llama.h 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  31. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  32. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  33. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  34. #define LLAMA_SESSION_VERSION 8
  35. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  36. #define LLAMA_STATE_SEQ_VERSION 2
  37. #ifdef __cplusplus
  38. extern "C" {
  39. #endif
  40. //
  41. // C interface
  42. //
  43. // TODO: show sample usage
  44. //
  45. struct llama_model;
  46. struct llama_context;
  47. typedef int32_t llama_pos;
  48. typedef int32_t llama_token;
  49. typedef int32_t llama_seq_id;
  50. enum llama_vocab_type {
  51. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  52. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  53. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  54. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  55. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  56. };
  57. // pre-tokenization types
  58. enum llama_vocab_pre_type {
  59. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  60. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  61. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  63. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  64. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  65. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  66. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  67. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  68. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  69. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  70. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  71. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  72. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  73. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  74. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  75. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  76. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  77. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  78. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  79. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  80. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  81. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  82. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  83. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  84. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  85. };
  86. enum llama_rope_type {
  87. LLAMA_ROPE_TYPE_NONE = -1,
  88. LLAMA_ROPE_TYPE_NORM = 0,
  89. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  90. };
  91. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  92. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  93. LLAMA_TOKEN_TYPE_NORMAL = 1,
  94. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  95. LLAMA_TOKEN_TYPE_CONTROL = 3,
  96. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  97. LLAMA_TOKEN_TYPE_UNUSED = 5,
  98. LLAMA_TOKEN_TYPE_BYTE = 6,
  99. };
  100. enum llama_token_attr {
  101. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  102. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  103. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  104. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  105. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  106. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  107. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  108. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  109. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  110. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  111. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  112. };
  113. // model file types
  114. enum llama_ftype {
  115. LLAMA_FTYPE_ALL_F32 = 0,
  116. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  119. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  120. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  121. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  122. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  126. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  151. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  152. };
  153. enum llama_rope_scaling_type {
  154. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  155. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  156. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  157. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  158. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  159. };
  160. enum llama_pooling_type {
  161. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  162. LLAMA_POOLING_TYPE_NONE = 0,
  163. LLAMA_POOLING_TYPE_MEAN = 1,
  164. LLAMA_POOLING_TYPE_CLS = 2,
  165. LLAMA_POOLING_TYPE_LAST = 3,
  166. };
  167. enum llama_attention_type {
  168. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  169. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  170. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  171. };
  172. enum llama_split_mode {
  173. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  174. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  175. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  176. };
  177. typedef struct llama_token_data {
  178. llama_token id; // token id
  179. float logit; // log-odds of the token
  180. float p; // probability of the token
  181. } llama_token_data;
  182. typedef struct llama_token_data_array {
  183. llama_token_data * data;
  184. size_t size;
  185. bool sorted;
  186. } llama_token_data_array;
  187. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  188. // Input data for llama_decode
  189. // A llama_batch object can contain input about one or many sequences
  190. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  191. //
  192. // - token : the token ids of the input (used when embd is NULL)
  193. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  194. // - pos : the positions of the respective token in the sequence
  195. // - seq_id : the sequence to which the respective token belongs
  196. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  197. //
  198. typedef struct llama_batch {
  199. int32_t n_tokens;
  200. llama_token * token;
  201. float * embd;
  202. llama_pos * pos;
  203. int32_t * n_seq_id;
  204. llama_seq_id ** seq_id;
  205. int8_t * logits; // TODO: rename this to "output"
  206. // NOTE: helpers for smooth API transition - can be deprecated in the future
  207. // for future-proof code, use the above fields instead and ignore everything below
  208. //
  209. // pos[i] = all_pos_0 + i*all_pos_1
  210. //
  211. llama_pos all_pos_0; // used if pos == NULL
  212. llama_pos all_pos_1; // used if pos == NULL
  213. llama_seq_id all_seq_id; // used if seq_id == NULL
  214. } llama_batch;
  215. enum llama_model_kv_override_type {
  216. LLAMA_KV_OVERRIDE_TYPE_INT,
  217. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  218. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  219. LLAMA_KV_OVERRIDE_TYPE_STR,
  220. };
  221. struct llama_model_kv_override {
  222. enum llama_model_kv_override_type tag;
  223. char key[128];
  224. union {
  225. int64_t val_i64;
  226. double val_f64;
  227. bool val_bool;
  228. char val_str[128];
  229. };
  230. };
  231. struct llama_model_params {
  232. int32_t n_gpu_layers; // number of layers to store in VRAM
  233. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  234. // main_gpu interpretation depends on split_mode:
  235. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  236. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  237. // LLAMA_SPLIT_LAYER: ignored
  238. int32_t main_gpu;
  239. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  240. const float * tensor_split;
  241. // comma separated list of RPC servers to use for offloading
  242. const char * rpc_servers;
  243. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  244. // If the provided progress_callback returns true, model loading continues.
