llama-bench.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <thread>
  20. #include "ggml.h"
  21. #include "llama.h"
  22. #include "common.h"
  23. #include "ggml-cuda.h"
  24. #include "ggml-sycl.h"
  25. #ifdef GGML_USE_CANN
  26. #include "ggml-cann.h"
  27. #endif
  28. #ifdef _WIN32
  29. #define WIN32_LEAN_AND_MEAN
  30. #ifndef NOMINMAX
  31. # define NOMINMAX
  32. #endif
  33. #include <windows.h>
  34. #endif
  35. // utils
  36. static uint64_t get_time_ns() {
  37. using clock = std::chrono::high_resolution_clock;
  38. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  39. }
  40. template<class T>
  41. static std::string join(const std::vector<T> & values, const std::string & delim) {
  42. std::ostringstream str;
  43. for (size_t i = 0; i < values.size(); i++) {
  44. str << values[i];
  45. if (i < values.size() - 1) {
  46. str << delim;
  47. }
  48. }
  49. return str.str();
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. fclose(f);
  98. }
  99. #elif defined(_WIN32)
  100. HKEY hKey;
  101. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  102. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  103. 0,
  104. KEY_READ,
  105. &hKey) != ERROR_SUCCESS) {
  106. // fail to open registry key
  107. return "";
  108. }
  109. char cpu_brand[256];
  110. DWORD cpu_brand_size = sizeof(cpu_brand);
  111. if (RegQueryValueExA(hKey,
  112. TEXT("ProcessorNameString"),
  113. NULL,
  114. NULL,
  115. (LPBYTE)cpu_brand,
  116. &cpu_brand_size) == ERROR_SUCCESS) {
  117. id.assign(cpu_brand, cpu_brand_size);
  118. }
  119. RegCloseKey(hKey);
  120. #endif
  121. // TODO: other platforms
  122. return id;
  123. }
  124. static std::string get_gpu_info() {
  125. std::string id;
  126. #ifdef GGML_USE_CUDA
  127. int count = ggml_backend_cuda_get_device_count();
  128. for (int i = 0; i < count; i++) {
  129. char buf[128];
  130. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  131. id += buf;
  132. if (i < count - 1) {
  133. id += "/";
  134. }
  135. }
  136. #endif
  137. #ifdef GGML_USE_SYCL
  138. int count = ggml_backend_sycl_get_device_count();
  139. for (int i = 0; i < count; i++) {
  140. char buf[128];
  141. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  142. id += buf;
  143. if (i < count - 1) {
  144. id += "/";
  145. }
  146. }
  147. #endif
  148. #ifdef GGML_USE_CANN
  149. uint32_t count = ggml_backend_cann_get_device_count();
  150. for (uint32_t i = 0; i < count; i++) {
  151. char buf[128];
  152. ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
  153. id += buf;
  154. if (i < count - 1) {
  155. id += "/";
  156. }
  157. }
  158. #endif
  159. // TODO: other backends
  160. return id;
  161. }
  162. // command line params
  163. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  164. static const char * output_format_str(output_formats format) {
  165. switch (format) {
  166. case NONE: return "none";
  167. case CSV: return "csv";
  168. case JSON: return "json";
  169. case MARKDOWN: return "md";
  170. case SQL: return "sql";
  171. default: GGML_ABORT("invalid output format");
  172. }
  173. }
  174. static bool output_format_from_str(const std::string & s, output_formats & format) {
  175. if (s == "none") {
  176. format = NONE;
  177. } else if (s == "csv") {
  178. format = CSV;
  179. } else if (s == "json") {
  180. format = JSON;
  181. } else if (s == "md") {
  182. format = MARKDOWN;
  183. } else if (s == "sql") {
  184. format = SQL;
  185. } else {
  186. return false;
  187. }
  188. return true;
  189. }
  190. static const char * split_mode_str(llama_split_mode mode) {
  191. switch (mode) {
  192. case LLAMA_SPLIT_MODE_NONE: return "none";
  193. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  194. case LLAMA_SPLIT_MODE_ROW: return "row";
  195. default: GGML_ABORT("invalid split mode");
  196. }
  197. }
  198. static std::string pair_str(const std::pair<int, int> & p) {
  199. static char buf[32];
  200. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  201. return buf;
  202. }
  203. struct cmd_params {
  204. std::vector<std::string> model;
  205. std::vector<int> n_prompt;
  206. std::vector<int> n_gen;
  207. std::vector<std::pair<int, int>> n_pg;
  208. std::vector<int> n_batch;
  209. std::vector<int> n_ubatch;
  210. std::vector<ggml_type> type_k;
  211. std::vector<ggml_type> type_v;
  212. std::vector<int> n_threads;
  213. std::vector<std::string> cpu_mask;
  214. std::vector<bool> cpu_strict;
  215. std::vector<int> poll;
  216. std::vector<int> n_gpu_layers;
  217. std::vector<std::string> rpc_servers;
  218. std::vector<llama_split_mode> split_mode;
  219. std::vector<int> main_gpu;
  220. std::vector<bool> no_kv_offload;
  221. std::vector<bool> flash_attn;
  222. std::vector<std::vector<float>> tensor_split;
  223. std::vector<bool> use_mmap;
  224. std::vector<bool> embeddings;
  225. ggml_numa_strategy numa;
  226. int reps;
  227. ggml_sched_priority prio;
  228. int delay;
  229. bool verbose;
  230. output_formats output_format;
  231. output_formats output_format_stderr;
  232. };
  233. static const cmd_params cmd_params_defaults = {
  234. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  235. /* n_prompt */ {512},
  236. /* n_gen */ {128},
  237. /* n_pg */ {},
  238. /* n_batch */ {2048},
  239. /* n_ubatch */ {512},
  240. /* type_k */ {GGML_TYPE_F16},
  241. /* type_v */ {GGML_TYPE_F16},
  242. /* n_threads */ {cpu_get_num_math()},
  243. /* cpu_mask */ {"0x0"},
  244. /* cpu_strict */ {false},
  245. /* poll */ {50},
  246. /* n_gpu_layers */ {99},
  247. /* rpc_servers */ {""},
  248. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  249. /* main_gpu */ {0},
  250. /* no_kv_offload */ {false},
  251. /* flash_attn */ {false},
  252. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  253. /* use_mmap */ {true},
  254. /* embeddings */ {false},
