llama.cpp 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #ifdef GGML_USE_MPI
  20. #include "ggml-mpi.h"
  21. #endif
  22. #ifdef GGML_USE_K_QUANTS
  23. #ifndef QK_K
  24. #ifdef GGML_QKK_64
  25. #define QK_K 64
  26. #else
  27. #define QK_K 256
  28. #endif
  29. #endif
  30. #endif
  31. #include <array>
  32. #include <ctime>
  33. #include <cinttypes>
  34. #include <fstream>
  35. #include <random>
  36. #include <map>
  37. #include <unordered_map>
  38. #include <queue>
  39. #include <cassert>
  40. #include <cstring>
  41. #include <climits>
  42. #include <memory>
  43. #include <algorithm>
  44. #include <initializer_list>
  45. #include <thread>
  46. #include <atomic>
  47. #include <mutex>
  48. #include <sstream>
  49. #include <numeric>
  50. #if defined(_MSC_VER)
  51. #pragma warning(disable: 4244 4267) // possible loss of data
  52. #endif
  53. #define LLAMA_USE_SCRATCH
  54. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  55. // available llama models
  56. enum e_model {
  57. MODEL_UNKNOWN,
  58. MODEL_3B,
  59. MODEL_7B,
  60. MODEL_13B,
  61. MODEL_30B,
  62. MODEL_65B,
  63. };
  64. static const size_t kB = 1024;
  65. static const size_t MB = 1024*1024;
  66. // computed for n_ctx == 2048
  67. // TODO: dynamically determine these sizes
  68. // needs modifications in ggml
  69. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  70. void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  71. (void) tensor;
  72. }
  73. //
  74. // ggml helpers
  75. //
  76. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  77. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  78. if (plan.work_size > 0) {
  79. buf.resize(plan.work_size);
  80. plan.work_data = buf.data();
  81. }
  82. ggml_graph_compute(graph, &plan);
  83. }
  84. //
  85. // memory sizes
  86. //
  87. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
  88. {
  89. static std::map<e_model, size_t> k_sizes = {
  90. /* empirical scaling, still a guess */
  91. { MODEL_3B, ((size_t) n_ctx / 16ull + 128ull) * MB },
  92. { MODEL_7B, ((size_t) n_ctx / 16ull + 256ull) * MB },
  93. { MODEL_13B, ((size_t) n_ctx / 12ull + 256ull) * MB },
  94. { MODEL_30B, ((size_t) n_ctx / 10ull + 256ull) * MB },
  95. { MODEL_65B, ((size_t) n_ctx / 8ull + 512ull) * MB },
  96. };
  97. return k_sizes;
  98. }
  99. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  100. {
  101. static std::map<e_model, size_t> k_sizes = {
  102. { MODEL_3B, 256ull * MB },
  103. { MODEL_7B, 512ull * MB },
  104. { MODEL_13B, 512ull * MB },
  105. { MODEL_30B, 512ull * MB },
  106. { MODEL_65B, 1024ull * MB },
  107. };
  108. return k_sizes;
  109. }
  110. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  111. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  112. {
  113. static std::map<e_model, size_t> k_sizes = {
  114. { MODEL_3B, 682ull * MB },
  115. { MODEL_7B, 1026ull * MB },
  116. { MODEL_13B, 1608ull * MB },
  117. { MODEL_30B, 3124ull * MB },
  118. { MODEL_65B, 5120ull * MB },
  119. };
  120. return k_sizes;
  121. }
  122. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  123. // not actually needed if BLAS is disabled
  124. static const std::map<e_model, size_t> & MEM_REQ_EVAL(int n_ctx)
  125. {
  126. static std::map<e_model, size_t> k_sizes = {
  127. { MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB },
  128. { MODEL_7B, ((size_t) n_ctx / 256ull + 768ull) * MB },
  129. { MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB },
  130. { MODEL_30B, ((size_t) n_ctx / 256ull + 1280ull) * MB },
  131. { MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB },
  132. };
  133. return k_sizes;
  134. }
  135. // amount of VRAM needed per batch size to hold temporary results
  136. // the values for 3b and 65b are not derived from testing but instead chosen conservatively
  137. static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
  138. {
  139. static std::map<e_model, size_t> k_sizes = {
  140. { MODEL_3B, 512ull * kB },
  141. { MODEL_7B, 512ull * kB },
  142. { MODEL_13B, 640ull * kB },
  143. { MODEL_30B, 768ull * kB },
  144. { MODEL_65B, 1536ull * kB },
  145. };
  146. return k_sizes;
  147. }
  148. // amount of VRAM needed per batch size and context to hold temporary results
  149. // the values for 3b and 65b are not derived from testing but instead chosen conservatively
  150. static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
  151. {
  152. static std::map<e_model, size_t> k_sizes = {
  153. { MODEL_3B, 128ull },
  154. { MODEL_7B, 128ull },
  155. { MODEL_13B, 160ull },
  156. { MODEL_30B, 208ull },
  157. { MODEL_65B, 416ull },
  158. };
  159. return k_sizes;
  160. }
  161. // default hparams (LLaMA 7B)
  162. struct llama_hparams {
  163. uint32_t n_vocab = 32000;
  164. uint32_t n_ctx = 512; // this is provided as user input?
  165. uint32_t n_embd = 4096;
  166. uint32_t n_mult = 256;
  167. uint32_t n_head = 32;
  168. uint32_t n_layer = 32;
  169. uint32_t n_rot = 64;
  170. float rope_freq_base = 10000.0f;
  171. float rope_freq_scale = 1.0f;
  172. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  173. bool operator!=(const llama_hparams & other) const {
  174. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  175. }
  176. };
  177. struct llama_layer {
  178. // normalization
  179. struct ggml_tensor * attention_norm;
  180. // attention
  181. struct ggml_tensor * wq;
  182. struct ggml_tensor * wk;
  183. struct ggml_tensor * wv;
  184. struct ggml_tensor * wo;
  185. // normalization
  186. struct ggml_tensor * ffn_norm;
  187. // ff
  188. struct ggml_tensor * w1;
  189. struct ggml_tensor * w2;
  190. struct ggml_tensor * w3;
  191. };
  192. struct llama_kv_cache {
  193. struct ggml_tensor * k = NULL;
  194. struct ggml_tensor * v = NULL;
  195. struct ggml_context * ctx = NULL;
  196. llama_ctx_buffer buf;
  197. int n; // number of tokens currently in the cache
  198. ~llama_kv_cache() {
  199. if (ctx) {
  200. ggml_free(ctx);
  201. }
  202. #ifdef GGML_USE_CUBLAS
  203. ggml_cuda_free_data(k);
  204. ggml_cuda_free_data(v);
  205. #endif // GGML_USE_CUBLAS
  206. }
  207. };
  208. struct llama_vocab {
  209. using id = int32_t;
  210. using token = std::string;
  211. struct token_score {
  212. token tok;
  213. float score;
  214. };
  215. std::unordered_map<token, id> token_to_id;
  216. std::vector<token_score> id_to_token;
  217. };
  218. struct llama_model {
  219. e_model type = MODEL_UNKNOWN;
  220. llama_hparams hparams;
  221. struct ggml_tensor * tok_embeddings;
  222. struct ggml_tensor * norm;
  223. struct ggml_tensor * output;
  224. std::vector<llama_layer> layers;
  225. int n_gpu_layers;
  226. // context
  227. struct ggml_context * ctx = NULL;
  228. // the model memory buffer
  229. llama_ctx_buffer buf;
  230. // model memory mapped file
  231. std::unique_ptr<llama_mmap> mapping;
  232. // objects representing data potentially being locked in memory
  233. llama_mlock mlock_buf;
  234. llama_mlock mlock_mmap;
  235. // for quantize-stats only
  236. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  237. int64_t t_load_us = 0;
  238. int64_t t_start_us = 0;
  239. llama_vocab vocab;
  240. ~llama_model() {
  241. if (ctx) {
  242. ggml_free(ctx);
  243. }
  244. #ifdef GGML_USE_CUBLAS
  245. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  246. ggml_cuda_free_data(tensors_by_name[i].second);
  247. }
  248. ggml_cuda_free_scratch();
  249. #elif defined(GGML_USE_CLBLAST)
  250. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  251. ggml_cl_free_data(tensors_by_name[i].second);
  252. }
  253. #endif
  254. }
  255. };
  256. struct llama_context {
  257. llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
  258. #ifdef GGML_USE_METAL
  259. ~llama_context() {
  260. if (ctx_metal) {
  261. ggml_metal_free(ctx_metal);
  262. }
  263. }
  264. #endif
  265. std::mt19937 rng;
  266. bool has_evaluated_once = false;
  267. int64_t t_sample_us = 0;
  268. int64_t t_eval_us = 0;
  269. int64_t t_p_eval_us = 0;
  270. int32_t n_sample = 0; // number of tokens sampled
  271. int32_t n_eval = 0; // number of eval calls
  272. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  273. const llama_model & model;
  274. bool model_owner = false;
  275. int64_t t_load_us;
  276. int64_t t_start_us;
  277. // key + value cache for the self attention
  278. struct llama_kv_cache kv_self;
  279. size_t mem_per_token = 0;
  280. // decode output (2-dimensional array: [n_tokens][n_vocab])
  281. std::vector<float> logits;
  282. bool logits_all = false;
  283. // input embedding (1-dimensional array: [n_embd])
  284. std::vector<float> embedding;
  285. // reusable buffer for `struct ggml_graph_plan.work_data`
  286. std::vector<uint8_t> work_buffer;
  287. // memory buffers used to evaluate the model
  288. // TODO: move in llama_state
  289. llama_ctx_buffer buf_compute;
  290. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  291. #ifdef GGML_USE_METAL
  292. ggml_metal_context * ctx_metal = NULL;
  293. #endif
  294. #ifdef GGML_USE_MPI
  295. ggml_mpi_context * ctx_mpi = NULL;
  296. #endif
  297. int buf_last = 0;
  298. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  299. void use_buf(struct ggml_context * ctx, int i) {
  300. #if defined(LLAMA_USE_SCRATCH)
  301. size_t last_size = 0;
  302. if (i == -1) {
  303. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  304. } else {
  305. auto & buf = buf_scratch[i];
  306. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  307. }
  308. if (buf_last >= 0) {
  309. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  310. }
  311. buf_last = i;
  312. #else
  313. (void) i;
  314. (void) ctx;
  315. #endif
  316. }
  317. size_t get_buf_max_mem(int i) const {
  318. #if defined(LLAMA_USE_SCRATCH)
  319. return buf_max_size[i];
  320. #else
  321. (void) i;
  322. return 0;
  323. #endif
  324. }
  325. };
  326. template <typename T>
  327. static T checked_mul(T a, T b) {
  328. T ret = a * b;
  329. if (a != 0 && ret / a != b) {
  330. throw std::runtime_error(format("overflow multiplying %llu * %llu",
  331. (unsigned long long) a, (unsigned long long) b));
  332. }
  333. return ret;
  334. }
  335. static size_t checked_div(size_t a, size_t b) {
  336. if (b == 0 || a % b != 0) {
  337. throw std::runtime_error(format("error dividing %zu / %zu", a, b));
  338. }
  339. return a / b;
  340. }
  341. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  342. char buf[256];
  343. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  344. for (size_t i = 1; i < ne.size(); i++) {
  345. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  346. }
  347. return buf;
  348. }
  349. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  350. size_t size = ggml_type_size(type);
  351. for (uint32_t dim : ne) {
  352. size = checked_mul<size_t>(size, dim);
  353. }
  354. return size / ggml_blck_size(type);
  355. }
  356. struct llama_load_tensor {
  357. std::string name;
  358. enum ggml_type type = GGML_TYPE_F32;
  359. std::vector<uint32_t> ne;
  360. size_t file_off;
  361. size_t size;
  362. struct ggml_tensor * ggml_tensor = NULL;
  363. uint8_t * data;
  364. };
  365. struct llama_load_tensors_map {
  366. // tensors is kept in a separate vector to preserve file order
  367. std::vector<llama_load_tensor> tensors;
  368. std::unordered_map<std::string, size_t> name_to_idx;
  369. };
  370. enum llama_file_version {
  371. LLAMA_FILE_VERSION_GGML,
  372. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  373. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  374. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  375. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  376. };
  377. struct llama_file_loader {
  378. llama_file file;
  379. llama_file_version file_version;
  380. llama_hparams hparams;
  381. llama_vocab vocab;
  382. llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
  383. : file(fname, "rb") {
  384. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  385. read_magic();
  386. read_hparams();
  387. read_vocab();
  388. read_tensor_metadata(tensors_map);
  389. }
  390. void read_magic() {
  391. uint32_t magic = file.read_u32();
  392. if (magic == LLAMA_FILE_MAGIC_GGML) {
  393. file_version = LLAMA_FILE_VERSION_GGML;
  394. return;
  395. }
  396. uint32_t version = file.read_u32();
  397. switch (magic) {
  398. case LLAMA_FILE_MAGIC_GGMF:
  399. switch (version) {
  400. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  401. }
  402. break;
  403. case LLAMA_FILE_MAGIC_GGJT:
  404. switch (version) {
  405. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  406. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  407. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  408. }
  409. }
  410. throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  411. magic, version));
  412. }
  413. void read_hparams() {
  414. hparams.n_vocab = file.read_u32();
  415. hparams.n_embd = file.read_u32();
  416. hparams.n_mult = file.read_u32();
  417. hparams.n_head = file.read_u32();
  418. hparams.n_layer = file.read_u32();
  419. hparams.n_rot = file.read_u32();
  420. hparams.ftype = (enum llama_ftype) file.read_u32();
  421. }
  422. void read_vocab() {
  423. vocab.id_to_token.resize(hparams.n_vocab);
  424. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  425. uint32_t len = file.read_u32();
  426. std::string word = file.read_string(len);
  427. float score = 0.0f;
  428. file.read_raw(&score, sizeof(score));
  429. vocab.token_to_id[word] = i;
  430. auto & tok_score = vocab.id_to_token[i];
  431. tok_score.tok = std::move(word);
  432. tok_score.score = score;
  433. }
  434. }
  435. void read_tensor_metadata(llama_load_tensors_map & tensors_map) {
  436. while (file.tell() < file.size) {
  437. llama_load_tensor tensor;
  438. uint32_t n_dims = file.read_u32();
  439. uint32_t name_len = file.read_u32();
  440. tensor.type = (enum ggml_type) file.read_u32();
  441. tensor.ne.resize(n_dims);
  442. file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims);
  443. std::string name = file.read_string(name_len);
  444. if (n_dims < 1 || n_dims > 2) {
  445. throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
  446. }
  447. switch (tensor.type) {
  448. case GGML_TYPE_F32:
  449. case GGML_TYPE_F16:
  450. case GGML_TYPE_Q4_0:
  451. case GGML_TYPE_Q4_1:
  452. case GGML_TYPE_Q5_0:
  453. case GGML_TYPE_Q5_1:
  454. case GGML_TYPE_Q8_0:
  455. case GGML_TYPE_Q2_K:
  456. case GGML_TYPE_Q3_K:
  457. case GGML_TYPE_Q4_K:
  458. case GGML_TYPE_Q5_K:
  459. case GGML_TYPE_Q6_K:
  460. break;
  461. default: {
  462. throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type));
  463. }
  464. }
  465. // skip to the next multiple of 32 bytes
  466. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  467. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  468. }