  245. // If it returns false, model loading is immediately aborted.
  246. llama_progress_callback progress_callback;
  247. // context pointer passed to the progress callback
  248. void * progress_callback_user_data;
  249. // override key-value pairs of the model meta data
  250. const struct llama_model_kv_override * kv_overrides;
  251. // Keep the booleans together to avoid misalignment during copy-by-value.
  252. bool vocab_only; // only load the vocabulary, no weights
  253. bool use_mmap; // use mmap if possible
  254. bool use_mlock; // force system to keep model in RAM
  255. bool check_tensors; // validate model tensor data
  256. };
  257. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  258. // https://github.com/ggerganov/llama.cpp/pull/7544
  259. struct llama_context_params {
  260. uint32_t seed; // RNG seed, -1 for random
  261. uint32_t n_ctx; // text context, 0 = from model
  262. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  263. uint32_t n_ubatch; // physical maximum batch size
  264. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  265. int32_t n_threads; // number of threads to use for generation
  266. int32_t n_threads_batch; // number of threads to use for batch processing
  267. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  268. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  269. enum llama_attention_type attention_type; // attention type to use for embeddings
  270. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  271. float rope_freq_base; // RoPE base frequency, 0 = from model
  272. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  273. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  274. float yarn_attn_factor; // YaRN magnitude scaling factor
  275. float yarn_beta_fast; // YaRN low correction dim
  276. float yarn_beta_slow; // YaRN high correction dim
  277. uint32_t yarn_orig_ctx; // YaRN original context size
  278. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  279. ggml_backend_sched_eval_callback cb_eval;
  280. void * cb_eval_user_data;
  281. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  282. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  283. // Keep the booleans together to avoid misalignment during copy-by-value.
  284. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  285. bool embeddings; // if true, extract embeddings (together with logits)
  286. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  287. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  288. // Abort callback
  289. // if it returns true, execution of llama_decode() will be aborted
  290. // currently works only with CPU execution
  291. ggml_abort_callback abort_callback;
  292. void * abort_callback_data;
  293. };
  294. // model quantization parameters
  295. typedef struct llama_model_quantize_params {
  296. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  297. enum llama_ftype ftype; // quantize to this llama_ftype
  298. enum ggml_type output_tensor_type; // output tensor type
  299. enum ggml_type token_embedding_type; // token embeddings tensor type
  300. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  301. bool quantize_output_tensor; // quantize output.weight
  302. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  303. bool pure; // quantize all tensors to the default type
  304. bool keep_split; // quantize to the same number of shards
  305. void * imatrix; // pointer to importance matrix data
  306. void * kv_overrides; // pointer to vector containing overrides
  307. } llama_model_quantize_params;
  308. // grammar types
  309. struct llama_grammar;
  310. // grammar element type
  311. enum llama_gretype {
  312. // end of rule definition
  313. LLAMA_GRETYPE_END = 0,
  314. // start of alternate definition for rule
  315. LLAMA_GRETYPE_ALT = 1,
  316. // non-terminal element: reference to rule
  317. LLAMA_GRETYPE_RULE_REF = 2,
  318. // terminal element: character (code point)
  319. LLAMA_GRETYPE_CHAR = 3,
  320. // inverse char(s) ([^a], [^a-b] [^abc])
  321. LLAMA_GRETYPE_CHAR_NOT = 4,
  322. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  323. // be an inclusive range ([a-z])
  324. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  325. // modifies a preceding LLAMA_GRETYPE_CHAR or
  326. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  327. LLAMA_GRETYPE_CHAR_ALT = 6,
  328. // any character (.)