  255. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  256. /* reps */ 5,
  257. /* prio */ GGML_SCHED_PRIO_NORMAL,
  258. /* delay */ 0,
  259. /* verbose */ false,
  260. /* output_format */ MARKDOWN,
  261. /* output_format_stderr */ NONE,
  262. };
  263. static void print_usage(int /* argc */, char ** argv) {
  264. printf("usage: %s [options]\n", argv[0]);
  265. printf("\n");
  266. printf("options:\n");
  267. printf(" -h, --help\n");
  268. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  269. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  270. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  271. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  272. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  273. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  274. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  275. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  276. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  277. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
  278. printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
  279. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  280. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  281. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  282. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  283. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  284. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  285. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  286. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  287. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  288. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  289. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  290. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  291. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  292. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  293. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  294. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  295. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  296. printf("\n");
  297. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  298. }
  299. static ggml_type ggml_type_from_name(const std::string & s) {
  300. if (s == "f16") {
  301. return GGML_TYPE_F16;
  302. }
  303. if (s == "q8_0") {
  304. return GGML_TYPE_Q8_0;
  305. }
  306. if (s == "q4_0") {
  307. return GGML_TYPE_Q4_0;
  308. }
  309. if (s == "q4_1") {
  310. return GGML_TYPE_Q4_1;
  311. }
  312. if (s == "q5_0") {
  313. return GGML_TYPE_Q5_0;
  314. }
  315. if (s == "q5_1") {
  316. return GGML_TYPE_Q5_1;
  317. }
  318. if (s == "iq4_nl") {
  319. return GGML_TYPE_IQ4_NL;
  320. }
  321. return GGML_TYPE_COUNT;
  322. }
  323. static cmd_params parse_cmd_params(int argc, char ** argv) {
  324. cmd_params params;
  325. std::string arg;
  326. bool invalid_param = false;
  327. const std::string arg_prefix = "--";
  328. const char split_delim = ',';
  329. params.verbose = cmd_params_defaults.verbose;
  330. params.output_format = cmd_params_defaults.output_format;
  331. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  332. params.reps = cmd_params_defaults.reps;
  333. params.numa = cmd_params_defaults.numa;
  334. params.prio = cmd_params_defaults.prio;
  335. params.delay = cmd_params_defaults.delay;
  336. for (int i = 1; i < argc; i++) {
  337. arg = argv[i];
  338. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  339. std::replace(arg.begin(), arg.end(), '_', '-');
  340. }
  341. if (arg == "-h" || arg == "--help") {
  342. print_usage(argc, argv);
  343. exit(0);
  344. } else if (arg == "-m" || arg == "--model") {
  345. if (++i >= argc) {
  346. invalid_param = true;
  347. break;
  348. }
  349. auto p = string_split<std::string>(argv[i], split_delim);
  350. params.model.insert(params.model.end(), p.begin(), p.end());
  351. } else if (arg == "-p" || arg == "--n-prompt") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. break;
  355. }
  356. auto p = string_split<int>(argv[i], split_delim);
  357. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  358. } else if (arg == "-n" || arg == "--n-gen") {
  359. if (++i >= argc) {
  360. invalid_param = true;
  361. break;
  362. }
  363. auto p = string_split<int>(argv[i], split_delim);
  364. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  365. } else if (arg == "-pg") {
  366. if (++i >= argc) {
  367. invalid_param = true;
  368. break;
  369. }
  370. auto p = string_split<std::string>(argv[i], ',');
  371. if (p.size() != 2) {
  372. invalid_param = true;
  373. break;
  374. }
  375. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  376. } else if (arg == "-b" || arg == "--batch-size") {
  377. if (++i >= argc) {
  378. invalid_param = true;
  379. break;
  380. }
  381. auto p = string_split<int>(argv[i], split_delim);
  382. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  383. } else if (arg == "-ub" || arg == "--ubatch-size") {
  384. if (++i >= argc) {
  385. invalid_param = true;
  386. break;
  387. }
  388. auto p = string_split<int>(argv[i], split_delim);
  389. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  390. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  391. if (++i >= argc) {
  392. invalid_param = true;
  393. break;
  394. }
  395. auto p = string_split<std::string>(argv[i], split_delim);
  396. std::vector<ggml_type> types;
  397. for (const auto & t : p) {
  398. ggml_type gt = ggml_type_from_name(t);
  399. if (gt == GGML_TYPE_COUNT) {
  400. invalid_param = true;
  401. break;
  402. }
  403. types.push_back(gt);
  404. }
  405. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  406. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  407. if (++i >= argc) {
  408. invalid_param = true;
  409. break;
  410. }
  411. auto p = string_split<std::string>(argv[i], split_delim);
  412. std::vector<ggml_type> types;
