3077. } catch (const std::exception & e) {
  3078. message = e.what();
  3079. } catch (...) {
  3080. message = "Unknown Exception";
  3081. }
  3082. try {
  3083. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3084. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3085. res_error(res, formatted_error);
  3086. } catch (const std::exception & e) {
  3087. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3088. }
  3089. });
  3090. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3091. if (res.status == 404) {
  3092. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3093. }
  3094. // for other error codes, we skip processing here because it's already done by res_error()
  3095. });
  3096. // set timeouts and change hostname and port
  3097. svr->set_read_timeout (params.timeout_read);
  3098. svr->set_write_timeout(params.timeout_write);
  3099. std::unordered_map<std::string, std::string> log_data;
  3100. log_data["hostname"] = params.hostname;
  3101. log_data["port"] = std::to_string(params.port);
  3102. if (params.api_keys.size() == 1) {
  3103. auto key = params.api_keys[0];
  3104. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3105. } else if (params.api_keys.size() > 1) {
  3106. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3107. }
  3108. // Necessary similarity of prompt for slot selection
  3109. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3110. //
  3111. // Middlewares
  3112. //
  3113. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3114. static const std::unordered_set<std::string> public_endpoints = {
  3115. "/health",
  3116. "/models",
  3117. "/v1/models",
  3118. "/api/tags"
  3119. };
  3120. // If API key is not set, skip validation
  3121. if (params.api_keys.empty()) {
  3122. return true;
  3123. }
  3124. // If path is public or is static file, skip validation
  3125. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3126. return true;
  3127. }
  3128. // Check for API key in the header
  3129. auto auth_header = req.get_header_value("Authorization");
  3130. std::string prefix = "Bearer ";
  3131. if (auth_header.substr(0, prefix.size()) == prefix) {
  3132. std::string received_api_key = auth_header.substr(prefix.size());
  3133. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3134. return true; // API key is valid
  3135. }
  3136. }
  3137. // API key is invalid or not provided
  3138. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3139. LOG_WRN("Unauthorized: Invalid API Key\n");
  3140. return false;
  3141. };
  3142. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3143. server_state current_state = state.load();
  3144. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3145. auto tmp = string_split<std::string>(req.path, '.');
  3146. if (req.path == "/" || tmp.back() == "html") {
  3147. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3148. res.status = 503;
  3149. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3150. // allow the models endpoint to be accessed during loading
  3151. return true;
  3152. } else {
  3153. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3154. }
  3155. return false;
  3156. }
  3157. return true;
  3158. };
  3159. // register server middlewares
  3160. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3161. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3162. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3163. if (req.method == "OPTIONS") {
  3164. res.set_header("Access-Control-Allow-Credentials", "true");
  3165. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3166. res.set_header("Access-Control-Allow-Headers", "*");
  3167. res.set_content("", "text/html"); // blank response, no data
  3168. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3169. }
  3170. if (!middleware_server_state(req, res)) {
  3171. return httplib::Server::HandlerResponse::Handled;
  3172. }
  3173. if (!middleware_validate_api_key(req, res)) {
  3174. return httplib::Server::HandlerResponse::Handled;
  3175. }
  3176. return httplib::Server::HandlerResponse::Unhandled;
  3177. });
  3178. //
  3179. // Route handlers (or controllers)
  3180. //
  3181. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3182. // error and loading states are handled by middleware
  3183. json health = {{"status", "ok"}};
  3184. res_ok(res, health);
  3185. };
  3186. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3187. if (!params.endpoint_slots) {
  3188. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3189. return;
  3190. }
  3191. // request slots data using task queue
  3192. int task_id = ctx_server.queue_tasks.get_new_id();
  3193. {
  3194. server_task task(SERVER_TASK_TYPE_METRICS);
  3195. task.id = task_id;
  3196. ctx_server.queue_results.add_waiting_task_id(task_id);
  3197. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3198. }
  3199. // get the result
  3200. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3201. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3202. if (result->is_error()) {
  3203. res_error(res, result->to_json());
  3204. return;
  3205. }
  3206. // TODO: get rid of this dynamic_cast