  329. LLAMA_GRETYPE_CHAR_ANY = 7,
  330. };
  331. typedef struct llama_grammar_element {
  332. enum llama_gretype type;
  333. uint32_t value; // Unicode code point or rule ID
  334. } llama_grammar_element;
  335. // performance timing information
  336. struct llama_timings {
  337. double t_start_ms;
  338. double t_end_ms;
  339. double t_load_ms;
  340. double t_sample_ms;
  341. double t_p_eval_ms;
  342. double t_eval_ms;
  343. int32_t n_sample;
  344. int32_t n_p_eval;
  345. int32_t n_eval;
  346. };
  347. // used in chat template
  348. typedef struct llama_chat_message {
  349. const char * role;
  350. const char * content;
  351. } llama_chat_message;
  352. // lora adapter
  353. struct llama_lora_adapter;
  354. // Helpers for getting default parameters
  355. LLAMA_API struct llama_model_params llama_model_default_params(void);
  356. LLAMA_API struct llama_context_params llama_context_default_params(void);
  357. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  358. // Initialize the llama + ggml backend
  359. // If numa is true, use NUMA optimizations
  360. // Call once at the start of the program
  361. LLAMA_API void llama_backend_init(void);
  362. //optional:
  363. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  364. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  365. LLAMA_API void llama_attach_threadpool(
  366. struct llama_context * ctx,
  367. ggml_threadpool_t threadpool,
  368. ggml_threadpool_t threadpool_batch);
  369. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  370. // Call once at the end of the program - currently only used for MPI
  371. LLAMA_API void llama_backend_free(void);
  372. LLAMA_API struct llama_model * llama_load_model_from_file(
  373. const char * path_model,
  374. struct llama_model_params params);
  375. LLAMA_API void llama_free_model(struct llama_model * model);
  376. LLAMA_API struct llama_context * llama_new_context_with_model(
  377. struct llama_model * model,
  378. struct llama_context_params params);
  379. // Frees all allocated memory
  380. LLAMA_API void llama_free(struct llama_context * ctx);
  381. LLAMA_API int64_t llama_time_us(void);
  382. LLAMA_API size_t llama_max_devices(void);
  383. LLAMA_API bool llama_supports_mmap (void);
  384. LLAMA_API bool llama_supports_mlock (void);
  385. LLAMA_API bool llama_supports_gpu_offload(void);
  386. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  387. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  388. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  389. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  390. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  391. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  392. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  393. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  394. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  395. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  396. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  397. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  398. // Get the model's RoPE frequency scaling factor
  399. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  400. // Functions to access the model's GGUF metadata scalar values
  401. // - The functions return the length of the string on success, or -1 on failure
  402. // - The output string is always null-terminated and cleared on failure
  403. // - GGUF array values are not supported by these functions
  404. // Get metadata value as a string by key name
  405. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  406. // Get the number of metadata key/value pairs
  407. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  408. // Get metadata key name by index
  409. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  410. // Get metadata value as a string by index
  411. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  412. // Get a string describing the model type
  413. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  414. // Returns the total size of all the tensors in the model in bytes
  415. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  416. // Returns the total number of parameters in the model
  417. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  418. // Get a llama model tensor
  419. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  420. // Returns true if the model contains an encoder that requires llama_encode() call
  421. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  422. // Returns true if the model contains a decoder that requires llama_decode() call
  423. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  424. // For encoder-decoder models, this function returns id of the token that must be provided
  425. // to the decoder to start generating output sequence. For other models, it returns -1.