  469. tensor.file_off = file.tell();
  470. tensor.name = name;
  471. tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type);
  472. file.seek(tensor.size, SEEK_CUR);
  473. tensors_map.tensors.push_back(tensor);
  474. tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
  475. }
  476. }
  477. };
  478. struct llama_file_saver {
  479. llama_file file;
  480. llama_file_loader * any_file_loader;
  481. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  482. : file(fname, "wb"), any_file_loader(any_file_loader) {
  483. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  484. write_magic();
  485. write_hparams(new_ftype);
  486. write_vocab();
  487. }
  488. void write_magic() {
  489. file.write_u32(LLAMA_FILE_MAGIC); // magic
  490. file.write_u32(LLAMA_FILE_VERSION); // version
  491. }
  492. void write_hparams(enum llama_ftype new_ftype) {
  493. const llama_hparams & hparams = any_file_loader->hparams;
  494. file.write_u32(hparams.n_vocab);
  495. file.write_u32(hparams.n_embd);
  496. file.write_u32(hparams.n_mult);
  497. file.write_u32(hparams.n_head);
  498. file.write_u32(hparams.n_layer);
  499. file.write_u32(hparams.n_rot);
  500. file.write_u32(new_ftype);
  501. }
  502. void write_vocab() {
  503. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  504. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  505. }
  506. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  507. for (uint32_t i = 0; i < n_vocab; i++) {
  508. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  509. file.write_u32((uint32_t) token_score.tok.size());
  510. file.write_raw(token_score.tok.data(), token_score.tok.size());
  511. file.write_raw(&token_score.score, sizeof(token_score.score));
  512. }
  513. }
  514. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  515. switch (new_type) {
  516. case GGML_TYPE_F32:
  517. case GGML_TYPE_F16:
  518. case GGML_TYPE_Q4_0:
  519. case GGML_TYPE_Q4_1:
  520. case GGML_TYPE_Q5_0:
  521. case GGML_TYPE_Q5_1:
  522. case GGML_TYPE_Q8_0:
  523. case GGML_TYPE_Q2_K:
  524. case GGML_TYPE_Q3_K:
  525. case GGML_TYPE_Q4_K:
  526. case GGML_TYPE_Q5_K:
  527. case GGML_TYPE_Q6_K:
  528. break;
  529. default: LLAMA_ASSERT(false);
  530. }
  531. file.write_u32((uint32_t) tensor.ne.size());
  532. file.write_u32((uint32_t) tensor.name.size());
  533. file.write_u32(new_type);
  534. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  535. file.write_raw(tensor.name.data(), tensor.name.size());
  536. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  537. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  538. file.write_raw(new_data, new_size);
  539. }
  540. };
  541. struct llama_model_loader {
  542. std::unique_ptr<llama_file_loader> file_loader;
  543. llama_load_tensors_map tensors_map;
  544. bool use_mmap;
  545. size_t num_ggml_tensors_created = 0;
  546. struct ggml_context * ggml_ctx = NULL;
  547. std::unique_ptr<llama_mmap> mapping;
  548. llama_model_loader(const std::string & fname_base, bool use_mmap) {
  549. file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
  550. if (!llama_mmap::SUPPORTED) {
  551. use_mmap = false;
  552. }
  553. this->use_mmap = use_mmap;
  554. }
  555. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  556. *ctx_size_p = *mmapped_size_p = 0;
  557. for (const llama_load_tensor & lt : tensors_map.tensors) {
  558. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  559. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16;
  560. }
  561. }
  562. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  563. auto it = tensors_map.name_to_idx.find(name);
  564. if (it == tensors_map.name_to_idx.end()) {
  565. throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
  566. }
  567. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  568. if (lt.ne != ne) {
  569. throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  570. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
  571. }
  572. return get_tensor_for(lt, backend);
  573. }
  574. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  575. struct ggml_tensor * tensor;
  576. if (backend != GGML_BACKEND_CPU) {
  577. ggml_set_no_alloc(ggml_ctx, true);
  578. }
  579. if (lt.ne.size() == 2) {
  580. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  581. } else {
  582. LLAMA_ASSERT(lt.ne.size() == 1);
  583. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  584. }
  585. ggml_set_name(tensor, lt.name.c_str());
  586. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  587. if (backend != GGML_BACKEND_CPU) {
  588. ggml_set_no_alloc(ggml_ctx, use_mmap);
  589. }
  590. tensor->backend = backend;
  591. lt.ggml_tensor = tensor;
  592. num_ggml_tensors_created++;
  593. return tensor;
  594. }
  595. void done_getting_tensors() const {
  596. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  597. throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
  598. }
  599. }
  600. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  601. size_t data_size = 0;
  602. size_t prefetch_size = 0;
  603. size_t lock_size = 0;
  604. for (const llama_load_tensor & lt : tensors_map.tensors) {
  605. data_size += lt.size;
  606. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  607. prefetch_size += lt.size;
  608. }
  609. }
  610. if (use_mmap) {
  611. mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa()));
  612. if (lmlock) {
  613. lmlock->init(mapping->addr);
  614. }
  615. }
  616. size_t done_size = 0;
  617. for (llama_load_tensor & lt : tensors_map.tensors) {
  618. if (progress_callback) {
  619. progress_callback((float) done_size / data_size, progress_callback_user_data);
  620. }
  621. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  622. lt.data = (uint8_t *) lt.ggml_tensor->data;
  623. // allocate temp buffer if not using mmap
  624. if (!use_mmap && lt.data == NULL) {
  625. GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
  626. lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
  627. }
  628. load_data_for(lt);
  629. switch(lt.ggml_tensor->backend) {
  630. case GGML_BACKEND_CPU:
  631. lt.ggml_tensor->data = lt.data;
  632. if (use_mmap && lmlock) {
  633. lock_size += lt.size;
  634. lmlock->grow_to(lock_size);
  635. }
  636. break;
  637. #if defined(GGML_USE_CUBLAS)
  638. case GGML_BACKEND_GPU:
  639. case GGML_BACKEND_GPU_SPLIT:
  640. ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  641. if (!use_mmap) {
  642. free(lt.data);
  643. }
  644. break;
  645. #elif defined(GGML_USE_CLBLAST)
  646. case GGML_BACKEND_GPU:
  647. ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
  648. if (!use_mmap) {
  649. free(lt.data);
  650. }
  651. break;
  652. #endif
  653. default:
  654. continue;
  655. }
  656. done_size += lt.size;
  657. }
  658. }
  659. void load_data_for(llama_load_tensor & lt) {
  660. if (use_mmap) {
  661. lt.data = (uint8_t *) mapping->addr + lt.file_off;
  662. } else {
  663. llama_file & file = file_loader->file;
  664. file.seek(lt.file_off, SEEK_SET);
  665. file.read_raw(lt.data, lt.size);
  666. }
  667. if (0) {
  668. print_checksum(lt);
  669. }
  670. }
  671. static void print_checksum(llama_load_tensor & lt) {
  672. uint32_t sum = 0;
  673. for (size_t i = 0; i < lt.size; i++) {
  674. uint8_t byte = lt.data[i];
  675. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  676. }
  677. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  678. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  679. }
  680. };
  681. //
  682. // kv cache
  683. //
  684. static bool kv_cache_init(
  685. const struct llama_hparams & hparams,
  686. struct llama_kv_cache & cache,
  687. ggml_type wtype,
  688. int n_ctx,
  689. int n_gpu_layers) {
  690. const int n_embd = hparams.n_embd;
  691. const int n_layer = hparams.n_layer;
  692. const int64_t n_mem = n_layer*n_ctx;
  693. const int64_t n_elements = n_embd*n_mem;
  694. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  695. cache.n = 0;
  696. struct ggml_init_params params;
  697. params.mem_size = cache.buf.size;
  698. params.mem_buffer = cache.buf.addr;
  699. params.no_alloc = false;
  700. cache.ctx = ggml_init(params);
  701. if (!cache.ctx) {
  702. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  703. return false;
  704. }
  705. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  706. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  707. ggml_set_name(cache.k, "cache_k");
  708. ggml_set_name(cache.v, "cache_v");
  709. (void) n_gpu_layers;
  710. #ifdef GGML_USE_CUBLAS
  711. if (n_gpu_layers > n_layer + 1) {
  712. ggml_cuda_assign_buffers_no_scratch(cache.v);
  713. }
  714. if (n_gpu_layers > n_layer + 2) {
  715. ggml_cuda_assign_buffers_no_scratch(cache.k);
  716. }
  717. #endif // GGML_USE_CUBLAS
  718. return true;
  719. }
  720. struct llama_context_params llama_context_default_params() {
  721. struct llama_context_params result = {
  722. /*.seed =*/ LLAMA_DEFAULT_SEED,
  723. /*.n_ctx =*/ 512,
  724. /*.n_batch =*/ 512,
  725. /*.gpu_layers =*/ 0,
  726. /*.main_gpu =*/ 0,
  727. /*.tensor_split =*/ nullptr,
  728. /*.rope_freq_base =*/ 10000.0f,
  729. /*.rope_freq_scale =*/ 1.0f,
  730. /*.progress_callback =*/ nullptr,
  731. /*.progress_callback_user_data =*/ nullptr,
  732. /*.low_vram =*/ false,
  733. /*.f16_kv =*/ true,
  734. /*.logits_all =*/ false,
  735. /*.vocab_only =*/ false,
  736. /*.use_mmap =*/ true,
  737. /*.use_mlock =*/ false,
  738. /*.embedding =*/ false,
  739. };
  740. return result;
  741. }
  742. struct llama_model_quantize_params llama_model_quantize_default_params() {
  743. struct llama_model_quantize_params result = {
  744. /*.nthread =*/ 0,
  745. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  746. /*.allow_requantize =*/ false,
  747. /*.quantize_output_tensor =*/ true,
  748. };
  749. return result;
  750. }
  751. int llama_max_devices() {
  752. return LLAMA_MAX_DEVICES;
  753. }
  754. bool llama_mmap_supported() {
  755. return llama_mmap::SUPPORTED;
  756. }
  757. bool llama_mlock_supported() {
  758. return llama_mlock::SUPPORTED;
  759. }
  760. void llama_backend_init(bool numa) {
  761. ggml_time_init();
  762. // needed to initialize f16 tables
  763. {
  764. struct ggml_init_params params = { 0, NULL, false };
  765. struct ggml_context * ctx = ggml_init(params);
  766. ggml_free(ctx);
  767. }
  768. if (numa) {
  769. ggml_numa_init();
  770. }
  771. #ifdef GGML_USE_MPI
  772. ggml_mpi_backend_init();
  773. #endif
  774. }
  775. void llama_backend_free() {
  776. #ifdef GGML_USE_MPI
  777. ggml_mpi_backend_free();
  778. #endif
  779. }
  780. int64_t llama_time_us() {
  781. return ggml_time_us();
  782. }
  783. //
  784. // model loading
  785. //
  786. static const char *llama_file_version_name(llama_file_version version) {
  787. switch (version) {
  788. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  789. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  790. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  791. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  792. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  793. }
  794. return "unknown";
  795. }
  796. static const char *llama_ftype_name(enum llama_ftype ftype) {
  797. switch (ftype) {
  798. case LLAMA_FTYPE_ALL_F32: return "all F32";
  799. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  800. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  801. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  802. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  803. return "mostly Q4_1, some F16";
  804. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  805. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  806. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  807. // K-quants
  808. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  809. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  810. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  811. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  812. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  813. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  814. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  815. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  816. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  817. default: return "unknown, may not work";
  818. }
  819. }
  820. static const char *llama_model_type_name(e_model type) {
  821. switch (type) {
  822. case MODEL_3B: return "3B";
  823. case MODEL_7B: return "7B";
  824. case MODEL_13B: return "13B";
  825. case MODEL_30B: return "30B";
  826. case MODEL_65B: return "65B";
  827. default: LLAMA_ASSERT(false);
  828. }
  829. }
  830. static void llama_model_load_internal(
  831. const std::string & fname,
  832. llama_model & model,
  833. llama_vocab & vocab,
  834. int n_ctx,
  835. int n_batch,
  836. int n_gpu_layers,
  837. int main_gpu,
  838. const float * tensor_split,
  839. float rope_freq_base,
  840. float rope_freq_scale,
  841. bool low_vram,
  842. ggml_type memory_type,
  843. bool use_mmap,
  844. bool use_mlock,
  845. bool vocab_only,
  846. llama_progress_callback progress_callback,
  847. void * progress_callback_user_data) {
  848. model.t_start_us = ggml_time_us();
  849. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
  850. vocab = std::move(ml->file_loader->vocab);
  851. model.hparams = ml->file_loader->hparams;
  852. model.n_gpu_layers = n_gpu_layers;
  853. llama_file_version file_version = ml->file_loader->file_version;
  854. auto & hparams = model.hparams;
  855. {
  856. switch (hparams.n_layer) {
  857. case 26: model.type = e_model::MODEL_3B; break;
  858. case 32: model.type = e_model::MODEL_7B; break;
  859. case 40: model.type = e_model::MODEL_13B; break;
  860. case 60: model.type = e_model::MODEL_30B; break;
  861. case 80: model.type = e_model::MODEL_65B; break;
  862. default:
  863. {
  864. if (hparams.n_layer < 32) {
  865. model.type = e_model::MODEL_7B;
  866. }
  867. } break;
  868. }
  869. hparams.n_ctx = n_ctx;
  870. hparams.rope_freq_base = rope_freq_base;
  871. hparams.rope_freq_scale = rope_freq_scale;
  872. }
  873. const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  874. {
  875. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  876. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  877. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  878. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  879. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  880. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  881. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  882. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  883. fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
  884. fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
