server.cpp 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "json-schema-to-grammar.h"
  7. #include "llama.h"
  8. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  9. #define JSON_ASSERT GGML_ASSERT
  10. #include "json.hpp"
  11. // mime type for sending response
  12. #define MIMETYPE_JSON "application/json; charset=utf-8"
  13. // auto generated files (update with ./deps.sh)
  14. #include "colorthemes.css.hpp"
  15. #include "style.css.hpp"
  16. #include "theme-beeninorder.css.hpp"
  17. #include "theme-ketivah.css.hpp"
  18. #include "theme-mangotango.css.hpp"
  19. #include "theme-playground.css.hpp"
  20. #include "theme-polarnight.css.hpp"
  21. #include "theme-snowstorm.css.hpp"
  22. #include "index.html.hpp"
  23. #include "index-new.html.hpp"
  24. #include "index.js.hpp"
  25. #include "completion.js.hpp"
  26. #include "system-prompts.js.hpp"
  27. #include "prompt-formats.js.hpp"
  28. #include "json-schema-to-grammar.mjs.hpp"
  29. #include "loading.html.hpp"
  30. #include <atomic>
  31. #include <condition_variable>
  32. #include <cstddef>
  33. #include <cinttypes>
  34. #include <deque>
  35. #include <memory>
  36. #include <mutex>
  37. #include <signal.h>
  38. #include <thread>
  39. #include <unordered_map>
  40. #include <unordered_set>
  41. using json = nlohmann::ordered_json;
  42. enum stop_type {
  43. STOP_TYPE_FULL,
  44. STOP_TYPE_PARTIAL,
  45. };
  46. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  47. enum slot_state {
  48. SLOT_STATE_IDLE,
  49. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  50. SLOT_STATE_PROCESSING_PROMPT,
  51. SLOT_STATE_DONE_PROMPT,
  52. SLOT_STATE_GENERATING,
  53. };
  54. enum server_state {
  55. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  56. SERVER_STATE_READY, // Server is ready and model is loaded
  57. };
  58. enum server_task_type {
  59. SERVER_TASK_TYPE_INFERENCE,
  60. SERVER_TASK_TYPE_CANCEL,
  61. SERVER_TASK_TYPE_NEXT_RESPONSE,
  62. SERVER_TASK_TYPE_METRICS,
  63. SERVER_TASK_TYPE_SLOT_SAVE,
  64. SERVER_TASK_TYPE_SLOT_RESTORE,
  65. SERVER_TASK_TYPE_SLOT_ERASE,
  66. SERVER_TASK_TYPE_SET_LORA,
  67. };
  68. enum server_task_inf_type {
  69. SERVER_TASK_INF_TYPE_COMPLETION,
  70. SERVER_TASK_INF_TYPE_EMBEDDING,
  71. SERVER_TASK_INF_TYPE_RERANK,
  72. SERVER_TASK_INF_TYPE_INFILL,
  73. };
  74. struct server_task {
  75. int id = -1; // to be filled by server_queue
  76. int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL
  77. llama_tokens prompt_tokens;
  78. server_task_type type;
  79. json data;
  80. server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
  81. // utility function
  82. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  83. std::unordered_set<int> ids(tasks.size());
  84. for (size_t i = 0; i < tasks.size(); i++) {
  85. ids.insert(tasks[i].id);
  86. }
  87. return ids;
  88. }
  89. };
  90. struct server_task_result {
  91. int id = -1;
  92. json data;
  93. bool stop;
  94. bool error;
  95. };
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  99. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  100. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  101. int32_t n_predict = -1; // new tokens to predict
  102. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  103. int64_t t_max_prompt_ms = -1; // TODO: implement
  104. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  105. std::vector<std::string> antiprompt;
  106. };
  107. struct server_slot {
  108. int id;
  109. int id_task = -1;
  110. // the index relative to completion multi-task request
  111. size_t index = 0;
  112. struct slot_params params;
  113. slot_state state = SLOT_STATE_IDLE;
  114. // used to determine the slot that has been used the longest
  115. int64_t t_last_used = -1;
  116. // generation props
  117. int32_t n_ctx = 0; // context size per slot
  118. int32_t n_past = 0;
  119. int32_t n_decoded = 0;
  120. int32_t n_remaining = -1;
  121. int32_t i_batch = -1;
  122. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  123. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  124. int32_t n_prompt_tokens = 0;
  125. int32_t n_prompt_tokens_processed = 0;
  126. // input prompt tokens
  127. llama_tokens prompt_tokens;
  128. size_t last_nl_pos = 0;
  129. std::string generated_text;
  130. llama_tokens cache_tokens;
  131. std::vector<completion_token_output> generated_token_probs;
  132. server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
  133. bool has_next_token = true;
  134. bool has_new_line = false;
  135. bool truncated = false;
  136. bool stopped_eos = false;
  137. bool stopped_word = false;
  138. bool stopped_limit = false;
  139. bool oaicompat = false;
  140. std::string oaicompat_model;
  141. std::string stopping_word;
  142. // sampling
  143. json json_schema;
  144. struct common_sampler_params sparams;
  145. struct common_sampler * smpl = nullptr;
  146. llama_token sampled;
  147. // stats
  148. size_t n_sent_text = 0; // number of sent text character
  149. size_t n_sent_token_probs = 0;
  150. int64_t t_start_process_prompt;
  151. int64_t t_start_generation;
  152. double t_prompt_processing; // ms
  153. double t_token_generation; // ms
  154. std::function<void(int)> callback_on_release;
  155. void reset() {
  156. SLT_DBG(*this, "%s", "\n");
  157. n_prompt_tokens = 0;
  158. last_nl_pos = 0;
  159. generated_text = "";
  160. has_new_line = false;
  161. truncated = false;
  162. stopped_eos = false;
  163. stopped_word = false;
  164. stopped_limit = false;
  165. stopping_word = "";
  166. n_past = 0;
  167. n_sent_text = 0;
  168. n_sent_token_probs = 0;
  169. inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
  170. generated_token_probs.clear();
  171. }
  172. bool has_budget(common_params &global_params) {
  173. if (params.n_predict == -1 && global_params.n_predict == -1) {
  174. return true; // limitless
  175. }
  176. n_remaining = -1;
  177. if (params.n_predict != -1) {
  178. n_remaining = params.n_predict - n_decoded;
  179. } else if (global_params.n_predict != -1) {
  180. n_remaining = global_params.n_predict - n_decoded;
  181. }
  182. return n_remaining > 0; // no budget
  183. }
  184. bool is_processing() const {
  185. return state != SLOT_STATE_IDLE;
  186. }
  187. void add_token(const completion_token_output & token) {
  188. if (!is_processing()) {
  189. SLT_WRN(*this, "%s", "slot is not processing\n");
  190. return;
  191. }
  192. generated_token_probs.push_back(token);
  193. }
  194. void release() {
  195. if (is_processing()) {
  196. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  197. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  198. state = SLOT_STATE_IDLE;
  199. callback_on_release(id);
  200. }
  201. }
  202. json get_formated_timings() const {
  203. return json {
  204. {"prompt_n", n_prompt_tokens_processed},
  205. {"prompt_ms", t_prompt_processing},
  206. {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
  207. {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
  208. {"predicted_n", n_decoded},
  209. {"predicted_ms", t_token_generation},
  210. {"predicted_per_token_ms", t_token_generation / n_decoded},
  211. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  212. };
  213. }
  214. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
  215. size_t stop_pos = std::string::npos;
  216. for (const std::string & word : params.antiprompt) {
  217. size_t pos;
  218. if (type == STOP_TYPE_FULL) {
  219. const size_t tmp = word.size() + last_token_size;
  220. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  221. pos = text.find(word, from_pos);
  222. } else {
  223. pos = find_partial_stop_string(word, text);
  224. }
  225. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  226. if (type == STOP_TYPE_FULL) {
  227. stopped_word = true;
  228. stopping_word = word;
  229. has_next_token = false;
  230. }
  231. stop_pos = pos;
  232. }
  233. }
  234. return stop_pos;
  235. }
  236. void print_timings() const {
  237. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  238. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  239. const double t_gen = t_token_generation / n_decoded;
  240. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  241. SLT_INF(*this,
  242. "\n"
  243. "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  244. "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  245. "\r total time = %10.2f ms / %5d tokens\n",
  246. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  247. t_token_generation, n_decoded, t_gen, n_gen_second,
  248. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  249. }
  250. };
  251. struct server_metrics {
  252. int64_t t_start = 0;
  253. uint64_t n_prompt_tokens_processed_total = 0;
  254. uint64_t t_prompt_processing_total = 0;
  255. uint64_t n_tokens_predicted_total = 0;
  256. uint64_t t_tokens_generation_total = 0;
  257. uint64_t n_prompt_tokens_processed = 0;
  258. uint64_t t_prompt_processing = 0;
  259. uint64_t n_tokens_predicted = 0;
  260. uint64_t t_tokens_generation = 0;
  261. uint64_t n_decode_total = 0;
  262. uint64_t n_busy_slots_total = 0;
  263. void init() {
  264. t_start = ggml_time_us();
  265. }
  266. void on_prompt_eval(const server_slot & slot) {
  267. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  268. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  269. t_prompt_processing += slot.t_prompt_processing;
  270. t_prompt_processing_total += slot.t_prompt_processing;
  271. }
  272. void on_prediction(const server_slot & slot) {
  273. n_tokens_predicted_total += slot.n_decoded;
  274. n_tokens_predicted += slot.n_decoded;
  275. t_tokens_generation += slot.t_token_generation;
  276. t_tokens_generation_total += slot.t_token_generation;
  277. }
  278. void on_decoded(const std::vector<server_slot> & slots) {
  279. n_decode_total++;
  280. for (const auto & slot : slots) {
  281. if (slot.is_processing()) {
  282. n_busy_slots_total++;
  283. }
  284. }
  285. }
  286. void reset_bucket() {
  287. n_prompt_tokens_processed = 0;
  288. t_prompt_processing = 0;
  289. n_tokens_predicted = 0;
  290. t_tokens_generation = 0;
  291. }
  292. };
  293. struct server_queue {
  294. int id = 0;
  295. bool running;
  296. // queues
  297. std::deque<server_task> queue_tasks;
  298. std::deque<server_task> queue_tasks_deferred;
  299. std::mutex mutex_tasks;
  300. std::condition_variable condition_tasks;
  301. // callback functions
  302. std::function<void(server_task&)> callback_new_task;
  303. std::function<void(void)> callback_update_slots;
  304. // Add a new task to the end of the queue
  305. int post(server_task task, bool front = false) {
  306. std::unique_lock<std::mutex> lock(mutex_tasks);
  307. if (task.id == -1) {
  308. task.id = id++;
  309. }
  310. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  311. if (front) {
  312. queue_tasks.push_front(std::move(task));
  313. } else {
  314. queue_tasks.push_back(std::move(task));
  315. }
  316. condition_tasks.notify_one();
  317. return task.id;
  318. }
  319. // multi-task version of post()
  320. int post(std::vector<server_task> & tasks, bool front = false) {
  321. std::unique_lock<std::mutex> lock(mutex_tasks);
  322. for (auto & task : tasks) {
  323. if (task.id == -1) {
  324. task.id = id++;
  325. }
  326. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  327. if (front) {
  328. queue_tasks.push_front(std::move(task));
  329. } else {
  330. queue_tasks.push_back(std::move(task));
  331. }
  332. }
  333. condition_tasks.notify_one();
  334. return 0;
  335. }
  336. // Add a new task, but defer until one slot is available
  337. void defer(server_task task) {
  338. std::unique_lock<std::mutex> lock(mutex_tasks);
  339. QUE_DBG("defer task, id = %d\n", task.id);
  340. queue_tasks_deferred.push_back(std::move(task));
  341. condition_tasks.notify_one();
  342. }
  343. // Get the next id for creating a new task
  344. int get_new_id() {
  345. std::unique_lock<std::mutex> lock(mutex_tasks);
  346. int new_id = id++;
  347. return new_id;
  348. }
  349. // Register function to process a new task
  350. void on_new_task(std::function<void(server_task &)> callback) {
  351. callback_new_task = std::move(callback);
  352. }
  353. // Register the function to be called when all slots data is ready to be processed
  354. void on_update_slots(std::function<void(void)> callback) {
  355. callback_update_slots = std::move(callback);
  356. }
  357. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  358. void pop_deferred_task() {
  359. std::unique_lock<std::mutex> lock(mutex_tasks);
  360. if (!queue_tasks_deferred.empty()) {
  361. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  362. queue_tasks_deferred.pop_front();
  363. }
  364. condition_tasks.notify_one();
  365. }
  366. // end the start_loop routine
  367. void terminate() {
  368. std::unique_lock<std::mutex> lock(mutex_tasks);
  369. running = false;
  370. condition_tasks.notify_all();
  371. }
  372. /**
  373. * Main loop consists of these steps:
  374. * - Wait until a new task arrives
  375. * - Process the task (i.e. maybe copy data into slot)
  376. * - Check if multitask is finished
  377. * - Update all slots
  378. */
  379. void start_loop() {
  380. running = true;
  381. while (true) {
  382. QUE_DBG("%s", "processing new tasks\n");
  383. while (true) {
  384. std::unique_lock<std::mutex> lock(mutex_tasks);
  385. if (queue_tasks.empty()) {
  386. lock.unlock();
  387. break;
  388. }
  389. server_task task = queue_tasks.front();
  390. queue_tasks.pop_front();
  391. lock.unlock();
  392. QUE_DBG("processing task, id = %d\n", task.id);
  393. callback_new_task(task);
  394. }
  395. // all tasks in the current loop is processed, slots data is now ready
  396. QUE_DBG("%s", "update slots\n");
  397. callback_update_slots();
  398. QUE_DBG("%s", "waiting for new tasks\n");
  399. {
  400. std::unique_lock<std::mutex> lock(mutex_tasks);
  401. if (queue_tasks.empty()) {
  402. if (!running) {
  403. QUE_DBG("%s", "terminate\n");
  404. return;
  405. }
  406. condition_tasks.wait(lock, [&]{
  407. return (!queue_tasks.empty() || !running);
  408. });
  409. }
  410. }
  411. }
  412. }
  413. };
  414. struct server_response {
  415. // for keeping track of all tasks waiting for the result
  416. std::unordered_set<int> waiting_task_ids;
  417. // the main result queue
  418. std::vector<server_task_result> queue_results;
  419. std::mutex mutex_results;
  420. std::condition_variable condition_results;
  421. // add the id_task to the list of tasks waiting for response
  422. void add_waiting_task_id(int id_task) {
  423. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  424. std::unique_lock<std::mutex> lock(mutex_results);
  425. waiting_task_ids.insert(id_task);
  426. }
  427. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  428. std::unique_lock<std::mutex> lock(mutex_results);
  429. for (const auto & task : tasks) {
  430. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  431. waiting_task_ids.insert(task.id);
  432. }
  433. }
  434. // when the request is finished, we can remove task associated with it
  435. void remove_waiting_task_id(int id_task) {
  436. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  437. std::unique_lock<std::mutex> lock(mutex_results);
  438. waiting_task_ids.erase(id_task);
  439. }
  440. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  441. std::unique_lock<std::mutex> lock(mutex_results);
  442. for (const auto & id_task : id_tasks) {
  443. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  444. waiting_task_ids.erase(id_task);
  445. }
  446. }
  447. // This function blocks the thread until there is a response for one of the id_tasks
  448. server_task_result recv(const std::unordered_set<int> & id_tasks) {
  449. while (true) {
  450. std::unique_lock<std::mutex> lock(mutex_results);
  451. condition_results.wait(lock, [&]{
  452. return !queue_results.empty();
  453. });
  454. for (int i = 0; i < (int) queue_results.size(); i++) {
  455. if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
  456. server_task_result res = queue_results[i];
  457. queue_results.erase(queue_results.begin() + i);
  458. return res;
  459. }
  460. }
  461. }
  462. // should never reach here
  463. }
  464. // single-task version of recv()
  465. server_task_result recv(int id_task) {
  466. std::unordered_set<int> id_tasks = {id_task};
  467. return recv(id_tasks);
  468. }
  469. // Send a new result to a waiting id_task
  470. void send(server_task_result & result) {
  471. SRV_DBG("sending result for task id = %d\n", result.id);
  472. std::unique_lock<std::mutex> lock(mutex_results);
  473. for (const auto & id_task : waiting_task_ids) {
  474. if (result.id == id_task) {
  475. SRV_DBG("task id = %d moved to result queue\n", result.id);
  476. queue_results.push_back(std::move(result));
  477. condition_results.notify_all();
  478. return;
  479. }
  480. }
  481. }
  482. };
  483. struct server_context {
  484. llama_model * model = nullptr;
  485. llama_context * ctx = nullptr;
  486. std::vector<common_lora_adapter_container> loras;
  487. common_params params;
  488. llama_batch batch = {};
  489. bool clean_kv_cache = true;
  490. bool add_bos_token = true;
  491. bool has_eos_token = false;
  492. int32_t n_ctx; // total context for all clients / slots
  493. // slots / clients
  494. std::vector<server_slot> slots;
  495. json default_generation_settings_for_props;
  496. server_queue queue_tasks;
  497. server_response queue_results;
  498. server_metrics metrics;
  499. // Necessary similarity of prompt for slot selection
  500. float slot_prompt_similarity = 0.0f;
  501. ~server_context() {
  502. if (ctx) {
  503. llama_free(ctx);
  504. ctx = nullptr;
  505. }
  506. if (model) {
  507. llama_free_model(model);
  508. model = nullptr;
  509. }
  510. // Clear any sampling context
  511. for (server_slot & slot : slots) {
  512. if (slot.smpl != nullptr) {
  513. common_sampler_free(slot.smpl);
  514. }
  515. }
  516. llama_batch_free(batch);
  517. }
  518. bool load_model(const common_params & params_) {
  519. params = params_;
  520. // reserve one extra sequence (seq_id == 0) for extra features
  521. params.n_parallel += 1;
  522. common_init_result llama_init = common_init_from_params(params);
  523. model = llama_init.model;
  524. ctx = llama_init.context;
  525. loras = llama_init.lora_adapters;
  526. params.n_parallel -= 1; // but be sneaky about it
  527. if (model == nullptr) {
  528. SRV_ERR("failed to load model, '%s'\n", params.model.c_str());
  529. return false;
  530. }
  531. n_ctx = llama_n_ctx(ctx);
  532. add_bos_token = llama_add_bos_token(model);
  533. has_eos_token = !llama_add_eos_token(model);
  534. return true;
  535. }
  536. bool validate_model_chat_template() const {
  537. llama_chat_message chat[] = {{"user", "test"}};
  538. const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
  539. return res > 0;
  540. }
  541. void init() {
  542. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  543. SRV_INF("initializing slots, n_slots = %d\n", params.n_parallel);
  544. for (int i = 0; i < params.n_parallel; i++) {
  545. server_slot slot;
  546. slot.id = i;
  547. slot.n_ctx = n_ctx_slot;
  548. slot.n_predict = params.n_predict;
  549. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  550. slot.sparams = params.sparams;
  551. slot.callback_on_release = [this](int) {
  552. queue_tasks.pop_deferred_task();
  553. };
  554. slot.reset();
  555. slots.push_back(slot);
  556. }
  557. default_generation_settings_for_props = get_formated_generation(slots.front());
  558. default_generation_settings_for_props["seed"] = -1;
  559. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  560. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  561. {
  562. const int32_t n_batch = llama_n_batch(ctx);
  563. // only a single seq_id per token is needed
  564. batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
  565. }
  566. metrics.init();
  567. }
  568. server_slot * get_slot_by_id(int id) {
  569. for (server_slot & slot : slots) {
  570. if (slot.id == id) {
  571. return &slot;
  572. }
  573. }
  574. return nullptr;
  575. }
  576. server_slot * get_available_slot(const server_task & task) {
  577. server_slot * ret = nullptr;
  578. // find the slot that has at least n% prompt similarity
  579. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  580. int max_lcs_len = 0;
  581. float similarity = 0;
  582. for (server_slot & slot : slots) {
  583. // skip the slot if it is not available
  584. if (slot.is_processing()) {
  585. continue;
  586. }
  587. // skip the slot if it does not contains cached tokens
  588. if (slot.cache_tokens.empty()) {
  589. continue;
  590. }
  591. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  592. int lcs_len = longest_common_subsequence(slot.cache_tokens, task.prompt_tokens);
  593. // fraction of the common subsequence length compared to the current slot's prompt length
  594. similarity = static_cast<float>(lcs_len) / static_cast<int>(slot.cache_tokens.size());
  595. // select the current slot if the criteria match
  596. if (lcs_len > max_lcs_len && similarity > slot_prompt_similarity) {
  597. max_lcs_len = lcs_len;
  598. ret = &slot;
  599. }
  600. }
  601. if (ret != nullptr) {
  602. SLT_DBG(*ret, "selected slot by lcs similarity, max_lcs_len = %d, similarity = %f\n", max_lcs_len, similarity);
  603. }
  604. }
  605. // find the slot that has been least recently used
  606. if (ret == nullptr) {
  607. int64_t t_last = ggml_time_us();
  608. for (server_slot & slot : slots) {
  609. // skip the slot if it is not available
  610. if (slot.is_processing()) {
  611. continue;
  612. }
  613. // select the current slot if the criteria match
  614. if (slot.t_last_used < t_last) {
  615. t_last = slot.t_last_used;
  616. ret = &slot;
  617. }
  618. }
  619. if (ret != nullptr) {
  620. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  621. }
  622. }
  623. return ret;
  624. }
  625. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  626. slot_params default_params;
  627. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  628. auto default_sparams = params.sparams;
  629. const auto & data = task.data;
  630. if (data.count("__oaicompat") != 0) {
  631. slot.oaicompat = true;
  632. slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  633. } else {
  634. slot.oaicompat = false;
  635. slot.oaicompat_model = "";
  636. }
  637. slot.params.stream = json_value(data, "stream", false);
  638. slot.params.cache_prompt = json_value(data, "cache_prompt", false);
  639. slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
  640. slot.params.n_indent = json_value(data, "n_indent", default_params.n_indent);
  641. slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  642. slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  643. slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  644. slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
  645. slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
  646. slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
  647. slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
  648. slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  649. slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  650. slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  651. slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  652. slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  653. slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  654. slot.sparams.dry_multiplier = json_value(data, "dry_multiplier", default_sparams.dry_multiplier);
  655. slot.sparams.dry_base = json_value(data, "dry_base", default_sparams.dry_base);
  656. slot.sparams.dry_allowed_length = json_value(data, "dry_allowed_length", default_sparams.dry_allowed_length);
  657. slot.sparams.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", default_sparams.dry_penalty_last_n);
  658. slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  659. slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  660. slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  661. slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  662. slot.params.n_keep = json_value(data, "n_keep", default_params.n_keep);
  663. slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
  664. slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
  665. slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  666. slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  667. //slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
  668. slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
  669. if (slot.sparams.dry_base < 1.0f)
  670. {
  671. slot.sparams.dry_base = default_sparams.dry_base;
  672. }
  673. // sequence breakers for DRY
  674. {
  675. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  676. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  677. if (data.contains("dry_sequence_breakers")) {
  678. slot.sparams.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  679. if (slot.sparams.dry_sequence_breakers.empty()) {
  680. send_error(task, "Error: dry_sequence_breakers must be a non-empty array of strings", ERROR_TYPE_INVALID_REQUEST);
  681. return false;
  682. }
  683. }
  684. }
  685. // process "json_schema" and "grammar"
  686. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  687. send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
  688. return false;
  689. }
  690. if (data.contains("json_schema") && !data.contains("grammar")) {
  691. try {
  692. auto schema = json_value(data, "json_schema", json::object());
  693. slot.sparams.grammar = json_schema_to_grammar(schema);
  694. } catch (const std::exception & e) {
  695. send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
  696. return false;
  697. }
  698. } else {
  699. slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  700. }
  701. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  702. // Might be better to reject the request with a 400 ?