  413. for (const auto & t : p) {
  414. ggml_type gt = ggml_type_from_name(t);
  415. if (gt == GGML_TYPE_COUNT) {
  416. invalid_param = true;
  417. break;
  418. }
  419. types.push_back(gt);
  420. }
  421. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  422. } else if (arg == "-t" || arg == "--threads") {
  423. if (++i >= argc) {
  424. invalid_param = true;
  425. break;
  426. }
  427. auto p = string_split<int>(argv[i], split_delim);
  428. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  429. } else if (arg == "-C" || arg == "--cpu-mask") {
  430. if (++i >= argc) {
  431. invalid_param = true;
  432. break;
  433. }
  434. auto p = string_split<std::string>(argv[i], split_delim);
  435. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  436. } else if (arg == "--cpu-strict") {
  437. if (++i >= argc) {
  438. invalid_param = true;
  439. break;
  440. }
  441. auto p = string_split<bool>(argv[i], split_delim);
  442. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  443. } else if (arg == "--poll") {
  444. if (++i >= argc) {
  445. invalid_param = true;
  446. break;
  447. }
  448. auto p = string_split<int>(argv[i], split_delim);
  449. params.poll.insert(params.poll.end(), p.begin(), p.end());
  450. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  451. if (++i >= argc) {
  452. invalid_param = true;
  453. break;
  454. }
  455. auto p = string_split<int>(argv[i], split_delim);
  456. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  457. } else if (arg == "-rpc" || arg == "--rpc") {
  458. if (++i >= argc) {
  459. invalid_param = true;
  460. break;
  461. }
  462. params.rpc_servers.push_back(argv[i]);
  463. } else if (arg == "-sm" || arg == "--split-mode") {
  464. if (++i >= argc) {
  465. invalid_param = true;
  466. break;
  467. }
  468. auto p = string_split<std::string>(argv[i], split_delim);
  469. std::vector<llama_split_mode> modes;
  470. for (const auto & m : p) {
  471. llama_split_mode mode;
  472. if (m == "none") {
  473. mode = LLAMA_SPLIT_MODE_NONE;
  474. } else if (m == "layer") {
  475. mode = LLAMA_SPLIT_MODE_LAYER;
  476. } else if (m == "row") {
  477. mode = LLAMA_SPLIT_MODE_ROW;
  478. } else {
  479. invalid_param = true;
  480. break;
  481. }
  482. modes.push_back(mode);
  483. }
  484. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  485. } else if (arg == "-mg" || arg == "--main-gpu") {
  486. if (++i >= argc) {
  487. invalid_param = true;
  488. break;
  489. }
  490. params.main_gpu = string_split<int>(argv[i], split_delim);
  491. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  492. if (++i >= argc) {
  493. invalid_param = true;
  494. break;
  495. }
  496. auto p = string_split<bool>(argv[i], split_delim);
  497. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  498. } else if (arg == "--numa") {
  499. if (++i >= argc) {
  500. invalid_param = true;
  501. break;
  502. } else {
  503. std::string value(argv[i]);
  504. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  505. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  506. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  507. else { invalid_param = true; break; }
  508. }
  509. } else if (arg == "-fa" || arg == "--flash-attn") {
  510. if (++i >= argc) {
  511. invalid_param = true;
  512. break;
  513. }
  514. auto p = string_split<bool>(argv[i], split_delim);
  515. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  516. } else if (arg == "-mmp" || arg == "--mmap") {
  517. if (++i >= argc) {
  518. invalid_param = true;
  519. break;
  520. }
  521. auto p = string_split<bool>(argv[i], split_delim);
  522. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  523. } else if (arg == "-embd" || arg == "--embeddings") {
  524. if (++i >= argc) {
  525. invalid_param = true;
  526. break;
  527. }
  528. auto p = string_split<bool>(argv[i], split_delim);
  529. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  530. } else if (arg == "-ts" || arg == "--tensor-split") {
  531. if (++i >= argc) {
  532. invalid_param = true;
  533. break;
  534. }
  535. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  536. // split string by ; and /
  537. const std::regex regex{R"([;/]+)"};
  538. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  539. std::vector<std::string> split_arg{it, {}};
  540. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  541. std::vector<float> tensor_split(llama_max_devices());
  542. for (size_t i = 0; i < llama_max_devices(); ++i) {
  543. if (i < split_arg.size()) {
  544. tensor_split[i] = std::stof(split_arg[i]);
  545. } else {
  546. tensor_split[i] = 0.0f;
  547. }
  548. }
  549. params.tensor_split.push_back(tensor_split);
  550. }
  551. } else if (arg == "-r" || arg == "--repetitions") {
  552. if (++i >= argc) {
  553. invalid_param = true;
  554. break;
  555. }
  556. params.reps = std::stoi(argv[i]);
  557. } else if (arg == "--prio") {
  558. if (++i >= argc) {
  559. invalid_param = true;
  560. break;
  561. }
  562. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  563. } else if (arg == "--delay") {
  564. if (++i >= argc) {
  565. invalid_param = true;
  566. break;
  567. }
  568. params.delay = std::stoi(argv[i]);
  569. } else if (arg == "-o" || arg == "--output") {
  570. if (++i >= argc) {
  571. invalid_param = true;
  572. break;
  573. }
  574. invalid_param = !output_format_from_str(argv[i], params.output_format);
  575. } else if (arg == "-oe" || arg == "--output-err") {
  576. if (++i >= argc) {
  577. invalid_param = true;
  578. break;
  579. }
  580. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  581. } else if (arg == "-v" || arg == "--verbose") {
  582. params.verbose = true;
  583. } else {
  584. invalid_param = true;
  585. break;
  586. }
  587. }
  588. if (invalid_param) {
  589. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  590. print_usage(argc, argv);
