ggml-rpc.cpp 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <mutex>
  9. #include <unordered_map>
  10. #include <unordered_set>
  11. #ifdef _WIN32
  12. # define WIN32_LEAN_AND_MEAN
  13. # ifndef NOMINMAX
  14. # define NOMINMAX
  15. # endif
  16. # include <windows.h>
  17. # include <winsock2.h>
  18. #else
  19. # include <arpa/inet.h>
  20. # include <sys/socket.h>
  21. # include <sys/types.h>
  22. # include <netinet/in.h>
  23. # include <netinet/tcp.h>
  24. # include <netdb.h>
  25. # include <unistd.h>
  26. #endif
  27. #include <cstring>
  28. #ifdef _WIN32
  29. typedef SOCKET sockfd_t;
  30. using ssize_t = __int64;
  31. #else
  32. typedef int sockfd_t;
  33. #endif
  34. // cross-platform socket
  35. struct socket_t {
  36. sockfd_t fd;
  37. socket_t(sockfd_t fd) : fd(fd) {}
  38. ~socket_t() {
  39. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  40. #ifdef _WIN32
  41. closesocket(this->fd);
  42. #else
  43. close(this->fd);
  44. #endif
  45. }
  46. };
  47. // all RPC structures must be packed
  48. #pragma pack(push, 1)
  49. // ggml_tensor is serialized into rpc_tensor
  50. struct rpc_tensor {
  51. uint64_t id;
  52. uint32_t type;
  53. uint64_t buffer;
  54. uint32_t ne[GGML_MAX_DIMS];
  55. uint32_t nb[GGML_MAX_DIMS];
  56. uint32_t op;
  57. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  58. int32_t flags;
  59. uint64_t src[GGML_MAX_SRC];
  60. uint64_t view_src;
  61. uint64_t view_offs;
  62. uint64_t data;
  63. char name[GGML_MAX_NAME];
  64. char padding[4];
  65. };
  66. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  67. // RPC commands
  68. enum rpc_cmd {
  69. RPC_CMD_ALLOC_BUFFER = 0,
  70. RPC_CMD_GET_ALIGNMENT,
  71. RPC_CMD_GET_MAX_SIZE,
  72. RPC_CMD_BUFFER_GET_BASE,
  73. RPC_CMD_FREE_BUFFER,
  74. RPC_CMD_BUFFER_CLEAR,
  75. RPC_CMD_SET_TENSOR,
  76. RPC_CMD_GET_TENSOR,
  77. RPC_CMD_COPY_TENSOR,
  78. RPC_CMD_GRAPH_COMPUTE,
  79. RPC_CMD_GET_DEVICE_MEMORY,
  80. RPC_CMD_INIT_TENSOR,
  81. RPC_CMD_GET_ALLOC_SIZE,
  82. RPC_CMD_COUNT,
  83. };
  84. struct rpc_msg_get_alloc_size_req {
  85. rpc_tensor tensor;
  86. };
  87. struct rpc_msg_get_alloc_size_rsp {
  88. uint64_t alloc_size;
  89. };
  90. struct rpc_msg_init_tensor_req {
  91. rpc_tensor tensor;
  92. };
  93. struct rpc_msg_alloc_buffer_req {
  94. uint64_t size;
  95. };
  96. struct rpc_msg_alloc_buffer_rsp {
  97. uint64_t remote_ptr;
  98. uint64_t remote_size;
  99. };
  100. struct rpc_msg_get_alignment_rsp {
  101. uint64_t alignment;
  102. };
  103. struct rpc_msg_get_max_size_rsp {
  104. uint64_t max_size;
  105. };
  106. struct rpc_msg_buffer_get_base_req {
  107. uint64_t remote_ptr;
  108. };
  109. struct rpc_msg_buffer_get_base_rsp {
  110. uint64_t base_ptr;
  111. };
  112. struct rpc_msg_free_buffer_req {
  113. uint64_t remote_ptr;
  114. };
  115. struct rpc_msg_buffer_clear_req {
  116. uint64_t remote_ptr;
  117. uint8_t value;
  118. };
  119. struct rpc_msg_get_tensor_req {
  120. rpc_tensor tensor;
  121. uint64_t offset;
  122. uint64_t size;
  123. };
  124. struct rpc_msg_copy_tensor_req {
  125. rpc_tensor src;
  126. rpc_tensor dst;
  127. };
  128. struct rpc_msg_copy_tensor_rsp {
  129. uint8_t result;
  130. };
  131. struct rpc_msg_graph_compute_rsp {
  132. uint8_t result;
  133. };
  134. struct rpc_msg_get_device_memory_rsp {
  135. uint64_t free_mem;
  136. uint64_t total_mem;
  137. };
  138. #pragma pack(pop)
  139. // RPC data structures
  140. static ggml_guid_t ggml_backend_rpc_guid() {
  141. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  142. return &guid;
  143. }
  144. struct ggml_backend_rpc_buffer_type_context {
  145. std::string endpoint;
  146. std::string name;
  147. size_t alignment;
  148. size_t max_size;
  149. };
  150. struct ggml_backend_rpc_context {
  151. std::string endpoint;
  152. std::string name;
  153. };
  154. struct ggml_backend_rpc_buffer_context {
  155. std::shared_ptr<socket_t> sock;
  156. void * base_ptr;
  157. uint64_t remote_ptr;
  158. };
  159. // RPC helper functions
  160. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  161. #ifdef _WIN32
  162. if (fd == INVALID_SOCKET) {
  163. return nullptr;
  164. }
  165. #else
  166. if (fd < 0) {
  167. return nullptr;
  168. }
  169. #endif
  170. return std::make_shared<socket_t>(fd);
  171. }
  172. static bool set_no_delay(sockfd_t sockfd) {
  173. int flag = 1;
  174. // set TCP_NODELAY to disable Nagle's algorithm
  175. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  176. return ret == 0;
  177. }
  178. static bool set_reuse_addr(sockfd_t sockfd) {
  179. int flag = 1;
  180. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  181. return ret == 0;
  182. }
  183. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  184. struct sockaddr_in addr;
  185. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  186. auto sock_ptr = make_socket(sockfd);
  187. if (sock_ptr == nullptr) {
  188. return nullptr;
  189. }
  190. if (!set_no_delay(sockfd)) {
  191. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  192. return nullptr;
  193. }
  194. addr.sin_family = AF_INET;
  195. addr.sin_port = htons(port);
  196. struct hostent * server = gethostbyname(host);
  197. if (server == NULL) {
  198. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  199. return nullptr;
  200. }
  201. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  202. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  203. return nullptr;
  204. }
  205. return sock_ptr;
  206. }
  207. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  208. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  209. auto client_socket = make_socket(client_socket_fd);
  210. if (client_socket == nullptr) {
  211. return nullptr;
  212. }
