server.cpp 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. enum oaicompat_type {
  61. OAICOMPAT_TYPE_NONE,
  62. OAICOMPAT_TYPE_CHAT,
  63. OAICOMPAT_TYPE_COMPLETION,
  64. OAICOMPAT_TYPE_EMBEDDING,
  65. };
  66. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  67. enum error_type {
  68. ERROR_TYPE_INVALID_REQUEST,
  69. ERROR_TYPE_AUTHENTICATION,
  70. ERROR_TYPE_SERVER,
  71. ERROR_TYPE_NOT_FOUND,
  72. ERROR_TYPE_PERMISSION,
  73. ERROR_TYPE_UNAVAILABLE, // custom error
  74. ERROR_TYPE_NOT_SUPPORTED, // custom error
  75. };
  76. struct slot_params {
  77. bool stream = true;
  78. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  79. bool return_tokens = false;
  80. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  81. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  82. int32_t n_predict = -1; // new tokens to predict
  83. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  84. int64_t t_max_prompt_ms = -1; // TODO: implement
  85. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  86. std::vector<std::string> antiprompt;
  87. std::vector<std::string> response_fields;
  88. bool timings_per_token = false;
  89. bool post_sampling_probs = false;
  90. bool ignore_eos = false;
  91. struct common_params_sampling sampling;
  92. struct common_params_speculative speculative;
  93. // OAI-compat fields
  94. bool verbose = false;
  95. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  96. std::string oaicompat_model;
  97. std::string oaicompat_cmpl_id;
  98. json to_json() const {
  99. std::vector<std::string> samplers;
  100. samplers.reserve(sampling.samplers.size());
  101. for (const auto & sampler : sampling.samplers) {
  102. samplers.emplace_back(common_sampler_type_to_str(sampler));
  103. }
  104. return json {
  105. {"n_predict", n_predict}, // Server configured n_predict
  106. {"seed", sampling.seed},
  107. {"temperature", sampling.temp},
  108. {"dynatemp_range", sampling.dynatemp_range},
  109. {"dynatemp_exponent", sampling.dynatemp_exponent},
  110. {"top_k", sampling.top_k},
  111. {"top_p", sampling.top_p},
  112. {"min_p", sampling.min_p},
  113. {"xtc_probability", sampling.xtc_probability},
  114. {"xtc_threshold", sampling.xtc_threshold},
  115. {"typical_p", sampling.typ_p},
  116. {"repeat_last_n", sampling.penalty_last_n},
  117. {"repeat_penalty", sampling.penalty_repeat},
  118. {"presence_penalty", sampling.penalty_present},
  119. {"frequency_penalty", sampling.penalty_freq},
  120. {"dry_multiplier", sampling.dry_multiplier},
  121. {"dry_base", sampling.dry_base},
  122. {"dry_allowed_length", sampling.dry_allowed_length},
  123. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  124. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  125. {"mirostat", sampling.mirostat},
  126. {"mirostat_tau", sampling.mirostat_tau},
  127. {"mirostat_eta", sampling.mirostat_eta},
  128. {"stop", antiprompt},
  129. {"max_tokens", n_predict}, // User configured n_predict
  130. {"n_keep", n_keep},
  131. {"n_discard", n_discard},
  132. {"ignore_eos", sampling.ignore_eos},
  133. {"stream", stream},
  134. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  135. {"n_probs", sampling.n_probs},
  136. {"min_keep", sampling.min_keep},
  137. {"grammar", sampling.grammar},
  138. {"samplers", samplers},
  139. {"speculative.n_max", speculative.n_max},
  140. {"speculative.n_min", speculative.n_min},
  141. {"speculative.p_min", speculative.p_min},
  142. {"timings_per_token", timings_per_token},
  143. {"post_sampling_probs", post_sampling_probs},
  144. };
  145. }
  146. };
  147. struct server_task {
  148. int id = -1; // to be filled by server_queue
  149. int index = -1; // used when there are multiple prompts (batch request)
  150. server_task_type type;
  151. // used by SERVER_TASK_TYPE_CANCEL
  152. int id_target = -1;
  153. // used by SERVER_TASK_TYPE_INFERENCE
  154. slot_params params;
  155. llama_tokens prompt_tokens;
  156. int id_selected_slot = -1;
  157. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  158. struct slot_action {
  159. int slot_id;
  160. std::string filename;
  161. std::string filepath;
  162. };
  163. slot_action slot_action;
  164. // used by SERVER_TASK_TYPE_METRICS
  165. bool metrics_reset_bucket = false;
  166. server_task(server_task_type type) : type(type) {}
  167. static slot_params params_from_json_cmpl(
  168. const llama_model * model,
  169. const llama_context * ctx,
  170. const common_params & params_base,
  171. const json & data) {
  172. slot_params params;
  173. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  174. slot_params defaults;
  175. defaults.sampling = params_base.sampling;
  176. defaults.speculative = params_base.speculative;
  177. // enabling this will output extra debug information in the HTTP responses from the server
  178. params.verbose = params_base.verbosity > 9;
  179. params.timings_per_token = json_value(data, "timings_per_token", false);
  180. params.stream = json_value(data, "stream", false);
  181. params.cache_prompt = json_value(data, "cache_prompt", true);
  182. params.return_tokens = json_value(data, "return_tokens", false);
  183. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  184. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  185. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  186. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  187. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  188. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  189. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  190. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  191. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  192. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  193. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  194. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  195. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  196. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  197. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  198. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  199. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  200. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  201. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  202. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  203. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  204. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  205. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  206. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  207. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  208. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  209. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  210. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  211. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  212. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  213. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  214. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  215. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  216. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  217. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  218. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  219. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  220. // TODO: add more sanity checks for the input parameters
  221. if (params.sampling.penalty_last_n < -1) {
  222. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  223. }
  224. if (params.sampling.dry_penalty_last_n < -1) {
  225. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  226. }
  227. if (params.sampling.penalty_last_n == -1) {
  228. // note: should be the slot's context and not the full context, but it's ok
  229. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  230. }
  231. if (params.sampling.dry_penalty_last_n == -1) {
  232. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  233. }
  234. if (params.sampling.dry_base < 1.0f) {
  235. params.sampling.dry_base = defaults.sampling.dry_base;
  236. }
  237. // sequence breakers for DRY
  238. {
  239. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  240. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  241. if (data.contains("dry_sequence_breakers")) {
  242. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  243. if (params.sampling.dry_sequence_breakers.empty()) {
  244. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  245. }
  246. }
  247. }
  248. // process "json_schema" and "grammar"
  249. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  250. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  251. }
  252. if (data.contains("json_schema") && !data.contains("grammar")) {
  253. try {
  254. auto schema = json_value(data, "json_schema", json::object());
  255. params.sampling.grammar = json_schema_to_grammar(schema);
  256. } catch (const std::exception & e) {
  257. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  258. }
  259. } else {
  260. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  261. }
  262. {
  263. params.sampling.logit_bias.clear();
  264. params.ignore_eos = json_value(data, "ignore_eos", false);
  265. const auto & logit_bias = data.find("logit_bias");
  266. if (logit_bias != data.end() && logit_bias->is_array()) {
  267. const int n_vocab = llama_n_vocab(model);
  268. for (const auto & el : *logit_bias) {
  269. // TODO: we may want to throw errors here, in case "el" is incorrect
  270. if (el.is_array() && el.size() == 2) {
  271. float bias;
  272. if (el[1].is_number()) {
  273. bias = el[1].get<float>();
  274. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  275. bias = -INFINITY;
  276. } else {
  277. continue;
  278. }
  279. if (el[0].is_number_integer()) {
  280. llama_token tok = el[0].get<llama_token>();
  281. if (tok >= 0 && tok < n_vocab) {
  282. params.sampling.logit_bias.push_back({tok, bias});
  283. }
  284. } else if (el[0].is_string()) {
  285. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  286. for (auto tok : toks) {
  287. params.sampling.logit_bias.push_back({tok, bias});
  288. }
  289. }
  290. }
  291. }
  292. }
  293. }
  294. {
  295. params.antiprompt.clear();
  296. const auto & stop = data.find("stop");
  297. if (stop != data.end() && stop->is_array()) {
  298. for (const auto & word : *stop) {
  299. if (!word.empty()) {
  300. params.antiprompt.push_back(word);
  301. }
  302. }
  303. }
  304. }
  305. {
  306. const auto & samplers = data.find("samplers");
  307. if (samplers != data.end()) {
  308. if (samplers->is_array()) {
  309. std::vector<std::string> sampler_names;
  310. for (const auto & name : *samplers) {
  311. if (name.is_string()) {
  312. sampler_names.emplace_back(name);
  313. }
  314. }
  315. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  316. } else if (samplers->is_string()){
  317. std::string sampler_string;
  318. for (const auto & name : *samplers) {
  319. sampler_string += name;
  320. }
  321. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  322. }
  323. } else {
  324. params.sampling.samplers = defaults.sampling.samplers;
  325. }
  326. }
  327. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  328. params.oaicompat_model = json_value(data, "model", model_name);
  329. return params;
  330. }
  331. // utility function
  332. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  333. std::unordered_set<int> ids(tasks.size());
  334. for (size_t i = 0; i < tasks.size(); i++) {
  335. ids.insert(tasks[i].id);
  336. }
  337. return ids;
  338. }
  339. };
  340. struct result_timings {
  341. int32_t prompt_n = -1;
  342. double prompt_ms;
  343. double prompt_per_token_ms;
  344. double prompt_per_second;
  345. int32_t predicted_n = -1;
  346. double predicted_ms;
  347. double predicted_per_token_ms;
  348. double predicted_per_second;
  349. json to_json() const {
  350. return {
  351. {"prompt_n", prompt_n},
  352. {"prompt_ms", prompt_ms},
  353. {"prompt_per_token_ms", prompt_per_token_ms},
  354. {"prompt_per_second", prompt_per_second},
  355. {"predicted_n", predicted_n},
  356. {"predicted_ms", predicted_ms},
  357. {"predicted_per_token_ms", predicted_per_token_ms},
  358. {"predicted_per_second", predicted_per_second},
  359. };
  360. }
  361. };
  362. struct server_task_result {
  363. int id = -1;
  364. int id_slot = -1;
  365. virtual bool is_error() {
  366. // only used by server_task_result_error
  367. return false;
  368. }
  369. virtual bool is_stop() {
  370. // only used by server_task_result_cmpl_*
  371. return false;
  372. }
  373. virtual int get_index() {
  374. return -1;
  375. }
  376. virtual json to_json() = 0;
  377. virtual ~server_task_result() = default;
  378. };
  379. // using shared_ptr for polymorphism of server_task_result
  380. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  381. inline std::string stop_type_to_str(stop_type type) {
  382. switch (type) {
  383. case STOP_TYPE_EOS: return "eos";
  384. case STOP_TYPE_WORD: return "word";
  385. case STOP_TYPE_LIMIT: return "limit";
  386. default: return "none";
  387. }
  388. }
  389. struct completion_token_output {
  390. llama_token tok;
  391. float prob;
  392. std::string text_to_send;
  393. struct prob_info {
  394. llama_token tok;
  395. std::string txt;
  396. float prob;
  397. };
  398. std::vector<prob_info> probs;
  399. json to_json(bool post_sampling_probs) const {
  400. json probs_for_token = json::array();
  401. for (const auto & p : probs) {
  402. std::string txt(p.txt);
  403. txt.resize(validate_utf8(txt));
  404. probs_for_token.push_back(json {
  405. {"id", p.tok},
  406. {"token", txt},
  407. {"bytes", str_to_bytes(p.txt)},
  408. {
  409. post_sampling_probs ? "prob" : "logprob",
  410. post_sampling_probs ? p.prob : logarithm(p.prob)
  411. },
  412. });
  413. }
  414. return probs_for_token;
  415. }
  416. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  417. json out = json::array();
  418. for (const auto & p : probs) {
  419. std::string txt(p.text_to_send);
  420. txt.resize(validate_utf8(txt));
  421. out.push_back(json {
  422. {"id", p.tok},
  423. {"token", txt},
  424. {"bytes", str_to_bytes(p.text_to_send)},
  425. {
  426. post_sampling_probs ? "prob" : "logprob",
  427. post_sampling_probs ? p.prob : logarithm(p.prob)
  428. },
  429. {
  430. post_sampling_probs ? "top_probs" : "top_logprobs",
  431. p.to_json(post_sampling_probs)
  432. },
  433. });
  434. }
  435. return out;
  436. }
  437. static float logarithm(float x) {
  438. // nlohmann::json converts -inf to null, so we need to prevent that
  439. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  440. }
  441. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  442. std::vector<unsigned char> bytes;
  443. for (unsigned char c : str) {
  444. bytes.push_back(c);
  445. }
  446. return bytes;
  447. }
  448. };
  449. struct server_task_result_cmpl_final : server_task_result {
  450. int index = 0;
  451. std::string content;
  452. llama_tokens tokens;
  453. bool stream;
  454. result_timings timings;
  455. std::string prompt;
  456. bool truncated;
  457. int32_t n_decoded;
  458. int32_t n_prompt_tokens;
  459. int32_t n_tokens_cached;
  460. bool has_new_line;
  461. std::string stopping_word;
  462. stop_type stop = STOP_TYPE_NONE;
  463. bool post_sampling_probs;
  464. std::vector<completion_token_output> probs_output;
  465. std::vector<std::string> response_fields;
  466. slot_params generation_params;
  467. // OAI-compat fields
  468. bool verbose = false;
  469. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  470. std::string oaicompat_model;
  471. std::string oaicompat_cmpl_id;
  472. virtual int get_index() override {
  473. return index;
  474. }
  475. virtual bool is_stop() override {
  476. return true; // in stream mode, final responses are considered stop
  477. }
  478. virtual json to_json() override {
  479. switch (oaicompat) {
  480. case OAICOMPAT_TYPE_NONE:
  481. return to_json_non_oaicompat();
  482. case OAICOMPAT_TYPE_COMPLETION:
  483. return to_json_oaicompat();
  484. case OAICOMPAT_TYPE_CHAT:
  485. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  486. default:
  487. GGML_ASSERT(false && "Invalid oaicompat_type");
  488. }
  489. }
  490. json to_json_non_oaicompat() {
  491. json res = json {
  492. {"index", index},
  493. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  494. {"tokens", stream ? llama_tokens {} : tokens},
  495. {"id_slot", id_slot},
  496. {"stop", true},
  497. {"model", oaicompat_model},
  498. {"tokens_predicted", n_decoded},
  499. {"tokens_evaluated", n_prompt_tokens},
  500. {"generation_settings", generation_params.to_json()},
  501. {"prompt", prompt},
  502. {"has_new_line", has_new_line},
  503. {"truncated", truncated},
  504. {"stop_type", stop_type_to_str(stop)},
  505. {"stopping_word", stopping_word},
  506. {"tokens_cached", n_tokens_cached},
  507. {"timings", timings.to_json()},
  508. };
  509. if (!stream && !probs_output.empty()) {
  510. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  511. }
  512. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  513. }
  514. json to_json_oaicompat() {
  515. std::time_t t = std::time(0);
  516. json logprobs = json(nullptr); // OAI default to null
  517. if (!stream && probs_output.size() > 0) {
  518. logprobs = json{
  519. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  520. };
  521. }
  522. json finish_reason = "length";
  523. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  524. finish_reason = "stop";
  525. }
  526. json res = json {
  527. {"choices", json::array({
  528. json{
  529. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  530. {"index", index},
  531. {"logprobs", logprobs},
  532. {"finish_reason", finish_reason},
  533. }
  534. })},
  535. {"created", t},
  536. {"model", oaicompat_model},
  537. {"system_fingerprint", build_info},
  538. {"object", "text_completion"},
  539. {"usage", json {
  540. {"completion_tokens", n_decoded},
  541. {"prompt_tokens", n_prompt_tokens},
  542. {"total_tokens", n_decoded + n_prompt_tokens}
  543. }},
  544. {"id", oaicompat_cmpl_id}
  545. };
  546. // extra fields for debugging purposes
  547. if (verbose) {
  548. res["__verbose"] = to_json_non_oaicompat();
  549. }
  550. if (timings.prompt_n >= 0) {
  551. res.push_back({"timings", timings.to_json()});
  552. }
  553. return res;
  554. }
  555. json to_json_oaicompat_chat() {
  556. std::string finish_reason = "length";
  557. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  558. finish_reason = "stop";
  559. }
  560. json choice = json{
  561. {"finish_reason", finish_reason},
  562. {"index", 0},
  563. {"message", json {
  564. {"content", content},
  565. {"role", "assistant"}
  566. }
  567. }};
  568. if (!stream && probs_output.size() > 0) {
  569. choice["logprobs"] = json{
  570. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  571. };
  572. }
  573. std::time_t t = std::time(0);
  574. json res = json {
  575. {"choices", json::array({choice})},
  576. {"created", t},
  577. {"model", oaicompat_model},
  578. {"system_fingerprint", build_info},
  579. {"object", "chat.completion"},
  580. {"usage", json {
  581. {"completion_tokens", n_decoded},
  582. {"prompt_tokens", n_prompt_tokens},
  583. {"total_tokens", n_decoded + n_prompt_tokens}
  584. }},
  585. {"id", oaicompat_cmpl_id}
  586. };
  587. // extra fields for debugging purposes
  588. if (verbose) {
  589. res["__verbose"] = to_json_non_oaicompat();
  590. }
  591. if (timings.prompt_n >= 0) {
  592. res.push_back({"timings", timings.to_json()});
  593. }
  594. return res;
  595. }
  596. json to_json_oaicompat_chat_stream() {
  597. std::time_t t = std::time(0);
  598. std::string finish_reason = "length";
  599. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  600. finish_reason = "stop";
  601. }
  602. json choice = json{
  603. {"finish_reason", finish_reason},
  604. {"index", 0},
  605. {"delta", json::object()}
  606. };
  607. json ret = json {
  608. {"choices", json::array({choice})},
  609. {"created", t},
  610. {"id", oaicompat_cmpl_id},
  611. {"model", oaicompat_model},
  612. {"system_fingerprint", build_info},
  613. {"object", "chat.completion.chunk"},
  614. {"usage", json {
  615. {"completion_tokens", n_decoded},
  616. {"prompt_tokens", n_prompt_tokens},
  617. {"total_tokens", n_decoded + n_prompt_tokens},
  618. }},
  619. };
  620. if (timings.prompt_n >= 0) {
  621. ret.push_back({"timings", timings.to_json()});
  622. }
  623. return ret;
  624. }
  625. };
  626. struct server_task_result_cmpl_partial : server_task_result {
  627. int index = 0;
  628. std::string content;
  629. llama_tokens tokens;
  630. int32_t n_decoded;
  631. int32_t n_prompt_tokens;
  632. bool post_sampling_probs;
  633. completion_token_output prob_output;
  634. result_timings timings;
  635. // OAI-compat fields
  636. bool verbose = false;
  637. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  638. std::string oaicompat_model;
  639. std::string oaicompat_cmpl_id;
  640. virtual int get_index() override {
  641. return index;
  642. }
  643. virtual bool is_stop() override {
  644. return false; // in stream mode, partial responses are not considered stop
  645. }
  646. virtual json to_json() override {
  647. switch (oaicompat) {
  648. case OAICOMPAT_TYPE_NONE:
  649. return to_json_non_oaicompat();
  650. case OAICOMPAT_TYPE_COMPLETION:
  651. return to_json_oaicompat();
  652. case OAICOMPAT_TYPE_CHAT:
  653. return to_json_oaicompat_chat();
  654. default:
  655. GGML_ASSERT(false && "Invalid oaicompat_type");
  656. }
  657. }
  658. json to_json_non_oaicompat() {
  659. // non-OAI-compat JSON
  660. json res = json {
  661. {"index", index},
  662. {"content", content},
  663. {"tokens", tokens},
  664. {"stop", false},
  665. {"id_slot", id_slot},
  666. {"tokens_predicted", n_decoded},
  667. {"tokens_evaluated", n_prompt_tokens},
  668. };
  669. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  670. if (timings.prompt_n > 0) {
  671. res.push_back({"timings", timings.to_json()});
  672. }
  673. if (!prob_output.probs.empty()) {
  674. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  675. }
  676. return res;
  677. }
  678. json to_json_oaicompat() {
  679. std::time_t t = std::time(0);
  680. json logprobs = json(nullptr); // OAI default to null
  681. if (prob_output.probs.size() > 0) {
  682. logprobs = json{
  683. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  684. };
  685. }
  686. json res = json {
  687. {"choices", json::array({
  688. json{
  689. {"text", content},
  690. {"index", index},
  691. {"logprobs", logprobs},
  692. {"finish_reason", nullptr},
  693. }
  694. })},
  695. {"created", t},
  696. {"model", oaicompat_model},
  697. {"system_fingerprint", build_info},
  698. {"object", "text_completion"},
  699. {"id", oaicompat_cmpl_id}
  700. };
  701. // extra fields for debugging purposes
  702. if (verbose) {
  703. res["__verbose"] = to_json_non_oaicompat();
  704. }
  705. if (timings.prompt_n >= 0) {
  706. res.push_back({"timings", timings.to_json()});
  707. }
  708. return res;
  709. }
  710. json to_json_oaicompat_chat() {
  711. bool first = n_decoded == 0;
  712. std::time_t t = std::time(0);
  713. json choices;
  714. if (first) {
  715. if (content.empty()) {
  716. choices = json::array({json{{"finish_reason", nullptr},
  717. {"index", 0},
  718. {"delta", json{{"role", "assistant"}}}}});
  719. } else {
  720. // We have to send this as two updates to conform to openai behavior
  721. json initial_ret = json{{"choices", json::array({json{
  722. {"finish_reason", nullptr},
  723. {"index", 0},
  724. {"delta", json{
  725. {"role", "assistant"}
  726. }}}})},
  727. {"created", t},
  728. {"id", oaicompat_cmpl_id},
  729. {"model", oaicompat_model},
  730. {"object", "chat.completion.chunk"}};
  731. json second_ret = json{
  732. {"choices", json::array({json{{"finish_reason", nullptr},
  733. {"index", 0},
  734. {"delta", json {
  735. {"content", content}}}
  736. }})},
  737. {"created", t},
  738. {"id", oaicompat_cmpl_id},
  739. {"model", oaicompat_model},
  740. {"object", "chat.completion.chunk"}};
  741. return std::vector<json>({initial_ret, second_ret});
  742. }
  743. } else {
  744. choices = json::array({json{
  745. {"finish_reason", nullptr},
  746. {"index", 0},
  747. {"delta",
  748. json {
  749. {"content", content},
  750. }},
  751. }});
  752. }
  753. GGML_ASSERT(choices.size() >= 1);
  754. if (prob_output.probs.size() > 0) {
  755. choices[0]["logprobs"] = json{
  756. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  757. };
  758. }
  759. json ret = json {
  760. {"choices", choices},
  761. {"created", t},
  762. {"id", oaicompat_cmpl_id},
  763. {"model", oaicompat_model},
  764. {"system_fingerprint", build_info},
  765. {"object", "chat.completion.chunk"}
  766. };
  767. if (timings.prompt_n >= 0) {
  768. ret.push_back({"timings", timings.to_json()});
  769. }
  770. return std::vector<json>({ret});
  771. }
  772. };
  773. struct server_task_result_embd : server_task_result {
  774. int index = 0;
  775. std::vector<std::vector<float>> embedding;
  776. int32_t n_tokens;
  777. // OAI-compat fields
  778. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  779. virtual int get_index() override {
  780. return index;
  781. }
  782. virtual json to_json() override {
  783. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  784. ? to_json_oaicompat()
  785. : to_json_non_oaicompat();
  786. }
  787. json to_json_non_oaicompat() {
  788. return json {
  789. {"index", index},
  790. {"embedding", embedding},
  791. };
  792. }
  793. json to_json_oaicompat() {
  794. return json {
  795. {"index", index},
  796. {"embedding", embedding[0]},
  797. {"tokens_evaluated", n_tokens},
  798. };
  799. }
  800. };
  801. struct server_task_result_rerank : server_task_result {
  802. int index = 0;
  803. float score = -1e6;
  804. int32_t n_tokens;
  805. virtual int get_index() override {
  806. return index;
  807. }
  808. virtual json to_json() override {
  809. return json {
  810. {"index", index},
  811. {"score", score},
  812. {"tokens_evaluated", n_tokens},
  813. };
  814. }
  815. };
  816. // this function maybe used outside of server_task_result_error
  817. static json format_error_response(const std::string & message, const enum error_type type) {
  818. std::string type_str;
  819. int code = 500;
  820. switch (type) {
  821. case ERROR_TYPE_INVALID_REQUEST:
  822. type_str = "invalid_request_error";
  823. code = 400;
  824. break;
  825. case ERROR_TYPE_AUTHENTICATION:
  826. type_str = "authentication_error";
  827. code = 401;
  828. break;
  829. case ERROR_TYPE_NOT_FOUND:
  830. type_str = "not_found_error";
  831. code = 404;
  832. break;
  833. case ERROR_TYPE_SERVER:
  834. type_str = "server_error";
  835. code = 500;
  836. break;
  837. case ERROR_TYPE_PERMISSION:
  838. type_str = "permission_error";
  839. code = 403;
  840. break;
  841. case ERROR_TYPE_NOT_SUPPORTED:
  842. type_str = "not_supported_error";
  843. code = 501;
  844. break;
  845. case ERROR_TYPE_UNAVAILABLE:
  846. type_str = "unavailable_error";
  847. code = 503;
  848. break;
  849. }
  850. return json {
  851. {"code", code},
  852. {"message", message},
  853. {"type", type_str},
  854. };
  855. }
  856. struct server_task_result_error : server_task_result {
  857. int index = 0;
  858. error_type err_type = ERROR_TYPE_SERVER;
  859. std::string err_msg;
  860. virtual bool is_error() override {
  861. return true;
  862. }
  863. virtual json to_json() override {
  864. return format_error_response(err_msg, err_type);
  865. }
  866. };
  867. struct server_task_result_metrics : server_task_result {
  868. int n_idle_slots;
  869. int n_processing_slots;
  870. int n_tasks_deferred;
  871. int64_t t_start;
  872. int32_t kv_cache_tokens_count;
  873. int32_t kv_cache_used_cells;
  874. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  875. uint64_t n_prompt_tokens_processed_total = 0;
  876. uint64_t t_prompt_processing_total = 0;
  877. uint64_t n_tokens_predicted_total = 0;
  878. uint64_t t_tokens_generation_total = 0;
  879. uint64_t n_prompt_tokens_processed = 0;
  880. uint64_t t_prompt_processing = 0;
  881. uint64_t n_tokens_predicted = 0;
  882. uint64_t t_tokens_generation = 0;
  883. uint64_t n_decode_total = 0;
  884. uint64_t n_busy_slots_total = 0;
  885. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  886. // therefore, we use json to temporarily store the slot.to_json() result
  887. json slots_data = json::array();
  888. virtual json to_json() override {
  889. return json {
  890. { "idle", n_idle_slots },
  891. { "processing", n_processing_slots },
  892. { "deferred", n_tasks_deferred },
  893. { "t_start", t_start },
  894. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  895. { "t_tokens_generation_total", t_tokens_generation_total },
  896. { "n_tokens_predicted_total", n_tokens_predicted_total },
  897. { "t_prompt_processing_total", t_prompt_processing_total },
  898. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  899. { "t_prompt_processing", t_prompt_processing },
  900. { "n_tokens_predicted", n_tokens_predicted },
  901. { "t_tokens_generation", t_tokens_generation },
  902. { "n_decode_total", n_decode_total },
  903. { "n_busy_slots_total", n_busy_slots_total },
  904. { "kv_cache_tokens_count", kv_cache_tokens_count },
  905. { "kv_cache_used_cells", kv_cache_used_cells },
  906. { "slots", slots_data },
  907. };
  908. }
  909. };
  910. struct server_task_result_slot_save_load : server_task_result {
  911. std::string filename;
  912. bool is_save; // true = save, false = load
  913. size_t n_tokens;
  914. size_t n_bytes;
  915. double t_ms;
  916. virtual json to_json() override {
  917. if (is_save) {
  918. return json {
  919. { "id_slot", id_slot },
  920. { "filename", filename },
  921. { "n_saved", n_tokens },
  922. { "n_written", n_bytes },
  923. { "timings", {
  924. { "save_ms", t_ms }
  925. }},
  926. };
  927. } else {
  928. return json {
  929. { "id_slot", id_slot },
  930. { "filename", filename },
  931. { "n_restored", n_tokens },
  932. { "n_read", n_bytes },
  933. { "timings", {
  934. { "restore_ms", t_ms }
  935. }},
  936. };
  937. }
  938. }
  939. };
  940. struct server_task_result_slot_erase : server_task_result {
  941. size_t n_erased;
  942. virtual json to_json() override {
  943. return json {
  944. { "id_slot", id_slot },
  945. { "n_erased", n_erased },
  946. };
  947. }
  948. };
  949. struct server_task_result_apply_lora : server_task_result {
  950. virtual json to_json() override {
  951. return json {{ "success", true }};
  952. }
  953. };
  954. struct server_slot {
  955. int id;
  956. int id_task = -1;
  957. // only used for completion/embedding/infill/rerank
  958. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  959. llama_batch batch_spec = {};
  960. llama_context * ctx = nullptr;
  961. llama_context * ctx_dft = nullptr;
  962. common_speculative * spec = nullptr;
  963. // the index relative to completion multi-task request
  964. size_t index = 0;
  965. struct slot_params params;
  966. slot_state state = SLOT_STATE_IDLE;
  967. // used to determine the slot that has been used the longest
  968. int64_t t_last_used = -1;
  969. // generation props
  970. int32_t n_ctx = 0; // context size per slot
  971. int32_t n_past = 0;
  972. int32_t n_decoded = 0;
  973. int32_t n_remaining = -1;
  974. int32_t i_batch = -1;
  975. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  976. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  977. int32_t n_prompt_tokens = 0;
  978. int32_t n_prompt_tokens_processed = 0;
  979. // input prompt tokens
  980. llama_tokens prompt_tokens;
  981. size_t last_nl_pos = 0;
  982. std::string generated_text;
  983. llama_tokens generated_tokens;
  984. llama_tokens cache_tokens;
  985. std::vector<completion_token_output> generated_token_probs;
  986. bool has_next_token = true;