  591. exit(1);
  592. }
  593. // set defaults
  594. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  595. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  596. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  597. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  598. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  599. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  600. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  601. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  602. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  603. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  604. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  605. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  606. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  607. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  608. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  609. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  610. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  611. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  612. if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
  613. if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
  614. if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
  615. return params;
  616. }
  617. struct cmd_params_instance {
  618. std::string model;
  619. int n_prompt;
  620. int n_gen;
  621. int n_batch;
  622. int n_ubatch;
  623. ggml_type type_k;
  624. ggml_type type_v;
  625. int n_threads;
  626. std::string cpu_mask;
  627. bool cpu_strict;
  628. int poll;
  629. int n_gpu_layers;
  630. std::string rpc_servers;
  631. llama_split_mode split_mode;
  632. int main_gpu;
  633. bool no_kv_offload;
  634. bool flash_attn;
  635. std::vector<float> tensor_split;
  636. bool use_mmap;
  637. bool embeddings;
  638. llama_model_params to_llama_mparams() const {
  639. llama_model_params mparams = llama_model_default_params();
  640. mparams.n_gpu_layers = n_gpu_layers;
  641. if (!rpc_servers.empty()) {
  642. mparams.rpc_servers = rpc_servers.c_str();
  643. }
  644. mparams.split_mode = split_mode;
  645. mparams.main_gpu = main_gpu;
  646. mparams.tensor_split = tensor_split.data();
  647. mparams.use_mmap = use_mmap;
  648. return mparams;
  649. }
  650. bool equal_mparams(const cmd_params_instance & other) const {
  651. return model == other.model &&
  652. n_gpu_layers == other.n_gpu_layers &&
  653. rpc_servers == other.rpc_servers &&
  654. split_mode == other.split_mode &&
  655. main_gpu == other.main_gpu &&
  656. use_mmap == other.use_mmap &&
  657. tensor_split == other.tensor_split;
  658. }
  659. llama_context_params to_llama_cparams() const {
  660. llama_context_params cparams = llama_context_default_params();
  661. cparams.n_ctx = n_prompt + n_gen;
  662. cparams.n_batch = n_batch;
  663. cparams.n_ubatch = n_ubatch;
  664. cparams.type_k = type_k;
  665. cparams.type_v = type_v;
  666. cparams.offload_kqv = !no_kv_offload;
  667. cparams.flash_attn = flash_attn;
  668. cparams.embeddings = embeddings;
  669. return cparams;
  670. }
  671. };
  672. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  673. std::vector<cmd_params_instance> instances;
  674. // this ordering minimizes the number of times that each model needs to be reloaded
  675. for (const auto & m : params.model)
  676. for (const auto & nl : params.n_gpu_layers)
  677. for (const auto & rpc : params.rpc_servers)
  678. for (const auto & sm : params.split_mode)
  679. for (const auto & mg : params.main_gpu)
  680. for (const auto & ts : params.tensor_split)
  681. for (const auto & mmp : params.use_mmap)
  682. for (const auto & embd : params.embeddings)
  683. for (const auto & nb : params.n_batch)
  684. for (const auto & nub : params.n_ubatch)
  685. for (const auto & tk : params.type_k)
  686. for (const auto & tv : params.type_v)
  687. for (const auto & nkvo : params.no_kv_offload)
  688. for (const auto & fa : params.flash_attn)
  689. for (const auto & nt : params.n_threads)
  690. for (const auto & cm : params.cpu_mask)
  691. for (const auto & cs : params.cpu_strict)
  692. for (const auto & pl : params.poll) {
  693. for (const auto & n_prompt : params.n_prompt) {
  694. if (n_prompt == 0) {
  695. continue;
  696. }
  697. cmd_params_instance instance = {
  698. /* .model = */ m,
  699. /* .n_prompt = */ n_prompt,
  700. /* .n_gen = */ 0,
  701. /* .n_batch = */ nb,
  702. /* .n_ubatch = */ nub,
  703. /* .type_k = */ tk,
  704. /* .type_v = */ tv,
  705. /* .n_threads = */ nt,
  706. /* .cpu_mask = */ cm,
  707. /* .cpu_strict = */ cs,
  708. /* .poll = */ pl,
  709. /* .n_gpu_layers = */ nl,
  710. /* .rpc_servers = */ rpc,
  711. /* .split_mode = */ sm,
  712. /* .main_gpu = */ mg,
  713. /* .no_kv_offload= */ nkvo,
  714. /* .flash_attn = */ fa,
  715. /* .tensor_split = */ ts,
  716. /* .use_mmap = */ mmp,
  717. /* .embeddings = */ embd,
  718. };
  719. instances.push_back(instance);
  720. }
  721. for (const auto & n_gen : params.n_gen) {
  722. if (n_gen == 0) {
  723. continue;
  724. }
  725. cmd_params_instance instance = {
  726. /* .model = */ m,
  727. /* .n_prompt = */ 0,
  728. /* .n_gen = */ n_gen,
  729. /* .n_batch = */ nb,
  730. /* .n_ubatch = */ nub,
  731. /* .type_k = */ tk,
  732. /* .type_v = */ tv,
  733. /* .n_threads = */ nt,
  734. /* .cpu_mask = */ cm,
  735. /* .cpu_strict = */ cs,
  736. /* .poll = */ pl,
  737. /* .n_gpu_layers = */ nl,
  738. /* .rpc_servers = */ rpc,
  739. /* .split_mode = */ sm,
  740. /* .main_gpu = */ mg,
  741. /* .no_kv_offload= */ nkvo,
  742. /* .flash_attn = */ fa,
  743. /* .tensor_split = */ ts,
  744. /* .use_mmap = */ mmp,
  745. /* .embeddings = */ embd,
  746. };
  747. instances.push_back(instance);
  748. }
  749. for (const auto & n_pg : params.n_pg) {
  750. if (n_pg.first == 0 && n_pg.second == 0) {
  751. continue;
  752. }