  213. if (!set_no_delay(client_socket_fd)) {
  214. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  215. return nullptr;
  216. }
  217. return client_socket;
  218. }
  219. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  220. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  221. auto sock = make_socket(sockfd);
  222. if (sock == nullptr) {
  223. return nullptr;
  224. }
  225. if (!set_reuse_addr(sockfd)) {
  226. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  227. return nullptr;
  228. }
  229. if (inet_addr(host) == INADDR_NONE) {
  230. fprintf(stderr, "Invalid host address: %s\n", host);
  231. return nullptr;
  232. }
  233. struct sockaddr_in serv_addr;
  234. serv_addr.sin_family = AF_INET;
  235. serv_addr.sin_addr.s_addr = inet_addr(host);
  236. serv_addr.sin_port = htons(port);
  237. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  238. return nullptr;
  239. }
  240. if (listen(sockfd, 1) < 0) {
  241. return nullptr;
  242. }
  243. return sock;
  244. }
  245. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  246. size_t bytes_sent = 0;
  247. while (bytes_sent < size) {
  248. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  249. if (n < 0) {
  250. return false;
  251. }
  252. bytes_sent += n;
  253. }
  254. return true;
  255. }
  256. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  257. size_t bytes_recv = 0;
  258. while (bytes_recv < size) {
  259. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  260. if (n <= 0) {
  261. return false;
  262. }
  263. bytes_recv += n;
  264. }
  265. return true;
  266. }
  267. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  268. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  269. return false;
  270. }
  271. return send_data(sockfd, msg, msg_size);
  272. }
  273. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  274. uint64_t size;
  275. if (!recv_data(sockfd, &size, sizeof(size))) {
  276. return false;
  277. }
  278. if (size != msg_size) {
  279. return false;
  280. }
  281. return recv_data(sockfd, msg, msg_size);
  282. }
  283. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  284. uint64_t size;
  285. if (!recv_data(sockfd, &size, sizeof(size))) {
  286. return false;
  287. }
  288. try {
  289. input.resize(size);
  290. } catch (const std::bad_alloc & e) {
  291. fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", size);
  292. return false;
  293. }
  294. return recv_data(sockfd, input.data(), size);
  295. }
  296. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  297. size_t pos = endpoint.find(':');
  298. if (pos == std::string::npos) {
  299. return false;
  300. }
  301. host = endpoint.substr(0, pos);
  302. port = std::stoi(endpoint.substr(pos + 1));
  303. return true;
  304. }
  305. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  306. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  307. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  308. uint8_t cmd_byte = cmd;
  309. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  310. return false;
  311. }
  312. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  313. return false;
  314. }
  315. if (!send_data(sock->fd, input, input_size)) {
  316. return false;
  317. }
  318. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  319. // even if we do, we can skip sending output_size from the server for commands with known output size
  320. uint64_t out_size;
  321. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  322. return false;
  323. }
  324. if (out_size != output_size) {
  325. return false;
  326. }
  327. if (!recv_data(sock->fd, output, output_size)) {
  328. return false;
  329. }
  330. return true;
  331. }
  332. // RPC client-side implementation
  333. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  334. static std::mutex mutex;
  335. std::lock_guard<std::mutex> lock(mutex);
  336. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  337. static bool initialized = false;
  338. auto it = sockets.find(endpoint);
  339. if (it != sockets.end()) {
  340. if (auto sock = it->second.lock()) {
  341. return sock;
  342. }
  343. }
  344. std::string host;
  345. int port;
  346. if (!parse_endpoint(endpoint, host, port)) {
  347. return nullptr;
  348. }
  349. #ifdef _WIN32
  350. if (!initialized) {
  351. WSADATA wsaData;
  352. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  353. if (res != 0) {
  354. return nullptr;
  355. }
  356. initialized = true;
  357. }
  358. #else
  359. GGML_UNUSED(initialized);
  360. #endif
  361. auto sock = socket_connect(host.c_str(), port);
  362. if (sock == nullptr) {
  363. return nullptr;
  364. }
  365. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  366. sockets[endpoint] = sock;
  367. return sock;
  368. }
  369. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  370. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  371. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  372. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  373. GGML_ASSERT(status);
  374. delete ctx;
  375. }
  376. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  377. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  378. if (ctx->base_ptr != nullptr) {
  379. return ctx->base_ptr;
  380. }
  381. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  382. rpc_msg_buffer_get_base_rsp response;
  383. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  384. GGML_ASSERT(status);
  385. ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
  386. return ctx->base_ptr;
  387. }
  388. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  389. rpc_tensor result;
  390. result.id = reinterpret_cast<uint64_t>(tensor);
  391. result.type = tensor->type;
  392. if (tensor->buffer) {
  393. ggml_backend_buffer_t buffer = tensor->buffer;