  987. bool has_new_line = false;
  988. bool truncated = false;
  989. stop_type stop;
  990. std::string stopping_word;
  991. // sampling
  992. json json_schema;
  993. struct common_sampler * smpl = nullptr;
  994. llama_token sampled;
  995. // stats
  996. size_t n_sent_text = 0; // number of sent text character
  997. int64_t t_start_process_prompt;
  998. int64_t t_start_generation;
  999. double t_prompt_processing; // ms
  1000. double t_token_generation; // ms
  1001. std::function<void(int)> callback_on_release;
  1002. void reset() {
  1003. SLT_DBG(*this, "%s", "\n");
  1004. n_prompt_tokens = 0;
  1005. last_nl_pos = 0;
  1006. generated_text = "";
  1007. has_new_line = false;
  1008. truncated = false;
  1009. stop = STOP_TYPE_NONE;
  1010. stopping_word = "";
  1011. n_past = 0;
  1012. n_sent_text = 0;
  1013. task_type = SERVER_TASK_TYPE_COMPLETION;
  1014. generated_tokens.clear();
  1015. generated_token_probs.clear();
  1016. }
  1017. bool is_non_causal() const {
  1018. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1019. }
  1020. bool has_budget(const common_params & global_params) {
  1021. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1022. return true; // limitless
  1023. }
  1024. n_remaining = -1;
  1025. if (params.n_predict != -1) {
  1026. n_remaining = params.n_predict - n_decoded;
  1027. } else if (global_params.n_predict != -1) {
  1028. n_remaining = global_params.n_predict - n_decoded;
  1029. }
  1030. return n_remaining > 0; // no budget
  1031. }
  1032. bool is_processing() const {
  1033. return state != SLOT_STATE_IDLE;
  1034. }
  1035. bool can_speculate() const {
  1036. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1037. }
  1038. void add_token(const completion_token_output & token) {
  1039. if (!is_processing()) {
  1040. SLT_WRN(*this, "%s", "slot is not processing\n");
  1041. return;
  1042. }
  1043. generated_token_probs.push_back(token);
  1044. }
  1045. void release() {
  1046. if (is_processing()) {
  1047. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1048. t_last_used = ggml_time_us();
  1049. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1050. state = SLOT_STATE_IDLE;
  1051. callback_on_release(id);
  1052. }
  1053. }
  1054. result_timings get_timings() const {
  1055. result_timings timings;
  1056. timings.prompt_n = n_prompt_tokens_processed;
  1057. timings.prompt_ms = t_prompt_processing;
  1058. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1059. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1060. timings.predicted_n = n_decoded;
  1061. timings.predicted_ms = t_token_generation;
  1062. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1063. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1064. return timings;
  1065. }
  1066. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1067. size_t stop_pos = std::string::npos;
  1068. for (const std::string & word : params.antiprompt) {
  1069. size_t pos;
  1070. if (is_full_stop) {
  1071. const size_t tmp = word.size() + last_token_size;
  1072. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1073. pos = text.find(word, from_pos);
  1074. } else {
  1075. // otherwise, partial stop
  1076. pos = find_partial_stop_string(word, text);
  1077. }
  1078. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1079. if (is_full_stop) {
  1080. stop = STOP_TYPE_WORD;
  1081. stopping_word = word;
  1082. has_next_token = false;
  1083. }
  1084. stop_pos = pos;
  1085. }
  1086. }
  1087. return stop_pos;
  1088. }
  1089. void print_timings() const {
  1090. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1091. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1092. const double t_gen = t_token_generation / n_decoded;
  1093. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1094. SLT_INF(*this,
  1095. "\n"
  1096. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1097. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1098. " total time = %10.2f ms / %5d tokens\n",
  1099. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1100. t_token_generation, n_decoded, t_gen, n_gen_second,
  1101. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1102. }
  1103. json to_json() const {
  1104. return json {
  1105. {"id", id},
  1106. {"id_task", id_task},
  1107. {"n_ctx", n_ctx},
  1108. {"speculative", can_speculate()},
  1109. {"is_processing", is_processing()},
  1110. {"non_causal", is_non_causal()},
  1111. {"params", params.to_json()},
  1112. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1113. {"next_token",
  1114. {
  1115. {"has_next_token", has_next_token},
  1116. {"has_new_line", has_new_line},
  1117. {"n_remain", n_remaining},
  1118. {"n_decoded", n_decoded},
  1119. {"stopping_word", stopping_word},
  1120. }
  1121. },
  1122. };
  1123. }
  1124. };
  1125. struct server_metrics {
  1126. int64_t t_start = 0;
  1127. uint64_t n_prompt_tokens_processed_total = 0;
  1128. uint64_t t_prompt_processing_total = 0;
  1129. uint64_t n_tokens_predicted_total = 0;
  1130. uint64_t t_tokens_generation_total = 0;
  1131. uint64_t n_prompt_tokens_processed = 0;
  1132. uint64_t t_prompt_processing = 0;
  1133. uint64_t n_tokens_predicted = 0;
  1134. uint64_t t_tokens_generation = 0;
  1135. uint64_t n_decode_total = 0;
  1136. uint64_t n_busy_slots_total = 0;
  1137. void init() {
  1138. t_start = ggml_time_us();
  1139. }
  1140. void on_prompt_eval(const server_slot & slot) {
  1141. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1142. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1143. t_prompt_processing += slot.t_prompt_processing;
  1144. t_prompt_processing_total += slot.t_prompt_processing;
  1145. }
  1146. void on_prediction(const server_slot & slot) {
  1147. n_tokens_predicted_total += slot.n_decoded;
  1148. n_tokens_predicted += slot.n_decoded;
  1149. t_tokens_generation += slot.t_token_generation;
  1150. t_tokens_generation_total += slot.t_token_generation;
  1151. }
  1152. void on_decoded(const std::vector<server_slot> & slots) {
  1153. n_decode_total++;
  1154. for (const auto & slot : slots) {
  1155. if (slot.is_processing()) {
  1156. n_busy_slots_total++;
  1157. }
  1158. }
  1159. }
  1160. void reset_bucket() {
  1161. n_prompt_tokens_processed = 0;
  1162. t_prompt_processing = 0;
  1163. n_tokens_predicted = 0;
  1164. t_tokens_generation = 0;
  1165. }
  1166. };
  1167. struct server_queue {
  1168. int id = 0;
  1169. bool running;
  1170. // queues
  1171. std::deque<server_task> queue_tasks;
  1172. std::deque<server_task> queue_tasks_deferred;
  1173. std::mutex mutex_tasks;
  1174. std::condition_variable condition_tasks;
  1175. // callback functions
  1176. std::function<void(server_task)> callback_new_task;
  1177. std::function<void(void)> callback_update_slots;
  1178. // Add a new task to the end of the queue
  1179. int post(server_task task, bool front = false) {
  1180. std::unique_lock<std::mutex> lock(mutex_tasks);
  1181. GGML_ASSERT(task.id != -1);
  1182. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1183. if (front) {
  1184. queue_tasks.push_front(std::move(task));
  1185. } else {
  1186. queue_tasks.push_back(std::move(task));
  1187. }
  1188. condition_tasks.notify_one();
  1189. return task.id;
  1190. }
  1191. // multi-task version of post()
  1192. int post(std::vector<server_task> & tasks, bool front = false) {
  1193. std::unique_lock<std::mutex> lock(mutex_tasks);
  1194. for (auto & task : tasks) {
  1195. if (task.id == -1) {
  1196. task.id = id++;
  1197. }
  1198. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1199. if (front) {
  1200. queue_tasks.push_front(std::move(task));
  1201. } else {
  1202. queue_tasks.push_back(std::move(task));
  1203. }
  1204. }
  1205. condition_tasks.notify_one();
  1206. return 0;
  1207. }
  1208. // Add a new task, but defer until one slot is available
  1209. void defer(server_task task) {
  1210. std::unique_lock<std::mutex> lock(mutex_tasks);
  1211. QUE_DBG("defer task, id = %d\n", task.id);
  1212. queue_tasks_deferred.push_back(std::move(task));
  1213. condition_tasks.notify_one();
  1214. }
  1215. // Get the next id for creating a new task
  1216. int get_new_id() {
  1217. std::unique_lock<std::mutex> lock(mutex_tasks);
  1218. int new_id = id++;
  1219. return new_id;
  1220. }
  1221. // Register function to process a new task
  1222. void on_new_task(std::function<void(server_task)> callback) {
  1223. callback_new_task = std::move(callback);
  1224. }
  1225. // Register the function to be called when all slots data is ready to be processed
  1226. void on_update_slots(std::function<void(void)> callback) {
  1227. callback_update_slots = std::move(callback);
  1228. }
  1229. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1230. void pop_deferred_task() {
  1231. std::unique_lock<std::mutex> lock(mutex_tasks);
  1232. if (!queue_tasks_deferred.empty()) {
  1233. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1234. queue_tasks_deferred.pop_front();
  1235. }
  1236. condition_tasks.notify_one();
  1237. }
  1238. // end the start_loop routine
  1239. void terminate() {
  1240. std::unique_lock<std::mutex> lock(mutex_tasks);
  1241. running = false;
  1242. condition_tasks.notify_all();
  1243. }
  1244. /**
  1245. * Main loop consists of these steps:
  1246. * - Wait until a new task arrives
  1247. * - Process the task (i.e. maybe copy data into slot)
  1248. * - Check if multitask is finished
  1249. * - Update all slots
  1250. */
  1251. void start_loop() {
  1252. running = true;
  1253. while (true) {
  1254. QUE_DBG("%s", "processing new tasks\n");
  1255. while (true) {
  1256. std::unique_lock<std::mutex> lock(mutex_tasks);
  1257. if (queue_tasks.empty()) {
  1258. lock.unlock();
  1259. break;
  1260. }
  1261. server_task task = queue_tasks.front();
  1262. queue_tasks.pop_front();
  1263. lock.unlock();
  1264. QUE_DBG("processing task, id = %d\n", task.id);
  1265. callback_new_task(std::move(task));
  1266. }
  1267. // all tasks in the current loop is processed, slots data is now ready
  1268. QUE_DBG("%s", "update slots\n");
  1269. callback_update_slots();
  1270. QUE_DBG("%s", "waiting for new tasks\n");
  1271. {
  1272. std::unique_lock<std::mutex> lock(mutex_tasks);
  1273. if (queue_tasks.empty()) {
  1274. if (!running) {
  1275. QUE_DBG("%s", "terminate\n");
  1276. return;
  1277. }
  1278. condition_tasks.wait(lock, [&]{
  1279. return (!queue_tasks.empty() || !running);
  1280. });
  1281. }
  1282. }
  1283. }
  1284. }
  1285. };
  1286. struct server_response {
  1287. // for keeping track of all tasks waiting for the result
  1288. std::unordered_set<int> waiting_task_ids;
  1289. // the main result queue (using ptr for polymorphism)
  1290. std::vector<server_task_result_ptr> queue_results;
  1291. std::mutex mutex_results;
  1292. std::condition_variable condition_results;
  1293. // add the id_task to the list of tasks waiting for response
  1294. void add_waiting_task_id(int id_task) {
  1295. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1296. std::unique_lock<std::mutex> lock(mutex_results);
  1297. waiting_task_ids.insert(id_task);
  1298. }
  1299. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1300. std::unique_lock<std::mutex> lock(mutex_results);
  1301. for (const auto & task : tasks) {
  1302. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1303. waiting_task_ids.insert(task.id);
  1304. }
  1305. }
  1306. // when the request is finished, we can remove task associated with it
  1307. void remove_waiting_task_id(int id_task) {
  1308. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1309. std::unique_lock<std::mutex> lock(mutex_results);
  1310. waiting_task_ids.erase(id_task);
  1311. }
  1312. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1313. std::unique_lock<std::mutex> lock(mutex_results);
  1314. for (const auto & id_task : id_tasks) {
  1315. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1316. waiting_task_ids.erase(id_task);
  1317. }
  1318. }
  1319. // This function blocks the thread until there is a response for one of the id_tasks
  1320. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1321. while (true) {
  1322. std::unique_lock<std::mutex> lock(mutex_results);
  1323. condition_results.wait(lock, [&]{
  1324. return !queue_results.empty();
  1325. });
  1326. for (int i = 0; i < (int) queue_results.size(); i++) {
  1327. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1328. server_task_result_ptr res = std::move(queue_results[i]);
  1329. queue_results.erase(queue_results.begin() + i);
  1330. return res;
  1331. }
  1332. }
  1333. }
  1334. // should never reach here
  1335. }
  1336. // single-task version of recv()
  1337. server_task_result_ptr recv(int id_task) {
  1338. std::unordered_set<int> id_tasks = {id_task};
  1339. return recv(id_tasks);
  1340. }
  1341. // Send a new result to a waiting id_task
  1342. void send(server_task_result_ptr && result) {
  1343. SRV_DBG("sending result for task id = %d\n", result->id);
  1344. std::unique_lock<std::mutex> lock(mutex_results);
  1345. for (const auto & id_task : waiting_task_ids) {
  1346. if (result->id == id_task) {
  1347. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1348. queue_results.emplace_back(std::move(result));
  1349. condition_results.notify_all();
  1350. return;
  1351. }
  1352. }
  1353. }
  1354. };
  1355. struct server_context {
  1356. common_params params_base;
  1357. llama_model * model = nullptr;
  1358. llama_context * ctx = nullptr;
  1359. std::vector<common_lora_adapter_container> loras;
  1360. llama_model * model_dft = nullptr;
  1361. llama_context_params cparams_dft;
  1362. llama_batch batch = {};
  1363. bool clean_kv_cache = true;
  1364. bool add_bos_token = true;
  1365. bool has_eos_token = false;
  1366. int32_t n_ctx; // total context for all clients / slots
  1367. // slots / clients
  1368. std::vector<server_slot> slots;
  1369. json default_generation_settings_for_props;
  1370. server_queue queue_tasks;
  1371. server_response queue_results;
  1372. server_metrics metrics;
  1373. // Necessary similarity of prompt for slot selection
  1374. float slot_prompt_similarity = 0.0f;
  1375. ~server_context() {
  1376. if (ctx) {
  1377. llama_free(ctx);
  1378. ctx = nullptr;
  1379. }
  1380. if (model) {
  1381. llama_free_model(model);
  1382. model = nullptr;
  1383. }
  1384. if (model_dft) {
  1385. llama_free_model(model_dft);
  1386. model_dft = nullptr;
  1387. }
  1388. // Clear any sampling context
  1389. for (server_slot & slot : slots) {
  1390. common_sampler_free(slot.smpl);
  1391. slot.smpl = nullptr;
  1392. llama_free(slot.ctx_dft);
  1393. slot.ctx_dft = nullptr;
  1394. common_speculative_free(slot.spec);
  1395. slot.spec = nullptr;
  1396. llama_batch_free(slot.batch_spec);
  1397. }
  1398. llama_batch_free(batch);
  1399. }
  1400. bool load_model(const common_params & params) {
  1401. SRV_INF("loading model '%s'\n", params.model.c_str());
  1402. params_base = params;
  1403. common_init_result llama_init = common_init_from_params(params_base);
  1404. model = llama_init.model;
  1405. ctx = llama_init.context;
  1406. loras = llama_init.lora_adapters;
  1407. if (model == nullptr) {
  1408. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1409. return false;
  1410. }
  1411. n_ctx = llama_n_ctx(ctx);
  1412. add_bos_token = llama_add_bos_token(model);
  1413. has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
  1414. if (!params_base.speculative.model.empty()) {
  1415. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1416. auto params_dft = params_base;
  1417. params_dft.devices = params_base.speculative.devices;
  1418. params_dft.model = params_base.speculative.model;
  1419. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1420. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1421. params_dft.n_parallel = 1;
  1422. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1423. model_dft = llama_init_dft.model;
  1424. if (model_dft == nullptr) {