  426. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  427. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  428. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  429. // Returns 0 on success
  430. LLAMA_API uint32_t llama_model_quantize(
  431. const char * fname_inp,
  432. const char * fname_out,
  433. const llama_model_quantize_params * params);
  434. // Load a LoRA adapter from file
  435. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  436. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  437. struct llama_model * model,
  438. const char * path_lora);
  439. // Add a loaded LoRA adapter to given context
  440. // This will not modify model's weight
  441. LLAMA_API int32_t llama_lora_adapter_set(
  442. struct llama_context * ctx,
  443. struct llama_lora_adapter * adapter,
  444. float scale);
  445. // Remove a specific LoRA adapter from given context
  446. // Return -1 if the adapter is not present in the context
  447. LLAMA_API int32_t llama_lora_adapter_remove(
  448. struct llama_context * ctx,
  449. struct llama_lora_adapter * adapter);
  450. // Remove all LoRA adapters from given context
  451. LLAMA_API void llama_lora_adapter_clear(
  452. struct llama_context * ctx);
  453. // Manually free a LoRA adapter
  454. // Note: loaded adapters will be free when the associated model is deleted
  455. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  456. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  457. // the currently loaded vector.
  458. // n_embd should be the size of a single layer's control, and data should point
  459. // to an n_embd x n_layers buffer starting from layer 1.
  460. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  461. // See llama_control_vector_load in common to load a control vector.
  462. LLAMA_API int32_t llama_control_vector_apply(
  463. struct llama_context * lctx,
  464. const float * data,
  465. size_t len,
  466. int32_t n_embd,
  467. int32_t il_start,
  468. int32_t il_end);
  469. //
  470. // KV cache
  471. //
  472. // Information associated with an individual cell in the KV cache view.
  473. struct llama_kv_cache_view_cell {
  474. // The position for this cell. Takes KV cache shifts into account.
  475. // May be negative if the cell is not populated.
  476. llama_pos pos;
  477. };
  478. // An updateable view of the KV cache.
  479. struct llama_kv_cache_view {
  480. // Number of KV cache cells. This will be the same as the context size.
  481. int32_t n_cells;
  482. // Maximum number of sequences that can exist in a cell. It's not an error
  483. // if there are more sequences in a cell than this value, however they will
  484. // not be visible in the view cells_sequences.
  485. int32_t n_seq_max;
  486. // Number of tokens in the cache. For example, if there are two populated
  487. // cells, the first with 1 sequence id in it and the second with 2 sequence
  488. // ids then you'll have 3 tokens.
  489. int32_t token_count;
  490. // Number of populated cache cells.
  491. int32_t used_cells;
  492. // Maximum contiguous empty slots in the cache.
  493. int32_t max_contiguous;
  494. // Index to the start of the max_contiguous slot range. Can be negative
  495. // when cache is full.
  496. int32_t max_contiguous_idx;
  497. // Information for an individual cell.
  498. struct llama_kv_cache_view_cell * cells;
  499. // The sequences for each cell. There will be n_seq_max items per cell.
  500. llama_seq_id * cells_sequences;
  501. };
  502. // Create an empty KV cache view. (use only for debugging purposes)
  503. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  504. // Free a KV cache view. (use only for debugging purposes)
  505. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  506. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  507. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  508. // Returns the number of tokens in the KV cache (slow, use only for debug)
  509. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  510. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  511. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  512. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  513. // Clear the KV cache - both cell info is erased and KV data is zeroed
  514. LLAMA_API void llama_kv_cache_clear(
  515. struct llama_context * ctx);
  516. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  517. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  518. // seq_id < 0 : match any sequence
  519. // p0 < 0 : [0, p1]
  520. // p1 < 0 : [p0, inf)
  521. LLAMA_API bool llama_kv_cache_seq_rm(
  522. struct llama_context * ctx,
  523. llama_seq_id seq_id,
  524. llama_pos p0,
  525. llama_pos p1);
  526. // Copy all tokens that belong to the specified sequence to another sequence
  527. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  528. // p0 < 0 : [0, p1]
  529. // p1 < 0 : [p0, inf)
  530. LLAMA_API void llama_kv_cache_seq_cp(
  531. struct llama_context * ctx,
  532. llama_seq_id seq_id_src,
  533. llama_seq_id seq_id_dst,
  534. llama_pos p0,
  535. llama_pos p1);
  536. // Removes all tokens that do not belong to the specified sequence
  537. LLAMA_API void llama_kv_cache_seq_keep(
  538. struct llama_context * ctx,
  539. llama_seq_id seq_id);
  540. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  541. // If the KV cache is RoPEd, the KV data is updated accordingly:
  542. // - lazily on next llama_decode()
  543. // - explicitly with llama_kv_cache_update()
  544. // p0 < 0 : [0, p1]
  545. // p1 < 0 : [p0, inf)
  546. LLAMA_API void llama_kv_cache_seq_add(
  547. struct llama_context * ctx,
  548. llama_seq_id seq_id,
  549. llama_pos p0,
  550. llama_pos p1,
  551. llama_pos delta);
  552. // Integer division of the positions by factor of `d > 1`
  553. // If the KV cache is RoPEd, the KV data is updated accordingly:
  554. // - lazily on next llama_decode()
  555. // - explicitly with llama_kv_cache_update()
  556. // p0 < 0 : [0, p1]
  557. // p1 < 0 : [p0, inf)
  558. LLAMA_API void llama_kv_cache_seq_div(
  559. struct llama_context * ctx,
  560. llama_seq_id seq_id,
  561. llama_pos p0,
  562. llama_pos p1,
  563. int d);
  564. // Returns the largest position present in the KV cache for the specified sequence
  565. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  566. struct llama_context * ctx,
  567. llama_seq_id seq_id);
  568. // Defragment the KV cache
  569. // This will be applied:
  570. // - lazily on next llama_decode()
  571. // - explicitly with llama_kv_cache_update()
  572. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  573. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  574. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  575. //
  576. // State / sessions
  577. //
  578. // Returns the *actual* size in bytes of the state
  579. // (rng, logits, embedding and kv_cache)
  580. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  581. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  582. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  583. "use llama_state_get_size instead");
  584. // Copies the state to the specified destination address.
  585. // Destination needs to have allocated enough memory.
  586. // Returns the number of bytes copied
  587. LLAMA_API size_t llama_state_get_data(
  588. struct llama_context * ctx,
  589. uint8_t * dst,
  590. size_t size);
  591. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  592. struct llama_context * ctx,
  593. uint8_t * dst),
  594. "use llama_state_get_data instead");
  595. // Set the state reading from the specified address
  596. // Returns the number of bytes read
  597. LLAMA_API size_t llama_state_set_data(
  598. struct llama_context * ctx,
  599. const uint8_t * src,
  600. size_t size);
  601. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  602. struct llama_context * ctx,
  603. const uint8_t * src),
  604. "use llama_state_set_data instead");
  605. // Save/load session file
  606. LLAMA_API bool llama_state_load_file(
  607. struct llama_context * ctx,
  608. const char * path_session,
  609. llama_token * tokens_out,
  610. size_t n_token_capacity,
  611. size_t * n_token_count_out);
  612. LLAMA_API DEPRECATED(bool llama_load_session_file(
  613. struct llama_context * ctx,
  614. const char * path_session,
  615. llama_token * tokens_out,
  616. size_t n_token_capacity,
  617. size_t * n_token_count_out),
  618. "use llama_state_load_file instead");
  619. LLAMA_API bool llama_state_save_file(
  620. struct llama_context * ctx,
  621. const char * path_session,
  622. const llama_token * tokens,
  623. size_t n_token_count);
  624. LLAMA_API DEPRECATED(bool llama_save_session_file(
  625. struct llama_context * ctx,
  626. const char * path_session,
  627. const llama_token * tokens,
  628. size_t n_token_count),
  629. "use llama_state_save_file instead");
  630. // Get the exact size needed to copy the KV cache of a single sequence
  631. LLAMA_API size_t llama_state_seq_get_size(
  632. struct llama_context * ctx,
  633. llama_seq_id seq_id);
  634. // Copy the KV cache of a single sequence into the specified buffer
  635. LLAMA_API size_t llama_state_seq_get_data(
  636. struct llama_context * ctx,
  637. uint8_t * dst,
  638. size_t size,
  639. llama_seq_id seq_id);
  640. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  641. // Returns:
  642. // - Positive: Ok
  643. // - Zero: Failed to load
  644. LLAMA_API size_t llama_state_seq_set_data(
  645. struct llama_context * ctx,
  646. const uint8_t * src,
  647. size_t size,
  648. llama_seq_id dest_seq_id);
  649. LLAMA_API size_t llama_state_seq_save_file(
  650. struct llama_context * ctx,
  651. const char * filepath,
  652. llama_seq_id seq_id,
  653. const llama_token * tokens,
  654. size_t n_token_count);
  655. LLAMA_API size_t llama_state_seq_load_file(
  656. struct llama_context * ctx,
  657. const char * filepath,
  658. llama_seq_id dest_seq_id,
  659. llama_token * tokens_out,
  660. size_t n_token_capacity,
  661. size_t * n_token_count_out);
  662. //
  663. // Decoding
  664. //
  665. // Return batch for single sequence of tokens starting at pos_0
  666. //
  667. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  668. //
  669. LLAMA_API struct llama_batch llama_batch_get_one(
  670. llama_token * tokens,
  671. int32_t n_tokens,
  672. llama_pos pos_0,
  673. llama_seq_id seq_id);
  674. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  675. // Each token can be assigned up to n_seq_max sequence ids
  676. // The batch has to be freed with llama_batch_free()
  677. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  678. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  679. // The rest of the llama_batch members are allocated with size n_tokens