  703. slot.params.n_predict = slot.n_predict;
  704. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  705. }
  706. {
  707. slot.sparams.logit_bias.clear();
  708. if (json_value(data, "ignore_eos", false) && has_eos_token) {
  709. slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  710. }
  711. const auto & logit_bias = data.find("logit_bias");
  712. if (logit_bias != data.end() && logit_bias->is_array()) {
  713. const int n_vocab = llama_n_vocab(model);
  714. for (const auto & el : *logit_bias) {
  715. // TODO: we may want to throw errors here, in case "el" is incorrect
  716. if (el.is_array() && el.size() == 2) {
  717. float bias;
  718. if (el[1].is_number()) {
  719. bias = el[1].get<float>();
  720. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  721. bias = -INFINITY;
  722. } else {
  723. continue;
  724. }
  725. if (el[0].is_number_integer()) {
  726. llama_token tok = el[0].get<llama_token>();
  727. if (tok >= 0 && tok < n_vocab) {
  728. slot.sparams.logit_bias.push_back({tok, bias});
  729. }
  730. } else if (el[0].is_string()) {
  731. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  732. for (auto tok : toks) {
  733. slot.sparams.logit_bias.push_back({tok, bias});
  734. }
  735. }
  736. }
  737. }
  738. }
  739. }
  740. {
  741. slot.params.antiprompt.clear();
  742. const auto & stop = data.find("stop");
  743. if (stop != data.end() && stop->is_array()) {
  744. for (const auto & word : *stop) {
  745. if (!word.empty()) {
  746. slot.params.antiprompt.push_back(word);
  747. }
  748. }
  749. }
  750. }
  751. {
  752. const auto & samplers = data.find("samplers");
  753. if (samplers != data.end() && samplers->is_array()) {
  754. std::vector<std::string> sampler_names;
  755. for (const auto & name : *samplers) {
  756. if (name.is_string()) {
  757. sampler_names.emplace_back(name);
  758. }
  759. }
  760. slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
  761. } else {
  762. slot.sparams.samplers = default_sparams.samplers;
  763. }
  764. }
  765. {
  766. if (slot.smpl != nullptr) {
  767. common_sampler_free(slot.smpl);
  768. }
  769. slot.smpl = common_sampler_init(model, slot.sparams);
  770. if (slot.smpl == nullptr) {
  771. // for now, the only error that may happen here is invalid grammar
  772. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  773. return false;
  774. }
  775. }
  776. slot.state = SLOT_STATE_STARTED;
  777. SLT_INF(slot, "%s", "processing task\n");
  778. return true;
  779. }
  780. void kv_cache_clear() {
  781. SRV_DBG("%s", "clearing KV cache\n");
  782. // clear the entire KV cache
  783. llama_kv_cache_clear(ctx);
  784. clean_kv_cache = false;
  785. }
  786. bool process_token(completion_token_output & result, server_slot & slot) {
  787. // remember which tokens were sampled - used for repetition penalties during sampling
  788. const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
  789. slot.sampled = result.tok;
  790. // search stop word and delete it
  791. slot.generated_text += token_str;
  792. slot.has_next_token = true;
  793. // check if there is incomplete UTF-8 character at the end
  794. bool incomplete = false;
  795. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  796. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  797. if ((c & 0xC0) == 0x80) {
  798. // continuation byte: 10xxxxxx
  799. continue;
  800. }
  801. if ((c & 0xE0) == 0xC0) {
  802. // 2-byte character: 110xxxxx ...
  803. incomplete = i < 2;
  804. } else if ((c & 0xF0) == 0xE0) {
  805. // 3-byte character: 1110xxxx ...
  806. incomplete = i < 3;
  807. } else if ((c & 0xF8) == 0xF0) {
  808. // 4-byte character: 11110xxx ...
  809. incomplete = i < 4;
  810. }
  811. // else 1-byte character or invalid byte
  812. break;
  813. }
  814. if (!incomplete) {
  815. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  816. const std::string str_test = slot.generated_text.substr(pos);
  817. bool send_text = true;
  818. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
  819. if (stop_pos != std::string::npos) {
  820. slot.generated_text.erase(
  821. slot.generated_text.begin() + pos + stop_pos,
  822. slot.generated_text.end());
  823. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  824. } else if (slot.has_next_token) {
  825. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
  826. send_text = stop_pos == std::string::npos;
  827. }
  828. // check if there is any token to predict
  829. if (send_text) {
  830. // no send the stop word in the response
  831. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  832. slot.n_sent_text += result.text_to_send.size();
  833. // add the token to slot queue and cache
  834. }
  835. slot.add_token(result);
  836. if (slot.params.stream) {
  837. send_partial_response(slot, result);
  838. }
  839. }
  840. if (incomplete) {
  841. slot.has_next_token = true;
  842. }
  843. // check the limits
  844. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
  845. slot.stopped_limit = true;
  846. slot.has_next_token = false;
  847. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  848. }
  849. if (slot.has_new_line) {
  850. // if we have already seen a new line, we stop after a certain time limit
  851. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  852. slot.stopped_limit = true;
  853. slot.has_next_token = false;
  854. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  855. }
  856. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  857. if (slot.params.n_indent > 0) {
  858. // check the current indentation
  859. // TODO: improve by not doing it more than once for each new line
  860. if (slot.last_nl_pos > 0) {
  861. size_t pos = slot.last_nl_pos;
  862. int n_indent = 0;
  863. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  864. n_indent++;
  865. pos++;
  866. }
  867. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  868. slot.stopped_limit = true;
  869. slot.has_next_token = false;
  870. // cut the last line
  871. slot.generated_text.erase(pos, std::string::npos);
  872. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  873. }
  874. }
  875. // find the next new line
  876. {
  877. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  878. if (pos != std::string::npos) {
  879. slot.last_nl_pos = pos + 1;
  880. }
  881. }
  882. }
  883. }
  884. // check if there is a new line in the generated text
  885. if (result.text_to_send.find('\n') != std::string::npos) {
  886. slot.has_new_line = true;
  887. }
  888. // if context shift is disabled, we stop when it reaches the context limit
  889. if (slot.n_past >= slot.n_ctx) {
  890. slot.truncated = true;
  891. slot.stopped_limit = true;
  892. slot.has_next_token = false;
  893. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  894. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  895. }
  896. if (llama_token_is_eog(model, result.tok)) {
  897. slot.stopped_eos = true;
  898. slot.has_next_token = false;
  899. SLT_DBG(slot, "%s", "stopped by EOS\n");
  900. }
  901. const auto n_ctx_train = llama_n_ctx_train(model);
  902. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  903. slot.truncated = true;
  904. slot.stopped_limit = true;
  905. slot.has_next_token = false; // stop prediction
  906. SLT_WRN(slot,
  907. "n_predict (%d) is set for infinite generation. "
  908. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  909. slot.params.n_predict, n_ctx_train);
  910. }
  911. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  912. return slot.has_next_token; // continue
  913. }
  914. json get_formated_generation(const server_slot & slot) const {
  915. std::vector<std::string> samplers;
  916. samplers.reserve(slot.sparams.samplers.size());
  917. for (const auto & sampler : slot.sparams.samplers) {
  918. samplers.emplace_back(common_sampler_type_to_str(sampler));
  919. }
  920. return json {
  921. {"n_ctx", slot.n_ctx},
  922. {"n_predict", slot.n_predict}, // Server configured n_predict
  923. {"model", params.model_alias},
  924. {"seed", slot.sparams.seed},
  925. {"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
  926. {"temperature", slot.sparams.temp},
  927. {"dynatemp_range", slot.sparams.dynatemp_range},
  928. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  929. {"top_k", slot.sparams.top_k},
  930. {"top_p", slot.sparams.top_p},
  931. {"min_p", slot.sparams.min_p},
  932. {"xtc_probability", slot.sparams.xtc_probability},
  933. {"xtc_threshold", slot.sparams.xtc_threshold},
  934. {"typical_p", slot.sparams.typ_p},
  935. {"repeat_last_n", slot.sparams.penalty_last_n},
  936. {"repeat_penalty", slot.sparams.penalty_repeat},
  937. {"presence_penalty", slot.sparams.penalty_present},
  938. {"frequency_penalty", slot.sparams.penalty_freq},
  939. {"dry_multiplier", slot.sparams.dry_multiplier},
  940. {"dry_base", slot.sparams.dry_base},
  941. {"dry_allowed_length", slot.sparams.dry_allowed_length},
  942. {"dry_penalty_last_n", slot.sparams.dry_penalty_last_n},
  943. {"dry_sequence_breakers", slot.sparams.dry_sequence_breakers},
  944. {"mirostat", slot.sparams.mirostat},
  945. {"mirostat_tau", slot.sparams.mirostat_tau},
  946. {"mirostat_eta", slot.sparams.mirostat_eta},
  947. {"penalize_nl", slot.sparams.penalize_nl},
  948. {"stop", slot.params.antiprompt},
  949. {"max_tokens", slot.params.n_predict}, // User configured n_predict
  950. {"n_keep", slot.params.n_keep},
  951. {"n_discard", slot.params.n_discard},
  952. {"ignore_eos", slot.sparams.ignore_eos},
  953. {"stream", slot.params.stream},
  954. //{"logit_bias", slot.sparams.logit_bias},
  955. {"n_probs", slot.sparams.n_probs},
  956. {"min_keep", slot.sparams.min_keep},
  957. {"grammar", slot.sparams.grammar},
  958. {"samplers", samplers},
  959. };
  960. }
  961. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  962. send_error(task.id, error, type);
  963. }
  964. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  965. send_error(slot.id_task, error, type);
  966. }
  967. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  968. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  969. server_task_result res;
  970. res.id = id_task;
  971. res.stop = false;
  972. res.error = true;
  973. res.data = format_error_response(error, type);
  974. queue_results.send(res);
  975. }
  976. void send_partial_response(server_slot & slot, completion_token_output tkn) {
  977. server_task_result res;
  978. res.id = slot.id_task;
  979. res.error = false;
  980. res.stop = false;
  981. res.data = json {
  982. {"content", tkn.text_to_send},
  983. {"stop", false},
  984. {"id_slot", slot.id},
  985. {"multimodal", false},
  986. {"index", slot.index},
  987. };
  988. if (slot.sparams.n_probs > 0) {
  989. const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
  990. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  991. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  992. std::vector<completion_token_output> probs_output;
  993. if (probs_pos < probs_stop_pos) {
  994. probs_output = std::vector<completion_token_output>(
  995. slot.generated_token_probs.begin() + probs_pos,
  996. slot.generated_token_probs.begin() + probs_stop_pos);
  997. }
  998. slot.n_sent_token_probs = probs_stop_pos;
  999. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  1000. }
  1001. if (slot.oaicompat) {
  1002. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1003. res.data["model"] = slot.oaicompat_model;
  1004. }
  1005. queue_results.send(res);
  1006. }
  1007. void send_final_response(const server_slot & slot) {
  1008. server_task_result res;
  1009. res.id = slot.id_task;
  1010. res.error = false;
  1011. res.stop = true;
  1012. res.data = json {
  1013. {"content", !slot.params.stream ? slot.generated_text : ""},
  1014. {"id_slot", slot.id},
  1015. {"stop", true},
  1016. {"model", params.model_alias},
  1017. {"tokens_predicted", slot.n_decoded},
  1018. {"tokens_evaluated", slot.n_prompt_tokens},
  1019. {"generation_settings", get_formated_generation(slot)},