  3207. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3208. GGML_ASSERT(res_metrics != nullptr);
  3209. // optionally return "fail_on_no_slot" error
  3210. if (req.has_param("fail_on_no_slot")) {
  3211. if (res_metrics->n_idle_slots == 0) {
  3212. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3213. return;
  3214. }
  3215. }
  3216. res_ok(res, res_metrics->slots_data);
  3217. };
  3218. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3219. if (!params.endpoint_metrics) {
  3220. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3221. return;
  3222. }
  3223. // request slots data using task queue
  3224. int task_id = ctx_server.queue_tasks.get_new_id();
  3225. {
  3226. server_task task(SERVER_TASK_TYPE_METRICS);
  3227. task.id = task_id;
  3228. ctx_server.queue_results.add_waiting_task_id(task_id);
  3229. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3230. }
  3231. // get the result
  3232. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3233. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3234. if (result->is_error()) {
  3235. res_error(res, result->to_json());
  3236. return;
  3237. }
  3238. // TODO: get rid of this dynamic_cast
  3239. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3240. GGML_ASSERT(res_metrics != nullptr);
  3241. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3242. json all_metrics_def = json {
  3243. {"counter", {{
  3244. {"name", "prompt_tokens_total"},
  3245. {"help", "Number of prompt tokens processed."},
  3246. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3247. }, {
  3248. {"name", "prompt_seconds_total"},
  3249. {"help", "Prompt process time"},
  3250. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3251. }, {
  3252. {"name", "tokens_predicted_total"},
  3253. {"help", "Number of generation tokens processed."},
  3254. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3255. }, {
  3256. {"name", "tokens_predicted_seconds_total"},
  3257. {"help", "Predict process time"},
  3258. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3259. }, {
  3260. {"name", "n_decode_total"},
  3261. {"help", "Total number of llama_decode() calls"},
  3262. {"value", res_metrics->n_decode_total}
  3263. }, {
  3264. {"name", "n_busy_slots_per_decode"},
  3265. {"help", "Average number of busy slots per llama_decode() call"},
  3266. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3267. }}},
  3268. {"gauge", {{
  3269. {"name", "prompt_tokens_seconds"},
  3270. {"help", "Average prompt throughput in tokens/s."},
  3271. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3272. },{
  3273. {"name", "predicted_tokens_seconds"},
  3274. {"help", "Average generation throughput in tokens/s."},
  3275. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3276. },{
  3277. {"name", "requests_processing"},
  3278. {"help", "Number of requests processing."},
  3279. {"value", (uint64_t) res_metrics->n_processing_slots}
  3280. },{
  3281. {"name", "requests_deferred"},
  3282. {"help", "Number of requests deferred."},
  3283. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3284. }}}
  3285. };
  3286. std::stringstream prometheus;
  3287. for (const auto & el : all_metrics_def.items()) {
  3288. const auto & type = el.key();
  3289. const auto & metrics_def = el.value();
  3290. for (const auto & metric_def : metrics_def) {
  3291. const std::string name = metric_def.at("name");
  3292. const std::string help = metric_def.at("help");
  3293. auto value = json_value(metric_def, "value", 0.);
  3294. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3295. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3296. << "llamacpp:" << name << " " << value << "\n";
  3297. }
  3298. }
  3299. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3300. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3301. res.status = 200; // HTTP OK
  3302. };
  3303. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3304. json request_data = json::parse(req.body);
  3305. std::string filename = request_data.at("filename");
  3306. if (!fs_validate_filename(filename)) {
  3307. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3308. return;
  3309. }
  3310. std::string filepath = params.slot_save_path + filename;
  3311. int task_id = ctx_server.queue_tasks.get_new_id();
  3312. {
  3313. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3314. task.id = task_id;
  3315. task.slot_action.slot_id = id_slot;
  3316. task.slot_action.filename = filename;
  3317. task.slot_action.filepath = filepath;
  3318. ctx_server.queue_results.add_waiting_task_id(task_id);
  3319. ctx_server.queue_tasks.post(std::move(task));
  3320. }
  3321. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3322. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3323. if (result->is_error()) {
  3324. res_error(res, result->to_json());
  3325. return;
  3326. }
  3327. res_ok(res, result->to_json());
  3328. };
  3329. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3330. json request_data = json::parse(req.body);
  3331. std::string filename = request_data.at("filename");
  3332. if (!fs_validate_filename(filename)) {
  3333. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3334. return;
