tensor_mapping.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. ),
  23. # Token type embeddings
  24. MODEL_TENSOR.TOKEN_TYPES: (
  25. "embeddings.token_type_embeddings", # bert nomic-bert
  26. ),
  27. # Normalization of token embeddings
  28. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  29. "word_embeddings_layernorm", # bloom
  30. "embeddings.LayerNorm", # bert
  31. "emb_ln", # nomic-bert
  32. ),
  33. # Position embeddings
  34. MODEL_TENSOR.POS_EMBD: (
  35. "transformer.wpe", # gpt2
  36. "embeddings.position_embeddings", # bert
  37. "wpe", # gpt2
  38. ),
  39. # Output
  40. MODEL_TENSOR.OUTPUT: (
  41. "embed_out", # gptneox
  42. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba
  43. "output", # llama-pth bloom internlm2
  44. "word_embeddings_for_head", # persimmon
  45. "lm_head.linear", # phi2
  46. ),
  47. # Output norm
  48. MODEL_TENSOR.OUTPUT_NORM: (
  49. "gpt_neox.final_layer_norm", # gptneox
  50. "transformer.ln_f", # gpt2 gpt-j falcon
  51. "model.norm", # llama-hf baichuan internlm2
  52. "norm", # llama-pth
  53. "transformer.norm_f", # mpt
  54. "ln_f", # refact bloom qwen gpt2
  55. "language_model.encoder.final_layernorm", # persimmon
  56. "model.final_layernorm", # persimmon
  57. "lm_head.ln", # phi2
  58. "model.norm_f", # mamba-qbert
  59. "backbone.norm_f", # mamba
  60. ),
  61. # Rope frequencies
  62. MODEL_TENSOR.ROPE_FREQS: (
  63. "rope.freqs", # llama-pth
  64. ),
  65. }
  66. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  67. # Attention norm
  68. MODEL_TENSOR.ATTN_NORM: (
  69. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  70. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  71. "transformer.blocks.{bid}.norm_1", # mpt
  72. "transformer.h.{bid}.input_layernorm", # falcon7b
  73. "h.{bid}.input_layernorm", # bloom
  74. "transformer.h.{bid}.ln_mlp", # falcon40b
  75. "model.layers.{bid}.input_layernorm", # llama-hf
  76. "layers.{bid}.attention_norm", # llama-pth
  77. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  78. "model.layers.{bid}.ln1", # yi
  79. "h.{bid}.ln_1", # gpt2
  80. "transformer.h.{bid}.ln", # phi2
  81. "model.layers.layers.{bid}.norm", # plamo
  82. "model.layers.{bid}.attention_norm", # internlm2
  83. "model.layers.{bid}.norm", # mamba-qbert
  84. "backbone.layers.{bid}.norm", # mamba
  85. ),
  86. # Attention norm 2
  87. MODEL_TENSOR.ATTN_NORM_2: (
  88. "transformer.h.{bid}.ln_attn", # falcon40b
  89. ),
  90. # Attention query-key-value
  91. MODEL_TENSOR.ATTN_QKV: (
  92. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  93. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  94. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  95. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  96. "h.{bid}.self_attention.query_key_value", # bloom
  97. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  98. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  99. "h.{bid}.attn.c_attn", # gpt2
  100. "transformer.h.{bid}.mixer.Wqkv", # phi2
  101. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  102. ),
  103. # Attention query
  104. MODEL_TENSOR.ATTN_Q: (
  105. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  106. "layers.{bid}.attention.wq", # llama-pth
  107. "encoder.layer.{bid}.attention.self.query", # bert
  108. "transformer.h.{bid}.attn.q_proj", # gpt-j
  109. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  110. "model.layers.{bid}.attention.wq" # internlm2
  111. ),
  112. # Attention key
  113. MODEL_TENSOR.ATTN_K: (
  114. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  115. "layers.{bid}.attention.wk", # llama-pth
  116. "encoder.layer.{bid}.attention.self.key", # bert
  117. "transformer.h.{bid}.attn.k_proj", # gpt-j
  118. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  119. "model.layers.{bid}.attention.wk" # internlm2
  120. ),
  121. # Attention value
  122. MODEL_TENSOR.ATTN_V: (
  123. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  124. "layers.{bid}.attention.wv", # llama-pth
  125. "encoder.layer.{bid}.attention.self.value", # bert
  126. "transformer.h.{bid}.attn.v_proj", # gpt-j
  127. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  128. "model.layers.{bid}.attention.wv" # internlm2
  129. ),
  130. # Attention output
  131. MODEL_TENSOR.ATTN_OUT: (
