| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- #include "common.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include <map>
- #include <vector>
- #include <string>
- #include <thread>
- #include <fstream>
- static bool g_verbose = false;
- static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
- int id = gguf_find_key(ctx_gguf, key.c_str());
- return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
- }
- static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) {
- int id = gguf_find_key(ctx_gguf, key.c_str());
- return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
- }
- static void zeros(std::ofstream & file, size_t n) {
- char zero = 0;
- for (size_t i = 0; i < n; ++i) {
- file.write(&zero, 1);
- }
- }
- static std::string ggml_ne_string(const ggml_tensor * t) {
- std::string str;
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- str += std::to_string(t->ne[i]);
- if (i + 1 < GGML_MAX_DIMS) {
- str += ", ";
- }
- }
- return str;
- }
- static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) {
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ ctx_ggml,
- };
- struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
- if (!ctx_gguf) {
- throw std::runtime_error("failed to load input GGUF from " + fname);
- }
- return ctx_gguf;
- }
- struct file_input {
- struct ggml_context * ctx_meta = nullptr;
- struct gguf_context * ctx_gguf = nullptr;
- std::ifstream f_in;
- std::map<std::string, ggml_tensor *> tensors;
- float alpha;
- float scale;
- file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
- if (!f_in.is_open()) {
- throw std::runtime_error("failed to open input gguf from " + fname);
- }
- ctx_gguf = load_gguf(fname, &ctx_meta);
- alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha");
- printf("%s: loaded gguf from %s\n", __func__, fname.c_str());
- for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) {
- std::string name(cur->name);
- tensors[name] = cur;
- if (g_verbose) {
- printf("%s: %s\n", __func__, cur->name);
- }
- }
- }
- ggml_tensor * get_tensor(std::string name) {
- if (tensors.find(name) == tensors.end()) {
- return nullptr;
- }
- return tensors[name];
- }
- void read_tensor_data(std::string name, std::vector<uint8_t> & buf) {
- if (tensors.find(name) == tensors.end()) {
- throw std::runtime_error("cannot find tensor with name: " + name);
- }
- auto len = ggml_nbytes(tensors[name]);
- if (buf.size() < len) {
- buf.resize(len);
- }
- auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file
- auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
- f_in.seekg(offset);
- f_in.read((char* )buf.data(), len);
- }
- ~file_input() {
- gguf_free(ctx_gguf);
- ggml_free(ctx_meta);
- }
- };
- struct lora_merge_ctx {
- // input base model + adapters
- file_input base_model;
- std::vector<std::unique_ptr<file_input>> adapters;
- // for computing merged tensor
- int n_threads;
- ggml_backend_t backend = nullptr;
- ggml_gallocr_t allocr = nullptr;
- std::vector<uint8_t> read_buf;
- // output file
- struct gguf_context * ctx_out;
- struct ggml_context * ctx_out_ggml;
- std::ofstream fout;
- lora_merge_ctx(
- std::string & base_fname,
- std::vector<llama_lora_adapter_info> & lora_files,
- std::string & outfile,
- int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
- fout.exceptions(std::ofstream::failbit); // fail fast on write errors
- if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
- throw std::runtime_error("split model is not yet supported");
- }
- for (auto & lora_inp : lora_files) {
- auto fname = lora_inp.path;
- auto scale = lora_inp.scale;
- std::unique_ptr<file_input> adapter(new file_input(fname, scale));
- check_metadata_lora(adapter.get());
- adapters.push_back(std::move(adapter));
- }
- ctx_out = gguf_init_empty();
- struct ggml_init_params params = {
- /*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_out_ggml = ggml_init(params);
- backend = ggml_backend_cpu_init();
- allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
- }
- void check_metadata_lora(file_input * adapter) {
- auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
- if (general_type != "adapter") {
- throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
- }
- auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type");
- if (adapter_type != "lora") {
- throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
- }
- auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture");
- auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture");
- if (general_arch_base != general_arch_lora) {
- throw std::runtime_error("model arch and LoRA arch mismatch");
- }
- }
- ggml_type get_out_tensor_type(struct ggml_tensor * t) {
- if (t->type == GGML_TYPE_F32) {
- return GGML_TYPE_F32;
- } else {
- return GGML_TYPE_F16;
- }
- }
- void run_merge() {
- // prepare metadata
- gguf_set_kv(ctx_out, base_model.ctx_gguf);
- // output is forced to f16 for now
- gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
- // check if all lora adapters have the same tensors
- // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
- static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
- if (adapters.size() > 1) {
- for (size_t i = 1; i < adapters.size(); ++i) {
- if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) {
- throw std::runtime_error(err_no_subset_adapter);
- }
- for (auto & it : adapters[i]->tensors) {
- if (adapters[0]->get_tensor(it.first) == nullptr) {
- throw std::runtime_error(err_no_subset_adapter);
- }
- }
- }
- }
- // mapping base tensor to out tensor (same shape with base, but different type)
- // if out_tensor == nullptr, we only copy it
- std::vector<std::pair<struct ggml_tensor *, struct ggml_tensor *>> base_to_out_tensors;
- for (auto & it : base_model.tensors) {
- bool t_a = true;
- bool t_b = true;
- for (auto & adapter : adapters) {
- t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a");
- t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b");
- }
- auto base_tensor = it.second;