  3335. }
  3336. std::string filepath = params.slot_save_path + filename;
  3337. int task_id = ctx_server.queue_tasks.get_new_id();
  3338. {
  3339. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3340. task.id = task_id;
  3341. task.slot_action.slot_id = id_slot;
  3342. task.slot_action.filename = filename;
  3343. task.slot_action.filepath = filepath;
  3344. ctx_server.queue_results.add_waiting_task_id(task_id);
  3345. ctx_server.queue_tasks.post(std::move(task));
  3346. }
  3347. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3348. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3349. if (result->is_error()) {
  3350. res_error(res, result->to_json());
  3351. return;
  3352. }
  3353. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3354. res_ok(res, result->to_json());
  3355. };
  3356. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3357. int task_id = ctx_server.queue_tasks.get_new_id();
  3358. {
  3359. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3360. task.id = task_id;
  3361. task.slot_action.slot_id = id_slot;
  3362. ctx_server.queue_results.add_waiting_task_id(task_id);
  3363. ctx_server.queue_tasks.post(std::move(task));
  3364. }
  3365. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3366. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3367. if (result->is_error()) {
  3368. res_error(res, result->to_json());
  3369. return;
  3370. }
  3371. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3372. res_ok(res, result->to_json());
  3373. };
  3374. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3375. if (params.slot_save_path.empty()) {
  3376. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3377. return;
  3378. }
  3379. std::string id_slot_str = req.path_params.at("id_slot");
  3380. int id_slot;
  3381. try {
  3382. id_slot = std::stoi(id_slot_str);
  3383. } catch (const std::exception &) {
  3384. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3385. return;
  3386. }
  3387. std::string action = req.get_param_value("action");
  3388. if (action == "save") {
  3389. handle_slots_save(req, res, id_slot);
  3390. } else if (action == "restore") {
  3391. handle_slots_restore(req, res, id_slot);
  3392. } else if (action == "erase") {
  3393. handle_slots_erase(req, res, id_slot);
  3394. } else {
  3395. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3396. }
  3397. };
  3398. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3399. // this endpoint is publicly available, please only return what is safe to be exposed
  3400. json data = {
  3401. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3402. { "total_slots", ctx_server.params_base.n_parallel },
  3403. { "model_path", ctx_server.params_base.model.path },
  3404. { "modalities", json{
  3405. {"vision", ctx_server.oai_parser_opt.allow_image},
  3406. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3407. } },
  3408. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3409. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3410. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3411. { "build_info", build_info },
  3412. };
  3413. if (ctx_server.params_base.use_jinja) {
  3414. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3415. data["chat_template_tool_use"] = tool_use_src;
  3416. }
  3417. }
  3418. res_ok(res, data);
  3419. };
  3420. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3421. if (!ctx_server.params_base.endpoint_props) {
  3422. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3423. return;
  3424. }
  3425. json data = json::parse(req.body);
  3426. // update any props here
  3427. res_ok(res, {{ "success", true }});
  3428. };
  3429. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3430. json data = {
  3431. {
  3432. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3433. },
  3434. {
  3435. "model_info", {
  3436. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3437. }
  3438. },
  3439. {"modelfile", ""},
  3440. {"parameters", ""},
  3441. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3442. {"details", {
  3443. {"parent_model", ""},
  3444. {"format", "gguf"},
  3445. {"family", ""},
  3446. {"families", {""}},
  3447. {"parameter_size", ""},
  3448. {"quantization_level", ""}
  3449. }},
  3450. {"model_info", ""},
  3451. {"capabilities", {"completion"}}
  3452. };
  3453. res_ok(res, data);
  3454. };
  3455. // handle completion-like requests (completion, chat, infill)
  3456. // we can optionally provide a custom format for partial results and final results
  3457. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3458. server_task_type type,
  3459. json & data,
  3460. const std::vector<raw_buffer> & files,
  3461. const std::function<bool()> & is_connection_closed,
  3462. httplib::Response & res,
  3463. oaicompat_type oaicompat) -> void {
  3464. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3465. auto completion_id = gen_chatcmplid();
  3466. std::unordered_set<int> task_ids;
  3467. try {
  3468. std::vector<server_task> tasks;
  3469. const auto & prompt = data.at("prompt");
  3470. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3471. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3472. // process files