  1020. {"prompt", common_detokenize(ctx, slot.prompt_tokens)},
  1021. {"has_new_line", slot.has_new_line},
  1022. {"truncated", slot.truncated},
  1023. {"stopped_eos", slot.stopped_eos},
  1024. {"stopped_word", slot.stopped_word},
  1025. {"stopped_limit", slot.stopped_limit},
  1026. {"stopping_word", slot.stopping_word},
  1027. {"tokens_cached", slot.n_past},
  1028. {"timings", slot.get_formated_timings()},
  1029. {"index", slot.index},
  1030. };
  1031. if (slot.sparams.n_probs > 0) {
  1032. std::vector<completion_token_output> probs;
  1033. if (!slot.params.stream && slot.stopped_word) {
  1034. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1035. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1036. probs = std::vector<completion_token_output>(
  1037. slot.generated_token_probs.begin(),
  1038. slot.generated_token_probs.end() - safe_offset);
  1039. } else {
  1040. probs = std::vector<completion_token_output>(
  1041. slot.generated_token_probs.begin(),
  1042. slot.generated_token_probs.end());
  1043. }
  1044. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1045. }
  1046. if (slot.oaicompat) {
  1047. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1048. res.data["model"] = slot.oaicompat_model;
  1049. }
  1050. queue_results.send(res);
  1051. }
  1052. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1053. server_task_result res;
  1054. res.id = slot.id_task;
  1055. res.error = false;
  1056. res.stop = true;
  1057. const int n_embd = llama_n_embd(model);
  1058. std::vector<float> embd_res(n_embd, 0.0f);
  1059. for (int i = 0; i < batch.n_tokens; ++i) {
  1060. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1061. continue;
  1062. }
  1063. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1064. if (embd == NULL) {
  1065. embd = llama_get_embeddings_ith(ctx, i);
  1066. }
  1067. if (embd == NULL) {
  1068. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1069. res.data = json {
  1070. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1071. {"index", slot.index},
  1072. };
  1073. continue;
  1074. }
  1075. common_embd_normalize(embd, embd_res.data(), n_embd);
  1076. res.data = json {
  1077. {"embedding", embd_res},
  1078. {"index", slot.index},
  1079. };
  1080. }
  1081. SLT_DBG(slot, "%s", "sending embeddings\n");
  1082. queue_results.send(res);
  1083. }
  1084. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1085. server_task_result res;
  1086. res.id = slot.id_task;
  1087. res.error = false;
  1088. res.stop = true;
  1089. for (int i = 0; i < batch.n_tokens; ++i) {
  1090. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1091. continue;
  1092. }
  1093. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1094. if (embd == NULL) {
  1095. embd = llama_get_embeddings_ith(ctx, i);
  1096. }
  1097. if (embd == NULL) {
  1098. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1099. res.data = json {
  1100. {"index", slot.index},
  1101. {"score", -1e6},
  1102. };
  1103. continue;
  1104. }
  1105. res.data = json {
  1106. {"index", slot.index},
  1107. {"score", embd[0]},
  1108. };
  1109. }
  1110. SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str());
  1111. queue_results.send(res);
  1112. }
  1113. //
  1114. // Functions to create new task(s) and receive result(s)
  1115. //
  1116. // break the input "prompt" into multiple tasks if needed, then format and tokenize the input prompt(s)
  1117. std::vector<server_task> create_tasks_inference(json data, server_task_inf_type inf_type) {
  1118. std::vector<server_task> tasks;
  1119. auto create_task = [&](json & task_data, llama_tokens & prompt_tokens) {
  1120. SRV_DBG("create task, n_tokens = %d\n", (int) prompt_tokens.size());
  1121. server_task task;
  1122. task.id = queue_tasks.get_new_id();
  1123. task.inf_type = inf_type;
  1124. task.type = SERVER_TASK_TYPE_INFERENCE;
  1125. task.data = task_data;
  1126. task.prompt_tokens = std::move(prompt_tokens);
  1127. tasks.push_back(std::move(task));
  1128. };
  1129. static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts";
  1130. if (!data.contains("prompt")) {
  1131. throw std::runtime_error(error_msg);
  1132. }
  1133. // because llama_tokenize api is thread-safe, we can tokenize the prompt from HTTP thread
  1134. bool add_special = inf_type != SERVER_TASK_INF_TYPE_RERANK && inf_type != SERVER_TASK_INF_TYPE_INFILL;
  1135. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx, data.at("prompt"), add_special, true);
  1136. switch (inf_type) {
  1137. case SERVER_TASK_INF_TYPE_RERANK:
  1138. {
  1139. // prompts[0] is the question
  1140. // the rest are the answers/documents
  1141. GGML_ASSERT(tokenized_prompts.size() > 1);
  1142. SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) tokenized_prompts.size() - 1);
  1143. for (size_t i = 1; i < tokenized_prompts.size(); i++) {
  1144. data["index"] = i - 1;
  1145. auto tokens = format_rerank(model, tokenized_prompts[0], tokenized_prompts[i]);
  1146. create_task(data, tokens);
  1147. }
  1148. } break;
  1149. case SERVER_TASK_INF_TYPE_INFILL:
  1150. {
  1151. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  1152. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  1153. data["index"] = i;
  1154. auto tokens = format_infill(
  1155. ctx,
  1156. data.at("input_prefix"),
  1157. data.at("input_suffix"),
  1158. data.at("input_extra"),
  1159. params.n_batch,
  1160. params.n_predict,
  1161. slots[0].n_ctx, // TODO: there should be a better way
  1162. params.spm_infill,
  1163. tokenized_prompts[i]
  1164. );
  1165. create_task(data, tokens);
  1166. }
  1167. } break;
  1168. default:
  1169. {
  1170. SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  1171. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  1172. data["index"] = i;
  1173. create_task(data, tokenized_prompts[i]);
  1174. }
  1175. }
  1176. }
  1177. return tasks;
  1178. }
  1179. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1180. std::vector<server_task> cancel_tasks;
  1181. cancel_tasks.reserve(id_tasks.size());
  1182. for (const auto & id_task : id_tasks) {
  1183. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1184. server_task task;
  1185. task.type = SERVER_TASK_TYPE_CANCEL;
  1186. task.id_target = id_task;
  1187. cancel_tasks.push_back(task);
  1188. queue_results.remove_waiting_task_id(id_task);
  1189. }
  1190. // push to beginning of the queue, so it has highest priority
  1191. queue_tasks.post(cancel_tasks, true);
  1192. }
  1193. // receive the results from task(s) created by create_tasks_inference
  1194. void receive_cmpl_results(
  1195. const std::unordered_set<int> & id_tasks,
  1196. const std::function<void(std::vector<server_task_result>&)> & result_handler,
  1197. const std::function<void(json)> & error_handler) {
  1198. // TODO: currently, there is no way to detect the client has cancelled the request
  1199. std::vector<server_task_result> results(id_tasks.size());
  1200. for (size_t i = 0; i < id_tasks.size(); i++) {
  1201. server_task_result result = queue_results.recv(id_tasks);
  1202. if (result.error) {
  1203. error_handler(result.data);
  1204. cancel_tasks(id_tasks);
  1205. return;
  1206. }
  1207. const size_t idx = result.data["index"];
  1208. GGML_ASSERT(idx < results.size() && "index out of range");
  1209. results[idx] = result;
  1210. }
  1211. result_handler(results);
  1212. }
  1213. // receive the results from task(s) created by create_tasks_inference, in stream mode
  1214. void receive_cmpl_results_stream(
  1215. const std::unordered_set<int> & id_tasks, const
  1216. std::function<bool(server_task_result&)> & result_handler, const
  1217. std::function<void(json)> & error_handler) {
  1218. size_t n_finished = 0;
  1219. while (true) {
  1220. server_task_result result = queue_results.recv(id_tasks);
  1221. if (!result_handler(result)) {
  1222. cancel_tasks(id_tasks);
  1223. break;
  1224. }
  1225. if (result.error) {
  1226. error_handler(result.data);
  1227. cancel_tasks(id_tasks);
  1228. break;
  1229. }
  1230. if (result.stop) {
  1231. if (++n_finished == id_tasks.size()) {
  1232. break;
  1233. }
  1234. }
  1235. }
  1236. }
  1237. //
  1238. // Functions to process the task
  1239. //
  1240. void process_single_task(const server_task & task) {
  1241. switch (task.type) {
  1242. case SERVER_TASK_TYPE_INFERENCE:
  1243. {
  1244. const int id_slot = json_value(task.data, "id_slot", -1);
  1245. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1246. if (slot == nullptr) {
  1247. // if no slot is available, we defer this task for processing later
  1248. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1249. queue_tasks.defer(task);
  1250. break;
  1251. }
  1252. if (slot->is_processing()) {
  1253. // if requested slot is unavailable, we defer this task for processing later
  1254. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1255. queue_tasks.defer(task);
  1256. break;
  1257. }
  1258. slot->reset();
  1259. slot->id_task = task.id;
  1260. slot->inf_type = task.inf_type;
  1261. slot->index = json_value(task.data, "index", 0);
  1262. slot->prompt_tokens = std::move(task.prompt_tokens);
  1263. if (!launch_slot_with_task(*slot, task)) {
  1264. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1265. break;
  1266. }
  1267. } break;
  1268. case SERVER_TASK_TYPE_CANCEL:
  1269. {
  1270. // release slot linked with the task id
  1271. for (auto & slot : slots) {
  1272. if (slot.id_task == task.id_target) {
  1273. slot.release();
  1274. break;
  1275. }
  1276. }
  1277. } break;
  1278. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1279. {
  1280. // do nothing
  1281. } break;
  1282. case SERVER_TASK_TYPE_METRICS:
  1283. {
  1284. json slots_data = json::array();
  1285. int n_idle_slots = 0;
  1286. int n_processing_slots = 0;
  1287. for (server_slot & slot : slots) {
  1288. json slot_data = get_formated_generation(slot);
  1289. slot_data["id"] = slot.id;
  1290. slot_data["id_task"] = slot.id_task;
  1291. slot_data["state"] = slot.state;
  1292. slot_data["prompt"] = common_detokenize(ctx, slot.prompt_tokens);
  1293. slot_data["next_token"] = {
  1294. {"has_next_token", slot.has_next_token},
  1295. {"has_new_line", slot.has_new_line},
  1296. {"n_remain", slot.n_remaining},
  1297. {"n_decoded", slot.n_decoded},
  1298. {"stopped_eos", slot.stopped_eos},
  1299. {"stopped_word", slot.stopped_word},
  1300. {"stopped_limit", slot.stopped_limit},
  1301. {"stopping_word", slot.stopping_word},
  1302. };
  1303. if (slot_data["state"] == SLOT_STATE_IDLE) {
  1304. n_idle_slots++;
  1305. } else {
  1306. n_processing_slots++;
  1307. }
  1308. slots_data.push_back(slot_data);
  1309. }
  1310. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1311. server_task_result res;
  1312. res.id = task.id;
  1313. res.stop = true;
  1314. res.error = false;
  1315. res.data = {
  1316. { "idle", n_idle_slots },
  1317. { "processing", n_processing_slots },
  1318. { "deferred", queue_tasks.queue_tasks_deferred.size() },
  1319. { "t_start", metrics.t_start},
  1320. { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
  1321. { "t_tokens_generation_total", metrics.t_tokens_generation_total},
  1322. { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
  1323. { "t_prompt_processing_total", metrics.t_prompt_processing_total},
  1324. { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
  1325. { "t_prompt_processing", metrics.t_prompt_processing},
  1326. { "n_tokens_predicted", metrics.n_tokens_predicted},
  1327. { "t_tokens_generation", metrics.t_tokens_generation},
  1328. { "n_decode_total", metrics.n_decode_total},
  1329. { "n_busy_slots_total", metrics.n_busy_slots_total},
  1330. { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
  1331. { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
  1332. { "slots", slots_data },
  1333. };
  1334. if (json_value(task.data, "reset_bucket", false)) {
  1335. metrics.reset_bucket();
  1336. }
  1337. queue_results.send(res);
  1338. } break;