  1425. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1426. return false;
  1427. }
  1428. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1429. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1430. llama_free (llama_init_dft.context);
  1431. llama_free_model(llama_init_dft.model);
  1432. return false;
  1433. }
  1434. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1435. cparams_dft = common_context_params_to_llama(params_dft);
  1436. cparams_dft.n_batch = n_ctx_dft;
  1437. // force F16 KV cache for the draft model for extra performance
  1438. cparams_dft.type_k = GGML_TYPE_F16;
  1439. cparams_dft.type_v = GGML_TYPE_F16;
  1440. // the context is not needed - we will create one for each slot
  1441. llama_free(llama_init_dft.context);
  1442. }
  1443. return true;
  1444. }
  1445. bool validate_builtin_chat_template() const {
  1446. llama_chat_message chat[] = {{"user", "test"}};
  1447. int32_t chat_res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
  1448. return chat_res > 0;
  1449. }
  1450. void init() {
  1451. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1452. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1453. for (int i = 0; i < params_base.n_parallel; i++) {
  1454. server_slot slot;
  1455. slot.id = i;
  1456. slot.ctx = ctx;
  1457. slot.n_ctx = n_ctx_slot;
  1458. slot.n_predict = params_base.n_predict;
  1459. if (model_dft) {
  1460. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1461. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1462. if (slot.ctx_dft == nullptr) {
  1463. SRV_ERR("%s", "failed to create draft context\n");
  1464. return;
  1465. }
  1466. slot.spec = common_speculative_init(slot.ctx_dft);
  1467. if (slot.spec == nullptr) {
  1468. SRV_ERR("%s", "failed to create speculator\n");
  1469. return;
  1470. }
  1471. }
  1472. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1473. slot.params.sampling = params_base.sampling;
  1474. slot.callback_on_release = [this](int) {
  1475. queue_tasks.pop_deferred_task();
  1476. };
  1477. slot.reset();
  1478. slots.push_back(slot);
  1479. }
  1480. default_generation_settings_for_props = slots[0].to_json();
  1481. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1482. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1483. {
  1484. const int32_t n_batch = llama_n_batch(ctx);
  1485. // only a single seq_id per token is needed
  1486. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1487. }
  1488. metrics.init();
  1489. }
  1490. server_slot * get_slot_by_id(int id) {
  1491. for (server_slot & slot : slots) {
  1492. if (slot.id == id) {
  1493. return &slot;
  1494. }
  1495. }
  1496. return nullptr;
  1497. }
  1498. server_slot * get_available_slot(const server_task & task) {
  1499. server_slot * ret = nullptr;
  1500. // find the slot that has at least n% prompt similarity
  1501. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1502. int lcs_len = 0;
  1503. float similarity = 0;
  1504. for (server_slot & slot : slots) {
  1505. // skip the slot if it is not available
  1506. if (slot.is_processing()) {
  1507. continue;
  1508. }
  1509. // skip the slot if it does not contains cached tokens
  1510. if (slot.cache_tokens.empty()) {
  1511. continue;
  1512. }
  1513. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1514. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1515. // fraction of the common subsequence length compared to the current slot's prompt length
  1516. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1517. // select the current slot if the criteria match
  1518. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1519. lcs_len = cur_lcs_len;
  1520. similarity = cur_similarity;
  1521. ret = &slot;
  1522. }
  1523. }
  1524. if (ret != nullptr) {
  1525. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1526. }
  1527. }
  1528. // find the slot that has been least recently used
  1529. if (ret == nullptr) {
  1530. int64_t t_last = ggml_time_us();
  1531. for (server_slot & slot : slots) {
  1532. // skip the slot if it is not available
  1533. if (slot.is_processing()) {
  1534. continue;
  1535. }
  1536. // select the current slot if the criteria match
  1537. if (slot.t_last_used < t_last) {
  1538. t_last = slot.t_last_used;
  1539. ret = &slot;
  1540. }
  1541. }
  1542. if (ret != nullptr) {
  1543. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1544. }
  1545. }
  1546. return ret;
  1547. }
  1548. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1549. slot.reset();
  1550. slot.id_task = task.id;
  1551. slot.index = task.index;
  1552. slot.task_type = task.type;
  1553. slot.params = std::move(task.params);
  1554. slot.prompt_tokens = std::move(task.prompt_tokens);
  1555. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1556. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1557. // Might be better to reject the request with a 400 ?
  1558. slot.params.n_predict = slot.n_predict;
  1559. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1560. }
  1561. if (slot.params.ignore_eos && has_eos_token) {
  1562. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1563. }
  1564. {
  1565. if (slot.smpl != nullptr) {
  1566. common_sampler_free(slot.smpl);
  1567. }
  1568. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1569. if (slot.smpl == nullptr) {
  1570. // for now, the only error that may happen here is invalid grammar
  1571. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1572. return false;
  1573. }
  1574. }
  1575. if (slot.ctx_dft) {
  1576. llama_batch_free(slot.batch_spec);
  1577. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1578. }
  1579. slot.state = SLOT_STATE_STARTED;
  1580. SLT_INF(slot, "%s", "processing task\n");
  1581. return true;
  1582. }
  1583. void kv_cache_clear() {
  1584. SRV_DBG("%s", "clearing KV cache\n");
  1585. // clear the entire KV cache
  1586. llama_kv_cache_clear(ctx);
  1587. clean_kv_cache = false;
  1588. }
  1589. bool process_token(completion_token_output & result, server_slot & slot) {
  1590. // remember which tokens were sampled - used for repetition penalties during sampling
  1591. const std::string token_str = result.text_to_send;
  1592. slot.sampled = result.tok;
  1593. slot.generated_text += token_str;
  1594. if (slot.params.return_tokens) {
  1595. slot.generated_tokens.push_back(result.tok);
  1596. }
  1597. slot.has_next_token = true;
  1598. // check if there is incomplete UTF-8 character at the end
  1599. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1600. // search stop word and delete it
  1601. if (!incomplete) {
  1602. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1603. const std::string str_test = slot.generated_text.substr(pos);
  1604. bool send_text = true;
  1605. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1606. if (stop_pos != std::string::npos) {
  1607. slot.generated_text.erase(
  1608. slot.generated_text.begin() + pos + stop_pos,
  1609. slot.generated_text.end());
  1610. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1611. } else if (slot.has_next_token) {
  1612. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1613. send_text = stop_pos == std::string::npos;
  1614. }
  1615. // check if there is any token to predict
  1616. if (send_text) {
  1617. // no send the stop word in the response
  1618. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1619. slot.n_sent_text += result.text_to_send.size();
  1620. // add the token to slot queue and cache
  1621. } else {
  1622. result.text_to_send = "";
  1623. }
  1624. slot.add_token(result);
  1625. if (slot.params.stream) {
  1626. send_partial_response(slot, result);
  1627. }
  1628. }
  1629. if (incomplete) {
  1630. slot.has_next_token = true;
  1631. }
  1632. // check the limits
  1633. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1634. slot.stop = STOP_TYPE_LIMIT;
  1635. slot.has_next_token = false;
  1636. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1637. }
  1638. if (slot.has_new_line) {
  1639. // if we have already seen a new line, we stop after a certain time limit
  1640. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1641. slot.stop = STOP_TYPE_LIMIT;
  1642. slot.has_next_token = false;
  1643. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1644. }
  1645. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1646. if (slot.params.n_indent > 0) {
  1647. // check the current indentation
  1648. // TODO: improve by not doing it more than once for each new line
  1649. if (slot.last_nl_pos > 0) {
  1650. size_t pos = slot.last_nl_pos;
  1651. int n_indent = 0;
  1652. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1653. n_indent++;
  1654. pos++;
  1655. }
  1656. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1657. slot.stop = STOP_TYPE_LIMIT;
  1658. slot.has_next_token = false;
  1659. // cut the last line
  1660. slot.generated_text.erase(pos, std::string::npos);
  1661. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1662. }
  1663. }
  1664. // find the next new line
  1665. {
  1666. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1667. if (pos != std::string::npos) {
  1668. slot.last_nl_pos = pos + 1;
  1669. }
  1670. }
  1671. }
  1672. }
  1673. // check if there is a new line in the generated text
  1674. if (result.text_to_send.find('\n') != std::string::npos) {
  1675. slot.has_new_line = true;
  1676. }
  1677. // if context shift is disabled, we stop when it reaches the context limit
  1678. if (slot.n_past >= slot.n_ctx) {
  1679. slot.truncated = true;
  1680. slot.stop = STOP_TYPE_LIMIT;
  1681. slot.has_next_token = false;
  1682. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1683. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1684. }
  1685. if (llama_token_is_eog(model, result.tok)) {
  1686. slot.stop = STOP_TYPE_EOS;
  1687. slot.has_next_token = false;
  1688. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1689. }
  1690. const auto n_ctx_train = llama_n_ctx_train(model);
  1691. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1692. slot.truncated = true;
  1693. slot.stop = STOP_TYPE_LIMIT;
  1694. slot.has_next_token = false; // stop prediction
  1695. SLT_WRN(slot,
  1696. "n_predict (%d) is set for infinite generation. "
  1697. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1698. slot.params.n_predict, n_ctx_train);
  1699. }
  1700. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1701. return slot.has_next_token; // continue
  1702. }
  1703. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1704. size_t n_probs = slot.params.sampling.n_probs;
  1705. size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
  1706. if (post_sampling) {
  1707. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1708. const size_t max_probs = cur_p->size;
  1709. // set probability for sampled token
  1710. for (size_t i = 0; i < max_probs; i++) {
  1711. if (cur_p->data[i].id == result.tok) {
  1712. result.prob = cur_p->data[i].p;
  1713. break;
  1714. }
  1715. }
  1716. // set probability for top n_probs tokens
  1717. result.probs.reserve(max_probs);
  1718. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1719. result.probs.push_back({
  1720. cur_p->data[i].id,
  1721. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1722. cur_p->data[i].p
  1723. });
  1724. }
  1725. } else {
  1726. // TODO: optimize this with min-p optimization
  1727. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1728. // set probability for sampled token
  1729. for (size_t i = 0; i < n_vocab; i++) {
  1730. // set probability for sampled token
  1731. if (cur[i].id == result.tok) {
  1732. result.prob = cur[i].p;
  1733. break;
  1734. }
  1735. }
  1736. // set probability for top n_probs tokens
  1737. result.probs.reserve(n_probs);
  1738. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1739. result.probs.push_back({
  1740. cur[i].id,
  1741. common_detokenize(ctx, {cur[i].id}, special),
  1742. cur[i].p
  1743. });
  1744. }
  1745. }
  1746. }
  1747. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1748. send_error(task.id, error, type);
  1749. }
  1750. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1751. send_error(slot.id_task, error, type);
  1752. }
  1753. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1754. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1755. auto res = std::make_unique<server_task_result_error>();
  1756. res->id = id_task;
  1757. res->err_type = type;
  1758. res->err_msg = error;
  1759. queue_results.send(std::move(res));
  1760. }
  1761. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1762. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1763. res->id = slot.id_task;
  1764. res->index = slot.index;
  1765. res->content = tkn.text_to_send;
  1766. res->tokens = { tkn.tok };
  1767. res->n_decoded = slot.n_decoded;
  1768. res->n_prompt_tokens = slot.n_prompt_tokens;
  1769. res->post_sampling_probs = slot.params.post_sampling_probs;
  1770. res->verbose = slot.params.verbose;
  1771. res->oaicompat = slot.params.oaicompat;
  1772. res->oaicompat_model = slot.params.oaicompat_model;
  1773. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1774. // populate res.probs_output
  1775. if (slot.params.sampling.n_probs > 0) {
  1776. res->prob_output = tkn; // copy the token probs
  1777. }
  1778. // populate timings if this is final response or timings_per_token is enabled
  1779. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1780. res->timings = slot.get_timings();
  1781. }
  1782. queue_results.send(std::move(res));
  1783. }
  1784. void send_final_response(server_slot & slot) {
  1785. auto res = std::make_unique<server_task_result_cmpl_final>();
  1786. res->id = slot.id_task;
  1787. res->id_slot = slot.id;
  1788. res->index = slot.index;
  1789. res->content = slot.generated_text;
  1790. res->tokens = slot.generated_tokens;
  1791. res->timings = slot.get_timings();
  1792. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1793. res->response_fields = slot.params.response_fields;
  1794. res->truncated = slot.truncated;
  1795. res->n_decoded = slot.n_decoded;
  1796. res->n_prompt_tokens = slot.n_prompt_tokens;
  1797. res->n_tokens_cached = slot.n_past;
  1798. res->has_new_line = slot.has_new_line;
  1799. res->stopping_word = slot.stopping_word;
  1800. res->stop = slot.stop;
  1801. res->post_sampling_probs = slot.params.post_sampling_probs;
  1802. res->verbose = slot.params.verbose;
  1803. res->stream = slot.params.stream;
  1804. res->oaicompat = slot.params.oaicompat;
  1805. res->oaicompat_model = slot.params.oaicompat_model;
  1806. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1807. // populate res.probs_output
  1808. if (slot.params.sampling.n_probs > 0) {
  1809. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1810. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1811. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1812. res->probs_output = std::vector<completion_token_output>(
  1813. slot.generated_token_probs.begin(),
  1814. slot.generated_token_probs.end() - safe_offset);
  1815. } else {
  1816. res->probs_output = std::vector<completion_token_output>(
  1817. slot.generated_token_probs.begin(),
  1818. slot.generated_token_probs.end());
  1819. }
  1820. }
  1821. res->generation_params = slot.params; // copy the parameters
  1822. queue_results.send(std::move(res));
  1823. }
  1824. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1825. auto res = std::make_unique<server_task_result_embd>();
  1826. res->id = slot.id_task;
  1827. res->index = slot.index;
  1828. res->n_tokens = slot.n_prompt_tokens;
  1829. res->oaicompat = slot.params.oaicompat;
  1830. const int n_embd = llama_n_embd(model);
  1831. std::vector<float> embd_res(n_embd, 0.0f);
  1832. for (int i = 0; i < batch.n_tokens; ++i) {
  1833. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1834. continue;
  1835. }
  1836. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1837. if (embd == NULL) {
  1838. embd = llama_get_embeddings_ith(ctx, i);
  1839. }
  1840. if (embd == NULL) {