  3473. mtmd::bitmaps bitmaps;
  3474. const bool has_mtmd = ctx_server.mctx != nullptr;
  3475. {
  3476. if (!has_mtmd && !files.empty()) {
  3477. throw std::runtime_error("This server does not support multimodal");
  3478. }
  3479. for (auto & file : files) {
  3480. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
  3481. if (!bmp.ptr) {
  3482. throw std::runtime_error("Failed to load image or audio file");
  3483. }
  3484. // calculate bitmap hash (for KV caching)
  3485. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3486. bmp.set_id(hash.c_str());
  3487. bitmaps.entries.push_back(std::move(bmp));
  3488. }
  3489. }
  3490. // process prompt
  3491. std::vector<server_tokens> inputs;
  3492. if (oaicompat && !prompt.is_string()) {
  3493. throw std::runtime_error("prompt must be a string");
  3494. }
  3495. if (oaicompat && has_mtmd) {
  3496. // multimodal
  3497. std::string prompt_str = prompt.get<std::string>();
  3498. mtmd_input_text inp_txt = {
  3499. prompt_str.c_str(),
  3500. /* add_special */ true,
  3501. /* parse_special */ true,
  3502. };
  3503. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3504. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3505. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3506. chunks.ptr.get(),
  3507. &inp_txt,
  3508. bitmaps_c_ptr.data(),
  3509. bitmaps_c_ptr.size());
  3510. if (tokenized != 0) {
  3511. throw std::runtime_error("Failed to tokenize prompt");
  3512. }
  3513. server_tokens tmp(chunks, true);
  3514. inputs.push_back(std::move(tmp));
  3515. } else {
  3516. // non-multimodal version
  3517. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3518. for (auto & p : tokenized_prompts) {
  3519. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3520. inputs.push_back(std::move(tmp));
  3521. }
  3522. }
  3523. tasks.reserve(inputs.size());
  3524. for (size_t i = 0; i < inputs.size(); i++) {
  3525. server_task task = server_task(type);
  3526. task.id = ctx_server.queue_tasks.get_new_id();
  3527. task.index = i;
  3528. task.prompt_tokens = std::move(inputs[i]);
  3529. task.params = server_task::params_from_json_cmpl(
  3530. ctx_server.ctx,
  3531. ctx_server.params_base,
  3532. data);
  3533. task.id_selected_slot = json_value(data, "id_slot", -1);
  3534. // OAI-compat
  3535. task.params.oaicompat = oaicompat;
  3536. task.params.oaicompat_cmpl_id = completion_id;
  3537. // oaicompat_model is already populated by params_from_json_cmpl
  3538. tasks.push_back(std::move(task));
  3539. }
  3540. task_ids = server_task::get_list_id(tasks);
  3541. ctx_server.queue_results.add_waiting_tasks(tasks);
  3542. ctx_server.queue_tasks.post(std::move(tasks));
  3543. } catch (const std::exception & e) {
  3544. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3545. return;
  3546. }
  3547. bool stream = json_value(data, "stream", false);
  3548. if (!stream) {
  3549. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3550. if (results.size() == 1) {
  3551. // single result
  3552. res_ok(res, results[0]->to_json());
  3553. } else {
  3554. // multiple results (multitask)
  3555. json arr = json::array();
  3556. for (auto & res : results) {
  3557. arr.push_back(res->to_json());
  3558. }
  3559. res_ok(res, arr);
  3560. }
  3561. }, [&](const json & error_data) {
  3562. res_error(res, error_data);
  3563. }, is_connection_closed);
  3564. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3565. } else {
  3566. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3567. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3568. json res_json = result->to_json();
  3569. if (res_json.is_array()) {
  3570. for (const auto & res : res_json) {
  3571. if (!server_sent_event(sink, "data", res)) {
  3572. // sending failed (HTTP connection closed), cancel the generation
  3573. return false;
  3574. }
  3575. }
  3576. return true;
  3577. } else {
  3578. return server_sent_event(sink, "data", res_json);
  3579. }
  3580. }, [&](const json & error_data) {
  3581. server_sent_event(sink, "error", error_data);
  3582. }, [&sink]() {
  3583. // note: do not use req.is_connection_closed here because req is already destroyed
  3584. return !sink.is_writable();
  3585. });
  3586. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3587. static const std::string ev_done = "data: [DONE]\n\n";
  3588. sink.write(ev_done.data(), ev_done.size());
  3589. }
  3590. sink.done();
  3591. return false;
  3592. };
  3593. auto on_complete = [task_ids, &ctx_server] (bool) {
  3594. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3595. };
  3596. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3597. }
  3598. };
  3599. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3600. json data = json::parse(req.body);
  3601. std::vector<raw_buffer> files; // dummy
  3602. handle_completions_impl(
  3603. SERVER_TASK_TYPE_COMPLETION,
  3604. data,
  3605. files,
  3606. req.is_connection_closed,
  3607. res,
  3608. OAICOMPAT_TYPE_NONE);
  3609. };
  3610. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3611. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3612. std::vector<raw_buffer> files; // dummy