  885. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  886. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  887. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  888. }
  889. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  890. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  891. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  892. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  893. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
  894. }
  895. }
  896. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  897. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  898. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  899. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  900. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
  901. }
  902. }
  903. if (vocab_only) {
  904. return;
  905. }
  906. auto & ctx = model.ctx;
  907. size_t ctx_size;
  908. size_t mmapped_size;
  909. ml->calc_sizes(&ctx_size, &mmapped_size);
  910. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  911. // create the ggml context
  912. {
  913. model.buf.resize(ctx_size);
  914. if (use_mlock) {
  915. model.mlock_buf.init(model.buf.addr);
  916. model.mlock_buf.grow_to(model.buf.size);
  917. }
  918. struct ggml_init_params params = {
  919. /*.mem_size =*/ model.buf.size,
  920. /*.mem_buffer =*/ model.buf.addr,
  921. /*.no_alloc =*/ ml->use_mmap,
  922. };
  923. model.ctx = ggml_init(params);
  924. if (!model.ctx) {
  925. throw std::runtime_error(format("ggml_init() failed"));
  926. }
  927. }
  928. (void) main_gpu;
  929. #if defined(GGML_USE_CUBLAS)
  930. fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
  931. ggml_cuda_set_main_device(main_gpu);
  932. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  933. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  934. #elif defined(GGML_USE_CLBLAST)
  935. fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
  936. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  937. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  938. #else
  939. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  940. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  941. #endif
  942. // prepare memory for the weights
  943. size_t vram_weights = 0;
  944. size_t vram_scratch = 0;
  945. {
  946. const uint32_t n_embd = hparams.n_embd;
  947. const uint32_t n_layer = hparams.n_layer;
  948. const uint32_t n_vocab = hparams.n_vocab;
  949. ml->ggml_ctx = ctx;
  950. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  951. // "output" tensor
  952. {
  953. ggml_backend backend_norm;
  954. ggml_backend backend_output;
  955. if (n_gpu_layers > int(n_layer)) { // NOLINT
  956. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  957. // on Windows however this is detrimental unless everything is on the GPU
  958. #ifndef _WIN32
  959. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  960. #else
  961. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  962. #endif // _WIN32
  963. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  964. } else {
  965. backend_norm = GGML_BACKEND_CPU;
  966. backend_output = GGML_BACKEND_CPU;
  967. }
  968. model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
  969. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  970. if (backend_norm == GGML_BACKEND_GPU) {
  971. vram_weights += ggml_nbytes(model.norm);
  972. }
  973. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  974. vram_weights += ggml_nbytes(model.output);
  975. }
  976. }
  977. const int i_gpu_start = n_layer - n_gpu_layers;
  978. model.layers.resize(n_layer);
  979. for (uint32_t i = 0; i < n_layer; ++i) {
  980. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  981. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  982. auto & layer = model.layers[i];
  983. std::string layers_i = "layers." + std::to_string(i);
  984. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  985. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
  986. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
  987. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
  988. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
  989. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  990. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
  991. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
  992. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
  993. if (backend == GGML_BACKEND_GPU) {
  994. vram_weights +=
  995. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  996. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  997. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  998. }
  999. }
  1000. }
  1001. ml->done_getting_tensors();
  1002. // print memory requirements
  1003. {
  1004. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  1005. // this is the total memory required to run the inference
  1006. const size_t mem_required =
  1007. ctx_size +
  1008. mmapped_size - vram_weights + // weights in VRAM not in memory
  1009. MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
  1010. MEM_REQ_SCRATCH1().at(model.type) +
  1011. MEM_REQ_EVAL(hparams.n_ctx).at(model.type);
  1012. // this is the memory required by one llama_state
  1013. const size_t mem_required_state =
  1014. scale*MEM_REQ_KV_SELF().at(model.type);
  1015. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  1016. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  1017. (void) vram_scratch;
  1018. (void) n_batch;
  1019. #ifdef GGML_USE_CUBLAS
  1020. if (low_vram) {
  1021. fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  1022. ggml_cuda_set_scratch_size(0); // disable scratch
  1023. } else {
  1024. const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
  1025. const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
  1026. vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
  1027. ggml_cuda_set_scratch_size(vram_scratch);
  1028. if (n_gpu_layers > 0) {
  1029. fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
  1030. __func__, vram_scratch_base / kB, vram_scratch_per_context,
  1031. (vram_scratch + MB - 1) / MB); // round up
  1032. }
  1033. }
  1034. #endif // GGML_USE_CUBLAS
  1035. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1036. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1037. fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  1038. if (n_gpu_layers > (int) hparams.n_layer) {
  1039. fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
  1040. }
  1041. size_t vram_kv_cache = 0;
  1042. #ifdef GGML_USE_CUBLAS
  1043. const int max_backend_supported_layers = hparams.n_layer + 3;
  1044. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1045. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1046. if (low_vram) {
  1047. fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1048. } else {
  1049. fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
  1050. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1051. }
  1052. }
  1053. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1054. if (low_vram) {
  1055. fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1056. } else {
  1057. fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
  1058. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1059. }
  1060. }
  1061. #elif defined(GGML_USE_CLBLAST)
  1062. const int max_backend_supported_layers = hparams.n_layer + 1;
  1063. const int max_offloadable_layers = hparams.n_layer + 1;
  1064. #endif // GGML_USE_CUBLAS
  1065. fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
  1066. __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  1067. fprintf(stderr, "%s: total VRAM used: %zu MB\n",
  1068. __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
  1069. #else
  1070. (void) n_gpu_layers;
  1071. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1072. }
  1073. // populate `tensors_by_name`
  1074. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1075. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  1076. }
  1077. (void) tensor_split;
  1078. #if defined(GGML_USE_CUBLAS)
  1079. {
  1080. ggml_cuda_set_tensor_split(tensor_split);
  1081. }
  1082. #endif
  1083. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  1084. if (progress_callback) {
  1085. progress_callback(1.0f, progress_callback_user_data);
  1086. }
  1087. model.mapping = std::move(ml->mapping);
  1088. // loading time will be recalculate after the first eval, so
  1089. // we take page faults deferred by mmap() into consideration
  1090. model.t_load_us = ggml_time_us() - model.t_start_us;
  1091. }
  1092. static bool llama_model_load(
  1093. const std::string & fname,
  1094. llama_model & model,
  1095. llama_vocab & vocab,
  1096. int n_ctx,
  1097. int n_batch,
  1098. int n_gpu_layers,
  1099. int main_gpu,
  1100. const float * tensor_split,
  1101. float rope_freq_base,
  1102. float rope_freq_scale,
  1103. bool low_vram,
  1104. ggml_type memory_type,
  1105. bool use_mmap,
  1106. bool use_mlock,
  1107. bool vocab_only,
  1108. llama_progress_callback progress_callback,
  1109. void *progress_callback_user_data) {
  1110. try {
  1111. llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
  1112. use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
  1113. return true;
  1114. } catch (const std::exception & err) {
  1115. fprintf(stderr, "error loading model: %s\n", err.what());
  1116. return false;
  1117. }
  1118. }
  1119. // evaluate the transformer
  1120. //
  1121. // - lctx: llama context
  1122. // - tokens: new batch of tokens to process
  1123. // - embd embeddings input
  1124. // - n_tokens number of tokens
  1125. // - n_past: the context size so far
  1126. // - n_threads: number of threads to use
  1127. //
  1128. static bool llama_eval_internal(
  1129. llama_context & lctx,
  1130. const llama_token * tokens,
  1131. const float * embd,
  1132. int n_tokens,
  1133. int n_past,
  1134. int n_threads,
  1135. const char * cgraph_fname) {
  1136. LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
  1137. #ifdef GGML_USE_MPI
  1138. ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  1139. #endif
  1140. const int64_t t_start_us = ggml_time_us();
  1141. const int N = n_tokens;
  1142. const auto & model = lctx.model;
  1143. const auto & hparams = model.hparams;
  1144. const auto & kv_self = lctx.kv_self;
  1145. LLAMA_ASSERT(!!kv_self.ctx);
  1146. const int n_embd = hparams.n_embd;
  1147. const int n_layer = hparams.n_layer;
  1148. const int n_ctx = hparams.n_ctx;
  1149. const int n_head = hparams.n_head;
  1150. const int n_vocab = hparams.n_vocab;
  1151. const int n_rot = hparams.n_embd/hparams.n_head;
  1152. const int n_gpu_layers = model.n_gpu_layers;
  1153. const float freq_base = hparams.rope_freq_base;
  1154. const float freq_scale = hparams.rope_freq_scale;
  1155. auto & mem_per_token = lctx.mem_per_token;
  1156. auto & buf_compute = lctx.buf_compute;
  1157. struct ggml_init_params params = {
  1158. /*.mem_size =*/ buf_compute.size,
  1159. /*.mem_buffer =*/ buf_compute.addr,
  1160. /*.no_alloc =*/ false,
  1161. };
  1162. struct ggml_context * ctx0 = ggml_init(params);
  1163. ggml_cgraph gf = {};
  1164. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1165. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1166. n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1167. struct ggml_tensor * cur;
  1168. struct ggml_tensor * inpL;
  1169. if (tokens) {
  1170. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1171. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  1172. ggml_set_name(inp_tokens, "inp_tokens");
  1173. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  1174. } else {
  1175. #ifdef GGML_USE_MPI
  1176. GGML_ASSERT(false && "not implemented");
  1177. #endif
  1178. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  1179. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  1180. }
  1181. const int i_gpu_start = n_layer - n_gpu_layers;
  1182. (void) i_gpu_start;
  1183. // offload functions set the tensor output backend to GPU
  1184. // tensors are GPU-accelerated if any input or the output has been offloaded
  1185. //
  1186. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  1187. // in that case ggml_cuda_assign_buffers has no effect
  1188. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  1189. offload_func_t offload_func_kq = llama_nop;
  1190. offload_func_t offload_func_v = llama_nop;
  1191. #ifdef GGML_USE_CUBLAS
  1192. if (n_gpu_layers > n_layer) {
  1193. offload_func_nr = ggml_cuda_assign_buffers;
  1194. }
  1195. if (n_gpu_layers > n_layer + 1) {
  1196. offload_func_v = ggml_cuda_assign_buffers;
  1197. }
  1198. if (n_gpu_layers > n_layer + 2) {
  1199. offload_func_kq = ggml_cuda_assign_buffers;
  1200. }
  1201. #endif // GGML_USE_CUBLAS
  1202. for (int il = 0; il < n_layer; ++il) {
  1203. ggml_format_name(inpL, "layer_inp_%d", il);
  1204. offload_func_t offload_func = llama_nop;
  1205. #ifdef GGML_USE_CUBLAS
  1206. if (il >= i_gpu_start) {
  1207. offload_func = ggml_cuda_assign_buffers;
  1208. }
  1209. #endif // GGML_USE_CUBLAS
  1210. struct ggml_tensor * inpSA = inpL;
  1211. lctx.use_buf(ctx0, 0);
  1212. // norm
  1213. {
  1214. cur = ggml_rms_norm(ctx0, inpL);
  1215. offload_func(cur);
  1216. ggml_set_name(cur, "rms_norm_0");
  1217. // cur = cur*attention_norm(broadcasted)
  1218. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1219. offload_func(cur);
  1220. ggml_set_name(cur, "attention_norm_0");
  1221. }
  1222. // self-attention
  1223. {
  1224. // compute Q and K and RoPE them
  1225. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  1226. offload_func_kq(tmpk);
  1227. ggml_set_name(tmpk, "tmpk");
  1228. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  1229. offload_func_kq(tmpq);
  1230. ggml_set_name(tmpq, "tmpq");
  1231. struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
  1232. offload_func_kq(Kcur);
  1233. ggml_set_name(Kcur, "Kcur");
  1234. struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
  1235. offload_func_kq(Qcur);
  1236. ggml_set_name(Qcur, "Qcur");
  1237. // store key and value to memory
  1238. {
  1239. // compute the transposed [N, n_embd] V matrix
  1240. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  1241. offload_func_v(tmpv);
  1242. ggml_set_name(tmpv, "tmpv");
  1243. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
  1244. offload_func_v(Vcur);
  1245. ggml_set_name(Vcur, "Vcur");
  1246. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1247. offload_func_kq(k);
  1248. ggml_set_name(k, "k");
  1249. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1250. ( n_ctx)*ggml_element_size(kv_self.v),
  1251. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1252. offload_func_v(v);
  1253. ggml_set_name(v, "v");
  1254. // important: storing RoPE-ed version of K in the KV cache!