  394. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  395. result.buffer = ctx->remote_ptr;
  396. } else {
  397. result.buffer = 0;
  398. }
  399. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  400. result.ne[i] = tensor->ne[i];
  401. result.nb[i] = tensor->nb[i];
  402. }
  403. result.op = tensor->op;
  404. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  405. result.op_params[i] = tensor->op_params[i];
  406. }
  407. result.flags = tensor->flags;
  408. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  409. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  410. }
  411. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  412. result.view_offs = tensor->view_offs;
  413. result.data = reinterpret_cast<uint64_t>(tensor->data);
  414. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  415. return result;
  416. }
  417. static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  418. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  419. // CUDA backend on the server pads everything to 512 due to CUDA limitations.
  420. // Due to bandwidth constraints, we only call the server init tensor functions if necessary.
  421. // In particular, only quantized tensors need padding
  422. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  423. rpc_msg_init_tensor_req request;
  424. request.tensor = serialize_tensor(tensor);
  425. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
  426. GGML_ASSERT(status);
  427. }
  428. return GGML_STATUS_SUCCESS;
  429. }
  430. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  431. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  432. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  433. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  434. std::vector<uint8_t> input(input_size, 0);
  435. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  436. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  437. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  438. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  439. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
  440. GGML_ASSERT(status);
  441. }
  442. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  443. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  444. rpc_msg_get_tensor_req request;
  445. request.tensor = serialize_tensor(tensor);
  446. request.offset = offset;
  447. request.size = size;
  448. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  449. GGML_ASSERT(status);
  450. }
  451. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  452. // check if src and dst are on the same server
  453. ggml_backend_buffer_t src_buffer = src->buffer;
  454. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  455. ggml_backend_buffer_t dst_buffer = dst->buffer;
  456. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  457. if (src_ctx->sock != dst_ctx->sock) {
  458. return false;
  459. }
  460. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  461. rpc_msg_copy_tensor_req request;
  462. request.src = serialize_tensor(src);
  463. request.dst = serialize_tensor(dst);
  464. rpc_msg_copy_tensor_rsp response;
  465. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  466. GGML_ASSERT(status);
  467. return response.result;
  468. }
  469. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  470. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  471. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  472. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  473. GGML_ASSERT(status);
  474. }
  475. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  476. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  477. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  478. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  479. /* .memset_tensor = */ NULL,
  480. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  481. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  482. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  483. /* .clear = */ ggml_backend_rpc_buffer_clear,
  484. /* .reset = */ NULL,
  485. };
  486. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  487. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  488. return buft_ctx->name.c_str();
  489. }
  490. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  491. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  492. rpc_msg_alloc_buffer_req request = {size};
  493. rpc_msg_alloc_buffer_rsp response;
  494. auto sock = get_socket(buft_ctx->endpoint);
  495. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  496. GGML_ASSERT(status);
  497. if (response.remote_ptr != 0) {
  498. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  499. ggml_backend_rpc_buffer_interface,
  500. new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
  501. response.remote_size);
  502. return buffer;
  503. } else {
  504. return nullptr;
  505. }
  506. }
  507. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  508. rpc_msg_get_alignment_rsp response;
  509. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
  510. GGML_ASSERT(status);
  511. return response.alignment;
  512. }
  513. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  514. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  515. return buft_ctx->alignment;
  516. }
  517. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  518. rpc_msg_get_max_size_rsp response;
  519. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
  520. GGML_ASSERT(status);
  521. return response.max_size;
  522. }
  523. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  524. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  525. return buft_ctx->max_size;
  526. }
  527. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  528. // See comments in init_tensor.