  3613. handle_completions_impl(
  3614. SERVER_TASK_TYPE_COMPLETION,
  3615. data,
  3616. files,
  3617. req.is_connection_closed,
  3618. res,
  3619. OAICOMPAT_TYPE_COMPLETION);
  3620. };
  3621. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3622. // check model compatibility
  3623. std::string err;
  3624. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3625. err += "prefix token is missing. ";
  3626. }
  3627. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3628. err += "suffix token is missing. ";
  3629. }
  3630. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3631. err += "middle token is missing. ";
  3632. }
  3633. if (!err.empty()) {
  3634. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3635. return;
  3636. }
  3637. json data = json::parse(req.body);
  3638. // validate input
  3639. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3640. // prompt is optional
  3641. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3642. }
  3643. if (!data.contains("input_prefix")) {
  3644. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3645. }
  3646. if (!data.contains("input_suffix")) {
  3647. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3648. }
  3649. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3650. // input_extra is optional
  3651. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3652. return;
  3653. }
  3654. json input_extra = json_value(data, "input_extra", json::array());
  3655. for (const auto & chunk : input_extra) {
  3656. // { "text": string, "filename": string }
  3657. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3658. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3659. return;
  3660. }
  3661. // filename is optional
  3662. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3663. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3664. return;
  3665. }
  3666. }
  3667. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3668. std::string prompt = json_value(data, "prompt", std::string());
  3669. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3670. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3671. data["prompt"] = format_infill(
  3672. ctx_server.vocab,
  3673. data.at("input_prefix"),
  3674. data.at("input_suffix"),
  3675. data.at("input_extra"),
  3676. ctx_server.params_base.n_batch,
  3677. ctx_server.params_base.n_predict,
  3678. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3679. ctx_server.params_base.spm_infill,
  3680. tokenized_prompts[0]
  3681. );
  3682. std::vector<raw_buffer> files; // dummy
  3683. handle_completions_impl(
  3684. SERVER_TASK_TYPE_INFILL,
  3685. data,
  3686. files,
  3687. req.is_connection_closed,
  3688. res,
  3689. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3690. };
  3691. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3692. LOG_DBG("request: %s\n", req.body.c_str());
  3693. auto body = json::parse(req.body);
  3694. std::vector<raw_buffer> files;
  3695. json data = oaicompat_chat_params_parse(
  3696. body,
  3697. ctx_server.oai_parser_opt,
  3698. files);
  3699. handle_completions_impl(
  3700. SERVER_TASK_TYPE_COMPLETION,
  3701. data,
  3702. files,
  3703. req.is_connection_closed,
  3704. res,
  3705. OAICOMPAT_TYPE_CHAT);
  3706. };
  3707. // same with handle_chat_completions, but without inference part
  3708. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3709. auto body = json::parse(req.body);
  3710. std::vector<raw_buffer> files; // dummy, unused
  3711. json data = oaicompat_chat_params_parse(
  3712. body,
  3713. ctx_server.oai_parser_opt,
  3714. files);
  3715. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3716. };
  3717. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3718. server_state current_state = state.load();
  3719. json model_meta = nullptr;
  3720. if (current_state == SERVER_STATE_READY) {
  3721. model_meta = ctx_server.model_meta();
  3722. }
  3723. json models = {
  3724. {"models", {
  3725. {
  3726. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3727. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3728. {"modified_at", ""},
  3729. {"size", ""},
  3730. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3731. {"type", "model"},
  3732. {"description", ""},
  3733. {"tags", {""}},
  3734. {"capabilities", {"completion"}},
  3735. {"parameters", ""},
  3736. {"details", {
  3737. {"parent_model", ""},
  3738. {"format", "gguf"},
  3739. {"family", ""},
  3740. {"families", {""}},
  3741. {"parameter_size", ""},
  3742. {"quantization_level", ""}
  3743. }}
  3744. }
  3745. }},
  3746. {"object", "list"},
  3747. {"data", {
  3748. {
  3749. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3750. {"object", "model"},
  3751. {"created", std::time(0)},
  3752. {"owned_by", "llamacpp"},
  3753. {"meta", model_meta},
  3754. },
  3755. }}
  3756. };
  3757. res_ok(res, models);
  3758. };
  3759. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3760. const json body = json::parse(req.body);
  3761. json tokens_response = json::array();
  3762. if (body.count("content") != 0) {
  3763. const bool add_special = json_value(body, "add_special", false);