  1255. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1256. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1257. }
  1258. struct ggml_tensor * Q =
  1259. ggml_permute(ctx0,
  1260. Qcur,
  1261. 0, 2, 1, 3);
  1262. offload_func_kq(Q);
  1263. ggml_set_name(Q, "Q");
  1264. struct ggml_tensor * K =
  1265. ggml_permute(ctx0,
  1266. ggml_reshape_3d(ctx0,
  1267. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1268. n_embd/n_head, n_head, n_past + N),
  1269. 0, 2, 1, 3);
  1270. offload_func_kq(K);
  1271. ggml_set_name(K, "K");
  1272. // K * Q
  1273. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1274. offload_func_kq(KQ);
  1275. ggml_set_name(KQ, "KQ");
  1276. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1277. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1278. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1279. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1280. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1281. offload_func_kq(KQ_scaled);
  1282. ggml_set_name(KQ_scaled, "KQ_scaled");
  1283. // KQ_masked = mask_past(KQ_scaled)
  1284. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1285. offload_func_kq(KQ_masked);
  1286. ggml_set_name(KQ_masked, "KQ_masked");
  1287. // KQ = soft_max(KQ_masked)
  1288. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1289. offload_func_v(KQ_soft_max);
  1290. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1291. // split cached V into n_head heads
  1292. struct ggml_tensor * V =
  1293. ggml_view_3d(ctx0, kv_self.v,
  1294. n_past + N, n_embd/n_head, n_head,
  1295. n_ctx*ggml_element_size(kv_self.v),
  1296. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1297. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1298. offload_func_v(V);
  1299. ggml_set_name(V, "V");
  1300. #if 1
  1301. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1302. offload_func_v(KQV);
  1303. ggml_set_name(KQV, "KQV");
  1304. #else
  1305. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1306. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1307. // is there a better way?
  1308. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1309. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1310. #endif
  1311. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1312. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1313. offload_func_v(KQV_merged);
  1314. ggml_set_name(KQV_merged, "KQV_merged");
  1315. // cur = KQV_merged.contiguous().view(n_embd, N)
  1316. cur = ggml_cpy(ctx0,
  1317. KQV_merged,
  1318. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1319. offload_func_v(cur);
  1320. ggml_set_name(cur, "KQV_merged_contiguous");
  1321. // projection (no bias)
  1322. cur = ggml_mul_mat(ctx0,
  1323. model.layers[il].wo,
  1324. cur);
  1325. offload_func(cur);
  1326. ggml_set_name(cur, "result_wo");
  1327. }
  1328. lctx.use_buf(ctx0, 1);
  1329. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1330. offload_func(inpFF);
  1331. ggml_set_name(inpFF, "inpFF");
  1332. // feed-forward network
  1333. {
  1334. // norm
  1335. {
  1336. cur = ggml_rms_norm(ctx0, inpFF);
  1337. offload_func(cur);
  1338. ggml_set_name(cur, "rms_norm_1");
  1339. // cur = cur*ffn_norm(broadcasted)
  1340. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1341. offload_func(cur);
  1342. ggml_set_name(cur, "ffn_norm");
  1343. }
  1344. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1345. model.layers[il].w3,
  1346. cur);
  1347. offload_func(tmp);
  1348. ggml_set_name(tmp, "result_w3");
  1349. cur = ggml_mul_mat(ctx0,
  1350. model.layers[il].w1,
  1351. cur);
  1352. offload_func(cur);
  1353. ggml_set_name(cur, "result_w1");
  1354. // SILU activation
  1355. cur = ggml_silu(ctx0, cur);
  1356. offload_func(cur);
  1357. ggml_set_name(cur, "silu");
  1358. cur = ggml_mul(ctx0, cur, tmp);
  1359. offload_func(cur);
  1360. ggml_set_name(cur, "silu_x_result_w3");
  1361. cur = ggml_mul_mat(ctx0,
  1362. model.layers[il].w2,
  1363. cur);
  1364. offload_func(cur);
  1365. ggml_set_name(cur, "result_w2");
  1366. }
  1367. cur = ggml_add(ctx0, cur, inpFF);
  1368. offload_func(cur);
  1369. ggml_set_name(cur, "inpFF_+_result_w2");
  1370. // input for next layer
  1371. inpL = cur;
  1372. }
  1373. lctx.use_buf(ctx0, 0);
  1374. // used at the end to optionally extract the embeddings
  1375. struct ggml_tensor * embeddings = NULL;
  1376. // norm
  1377. {
  1378. cur = ggml_rms_norm(ctx0, inpL);
  1379. offload_func_nr(cur);
  1380. ggml_set_name(cur, "rms_norm_2");
  1381. // cur = cur*norm(broadcasted)
  1382. cur = ggml_mul(ctx0, cur, model.norm);
  1383. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  1384. ggml_set_name(cur, "result_norm");
  1385. embeddings = cur;
  1386. }
  1387. // lm_head
  1388. cur = ggml_mul_mat(ctx0, model.output, cur);
  1389. ggml_set_name(cur, "result_output");
  1390. lctx.use_buf(ctx0, -1);
  1391. // logits -> probs
  1392. //cur = ggml_soft_max_inplace(ctx0, cur);
  1393. // run the computation
  1394. ggml_build_forward_expand(&gf, cur);
  1395. #if GGML_USE_MPI
  1396. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer);
  1397. #endif
  1398. #ifdef GGML_USE_METAL
  1399. if (lctx.ctx_metal && N == 1) {
  1400. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  1401. ggml_metal_graph_compute(lctx.ctx_metal, &gf);
  1402. ggml_metal_get_tensor (lctx.ctx_metal, cur);
  1403. } else {
  1404. // IMPORTANT:
  1405. // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
  1406. // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
  1407. // coprocessor.
  1408. //
  1409. // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
  1410. // But for now, we have focused only on Matrix x Vector Metal multiplication.
  1411. //
  1412. // TODO: avoid these syncs via shared memory (ref #1696)
  1413. //
  1414. if (lctx.ctx_metal) {
  1415. // We need to sync the GPU KV cache with the CPU KV cache
  1416. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
  1417. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
  1418. }
  1419. ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
  1420. }
  1421. #else
  1422. ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
  1423. #endif
  1424. #if GGML_USE_MPI
  1425. ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer);
  1426. #endif
  1427. // update kv token count
  1428. lctx.kv_self.n = n_past + N;
  1429. struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1];
  1430. if (cgraph_fname) {
  1431. ggml_graph_export(&gf, cgraph_fname);
  1432. }
  1433. #ifdef GGML_PERF
  1434. // print timing information per ggml operation (for debugging purposes)
  1435. // requires GGML_PERF to be defined
  1436. ggml_graph_print(&gf);
  1437. #endif
  1438. // plot the computation graph in dot format (for debugging purposes)
  1439. //if (n_past%100 == 0) {
  1440. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1441. //}
  1442. // extract logits
  1443. {
  1444. auto & logits_out = lctx.logits;
  1445. if (lctx.logits_all) {
  1446. logits_out.resize(n_vocab * N);
  1447. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
  1448. } else {
  1449. // return result for just the last token
  1450. logits_out.resize(n_vocab);
  1451. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1452. }
  1453. }
  1454. // extract embeddings
  1455. if (!lctx.embedding.empty()) {
  1456. auto & embedding_out = lctx.embedding;
  1457. embedding_out.resize(n_embd);
  1458. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1459. }
  1460. if (mem_per_token == 0) {
  1461. mem_per_token = ggml_used_mem(ctx0)/N;
  1462. }
  1463. #if 0
  1464. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1465. ggml_used_mem(ctx0)/1024.0/1024.0,
  1466. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1467. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1468. #endif
  1469. ggml_free(ctx0);
  1470. // measure the performance only for the single-token evals
  1471. if (N == 1) {
  1472. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1473. lctx.n_eval++;
  1474. }
  1475. else if (N > 1) {
  1476. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1477. lctx.n_p_eval += N;
  1478. }
  1479. return true;
  1480. }
  1481. //
  1482. // tokenizer
  1483. //
  1484. static size_t utf8_len(char src) {
  1485. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1486. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1487. return lookup[highbits];
  1488. }
  1489. struct llama_sp_symbol {
  1490. using index = int;
  1491. index prev;
  1492. index next;
  1493. const char * text;
  1494. size_t n;
  1495. };
  1496. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1497. struct llama_sp_bigram {
  1498. struct comparator {
  1499. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1500. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1501. }
  1502. };
  1503. using queue_storage = std::vector<llama_sp_bigram>;
  1504. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1505. llama_sp_symbol::index left;
  1506. llama_sp_symbol::index right;
  1507. float score;
  1508. size_t size;
  1509. };
  1510. // original implementation:
  1511. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1512. struct llama_tokenizer {
  1513. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1514. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1515. // split string into utf8 chars
  1516. int index = 0;
  1517. size_t offs = 0;
  1518. while (offs < text.size()) {
  1519. llama_sp_symbol sym;
  1520. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1521. sym.text = text.c_str() + offs;
  1522. sym.n = char_len;
  1523. offs += char_len;
  1524. sym.prev = index - 1;
  1525. sym.next = offs == text.size() ? -1 : index + 1;
  1526. index++;
  1527. symbols_.emplace_back(sym);
  1528. }
  1529. // seed the work queue with all possible 2-character tokens.
