ggml.c 713 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "ggml-aarch64.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_OPENMP
  29. #include <omp.h>
  30. #endif
  31. #ifdef GGML_USE_METAL
  32. #include <unistd.h>
  33. #endif
  34. #if defined(__ARM_FEATURE_SVE)
  35. int ggml_sve_cnt_b = 0;
  36. #endif
  37. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  38. #undef GGML_USE_LLAMAFILE
  39. #endif
  40. #ifdef GGML_USE_LLAMAFILE
  41. #include <llamafile/sgemm.h>
  42. #endif
  43. #if defined(_MSC_VER)
  44. // disable "possible loss of data" to avoid hundreds of casts
  45. // we should just be careful :)
  46. #pragma warning(disable: 4244 4267)
  47. // disable POSIX deprecation warnings
  48. // these functions are never going away, anyway
  49. #pragma warning(disable: 4996)
  50. // unreachable code because of multiple instances of code after GGML_ABORT
  51. #pragma warning(disable: 4702)
  52. #endif
  53. #if defined(_WIN32)
  54. #define WIN32_LEAN_AND_MEAN
  55. #ifndef NOMINMAX
  56. #define NOMINMAX
  57. #endif
  58. #include <windows.h>
  59. typedef volatile LONG atomic_int;
  60. typedef atomic_int atomic_bool;
  61. typedef atomic_int atomic_flag;
  62. #define ATOMIC_FLAG_INIT 0
  63. static void atomic_store(atomic_int * ptr, LONG val) {
  64. InterlockedExchange(ptr, val);
  65. }
  66. static LONG atomic_load(atomic_int * ptr) {
  67. return InterlockedCompareExchange(ptr, 0, 0);
  68. }
  69. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  70. return InterlockedExchangeAdd(ptr, inc);
  71. }
  72. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  73. return atomic_fetch_add(ptr, -(dec));
  74. }
  75. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  76. return InterlockedExchange(ptr, 1);
  77. }
  78. static void atomic_flag_clear(atomic_flag * ptr) {
  79. InterlockedExchange(ptr, 0);
  80. }
  81. typedef HANDLE pthread_t;
  82. typedef DWORD thread_ret_t;
  83. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  84. (void) unused;
  85. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  86. if (handle == NULL)
  87. {
  88. return EAGAIN;
  89. }
  90. *out = handle;
  91. return 0;
  92. }
  93. static int pthread_join(pthread_t thread, void * unused) {
  94. (void) unused;
  95. int ret = (int) WaitForSingleObject(thread, INFINITE);
  96. CloseHandle(thread);
  97. return ret;
  98. }
  99. static int sched_yield (void) {
  100. Sleep (0);
  101. return 0;
  102. }
  103. #else
  104. #include <pthread.h>
  105. #include <stdatomic.h>
  106. typedef void * thread_ret_t;
  107. #include <sys/types.h>
  108. #include <sys/stat.h>
  109. #include <unistd.h>
  110. #endif
  111. typedef pthread_t ggml_thread_t;
  112. #ifdef GGML_USE_CPU_HBM
  113. #include <hbwmalloc.h>
  114. #endif
  115. #if defined(__APPLE__)
  116. #include <TargetConditionals.h>
  117. #endif
  118. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  119. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  120. #include <sys/wait.h>
  121. #if defined(__ANDROID__)
  122. #include <unwind.h>
  123. #include <dlfcn.h>
  124. #include <stdio.h>
  125. struct backtrace_state {
  126. void ** current;
  127. void ** end;
  128. };
  129. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  130. struct backtrace_state * state = (struct backtrace_state *)arg;
  131. uintptr_t pc = _Unwind_GetIP(context);
  132. if (pc) {
  133. if (state->current == state->end) {
  134. return _URC_END_OF_STACK;
  135. } else {
  136. *state->current++ = (void*)pc;
  137. }
  138. }
  139. return _URC_NO_REASON;
  140. }
  141. static void ggml_print_backtrace_symbols(void) {
  142. const int max = 100;
  143. void* buffer[max];
  144. struct backtrace_state state = {buffer, buffer + max};
  145. _Unwind_Backtrace(unwind_callback, &state);
  146. int count = state.current - buffer;
  147. for (int idx = 0; idx < count; ++idx) {
  148. const void * addr = buffer[idx];
  149. const char * symbol = "";
  150. Dl_info info;
  151. if (dladdr(addr, &info) && info.dli_sname) {
  152. symbol = info.dli_sname;
  153. }
  154. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  155. }
  156. }
  157. #elif defined(__linux__) && defined(__GLIBC__)
  158. #include <execinfo.h>
  159. static void ggml_print_backtrace_symbols(void) {
  160. void * trace[100];
  161. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  162. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  163. }
  164. #else
  165. static void ggml_print_backtrace_symbols(void) {
  166. // platform not supported