  529. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  530. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  531. auto sock = get_socket(buft_ctx->endpoint);
  532. rpc_msg_get_alloc_size_req request;
  533. request.tensor = serialize_tensor(tensor);
  534. rpc_msg_get_alloc_size_rsp response;
  535. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
  536. GGML_ASSERT(status);
  537. return response.alloc_size;
  538. } else {
  539. return ggml_nbytes(tensor);
  540. }
  541. }
  542. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  543. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  544. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  545. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  546. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  547. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  548. /* .is_host = */ NULL,
  549. };
  550. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  551. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  552. return rpc_ctx->name.c_str();
  553. }
  554. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  555. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  556. delete rpc_ctx;
  557. delete backend;
  558. }
  559. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  560. GGML_UNUSED(backend);
  561. // this is no-op because we don't have any async operations
  562. }
  563. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  564. if (tensor == nullptr) {
  565. return;
  566. }
  567. if (visited.find(tensor) != visited.end()) {
  568. return;
  569. }
  570. visited.insert(tensor);
  571. for (int i = 0; i < GGML_MAX_SRC; i++) {
  572. add_tensor(tensor->src[i], tensors, visited);
  573. }
  574. add_tensor(tensor->view_src, tensors, visited);
  575. tensors.push_back(serialize_tensor(tensor));
  576. }
  577. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  578. uint32_t n_nodes = cgraph->n_nodes;
  579. std::vector<rpc_tensor> tensors;
  580. std::unordered_set<ggml_tensor*> visited;
  581. for (uint32_t i = 0; i < n_nodes; i++) {
  582. add_tensor(cgraph->nodes[i], tensors, visited);
  583. }
  584. // serialization format:
  585. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  586. uint32_t n_tensors = tensors.size();
  587. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  588. output.resize(output_size, 0);
  589. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  590. for (uint32_t i = 0; i < n_nodes; i++) {
  591. memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  592. }
  593. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  594. *out_ntensors = n_tensors;
  595. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  596. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  597. }
  598. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  599. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  600. std::vector<uint8_t> input;
  601. serialize_graph(cgraph, input);
  602. rpc_msg_graph_compute_rsp response;
  603. auto sock = get_socket(rpc_ctx->endpoint);
  604. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
  605. GGML_ASSERT(status);
  606. return (enum ggml_status)response.result;
  607. }
  608. static ggml_backend_i ggml_backend_rpc_interface = {
  609. /* .get_name = */ ggml_backend_rpc_name,
  610. /* .free = */ ggml_backend_rpc_free,
  611. /* .set_tensor_async = */ NULL,
  612. /* .get_tensor_async = */ NULL,
  613. /* .cpy_tensor_async = */ NULL,
  614. /* .synchronize = */ ggml_backend_rpc_synchronize,
  615. /* .graph_plan_create = */ NULL,
  616. /* .graph_plan_free = */ NULL,
  617. /* .graph_plan_update = */ NULL,
  618. /* .graph_plan_compute = */ NULL,
  619. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  620. /* .event_record = */ NULL,
  621. /* .event_wait = */ NULL,
  622. };
  623. ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  624. static std::mutex mutex;
  625. std::lock_guard<std::mutex> lock(mutex);
  626. // NOTE: buffer types are allocated and never freed; this is by design
  627. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  628. auto it = buft_map.find(endpoint);
  629. if (it != buft_map.end()) {
  630. return it->second;
  631. }
  632. auto sock = get_socket(endpoint);
  633. if (sock == nullptr) {
  634. fprintf(stderr, "Failed to connect to %s\n", endpoint);
  635. return nullptr;
  636. }
  637. size_t alignment = get_alignment(sock);
  638. size_t max_size = get_max_size(sock);
  639. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  640. /* .endpoint = */ endpoint,
  641. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  642. /* .alignment = */ alignment,
  643. /* .max_size = */ max_size
  644. };
  645. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  646. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  647. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  648. /* .context = */ buft_ctx
  649. };
  650. buft_map[endpoint] = buft;
  651. return buft;
  652. }
  653. ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  654. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  655. /* .endpoint = */ endpoint,
  656. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  657. };
  658. ggml_backend_t backend = new ggml_backend {
  659. /* .guid = */ ggml_backend_rpc_guid(),
  660. /* .interface = */ ggml_backend_rpc_interface,
  661. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  662. /* .context = */ ctx
  663. };
  664. return backend;
  665. }
  666. bool ggml_backend_is_rpc(ggml_backend_t backend) {
  667. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  668. }
  669. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  670. rpc_msg_get_device_memory_rsp response;
  671. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
  672. GGML_ASSERT(status);
  673. *free = response.free_mem;
  674. *total = response.total_mem;
  675. }
  676. void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  677. auto sock = get_socket(endpoint);
  678. if (sock == nullptr) {
  679. *free = 0;
  680. *total = 0;
  681. return;
  682. }
  683. get_device_memory(sock, free, total);
  684. }
  685. // RPC server-side implementation
  686. class rpc_server {
  687. public:
  688. rpc_server(ggml_backend_t backend) : backend(backend) {}
  689. ~rpc_server();
  690. void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  691. void get_alignment(rpc_msg_get_alignment_rsp & response);
  692. void get_max_size(rpc_msg_get_max_size_rsp & response);
  693. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  694. bool free_buffer(const rpc_msg_free_buffer_req & request);
  695. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  696. bool set_tensor(const std::vector<uint8_t> & input);
  697. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  698. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  699. bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
  700. bool init_tensor(const rpc_msg_init_tensor_req & request);
  701. bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
  702. private:
  703. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  704. ggml_tensor * create_node(uint64_t id,
  705. struct ggml_context * ctx,
  706. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  707. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  708. ggml_backend_t backend;
  709. std::unordered_set<ggml_backend_buffer_t> buffers;
  710. };
  711. bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
  712. ggml_backend_buffer_type_t buft;
  713. struct ggml_init_params params {
  714. /*.mem_size =*/ ggml_tensor_overhead(),
  715. /*.mem_buffer =*/ NULL,
  716. /*.no_alloc =*/ true,
  717. };
  718. struct ggml_context * ctx = ggml_init(params);
  719. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  720. if (tensor == nullptr) {
  721. GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
  722. ggml_free(ctx);
  723. return false;
  724. }
  725. if (tensor->buffer == nullptr) {
  726. //No buffer allocated.