  753. cmd_params_instance instance = {
  754. /* .model = */ m,
  755. /* .n_prompt = */ n_pg.first,
  756. /* .n_gen = */ n_pg.second,
  757. /* .n_batch = */ nb,
  758. /* .n_ubatch = */ nub,
  759. /* .type_k = */ tk,
  760. /* .type_v = */ tv,
  761. /* .n_threads = */ nt,
  762. /* .cpu_mask = */ cm,
  763. /* .cpu_strict = */ cs,
  764. /* .poll = */ pl,
  765. /* .n_gpu_layers = */ nl,
  766. /* .rpc_servers = */ rpc,
  767. /* .split_mode = */ sm,
  768. /* .main_gpu = */ mg,
  769. /* .no_kv_offload= */ nkvo,
  770. /* .flash_attn = */ fa,
  771. /* .tensor_split = */ ts,
  772. /* .use_mmap = */ mmp,
  773. /* .embeddings = */ embd,
  774. };
  775. instances.push_back(instance);
  776. }
  777. }
  778. return instances;
  779. }
  780. struct test {
  781. static const std::string build_commit;
  782. static const int build_number;
  783. static const bool cuda;
  784. static const bool vulkan;
  785. static const bool kompute;
  786. static const bool metal;
  787. static const bool sycl;
  788. static const bool gpu_blas;
  789. static const bool blas;
  790. static const std::string cpu_info;
  791. static const std::string gpu_info;
  792. std::string model_filename;
  793. std::string model_type;
  794. uint64_t model_size;
  795. uint64_t model_n_params;
  796. int n_batch;
  797. int n_ubatch;
  798. int n_threads;
  799. std::string cpu_mask;
  800. bool cpu_strict;
  801. int poll;
  802. bool has_rpc;
  803. ggml_type type_k;
  804. ggml_type type_v;
  805. int n_gpu_layers;
  806. llama_split_mode split_mode;
  807. int main_gpu;
  808. bool no_kv_offload;
  809. bool flash_attn;
  810. std::vector<float> tensor_split;
  811. bool use_mmap;
  812. bool embeddings;
  813. int n_prompt;
  814. int n_gen;
  815. std::string test_time;
  816. std::vector<uint64_t> samples_ns;
  817. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  818. model_filename = inst.model;
  819. char buf[128];
  820. llama_model_desc(lmodel, buf, sizeof(buf));
  821. model_type = buf;
  822. model_size = llama_model_size(lmodel);
  823. model_n_params = llama_model_n_params(lmodel);
  824. n_batch = inst.n_batch;
  825. n_ubatch = inst.n_ubatch;
  826. n_threads = inst.n_threads;
  827. cpu_mask = inst.cpu_mask;
  828. cpu_strict = inst.cpu_strict;
  829. poll = inst.poll;
  830. has_rpc = !inst.rpc_servers.empty();
  831. type_k = inst.type_k;
  832. type_v = inst.type_v;
  833. n_gpu_layers = inst.n_gpu_layers;
  834. split_mode = inst.split_mode;
  835. main_gpu = inst.main_gpu;
  836. no_kv_offload = inst.no_kv_offload;
  837. flash_attn = inst.flash_attn;
  838. tensor_split = inst.tensor_split;
  839. use_mmap = inst.use_mmap;
  840. embeddings = inst.embeddings;
  841. n_prompt = inst.n_prompt;
  842. n_gen = inst.n_gen;
  843. // RFC 3339 date-time format
  844. time_t t = time(NULL);
  845. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  846. test_time = buf;
  847. (void) ctx;
  848. }
  849. uint64_t avg_ns() const {
  850. return ::avg(samples_ns);
  851. }
  852. uint64_t stdev_ns() const {
  853. return ::stdev(samples_ns);
  854. }
  855. std::vector<double> get_ts() const {
  856. int n_tokens = n_prompt + n_gen;
  857. std::vector<double> ts;
  858. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  859. return ts;
  860. }
  861. double avg_ts() const {
  862. return ::avg(get_ts());
  863. }
  864. double stdev_ts() const {
  865. return ::stdev(get_ts());
  866. }
  867. static std::string get_backend() {
  868. if (cuda) {
  869. return GGML_CUDA_NAME;
  870. }
  871. if (vulkan) {
  872. return "Vulkan";
  873. }
  874. if (kompute) {
  875. return "Kompute";
  876. }
  877. if (metal) {
  878. return "Metal";
  879. }
  880. if (sycl) {
  881. return GGML_SYCL_NAME;
  882. }
  883. if (gpu_blas) {
  884. return "GPU BLAS";
  885. }
  886. if (blas) {
  887. return "BLAS";
  888. }
  889. return "CPU";
  890. }
  891. static const std::vector<std::string> & get_fields() {
  892. static const std::vector<std::string> fields = {
  893. "build_commit", "build_number",
  894. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  895. "cpu_info", "gpu_info",
  896. "model_filename", "model_type", "model_size", "model_n_params",
  897. "n_batch", "n_ubatch",
  898. "n_threads", "cpu_mask", "cpu_strict", "poll",
  899. "type_k", "type_v",
  900. "n_gpu_layers", "split_mode",
  901. "main_gpu", "no_kv_offload", "flash_attn",
  902. "tensor_split", "use_mmap", "embeddings",
  903. "n_prompt", "n_gen", "test_time",
  904. "avg_ns", "stddev_ns",
  905. "avg_ts", "stddev_ts",
  906. };
  907. return fields;
  908. }
  909. enum field_type {STRING, BOOL, INT, FLOAT};
  910. static field_type get_field_type(const std::string & field) {
  911. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  912. field == "n_threads" || field == "poll" ||
  913. field == "model_size" || field == "model_n_params" ||
  914. field == "n_gpu_layers" || field == "main_gpu" ||
  915. field == "n_prompt" || field == "n_gen" ||
  916. field == "avg_ns" || field == "stddev_ns") {
  917. return INT;
  918. }
  919. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  920. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  921. field == "cpu_strict" ||
  922. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  923. return BOOL;
  924. }
  925. if (field == "avg_ts" || field == "stddev_ts") {
  926. return FLOAT;
  927. }
  928. return STRING;
  929. }
  930. std::vector<std::string> get_values() const {
  931. std::string tensor_split_str;
  932. int max_nonzero = 0;
  933. for (size_t i = 0; i < llama_max_devices(); i++) {
  934. if (tensor_split[i] > 0) {
  935. max_nonzero = i;
  936. }
  937. }
  938. for (int i = 0; i <= max_nonzero; i++) {
  939. char buf[32];
  940. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  941. tensor_split_str += buf;
  942. if (i < max_nonzero) {
  943. tensor_split_str += "/";
  944. }
