| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- #include "upscale.cuh"
- static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
- // blockIdx.z: idx of ne02*ne03
- // blockIdx.y: idx of ne01*scale_factor, aka ne1
- // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
- // ne00xne01: ne00 * ne01
- int ne0 = ne00 * scale_factor;
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int i00 = nidx / scale_factor;
- int i01 = blockIdx.y / scale_factor;
- int offset_src =
- i00 +
- i01 * ne00 +
- blockIdx.z * ne00xne01;
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- }
- static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
- const int scale_factor, cudaStream_t stream) {
- int ne0 = (ne00 * scale_factor);
- int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
- dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
- upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
- }
- void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src0_d = (const float *)src0->data;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- const int scale_factor = dst->op_params[0];
- upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
- }
|