  727. buft = ggml_backend_get_default_buffer_type(backend);
  728. } else {
  729. buft = tensor->buffer->buft;
  730. }
  731. response.alloc_size = ggml_backend_buft_get_alloc_size(buft,tensor);
  732. ggml_free(ctx);
  733. return true;
  734. }
  735. void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  736. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  737. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  738. response.remote_ptr = 0;
  739. response.remote_size = 0;
  740. if (buffer != nullptr) {
  741. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  742. response.remote_size = buffer->size;
  743. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
  744. buffers.insert(buffer);
  745. } else {
  746. GGML_LOG_ERROR("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
  747. }
  748. }
  749. void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
  750. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  751. size_t alignment = ggml_backend_buft_get_alignment(buft);
  752. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  753. response.alignment = alignment;
  754. }
  755. void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
  756. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  757. size_t max_size = ggml_backend_buft_get_max_size(buft);
  758. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  759. response.max_size = max_size;
  760. }
  761. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  762. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  763. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  764. if (buffers.find(buffer) == buffers.end()) {
  765. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  766. return false;
  767. }
  768. void * base = ggml_backend_buffer_get_base(buffer);
  769. response.base_ptr = reinterpret_cast<uint64_t>(base);
  770. return true;
  771. }
  772. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  773. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  774. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  775. if (buffers.find(buffer) == buffers.end()) {
  776. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  777. return false;
  778. }
  779. ggml_backend_buffer_free(buffer);
  780. buffers.erase(buffer);
  781. return true;
  782. }
  783. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  784. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  785. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  786. if (buffers.find(buffer) == buffers.end()) {
  787. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  788. return false;
  789. }
  790. ggml_backend_buffer_clear(buffer, request.value);
  791. return true;
  792. }
  793. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  794. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  795. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  796. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  797. result->nb[i] = tensor->nb[i];
  798. }
  799. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  800. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  801. result->buffer = nullptr;
  802. }
  803. if (result->buffer) {
  804. // require that the tensor data does not go beyond the buffer end
  805. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  806. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  807. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  808. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  809. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  810. }
  811. result->op = (ggml_op) tensor->op;
  812. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  813. result->op_params[i] = tensor->op_params[i];
  814. }
  815. result->flags = tensor->flags;
  816. result->data = reinterpret_cast<void *>(tensor->data);
  817. ggml_set_name(result, tensor->name);
  818. return result;
  819. }
  820. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  821. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  822. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  823. return false;
  824. }
  825. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  826. uint64_t offset;
  827. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  828. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  829. struct ggml_init_params params {
  830. /*.mem_size =*/ ggml_tensor_overhead(),
  831. /*.mem_buffer =*/ NULL,
  832. /*.no_alloc =*/ true,
  833. };
  834. struct ggml_context * ctx = ggml_init(params);
  835. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  836. if (tensor == nullptr) {
  837. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  838. ggml_free(ctx);
  839. return false;
  840. }
  841. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  842. // sanitize tensor->data
  843. {
  844. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  845. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  846. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  847. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  848. }
  849. }
  850. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  851. ggml_backend_tensor_set(tensor, data, offset, size);
  852. ggml_free(ctx);
  853. return true;
  854. }
  855. bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
  856. struct ggml_init_params params {
  857. /*.mem_size =*/ ggml_tensor_overhead(),
  858. /*.mem_buffer =*/ NULL,
  859. /*.no_alloc =*/ true,
  860. };
  861. struct ggml_context * ctx = ggml_init(params);
  862. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  863. if (tensor == nullptr) {
  864. GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
  865. ggml_free(ctx);
  866. return false;
  867. }
  868. // Call the backend's buffer_init_tensor function
  869. ggml_backend_buffer_t buffer = tensor->buffer;
  870. if (buffer && buffer->iface.init_tensor) {
  871. buffer->iface.init_tensor(buffer, tensor);
  872. } else {
  873. GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n");
  874. }
  875. if (tensor->extra != nullptr) {
  876. // This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
  877. // Currently unimplemented.