  945. }
  946. std::vector<std::string> values = {
  947. build_commit, std::to_string(build_number),
  948. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  949. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  950. cpu_info, gpu_info,
  951. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  952. std::to_string(n_batch), std::to_string(n_ubatch),
  953. std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
  954. ggml_type_name(type_k), ggml_type_name(type_v),
  955. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  956. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  957. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  958. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  959. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  960. std::to_string(avg_ts()), std::to_string(stdev_ts())
  961. };
  962. return values;
  963. }
  964. std::map<std::string, std::string> get_map() const {
  965. std::map<std::string, std::string> map;
  966. auto fields = get_fields();
  967. auto values = get_values();
  968. std::transform(fields.begin(), fields.end(), values.begin(),
  969. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  970. return map;
  971. }
  972. };
  973. const std::string test::build_commit = LLAMA_COMMIT;
  974. const int test::build_number = LLAMA_BUILD_NUMBER;
  975. const bool test::cuda = !!ggml_cpu_has_cuda();
  976. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  977. const bool test::kompute = !!ggml_cpu_has_kompute();
  978. const bool test::metal = !!ggml_cpu_has_metal();
  979. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  980. const bool test::blas = !!ggml_cpu_has_blas();
  981. const bool test::sycl = !!ggml_cpu_has_sycl();
  982. const std::string test::cpu_info = get_cpu_info();
  983. const std::string test::gpu_info = get_gpu_info();
  984. struct printer {
  985. virtual ~printer() {}
  986. FILE * fout;
  987. virtual void print_header(const cmd_params & params) { (void) params; }
  988. virtual void print_test(const test & t) = 0;
  989. virtual void print_footer() { }
  990. };
  991. struct csv_printer : public printer {
  992. static std::string escape_csv(const std::string & field) {
  993. std::string escaped = "\"";
  994. for (auto c : field) {
  995. if (c == '"') {
  996. escaped += "\"";
  997. }
  998. escaped += c;
  999. }
  1000. escaped += "\"";
  1001. return escaped;
  1002. }
  1003. void print_header(const cmd_params & params) override {
  1004. std::vector<std::string> fields = test::get_fields();
  1005. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1006. (void) params;
  1007. }
  1008. void print_test(const test & t) override {
  1009. std::vector<std::string> values = t.get_values();
  1010. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1011. fprintf(fout, "%s\n", join(values, ",").c_str());
  1012. }
  1013. };
  1014. struct json_printer : public printer {
  1015. bool first = true;
  1016. static std::string escape_json(const std::string & value) {
  1017. std::string escaped;
  1018. for (auto c : value) {
  1019. if (c == '"') {
  1020. escaped += "\\\"";
  1021. } else if (c == '\\') {
  1022. escaped += "\\\\";
  1023. } else if (c <= 0x1f) {
  1024. char buf[8];
  1025. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1026. escaped += buf;
  1027. } else {
  1028. escaped += c;
  1029. }
  1030. }
  1031. return escaped;
  1032. }
  1033. static std::string format_value(const std::string & field, const std::string & value) {
  1034. switch (test::get_field_type(field)) {
  1035. case test::STRING:
  1036. return "\"" + escape_json(value) + "\"";
  1037. case test::BOOL:
  1038. return value == "0" ? "false" : "true";
  1039. default:
  1040. return value;
  1041. }
  1042. }
  1043. void print_header(const cmd_params & params) override {
  1044. fprintf(fout, "[\n");
  1045. (void) params;
  1046. }
  1047. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1048. assert(fields.size() == values.size());
  1049. for (size_t i = 0; i < fields.size(); i++) {
  1050. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  1051. }
  1052. }
  1053. void print_test(const test & t) override {
  1054. if (first) {
  1055. first = false;
  1056. } else {
  1057. fprintf(fout, ",\n");
  1058. }
  1059. fprintf(fout, " {\n");
  1060. print_fields(test::get_fields(), t.get_values());
  1061. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1062. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1063. fprintf(fout, " }");
  1064. fflush(fout);
  1065. }
  1066. void print_footer() override {
  1067. fprintf(fout, "\n]\n");
  1068. }
  1069. };
  1070. struct markdown_printer : public printer {
  1071. std::vector<std::string> fields;
  1072. static int get_field_width(const std::string & field) {
  1073. if (field == "model") {
  1074. return -30;
  1075. }
  1076. if (field == "t/s") {
  1077. return 20;
  1078. }
  1079. if (field == "size" || field == "params") {
  1080. return 10;
  1081. }
  1082. if (field == "n_gpu_layers") {
  1083. return 3;
  1084. }
  1085. if (field == "n_threads") {
  1086. return 7;
  1087. }
  1088. if (field == "n_batch") {
  1089. return 7;
  1090. }
  1091. if (field == "n_ubatch") {
  1092. return 8;
  1093. }
  1094. if (field == "type_k" || field == "type_v") {
  1095. return 6;
  1096. }
  1097. if (field == "split_mode") {
  1098. return 5;
  1099. }
  1100. if (field == "flash_attn") {
  1101. return 2;
  1102. }
  1103. if (field == "use_mmap") {
  1104. return 4;
  1105. }
  1106. if (field == "test") {
  1107. return 13;
  1108. }
  1109. int width = std::max((int)field.length(), 10);
  1110. if (test::get_field_type(field) == test::STRING) {
  1111. return -width;
  1112. }
  1113. return width;
  1114. }
  1115. static std::string get_field_display_name(const std::string & field) {
  1116. if (field == "n_gpu_layers") {
  1117. return "ngl";
  1118. }