  132. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  133. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  134. "transformer.blocks.{bid}.attn.out_proj", # mpt
  135. "transformer.h.{bid}.self_attention.dense", # falcon
  136. "h.{bid}.self_attention.dense", # bloom
  137. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  138. "layers.{bid}.attention.wo", # llama-pth
  139. "encoder.layer.{bid}.attention.output.dense", # bert
  140. "transformer.h.{bid}.attn.out_proj", # gpt-j
  141. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  142. "model.layers.{bid}.self_attn.dense", # persimmon
  143. "h.{bid}.attn.c_proj", # gpt2
  144. "transformer.h.{bid}.mixer.out_proj", # phi2
  145. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  146. "model.layers.{bid}.attention.wo", # internlm2
  147. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  148. ),
  149. # Attention output norm
  150. MODEL_TENSOR.ATTN_OUT_NORM: (
  151. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  152. "encoder.layers.{bid}.norm1", # nomic-bert
  153. ),
  154. # Rotary embeddings
  155. MODEL_TENSOR.ATTN_ROT_EMBD: (
  156. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  157. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  158. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  159. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  160. ),
  161. # Feed-forward norm
  162. MODEL_TENSOR.FFN_NORM: (
  163. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  164. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  165. "h.{bid}.post_attention_layernorm", # bloom
  166. "transformer.blocks.{bid}.norm_2", # mpt
  167. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  168. "layers.{bid}.ffn_norm", # llama-pth
  169. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  170. "model.layers.{bid}.ln2", # yi
  171. "h.{bid}.ln_2", # gpt2
  172. "model.layers.{bid}.ffn_norm", # internlm2
  173. ),
  174. MODEL_TENSOR.FFN_GATE_INP: (
  175. "layers.{bid}.feed_forward.gate", # mixtral
  176. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  177. ),
  178. # Feed-forward up
  179. MODEL_TENSOR.FFN_UP: (
  180. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  181. "transformer.h.{bid}.mlp.c_fc", # gpt2
  182. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  183. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  184. "h.{bid}.mlp.dense_h_to_4h", # bloom
  185. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  186. "layers.{bid}.feed_forward.w3", # llama-pth
  187. "encoder.layer.{bid}.intermediate.dense", # bert
  188. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  189. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  190. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  191. "transformer.h.{bid}.mlp.w1", # qwen
  192. "h.{bid}.mlp.c_fc", # gpt2
  193. "transformer.h.{bid}.mlp.fc1", # phi2
  194. "model.layers.{bid}.mlp.fc1", # phi2
  195. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  196. "model.layers.{bid}.feed_forward.w3", # internlm2
  197. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  198. "model.layers.{bid}.mlp.c_fc", # starcoder2
  199. ),
  200. MODEL_TENSOR.FFN_UP_EXP: (
  201. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  202. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  203. ),
  204. # AWQ-activation gate
  205. MODEL_TENSOR.FFN_ACT: (
  206. "transformer.blocks.{bid}.ffn.act", # mpt
  207. ),
  208. # Feed-forward gate
  209. MODEL_TENSOR.FFN_GATE: (
  210. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  211. "layers.{bid}.feed_forward.w1", # llama-pth
  212. "transformer.h.{bid}.mlp.w2", # qwen
  213. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  214. "model.layers.{bid}.feed_forward.w1", # internlm2
  215. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  216. ),
  217. MODEL_TENSOR.FFN_GATE_EXP: (
  218. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  219. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  220. ),
  221. # Feed-forward down
  222. MODEL_TENSOR.FFN_DOWN: (
  223. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  224. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  225. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  226. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  227. "h.{bid}.mlp.dense_4h_to_h", # bloom