  3764. const bool parse_special = json_value(body, "parse_special", true);
  3765. const bool with_pieces = json_value(body, "with_pieces", false);
  3766. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  3767. if (with_pieces) {
  3768. for (const auto& token : tokens) {
  3769. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3770. json piece_json;
  3771. // Check if the piece is valid UTF-8
  3772. if (is_valid_utf8(piece)) {
  3773. piece_json = piece;
  3774. } else {
  3775. // If not valid UTF-8, store as array of byte values
  3776. piece_json = json::array();
  3777. for (unsigned char c : piece) {
  3778. piece_json.push_back(static_cast<int>(c));
  3779. }
  3780. }
  3781. tokens_response.push_back({
  3782. {"id", token},
  3783. {"piece", piece_json}
  3784. });
  3785. }
  3786. } else {
  3787. tokens_response = tokens;
  3788. }
  3789. }
  3790. const json data = format_tokenizer_response(tokens_response);
  3791. res_ok(res, data);
  3792. };
  3793. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3794. const json body = json::parse(req.body);
  3795. std::string content;
  3796. if (body.count("tokens") != 0) {
  3797. const llama_tokens tokens = body.at("tokens");
  3798. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3799. }
  3800. const json data = format_detokenized_response(content);
  3801. res_ok(res, data);
  3802. };
  3803. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3804. if (!ctx_server.params_base.embedding) {
  3805. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3806. return;
  3807. }
  3808. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3809. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3810. return;
  3811. }
  3812. const json body = json::parse(req.body);
  3813. // for the shape of input/content, see tokenize_input_prompts()
  3814. json prompt;
  3815. if (body.count("input") != 0) {
  3816. prompt = body.at("input");
  3817. } else if (body.contains("content")) {
  3818. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3819. prompt = body.at("content");
  3820. } else {
  3821. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3822. return;
  3823. }
  3824. bool use_base64 = false;
  3825. if (body.count("encoding_format") != 0) {
  3826. const std::string& format = body.at("encoding_format");
  3827. if (format == "base64") {
  3828. use_base64 = true;
  3829. } else if (format != "float") {
  3830. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3831. return;
  3832. }
  3833. }
  3834. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3835. for (const auto & tokens : tokenized_prompts) {
  3836. // this check is necessary for models that do not add BOS token to the input
  3837. if (tokens.empty()) {
  3838. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3839. return;
  3840. }
  3841. }
  3842. int embd_normalize = 2; // default to Euclidean/L2 norm
  3843. if (body.count("embd_normalize") != 0) {
  3844. embd_normalize = body.at("embd_normalize");
  3845. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3846. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  3847. }
  3848. }
  3849. // create and queue the task
  3850. json responses = json::array();
  3851. bool error = false;
  3852. std::unordered_set<int> task_ids;
  3853. {
  3854. std::vector<server_task> tasks;
  3855. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3856. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3857. task.id = ctx_server.queue_tasks.get_new_id();
  3858. task.index = i;
  3859. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3860. // OAI-compat
  3861. task.params.oaicompat = oaicompat;
  3862. task.params.embd_normalize = embd_normalize;
  3863. tasks.push_back(std::move(task));
  3864. }
  3865. task_ids = server_task::get_list_id(tasks);
  3866. ctx_server.queue_results.add_waiting_tasks(tasks);
  3867. ctx_server.queue_tasks.post(std::move(tasks));
  3868. }
  3869. // get the result
  3870. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3871. for (auto & res : results) {
  3872. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3873. responses.push_back(res->to_json());
  3874. }
  3875. }, [&](const json & error_data) {
  3876. res_error(res, error_data);
  3877. error = true;
  3878. }, req.is_connection_closed);
  3879. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3880. if (error) {
  3881. return;
  3882. }
  3883. // write JSON response
  3884. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3885. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3886. : json(responses);
  3887. res_ok(res, root);
  3888. };
  3889. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3890. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3891. };
  3892. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3893. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3894. };
  3895. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3896. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  3897. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  3898. return;
  3899. }
  3900. const json body = json::parse(req.body);
  3901. // TODO: implement