  1119. if (field == "split_mode") {
  1120. return "sm";
  1121. }
  1122. if (field == "n_threads") {
  1123. return "threads";
  1124. }
  1125. if (field == "no_kv_offload") {
  1126. return "nkvo";
  1127. }
  1128. if (field == "flash_attn") {
  1129. return "fa";
  1130. }
  1131. if (field == "use_mmap") {
  1132. return "mmap";
  1133. }
  1134. if (field == "embeddings") {
  1135. return "embd";
  1136. }
  1137. if (field == "tensor_split") {
  1138. return "ts";
  1139. }
  1140. return field;
  1141. }
  1142. void print_header(const cmd_params & params) override {
  1143. // select fields to print
  1144. fields.emplace_back("model");
  1145. fields.emplace_back("size");
  1146. fields.emplace_back("params");
  1147. fields.emplace_back("backend");
  1148. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1149. if (!is_cpu_backend) {
  1150. fields.emplace_back("n_gpu_layers");
  1151. }
  1152. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1153. fields.emplace_back("n_threads");
  1154. }
  1155. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1156. fields.emplace_back("cpu_mask");
  1157. }
  1158. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1159. fields.emplace_back("cpu_strict");
  1160. }
  1161. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1162. fields.emplace_back("poll");
  1163. }
  1164. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1165. fields.emplace_back("n_batch");
  1166. }
  1167. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1168. fields.emplace_back("n_ubatch");
  1169. }
  1170. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1171. fields.emplace_back("type_k");
  1172. }
  1173. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1174. fields.emplace_back("type_v");
  1175. }
  1176. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1177. fields.emplace_back("main_gpu");
  1178. }
  1179. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1180. fields.emplace_back("split_mode");
  1181. }
  1182. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1183. fields.emplace_back("no_kv_offload");
  1184. }
  1185. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1186. fields.emplace_back("flash_attn");
  1187. }
  1188. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1189. fields.emplace_back("tensor_split");
  1190. }
  1191. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1192. fields.emplace_back("use_mmap");
  1193. }
  1194. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1195. fields.emplace_back("embeddings");
  1196. }
  1197. fields.emplace_back("test");
  1198. fields.emplace_back("t/s");
  1199. fprintf(fout, "|");
  1200. for (const auto & field : fields) {
  1201. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1202. }
  1203. fprintf(fout, "\n");
  1204. fprintf(fout, "|");
  1205. for (const auto & field : fields) {
  1206. int width = get_field_width(field);
  1207. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1208. }
  1209. fprintf(fout, "\n");
  1210. }
  1211. void print_test(const test & t) override {
  1212. std::map<std::string, std::string> vmap = t.get_map();
  1213. fprintf(fout, "|");
  1214. for (const auto & field : fields) {
  1215. std::string value;
  1216. char buf[128];
  1217. if (field == "model") {
  1218. value = t.model_type;
  1219. } else if (field == "size") {
  1220. if (t.model_size < 1024*1024*1024) {
  1221. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1222. } else {
  1223. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1224. }
  1225. value = buf;
  1226. } else if (field == "params") {
  1227. if (t.model_n_params < 1000*1000*1000) {
  1228. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1229. } else {
  1230. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1231. }
  1232. value = buf;
  1233. } else if (field == "backend") {
  1234. value = test::get_backend();
  1235. if (t.has_rpc) {
  1236. value += "+RPC";
  1237. }
  1238. } else if (field == "test") {
  1239. if (t.n_prompt > 0 && t.n_gen == 0) {
  1240. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1241. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1242. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1243. } else {
  1244. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1245. }
  1246. value = buf;
  1247. } else if (field == "t/s") {
  1248. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1249. value = buf;
  1250. } else if (vmap.find(field) != vmap.end()) {
  1251. value = vmap.at(field);
  1252. } else {
  1253. assert(false);
  1254. exit(1);
  1255. }
  1256. int width = get_field_width(field);
  1257. if (field == "t/s") {
  1258. // HACK: the utf-8 character is 2 bytes
  1259. width += 1;
  1260. }
  1261. fprintf(fout, " %*s |", width, value.c_str());
  1262. }
  1263. fprintf(fout, "\n");
  1264. }
  1265. void print_footer() override {
  1266. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1267. }
  1268. };
  1269. struct sql_printer : public printer {
  1270. static std::string get_sql_field_type(const std::string & field) {
  1271. switch (test::get_field_type(field)) {
  1272. case test::STRING:
  1273. return "TEXT";
  1274. case test::BOOL:
  1275. case test::INT:
  1276. return "INTEGER";
  1277. case test::FLOAT:
  1278. return "REAL";
  1279. default:
  1280. assert(false);
  1281. exit(1);
  1282. }
  1283. }
  1284. void print_header(const cmd_params & params) override {
  1285. std::vector<std::string> fields = test::get_fields();
  1286. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1287. for (size_t i = 0; i < fields.size(); i++) {
  1288. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1289. }
  1290. fprintf(fout, ");\n");
  1291. fprintf(fout, "\n");
  1292. (void) params;
  1293. }
  1294. void print_test(const test & t) override {
  1295. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1296. fprintf(fout, "VALUES (");