  167. }
  168. #endif
  169. static void ggml_print_backtrace(void) {
  170. char attach[32];
  171. snprintf(attach, sizeof(attach), "attach %d", getpid());
  172. int pid = fork();
  173. if (pid == 0) {
  174. // try gdb
  175. execlp("gdb", "gdb", "--batch",
  176. "-ex", "set style enabled on",
  177. "-ex", attach,
  178. "-ex", "bt -frame-info source-and-location",
  179. "-ex", "detach",
  180. "-ex", "quit",
  181. (char *) NULL);
  182. // try lldb
  183. execlp("lldb", "lldb", "--batch",
  184. "-o", "bt",
  185. "-o", "quit",
  186. "-p", attach,
  187. (char *) NULL);
  188. exit(EXIT_FAILURE);
  189. } else {
  190. int wstatus;
  191. waitpid(pid, &wstatus, 0);
  192. if (WIFEXITED(wstatus)) {
  193. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  194. // gdb failed, fallback to backtrace_symbols
  195. ggml_print_backtrace_symbols();
  196. }
  197. }
  198. }
  199. }
  200. #else
  201. static void ggml_print_backtrace(void) {
  202. // platform not supported
  203. }
  204. #endif
  205. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  206. fflush(stdout);
  207. fprintf(stderr, "%s:%d: ", file, line);
  208. va_list args;
  209. va_start(args, fmt);
  210. vfprintf(stderr, fmt, args);
  211. va_end(args);
  212. fprintf(stderr, "\n");
  213. ggml_print_backtrace();
  214. abort();
  215. }
  216. #define GGML_DEBUG 0
  217. #define GGML_GELU_FP16
  218. #define GGML_GELU_QUICK_FP16
  219. #define GGML_SOFT_MAX_UNROLL 4
  220. #define GGML_VEC_DOT_UNROLL 2
  221. #define GGML_VEC_MAD_UNROLL 32
  222. //
  223. // logging
  224. //
  225. #if (GGML_DEBUG >= 1)
  226. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  227. #else
  228. #define GGML_PRINT_DEBUG(...)
  229. #endif
  230. #if (GGML_DEBUG >= 5)
  231. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  232. #else
  233. #define GGML_PRINT_DEBUG_5(...)
  234. #endif
  235. #if (GGML_DEBUG >= 10)
  236. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  237. #else
  238. #define GGML_PRINT_DEBUG_10(...)
  239. #endif
  240. #define GGML_PRINT(...) printf(__VA_ARGS__)
  241. //
  242. // end of logging block
  243. //
  244. #ifdef GGML_USE_ACCELERATE
  245. // uncomment to use vDSP for soft max computation
  246. // note: not sure if it is actually faster
  247. //#define GGML_SOFT_MAX_ACCELERATE
  248. #endif
  249. #if defined(_MSC_VER) || defined(__MINGW32__)
  250. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  251. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  252. #else
  253. inline static void * ggml_aligned_malloc(size_t size) {
  254. if (size == 0) {
  255. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  256. return NULL;
  257. }
  258. void * aligned_memory = NULL;
  259. #ifdef GGML_USE_CPU_HBM
  260. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  261. #elif GGML_USE_METAL
  262. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  263. #else
  264. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  265. #endif
  266. if (result != 0) {
  267. // Handle allocation failure
  268. const char *error_desc = "unknown allocation error";
  269. switch (result) {
  270. case EINVAL:
  271. error_desc = "invalid alignment value";
  272. break;
  273. case ENOMEM:
  274. error_desc = "insufficient memory";
  275. break;
  276. }
  277. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  278. GGML_ABORT("fatal error");
  279. return NULL;
  280. }
  281. return aligned_memory;
  282. }
  283. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  284. #ifdef GGML_USE_CPU_HBM
  285. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  286. #else
  287. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  288. #endif
  289. #endif
  290. inline static void * ggml_malloc(size_t size) {
  291. if (size == 0) {
  292. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  293. return NULL;
  294. }
  295. void * result = malloc(size);
  296. if (result == NULL) {
  297. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  298. GGML_ABORT("fatal error");
  299. }
  300. return result;
  301. }
  302. // calloc
  303. inline static void * ggml_calloc(size_t num, size_t size) {
  304. if (num == 0 || size == 0) {
  305. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  306. return NULL;
  307. }
  308. void * result = calloc(num, size);
  309. if (result == NULL) {
  310. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  311. GGML_ABORT("fatal error");
  312. }
  313. return result;
  314. }
  315. #define GGML_MALLOC(size) ggml_malloc(size)