  1841. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1842. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1843. continue;
  1844. }
  1845. // normalize only when there is pooling
  1846. // TODO: configurable
  1847. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1848. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1849. res->embedding.push_back(embd_res);
  1850. } else {
  1851. res->embedding.push_back({ embd, embd + n_embd });
  1852. }
  1853. }
  1854. SLT_DBG(slot, "%s", "sending embeddings\n");
  1855. queue_results.send(std::move(res));
  1856. }
  1857. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1858. auto res = std::make_unique<server_task_result_rerank>();
  1859. res->id = slot.id_task;
  1860. res->index = slot.index;
  1861. res->n_tokens = slot.n_prompt_tokens;
  1862. for (int i = 0; i < batch.n_tokens; ++i) {
  1863. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1864. continue;
  1865. }
  1866. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1867. if (embd == NULL) {
  1868. embd = llama_get_embeddings_ith(ctx, i);
  1869. }
  1870. if (embd == NULL) {
  1871. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1872. res->score = -1e6;
  1873. continue;
  1874. }
  1875. res->score = embd[0];
  1876. }
  1877. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1878. queue_results.send(std::move(res));
  1879. }
  1880. //
  1881. // Functions to create new task(s) and receive result(s)
  1882. //
  1883. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1884. std::vector<server_task> cancel_tasks;
  1885. cancel_tasks.reserve(id_tasks.size());
  1886. for (const auto & id_task : id_tasks) {
  1887. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1888. server_task task(SERVER_TASK_TYPE_CANCEL);
  1889. task.id_target = id_task;
  1890. cancel_tasks.push_back(task);
  1891. queue_results.remove_waiting_task_id(id_task);
  1892. }
  1893. // push to beginning of the queue, so it has highest priority
  1894. queue_tasks.post(cancel_tasks, true);
  1895. }
  1896. // receive the results from task(s)
  1897. void receive_multi_results(
  1898. const std::unordered_set<int> & id_tasks,
  1899. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1900. const std::function<void(json)> & error_handler) {
  1901. std::vector<server_task_result_ptr> results(id_tasks.size());
  1902. for (size_t i = 0; i < id_tasks.size(); i++) {
  1903. server_task_result_ptr result = queue_results.recv(id_tasks);
  1904. if (result->is_error()) {
  1905. error_handler(result->to_json());
  1906. cancel_tasks(id_tasks);
  1907. return;
  1908. }
  1909. GGML_ASSERT(
  1910. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1911. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1912. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1913. );
  1914. const size_t idx = result->get_index();
  1915. GGML_ASSERT(idx < results.size() && "index out of range");
  1916. results[idx] = std::move(result);
  1917. }
  1918. result_handler(results);
  1919. }
  1920. // receive the results from task(s), in stream mode
  1921. void receive_cmpl_results_stream(
  1922. const std::unordered_set<int> & id_tasks,
  1923. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1924. const std::function<void(json)> & error_handler) {
  1925. size_t n_finished = 0;
  1926. while (true) {
  1927. server_task_result_ptr result = queue_results.recv(id_tasks);
  1928. if (result->is_error()) {
  1929. error_handler(result->to_json());
  1930. cancel_tasks(id_tasks);
  1931. return;
  1932. }
  1933. GGML_ASSERT(
  1934. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1935. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1936. );
  1937. if (!result_handler(result)) {
  1938. cancel_tasks(id_tasks);
  1939. break;
  1940. }
  1941. if (result->is_stop()) {
  1942. if (++n_finished == id_tasks.size()) {
  1943. break;
  1944. }
  1945. }
  1946. }
  1947. }
  1948. //
  1949. // Functions to process the task
  1950. //
  1951. void process_single_task(server_task task) {
  1952. switch (task.type) {
  1953. case SERVER_TASK_TYPE_COMPLETION:
  1954. case SERVER_TASK_TYPE_INFILL:
  1955. case SERVER_TASK_TYPE_EMBEDDING:
  1956. case SERVER_TASK_TYPE_RERANK:
  1957. {
  1958. const int id_slot = task.id_selected_slot;
  1959. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1960. if (slot == nullptr) {
  1961. // if no slot is available, we defer this task for processing later
  1962. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1963. queue_tasks.defer(task);
  1964. break;
  1965. }
  1966. if (slot->is_processing()) {
  1967. // if requested slot is unavailable, we defer this task for processing later
  1968. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1969. queue_tasks.defer(task);
  1970. break;
  1971. }
  1972. if (!launch_slot_with_task(*slot, task)) {
  1973. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1974. break;
  1975. }
  1976. } break;
  1977. case SERVER_TASK_TYPE_CANCEL:
  1978. {
  1979. // release slot linked with the task id
  1980. for (auto & slot : slots) {
  1981. if (slot.id_task == task.id_target) {
  1982. slot.release();
  1983. break;
  1984. }
  1985. }
  1986. } break;
  1987. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1988. {
  1989. // do nothing
  1990. } break;
  1991. case SERVER_TASK_TYPE_METRICS:
  1992. {
  1993. json slots_data = json::array();
  1994. int n_idle_slots = 0;
  1995. int n_processing_slots = 0;
  1996. for (server_slot & slot : slots) {
  1997. json slot_data = slot.to_json();
  1998. if (slot.is_processing()) {
  1999. n_processing_slots++;
  2000. } else {
  2001. n_idle_slots++;
  2002. }
  2003. slots_data.push_back(slot_data);
  2004. }
  2005. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2006. auto res = std::make_unique<server_task_result_metrics>();
  2007. res->id = task.id;
  2008. res->slots_data = std::move(slots_data);
  2009. res->n_idle_slots = n_idle_slots;
  2010. res->n_processing_slots = n_processing_slots;
  2011. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2012. res->t_start = metrics.t_start;
  2013. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2014. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2015. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2016. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2017. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2018. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2019. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2020. res->t_prompt_processing = metrics.t_prompt_processing;
  2021. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2022. res->t_tokens_generation = metrics.t_tokens_generation;
  2023. res->n_decode_total = metrics.n_decode_total;
  2024. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2025. if (task.metrics_reset_bucket) {
  2026. metrics.reset_bucket();
  2027. }
  2028. queue_results.send(std::move(res));
  2029. } break;
  2030. case SERVER_TASK_TYPE_SLOT_SAVE:
  2031. {
  2032. int id_slot = task.slot_action.slot_id;
  2033. server_slot * slot = get_slot_by_id(id_slot);
  2034. if (slot == nullptr) {
  2035. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2036. break;
  2037. }
  2038. if (slot->is_processing()) {
  2039. // if requested slot is unavailable, we defer this task for processing later
  2040. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2041. queue_tasks.defer(task);
  2042. break;
  2043. }
  2044. const size_t token_count = slot->cache_tokens.size();
  2045. const int64_t t_start = ggml_time_us();
  2046. std::string filename = task.slot_action.filename;
  2047. std::string filepath = task.slot_action.filepath;
  2048. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2049. const int64_t t_end = ggml_time_us();
  2050. const double t_save_ms = (t_end - t_start) / 1000.0;
  2051. auto res = std::make_unique<server_task_result_slot_save_load>();
  2052. res->id = task.id;
  2053. res->id_slot = id_slot;
  2054. res->filename = filename;
  2055. res->is_save = true;
  2056. res->n_tokens = token_count;
  2057. res->n_bytes = nwrite;
  2058. res->t_ms = t_save_ms;
  2059. queue_results.send(std::move(res));
  2060. } break;
  2061. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2062. {
  2063. int id_slot = task.slot_action.slot_id;
  2064. server_slot * slot = get_slot_by_id(id_slot);
  2065. if (slot == nullptr) {
  2066. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2067. break;
  2068. }
  2069. if (slot->is_processing()) {
  2070. // if requested slot is unavailable, we defer this task for processing later
  2071. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2072. queue_tasks.defer(task);
  2073. break;
  2074. }
  2075. const int64_t t_start = ggml_time_us();
  2076. std::string filename = task.slot_action.filename;
  2077. std::string filepath = task.slot_action.filepath;
  2078. slot->cache_tokens.resize(slot->n_ctx);
  2079. size_t token_count = 0;
  2080. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2081. if (nread == 0) {
  2082. slot->cache_tokens.resize(0);
  2083. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2084. break;
  2085. }
  2086. slot->cache_tokens.resize(token_count);
  2087. const int64_t t_end = ggml_time_us();
  2088. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2089. auto res = std::make_unique<server_task_result_slot_save_load>();
  2090. res->id = task.id;
  2091. res->id_slot = id_slot;
  2092. res->filename = filename;
  2093. res->is_save = false;
  2094. res->n_tokens = token_count;
  2095. res->n_bytes = nread;
  2096. res->t_ms = t_restore_ms;
  2097. queue_results.send(std::move(res));
  2098. } break;
  2099. case SERVER_TASK_TYPE_SLOT_ERASE:
  2100. {
  2101. int id_slot = task.slot_action.slot_id;
  2102. server_slot * slot = get_slot_by_id(id_slot);
  2103. if (slot == nullptr) {
  2104. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2105. break;
  2106. }
  2107. if (slot->is_processing()) {
  2108. // if requested slot is unavailable, we defer this task for processing later
  2109. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2110. queue_tasks.defer(task);
  2111. break;
  2112. }
  2113. // Erase token cache
  2114. const size_t n_erased = slot->cache_tokens.size();
  2115. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2116. slot->cache_tokens.clear();
  2117. auto res = std::make_unique<server_task_result_slot_erase>();
  2118. res->id = task.id;
  2119. res->id_slot = id_slot;
  2120. res->n_erased = n_erased;
  2121. queue_results.send(std::move(res));
  2122. } break;
  2123. case SERVER_TASK_TYPE_SET_LORA:
  2124. {
  2125. common_lora_adapters_apply(ctx, loras);
  2126. auto res = std::make_unique<server_task_result_apply_lora>();
  2127. res->id = task.id;
  2128. queue_results.send(std::move(res));
  2129. } break;
  2130. }
  2131. }
  2132. void update_slots() {
  2133. // check if all slots are idle
  2134. {
  2135. bool all_idle = true;
  2136. for (auto & slot : slots) {
  2137. if (slot.is_processing()) {
  2138. all_idle = false;
  2139. break;
  2140. }
  2141. }
  2142. if (all_idle) {
  2143. SRV_INF("%s", "all slots are idle\n");
  2144. if (clean_kv_cache) {
  2145. kv_cache_clear();
  2146. }
  2147. return;
  2148. }
  2149. }
  2150. {
  2151. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2152. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2153. task.id = queue_tasks.get_new_id();
  2154. queue_tasks.post(task);
  2155. }
  2156. // apply context-shift if needed
  2157. // TODO: simplify and improve
  2158. for (server_slot & slot : slots) {
  2159. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2160. if (!params_base.ctx_shift) {
  2161. // this check is redundant (for good)
  2162. // we should never get here, because generation should already stopped in process_token()
  2163. slot.release();
  2164. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2165. continue;
  2166. }
  2167. // Shift context
  2168. const int n_keep = slot.params.n_keep + add_bos_token;
  2169. const int n_left = slot.n_past - n_keep;
  2170. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2171. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2172. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2173. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2174. if (slot.params.cache_prompt) {
  2175. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2176. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2177. }
  2178. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2179. }
  2180. slot.n_past -= n_discard;
  2181. slot.truncated = true;
  2182. }
  2183. }
  2184. // start populating the batch for this iteration
  2185. common_batch_clear(batch);
  2186. // frist, add sampled tokens from any ongoing sequences
  2187. for (auto & slot : slots) {
  2188. if (slot.state != SLOT_STATE_GENERATING) {
  2189. continue;
  2190. }
  2191. slot.i_batch = batch.n_tokens;
  2192. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2193. slot.n_past += 1;
  2194. if (slot.params.cache_prompt) {
  2195. slot.cache_tokens.push_back(slot.sampled);
  2196. }
  2197. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2198. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2199. }
  2200. // process in chunks of params.n_batch
  2201. int32_t n_batch = llama_n_batch(ctx);
  2202. int32_t n_ubatch = llama_n_ubatch(ctx);
  2203. // track if this is an embedding or non-embedding batch
  2204. // if we've added sampled tokens above, we are in non-embedding mode
  2205. // -1: none, 0: non-embedding, 1: embedding
  2206. // TODO: make enum
  2207. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  2208. // next, batch any pending prompts without exceeding n_batch
  2209. if (params_base.cont_batching || batch.n_tokens == 0) {
  2210. for (auto & slot : slots) {
  2211. // this slot still has a prompt to be processed
  2212. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2213. auto & prompt_tokens = slot.prompt_tokens;
  2214. // TODO: maybe move branch to outside of this loop in the future
  2215. if (slot.state == SLOT_STATE_STARTED) {
  2216. slot.t_start_process_prompt = ggml_time_us();
  2217. slot.t_start_generation = 0;
  2218. slot.n_past = 0;
  2219. slot.n_prompt_tokens = prompt_tokens.size();
  2220. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2221. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2222. // print prompt tokens (for debugging)
  2223. if (1) {
  2224. // first 16 tokens (avoid flooding logs)
  2225. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2226. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2227. }
  2228. } else {
  2229. // all
  2230. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2231. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2232. }
  2233. }
  2234. // empty prompt passed -> release the slot and send empty response
  2235. if (prompt_tokens.empty()) {
  2236. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2237. slot.release();
  2238. slot.print_timings();
  2239. send_final_response(slot);
  2240. continue;
  2241. }
  2242. if (slot.is_non_causal()) {
  2243. if (slot.n_prompt_tokens > n_ubatch) {
  2244. slot.release();
  2245. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2246. continue;
  2247. }
  2248. if (slot.n_prompt_tokens > slot.n_ctx) {
  2249. slot.release();
  2250. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2251. continue;
  2252. }
  2253. } else {
  2254. if (!params_base.ctx_shift) {
  2255. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2256. // TODO: there should be a separate parameter that control prompt truncation
  2257. // context shift should be applied only during the generation phase
  2258. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2259. slot.release();
  2260. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2261. continue;
  2262. }
  2263. }
  2264. if (slot.params.n_keep < 0) {
  2265. slot.params.n_keep = slot.n_prompt_tokens;
  2266. }
  2267. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2268. // if input prompt is too big, truncate it