  1339. case SERVER_TASK_TYPE_SLOT_SAVE:
  1340. {
  1341. int id_slot = task.data.at("id_slot");
  1342. server_slot * slot = get_slot_by_id(id_slot);
  1343. if (slot == nullptr) {
  1344. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1345. break;
  1346. }
  1347. if (slot->is_processing()) {
  1348. // if requested slot is unavailable, we defer this task for processing later
  1349. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1350. queue_tasks.defer(task);
  1351. break;
  1352. }
  1353. const size_t token_count = slot->cache_tokens.size();
  1354. const int64_t t_start = ggml_time_us();
  1355. std::string filename = task.data.at("filename");
  1356. std::string filepath = task.data.at("filepath");
  1357. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
  1358. const int64_t t_end = ggml_time_us();
  1359. const double t_save_ms = (t_end - t_start) / 1000.0;
  1360. server_task_result result;
  1361. result.id = task.id;
  1362. result.stop = true;
  1363. result.error = false;
  1364. result.data = json {
  1365. { "id_slot", id_slot },
  1366. { "filename", filename },
  1367. { "n_saved", token_count }, // tokens saved
  1368. { "n_written", nwrite }, // bytes written
  1369. { "timings", {
  1370. { "save_ms", t_save_ms }
  1371. } }
  1372. };
  1373. queue_results.send(result);
  1374. } break;
  1375. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1376. {
  1377. int id_slot = task.data.at("id_slot");
  1378. server_slot * slot = get_slot_by_id(id_slot);
  1379. if (slot == nullptr) {
  1380. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1381. break;
  1382. }
  1383. if (slot->is_processing()) {
  1384. // if requested slot is unavailable, we defer this task for processing later
  1385. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1386. queue_tasks.defer(task);
  1387. break;
  1388. }
  1389. const int64_t t_start = ggml_time_us();
  1390. std::string filename = task.data.at("filename");
  1391. std::string filepath = task.data.at("filepath");
  1392. slot->cache_tokens.resize(slot->n_ctx);
  1393. size_t token_count = 0;
  1394. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1395. if (nread == 0) {
  1396. slot->cache_tokens.resize(0);
  1397. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1398. break;
  1399. }
  1400. slot->cache_tokens.resize(token_count);
  1401. const int64_t t_end = ggml_time_us();
  1402. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1403. server_task_result result;
  1404. result.id = task.id;
  1405. result.stop = true;
  1406. result.error = false;
  1407. result.data = json {
  1408. { "id_slot", id_slot },
  1409. { "filename", filename },
  1410. { "n_restored", token_count }, // tokens restored
  1411. { "n_read", nread }, // bytes read
  1412. { "timings", {
  1413. { "restore_ms", t_restore_ms }
  1414. } }
  1415. };
  1416. queue_results.send(result);
  1417. } break;
  1418. case SERVER_TASK_TYPE_SLOT_ERASE:
  1419. {
  1420. int id_slot = task.data.at("id_slot");
  1421. server_slot * slot = get_slot_by_id(id_slot);
  1422. if (slot == nullptr) {
  1423. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1424. break;
  1425. }
  1426. if (slot->is_processing()) {
  1427. // if requested slot is unavailable, we defer this task for processing later
  1428. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1429. queue_tasks.defer(task);
  1430. break;
  1431. }
  1432. // Erase token cache
  1433. const size_t n_erased = slot->cache_tokens.size();
  1434. llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
  1435. slot->cache_tokens.clear();
  1436. server_task_result result;
  1437. result.id = task.id;
  1438. result.stop = true;
  1439. result.error = false;
  1440. result.data = json {
  1441. { "id_slot", id_slot },
  1442. { "n_erased", n_erased }
  1443. };
  1444. queue_results.send(result);
  1445. } break;
  1446. case SERVER_TASK_TYPE_SET_LORA:
  1447. {
  1448. common_lora_adapters_apply(ctx, loras);
  1449. server_task_result result;
  1450. result.id = task.id;
  1451. result.stop = true;
  1452. result.error = false;
  1453. result.data = json{{ "success", true }};
  1454. queue_results.send(result);
  1455. } break;
  1456. }
  1457. }
  1458. void update_slots() {
  1459. // check if all slots are idle
  1460. {
  1461. bool all_idle = true;
  1462. for (auto & slot : slots) {
  1463. if (slot.is_processing()) {
  1464. all_idle = false;
  1465. break;
  1466. }
  1467. }
  1468. if (all_idle) {
  1469. SRV_INF("%s", "all slots are idle\n");
  1470. if (clean_kv_cache) {
  1471. kv_cache_clear();
  1472. }
  1473. return;
  1474. }
  1475. }
  1476. {
  1477. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1478. server_task task;
  1479. task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
  1480. task.id_target = -1;
  1481. queue_tasks.post(task);
  1482. }
  1483. // apply context-shift if needed
  1484. // TODO: simplify and improve
  1485. for (server_slot & slot : slots) {
  1486. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  1487. if (!params.ctx_shift) {
  1488. // this check is redundant (for good)
  1489. // we should never get here, because generation should already stopped in process_token()
  1490. slot.release();
  1491. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1492. continue;
  1493. }
  1494. // Shift context
  1495. const int n_keep = slot.params.n_keep + add_bos_token;
  1496. const int n_left = slot.n_past - n_keep;
  1497. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1498. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1499. llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
  1500. llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, slot.n_past, -n_discard);
  1501. if (slot.params.cache_prompt) {
  1502. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1503. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1504. }
  1505. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1506. }
  1507. slot.n_past -= n_discard;
  1508. slot.truncated = true;
  1509. }
  1510. }
  1511. // start populating the batch for this iteration
  1512. common_batch_clear(batch);
  1513. // frist, add sampled tokens from any ongoing sequences
  1514. for (auto & slot : slots) {
  1515. if (slot.state != SLOT_STATE_GENERATING) {
  1516. continue;
  1517. }
  1518. slot.i_batch = batch.n_tokens;
  1519. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id + 1 }, true);
  1520. slot.n_past += 1;
  1521. if (slot.params.cache_prompt) {
  1522. slot.cache_tokens.push_back(slot.sampled);
  1523. }
  1524. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  1525. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  1526. }
  1527. // process in chunks of params.n_batch
  1528. int32_t n_batch = llama_n_batch(ctx);
  1529. int32_t n_ubatch = llama_n_ubatch(ctx);
  1530. // track if this is an embedding or non-embedding batch
  1531. // if we've added sampled tokens above, we are in non-embedding mode
  1532. // -1: none, 0: non-embedding, 1: embedding
  1533. // TODO: make enum
  1534. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  1535. // next, batch any pending prompts without exceeding n_batch
  1536. if (params.cont_batching || batch.n_tokens == 0) {
  1537. for (auto & slot : slots) {
  1538. // this slot still has a prompt to be processed
  1539. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  1540. auto & prompt_tokens = slot.prompt_tokens;
  1541. // TODO: maybe move branch to outside of this loop in the future
  1542. if (slot.state == SLOT_STATE_STARTED) {
  1543. slot.t_start_process_prompt = ggml_time_us();
  1544. slot.t_start_generation = 0;
  1545. slot.n_past = 0;
  1546. slot.n_prompt_tokens = prompt_tokens.size();
  1547. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  1548. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  1549. // print prompt tokens (for debugging)
  1550. if (1) {
  1551. // first 16 tokens (avoid flooding logs)
  1552. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  1553. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1554. }
  1555. } else {
  1556. // all
  1557. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  1558. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1559. }
  1560. }
  1561. // empty prompt passed -> release the slot and send empty response
  1562. if (prompt_tokens.empty()) {
  1563. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  1564. slot.release();
  1565. slot.print_timings();
  1566. send_final_response(slot);
  1567. continue;
  1568. }
  1569. if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
  1570. if (slot.n_prompt_tokens > n_ubatch) {
  1571. slot.release();
  1572. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  1573. continue;
  1574. }
  1575. if (slot.n_prompt_tokens > slot.n_ctx) {
  1576. slot.release();
  1577. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  1578. continue;
  1579. }
  1580. } else {
  1581. if (!params.ctx_shift) {
  1582. // if context shift is disabled, we make sure prompt size is smaller than KV size
  1583. // TODO: there should be a separate parameter that control prompt truncation
  1584. // context shift should be applied only during the generation phase
  1585. if (slot.n_prompt_tokens >= slot.n_ctx) {
  1586. slot.release();
  1587. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  1588. continue;
  1589. }
  1590. }
  1591. if (slot.params.n_keep < 0) {
  1592. slot.params.n_keep = slot.n_prompt_tokens;
  1593. }
  1594. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1595. // if input prompt is too big, truncate it
  1596. if (slot.n_prompt_tokens >= slot.n_ctx) {
  1597. const int n_left = slot.n_ctx - slot.params.n_keep;
  1598. const int n_block_size = n_left / 2;
  1599. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1600. llama_tokens new_tokens(
  1601. prompt_tokens.begin(),
  1602. prompt_tokens.begin() + slot.params.n_keep);
  1603. new_tokens.insert(
  1604. new_tokens.end(),
  1605. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  1606. prompt_tokens.end());
  1607. prompt_tokens = std::move(new_tokens);
  1608. slot.truncated = true;
  1609. slot.n_prompt_tokens = prompt_tokens.size();
  1610. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  1611. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  1612. }
  1613. if (slot.params.cache_prompt) {
  1614. // reuse any previously computed tokens that are common with the new prompt
  1615. slot.n_past = longest_common_prefix(slot.cache_tokens, prompt_tokens);
  1616. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  1617. if (params.n_cache_reuse > 0) {
  1618. size_t head_c = slot.n_past; // cache
  1619. size_t head_p = slot.n_past; // current prompt
  1620. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params.n_cache_reuse, slot.n_past);
  1621. while (head_c < slot.cache_tokens.size() &&
  1622. head_p < prompt_tokens.size()) {
  1623. size_t n_match = 0;
  1624. while (head_c + n_match < slot.cache_tokens.size() &&
  1625. head_p + n_match < prompt_tokens.size() &&
  1626. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  1627. n_match++;
  1628. }
  1629. if (n_match >= (size_t) params.n_cache_reuse) {
  1630. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  1631. //for (size_t i = head_p; i < head_p + n_match; i++) {
  1632. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1633. //}
  1634. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  1635. llama_kv_cache_seq_rm (ctx, slot.id + 1, head_p, head_c);
  1636. llama_kv_cache_seq_add(ctx, slot.id + 1, head_c, -1, kv_shift);
  1637. for (size_t i = 0; i < n_match; i++) {
  1638. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  1639. slot.n_past++;
  1640. }
  1641. head_c += n_match;
  1642. head_p += n_match;
  1643. } else {
  1644. head_c += 1;
  1645. }
  1646. }
  1647. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  1648. }
  1649. }
  1650. }
  1651. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  1652. // we have to evaluate at least 1 token to generate logits.