  316. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  317. #define GGML_FREE(ptr) free(ptr)
  318. #define UNUSED GGML_UNUSED
  319. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  320. #if defined(GGML_USE_ACCELERATE)
  321. #include <Accelerate/Accelerate.h>
  322. #endif
  323. // floating point type used to accumulate sums
  324. typedef double ggml_float;
  325. #undef MIN
  326. #undef MAX
  327. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  328. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  329. //
  330. // global data
  331. //
  332. // precomputed gelu table for f16 (128 KB)
  333. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  334. // precomputed quick gelu table for f16 (128 KB)
  335. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  336. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  337. float ggml_table_f32_f16[1 << 16];
  338. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  339. switch (status) {
  340. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  341. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  342. case GGML_STATUS_SUCCESS: return "GGML status: success";
  343. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  344. }
  345. return "GGML status: unknown";
  346. }
  347. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  348. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  349. return GGML_FP16_TO_FP32(x);
  350. }
  351. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  352. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  353. return GGML_FP32_TO_FP16(x);
  354. }
  355. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  356. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  357. return GGML_BF16_TO_FP32(x); // it just left shifts
  358. }
  359. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  360. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  361. return GGML_FP32_TO_BF16(x);
  362. }
  363. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  364. for (int64_t i = 0; i < n; i++) {
  365. y[i] = GGML_FP16_TO_FP32(x[i]);
  366. }
  367. }
  368. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  369. int64_t i = 0;
  370. #if defined(__F16C__)
  371. for (; i + 7 < n; i += 8) {
  372. __m256 x_vec = _mm256_loadu_ps(x + i);
  373. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  374. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  375. }
  376. for(; i + 3 < n; i += 4) {
  377. __m128 x_vec = _mm_loadu_ps(x + i);
  378. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  379. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  380. }
  381. #endif
  382. for (; i < n; i++) {
  383. y[i] = GGML_FP32_TO_FP16(x[i]);
  384. }
  385. }
  386. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  387. int64_t i = 0;
  388. #if defined(__AVX512F__)
  389. for (; i + 16 <= n; i += 16) {
  390. _mm512_storeu_ps(y + i,
  391. _mm512_castsi512_ps(
  392. _mm512_slli_epi32(
  393. _mm512_cvtepu16_epi32(
  394. _mm256_loadu_si256(
  395. (const __m256i *)(x + i))),
  396. 16)));
  397. }
  398. #elif defined(__AVX2__)
  399. for (; i + 8 <= n; i += 8) {
  400. _mm256_storeu_ps(y + i,
  401. _mm256_castsi256_ps(
  402. _mm256_slli_epi32(
  403. _mm256_cvtepu16_epi32(
  404. _mm_loadu_si128(
  405. (const __m128i *)(x + i))),
  406. 16)));
  407. }
  408. #endif
  409. for (; i < n; i++) {
  410. y[i] = GGML_BF16_TO_FP32(x[i]);
  411. }
  412. }
  413. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  414. for (int i = 0; i < n; i++) {
  415. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  416. }
  417. }
  418. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  419. int i = 0;
  420. #if defined(__AVX512BF16__)
  421. // subnormals are flushed to zero on this platform
  422. for (; i + 32 <= n; i += 32) {
  423. _mm512_storeu_si512(
  424. (__m512i *)(y + i),
  425. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  426. _mm512_loadu_ps(x + i))));
  427. }
  428. #endif
  429. for (; i < n; i++) {
  430. y[i] = GGML_FP32_TO_BF16(x[i]);
  431. }
  432. }
  433. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  434. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  435. }
  436. //
  437. // timing
  438. //
  439. #if defined(_MSC_VER) || defined(__MINGW32__)
  440. static int64_t timer_freq, timer_start;
  441. void ggml_time_init(void) {
  442. LARGE_INTEGER t;
  443. QueryPerformanceFrequency(&t);
  444. timer_freq = t.QuadPart;
  445. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  446. // and the uptime is high enough.