  2269. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2270. const int n_left = slot.n_ctx - slot.params.n_keep;
  2271. const int n_block_size = n_left / 2;
  2272. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2273. llama_tokens new_tokens(
  2274. prompt_tokens.begin(),
  2275. prompt_tokens.begin() + slot.params.n_keep);
  2276. new_tokens.insert(
  2277. new_tokens.end(),
  2278. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2279. prompt_tokens.end());
  2280. prompt_tokens = std::move(new_tokens);
  2281. slot.truncated = true;
  2282. slot.n_prompt_tokens = prompt_tokens.size();
  2283. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2284. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2285. }
  2286. if (slot.params.cache_prompt) {
  2287. // reuse any previously computed tokens that are common with the new prompt
  2288. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2289. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2290. if (params_base.n_cache_reuse > 0) {
  2291. size_t head_c = slot.n_past; // cache
  2292. size_t head_p = slot.n_past; // current prompt
  2293. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2294. while (head_c < slot.cache_tokens.size() &&
  2295. head_p < prompt_tokens.size()) {
  2296. size_t n_match = 0;
  2297. while (head_c + n_match < slot.cache_tokens.size() &&
  2298. head_p + n_match < prompt_tokens.size() &&
  2299. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2300. n_match++;
  2301. }
  2302. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2303. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2304. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2305. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2306. //}
  2307. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2308. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2309. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2310. for (size_t i = 0; i < n_match; i++) {
  2311. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2312. slot.n_past++;
  2313. }
  2314. head_c += n_match;
  2315. head_p += n_match;
  2316. } else {
  2317. head_c += 1;
  2318. }
  2319. }
  2320. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2321. }
  2322. }
  2323. }
  2324. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2325. // we have to evaluate at least 1 token to generate logits.
  2326. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2327. slot.n_past--;
  2328. }
  2329. slot.n_prompt_tokens_processed = 0;
  2330. }
  2331. // non-causal tasks require to fit the entire prompt in the physical batch
  2332. if (slot.is_non_causal()) {
  2333. // cannot fit the prompt in the current batch - will try next iter
  2334. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2335. continue;
  2336. }
  2337. }
  2338. // check that we are in the right batch_type, if not defer the slot
  2339. int slot_type = slot.is_non_causal();
  2340. if (batch_type == -1) {
  2341. batch_type = slot_type;
  2342. } else if (batch_type != slot_type) {
  2343. continue;
  2344. }
  2345. // keep only the common part
  2346. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2347. // could not partially delete (likely using a non-Transformer model)
  2348. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2349. // there is no common part left
  2350. slot.n_past = 0;
  2351. }
  2352. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2353. // remove the non-common part from the cache
  2354. slot.cache_tokens.resize(slot.n_past);
  2355. // add prompt tokens for processing in the current batch
  2356. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2357. // without pooling, we want to output the embeddings for all the tokens in the batch
  2358. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2359. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2360. if (slot.params.cache_prompt) {
  2361. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2362. }
  2363. slot.n_prompt_tokens_processed++;
  2364. slot.n_past++;
  2365. }
  2366. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2367. // entire prompt has been processed
  2368. if (slot.n_past == slot.n_prompt_tokens) {
  2369. slot.state = SLOT_STATE_DONE_PROMPT;
  2370. GGML_ASSERT(batch.n_tokens > 0);
  2371. common_sampler_reset(slot.smpl);
  2372. // Process all prompt tokens through sampler system
  2373. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2374. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2375. }
  2376. // extract the logits only for the last token
  2377. batch.logits[batch.n_tokens - 1] = true;
  2378. slot.n_decoded = 0;
  2379. slot.i_batch = batch.n_tokens - 1;
  2380. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2381. }
  2382. }
  2383. if (batch.n_tokens >= n_batch) {
  2384. break;
  2385. }
  2386. }
  2387. }
  2388. if (batch.n_tokens == 0) {
  2389. SRV_WRN("%s", "no tokens to decode\n");
  2390. return;
  2391. }
  2392. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2393. // make sure we're in the right embedding mode
  2394. llama_set_embeddings(ctx, batch_type == 1);
  2395. // process the created batch of tokens
  2396. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2397. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2398. llama_batch batch_view = {
  2399. n_tokens,
  2400. batch.token + i,
  2401. nullptr,
  2402. batch.pos + i,
  2403. batch.n_seq_id + i,
  2404. batch.seq_id + i,
  2405. batch.logits + i,
  2406. };
  2407. const int ret = llama_decode(ctx, batch_view);
  2408. metrics.on_decoded(slots);
  2409. if (ret != 0) {
  2410. if (n_batch == 1 || ret < 0) {
  2411. // if you get here, it means the KV cache is full - try increasing it via the context size
  2412. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2413. for (auto & slot : slots) {
  2414. slot.release();
  2415. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2416. }
  2417. break; // break loop of n_batch
  2418. }
  2419. // retry with half the batch size to try to find a free slot in the KV cache
  2420. n_batch /= 2;
  2421. i -= n_batch;
  2422. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2423. continue; // continue loop of n_batch
  2424. }
  2425. for (auto & slot : slots) {
  2426. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2427. continue; // continue loop of slots
  2428. }
  2429. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2430. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2431. // prompt evaluated for embedding
  2432. send_embedding(slot, batch_view);
  2433. slot.release();
  2434. slot.i_batch = -1;
  2435. continue; // continue loop of slots
  2436. }
  2437. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2438. send_rerank(slot, batch_view);
  2439. slot.release();
  2440. slot.i_batch = -1;
  2441. continue; // continue loop of slots
  2442. }
  2443. // prompt evaluated for next-token prediction
  2444. slot.state = SLOT_STATE_GENERATING;
  2445. } else if (slot.state != SLOT_STATE_GENERATING) {
  2446. continue; // continue loop of slots
  2447. }
  2448. const int tok_idx = slot.i_batch - i;
  2449. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2450. slot.i_batch = -1;
  2451. common_sampler_accept(slot.smpl, id, true);
  2452. slot.n_decoded += 1;
  2453. const int64_t t_current = ggml_time_us();
  2454. if (slot.n_decoded == 1) {
  2455. slot.t_start_generation = t_current;
  2456. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2457. metrics.on_prompt_eval(slot);
  2458. }
  2459. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2460. completion_token_output result;
  2461. result.tok = id;
  2462. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2463. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2464. if (slot.params.sampling.n_probs > 0) {
  2465. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2466. }
  2467. if (!process_token(result, slot)) {
  2468. // release slot because of stop condition
  2469. slot.release();
  2470. slot.print_timings();
  2471. send_final_response(slot);
  2472. metrics.on_prediction(slot);
  2473. continue;
  2474. }
  2475. }
  2476. // do speculative decoding
  2477. for (auto & slot : slots) {
  2478. if (!slot.is_processing() || !slot.can_speculate()) {
  2479. continue;
  2480. }
  2481. if (slot.state != SLOT_STATE_GENERATING) {
  2482. continue;
  2483. }
  2484. // determine the max draft that fits the current slot state
  2485. int n_draft_max = slot.params.speculative.n_max;
  2486. // note: n_past is not yet increased for the `id` token sampled above
  2487. // also, need to leave space for 1 extra token to allow context shifts
  2488. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2489. if (slot.n_remaining > 0) {
  2490. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2491. }
  2492. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2493. if (n_draft_max < slot.params.speculative.n_min) {
  2494. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2495. continue;
  2496. }
  2497. llama_token id = slot.sampled;
  2498. struct common_speculative_params params_spec;
  2499. params_spec.n_draft = n_draft_max;
  2500. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2501. params_spec.p_min = slot.params.speculative.p_min;
  2502. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2503. // ignore small drafts
  2504. if (slot.params.speculative.n_min > (int) draft.size()) {
  2505. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2506. continue;
  2507. }
  2508. // construct the speculation batch
  2509. common_batch_clear(slot.batch_spec);
  2510. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2511. for (size_t i = 0; i < draft.size(); ++i) {
  2512. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2513. }
  2514. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2515. llama_decode(ctx, slot.batch_spec);
  2516. // the accepted tokens from the speculation
  2517. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2518. slot.n_past += ids.size();
  2519. slot.n_decoded += ids.size();
  2520. slot.cache_tokens.push_back(id);
  2521. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2522. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2523. for (size_t i = 0; i < ids.size(); ++i) {
  2524. completion_token_output result;
  2525. result.tok = ids[i];
  2526. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2527. result.prob = 1.0f; // set later
  2528. // TODO: set result.probs
  2529. if (!process_token(result, slot)) {
  2530. // release slot because of stop condition
  2531. slot.release();
  2532. slot.print_timings();
  2533. send_final_response(slot);
  2534. metrics.on_prediction(slot);
  2535. break;
  2536. }
  2537. }
  2538. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2539. }
  2540. }
  2541. SRV_DBG("%s", "run slots completed\n");
  2542. }
  2543. json model_meta() const {
  2544. return json {
  2545. {"vocab_type", llama_vocab_type (model)},
  2546. {"n_vocab", llama_n_vocab (model)},
  2547. {"n_ctx_train", llama_n_ctx_train (model)},
  2548. {"n_embd", llama_n_embd (model)},
  2549. {"n_params", llama_model_n_params(model)},
  2550. {"size", llama_model_size (model)},
  2551. };
  2552. }
  2553. };
  2554. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2555. // skip GH copilot requests when using default port
  2556. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2557. return;
  2558. }
  2559. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2560. LOG_DBG("request: %s\n", req.body.c_str());
  2561. LOG_DBG("response: %s\n", res.body.c_str());
  2562. }
  2563. std::function<void(int)> shutdown_handler;
  2564. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2565. inline void signal_handler(int signal) {
  2566. if (is_terminating.test_and_set()) {
  2567. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2568. // this is for better developer experience, we can remove when the server is stable enough
  2569. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2570. exit(1);
  2571. }
  2572. shutdown_handler(signal);
  2573. }
  2574. int main(int argc, char ** argv) {
  2575. // own arguments required by this example
  2576. common_params params;
  2577. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2578. return 1;
  2579. }
  2580. common_init();
  2581. // struct that contains llama context and inference
  2582. server_context ctx_server;
  2583. llama_backend_init();
  2584. llama_numa_init(params.numa);
  2585. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2586. LOG_INF("\n");
  2587. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2588. LOG_INF("\n");
  2589. std::unique_ptr<httplib::Server> svr;
  2590. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2591. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2592. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2593. svr.reset(
  2594. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2595. );
  2596. } else {
  2597. LOG_INF("Running without SSL\n");
  2598. svr.reset(new httplib::Server());
  2599. }
  2600. #else
  2601. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2602. LOG_ERR("Server is built without SSL support\n");
  2603. return 1;
  2604. }
  2605. svr.reset(new httplib::Server());
  2606. #endif
  2607. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2608. svr->set_default_headers({{"Server", "llama.cpp"}});
  2609. svr->set_logger(log_server_request);
  2610. auto res_error = [](httplib::Response & res, const json & error_data) {
  2611. json final_response {{"error", error_data}};
  2612. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2613. res.status = json_value(error_data, "code", 500);
  2614. };
  2615. auto res_ok = [](httplib::Response & res, const json & data) {
  2616. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2617. res.status = 200;
  2618. };
  2619. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2620. std::string message;
  2621. try {
  2622. std::rethrow_exception(ep);
  2623. } catch (const std::exception & e) {
  2624. message = e.what();
  2625. } catch (...) {
  2626. message = "Unknown Exception";
  2627. }
  2628. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2629. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2630. res_error(res, formatted_error);
  2631. });
  2632. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2633. if (res.status == 404) {
  2634. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2635. }
  2636. // for other error codes, we skip processing here because it's already done by res_error()
  2637. });
  2638. // set timeouts and change hostname and port
  2639. svr->set_read_timeout (params.timeout_read);
  2640. svr->set_write_timeout(params.timeout_write);
  2641. std::unordered_map<std::string, std::string> log_data;
  2642. log_data["hostname"] = params.hostname;
  2643. log_data["port"] = std::to_string(params.port);
  2644. if (params.api_keys.size() == 1) {
  2645. auto key = params.api_keys[0];
  2646. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2647. } else if (params.api_keys.size() > 1) {
  2648. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2649. }
  2650. // Necessary similarity of prompt for slot selection
  2651. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2652. //
  2653. // Middlewares
  2654. //
  2655. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2656. static const std::unordered_set<std::string> public_endpoints = {
  2657. "/health",
  2658. "/models",
  2659. "/v1/models",
  2660. };
  2661. // If API key is not set, skip validation
  2662. if (params.api_keys.empty()) {
  2663. return true;
  2664. }
  2665. // If path is public or is static file, skip validation
  2666. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2667. return true;
  2668. }
  2669. // Check for API key in the header
  2670. auto auth_header = req.get_header_value("Authorization");
  2671. std::string prefix = "Bearer ";
  2672. if (auth_header.substr(0, prefix.size()) == prefix) {
  2673. std::string received_api_key = auth_header.substr(prefix.size());