  1653. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  1654. slot.n_past--;
  1655. }
  1656. slot.n_prompt_tokens_processed = 0;
  1657. }
  1658. // non-causal tasks require to fit the entire prompt in the physical batch
  1659. if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
  1660. // cannot fit the prompt in the current batch - will try next iter
  1661. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  1662. continue;
  1663. }
  1664. }
  1665. // check that we are in the right batch_type, if not defer the slot
  1666. const bool slot_type =
  1667. slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING ||
  1668. slot.inf_type == SERVER_TASK_INF_TYPE_RERANK ? 1 : 0;
  1669. if (batch_type == -1) {
  1670. batch_type = slot_type;
  1671. } else if (batch_type != slot_type) {
  1672. continue;
  1673. }
  1674. // keep only the common part
  1675. if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, slot.n_past, -1)) {
  1676. // could not partially delete (likely using a non-Transformer model)
  1677. llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
  1678. // there is no common part left
  1679. slot.n_past = 0;
  1680. }
  1681. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  1682. // remove the non-common part from the cache
  1683. slot.cache_tokens.resize(slot.n_past);
  1684. // add prompt tokens for processing in the current batch
  1685. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  1686. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id + 1 }, false);
  1687. if (slot.params.cache_prompt) {
  1688. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  1689. }
  1690. slot.n_prompt_tokens_processed++;
  1691. slot.n_past++;
  1692. }
  1693. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  1694. // entire prompt has been processed
  1695. if (slot.n_past == slot.n_prompt_tokens) {
  1696. slot.state = SLOT_STATE_DONE_PROMPT;
  1697. GGML_ASSERT(batch.n_tokens > 0);
  1698. common_sampler_reset(slot.smpl);
  1699. // Process all prompt tokens through sampler system
  1700. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  1701. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  1702. }
  1703. // extract the logits only for the last token
  1704. batch.logits[batch.n_tokens - 1] = true;
  1705. slot.n_decoded = 0;
  1706. slot.i_batch = batch.n_tokens - 1;
  1707. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  1708. }
  1709. }
  1710. if (batch.n_tokens >= n_batch) {
  1711. break;
  1712. }
  1713. }
  1714. }
  1715. if (batch.n_tokens == 0) {
  1716. SRV_WRN("%s", "no tokens to decode\n");
  1717. return;
  1718. }
  1719. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  1720. // make sure we're in the right embedding mode
  1721. llama_set_embeddings(ctx, batch_type == 1);
  1722. // process the created batch of tokens
  1723. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  1724. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  1725. llama_batch batch_view = {
  1726. n_tokens,
  1727. batch.token + i,
  1728. nullptr,
  1729. batch.pos + i,
  1730. batch.n_seq_id + i,
  1731. batch.seq_id + i,
  1732. batch.logits + i,
  1733. };
  1734. const int ret = llama_decode(ctx, batch_view);
  1735. metrics.on_decoded(slots);
  1736. if (ret != 0) {
  1737. if (n_batch == 1 || ret < 0) {
  1738. // if you get here, it means the KV cache is full - try increasing it via the context size
  1739. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  1740. for (auto & slot : slots) {
  1741. slot.release();
  1742. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  1743. }
  1744. break; // break loop of n_batch
  1745. }
  1746. // retry with half the batch size to try to find a free slot in the KV cache
  1747. n_batch /= 2;
  1748. i -= n_batch;
  1749. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  1750. continue; // continue loop of n_batch
  1751. }
  1752. for (auto & slot : slots) {
  1753. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  1754. continue; // continue loop of slots
  1755. }
  1756. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  1757. if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING) {
  1758. // prompt evaluated for embedding
  1759. send_embedding(slot, batch_view);
  1760. slot.release();
  1761. slot.i_batch = -1;
  1762. continue; // continue loop of slots
  1763. }
  1764. if (slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
  1765. send_rerank(slot, batch_view);
  1766. slot.release();
  1767. slot.i_batch = -1;
  1768. continue; // continue loop of slots
  1769. }
  1770. // prompt evaluated for next-token prediction
  1771. slot.state = SLOT_STATE_GENERATING;
  1772. } else if (slot.state != SLOT_STATE_GENERATING) {
  1773. continue; // continue loop of slots
  1774. }
  1775. completion_token_output result;
  1776. const llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  1777. common_sampler_accept(slot.smpl, id, true);
  1778. slot.n_decoded += 1;
  1779. if (slot.n_decoded == 1) {
  1780. slot.t_start_generation = ggml_time_us();
  1781. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  1782. metrics.on_prompt_eval(slot);
  1783. }
  1784. result.tok = id;
  1785. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1786. for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
  1787. result.probs.push_back({
  1788. cur_p->data[i].id,
  1789. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  1790. });
  1791. }
  1792. if (!process_token(result, slot)) {
  1793. // release slot because of stop condition
  1794. slot.release();
  1795. slot.print_timings();
  1796. send_final_response(slot);
  1797. metrics.on_prediction(slot);
  1798. }
  1799. slot.i_batch = -1;
  1800. }
  1801. }
  1802. SRV_DBG("%s", "run slots completed\n");
  1803. }
  1804. json model_meta() const {
  1805. return json {
  1806. {"vocab_type", llama_vocab_type (model)},
  1807. {"n_vocab", llama_n_vocab (model)},
  1808. {"n_ctx_train", llama_n_ctx_train (model)},
  1809. {"n_embd", llama_n_embd (model)},
  1810. {"n_params", llama_model_n_params(model)},
  1811. {"size", llama_model_size (model)},
  1812. };
  1813. }
  1814. };
  1815. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  1816. // skip GH copilot requests when using default port
  1817. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  1818. return;
  1819. }
  1820. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  1821. LOG_DBG("request: %s\n", req.body.c_str());
  1822. LOG_DBG("response: %s\n", res.body.c_str());
  1823. }
  1824. std::function<void(int)> shutdown_handler;
  1825. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  1826. inline void signal_handler(int signal) {
  1827. if (is_terminating.test_and_set()) {
  1828. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  1829. // this is for better developer experience, we can remove when the server is stable enough
  1830. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  1831. exit(1);
  1832. }
  1833. shutdown_handler(signal);
  1834. }
  1835. int main(int argc, char ** argv) {
  1836. // own arguments required by this example
  1837. common_params params;
  1838. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  1839. return 1;
  1840. }
  1841. common_init();
  1842. // enabling this will output extra debug information in the HTTP responses from the server
  1843. // see format_final_response_oaicompat()
  1844. const bool verbose = params.verbosity > 9;
  1845. // struct that contains llama context and inference
  1846. server_context ctx_server;
  1847. if (params.model_alias == "unknown") {
  1848. params.model_alias = params.model;
  1849. }
  1850. llama_backend_init();
  1851. llama_numa_init(params.numa);
  1852. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  1853. LOG_INF("\n");
  1854. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  1855. LOG_INF("\n");
  1856. std::unique_ptr<httplib::Server> svr;
  1857. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  1858. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  1859. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  1860. svr.reset(
  1861. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  1862. );
  1863. } else {
  1864. LOG_INF("Running without SSL\n");
  1865. svr.reset(new httplib::Server());
  1866. }
  1867. #else
  1868. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  1869. LOG_ERR("Server is built without SSL support\n");
  1870. return 1;
  1871. }
  1872. svr.reset(new httplib::Server());
  1873. #endif
  1874. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  1875. svr->set_default_headers({{"Server", "llama.cpp"}});
  1876. // CORS preflight
  1877. svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
  1878. // Access-Control-Allow-Origin is already set by middleware
  1879. res.set_header("Access-Control-Allow-Credentials", "true");
  1880. res.set_header("Access-Control-Allow-Methods", "POST");
  1881. res.set_header("Access-Control-Allow-Headers", "*");
  1882. return res.set_content("", "text/html"); // blank response, no data
  1883. });
  1884. svr->set_logger(log_server_request);
  1885. auto res_error = [](httplib::Response & res, const json & error_data) {
  1886. json final_response {{"error", error_data}};
  1887. res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
  1888. res.status = json_value(error_data, "code", 500);
  1889. };
  1890. auto res_ok = [](httplib::Response & res, const json & data) {
  1891. res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
  1892. res.status = 200;
  1893. };
  1894. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
  1895. std::string message;
  1896. try {
  1897. std::rethrow_exception(ep);
  1898. } catch (std::exception & e) {
  1899. message = e.what();
  1900. } catch (...) {
  1901. message = "Unknown Exception";
  1902. }
  1903. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  1904. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  1905. res_error(res, formatted_error);
  1906. });
  1907. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  1908. if (res.status == 404) {
  1909. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  1910. }
  1911. // for other error codes, we skip processing here because it's already done by res_error()
  1912. });
  1913. // set timeouts and change hostname and port
  1914. svr->set_read_timeout (params.timeout_read);
  1915. svr->set_write_timeout(params.timeout_write);
  1916. std::unordered_map<std::string, std::string> log_data;
  1917. log_data["hostname"] = params.hostname;
  1918. log_data["port"] = std::to_string(params.port);
  1919. if (params.api_keys.size() == 1) {
  1920. auto key = params.api_keys[0];
  1921. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  1922. } else if (params.api_keys.size() > 1) {
  1923. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  1924. }
  1925. // Necessary similarity of prompt for slot selection
  1926. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  1927. //
  1928. // Middlewares
  1929. //
  1930. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  1931. static const std::unordered_set<std::string> public_endpoints = {
  1932. "/health",
  1933. "/models",
  1934. "/v1/models",
  1935. };
  1936. // If API key is not set, skip validation
  1937. if (params.api_keys.empty()) {
  1938. return true;
  1939. }
  1940. // If path is public, skip validation
  1941. if (public_endpoints.find(req.path) != public_endpoints.end()) {
  1942. return true;
  1943. }
  1944. // Check for API key in the header
  1945. auto auth_header = req.get_header_value("Authorization");
  1946. std::string prefix = "Bearer ";
  1947. if (auth_header.substr(0, prefix.size()) == prefix) {
  1948. std::string received_api_key = auth_header.substr(prefix.size());
  1949. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  1950. return true; // API key is valid
  1951. }
  1952. }
  1953. // API key is invalid or not provided
  1954. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  1955. LOG_WRN("Unauthorized: Invalid API Key\n");
  1956. return false;
  1957. };
  1958. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  1959. server_state current_state = state.load();
  1960. if (current_state == SERVER_STATE_LOADING_MODEL) {
  1961. auto tmp = string_split<std::string>(req.path, '.');
  1962. if (req.path == "/" || tmp.back() == "html") {
  1963. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  1964. res.status = 503;
  1965. } else {
  1966. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  1967. }
  1968. return false;
  1969. }
  1970. return true;
  1971. };
  1972. // register server middlewares
  1973. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  1974. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  1975. if (!middleware_server_state(req, res)) {
  1976. return httplib::Server::HandlerResponse::Handled;
  1977. }
  1978. if (!middleware_validate_api_key(req, res)) {
  1979. return httplib::Server::HandlerResponse::Handled;
  1980. }
  1981. return httplib::Server::HandlerResponse::Unhandled;
  1982. });
  1983. //
  1984. // Route handlers (or controllers)
  1985. //
  1986. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  1987. // error and loading states are handled by middleware
  1988. json health = {{"status", "ok"}};
  1989. res_ok(res, health);
  1990. };
  1991. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  1992. if (!params.endpoint_slots) {
  1993. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  1994. return;
  1995. }
  1996. // request slots data using task queue
  1997. server_task task;
  1998. task.id = ctx_server.queue_tasks.get_new_id();
  1999. task.type = SERVER_TASK_TYPE_METRICS;
  2000. ctx_server.queue_results.add_waiting_task_id(task.id);
  2001. ctx_server.queue_tasks.post(task, true); // high-priority task