  1530. for (size_t i = 1; i < symbols_.size(); ++i) {
  1531. try_add_bigram(i - 1, i);
  1532. }
  1533. // keep substituting the highest frequency pairs for as long as we can.
  1534. while (!work_queue_.empty()) {
  1535. auto bigram = work_queue_.top();
  1536. work_queue_.pop();
  1537. auto & left_sym = symbols_[bigram.left];
  1538. auto & right_sym = symbols_[bigram.right];
  1539. // if one of the symbols already got merged, skip it.
  1540. if (left_sym.n == 0 || right_sym.n == 0 ||
  1541. left_sym.n + right_sym.n != bigram.size) {
  1542. continue;
  1543. }
  1544. // merge the right sym into the left one
  1545. left_sym.n += right_sym.n;
  1546. right_sym.n = 0;
  1547. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1548. // remove the right sym from the chain
  1549. left_sym.next = right_sym.next;
  1550. if (right_sym.next >= 0) {
  1551. symbols_[right_sym.next].prev = bigram.left;
  1552. }
  1553. // find more substitutions
  1554. try_add_bigram(left_sym.prev, bigram.left);
  1555. try_add_bigram(bigram.left, left_sym.next);
  1556. }
  1557. for (int i = 0; i != -1; i = symbols_[i].next) {
  1558. auto & symbol = symbols_[i];
  1559. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1560. if (token == vocab_.token_to_id.end()) {
  1561. // output any symbols that did not form tokens as bytes.
  1562. for (int j = 0; j < (int) symbol.n; ++j) {
  1563. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1564. output.push_back(token_id);
  1565. }
  1566. } else {
  1567. output.push_back((*token).second);
  1568. }
  1569. }
  1570. }
  1571. private:
  1572. void try_add_bigram(int left, int right) {
  1573. if (left == -1 || right == -1) {
  1574. return;
  1575. }
  1576. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1577. auto token = vocab_.token_to_id.find(text);
  1578. if (token == vocab_.token_to_id.end()) {
  1579. return;
  1580. }
  1581. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1582. return;
  1583. }
  1584. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1585. llama_sp_bigram bigram;
  1586. bigram.left = left;
  1587. bigram.right = right;
  1588. bigram.score = tok_score.score;
  1589. bigram.size = text.size();
  1590. work_queue_.push(bigram);
  1591. }
  1592. const llama_vocab & vocab_;
  1593. std::vector<llama_sp_symbol> symbols_;
  1594. llama_sp_bigram::queue work_queue_;
  1595. };
  1596. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1597. llama_tokenizer tokenizer(vocab);
  1598. std::vector<llama_vocab::id> output;
  1599. if (text.empty()) {
  1600. return output;
  1601. }
  1602. if (bos) {
  1603. output.push_back(llama_token_bos());
  1604. }
  1605. tokenizer.tokenize(text, output);
  1606. return output;
  1607. }
  1608. //
  1609. // sampling
  1610. //
  1611. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1612. assert(candidates->size > 0);
  1613. const int64_t t_start_sample_us = ggml_time_us();
  1614. // Sort the logits in descending order
  1615. if (!candidates->sorted) {
  1616. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1617. return a.logit > b.logit;
  1618. });
  1619. candidates->sorted = true;
  1620. }
  1621. float max_l = candidates->data[0].logit;
  1622. float cum_sum = 0.0f;
  1623. for (size_t i = 0; i < candidates->size; ++i) {
  1624. float p = expf(candidates->data[i].logit - max_l);
  1625. candidates->data[i].p = p;
  1626. cum_sum += p;
  1627. }
  1628. for (size_t i = 0; i < candidates->size; ++i) {
  1629. candidates->data[i].p /= cum_sum;
  1630. }
  1631. if (ctx) {
  1632. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1633. }
  1634. }
  1635. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1636. const int64_t t_start_sample_us = ggml_time_us();
  1637. k = std::max(k, (int) min_keep);
  1638. k = std::min(k, (int) candidates->size);
  1639. // Sort scores in descending order
  1640. if (!candidates->sorted) {
  1641. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1642. return a.logit > b.logit;
  1643. };
  1644. if (k == (int) candidates->size) {
  1645. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1646. } else {
  1647. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1648. }
  1649. candidates->sorted = true;
  1650. }
  1651. candidates->size = k;
  1652. if (ctx) {
  1653. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1654. }
  1655. }
  1656. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1657. if (p >= 1.0f) {
  1658. return;
  1659. }
  1660. llama_sample_softmax(ctx, candidates);
  1661. const int64_t t_start_sample_us = ggml_time_us();
  1662. // Compute the cumulative probabilities
  1663. float cum_sum = 0.0f;
  1664. size_t last_idx = candidates->size;
  1665. for (size_t i = 0; i < candidates->size; ++i) {
  1666. cum_sum += candidates->data[i].p;
  1667. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  1668. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  1669. if (cum_sum >= p && i + 1 >= min_keep) {
  1670. last_idx = i + 1;
  1671. break;
  1672. }
  1673. }
  1674. // Resize the output vector to keep only the top-p tokens
  1675. candidates->size = last_idx;
  1676. if (ctx) {
  1677. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1678. }
  1679. }
  1680. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1681. if (z >= 1.0f || candidates->size <= 2) {
  1682. return;
  1683. }
  1684. llama_sample_softmax(nullptr, candidates);
  1685. const int64_t t_start_sample_us = ggml_time_us();
  1686. // Compute the first and second derivatives
  1687. std::vector<float> first_derivatives(candidates->size - 1);
  1688. std::vector<float> second_derivatives(candidates->size - 2);
  1689. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1690. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1691. }
  1692. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1693. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1694. }
  1695. // Calculate absolute value of second derivatives
  1696. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1697. second_derivatives[i] = abs(second_derivatives[i]);
  1698. }
  1699. // Normalize the second derivatives
  1700. {
  1701. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1702. if (second_derivatives_sum > 1e-6f) {
  1703. for (float & value : second_derivatives) {
  1704. value /= second_derivatives_sum;
  1705. }
  1706. } else {
  1707. for (float & value : second_derivatives) {
  1708. value = 1.0f / second_derivatives.size();
  1709. }
  1710. }
  1711. }
  1712. float cum_sum = 0.0f;
  1713. size_t last_idx = candidates->size;
  1714. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1715. cum_sum += second_derivatives[i];
  1716. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1717. if (cum_sum > z && i >= min_keep) {
  1718. last_idx = i;
  1719. break;
  1720. }
  1721. }
  1722. // Resize the output vector to keep only the tokens above the tail location
  1723. candidates->size = last_idx;
  1724. if (ctx) {
  1725. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1726. }
  1727. }
  1728. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1729. // Reference implementation:
  1730. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1731. if (p >= 1.0f) {
  1732. return;
  1733. }
  1734. // Compute the softmax of logits and calculate entropy
  1735. llama_sample_softmax(nullptr, candidates);
  1736. const int64_t t_start_sample_us = ggml_time_us();
  1737. float entropy = 0.0f;
  1738. for (size_t i = 0; i < candidates->size; ++i) {
  1739. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1740. }
  1741. // Compute the absolute difference between negative log probability and entropy for each candidate
  1742. std::vector<float> shifted_scores;
  1743. for (size_t i = 0; i < candidates->size; ++i) {
  1744. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1745. shifted_scores.push_back(shifted_score);
  1746. }
  1747. // Sort tokens based on the shifted_scores and their corresponding indices
  1748. std::vector<size_t> indices(candidates->size);
  1749. std::iota(indices.begin(), indices.end(), 0);
  1750. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1751. return shifted_scores[a] < shifted_scores[b];
  1752. });
  1753. // Compute the cumulative probabilities
  1754. float cum_sum = 0.0f;
  1755. size_t last_idx = indices.size();
  1756. for (size_t i = 0; i < indices.size(); ++i) {
  1757. size_t idx = indices[i];
  1758. cum_sum += candidates->data[idx].p;
  1759. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1760. if (cum_sum > p && i >= min_keep - 1) {
  1761. last_idx = i + 1;
  1762. break;
  1763. }
  1764. }
  1765. // Resize the output vector to keep only the locally typical tokens
  1766. std::vector<llama_token_data> new_candidates;
  1767. for (size_t i = 0; i < last_idx; ++i) {
  1768. size_t idx = indices[i];
  1769. new_candidates.push_back(candidates->data[idx]);
  1770. }
  1771. // Replace the data in candidates with the new_candidates data
  1772. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1773. candidates->size = new_candidates.size();
  1774. if (ctx) {
  1775. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1776. }
  1777. }
  1778. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1779. const int64_t t_start_sample_us = ggml_time_us();
  1780. for (size_t i = 0; i < candidates_p->size; ++i) {
  1781. candidates_p->data[i].logit /= temp;
  1782. }
  1783. if (ctx) {
  1784. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1785. }
  1786. }
  1787. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1788. if (last_tokens_size == 0 || penalty == 1.0f) {
  1789. return;
  1790. }
  1791. const int64_t t_start_sample_us = ggml_time_us();
  1792. for (size_t i = 0; i < candidates->size; ++i) {
  1793. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1794. if (token_iter == last_tokens + last_tokens_size) {
  1795. continue;
  1796. }
  1797. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1798. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1799. if (candidates->data[i].logit <= 0) {
  1800. candidates->data[i].logit *= penalty;
  1801. } else {
  1802. candidates->data[i].logit /= penalty;
  1803. }
  1804. }
  1805. candidates->sorted = false;
  1806. if (ctx) {
  1807. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1808. }
  1809. }
  1810. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1811. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1812. return;
  1813. }
  1814. const int64_t t_start_sample_us = ggml_time_us();
  1815. // Create a frequency map to count occurrences of each token in last_tokens
  1816. std::unordered_map<llama_token, int> token_count;
  1817. for (size_t i = 0; i < last_tokens_size; ++i) {
  1818. token_count[last_tokens_p[i]]++;
  1819. }
  1820. // Apply frequency and presence penalties to the candidates
  1821. for (size_t i = 0; i < candidates->size; ++i) {
  1822. auto token_iter = token_count.find(candidates->data[i].id);
  1823. if (token_iter == token_count.end()) {
  1824. continue;
  1825. }
  1826. int count = token_iter->second;
  1827. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1828. }
  1829. candidates->sorted = false;
  1830. if (ctx) {
  1831. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1832. }
  1833. }
  1834. static void llama_log_softmax(float * array, size_t size) {
  1835. float max_l = *std::max_element(array, array + size);
  1836. float sum = 0.f;
  1837. for (size_t i = 0; i < size; ++i) {
  1838. float p = expf(array[i] - max_l);
  1839. sum += p;
  1840. array[i] = p;
  1841. }
  1842. for (size_t i = 0; i < size; ++i) {
  1843. array[i] = logf(array[i] / sum);
  1844. }
  1845. }
  1846. void llama_sample_classifier_free_guidance(
  1847. struct llama_context * ctx,
  1848. llama_token_data_array * candidates,
  1849. struct llama_context * guidance_ctx,
  1850. float scale,
  1851. float smooth_factor) {
  1852. int64_t t_start_sample_us = ggml_time_us();
  1853. assert(ctx);
  1854. auto n_vocab = llama_n_vocab(ctx);
  1855. assert(n_vocab == (int)candidates->size);
  1856. assert(!candidates->sorted);
  1857. std::vector<float> logits_base;
  1858. logits_base.reserve(candidates->size);
  1859. for (size_t i = 0; i < candidates->size; ++i) {
  1860. logits_base.push_back(candidates->data[i].logit);
  1861. }
  1862. llama_log_softmax(logits_base.data(), candidates->size);
  1863. float* logits_guidance = llama_get_logits(guidance_ctx);
  1864. llama_log_softmax(logits_guidance, n_vocab);
  1865. for (int i = 0; i < n_vocab; ++i) {
  1866. float logit_guidance = logits_guidance[i];
  1867. float logit_base = logits_base[i];
  1868. logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance;
  1869. }
  1870. llama_log_softmax(logits_guidance, n_vocab);
  1871. for (int i = 0; i < n_vocab; ++i) {
  1872. float logit_base = logits_base[i];
  1873. float logit_guidance = logits_guidance[i];
  1874. candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
  1875. }
  1876. if (ctx) {
  1877. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1878. }
  1879. }
  1880. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1881. assert(ctx);
  1882. auto N = float(llama_n_vocab(ctx));
  1883. int64_t t_start_sample_us;
  1884. t_start_sample_us = ggml_time_us();
  1885. llama_sample_softmax(nullptr, candidates);
  1886. // Estimate s_hat using the most probable m tokens
  1887. float s_hat = 0.0;
  1888. float sum_ti_bi = 0.0;
  1889. float sum_ti_sq = 0.0;
  1890. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1891. float t_i = logf(float(i + 2) / float(i + 1));
  1892. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1893. sum_ti_bi += t_i * b_i;
  1894. sum_ti_sq += t_i * t_i;
  1895. }
  1896. s_hat = sum_ti_bi / sum_ti_sq;
  1897. // Compute k from the estimated s_hat and target surprise value
  1898. float epsilon_hat = s_hat - 1;
  1899. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1900. // Sample the next word X using top-k sampling
  1901. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1902. if (ctx) {
  1903. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1904. }
  1905. llama_token X = llama_sample_token(ctx, candidates);
  1906. t_start_sample_us = ggml_time_us();
  1907. // Compute error as the difference between observed surprise and target surprise value
  1908. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1909. return candidate.id == X;
  1910. }));
  1911. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1912. float e = observed_surprise - tau;
  1913. // Update mu using the learning rate and error
  1914. *mu = *mu - eta * e;
  1915. if (ctx) {
  1916. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1917. }
  1918. return X;
  1919. }
  1920. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1921. int64_t t_start_sample_us;
  1922. t_start_sample_us = ggml_time_us();