  878. GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
  879. ggml_free(ctx);
  880. return false;
  881. }
  882. ggml_free(ctx);
  883. return true;
  884. }
  885. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  886. struct ggml_init_params params {
  887. /*.mem_size =*/ ggml_tensor_overhead(),
  888. /*.mem_buffer =*/ NULL,
  889. /*.no_alloc =*/ true,
  890. };
  891. struct ggml_context * ctx = ggml_init(params);
  892. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  893. if (tensor == nullptr) {
  894. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  895. ggml_free(ctx);
  896. return false;
  897. }
  898. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  899. // sanitize tensor->data
  900. {
  901. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  902. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  903. if (request.tensor.data + request.offset < p0 ||
  904. request.tensor.data + request.offset >= p1 ||
  905. request.size > (p1 - request.tensor.data - request.offset)) {
  906. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  907. }
  908. }
  909. response.resize(request.size, 0);
  910. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  911. ggml_free(ctx);
  912. return true;
  913. }
  914. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  915. struct ggml_init_params params {
  916. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  917. /*.mem_buffer =*/ NULL,
  918. /*.no_alloc =*/ true,
  919. };
  920. struct ggml_context * ctx = ggml_init(params);
  921. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  922. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  923. if (src == nullptr || dst == nullptr) {
  924. GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__);
  925. ggml_free(ctx);
  926. return false;
  927. }
  928. uint64_t src_size = (uint64_t) ggml_nbytes(src);
  929. uint64_t dst_data = (uint64_t) dst->data;
  930. uint64_t dst_base = (uint64_t) ggml_backend_buffer_get_base(dst->buffer);
  931. uint64_t dst_buf_sz = (uint64_t) ggml_backend_buffer_get_size(dst->buffer);
  932. if (dst_data + src_size > dst_base + dst_buf_sz) {
  933. GGML_PRINT_DEBUG("[%s] out-of-bounds write in rpc_server::copy_tensor:\n"
  934. " write range : [0x%" PRIx64 ", 0x%" PRIx64 "]\n"
  935. " buffer base: [0x%" PRIx64 ", 0x%" PRIx64 "]\n",
  936. __func__,
  937. dst_data,
  938. dst_data + src_size,
  939. dst_base,
  940. dst_base + dst_buf_sz);
  941. ggml_free(ctx);
  942. return false;
  943. }
  944. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n",
  945. __func__, (void*) src->buffer, (void*) dst->buffer);
  946. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  947. ggml_free(ctx);
  948. return true;
  949. }
  950. ggml_tensor * rpc_server::create_node(uint64_t id,
  951. struct ggml_context * ctx,
  952. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  953. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  954. if (id == 0) {
  955. return nullptr;
  956. }
  957. if (tensor_map.find(id) != tensor_map.end()) {
  958. return tensor_map[id];
  959. }
  960. const rpc_tensor * tensor = tensor_ptrs.at(id);
  961. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  962. if (result == nullptr) {
  963. return nullptr;
  964. }
  965. tensor_map[id] = result;
  966. for (int i = 0; i < GGML_MAX_SRC; i++) {
  967. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  968. }
  969. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  970. result->view_offs = tensor->view_offs;
  971. return result;
  972. }
  973. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
  974. // serialization format:
  975. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  976. if (input.size() < sizeof(uint32_t)) {
  977. return false;
  978. }
  979. uint32_t n_nodes;
  980. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  981. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  982. return false;
  983. }
  984. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  985. uint32_t n_tensors;
  986. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  987. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  988. return false;
  989. }
  990. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  991. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  992. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  993. struct ggml_init_params params = {
  994. /*.mem_size =*/ buf_size,
  995. /*.mem_buffer =*/ NULL,
  996. /*.no_alloc =*/ true,
  997. };
  998. struct ggml_context * ctx = ggml_init(params);
  999. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  1000. graph->n_nodes = n_nodes;
  1001. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  1002. for (uint32_t i = 0; i < n_tensors; i++) {
  1003. tensor_ptrs[tensors[i].id] = &tensors[i];
  1004. }
  1005. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  1006. for (uint32_t i = 0; i < n_nodes; i++) {
  1007. int64_t id;
  1008. memcpy(&id, &nodes[i], sizeof(id));
  1009. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  1010. }
  1011. ggml_status status = ggml_backend_graph_compute(backend, graph);
  1012. response.result = status;
  1013. ggml_free(ctx);
  1014. return true;
  1015. }
  1016. rpc_server::~rpc_server() {
  1017. for (auto buffer : buffers) {
  1018. ggml_backend_buffer_free(buffer);
  1019. }
  1020. }
  1021. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  1022. rpc_server server(backend);
  1023. while (true) {
  1024. uint8_t cmd;
  1025. if (!recv_data(sockfd, &cmd, 1)) {
  1026. break;
  1027. }
  1028. if (cmd >= RPC_CMD_COUNT) {