  2002. // get the result
  2003. server_task_result result = ctx_server.queue_results.recv(task.id);
  2004. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2005. // optionally return "fail_on_no_slot" error
  2006. const int n_idle_slots = result.data.at("idle");
  2007. if (req.has_param("fail_on_no_slot")) {
  2008. if (n_idle_slots == 0) {
  2009. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2010. return;
  2011. }
  2012. }
  2013. res_ok(res, result.data.at("slots"));
  2014. };
  2015. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2016. if (!params.endpoint_metrics) {
  2017. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2018. return;
  2019. }
  2020. // request slots data using task queue
  2021. server_task task;
  2022. task.id = ctx_server.queue_tasks.get_new_id();
  2023. task.id_target = -1;
  2024. task.type = SERVER_TASK_TYPE_METRICS;
  2025. task.data.push_back({{"reset_bucket", true}});
  2026. ctx_server.queue_results.add_waiting_task_id(task.id);
  2027. ctx_server.queue_tasks.post(task, true); // high-priority task
  2028. // get the result
  2029. server_task_result result = ctx_server.queue_results.recv(task.id);
  2030. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2031. json data = result.data;
  2032. const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
  2033. const uint64_t t_prompt_processing = data.at("t_prompt_processing");
  2034. const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
  2035. const uint64_t t_tokens_generation = data.at("t_tokens_generation");
  2036. const uint64_t n_decode_total = data.at("n_decode_total");
  2037. const uint64_t n_busy_slots_total = data.at("n_busy_slots_total");
  2038. const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
  2039. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2040. json all_metrics_def = json {
  2041. {"counter", {{
  2042. {"name", "prompt_tokens_total"},
  2043. {"help", "Number of prompt tokens processed."},
  2044. {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
  2045. }, {
  2046. {"name", "prompt_seconds_total"},
  2047. {"help", "Prompt process time"},
  2048. {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
  2049. }, {
  2050. {"name", "tokens_predicted_total"},
  2051. {"help", "Number of generation tokens processed."},
  2052. {"value", (uint64_t) data.at("n_tokens_predicted_total")}
  2053. }, {
  2054. {"name", "tokens_predicted_seconds_total"},
  2055. {"help", "Predict process time"},
  2056. {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
  2057. }, {
  2058. {"name", "n_decode_total"},
  2059. {"help", "Total number of llama_decode() calls"},
  2060. {"value", n_decode_total}
  2061. }, {
  2062. {"name", "n_busy_slots_per_decode"},
  2063. {"help", "Average number of busy slots per llama_decode() call"},
  2064. {"value", (float) n_busy_slots_total / (float) n_decode_total}
  2065. }}},
  2066. {"gauge", {{
  2067. {"name", "prompt_tokens_seconds"},
  2068. {"help", "Average prompt throughput in tokens/s."},
  2069. {"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
  2070. },{
  2071. {"name", "predicted_tokens_seconds"},
  2072. {"help", "Average generation throughput in tokens/s."},
  2073. {"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
  2074. },{
  2075. {"name", "kv_cache_usage_ratio"},
  2076. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2077. {"value", 1. * kv_cache_used_cells / params.n_ctx}
  2078. },{
  2079. {"name", "kv_cache_tokens"},
  2080. {"help", "KV-cache tokens."},
  2081. {"value", (uint64_t) data.at("kv_cache_tokens_count")}
  2082. },{
  2083. {"name", "requests_processing"},
  2084. {"help", "Number of request processing."},
  2085. {"value", (uint64_t) data.at("processing")}
  2086. },{
  2087. {"name", "requests_deferred"},
  2088. {"help", "Number of request deferred."},
  2089. {"value", (uint64_t) data.at("deferred")}
  2090. }}}
  2091. };
  2092. std::stringstream prometheus;
  2093. for (const auto & el : all_metrics_def.items()) {
  2094. const auto & type = el.key();
  2095. const auto & metrics_def = el.value();
  2096. for (const auto & metric_def : metrics_def) {
  2097. const std::string name = metric_def.at("name");
  2098. const std::string help = metric_def.at("help");
  2099. auto value = json_value(metric_def, "value", 0.);
  2100. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2101. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2102. << "llamacpp:" << name << " " << value << "\n";
  2103. }
  2104. }
  2105. const int64_t t_start = data.at("t_start");
  2106. res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
  2107. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2108. res.status = 200; // HTTP OK
  2109. };
  2110. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2111. json request_data = json::parse(req.body);
  2112. std::string filename = request_data.at("filename");
  2113. if (!fs_validate_filename(filename)) {
  2114. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2115. return;
  2116. }
  2117. std::string filepath = params.slot_save_path + filename;
  2118. server_task task;
  2119. task.type = SERVER_TASK_TYPE_SLOT_SAVE;
  2120. task.data = {
  2121. { "id_slot", id_slot },
  2122. { "filename", filename },
  2123. { "filepath", filepath },
  2124. };
  2125. const int id_task = ctx_server.queue_tasks.post(task);
  2126. ctx_server.queue_results.add_waiting_task_id(id_task);
  2127. server_task_result result = ctx_server.queue_results.recv(id_task);
  2128. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2129. if (result.error) {
  2130. res_error(res, result.data);
  2131. } else {
  2132. res_ok(res, result.data);
  2133. }
  2134. };
  2135. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2136. json request_data = json::parse(req.body);
  2137. std::string filename = request_data.at("filename");
  2138. if (!fs_validate_filename(filename)) {
  2139. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2140. return;
  2141. }
  2142. std::string filepath = params.slot_save_path + filename;
  2143. server_task task;
  2144. task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
  2145. task.data = {
  2146. { "id_slot", id_slot },
  2147. { "filename", filename },
  2148. { "filepath", filepath },
  2149. };
  2150. const int id_task = ctx_server.queue_tasks.post(task);
  2151. ctx_server.queue_results.add_waiting_task_id(id_task);
  2152. server_task_result result = ctx_server.queue_results.recv(id_task);
  2153. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2154. if (result.error) {
  2155. res_error(res, result.data);
  2156. } else {
  2157. res_ok(res, result.data);
  2158. }
  2159. };
  2160. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2161. server_task task;
  2162. task.type = SERVER_TASK_TYPE_SLOT_ERASE;
  2163. task.data = {
  2164. { "id_slot", id_slot },
  2165. };
  2166. const int id_task = ctx_server.queue_tasks.post(task);
  2167. ctx_server.queue_results.add_waiting_task_id(id_task);
  2168. server_task_result result = ctx_server.queue_results.recv(id_task);
  2169. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2170. if (result.error) {
  2171. res_error(res, result.data);
  2172. } else {
  2173. res_ok(res, result.data);
  2174. }
  2175. };
  2176. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2177. if (params.slot_save_path.empty()) {
  2178. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2179. return;
  2180. }
  2181. std::string id_slot_str = req.path_params.at("id_slot");
  2182. int id_slot;
  2183. try {
  2184. id_slot = std::stoi(id_slot_str);
  2185. } catch (const std::exception &) {
  2186. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2187. return;
  2188. }
  2189. std::string action = req.get_param_value("action");
  2190. if (action == "save") {
  2191. handle_slots_save(req, res, id_slot);
  2192. } else if (action == "restore") {
  2193. handle_slots_restore(req, res, id_slot);
  2194. } else if (action == "erase") {
  2195. handle_slots_erase(req, res, id_slot);
  2196. } else {
  2197. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2198. }
  2199. };
  2200. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2201. json data = {
  2202. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2203. { "total_slots", ctx_server.params.n_parallel },
  2204. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2205. };
  2206. res_ok(res, data);
  2207. };
  2208. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2209. if (!ctx_server.params.endpoint_props) {
  2210. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2211. return;
  2212. }
  2213. json data = json::parse(req.body);
  2214. // update any props here
  2215. res_ok(res, {{ "success", true }});
  2216. };
  2217. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_inf_type inf_type, json & data, httplib::Response & res) {
  2218. if (ctx_server.params.embedding) {
  2219. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2220. return;
  2221. }
  2222. std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, inf_type);
  2223. ctx_server.queue_results.add_waiting_tasks(tasks);
  2224. ctx_server.queue_tasks.post(tasks);
  2225. bool stream = json_value(data, "stream", false);
  2226. const auto task_ids = server_task::get_list_id(tasks);
  2227. if (!stream) {
  2228. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2229. if (results.size() == 1) {
  2230. // single result
  2231. res_ok(res, results[0].data);
  2232. } else {
  2233. // multiple results (multitask)
  2234. json arr = json::array();
  2235. for (const auto & res : results) {
  2236. arr.push_back(res.data);
  2237. }
  2238. res_ok(res, arr);
  2239. }
  2240. }, [&](const json & error_data) {
  2241. res_error(res, error_data);
  2242. });
  2243. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2244. } else {
  2245. const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) {
  2246. ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
  2247. return server_sent_event(sink, "data", result.data);
  2248. }, [&](const json & error_data) {
  2249. server_sent_event(sink, "error", error_data);
  2250. });
  2251. sink.done();
  2252. return false;
  2253. };
  2254. auto on_complete = [task_ids, &ctx_server] (bool) {
  2255. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2256. };
  2257. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2258. }
  2259. };
  2260. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2261. json data = json::parse(req.body);
  2262. return handle_completions_generic(SERVER_TASK_INF_TYPE_COMPLETION, data, res);
  2263. };
  2264. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2265. // check model compatibility
  2266. std::string err;
  2267. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2268. err += "prefix token is missing. ";
  2269. }
  2270. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2271. err += "suffix token is missing. ";
  2272. }
  2273. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2274. err += "middle token is missing. ";
  2275. }
  2276. if (!err.empty()) {
  2277. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2278. return;
  2279. }
  2280. json data = json::parse(req.body);
  2281. // validate input
  2282. if (!data.contains("input_prefix")) {
  2283. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2284. }
  2285. if (!data.contains("input_suffix")) {
  2286. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2287. }
  2288. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2289. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2290. return;
  2291. }
  2292. json input_extra = json_value(data, "input_extra", json::array());
  2293. for (const auto & chunk : input_extra) {
  2294. // { "text": string, "filename": string }
  2295. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2296. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2297. return;
  2298. }
  2299. // filename is optional
  2300. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  2301. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  2302. return;
  2303. }
  2304. }
  2305. data["input_extra"] = input_extra; // default to empty array if it's not exist
  2306. return handle_completions_generic(SERVER_TASK_INF_TYPE_INFILL, data, res);
  2307. };
  2308. // TODO: maybe merge this function with "handle_completions_generic"
  2309. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
  2310. if (ctx_server.params.embedding) {
  2311. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2312. return;
  2313. }
  2314. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2315. std::vector<server_task> tasks = ctx_server.create_tasks_inference(data, SERVER_TASK_INF_TYPE_COMPLETION);
  2316. ctx_server.queue_results.add_waiting_tasks(tasks);
  2317. ctx_server.queue_tasks.post(tasks);
  2318. bool stream = json_value(data, "stream", false);
  2319. const auto task_ids = server_task::get_list_id(tasks);
  2320. const auto completion_id = gen_chatcmplid();
  2321. if (!stream) {
  2322. ctx_server.receive_cmpl_results(task_ids, [&](const std::vector<server_task_result> & results) {
  2323. // multitask is never support in chat completion, there is only one result
  2324. json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, /*.streaming =*/ false, verbose);
  2325. res_ok(res, result_oai);
  2326. }, [&](const json & error_data) {
  2327. res_error(res, error_data);
  2328. });
  2329. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2330. } else {
  2331. const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
  2332. ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
  2333. std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
  2334. for (auto & event_data : result_array) {
  2335. if (event_data.empty()) {
  2336. continue; // skip the stop token
  2337. }