  447. // We subtract the program start time to reduce the likelihood of that happening.
  448. QueryPerformanceCounter(&t);
  449. timer_start = t.QuadPart;
  450. }
  451. int64_t ggml_time_ms(void) {
  452. LARGE_INTEGER t;
  453. QueryPerformanceCounter(&t);
  454. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  455. }
  456. int64_t ggml_time_us(void) {
  457. LARGE_INTEGER t;
  458. QueryPerformanceCounter(&t);
  459. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  460. }
  461. #else
  462. void ggml_time_init(void) {}
  463. int64_t ggml_time_ms(void) {
  464. struct timespec ts;
  465. clock_gettime(CLOCK_MONOTONIC, &ts);
  466. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  467. }
  468. int64_t ggml_time_us(void) {
  469. struct timespec ts;
  470. clock_gettime(CLOCK_MONOTONIC, &ts);
  471. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  472. }
  473. #endif
  474. int64_t ggml_cycles(void) {
  475. return clock();
  476. }
  477. int64_t ggml_cycles_per_ms(void) {
  478. return CLOCKS_PER_SEC/1000;
  479. }
  480. //
  481. // cross-platform UTF-8 file paths
  482. //
  483. #ifdef _WIN32
  484. static wchar_t * ggml_mbstowcs(const char * mbs) {
  485. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  486. if (!wlen) {
  487. errno = EINVAL;
  488. return NULL;
  489. }
  490. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  491. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  492. if (!wlen) {
  493. GGML_FREE(wbuf);
  494. errno = EINVAL;
  495. return NULL;
  496. }
  497. return wbuf;
  498. }
  499. #endif
  500. FILE * ggml_fopen(const char * fname, const char * mode) {
  501. #ifdef _WIN32
  502. FILE * file = NULL;
  503. // convert fname (UTF-8)
  504. wchar_t * wfname = ggml_mbstowcs(fname);
  505. if (wfname) {
  506. // convert mode (ANSI)
  507. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  508. wchar_t * wmode_p = wmode;
  509. do {
  510. *wmode_p++ = (wchar_t)*mode;
  511. } while (*mode++);
  512. // open file
  513. file = _wfopen(wfname, wmode);
  514. GGML_FREE(wfname);
  515. GGML_FREE(wmode);
  516. }
  517. return file;
  518. #else
  519. return fopen(fname, mode);
  520. #endif
  521. }
  522. //
  523. // cache line
  524. //
  525. #if defined(__cpp_lib_hardware_interference_size)
  526. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  527. #else
  528. #if defined(__POWER9_VECTOR__)
  529. #define CACHE_LINE_SIZE 128
  530. #else
  531. #define CACHE_LINE_SIZE 64
  532. #endif
  533. #endif
  534. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  535. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  536. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  537. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  538. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  539. [GGML_TYPE_I8] = {
  540. .type_name = "i8",
  541. .blck_size = 1,
  542. .type_size = sizeof(int8_t),
  543. .is_quantized = false,
  544. },
  545. [GGML_TYPE_I16] = {
  546. .type_name = "i16",
  547. .blck_size = 1,
  548. .type_size = sizeof(int16_t),
  549. .is_quantized = false,
  550. },
  551. [GGML_TYPE_I32] = {
  552. .type_name = "i32",
  553. .blck_size = 1,
  554. .type_size = sizeof(int32_t),
  555. .is_quantized = false,
  556. },
  557. [GGML_TYPE_I64] = {
  558. .type_name = "i64",
  559. .blck_size = 1,
  560. .type_size = sizeof(int64_t),
  561. .is_quantized = false,
  562. },
  563. [GGML_TYPE_F64] = {
  564. .type_name = "f64",
  565. .blck_size = 1,
  566. .type_size = sizeof(double),
  567. .is_quantized = false,
  568. .nrows = 1,
  569. },
  570. [GGML_TYPE_F32] = {
  571. .type_name = "f32",
  572. .blck_size = 1,
  573. .type_size = sizeof(float),
  574. .is_quantized = false,
  575. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  576. .vec_dot_type = GGML_TYPE_F32,
  577. .nrows = 1,
  578. },
  579. [GGML_TYPE_F16] = {