  1029. // fail fast if the command is invalid
  1030. fprintf(stderr, "Unknown command: %d\n", cmd);
  1031. break;
  1032. }
  1033. switch (cmd) {
  1034. case RPC_CMD_ALLOC_BUFFER: {
  1035. rpc_msg_alloc_buffer_req request;
  1036. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1037. return;
  1038. }
  1039. rpc_msg_alloc_buffer_rsp response;
  1040. server.alloc_buffer(request, response);
  1041. if (!send_msg(sockfd, &response, sizeof(response))) {
  1042. return;
  1043. }
  1044. break;
  1045. }
  1046. case RPC_CMD_GET_ALLOC_SIZE: {
  1047. rpc_msg_get_alloc_size_req request;
  1048. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1049. return;
  1050. }
  1051. rpc_msg_get_alloc_size_rsp response;
  1052. server.get_alloc_size(request, response);
  1053. if (!send_msg(sockfd, &response, sizeof(response))) {
  1054. return;
  1055. }
  1056. break;
  1057. }
  1058. case RPC_CMD_GET_ALIGNMENT: {
  1059. if (!recv_msg(sockfd, nullptr, 0)) {
  1060. return;
  1061. }
  1062. rpc_msg_get_alignment_rsp response;
  1063. server.get_alignment(response);
  1064. if (!send_msg(sockfd, &response, sizeof(response))) {
  1065. return;
  1066. }
  1067. break;
  1068. }
  1069. case RPC_CMD_GET_MAX_SIZE: {
  1070. if (!recv_msg(sockfd, nullptr, 0)) {
  1071. return;
  1072. }
  1073. rpc_msg_get_max_size_rsp response;
  1074. server.get_max_size(response);
  1075. if (!send_msg(sockfd, &response, sizeof(response))) {
  1076. return;
  1077. }
  1078. break;
  1079. }
  1080. case RPC_CMD_BUFFER_GET_BASE: {
  1081. rpc_msg_buffer_get_base_req request;
  1082. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1083. return;
  1084. }
  1085. rpc_msg_buffer_get_base_rsp response;
  1086. if (!server.buffer_get_base(request, response)) {
  1087. return;
  1088. }
  1089. if (!send_msg(sockfd, &response, sizeof(response))) {
  1090. return;
  1091. }
  1092. break;
  1093. }
  1094. case RPC_CMD_FREE_BUFFER: {
  1095. rpc_msg_free_buffer_req request;
  1096. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1097. return;
  1098. }
  1099. if (!server.free_buffer(request)) {
  1100. return;
  1101. }
  1102. if (!send_msg(sockfd, nullptr, 0)) {
  1103. return;
  1104. }
  1105. break;
  1106. }
  1107. case RPC_CMD_BUFFER_CLEAR: {
  1108. rpc_msg_buffer_clear_req request;
  1109. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1110. return;
  1111. }
  1112. if (!server.buffer_clear(request)) {
  1113. return;
  1114. }
  1115. if (!send_msg(sockfd, nullptr, 0)) {
  1116. return;
  1117. }
  1118. break;
  1119. }
  1120. case RPC_CMD_SET_TENSOR: {
  1121. std::vector<uint8_t> input;
  1122. if (!recv_msg(sockfd, input)) {
  1123. return;
  1124. }
  1125. if (!server.set_tensor(input)) {
  1126. return;
  1127. }
  1128. if (!send_msg(sockfd, nullptr, 0)) {
  1129. return;
  1130. }
  1131. break;
  1132. }
  1133. case RPC_CMD_INIT_TENSOR: {
  1134. rpc_msg_init_tensor_req request;
  1135. if (!recv_msg(sockfd, &request,sizeof(request))) {
  1136. return;
  1137. }
  1138. if (!server.init_tensor(request)) {
  1139. return;
  1140. }
  1141. if (!send_msg(sockfd, nullptr, 0)) {
  1142. return;
  1143. }
  1144. break;
  1145. }
  1146. case RPC_CMD_GET_TENSOR: {
  1147. rpc_msg_get_tensor_req request;
  1148. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1149. return;
  1150. }
  1151. std::vector<uint8_t> response;
  1152. if (!server.get_tensor(request, response)) {
  1153. return;
  1154. }
  1155. if (!send_msg(sockfd, response.data(), response.size())) {
  1156. return;
  1157. }
  1158. break;
  1159. }
  1160. case RPC_CMD_COPY_TENSOR: {
  1161. rpc_msg_copy_tensor_req request;
  1162. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1163. return;
  1164. }
  1165. rpc_msg_copy_tensor_rsp response;
  1166. if (!server.copy_tensor(request, response)) {
  1167. return;
  1168. }
  1169. if (!send_msg(sockfd, &response, sizeof(response))) {
  1170. return;
  1171. }
  1172. break;
  1173. }
  1174. case RPC_CMD_GRAPH_COMPUTE: {
  1175. std::vector<uint8_t> input;
  1176. if (!recv_msg(sockfd, input)) {
  1177. return;
  1178. }
  1179. rpc_msg_graph_compute_rsp response;
  1180. if (!server.graph_compute(input, response)) {
  1181. return;
  1182. }
  1183. if (!send_msg(sockfd, &response, sizeof(response))) {
  1184. return;
  1185. }
  1186. break;
  1187. }
  1188. case RPC_CMD_GET_DEVICE_MEMORY: {
  1189. if (!recv_msg(sockfd, nullptr, 0)) {
  1190. return;
  1191. }
  1192. rpc_msg_get_device_memory_rsp response;
  1193. response.free_mem = free_mem;
  1194. response.total_mem = total_mem;
  1195. if (!send_msg(sockfd, &response, sizeof(response))) {
  1196. return;
  1197. }
  1198. break;
  1199. }
  1200. default: {
  1201. fprintf(stderr, "Unknown command: %d\n", cmd);
  1202. return;
  1203. }
  1204. }
  1205. }
  1206. }
  1207. void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  1208. std::string host;
  1209. int port;
  1210. if (!parse_endpoint(endpoint, host, port)) {
  1211. return;
  1212. }
  1213. #ifdef _WIN32
  1214. {
  1215. WSADATA wsaData;
  1216. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1217. if (res != 0) {
  1218. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1219. return;
  1220. }
  1221. }
  1222. #endif
  1223. auto server_socket = create_server_socket(host.c_str(), port);
  1224. if (server_socket == nullptr) {
  1225. fprintf(stderr, "Failed to create server socket\n");
  1226. return;
  1227. }
  1228. while (true) {
  1229. auto client_socket = socket_accept(server_socket->fd);
  1230. if (client_socket == nullptr) {