  1923. llama_sample_softmax(ctx, candidates);
  1924. // Truncate the words with surprise values greater than mu
  1925. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1926. return -log2f(candidate.p) > *mu;
  1927. }));
  1928. if (candidates->size == 0) {
  1929. candidates->size = 1;
  1930. }
  1931. if (ctx) {
  1932. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1933. }
  1934. // Normalize the probabilities of the remaining words
  1935. llama_sample_softmax(ctx, candidates);
  1936. // Sample the next word X from the remaining words
  1937. llama_token X = llama_sample_token(ctx, candidates);
  1938. t_start_sample_us = ggml_time_us();
  1939. // Compute error as the difference between observed surprise and target surprise value
  1940. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1941. return candidate.id == X;
  1942. }));
  1943. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1944. float e = observed_surprise - tau;
  1945. // Update mu using the learning rate and error
  1946. *mu = *mu - eta * e;
  1947. if (ctx) {
  1948. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1949. }
  1950. return X;
  1951. }
  1952. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1953. const int64_t t_start_sample_us = ggml_time_us();
  1954. // Find max element
  1955. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1956. return a.logit < b.logit;
  1957. });
  1958. llama_token result = max_iter->id;
  1959. if (ctx) {
  1960. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1961. ctx->n_sample++;
  1962. }
  1963. return result;
  1964. }
  1965. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1966. assert(ctx);
  1967. const int64_t t_start_sample_us = ggml_time_us();
  1968. llama_sample_softmax(nullptr, candidates);
  1969. std::vector<float> probs;
  1970. probs.reserve(candidates->size);
  1971. for (size_t i = 0; i < candidates->size; ++i) {
  1972. probs.push_back(candidates->data[i].p);
  1973. }
  1974. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1975. auto & rng = ctx->rng;
  1976. int idx = dist(rng);
  1977. llama_token result = candidates->data[idx].id;
  1978. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1979. ctx->n_sample++;
  1980. return result;
  1981. }
  1982. //
  1983. // quantization
  1984. //
  1985. static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
  1986. if (output.size < nelements * sizeof(float)) {
  1987. output.resize(nelements * sizeof(float));
  1988. }
  1989. float * f32_output = (float *) output.addr;
  1990. ggml_type_traits_t qtype;
  1991. if (ggml_is_quantized(tensor.type)) {
  1992. qtype = ggml_internal_get_type_traits(tensor.type);
  1993. if (qtype.to_float == NULL) {
  1994. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
  1995. }
  1996. } else if (tensor.type != GGML_TYPE_F16) {
  1997. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
  1998. }
  1999. if (nthread < 2) {
  2000. if (tensor.type == GGML_TYPE_F16) {
  2001. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
  2002. } else if (ggml_is_quantized(tensor.type)) {
  2003. qtype.to_float(tensor.data, f32_output, nelements);
  2004. } else {
  2005. LLAMA_ASSERT(false); // unreachable
  2006. }
  2007. return;
  2008. }
  2009. auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
  2010. auto block_size_bytes = ggml_type_size(tensor.type);
  2011. LLAMA_ASSERT(nelements % block_size == 0);
  2012. auto nblocks = nelements / block_size;
  2013. auto blocks_per_thread = nblocks / nthread;
  2014. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  2015. std::vector<std::thread> workers;
  2016. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  2017. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  2018. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  2019. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  2020. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  2021. if (typ == GGML_TYPE_F16) {
  2022. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  2023. } else {
  2024. qtype.to_float(inbuf, outbuf, nels);
  2025. }
  2026. };
  2027. workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
  2028. in_buff_offs += thr_block_bytes;
  2029. out_buff_offs += thr_elems;
  2030. }
  2031. for (auto & worker : workers) {
  2032. worker.join();
  2033. }
  2034. }
  2035. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  2036. ggml_type quantized_type;
  2037. llama_ftype ftype = params->ftype;
  2038. int nthread = params->nthread;
  2039. switch (params->ftype) {
  2040. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  2041. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  2042. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  2043. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  2044. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  2045. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  2046. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  2047. #ifdef GGML_USE_K_QUANTS
  2048. // K-quants
  2049. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  2050. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  2051. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  2052. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  2053. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  2054. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  2055. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  2056. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  2057. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  2058. #endif
  2059. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  2060. }
  2061. if (nthread <= 0) {
  2062. nthread = std::thread::hardware_concurrency();
  2063. }
  2064. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
  2065. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
  2066. #ifdef GGML_USE_K_QUANTS
  2067. int n_attention_wv = 0;
  2068. int n_feed_forward_w2 = 0;
  2069. for (auto& tensor : model_loader->tensors_map.tensors) {
  2070. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2071. ++n_attention_wv;
  2072. }
  2073. else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2074. ++n_feed_forward_w2;
  2075. }
  2076. }
  2077. int i_attention_wv = 0;
  2078. int i_feed_forward_w2 = 0;
  2079. #endif
  2080. size_t total_size_org = 0;
  2081. size_t total_size_new = 0;
  2082. std::vector<int64_t> hist_all(1 << 4, 0);
  2083. std::vector<std::thread> workers;
  2084. std::mutex mutex;
  2085. auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
  2086. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  2087. };
  2088. size_t idx = 0;
  2089. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  2090. llama_buffer read_data;
  2091. read_data.resize(tensor.size);
  2092. tensor.data = read_data.addr;
  2093. model_loader->load_data_for(tensor);
  2094. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  2095. ++idx, model_loader->tensors_map.tensors.size(),
  2096. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  2097. ggml_type_name(tensor.type));
  2098. // This used to be a regex, but <regex> has an extreme cost to compile times.
  2099. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  2100. // quantize only 2D tensors
  2101. quantize &= (tensor.ne.size() == 2);
  2102. quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
  2103. quantize &= quantized_type != tensor.type;
  2104. enum ggml_type new_type;
  2105. void * new_data;
  2106. size_t new_size;
  2107. llama_buffer work;
  2108. if (!quantize) {
  2109. new_type = tensor.type;
  2110. new_data = tensor.data;
  2111. new_size = tensor.size;
  2112. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  2113. } else {
  2114. new_type = quantized_type;
  2115. #ifdef GGML_USE_K_QUANTS
  2116. bool convert_incompatible_tensor = false;
  2117. if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
  2118. quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
  2119. int nx = tensor.ne.at(0);
  2120. int ny = tensor.ne.at(1);
  2121. if (nx % QK_K != 0 || ny % QK_K != 0) {
  2122. fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
  2123. convert_incompatible_tensor = true;
  2124. }
  2125. }
  2126. if (tensor.name == "output.weight") {
  2127. int nx = tensor.ne.at(0);
  2128. int ny = tensor.ne.at(1);
  2129. if (nx % QK_K == 0 && ny % QK_K == 0) {
  2130. new_type = GGML_TYPE_Q6_K;
  2131. }
  2132. } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2133. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2134. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2135. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2136. use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  2137. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  2138. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  2139. ++i_attention_wv;
  2140. } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2141. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2142. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2143. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2144. use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  2145. //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
  2146. ++i_feed_forward_w2;
  2147. } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
  2148. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2149. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2150. }
  2151. if (convert_incompatible_tensor) {
  2152. if (tensor.name == "output.weight") {
  2153. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  2154. fprintf(stderr, "F16 will be used for this tensor instead.\n");
  2155. } else if (tensor.name == "tok_embeddings.weight") {
  2156. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  2157. fprintf(stderr, "Q4_0 will be used for this tensor instead.\n");
  2158. } else {
  2159. throw std::runtime_error("Unsupported tensor size encountered\n");
  2160. }
  2161. }
  2162. #endif
  2163. float * f32_data;
  2164. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  2165. llama_buffer f32_conv_buf;
  2166. if (tensor.type == GGML_TYPE_F32) {
  2167. f32_data = (float *) tensor.data;
  2168. } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
  2169. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
  2170. } else {
  2171. llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
  2172. f32_data = (float *) f32_conv_buf.addr;
  2173. }
  2174. printf("quantizing .. ");
  2175. fflush(stdout);
  2176. work.resize(nelements * 4); // upper bound on size
  2177. new_data = work.addr;
  2178. std::vector<int64_t> hist_cur(1 << 4, 0);
  2179. int chunk_size = 32 * 512;
  2180. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  2181. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  2182. if (nthread_use < 2) {
  2183. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  2184. } else {
  2185. size_t counter = 0;
  2186. new_size = 0;
  2187. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  2188. std::vector<int64_t> local_hist;
  2189. size_t local_size = 0;
  2190. while (true) {
  2191. std::unique_lock<std::mutex> lock(mutex);
  2192. size_t first = counter; counter += chunk_size;
  2193. if (first >= nelements) {
  2194. if (!local_hist.empty()) {
  2195. for (int j=0; j<int(local_hist.size()); ++j) {
  2196. hist_cur[j] += local_hist[j];
  2197. }
  2198. new_size += local_size;
  2199. }
  2200. break;
  2201. }
  2202. lock.unlock();
  2203. size_t last = std::min(nelements, first + chunk_size);
  2204. if (local_hist.empty()) {
  2205. local_hist.resize(hist_cur.size(), 0);
  2206. }
  2207. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  2208. }
  2209. };
  2210. if ((int) workers.size() < nthread_use - 1) {
  2211. workers.resize(nthread_use - 1);
  2212. }
  2213. for (int it = 0; it < nthread_use - 1; ++it) {
  2214. workers[it] = std::thread(compute);
  2215. }
  2216. compute();
  2217. for (int it = 0; it < nthread_use - 1; ++it) {
  2218. workers[it].join();
  2219. }
  2220. }
  2221. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  2222. int64_t tot_count = 0;
  2223. for (size_t i = 0; i < hist_cur.size(); i++) {
  2224. hist_all[i] += hist_cur[i];
  2225. tot_count += hist_cur[i];
  2226. }
  2227. if (tot_count > 0) {
  2228. for (size_t i = 0; i < hist_cur.size(); i++) {
  2229. printf("%5.3f ", hist_cur[i] / float(nelements));
  2230. }
  2231. }
  2232. printf("\n");
  2233. }
  2234. total_size_org += tensor.size;
  2235. total_size_new += new_size;
  2236. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  2237. }
  2238. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  2239. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  2240. {
  2241. int64_t sum_all = 0;
  2242. for (size_t i = 0; i < hist_all.size(); i++) {
  2243. sum_all += hist_all[i];
  2244. }
  2245. if (sum_all > 0) {
  2246. printf("%s: hist: ", __func__);
  2247. for (size_t i = 0; i < hist_all.size(); i++) {
  2248. printf("%5.3f ", hist_all[i] / float(sum_all));
  2249. }
  2250. printf("\n");
  2251. }
  2252. }
  2253. }
  2254. //
  2255. // interface implementation
  2256. //
  2257. struct llama_model * llama_load_model_from_file(
  2258. const char * path_model,
  2259. struct llama_context_params params) {
  2260. ggml_time_init();
  2261. llama_model * model = new llama_model;
  2262. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2263. if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
  2264. params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
  2265. memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
  2266. params.progress_callback_user_data)) {
  2267. delete model;
  2268. fprintf(stderr, "%s: failed to load model\n", __func__);
  2269. return nullptr;
  2270. }
  2271. return model;
  2272. }
  2273. void llama_free_model(struct llama_model * model) {
  2274. delete model;
  2275. }
  2276. struct llama_context * llama_new_context_with_model(
  2277. struct llama_model * model,
  2278. struct llama_context_params params) {
  2279. if (!model) {
  2280. return nullptr;
  2281. }
  2282. llama_context * ctx = new llama_context(*model);
  2283. if (params.seed == LLAMA_DEFAULT_SEED) {
  2284. params.seed = time(NULL);
  2285. }
  2286. unsigned cur_percentage = 0;
  2287. if (params.progress_callback == NULL) {
  2288. params.progress_callback_user_data = &cur_percentage;
  2289. params.progress_callback = [](float progress, void * ctx) {
  2290. unsigned * cur_percentage_p = (unsigned *) ctx;
  2291. unsigned percentage = (unsigned) (100 * progress);
  2292. while (percentage > *cur_percentage_p) {
  2293. *cur_percentage_p = percentage;
  2294. fprintf(stderr, ".");
  2295. fflush(stderr);
  2296. if (percentage >= 100) {
  2297. fprintf(stderr, "\n");
  2298. }
  2299. }
  2300. };
  2301. }
  2302. ctx->rng = std::mt19937(params.seed);
  2303. ctx->logits_all = params.logits_all;