  2674. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2675. return true; // API key is valid
  2676. }
  2677. }
  2678. // API key is invalid or not provided
  2679. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2680. LOG_WRN("Unauthorized: Invalid API Key\n");
  2681. return false;
  2682. };
  2683. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2684. server_state current_state = state.load();
  2685. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2686. auto tmp = string_split<std::string>(req.path, '.');
  2687. if (req.path == "/" || tmp.back() == "html") {
  2688. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2689. res.status = 503;
  2690. } else {
  2691. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2692. }
  2693. return false;
  2694. }
  2695. return true;
  2696. };
  2697. // register server middlewares
  2698. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2699. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2700. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2701. if (req.method == "OPTIONS") {
  2702. res.set_header("Access-Control-Allow-Credentials", "true");
  2703. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2704. res.set_header("Access-Control-Allow-Headers", "*");
  2705. res.set_content("", "text/html"); // blank response, no data
  2706. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2707. }
  2708. if (!middleware_server_state(req, res)) {
  2709. return httplib::Server::HandlerResponse::Handled;
  2710. }
  2711. if (!middleware_validate_api_key(req, res)) {
  2712. return httplib::Server::HandlerResponse::Handled;
  2713. }
  2714. return httplib::Server::HandlerResponse::Unhandled;
  2715. });
  2716. //
  2717. // Route handlers (or controllers)
  2718. //
  2719. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2720. // error and loading states are handled by middleware
  2721. json health = {{"status", "ok"}};
  2722. res_ok(res, health);
  2723. };
  2724. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2725. if (!params.endpoint_slots) {
  2726. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2727. return;
  2728. }
  2729. // request slots data using task queue
  2730. server_task task(SERVER_TASK_TYPE_METRICS);
  2731. task.id = ctx_server.queue_tasks.get_new_id();
  2732. ctx_server.queue_results.add_waiting_task_id(task.id);
  2733. ctx_server.queue_tasks.post(task, true); // high-priority task
  2734. // get the result
  2735. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2736. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2737. if (result->is_error()) {
  2738. res_error(res, result->to_json());
  2739. return;
  2740. }
  2741. // TODO: get rid of this dynamic_cast
  2742. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2743. GGML_ASSERT(res_metrics != nullptr);
  2744. // optionally return "fail_on_no_slot" error
  2745. if (req.has_param("fail_on_no_slot")) {
  2746. if (res_metrics->n_idle_slots == 0) {
  2747. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2748. return;
  2749. }
  2750. }
  2751. res_ok(res, res_metrics->slots_data);
  2752. };
  2753. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2754. if (!params.endpoint_metrics) {
  2755. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2756. return;
  2757. }
  2758. // request slots data using task queue
  2759. server_task task(SERVER_TASK_TYPE_METRICS);
  2760. task.id = ctx_server.queue_tasks.get_new_id();
  2761. task.metrics_reset_bucket = true;
  2762. ctx_server.queue_results.add_waiting_task_id(task.id);
  2763. ctx_server.queue_tasks.post(task, true); // high-priority task
  2764. // get the result
  2765. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2766. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2767. if (result->is_error()) {
  2768. res_error(res, result->to_json());
  2769. return;
  2770. }
  2771. // TODO: get rid of this dynamic_cast
  2772. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2773. GGML_ASSERT(res_metrics != nullptr);
  2774. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2775. json all_metrics_def = json {
  2776. {"counter", {{
  2777. {"name", "prompt_tokens_total"},
  2778. {"help", "Number of prompt tokens processed."},
  2779. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2780. }, {
  2781. {"name", "prompt_seconds_total"},
  2782. {"help", "Prompt process time"},
  2783. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2784. }, {
  2785. {"name", "tokens_predicted_total"},
  2786. {"help", "Number of generation tokens processed."},
  2787. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2788. }, {
  2789. {"name", "tokens_predicted_seconds_total"},
  2790. {"help", "Predict process time"},
  2791. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2792. }, {
  2793. {"name", "n_decode_total"},
  2794. {"help", "Total number of llama_decode() calls"},
  2795. {"value", res_metrics->n_decode_total}
  2796. }, {
  2797. {"name", "n_busy_slots_per_decode"},
  2798. {"help", "Average number of busy slots per llama_decode() call"},
  2799. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2800. }}},
  2801. {"gauge", {{
  2802. {"name", "prompt_tokens_seconds"},
  2803. {"help", "Average prompt throughput in tokens/s."},
  2804. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2805. },{
  2806. {"name", "predicted_tokens_seconds"},
  2807. {"help", "Average generation throughput in tokens/s."},
  2808. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2809. },{
  2810. {"name", "kv_cache_usage_ratio"},
  2811. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2812. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2813. },{
  2814. {"name", "kv_cache_tokens"},
  2815. {"help", "KV-cache tokens."},
  2816. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2817. },{
  2818. {"name", "requests_processing"},
  2819. {"help", "Number of request processing."},
  2820. {"value", (uint64_t) res_metrics->n_processing_slots}
  2821. },{
  2822. {"name", "requests_deferred"},
  2823. {"help", "Number of request deferred."},
  2824. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2825. }}}
  2826. };
  2827. std::stringstream prometheus;
  2828. for (const auto & el : all_metrics_def.items()) {
  2829. const auto & type = el.key();
  2830. const auto & metrics_def = el.value();
  2831. for (const auto & metric_def : metrics_def) {
  2832. const std::string name = metric_def.at("name");
  2833. const std::string help = metric_def.at("help");
  2834. auto value = json_value(metric_def, "value", 0.);
  2835. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2836. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2837. << "llamacpp:" << name << " " << value << "\n";
  2838. }
  2839. }
  2840. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2841. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2842. res.status = 200; // HTTP OK
  2843. };
  2844. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2845. json request_data = json::parse(req.body);
  2846. std::string filename = request_data.at("filename");
  2847. if (!fs_validate_filename(filename)) {
  2848. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2849. return;
  2850. }
  2851. std::string filepath = params.slot_save_path + filename;
  2852. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2853. task.id = ctx_server.queue_tasks.get_new_id();
  2854. task.slot_action.slot_id = id_slot;
  2855. task.slot_action.filename = filename;
  2856. task.slot_action.filepath = filepath;
  2857. ctx_server.queue_results.add_waiting_task_id(task.id);
  2858. ctx_server.queue_tasks.post(task);
  2859. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2860. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2861. if (result->is_error()) {
  2862. res_error(res, result->to_json());
  2863. return;
  2864. }
  2865. res_ok(res, result->to_json());
  2866. };
  2867. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2868. json request_data = json::parse(req.body);
  2869. std::string filename = request_data.at("filename");
  2870. if (!fs_validate_filename(filename)) {
  2871. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2872. return;
  2873. }
  2874. std::string filepath = params.slot_save_path + filename;
  2875. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2876. task.id = ctx_server.queue_tasks.get_new_id();
  2877. task.slot_action.slot_id = id_slot;
  2878. task.slot_action.filename = filename;
  2879. task.slot_action.filepath = filepath;
  2880. ctx_server.queue_results.add_waiting_task_id(task.id);
  2881. ctx_server.queue_tasks.post(task);
  2882. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2883. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2884. if (result->is_error()) {
  2885. res_error(res, result->to_json());
  2886. return;
  2887. }
  2888. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2889. res_ok(res, result->to_json());
  2890. };
  2891. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2892. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2893. task.id = ctx_server.queue_tasks.get_new_id();
  2894. task.slot_action.slot_id = id_slot;
  2895. ctx_server.queue_results.add_waiting_task_id(task.id);
  2896. ctx_server.queue_tasks.post(task);
  2897. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2898. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2899. if (result->is_error()) {
  2900. res_error(res, result->to_json());
  2901. return;
  2902. }
  2903. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2904. res_ok(res, result->to_json());
  2905. };
  2906. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2907. if (params.slot_save_path.empty()) {
  2908. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2909. return;
  2910. }
  2911. std::string id_slot_str = req.path_params.at("id_slot");
  2912. int id_slot;
  2913. try {
  2914. id_slot = std::stoi(id_slot_str);
  2915. } catch (const std::exception &) {
  2916. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2917. return;
  2918. }
  2919. std::string action = req.get_param_value("action");
  2920. if (action == "save") {
  2921. handle_slots_save(req, res, id_slot);
  2922. } else if (action == "restore") {
  2923. handle_slots_restore(req, res, id_slot);
  2924. } else if (action == "erase") {
  2925. handle_slots_erase(req, res, id_slot);
  2926. } else {
  2927. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2928. }
  2929. };
  2930. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2931. // this endpoint is publicly available, please only return what is safe to be exposed
  2932. json data = {
  2933. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2934. { "total_slots", ctx_server.params_base.n_parallel },
  2935. { "model_path", ctx_server.params_base.model },
  2936. { "chat_template", common_get_builtin_chat_template(ctx_server.model) },
  2937. { "build_info", build_info },
  2938. };
  2939. res_ok(res, data);
  2940. };
  2941. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2942. if (!ctx_server.params_base.endpoint_props) {
  2943. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2944. return;
  2945. }
  2946. json data = json::parse(req.body);
  2947. // update any props here
  2948. res_ok(res, {{ "success", true }});
  2949. };
  2950. // handle completion-like requests (completion, chat, infill)
  2951. // we can optionally provide a custom format for partial results and final results
  2952. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  2953. server_task_type type,
  2954. json & data,
  2955. httplib::Response & res,
  2956. oaicompat_type oaicompat) {
  2957. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2958. if (ctx_server.params_base.embedding) {
  2959. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2960. return;
  2961. }
  2962. auto completion_id = gen_chatcmplid();
  2963. std::vector<server_task> tasks;
  2964. try {
  2965. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2966. tasks.reserve(tokenized_prompts.size());
  2967. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2968. server_task task = server_task(type);
  2969. task.id = ctx_server.queue_tasks.get_new_id();
  2970. task.index = i;
  2971. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2972. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
  2973. task.id_selected_slot = json_value(data, "id_slot", -1);
  2974. // OAI-compat
  2975. task.params.oaicompat = oaicompat;
  2976. task.params.oaicompat_cmpl_id = completion_id;
  2977. // oaicompat_model is already populated by params_from_json_cmpl
  2978. tasks.push_back(task);
  2979. }
  2980. } catch (const std::exception & e) {
  2981. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2982. return;
  2983. }
  2984. ctx_server.queue_results.add_waiting_tasks(tasks);
  2985. ctx_server.queue_tasks.post(tasks);
  2986. bool stream = json_value(data, "stream", false);
  2987. const auto task_ids = server_task::get_list_id(tasks);
  2988. if (!stream) {
  2989. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2990. if (results.size() == 1) {
  2991. // single result
  2992. res_ok(res, results[0]->to_json());
  2993. } else {
  2994. // multiple results (multitask)
  2995. json arr = json::array();
  2996. for (auto & res : results) {
  2997. arr.push_back(res->to_json());
  2998. }
  2999. res_ok(res, arr);
  3000. }
  3001. }, [&](const json & error_data) {
  3002. res_error(res, error_data);
  3003. });
  3004. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3005. } else {
  3006. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3007. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3008. json res_json = result->to_json();
  3009. if (res_json.is_array()) {
  3010. for (const auto & res : res_json) {
  3011. if (!server_sent_event(sink, "data", res)) {
  3012. return false;
  3013. }
  3014. }
  3015. return true;
  3016. } else {
  3017. return server_sent_event(sink, "data", res_json);
  3018. }
  3019. }, [&](const json & error_data) {
  3020. server_sent_event(sink, "error", error_data);
  3021. });
  3022. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3023. static const std::string ev_done = "data: [DONE]\n\n";
  3024. sink.write(ev_done.data(), ev_done.size());
  3025. }
  3026. sink.done();
  3027. return false;
  3028. };
  3029. auto on_complete = [task_ids, &ctx_server] (bool) {
  3030. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3031. };
  3032. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3033. }
  3034. };
  3035. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3036. json data = json::parse(req.body);
  3037. return handle_completions_impl(
  3038. SERVER_TASK_TYPE_COMPLETION,
  3039. data,
  3040. res,
  3041. OAICOMPAT_TYPE_NONE);
  3042. };
  3043. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3044. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3045. return handle_completions_impl(
  3046. SERVER_TASK_TYPE_COMPLETION,
  3047. data,
  3048. res,
  3049. OAICOMPAT_TYPE_COMPLETION);
  3050. };
  3051. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3052. // check model compatibility
  3053. std::string err;
  3054. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3055. err += "prefix token is missing. ";
  3056. }
  3057. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3058. err += "suffix token is missing. ";
  3059. }
  3060. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3061. err += "middle token is missing. ";
  3062. }
  3063. if (!err.empty()) {
  3064. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3065. return;
  3066. }
  3067. json data = json::parse(req.body);
  3068. // validate input
  3069. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3070. // prompt is optional
  3071. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3072. }
  3073. if (!data.contains("input_prefix")) {
  3074. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3075. }
  3076. if (!data.contains("input_suffix")) {
  3077. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3078. }