  2338. if (!server_sent_event(sink, "data", event_data)) {
  2339. return false; // connection is closed
  2340. }
  2341. }
  2342. return true; // ok
  2343. }, [&](const json & error_data) {
  2344. server_sent_event(sink, "error", error_data);
  2345. });
  2346. static const std::string ev_done = "data: [DONE]\n\n";
  2347. sink.write(ev_done.data(), ev_done.size());
  2348. sink.done();
  2349. return true;
  2350. };
  2351. auto on_complete = [task_ids, &ctx_server] (bool) {
  2352. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2353. };
  2354. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2355. }
  2356. };
  2357. const auto handle_models = [&params, &ctx_server](const httplib::Request &, httplib::Response & res) {
  2358. json models = {
  2359. {"object", "list"},
  2360. {"data", {
  2361. {
  2362. {"id", params.model_alias},
  2363. {"object", "model"},
  2364. {"created", std::time(0)},
  2365. {"owned_by", "llamacpp"},
  2366. {"meta", ctx_server.model_meta()}
  2367. },
  2368. }}
  2369. };
  2370. res.set_content(models.dump(), MIMETYPE_JSON);
  2371. };
  2372. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2373. const json body = json::parse(req.body);
  2374. json tokens_response = json::array();
  2375. if (body.count("content") != 0) {
  2376. const bool add_special = json_value(body, "add_special", false);
  2377. const bool with_pieces = json_value(body, "with_pieces", false);
  2378. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  2379. if (with_pieces) {
  2380. for (const auto& token : tokens) {
  2381. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  2382. json piece_json;
  2383. // Check if the piece is valid UTF-8
  2384. if (is_valid_utf8(piece)) {
  2385. piece_json = piece;
  2386. } else {
  2387. // If not valid UTF-8, store as array of byte values
  2388. piece_json = json::array();
  2389. for (unsigned char c : piece) {
  2390. piece_json.push_back(static_cast<int>(c));
  2391. }
  2392. }
  2393. tokens_response.push_back({
  2394. {"id", token},
  2395. {"piece", piece_json}
  2396. });
  2397. }
  2398. } else {
  2399. tokens_response = tokens;
  2400. }
  2401. }
  2402. const json data = format_tokenizer_response(tokens_response);
  2403. res_ok(res, data);
  2404. };
  2405. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2406. const json body = json::parse(req.body);
  2407. std::string content;
  2408. if (body.count("tokens") != 0) {
  2409. const llama_tokens tokens = body.at("tokens");
  2410. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2411. }
  2412. const json data = format_detokenized_response(content);
  2413. res_ok(res, data);
  2414. };
  2415. const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2416. const json body = json::parse(req.body);
  2417. bool is_openai = false;
  2418. // an input prompt can be a string or a list of tokens (integer)
  2419. json prompt;
  2420. if (body.count("input") != 0) {
  2421. is_openai = true;
  2422. prompt = body.at("input");
  2423. } else if (body.count("content") != 0) {
  2424. // with "content", we only support single prompt
  2425. prompt = std::vector<std::string>{body.at("content")};
  2426. } else {
  2427. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2428. return;
  2429. }
  2430. // create and queue the task
  2431. json responses = json::array();
  2432. bool error = false;
  2433. {
  2434. std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_EMBEDDING);
  2435. ctx_server.queue_results.add_waiting_tasks(tasks);
  2436. ctx_server.queue_tasks.post(tasks);
  2437. // get the result
  2438. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2439. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2440. for (const auto & res : results) {
  2441. responses.push_back(res.data);
  2442. }
  2443. }, [&](const json & error_data) {
  2444. res_error(res, error_data);
  2445. error = true;
  2446. });
  2447. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2448. }
  2449. if (error) {
  2450. return;
  2451. }
  2452. // write JSON response
  2453. json root = is_openai
  2454. ? format_embeddings_response_oaicompat(body, responses)
  2455. : responses[0];
  2456. res_ok(res, root);
  2457. };
  2458. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2459. if (!ctx_server.params.reranking || ctx_server.params.embedding) {
  2460. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  2461. return;
  2462. }
  2463. const json body = json::parse(req.body);
  2464. // TODO: implement
  2465. //int top_n = 1;
  2466. //if (body.count("top_n") != 1) {
  2467. // top_n = body.at("top_n");
  2468. //} else {
  2469. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2470. // return;
  2471. //}
  2472. json query;
  2473. if (body.count("query") == 1) {
  2474. query = body.at("query");
  2475. if (!query.is_string()) {
  2476. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2477. return;
  2478. }
  2479. } else {
  2480. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2481. return;
  2482. }
  2483. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  2484. if (documents.empty()) {
  2485. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  2486. return;
  2487. }
  2488. // construct prompt object: array of ["query", "doc0", "doc1", ...]
  2489. json prompt;
  2490. prompt.push_back(query);
  2491. for (const auto & doc : documents) {
  2492. prompt.push_back(doc);
  2493. }
  2494. LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str());
  2495. // create and queue the task
  2496. json responses = json::array();
  2497. bool error = false;
  2498. {
  2499. std::vector<server_task> tasks = ctx_server.create_tasks_inference({{"prompt", prompt}}, SERVER_TASK_INF_TYPE_RERANK);
  2500. ctx_server.queue_results.add_waiting_tasks(tasks);
  2501. ctx_server.queue_tasks.post(tasks);
  2502. // get the result
  2503. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2504. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2505. for (const auto & res : results) {
  2506. responses.push_back(res.data);
  2507. }
  2508. }, [&](const json & error_data) {
  2509. res_error(res, error_data);
  2510. error = true;
  2511. });
  2512. }
  2513. if (error) {
  2514. return;
  2515. }
  2516. // write JSON response
  2517. json root = format_response_rerank(body, responses);
  2518. res_ok(res, root);
  2519. };
  2520. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  2521. json result = json::array();
  2522. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  2523. auto & lora = ctx_server.loras[i];
  2524. result.push_back({
  2525. {"id", i},
  2526. {"path", lora.path},
  2527. {"scale", lora.scale},
  2528. });
  2529. }
  2530. res_ok(res, result);
  2531. res.status = 200; // HTTP OK
  2532. };
  2533. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  2534. const std::vector<json> body = json::parse(req.body);
  2535. int max_idx = ctx_server.loras.size();
  2536. // clear existing value
  2537. for (auto & lora : ctx_server.loras) {
  2538. lora.scale = 0.0f;
  2539. }
  2540. // set value
  2541. for (auto entry : body) {
  2542. int id = entry.at("id");
  2543. float scale = entry.at("scale");
  2544. if (0 <= id && id < max_idx) {
  2545. ctx_server.loras[id].scale = scale;
  2546. } else {
  2547. throw std::runtime_error("invalid adapter id");
  2548. }
  2549. }
  2550. server_task task;
  2551. task.type = SERVER_TASK_TYPE_SET_LORA;
  2552. const int id_task = ctx_server.queue_tasks.post(task);
  2553. ctx_server.queue_results.add_waiting_task_id(id_task);
  2554. server_task_result result = ctx_server.queue_results.recv(id_task);
  2555. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2556. res_ok(res, result.data);
  2557. res.status = 200; // HTTP OK
  2558. };
  2559. auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
  2560. return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
  2561. res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
  2562. return false;
  2563. };
  2564. };
  2565. //
  2566. // Router
  2567. //
  2568. // register static assets routes
  2569. if (!params.public_path.empty()) {
  2570. // Set the base directory for serving static files
  2571. svr->set_base_dir(params.public_path);
  2572. }
  2573. if (!params.api_keys.empty()) {
  2574. // for now, if API key is set, web UI is unusable
  2575. svr->Get("/", [&](const httplib::Request &, httplib::Response & res) {
  2576. return res.set_content("Web UI is disabled because API key is set.", "text/html; charset=utf-8");
  2577. });
  2578. } else {
  2579. // using embedded static files
  2580. svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
  2581. svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
  2582. svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
  2583. svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
  2584. // add new-ui files
  2585. svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
  2586. svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
  2587. svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
  2588. svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
  2589. svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
  2590. svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
  2591. svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
  2592. svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
  2593. svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
  2594. svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
  2595. svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
  2596. }
  2597. // register API routes
  2598. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  2599. svr->Get ("/metrics", handle_metrics);
  2600. svr->Get ("/props", handle_props);
  2601. svr->Post("/props", handle_props_change);
  2602. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  2603. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  2604. svr->Post("/completion", handle_completions); // legacy
  2605. svr->Post("/completions", handle_completions);
  2606. svr->Post("/v1/completions", handle_completions);
  2607. svr->Post("/chat/completions", handle_chat_completions);
  2608. svr->Post("/v1/chat/completions", handle_chat_completions);
  2609. svr->Post("/infill", handle_infill);
  2610. svr->Post("/embedding", handle_embeddings); // legacy
  2611. svr->Post("/embeddings", handle_embeddings);
  2612. svr->Post("/v1/embeddings", handle_embeddings);
  2613. svr->Post("/rerank", handle_rerank);
  2614. svr->Post("/reranking", handle_rerank);
  2615. svr->Post("/v1/rerank", handle_rerank);
  2616. svr->Post("/v1/reranking", handle_rerank);
  2617. svr->Post("/tokenize", handle_tokenize);
  2618. svr->Post("/detokenize", handle_detokenize);
  2619. // LoRA adapters hotswap
  2620. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  2621. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  2622. // Save & load slots
  2623. svr->Get ("/slots", handle_slots);
  2624. svr->Post("/slots/:id_slot", handle_slots_action);
  2625. //
  2626. // Start the server
  2627. //
  2628. if (params.n_threads_http < 1) {
  2629. // +2 threads for monitoring endpoints
  2630. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  2631. }
  2632. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  2633. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  2634. // clean up function, to be called before exit
  2635. auto clean_up = [&svr]() {
  2636. svr->stop();
  2637. llama_backend_free();
  2638. };
  2639. // bind HTTP listen port, run the HTTP server in a thread
  2640. if (!svr->bind_to_port(params.hostname, params.port)) {
  2641. //LOG_ERROR("couldn't bind HTTP server socket", {
  2642. // {"hostname", params.hostname},
  2643. // {"port", params.port},
  2644. //});
  2645. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  2646. clean_up();
  2647. return 1;
  2648. }
  2649. std::thread t([&]() { svr->listen_after_bind(); });
  2650. svr->wait_until_ready();
  2651. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  2652. // load the model
  2653. LOG_INF("%s: loading model\n", __func__);
  2654. if (!ctx_server.load_model(params)) {
  2655. clean_up();
  2656. t.join();
  2657. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  2658. return 1;
  2659. }
  2660. ctx_server.init();
  2661. state.store(SERVER_STATE_READY);
  2662. LOG_INF("%s: model loaded\n", __func__);
  2663. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  2664. if (params.chat_template.empty()) {
  2665. if (!ctx_server.validate_model_chat_template()) {
  2666. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  2667. params.chat_template = "chatml";
  2668. }
  2669. }
  2670. // print sample chat example to make it clear which template is used
  2671. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  2672. ctx_server.queue_tasks.on_new_task(std::bind(
  2673. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  2674. ctx_server.queue_tasks.on_update_slots(std::bind(
  2675. &server_context::update_slots, &ctx_server));
  2676. shutdown_handler = [&](int) {
  2677. ctx_server.queue_tasks.terminate();
  2678. };
  2679. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  2680. ctx_server.queue_tasks.start_loop();
  2681. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2682. struct sigaction sigint_action;
  2683. sigint_action.sa_handler = signal_handler;
  2684. sigemptyset (&sigint_action.sa_mask);
  2685. sigint_action.sa_flags = 0;
  2686. sigaction(SIGINT, &sigint_action, NULL);
  2687. sigaction(SIGTERM, &sigint_action, NULL);
  2688. #elif defined (_WIN32)
  2689. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2690. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2691. };
  2692. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2693. #endif
  2694. clean_up();
  2695. t.join();
  2696. return 0;
  2697. }