  3902. //int top_n = 1;
  3903. //if (body.count("top_n") != 1) {
  3904. // top_n = body.at("top_n");
  3905. //} else {
  3906. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3907. // return;
  3908. //}
  3909. // if true, use TEI API format, otherwise use Jina API format
  3910. // Jina: https://jina.ai/reranker/
  3911. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3912. bool is_tei_format = body.contains("texts");
  3913. json query;
  3914. if (body.count("query") == 1) {
  3915. query = body.at("query");
  3916. if (!query.is_string()) {
  3917. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3918. return;
  3919. }
  3920. } else {
  3921. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3922. return;
  3923. }
  3924. std::vector<std::string> documents = json_value(body, "documents",
  3925. json_value(body, "texts", std::vector<std::string>()));
  3926. if (documents.empty()) {
  3927. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3928. return;
  3929. }
  3930. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3931. // create and queue the task
  3932. json responses = json::array();
  3933. bool error = false;
  3934. std::unordered_set<int> task_ids;
  3935. {
  3936. std::vector<server_task> tasks;
  3937. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3938. tasks.reserve(tokenized_docs.size());
  3939. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3940. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3941. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3942. task.id = ctx_server.queue_tasks.get_new_id();
  3943. task.index = i;
  3944. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  3945. tasks.push_back(std::move(task));
  3946. }
  3947. task_ids = server_task::get_list_id(tasks);
  3948. ctx_server.queue_results.add_waiting_tasks(tasks);
  3949. ctx_server.queue_tasks.post(std::move(tasks));
  3950. }
  3951. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3952. for (auto & res : results) {
  3953. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3954. responses.push_back(res->to_json());
  3955. }
  3956. }, [&](const json & error_data) {
  3957. res_error(res, error_data);
  3958. error = true;
  3959. }, req.is_connection_closed);
  3960. if (error) {
  3961. return;
  3962. }
  3963. // write JSON response
  3964. json root = format_response_rerank(
  3965. body,
  3966. responses,
  3967. is_tei_format,
  3968. documents);
  3969. res_ok(res, root);
  3970. };
  3971. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3972. json result = json::array();
  3973. const auto & loras = ctx_server.params_base.lora_adapters;
  3974. for (size_t i = 0; i < loras.size(); ++i) {
  3975. auto & lora = loras[i];
  3976. result.push_back({
  3977. {"id", i},
  3978. {"path", lora.path},
  3979. {"scale", lora.scale},
  3980. });
  3981. }
  3982. res_ok(res, result);
  3983. res.status = 200; // HTTP OK
  3984. };
  3985. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3986. const json body = json::parse(req.body);
  3987. if (!body.is_array()) {
  3988. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3989. return;
  3990. }
  3991. int task_id = ctx_server.queue_tasks.get_new_id();
  3992. {
  3993. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3994. task.id = task_id;
  3995. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3996. ctx_server.queue_results.add_waiting_task_id(task_id);
  3997. ctx_server.queue_tasks.post(std::move(task));
  3998. }
  3999. // get the result
  4000. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4001. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4002. if (result->is_error()) {
  4003. res_error(res, result->to_json());
  4004. return;
  4005. }
  4006. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4007. res_ok(res, result->to_json());
  4008. };
  4009. //
  4010. // Router
  4011. //
  4012. if (!params.webui) {
  4013. LOG_INF("Web UI is disabled\n");
  4014. } else {
  4015. // register static assets routes
  4016. if (!params.public_path.empty()) {
  4017. // Set the base directory for serving static files
  4018. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4019. if (!is_found) {
  4020. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4021. return 1;
  4022. }
  4023. } else {
  4024. // using embedded static index.html
  4025. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4026. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4027. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4028. } else {
  4029. res.set_header("Content-Encoding", "gzip");
  4030. // COEP and COOP headers, required by pyodide (python interpreter)
  4031. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4032. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4033. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4034. }
  4035. return false;
  4036. });
  4037. }
  4038. }
  4039. // register API routes
  4040. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4041. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4042. svr->Get (params.api_prefix + "/props", handle_props);
  4043. svr->Post(params.api_prefix + "/props", handle_props_change);