  680. // All members are left uninitialized
  681. LLAMA_API struct llama_batch llama_batch_init(
  682. int32_t n_tokens,
  683. int32_t embd,
  684. int32_t n_seq_max);
  685. // Frees a batch of tokens allocated with llama_batch_init()
  686. LLAMA_API void llama_batch_free(struct llama_batch batch);
  687. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  688. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  689. // 0 - success
  690. // < 0 - error
  691. LLAMA_API int32_t llama_encode(
  692. struct llama_context * ctx,
  693. struct llama_batch batch);
  694. // Positive return values does not mean a fatal error, but rather a warning.
  695. // 0 - success
  696. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  697. // < 0 - error
  698. LLAMA_API int32_t llama_decode(
  699. struct llama_context * ctx,
  700. struct llama_batch batch);
  701. // Set the number of threads used for decoding
  702. // n_threads is the number of threads used for generation (single token)
  703. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  704. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  705. // Get the number of threads used for generation of a single token.
  706. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  707. // Get the number of threads used for prompt and batch processing (multiple token).
  708. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  709. // Set whether the model is in embeddings mode or not
  710. // If true, embeddings will be returned but logits will not
  711. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  712. // Set whether to use causal attention or not
  713. // If set to true, the model will only attend to the past tokens
  714. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  715. // Set abort callback
  716. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  717. // Wait until all computations are finished
  718. // This is automatically done when using one of the functions below to obtain the computation results
  719. // and is not necessary to call it explicitly in most cases
  720. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  721. // Token logits obtained from the last call to llama_decode()
  722. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  723. // in the order they have appeared in the batch.
  724. // Rows: number of tokens for which llama_batch.logits[i] != 0
  725. // Cols: n_vocab
  726. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  727. // Logits for the ith token. For positive indices, Equivalent to:
  728. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  729. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  730. // returns NULL for invalid ids.
  731. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  732. // Get all output token embeddings.
  733. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  734. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  735. // in the order they have appeared in the batch.
  736. // shape: [n_outputs*n_embd]
  737. // Otherwise, returns NULL.
  738. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  739. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  740. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  741. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  742. // shape: [n_embd] (1-dimensional)
  743. // returns NULL for invalid ids.
  744. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  745. // Get the embeddings for a sequence id
  746. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  747. // shape: [n_embd] (1-dimensional)
  748. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  749. //
  750. // Vocab
  751. //
  752. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  753. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  754. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  755. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  756. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  757. // Identify if Token Id is a control token or a render-able token
  758. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  759. // Special tokens
  760. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  761. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  762. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  763. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  764. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  765. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  766. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  767. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  768. // Codellama infill tokens
  769. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  770. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  771. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  772. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  773. //
  774. // Tokenization
  775. //
  776. /// @details Convert the provided text into tokens.
  777. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  778. /// @return Returns the number of tokens on success, no more than n_tokens_max
  779. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  780. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  781. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  782. /// as plaintext. Does not insert a leading space.