- if (!t_a && !t_b) {
- // only copy
- struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
- ggml_set_name(cpy_tensor, base_tensor->name);
- base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr));
- gguf_add_tensor(ctx_out, cpy_tensor);
- } else if (t_a && t_b) {
- // need merging
- struct ggml_tensor * out_tensor = ggml_new_tensor(
- ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
- ggml_set_name(out_tensor, base_tensor->name);
- base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor));
- gguf_add_tensor(ctx_out, out_tensor);
- } else {
- throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
- }
- }
- // placeholder for the meta data
- {
- size_t meta_size = gguf_get_meta_size(ctx_out);
- zeros(fout, meta_size);
- }
- // process base model tensors
- size_t n_merged = 0;
- for (auto & it : base_to_out_tensors) {
- if (it.second != nullptr) {
- merge_tensor(it.first, it.second);
- n_merged++;
- } else {
- copy_tensor(it.first);
- }
- }
- // write output metadata
- {
- std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
- gguf_get_meta_data(ctx_out, data.data());
- fout.seekp(0);
- fout.write((const char *)data.data(), data.size());
- }
- printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
- printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size());
- }
- void copy_tensor(struct ggml_tensor * base) {
- printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
- size_t len = ggml_nbytes(base);
- base_model.read_tensor_data(base->name, read_buf);
- fout.write((char* )read_buf.data(), len);
- zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
- }
- void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) {
- std::string name_base(base->name);
- std::string name_lora_a = name_base + ".lora_a";
- std::string name_lora_b = name_base + ".lora_b";
- printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
- // context for input tensor
- std::vector<struct ggml_tensor *> inp_a(adapters.size());
- std::vector<struct ggml_tensor *> inp_b(adapters.size());
- struct ggml_init_params params {
- /*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- struct ggml_context * ctx = ggml_init(params);
- // alloc tensors
- struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne);
- for (size_t i = 0; i < adapters.size(); ++i) {
- auto t_a = adapters[i]->get_tensor(name_lora_a);
- auto t_b = adapters[i]->get_tensor(name_lora_b);
- inp_a[i] = ggml_dup_tensor(ctx, t_a);
- inp_b[i] = ggml_dup_tensor(ctx, t_b);
- }
- ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
- // load base tensor to backend buffer
- base_model.read_tensor_data(name_base, read_buf);
- if (base->type != GGML_TYPE_F32) {
- // optionally dequantize it
- printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
- auto nels = ggml_nelements(inp_base);
- ggml_type_traits_t qtype = ggml_internal_get_type_traits(base->type);
- std::vector<uint8_t> dequant_buf(nels * sizeof(float));
- qtype.to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
- ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
- } else {
- ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
- }
- // load lora tensors to backend buffer
- for (size_t i = 0; i < adapters.size(); ++i) {
- adapters[i]->read_tensor_data(name_lora_a, read_buf);
- ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i]));
- adapters[i]->read_tensor_data(name_lora_b, read_buf);
- ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i]));
- }
- // build graph
- struct ggml_cgraph * gf;
- {
- static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
- static std::vector<uint8_t> buf(buf_size);
- struct ggml_init_params params0 = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf.data(),
- /*.no_alloc =*/ true,
- };
- struct ggml_context * ctx0 = ggml_init(params0);
- gf = ggml_new_graph(ctx0);
- struct ggml_tensor * cur = inp_base;
- for (size_t i = 0; i < adapters.size(); ++i) {
- struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
- struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
- // scale
- const float alpha = adapters[i]->alpha;
- const float rank = (float) inp_b[i]->ne[0];
- const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
- delta = ggml_scale(ctx0, delta, scale);
- cur = ggml_add(ctx0, delta, cur);
- printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
- printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
- }
- cur = ggml_cast(ctx0, cur, out->type);
- printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type));
- ggml_build_forward_expand(gf, cur);
- ggml_free(ctx0);
- }
- // compute
- {
- ggml_gallocr_alloc_graph(allocr, gf);
- ggml_backend_cpu_set_n_threads(backend, n_threads);
- ggml_backend_graph_compute(backend, gf);
- }
- // write data to output file
- {
- auto result = gf->nodes[gf->n_nodes - 1];
- size_t len = ggml_nbytes(result);
- if (read_buf.size() < len) {
- read_buf.resize(len);
- }
- ggml_backend_tensor_get(result, read_buf.data(), 0, len);
- fout.write((char* )read_buf.data(), len);
- zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
- }
- ggml_free(ctx);
- ggml_backend_buffer_free(buffer);
- }
- ~lora_merge_ctx() {
- ggml_gallocr_free(allocr);
- ggml_backend_free(backend);
- gguf_free(ctx_out);
- ggml_free(ctx_out_ggml);
- }
- };
- static void print_usage(int argc, char ** argv, const gpt_params & params) {
- gpt_params_print_usage(argc, argv, params);
- printf("\nexample usage:\n");
- printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
- printf("\nNOTE: output model is F16\n");
- printf("\n");
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- print_usage(argc, argv, params);
- return 1;
- }
- g_verbose = (params.verbosity == 1);
- try {
- lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads);
- ctx.run_merge();
- } catch (const std::exception & err) {
- fprintf(stderr, "%s\n", err.what());
- exit(EXIT_FAILURE);
- }
- printf("done, output file is %s\n", params.lora_outfile.c_str());
- return 0;
- }
|