  4044. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4045. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4046. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4047. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4048. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4049. svr->Post(params.api_prefix + "/completions", handle_completions);
  4050. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4051. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4052. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4053. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4054. svr->Post(params.api_prefix + "/infill", handle_infill);
  4055. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4056. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4057. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4058. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4059. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4060. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4061. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4062. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4063. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4064. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4065. // LoRA adapters hotswap
  4066. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4067. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4068. // Save & load slots
  4069. svr->Get (params.api_prefix + "/slots", handle_slots);
  4070. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4071. //
  4072. // Start the server
  4073. //
  4074. if (params.n_threads_http < 1) {
  4075. // +2 threads for monitoring endpoints
  4076. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4077. }
  4078. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4079. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4080. // clean up function, to be called before exit
  4081. auto clean_up = [&svr, &ctx_server]() {
  4082. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4083. svr->stop();
  4084. ctx_server.queue_results.terminate();
  4085. llama_backend_free();
  4086. };
  4087. bool was_bound = false;
  4088. bool is_sock = false;
  4089. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4090. is_sock = true;
  4091. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4092. svr->set_address_family(AF_UNIX);
  4093. // bind_to_port requires a second arg, any value other than 0 should
  4094. // simply get ignored
  4095. was_bound = svr->bind_to_port(params.hostname, 8080);
  4096. } else {
  4097. LOG_INF("%s: binding port with default address family\n", __func__);
  4098. // bind HTTP listen port
  4099. if (params.port == 0) {
  4100. int bound_port = svr->bind_to_any_port(params.hostname);
  4101. if ((was_bound = (bound_port >= 0))) {
  4102. params.port = bound_port;
  4103. }
  4104. } else {
  4105. was_bound = svr->bind_to_port(params.hostname, params.port);
  4106. }
  4107. }
  4108. if (!was_bound) {
  4109. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4110. clean_up();
  4111. return 1;
  4112. }
  4113. // run the HTTP server in a thread
  4114. std::thread t([&]() { svr->listen_after_bind(); });
  4115. svr->wait_until_ready();
  4116. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4117. // load the model
  4118. LOG_INF("%s: loading model\n", __func__);
  4119. if (!ctx_server.load_model(params)) {
  4120. clean_up();
  4121. t.join();
  4122. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4123. return 1;
  4124. }
  4125. ctx_server.init();
  4126. state.store(SERVER_STATE_READY);
  4127. LOG_INF("%s: model loaded\n", __func__);
  4128. // print sample chat example to make it clear which template is used
  4129. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4130. common_chat_templates_source(ctx_server.chat_templates.get()),
  4131. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  4132. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4133. ctx_server.process_single_task(std::move(task));
  4134. });
  4135. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4136. ctx_server.update_slots();
  4137. });
  4138. shutdown_handler = [&](int) {
  4139. // this will unblock start_loop()
  4140. ctx_server.queue_tasks.terminate();
  4141. };
  4142. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4143. struct sigaction sigint_action;
  4144. sigint_action.sa_handler = signal_handler;
  4145. sigemptyset (&sigint_action.sa_mask);
  4146. sigint_action.sa_flags = 0;
  4147. sigaction(SIGINT, &sigint_action, NULL);
  4148. sigaction(SIGTERM, &sigint_action, NULL);
  4149. #elif defined (_WIN32)
  4150. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4151. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4152. };
  4153. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4154. #endif
  4155. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4156. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4157. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4158. // this call blocks the main thread until queue_tasks.terminate() is called
  4159. ctx_server.queue_tasks.start_loop();
  4160. clean_up();
  4161. t.join();
  4162. return 0;
  4163. }