  1297. std::vector<std::string> values = t.get_values();
  1298. for (size_t i = 0; i < values.size(); i++) {
  1299. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1300. }
  1301. fprintf(fout, ");\n");
  1302. }
  1303. };
  1304. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1305. llama_set_n_threads(ctx, n_threads, n_threads);
  1306. const llama_model * model = llama_get_model(ctx);
  1307. const int32_t n_vocab = llama_n_vocab(model);
  1308. std::vector<llama_token> tokens(n_batch);
  1309. int n_processed = 0;
  1310. while (n_processed < n_prompt) {
  1311. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1312. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1313. for (int i = 1; i < n_tokens; i++) {
  1314. tokens[i] = std::rand() % n_vocab;
  1315. }
  1316. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1317. n_processed += n_tokens;
  1318. }
  1319. llama_synchronize(ctx);
  1320. }
  1321. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1322. llama_set_n_threads(ctx, n_threads, n_threads);
  1323. const llama_model * model = llama_get_model(ctx);
  1324. const int32_t n_vocab = llama_n_vocab(model);
  1325. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1326. for (int i = 0; i < n_gen; i++) {
  1327. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1328. llama_synchronize(ctx);
  1329. token = std::rand() % n_vocab;
  1330. }
  1331. }
  1332. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1333. (void) level;
  1334. (void) text;
  1335. (void) user_data;
  1336. }
  1337. static std::unique_ptr<printer> create_printer(output_formats format) {
  1338. switch (format) {
  1339. case NONE:
  1340. return nullptr;
  1341. case CSV:
  1342. return std::unique_ptr<printer>(new csv_printer());
  1343. case JSON:
  1344. return std::unique_ptr<printer>(new json_printer());
  1345. case MARKDOWN:
  1346. return std::unique_ptr<printer>(new markdown_printer());
  1347. case SQL:
  1348. return std::unique_ptr<printer>(new sql_printer());
  1349. }
  1350. GGML_ABORT("fatal error");
  1351. }
  1352. int main(int argc, char ** argv) {
  1353. // try to set locale for unicode characters in markdown
  1354. setlocale(LC_CTYPE, ".UTF-8");
  1355. #if !defined(NDEBUG)
  1356. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1357. #endif
  1358. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1359. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1360. #endif
  1361. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1362. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1363. #endif
  1364. cmd_params params = parse_cmd_params(argc, argv);
  1365. // initialize llama.cpp
  1366. if (!params.verbose) {
  1367. llama_log_set(llama_null_log_callback, NULL);
  1368. }
  1369. llama_backend_init();
  1370. llama_numa_init(params.numa);
  1371. set_process_priority(params.prio);
  1372. // initialize printer
  1373. std::unique_ptr<printer> p = create_printer(params.output_format);
  1374. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1375. if (p) {
  1376. p->fout = stdout;
  1377. p->print_header(params);
  1378. }
  1379. if (p_err) {
  1380. p_err->fout = stderr;
  1381. p_err->print_header(params);
  1382. }
  1383. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1384. llama_model * lmodel = nullptr;
  1385. const cmd_params_instance * prev_inst = nullptr;
  1386. for (const auto & inst : params_instances) {
  1387. // keep the same model between tests when possible
  1388. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1389. if (lmodel) {
  1390. llama_free_model(lmodel);
  1391. }
  1392. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1393. if (lmodel == NULL) {
  1394. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1395. return 1;
  1396. }
  1397. prev_inst = &inst;
  1398. }
  1399. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1400. if (ctx == NULL) {
  1401. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1402. llama_free_model(lmodel);
  1403. return 1;
  1404. }
  1405. test t(inst, lmodel, ctx);
  1406. llama_kv_cache_clear(ctx);
  1407. // cool off before the test
  1408. if (params.delay) {
  1409. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1410. }
  1411. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1412. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1413. LOG_TEE("%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1414. exit(1);
  1415. }
  1416. tpp.strict_cpu = t.cpu_strict;
  1417. tpp.poll = t.poll;
  1418. tpp.prio = params.prio;
  1419. struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
  1420. if (!threadpool) {
  1421. LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1422. exit(1);
  1423. }
  1424. llama_attach_threadpool(ctx, threadpool, NULL);
  1425. // warmup run
  1426. if (t.n_prompt > 0) {
  1427. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1428. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1429. }
  1430. if (t.n_gen > 0) {
  1431. test_gen(ctx, 1, 0, t.n_threads);
  1432. }
  1433. for (int i = 0; i < params.reps; i++) {
  1434. llama_kv_cache_clear(ctx);
  1435. uint64_t t_start = get_time_ns();
  1436. if (t.n_prompt > 0) {
  1437. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1438. }
  1439. if (t.n_gen > 0) {
  1440. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1441. }
  1442. uint64_t t_ns = get_time_ns() - t_start;
  1443. t.samples_ns.push_back(t_ns);
  1444. }
  1445. if (p) {
  1446. p->print_test(t);
  1447. fflush(p->fout);
  1448. }
  1449. if (p_err) {
  1450. p_err->print_test(t);
  1451. fflush(p_err->fout);
  1452. }
  1453. llama_print_timings(ctx);
  1454. llama_free(ctx);
  1455. ggml_threadpool_free(threadpool);
  1456. }
  1457. llama_free_model(lmodel);
  1458. if (p) {
  1459. p->print_footer();
  1460. }
  1461. if (p_err) {
  1462. p_err->print_footer();
  1463. }
  1464. llama_backend_free();
  1465. return 0;
  1466. }