  228. "model.layers.{bid}.mlp.down_proj", # llama-hf
  229. "layers.{bid}.feed_forward.w2", # llama-pth
  230. "encoder.layer.{bid}.output.dense", # bert
  231. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  232. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  233. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  234. "h.{bid}.mlp.c_proj", # gpt2
  235. "transformer.h.{bid}.mlp.fc2", # phi2
  236. "model.layers.{bid}.mlp.fc2", # phi2
  237. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  238. "model.layers.{bid}.feed_forward.w2", # internlm2
  239. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  240. "model.layers.{bid}.mlp.c_proj", # starcoder2
  241. ),
  242. MODEL_TENSOR.FFN_DOWN_EXP: (
  243. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  244. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  245. ),
  246. MODEL_TENSOR.ATTN_Q_NORM: (
  247. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  248. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  249. ),
  250. MODEL_TENSOR.ATTN_K_NORM: (
  251. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  252. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  253. ),
  254. MODEL_TENSOR.ROPE_FREQS: (
  255. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  256. ),
  257. MODEL_TENSOR.LAYER_OUT_NORM: (
  258. "encoder.layer.{bid}.output.LayerNorm", # bert
  259. "encoder.layers.{bid}.norm2", # nomic-bert
  260. ),
  261. MODEL_TENSOR.SSM_IN: (
  262. "model.layers.{bid}.in_proj",
  263. "backbone.layers.{bid}.mixer.in_proj",
  264. ),
  265. MODEL_TENSOR.SSM_CONV1D: (
  266. "model.layers.{bid}.conv1d",
  267. "backbone.layers.{bid}.mixer.conv1d",
  268. ),
  269. MODEL_TENSOR.SSM_X: (
  270. "model.layers.{bid}.x_proj",
  271. "backbone.layers.{bid}.mixer.x_proj",
  272. ),
  273. MODEL_TENSOR.SSM_DT: (
  274. "model.layers.{bid}.dt_proj",
  275. "backbone.layers.{bid}.mixer.dt_proj",
  276. ),
  277. MODEL_TENSOR.SSM_A: (
  278. "model.layers.{bid}.A_log",
  279. "backbone.layers.{bid}.mixer.A_log",
  280. ),
  281. MODEL_TENSOR.SSM_D: (
  282. "model.layers.{bid}.D",
  283. "backbone.layers.{bid}.mixer.D",
  284. ),
  285. MODEL_TENSOR.SSM_OUT: (
  286. "model.layers.{bid}.out_proj",
  287. "backbone.layers.{bid}.mixer.out_proj",
  288. ),
  289. }
  290. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  291. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  292. self.mapping = {}
  293. for tensor, keys in self.mappings_cfg.items():
  294. if tensor not in MODEL_TENSORS[arch]:
  295. continue
  296. tensor_name = TENSOR_NAMES[tensor]
  297. self.mapping[tensor_name] = (tensor, tensor_name)
  298. for key in keys:
  299. self.mapping[key] = (tensor, tensor_name)
  300. for bid in range(n_blocks):
  301. for tensor, keys in self.block_mappings_cfg.items():
  302. if tensor not in MODEL_TENSORS[arch]:
  303. continue
  304. # TODO: make this configurable
  305. n_experts = 8
  306. for xid in range(n_experts):
  307. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  308. self.mapping[tensor_name] = (tensor, tensor_name)
  309. for key in keys:
  310. key = key.format(bid = bid, xid = xid)
  311. self.mapping[key] = (tensor, tensor_name)
  312. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  313. result = self.mapping.get(key)
  314. if result is not None:
  315. return result
  316. for suffix in try_suffixes:
  317. if key.endswith(suffix):
  318. result = self.mapping.get(key[:-len(suffix)])
  319. if result is not None:
  320. return result[0], result[1] + suffix
  321. return None
  322. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  323. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  324. if result is None:
  325. return None
  326. return result[1]
  327. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  328. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  329. if result is None:
  330. return None
  331. return result[0]
  332. def __getitem__(self, key: str) -> str:
  333. try:
  334. return self.mapping[key][1]
  335. except KeyError:
  336. raise KeyError(key)
  337. def __contains__(self, key: str) -> bool:
  338. return key in self.mapping
  339. def __repr__(self) -> str:
  340. return repr(self.mapping)
  341. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  342. return TensorNameMap(arch, n_blocks)