  1231. fprintf(stderr, "Failed to accept client connection\n");
  1232. return;
  1233. }
  1234. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1235. fflush(stdout);
  1236. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  1237. printf("Client connection closed\n");
  1238. fflush(stdout);
  1239. }
  1240. #ifdef _WIN32
  1241. WSACleanup();
  1242. #endif
  1243. }
  1244. // device interface
  1245. struct ggml_backend_rpc_device_context {
  1246. std::string endpoint;
  1247. std::string name;
  1248. };
  1249. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1250. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1251. return ctx->name.c_str();
  1252. }
  1253. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1254. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1255. return ctx->name.c_str();
  1256. }
  1257. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1258. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1259. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
  1260. GGML_UNUSED(dev);
  1261. }
  1262. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1263. // TODO: obtain value from the server
  1264. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1265. GGML_UNUSED(dev);
  1266. }
  1267. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1268. props->name = ggml_backend_rpc_device_get_name(dev);
  1269. props->description = ggml_backend_rpc_device_get_description(dev);
  1270. props->type = ggml_backend_rpc_device_get_type(dev);
  1271. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1272. props->caps = {
  1273. /* .async = */ false,
  1274. /* .host_buffer = */ false,
  1275. /* .buffer_from_host_ptr = */ false,
  1276. /* .events = */ false,
  1277. };
  1278. }
  1279. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1280. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1281. return ggml_backend_rpc_init(ctx->endpoint.c_str());
  1282. GGML_UNUSED(params);
  1283. }
  1284. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1285. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1286. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  1287. GGML_UNUSED(dev);
  1288. }
  1289. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1290. GGML_UNUSED(dev);
  1291. GGML_UNUSED(op);
  1292. //TODO: call the remote backend and cache the results
  1293. return true;
  1294. }
  1295. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1296. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1297. return false;
  1298. }
  1299. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1300. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1301. return buft_ctx->endpoint == dev_ctx->endpoint;
  1302. }
  1303. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1304. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1305. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1306. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1307. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1308. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1309. /* .init_backend = */ ggml_backend_rpc_device_init,
  1310. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1311. /* .get_host_buffer_type = */ NULL,
  1312. /* .buffer_from_host_ptr = */ NULL,
  1313. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1314. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1315. /* .offload_op = */ NULL,
  1316. /* .event_new = */ NULL,
  1317. /* .event_free = */ NULL,
  1318. /* .event_synchronize = */ NULL,
  1319. };
  1320. // backend reg interface
  1321. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1322. return "RPC";
  1323. GGML_UNUSED(reg);
  1324. }
  1325. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1326. return 0;
  1327. GGML_UNUSED(reg);
  1328. }
  1329. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1330. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
  1331. GGML_UNUSED(reg);
  1332. GGML_UNUSED(index);
  1333. }
  1334. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1335. if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
  1336. return (void *)ggml_backend_rpc_add_device;
  1337. }
  1338. return NULL;
  1339. GGML_UNUSED(reg);
  1340. }
  1341. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1342. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1343. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1344. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1345. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1346. };
  1347. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1348. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1349. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1350. /* .iface = */ ggml_backend_rpc_reg_i,
  1351. /* .context = */ NULL,
  1352. };
  1353. return &ggml_backend_rpc_reg;
  1354. }
  1355. ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
  1356. static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
  1357. static std::mutex mutex;
  1358. std::lock_guard<std::mutex> lock(mutex);
  1359. if (dev_map.find(endpoint) != dev_map.end()) {
  1360. return dev_map[endpoint];
  1361. }
  1362. ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
  1363. /* .endpoint = */ endpoint,
  1364. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  1365. };
  1366. ggml_backend_dev_t dev = new ggml_backend_device {
  1367. /* .iface = */ ggml_backend_rpc_device_i,
  1368. /* .reg = */ ggml_backend_rpc_reg(),
  1369. /* .context = */ ctx,
  1370. };
  1371. dev_map[endpoint] = dev;
  1372. return dev;
  1373. }
  1374. GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)