  2304. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2305. // reserve memory for context buffers
  2306. if (!params.vocab_only) {
  2307. if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  2308. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  2309. llama_free(ctx);
  2310. return nullptr;
  2311. }
  2312. {
  2313. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  2314. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  2315. }
  2316. const auto & hparams = ctx->model.hparams;
  2317. // resized during inference
  2318. if (params.logits_all) {
  2319. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  2320. } else {
  2321. ctx->logits.reserve(hparams.n_vocab);
  2322. }
  2323. if (params.embedding){
  2324. ctx->embedding.resize(hparams.n_embd);
  2325. }
  2326. ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type));
  2327. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
  2328. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  2329. }
  2330. #ifdef GGML_USE_METAL
  2331. if (params.n_gpu_layers > 0) {
  2332. // this allocates all Metal resources and memory buffers
  2333. ctx->ctx_metal = ggml_metal_init(1);
  2334. void * data_ptr = NULL;
  2335. size_t data_size = 0;
  2336. if (params.use_mmap) {
  2337. data_ptr = ctx->model.mapping->addr;
  2338. data_size = ctx->model.mapping->size;
  2339. } else {
  2340. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  2341. data_size = ggml_get_mem_size (ctx->model.ctx);
  2342. }
  2343. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  2344. printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  2345. #define LLAMA_METAL_CHECK_BUF(result) \
  2346. if (!(result)) { \
  2347. fprintf(stderr, "%s: failed to add buffer\n", __func__); \
  2348. llama_free(ctx); \
  2349. return NULL; \
  2350. }
  2351. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  2352. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
  2353. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
  2354. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
  2355. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
  2356. #undef LLAMA_METAL_CHECK_BUF
  2357. }
  2358. #endif
  2359. #ifdef GGML_USE_MPI
  2360. ctx->ctx_mpi = ggml_mpi_init();
  2361. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  2362. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  2363. const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos());
  2364. while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  2365. llama_backend_free();
  2366. exit(1);
  2367. }
  2368. #endif
  2369. return ctx;
  2370. }
  2371. struct llama_context * llama_init_from_file(
  2372. const char * path_model,
  2373. struct llama_context_params params) {
  2374. struct llama_model * model = llama_load_model_from_file(path_model, params);
  2375. if (!model) {
  2376. return nullptr;
  2377. }
  2378. struct llama_context * ctx = llama_new_context_with_model(model, params);
  2379. ctx->model_owner = true;
  2380. return ctx;
  2381. }
  2382. void llama_free(struct llama_context * ctx) {
  2383. if (ctx->model_owner) {
  2384. delete &ctx->model;
  2385. }
  2386. delete ctx;
  2387. }
  2388. int llama_model_quantize(
  2389. const char * fname_inp,
  2390. const char * fname_out,
  2391. const llama_model_quantize_params *params) {
  2392. try {
  2393. llama_model_quantize_internal(fname_inp, fname_out, params);
  2394. return 0;
  2395. } catch (const std::exception & err) {
  2396. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
  2397. return 1;
  2398. }
  2399. }
  2400. int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
  2401. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  2402. const int64_t t_start_lora_us = ggml_time_us();
  2403. auto fin = std::ifstream(path_lora, std::ios::binary);
  2404. if (!fin) {
  2405. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  2406. return 1;
  2407. }
  2408. // verify magic and version
  2409. {
  2410. uint32_t magic;
  2411. fin.read((char *) &magic, sizeof(magic));
  2412. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  2413. fprintf(stderr, "%s: bad file magic\n", __func__);
  2414. return 1;
  2415. }
  2416. uint32_t format_version;
  2417. fin.read((char *) &format_version, sizeof(format_version));
  2418. if (format_version != 1) {
  2419. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  2420. return 1;
  2421. }
  2422. }
  2423. int32_t lora_r;
  2424. int32_t lora_alpha;
  2425. fin.read((char *) &lora_r, sizeof(lora_r));
  2426. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  2427. float scaling = (float)lora_alpha / (float)lora_r;
  2428. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  2429. // create a temporary ggml context to store the lora tensors
  2430. // todo: calculate size from biggest possible tensor
  2431. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  2432. struct ggml_init_params params;
  2433. params.mem_size = lora_buf.size();
  2434. params.mem_buffer = lora_buf.data();
  2435. params.no_alloc = false;
  2436. ggml_context * lora_ctx = ggml_init(params);
  2437. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  2438. // create a name -> tensor map of the model to accelerate lookups
  2439. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  2440. for (const auto & kv: model.tensors_by_name) {
  2441. model_tensors.insert(kv);
  2442. }
  2443. // load base model
  2444. std::unique_ptr<llama_model_loader> model_loader;
  2445. ggml_context * base_ctx = NULL;
  2446. llama_buffer base_buf;
  2447. if (path_base_model) {
  2448. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  2449. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  2450. size_t ctx_size;
  2451. size_t mmapped_size;
  2452. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  2453. base_buf.resize(ctx_size);
  2454. ggml_init_params base_params;
  2455. base_params.mem_size = base_buf.size;
  2456. base_params.mem_buffer = base_buf.addr;
  2457. base_params.no_alloc = model_loader->use_mmap;
  2458. base_ctx = ggml_init(base_params);
  2459. model_loader->ggml_ctx = base_ctx;
  2460. // maybe this should in llama_model_loader
  2461. if (model_loader->use_mmap) {
  2462. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa()));
  2463. }
  2464. }
  2465. // read tensors and apply
  2466. bool warned = false;
  2467. int n_tensors = 0;
  2468. std::vector<uint8_t> work_buffer;
  2469. while (true) {
  2470. int32_t n_dims;
  2471. int32_t length;
  2472. int32_t ftype;
  2473. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  2474. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  2475. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  2476. if (fin.eof()) {
  2477. break;
  2478. }
  2479. int32_t ne[2] = { 1, 1 };
  2480. for (int i = 0; i < n_dims; ++i) {
  2481. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  2482. }
  2483. std::string name;
  2484. {
  2485. char buf[1024];
  2486. fin.read(buf, length);
  2487. name = std::string(buf, length);
  2488. }
  2489. // check for lora suffix and get the type of tensor
  2490. const std::string lora_suffix = ".lora";
  2491. size_t pos = name.rfind(lora_suffix);
  2492. if (pos == std::string::npos) {
  2493. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2494. return 1;
  2495. }
  2496. std::string lora_type = name.substr(pos + lora_suffix.length());
  2497. std::string base_name = name;
  2498. base_name.erase(pos);
  2499. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2500. if (model_tensors.find(base_name) == model_tensors.end()) {
  2501. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2502. return 1;
  2503. }
  2504. // create ggml tensor
  2505. ggml_type wtype;
  2506. switch (ftype) {
  2507. case 0: wtype = GGML_TYPE_F32; break;
  2508. case 1: wtype = GGML_TYPE_F16; break;
  2509. default:
  2510. {
  2511. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2512. __func__, ftype);
  2513. return false;
  2514. }
  2515. }
  2516. ggml_tensor * lora_tensor;
  2517. if (n_dims == 2) {
  2518. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2519. }
  2520. else {
  2521. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2522. return 1;
  2523. }
  2524. ggml_set_name(lora_tensor, "lora_tensor");
  2525. // load tensor data
  2526. size_t offset = fin.tellg();
  2527. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2528. offset = (offset + 31) & -32;
  2529. fin.seekg(offset);
  2530. fin.read((char*)lora_tensor->data, tensor_data_size);
  2531. lora_tensors[name] = lora_tensor;
  2532. // check if we have both A and B tensors and apply
  2533. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2534. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2535. ggml_tensor * dest_t = model_tensors[base_name];
  2536. offload_func_t offload_func = llama_nop;
  2537. offload_func_t offload_func_force_inplace = llama_nop;
  2538. #ifdef GGML_USE_CUBLAS
  2539. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  2540. if (dest_t->type != GGML_TYPE_F16) {
  2541. throw std::runtime_error(format(
  2542. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  2543. }
  2544. offload_func = ggml_cuda_assign_buffers;
  2545. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  2546. }
  2547. #endif // GGML_USE_CUBLAS
  2548. ggml_tensor * base_t;
  2549. if (model_loader) {
  2550. // load from base model
  2551. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2552. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2553. return 1;
  2554. }
  2555. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2556. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2557. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2558. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2559. model_loader->load_data_for(lt);
  2560. lt.ggml_tensor->data = lt.data;
  2561. }
  2562. else {
  2563. base_t = dest_t;
  2564. }
  2565. if (ggml_is_quantized(base_t->type)) {
  2566. if (!warned) {
  2567. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2568. "use a f16 or f32 base model with --lora-base\n", __func__);
  2569. warned = true;
  2570. }
  2571. }
  2572. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2573. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  2574. ggml_set_name(loraA, "loraA");
  2575. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2576. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  2577. ggml_set_name(loraB, "loraB");
  2578. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2579. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2580. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2581. return 1;
  2582. }
  2583. // w = w + BA*s
  2584. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2585. offload_func(BA);
  2586. ggml_set_name(BA, "BA");
  2587. if (scaling != 1.0f) {
  2588. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2589. ggml_set_name(scale_tensor, "scale_tensor");
  2590. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2591. offload_func(BA);
  2592. ggml_set_name(BA, "BA_scaled");
  2593. }
  2594. ggml_tensor * r;
  2595. if (base_t == dest_t) {
  2596. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2597. offload_func_force_inplace(r);
  2598. ggml_set_name(r, "r_add_inplace");
  2599. }
  2600. else {
  2601. r = ggml_add(lora_ctx, base_t, BA);
  2602. offload_func(r);
  2603. ggml_set_name(r, "r_add");
  2604. r = ggml_cpy(lora_ctx, r, dest_t);
  2605. offload_func(r);
  2606. ggml_set_name(r, "r_cpy");
  2607. }
  2608. struct ggml_cgraph gf = ggml_build_forward(r);
  2609. ggml_graph_compute_helper(work_buffer, &gf, n_threads);
  2610. // we won't need these tensors again, reset the context to save memory
  2611. ggml_free(lora_ctx);
  2612. lora_ctx = ggml_init(params);
  2613. lora_tensors.clear();
  2614. n_tensors++;
  2615. if (n_tensors % 4 == 0) {
  2616. fprintf(stderr, ".");
  2617. }
  2618. }
  2619. }
  2620. // TODO: this should be in a destructor, it will leak on failure
  2621. ggml_free(lora_ctx);
  2622. if (base_ctx) {
  2623. ggml_free(base_ctx);
  2624. }
  2625. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2626. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2627. return 0;
  2628. }
  2629. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2630. try {
  2631. return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
  2632. } catch (const std::exception & err) {
  2633. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2634. return 1;
  2635. }
  2636. }
  2637. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
  2638. try {
  2639. return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
  2640. } catch (const std::exception & err) {
  2641. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2642. return 1;
  2643. }
  2644. }
  2645. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2646. return ctx->kv_self.n;
  2647. }
  2648. #define LLAMA_MAX_RNG_STATE (64*1024)
  2649. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  2650. if (seed == LLAMA_DEFAULT_SEED) {
  2651. seed = time(NULL);
  2652. }
  2653. ctx->rng.seed(seed);
  2654. }
  2655. // Returns the *maximum* size of the state
  2656. size_t llama_get_state_size(const struct llama_context * ctx) {
  2657. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2658. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2659. const size_t s_rng_size = sizeof(size_t);
  2660. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2661. const size_t s_logits_capacity = sizeof(size_t);
  2662. const size_t s_logits_size = sizeof(size_t);
  2663. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2664. const size_t s_embedding_size = sizeof(size_t);
  2665. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2666. const size_t s_kv_size = sizeof(size_t);
  2667. const size_t s_kv_ntok = sizeof(int);
  2668. const size_t s_kv = ctx->kv_self.buf.size;
  2669. const size_t s_total = (
  2670. + s_rng_size
  2671. + s_rng
  2672. + s_logits_capacity
  2673. + s_logits_size
  2674. + s_logits
  2675. + s_embedding_size
  2676. + s_embedding
  2677. + s_kv_size
  2678. + s_kv_ntok
  2679. + s_kv
  2680. );
  2681. return s_total;
  2682. }
  2683. // Copies the state to the specified destination address
  2684. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2685. uint8_t * out = dst;
  2686. // copy rng
  2687. {
  2688. std::stringstream rng_ss;
  2689. rng_ss << ctx->rng;
  2690. const size_t rng_size = rng_ss.str().size();
  2691. char rng_buf[LLAMA_MAX_RNG_STATE];
  2692. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2693. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2694. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2695. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2696. }
  2697. // copy logits
  2698. {
  2699. const size_t logits_cap = ctx->logits.capacity();