  3079. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3080. // input_extra is optional
  3081. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3082. return;
  3083. }
  3084. json input_extra = json_value(data, "input_extra", json::array());
  3085. for (const auto & chunk : input_extra) {
  3086. // { "text": string, "filename": string }
  3087. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3088. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3089. return;
  3090. }
  3091. // filename is optional
  3092. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3093. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3094. return;
  3095. }
  3096. }
  3097. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3098. std::string prompt = json_value(data, "prompt", std::string());
  3099. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3100. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3101. data["prompt"] = format_infill(
  3102. ctx_server.ctx,
  3103. data.at("input_prefix"),
  3104. data.at("input_suffix"),
  3105. data.at("input_extra"),
  3106. ctx_server.params_base.n_batch,
  3107. ctx_server.params_base.n_predict,
  3108. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3109. ctx_server.params_base.spm_infill,
  3110. tokenized_prompts[0]
  3111. );
  3112. return handle_completions_impl(
  3113. SERVER_TASK_TYPE_INFILL,
  3114. data,
  3115. res,
  3116. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3117. };
  3118. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3119. if (ctx_server.params_base.embedding) {
  3120. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3121. return;
  3122. }
  3123. json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  3124. return handle_completions_impl(
  3125. SERVER_TASK_TYPE_COMPLETION,
  3126. data,
  3127. res,
  3128. OAICOMPAT_TYPE_CHAT);
  3129. };
  3130. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3131. json models = {
  3132. {"object", "list"},
  3133. {"data", {
  3134. {
  3135. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3136. {"object", "model"},
  3137. {"created", std::time(0)},
  3138. {"owned_by", "llamacpp"},
  3139. {"meta", ctx_server.model_meta()}
  3140. },
  3141. }}
  3142. };
  3143. res_ok(res, models);
  3144. };
  3145. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3146. const json body = json::parse(req.body);
  3147. json tokens_response = json::array();
  3148. if (body.count("content") != 0) {
  3149. const bool add_special = json_value(body, "add_special", false);
  3150. const bool with_pieces = json_value(body, "with_pieces", false);
  3151. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  3152. if (with_pieces) {
  3153. for (const auto& token : tokens) {
  3154. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3155. json piece_json;
  3156. // Check if the piece is valid UTF-8
  3157. if (is_valid_utf8(piece)) {
  3158. piece_json = piece;
  3159. } else {
  3160. // If not valid UTF-8, store as array of byte values
  3161. piece_json = json::array();
  3162. for (unsigned char c : piece) {
  3163. piece_json.push_back(static_cast<int>(c));
  3164. }
  3165. }
  3166. tokens_response.push_back({
  3167. {"id", token},
  3168. {"piece", piece_json}
  3169. });
  3170. }
  3171. } else {
  3172. tokens_response = tokens;
  3173. }
  3174. }
  3175. const json data = format_tokenizer_response(tokens_response);
  3176. res_ok(res, data);
  3177. };
  3178. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3179. const json body = json::parse(req.body);
  3180. std::string content;
  3181. if (body.count("tokens") != 0) {
  3182. const llama_tokens tokens = body.at("tokens");
  3183. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3184. }
  3185. const json data = format_detokenized_response(content);
  3186. res_ok(res, data);
  3187. };
  3188. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3189. const json body = json::parse(req.body);
  3190. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3191. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3192. return;
  3193. }
  3194. // for the shape of input/content, see tokenize_input_prompts()
  3195. json prompt;
  3196. if (body.count("input") != 0) {
  3197. prompt = body.at("input");
  3198. } else if (body.contains("content")) {
  3199. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3200. prompt = body.at("content");
  3201. } else {
  3202. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3203. return;
  3204. }
  3205. bool use_base64 = false;
  3206. if (body.count("encoding_format") != 0) {
  3207. const std::string& format = body.at("encoding_format");
  3208. if (format == "base64") {
  3209. use_base64 = true;
  3210. } else if (format != "float") {
  3211. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3212. return;
  3213. }
  3214. }
  3215. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3216. for (const auto & tokens : tokenized_prompts) {
  3217. // this check is necessary for models that do not add BOS token to the input
  3218. if (tokens.empty()) {
  3219. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3220. return;
  3221. }
  3222. }
  3223. // create and queue the task
  3224. json responses = json::array();
  3225. bool error = false;
  3226. {
  3227. std::vector<server_task> tasks;
  3228. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3229. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3230. task.id = ctx_server.queue_tasks.get_new_id();
  3231. task.index = i;
  3232. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3233. // OAI-compat
  3234. task.params.oaicompat = oaicompat;
  3235. tasks.push_back(task);
  3236. }
  3237. ctx_server.queue_results.add_waiting_tasks(tasks);
  3238. ctx_server.queue_tasks.post(tasks);
  3239. // get the result
  3240. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3241. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3242. for (auto & res : results) {
  3243. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3244. responses.push_back(res->to_json());
  3245. }
  3246. }, [&](const json & error_data) {
  3247. res_error(res, error_data);
  3248. error = true;
  3249. });
  3250. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3251. }
  3252. if (error) {
  3253. return;
  3254. }
  3255. // write JSON response
  3256. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3257. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3258. : json(responses);
  3259. res_ok(res, root);
  3260. };
  3261. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3262. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3263. };
  3264. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3265. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3266. };
  3267. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3268. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3269. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3270. return;
  3271. }
  3272. const json body = json::parse(req.body);
  3273. // TODO: implement
  3274. //int top_n = 1;
  3275. //if (body.count("top_n") != 1) {
  3276. // top_n = body.at("top_n");
  3277. //} else {
  3278. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3279. // return;
  3280. //}
  3281. json query;
  3282. if (body.count("query") == 1) {
  3283. query = body.at("query");
  3284. if (!query.is_string()) {
  3285. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3286. return;
  3287. }
  3288. } else {
  3289. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3290. return;
  3291. }
  3292. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3293. if (documents.empty()) {
  3294. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3295. return;
  3296. }
  3297. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3298. // create and queue the task
  3299. json responses = json::array();
  3300. bool error = false;
  3301. {
  3302. std::vector<server_task> tasks;
  3303. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3304. tasks.reserve(tokenized_docs.size());
  3305. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3306. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3307. task.id = ctx_server.queue_tasks.get_new_id();
  3308. task.index = i;
  3309. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3310. tasks.push_back(task);
  3311. }
  3312. ctx_server.queue_results.add_waiting_tasks(tasks);
  3313. ctx_server.queue_tasks.post(tasks);
  3314. // get the result
  3315. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3316. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3317. for (auto & res : results) {
  3318. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3319. responses.push_back(res->to_json());
  3320. }
  3321. }, [&](const json & error_data) {
  3322. res_error(res, error_data);
  3323. error = true;
  3324. });
  3325. }
  3326. if (error) {
  3327. return;
  3328. }
  3329. // write JSON response
  3330. json root = format_response_rerank(body, responses);
  3331. res_ok(res, root);
  3332. };
  3333. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3334. json result = json::array();
  3335. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3336. auto & lora = ctx_server.loras[i];
  3337. result.push_back({
  3338. {"id", i},
  3339. {"path", lora.path},
  3340. {"scale", lora.scale},
  3341. });
  3342. }
  3343. res_ok(res, result);
  3344. res.status = 200; // HTTP OK
  3345. };
  3346. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3347. const std::vector<json> body = json::parse(req.body);
  3348. int max_idx = ctx_server.loras.size();
  3349. // clear existing value
  3350. for (auto & lora : ctx_server.loras) {
  3351. lora.scale = 0.0f;
  3352. }
  3353. // set value
  3354. for (auto entry : body) {
  3355. int id = entry.at("id");
  3356. float scale = entry.at("scale");
  3357. if (0 <= id && id < max_idx) {
  3358. ctx_server.loras[id].scale = scale;
  3359. } else {
  3360. throw std::runtime_error("invalid adapter id");
  3361. }
  3362. }
  3363. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3364. task.id = ctx_server.queue_tasks.get_new_id();
  3365. ctx_server.queue_results.add_waiting_task_id(task.id);
  3366. ctx_server.queue_tasks.post(task);
  3367. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3368. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3369. if (result->is_error()) {
  3370. res_error(res, result->to_json());
  3371. return;
  3372. }
  3373. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3374. res_ok(res, result->to_json());
  3375. };
  3376. //
  3377. // Router
  3378. //
  3379. if (!params.webui) {
  3380. LOG_INF("Web UI is disabled\n");
  3381. } else {
  3382. // register static assets routes
  3383. if (!params.public_path.empty()) {
  3384. // Set the base directory for serving static files
  3385. bool is_found = svr->set_mount_point("/", params.public_path);
  3386. if (!is_found) {
  3387. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3388. return 1;
  3389. }
  3390. } else {
  3391. // using embedded static index.html
  3392. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3393. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3394. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3395. } else {
  3396. res.set_header("Content-Encoding", "gzip");
  3397. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3398. }
  3399. return false;
  3400. });
  3401. }
  3402. }
  3403. // register API routes
  3404. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3405. svr->Get ("/metrics", handle_metrics);
  3406. svr->Get ("/props", handle_props);
  3407. svr->Post("/props", handle_props_change);
  3408. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3409. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3410. svr->Post("/completion", handle_completions); // legacy
  3411. svr->Post("/completions", handle_completions);
  3412. svr->Post("/v1/completions", handle_completions_oai);
  3413. svr->Post("/chat/completions", handle_chat_completions);
  3414. svr->Post("/v1/chat/completions", handle_chat_completions);
  3415. svr->Post("/infill", handle_infill);
  3416. svr->Post("/embedding", handle_embeddings); // legacy
  3417. svr->Post("/embeddings", handle_embeddings);
  3418. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3419. svr->Post("/rerank", handle_rerank);
  3420. svr->Post("/reranking", handle_rerank);
  3421. svr->Post("/v1/rerank", handle_rerank);
  3422. svr->Post("/v1/reranking", handle_rerank);
  3423. svr->Post("/tokenize", handle_tokenize);
  3424. svr->Post("/detokenize", handle_detokenize);
  3425. // LoRA adapters hotswap
  3426. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3427. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3428. // Save & load slots
  3429. svr->Get ("/slots", handle_slots);
  3430. svr->Post("/slots/:id_slot", handle_slots_action);
  3431. //
  3432. // Start the server
  3433. //
  3434. if (params.n_threads_http < 1) {
  3435. // +2 threads for monitoring endpoints
  3436. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3437. }
  3438. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3439. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3440. // clean up function, to be called before exit
  3441. auto clean_up = [&svr]() {
  3442. svr->stop();
  3443. llama_backend_free();
  3444. };
  3445. // bind HTTP listen port
  3446. bool was_bound = false;
  3447. if (params.port == 0) {
  3448. int bound_port = svr->bind_to_any_port(params.hostname);
  3449. if ((was_bound = (bound_port >= 0))) {
  3450. params.port = bound_port;
  3451. }
  3452. } else {
  3453. was_bound = svr->bind_to_port(params.hostname, params.port);
  3454. }
  3455. if (!was_bound) {
  3456. //LOG_ERROR("couldn't bind HTTP server socket", {
  3457. // {"hostname", params.hostname},
  3458. // {"port", params.port},
  3459. //});
  3460. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3461. clean_up();
  3462. return 1;
  3463. }
  3464. // run the HTTP server in a thread
  3465. std::thread t([&]() { svr->listen_after_bind(); });
  3466. svr->wait_until_ready();
  3467. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3468. // load the model
  3469. LOG_INF("%s: loading model\n", __func__);
  3470. if (!ctx_server.load_model(params)) {
  3471. clean_up();
  3472. t.join();
  3473. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3474. return 1;
  3475. }
  3476. ctx_server.init();
  3477. state.store(SERVER_STATE_READY);
  3478. LOG_INF("%s: model loaded\n", __func__);
  3479. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3480. if (params.chat_template.empty()) {
  3481. if (!ctx_server.validate_builtin_chat_template()) {
  3482. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3483. params.chat_template = "chatml";
  3484. }
  3485. }
  3486. // print sample chat example to make it clear which template is used
  3487. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3488. params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
  3489. common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3490. ctx_server.queue_tasks.on_new_task(std::bind(
  3491. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3492. ctx_server.queue_tasks.on_update_slots(std::bind(
  3493. &server_context::update_slots, &ctx_server));
  3494. shutdown_handler = [&](int) {
  3495. ctx_server.queue_tasks.terminate();
  3496. };
  3497. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3498. ctx_server.queue_tasks.start_loop();
  3499. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3500. struct sigaction sigint_action;
  3501. sigint_action.sa_handler = signal_handler;
  3502. sigemptyset (&sigint_action.sa_mask);
  3503. sigint_action.sa_flags = 0;
  3504. sigaction(SIGINT, &sigint_action, NULL);
  3505. sigaction(SIGTERM, &sigint_action, NULL);
  3506. #elif defined (_WIN32)
  3507. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3508. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3509. };
  3510. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3511. #endif
  3512. clean_up();
  3513. t.join();
  3514. return 0;
  3515. }