  783. LLAMA_API int32_t llama_tokenize(
  784. const struct llama_model * model,
  785. const char * text,
  786. int32_t text_len,
  787. llama_token * tokens,
  788. int32_t n_tokens_max,
  789. bool add_special,
  790. bool parse_special);
  791. // Token Id -> Piece.
  792. // Uses the vocabulary in the provided context.
  793. // Does not write null terminator to the buffer.
  794. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  795. // @param special If true, special tokens are rendered in the output.
  796. LLAMA_API int32_t llama_token_to_piece(
  797. const struct llama_model * model,
  798. llama_token token,
  799. char * buf,
  800. int32_t length,
  801. int32_t lstrip,
  802. bool special);
  803. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  804. /// @param text The char pointer must be large enough to hold the resulting text.
  805. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  806. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  807. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  808. /// @param unparse_special If true, special tokens are rendered in the output.
  809. LLAMA_API int32_t llama_detokenize(
  810. const struct llama_model * model,
  811. const llama_token * tokens,
  812. int32_t n_tokens,
  813. char * text,
  814. int32_t text_len_max,
  815. bool remove_special,
  816. bool unparse_special);
  817. //
  818. // Chat templates
  819. //
  820. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  821. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  822. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  823. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  824. /// @param chat Pointer to a list of multiple llama_chat_message
  825. /// @param n_msg Number of llama_chat_message in this chat
  826. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  827. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  828. /// @param length The size of the allocated buffer
  829. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  830. LLAMA_API int32_t llama_chat_apply_template(
  831. const struct llama_model * model,
  832. const char * tmpl,
  833. const struct llama_chat_message * chat,
  834. size_t n_msg,
  835. bool add_ass,
  836. char * buf,
  837. int32_t length);
  838. //
  839. // Grammar
  840. //
  841. /// Initialize a llama_grammar.
  842. ///
  843. /// @param rules The rule elements of the grammar to initialize.
  844. /// @param n_rules The number of rules.
  845. /// @param start_rule_index The index of the root rule (the starting point of the grammar).
  846. /// @return The initialized llama_grammar or nullptr if initialization failed.
  847. LLAMA_API struct llama_grammar * llama_grammar_init(
  848. const llama_grammar_element ** rules,
  849. size_t n_rules,
  850. size_t start_rule_index);
  851. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  852. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  853. /// @details Apply constraints from grammar
  854. LLAMA_API void llama_grammar_sample(
  855. const struct llama_grammar * grammar,
  856. const struct llama_context * ctx,
  857. llama_token_data_array * candidates);
  858. LLAMA_API DEPRECATED(void llama_sample_grammar(
  859. struct llama_context * ctx,
  860. llama_token_data_array * candidates,
  861. const struct llama_grammar * grammar),
  862. "use llama_grammar_sample instead");
  863. /// @details Accepts the sampled token into the grammar
  864. LLAMA_API void llama_grammar_accept_token(
  865. struct llama_grammar * grammar,
  866. struct llama_context * ctx,
  867. llama_token token);
  868. //
  869. // Sampling functions
  870. //
  871. // Sets the current rng seed.
  872. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  873. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  874. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  875. LLAMA_API void llama_sample_repetition_penalties(
  876. struct llama_context * ctx,
  877. llama_token_data_array * candidates,
  878. const llama_token * last_tokens,
  879. size_t penalty_last_n,
  880. float penalty_repeat,
  881. float penalty_freq,
  882. float penalty_present);
  883. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  884. /// @param logits Logits extracted from the original generation context.