  2700. const size_t logits_size = ctx->logits.size();
  2701. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2702. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2703. if (logits_size) {
  2704. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2705. }
  2706. out += logits_cap * sizeof(float);
  2707. }
  2708. // copy embeddings
  2709. {
  2710. const size_t embedding_size = ctx->embedding.size();
  2711. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2712. if (embedding_size) {
  2713. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2714. out += embedding_size * sizeof(float);
  2715. }
  2716. }
  2717. // copy kv cache
  2718. {
  2719. const auto & kv_self = ctx->kv_self;
  2720. const auto & hparams = ctx->model.hparams;
  2721. const int n_layer = hparams.n_layer;
  2722. const int n_embd = hparams.n_embd;
  2723. const int n_ctx = hparams.n_ctx;
  2724. const size_t kv_size = kv_self.buf.size;
  2725. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2726. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2727. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2728. if (kv_size) {
  2729. const size_t elt_size = ggml_element_size(kv_self.k);
  2730. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  2731. ggml_cgraph gf{};
  2732. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2733. kout3d->data = out;
  2734. out += ggml_nbytes(kout3d);
  2735. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2736. vout3d->data = out;
  2737. out += ggml_nbytes(vout3d);
  2738. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2739. n_embd, kv_ntok, n_layer,
  2740. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2741. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2742. kv_ntok, n_embd, n_layer,
  2743. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2744. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2745. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2746. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  2747. ggml_free(cpy_ctx);
  2748. }
  2749. }
  2750. const size_t written = out - dst;
  2751. const size_t max_size = llama_get_state_size(ctx);
  2752. LLAMA_ASSERT(written <= max_size);
  2753. return written;
  2754. }
  2755. // Sets the state reading from the specified source address
  2756. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2757. uint8_t * inp = src;
  2758. // set rng
  2759. {
  2760. size_t rng_size;
  2761. char rng_buf[LLAMA_MAX_RNG_STATE];
  2762. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2763. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2764. std::stringstream rng_ss;
  2765. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2766. rng_ss >> ctx->rng;
  2767. LLAMA_ASSERT(rng_ss.fail() == false);
  2768. }
  2769. // set logits
  2770. {
  2771. size_t logits_cap;
  2772. size_t logits_size;
  2773. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2774. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2775. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2776. if (logits_size) {
  2777. ctx->logits.resize(logits_size);
  2778. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2779. }
  2780. inp += logits_cap * sizeof(float);
  2781. }
  2782. // set embeddings
  2783. {
  2784. size_t embedding_size;
  2785. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2786. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2787. if (embedding_size) {
  2788. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2789. inp += embedding_size * sizeof(float);
  2790. }
  2791. }
  2792. // set kv cache
  2793. {
  2794. const auto & kv_self = ctx->kv_self;
  2795. const auto & hparams = ctx->model.hparams;
  2796. const int n_layer = hparams.n_layer;
  2797. const int n_embd = hparams.n_embd;
  2798. const int n_ctx = hparams.n_ctx;
  2799. size_t kv_size;
  2800. int kv_ntok;
  2801. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2802. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2803. if (kv_size) {
  2804. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2805. const size_t elt_size = ggml_element_size(kv_self.k);
  2806. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  2807. ggml_cgraph gf{};
  2808. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2809. kin3d->data = (void *) inp;
  2810. inp += ggml_nbytes(kin3d);
  2811. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2812. vin3d->data = (void *) inp;
  2813. inp += ggml_nbytes(vin3d);
  2814. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2815. n_embd, kv_ntok, n_layer,
  2816. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2817. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2818. kv_ntok, n_embd, n_layer,
  2819. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2820. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2821. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2822. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  2823. ggml_free(cpy_ctx);
  2824. }
  2825. ctx->kv_self.n = kv_ntok;
  2826. }
  2827. const size_t nread = inp - src;
  2828. const size_t max_size = llama_get_state_size(ctx);
  2829. LLAMA_ASSERT(nread <= max_size);
  2830. return nread;
  2831. }
  2832. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2833. llama_file file(path_session, "rb");
  2834. // sanity checks
  2835. {
  2836. const uint32_t magic = file.read_u32();
  2837. const uint32_t version = file.read_u32();
  2838. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2839. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2840. return false;
  2841. }
  2842. llama_hparams session_hparams;
  2843. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2844. if (session_hparams != ctx->model.hparams) {
  2845. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2846. return false;
  2847. }
  2848. }
  2849. // load the prompt
  2850. {
  2851. const uint32_t n_token_count = file.read_u32();
  2852. if (n_token_count > n_token_capacity) {
  2853. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2854. return false;
  2855. }
  2856. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2857. *n_token_count_out = n_token_count;
  2858. }
  2859. // restore the context state
  2860. {
  2861. const size_t n_state_size_cur = file.size - file.tell();
  2862. const size_t n_state_size_max = llama_get_state_size(ctx);
  2863. if (n_state_size_cur > n_state_size_max) {
  2864. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2865. return false;
  2866. }
  2867. std::vector<uint8_t> state_data(n_state_size_max);
  2868. file.read_raw(state_data.data(), n_state_size_cur);
  2869. llama_set_state_data(ctx, state_data.data());
  2870. }
  2871. return true;
  2872. }
  2873. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2874. try {
  2875. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  2876. } catch (const std::exception & err) {
  2877. fprintf(stderr, "error loading session file: %s\n", err.what());
  2878. return false;
  2879. }
  2880. }
  2881. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2882. llama_file file(path_session, "wb");
  2883. file.write_u32(LLAMA_SESSION_MAGIC);
  2884. file.write_u32(LLAMA_SESSION_VERSION);
  2885. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2886. // save the prompt
  2887. file.write_u32((uint32_t) n_token_count);
  2888. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2889. // save the context state
  2890. {
  2891. const size_t n_state_size_max = llama_get_state_size(ctx);
  2892. std::vector<uint8_t> state_data(n_state_size_max);
  2893. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2894. file.write_raw(state_data.data(), n_state_size_cur);
  2895. }
  2896. return true;
  2897. }
  2898. int llama_eval(
  2899. struct llama_context * ctx,
  2900. const llama_token * tokens,
  2901. int n_tokens,
  2902. int n_past,
  2903. int n_threads) {
  2904. if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
  2905. fprintf(stderr, "%s: failed to eval\n", __func__);
  2906. return 1;
  2907. }
  2908. // get a more accurate load time, upon first eval
  2909. // TODO: fix this
  2910. if (!ctx->has_evaluated_once) {
  2911. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2912. ctx->has_evaluated_once = true;
  2913. }
  2914. return 0;
  2915. }
  2916. int llama_eval_embd(
  2917. struct llama_context * ctx,
  2918. const float * embd,
  2919. int n_tokens,
  2920. int n_past,
  2921. int n_threads) {
  2922. if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
  2923. fprintf(stderr, "%s: failed to eval\n", __func__);
  2924. return 1;
  2925. }
  2926. // get a more accurate load time, upon first eval
  2927. // TODO: fix this
  2928. if (!ctx->has_evaluated_once) {
  2929. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2930. ctx->has_evaluated_once = true;
  2931. }
  2932. return 0;
  2933. }
  2934. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  2935. const int n_batch = 1;
  2936. const int n_ctx = 512 - n_batch;
  2937. const std::vector<llama_token> tmp(n_batch, llama_token_bos());
  2938. if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
  2939. fprintf(stderr, "%s: failed to eval\n", __func__);
  2940. return 1;
  2941. }
  2942. return 0;
  2943. }
  2944. int llama_tokenize_with_model(
  2945. const struct llama_model * model,
  2946. const char * text,
  2947. llama_token * tokens,
  2948. int n_max_tokens,
  2949. bool add_bos) {
  2950. auto res = llama_tokenize(model->vocab, text, add_bos);
  2951. if (n_max_tokens < (int) res.size()) {
  2952. fprintf(stderr, "%s: too many tokens\n", __func__);
  2953. return -((int) res.size());
  2954. }
  2955. for (size_t i = 0; i < res.size(); i++) {
  2956. tokens[i] = res[i];
  2957. }
  2958. return res.size();
  2959. }
  2960. int llama_tokenize(
  2961. struct llama_context * ctx,
  2962. const char * text,
  2963. llama_token * tokens,
  2964. int n_max_tokens,
  2965. bool add_bos) {
  2966. return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos);
  2967. }
  2968. int llama_n_vocab_from_model(const struct llama_model * model) {
  2969. return model->vocab.id_to_token.size();
  2970. }
  2971. int llama_n_ctx_from_model(const struct llama_model * model) {
  2972. return model->hparams.n_ctx;
  2973. }
  2974. int llama_n_embd_from_model(const struct llama_model * model) {
  2975. return model->hparams.n_embd;
  2976. }
  2977. int llama_n_vocab(const struct llama_context * ctx) {
  2978. return ctx->model.vocab.id_to_token.size();
  2979. }
  2980. int llama_n_ctx(const struct llama_context * ctx) {
  2981. return ctx->model.hparams.n_ctx;
  2982. }
  2983. int llama_n_embd(const struct llama_context * ctx) {
  2984. return ctx->model.hparams.n_embd;
  2985. }
  2986. int llama_get_vocab_from_model(
  2987. const struct llama_model * model,
  2988. const char * * strings,
  2989. float * scores,
  2990. int capacity) {
  2991. int n = std::min(capacity, (int) model->vocab.id_to_token.size());
  2992. for (int i = 0; i<n; ++i) {
  2993. strings[i] = model->vocab.id_to_token[i].tok.c_str();
  2994. scores[i] = model->vocab.id_to_token[i].score;
  2995. }
  2996. return n;
  2997. }
  2998. int llama_get_vocab(
  2999. const struct llama_context * ctx,
  3000. const char * * strings,
  3001. float * scores,
  3002. int capacity) {
  3003. return llama_get_vocab_from_model(&ctx->model, strings, scores, capacity);
  3004. }
  3005. float * llama_get_logits(struct llama_context * ctx) {
  3006. return ctx->logits.data();
  3007. }
  3008. float * llama_get_embeddings(struct llama_context * ctx) {
  3009. return ctx->embedding.data();
  3010. }
  3011. const char * llama_token_to_str_with_model(const struct llama_model * model, llama_token token) {
  3012. if (token >= llama_n_vocab_from_model(model)) {
  3013. return nullptr;
  3014. }
  3015. return model->vocab.id_to_token[token].tok.c_str();
  3016. }
  3017. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  3018. return llama_token_to_str_with_model(&ctx->model, token);
  3019. }
  3020. llama_token llama_token_bos() {
  3021. return 1;
  3022. }
  3023. llama_token llama_token_eos() {
  3024. return 2;
  3025. }
  3026. llama_token llama_token_nl() {
  3027. return 13;
  3028. }
  3029. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  3030. struct llama_timings result = {
  3031. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  3032. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  3033. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  3034. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  3035. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  3036. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  3037. /*.n_sample =*/ std::max(1, ctx->n_sample),
  3038. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  3039. /*.n_eval =*/ std::max(1, ctx->n_eval),
  3040. };
  3041. return result;
  3042. }
  3043. void llama_print_timings(struct llama_context * ctx) {
  3044. const llama_timings timings = llama_get_timings(ctx);
  3045. fprintf(stderr, "\n");
  3046. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
  3047. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  3048. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  3049. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  3050. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  3051. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  3052. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  3053. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  3054. }
  3055. void llama_reset_timings(struct llama_context * ctx) {
  3056. ctx->t_start_us = ggml_time_us();
  3057. ctx->t_sample_us = ctx->n_sample = 0;
  3058. ctx->t_eval_us = ctx->n_eval = 0;
  3059. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  3060. }
  3061. const char * llama_print_system_info(void) {
  3062. static std::string s;
  3063. s = "";
  3064. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  3065. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  3066. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  3067. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  3068. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  3069. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  3070. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  3071. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  3072. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  3073. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  3074. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  3075. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  3076. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  3077. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  3078. return s.c_str();
  3079. }
  3080. // For internal test use
  3081. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  3082. return ctx->model.tensors_by_name;
  3083. }