  885. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  886. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  887. LLAMA_API void llama_sample_apply_guidance(
  888. struct llama_context * ctx,
  889. float * logits,
  890. float * logits_guidance,
  891. float scale);
  892. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  893. LLAMA_API void llama_sample_softmax(
  894. struct llama_context * ctx,
  895. llama_token_data_array * candidates);
  896. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  897. LLAMA_API void llama_sample_top_k(
  898. struct llama_context * ctx,
  899. llama_token_data_array * candidates,
  900. int32_t k,
  901. size_t min_keep);
  902. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  903. LLAMA_API void llama_sample_top_p(
  904. struct llama_context * ctx,
  905. llama_token_data_array * candidates,
  906. float p,
  907. size_t min_keep);
  908. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  909. LLAMA_API void llama_sample_min_p(
  910. struct llama_context * ctx,
  911. llama_token_data_array * candidates,
  912. float p,
  913. size_t min_keep);
  914. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  915. LLAMA_API void llama_sample_tail_free(
  916. struct llama_context * ctx,
  917. llama_token_data_array * candidates,
  918. float z,
  919. size_t min_keep);
  920. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  921. LLAMA_API void llama_sample_typical(
  922. struct llama_context * ctx,
  923. llama_token_data_array * candidates,
  924. float p,
  925. size_t min_keep);
  926. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  927. LLAMA_API void llama_sample_entropy(
  928. struct llama_context * ctx,
  929. llama_token_data_array * candidates_p,
  930. float min_temp,
  931. float max_temp,
  932. float exponent_val);
  933. LLAMA_API void llama_sample_temp(
  934. struct llama_context * ctx,
  935. llama_token_data_array * candidates,
  936. float temp);
  937. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  938. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  939. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  940. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  941. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  942. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  943. LLAMA_API llama_token llama_sample_token_mirostat(
  944. struct llama_context * ctx,
  945. llama_token_data_array * candidates,
  946. float tau,
  947. float eta,
  948. int32_t m,
  949. float * mu);
  950. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  951. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  952. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  953. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  954. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  955. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  956. struct llama_context * ctx,
  957. llama_token_data_array * candidates,
  958. float tau,
  959. float eta,
  960. float * mu);
  961. /// @details Selects the token with the highest probability.
  962. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  963. LLAMA_API llama_token llama_sample_token_greedy(
  964. struct llama_context * ctx,
  965. llama_token_data_array * candidates);
  966. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  967. LLAMA_API llama_token llama_sample_token(
  968. struct llama_context * ctx,
  969. llama_token_data_array * candidates);
  970. //
  971. // Model split
  972. //
  973. /// @details Build a split GGUF final path for this chunk.
  974. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  975. // Returns the split_path length.
  976. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  977. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  978. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  979. // Returns the split_prefix length.
  980. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  981. // Performance information
  982. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  983. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  984. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  985. // Print system information
  986. LLAMA_API const char * llama_print_system_info(void);
  987. // Set callback for all future logging events.
  988. // If this is not called, or NULL is supplied, everything is output on stderr.
  989. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  990. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  991. #ifdef __cplusplus
  992. }
  993. #endif
  994. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  995. #ifdef LLAMA_API_INTERNAL
  996. #include <random>
  997. #include <string>
  998. #include <vector>
  999. struct ggml_tensor;
  1000. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  1001. struct llama_context * ctx
  1002. );
  1003. struct llama_partial_utf8 {
  1004. uint32_t value; // bit value so far (unshifted)
  1005. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  1006. };
  1007. struct llama_grammar_candidate {
  1008. size_t index;
  1009. const uint32_t * code_points;
  1010. llama_partial_utf8 partial_utf8;
  1011. };
  1012. using llama_grammar_rule = std::vector< llama_grammar_element>;
  1013. using llama_grammar_stack = std::vector<const llama_grammar_element *>;
  1014. using llama_grammar_rules = std::vector<llama_grammar_rule>;
  1015. using llama_grammar_stacks = std::vector<llama_grammar_stack>;
  1016. using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
  1017. const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
  1018. llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
  1019. void llama_grammar_accept(
  1020. const llama_grammar_rules & rules,
  1021. const llama_grammar_stacks & stacks,
  1022. const uint32_t chr,
  1023. llama_grammar_stacks & new_stacks);
  1024. std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  1025. const llama_grammar_rules & rules,
  1026. const llama_grammar_stack & stack,
  1027. const llama_grammar_candidates & candidates);
  1028. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  1029. const std::string & src,
  1030. llama_partial_utf8 partial_start);
  1031. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  1032. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  1033. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  1034. #endif // LLAMA_API_INTERNAL
  1035. #endif // LLAMA_H