  580. .type_name = "f16",
  581. .blck_size = 1,
  582. .type_size = sizeof(ggml_fp16_t),
  583. .is_quantized = false,
  584. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  585. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  586. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  587. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  588. .vec_dot_type = GGML_TYPE_F16,
  589. .nrows = 1,
  590. },
  591. [GGML_TYPE_Q4_0] = {
  592. .type_name = "q4_0",
  593. .blck_size = QK4_0,
  594. .type_size = sizeof(block_q4_0),
  595. .is_quantized = true,
  596. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  597. .from_float = quantize_row_q4_0,
  598. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  599. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  600. .vec_dot_type = GGML_TYPE_Q8_0,
  601. #if defined (__ARM_FEATURE_MATMUL_INT8)
  602. .nrows = 2,
  603. #else
  604. .nrows = 1,
  605. #endif
  606. },
  607. [GGML_TYPE_Q4_1] = {
  608. .type_name = "q4_1",
  609. .blck_size = QK4_1,
  610. .type_size = sizeof(block_q4_1),
  611. .is_quantized = true,
  612. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  613. .from_float = quantize_row_q4_1,
  614. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  615. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  616. .vec_dot_type = GGML_TYPE_Q8_1,
  617. #if defined (__ARM_FEATURE_MATMUL_INT8)
  618. .nrows = 2,
  619. #else
  620. .nrows = 1,
  621. #endif
  622. },
  623. [4] = { // GGML_TYPE_Q4_2
  624. .type_name = "DEPRECATED",
  625. .blck_size = 0,
  626. .type_size = 0,
  627. .is_quantized = false,
  628. .to_float = NULL,
  629. .from_float = NULL,
  630. .from_float_ref = NULL,
  631. .vec_dot = NULL,
  632. .vec_dot_type = GGML_TYPE_COUNT,
  633. .nrows = 1,
  634. },
  635. [5] = { // GGML_TYPE_Q4_3
  636. .type_name = "DEPRECATED",
  637. .blck_size = 0,
  638. .type_size = 0,
  639. .is_quantized = false,
  640. .to_float = NULL,
  641. .from_float = NULL,
  642. .from_float_ref = NULL,
  643. .vec_dot = NULL,
  644. .vec_dot_type = GGML_TYPE_COUNT,
  645. .nrows = 1,
  646. },
  647. [GGML_TYPE_Q5_0] = {
  648. .type_name = "q5_0",
  649. .blck_size = QK5_0,
  650. .type_size = sizeof(block_q5_0),
  651. .is_quantized = true,
  652. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  653. .from_float = quantize_row_q5_0,
  654. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  655. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  656. .vec_dot_type = GGML_TYPE_Q8_0,
  657. .nrows = 1,
  658. },
  659. [GGML_TYPE_Q5_1] = {
  660. .type_name = "q5_1",
  661. .blck_size = QK5_1,
  662. .type_size = sizeof(block_q5_1),
  663. .is_quantized = true,
  664. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  665. .from_float = quantize_row_q5_1,
  666. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  667. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  668. .vec_dot_type = GGML_TYPE_Q8_1,
  669. .nrows = 1,
  670. },
  671. [GGML_TYPE_Q8_0] = {
  672. .type_name = "q8_0",
  673. .blck_size = QK8_0,
  674. .type_size = sizeof(block_q8_0),
  675. .is_quantized = true,
  676. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  677. .from_float = quantize_row_q8_0,
  678. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  679. .from_float_to_mat = quantize_mat_q8_0,
  680. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  681. .vec_dot_type = GGML_TYPE_Q8_0,
  682. #if defined (__ARM_FEATURE_MATMUL_INT8)
  683. .nrows = 2,
  684. #else
  685. .nrows = 1,
  686. #endif
  687. },
  688. [GGML_TYPE_Q8_1] = {
  689. .type_name = "q8_1",
  690. .blck_size = QK8_1,
  691. .type_size = sizeof(block_q8_1),
  692. .is_quantized = true,
  693. .from_float = quantize_row_q8_1,
  694. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  695. .vec_dot_type = GGML_TYPE_Q8_1,
  696. .nrows = 1,
  697. },
  698. [GGML_TYPE_Q2_K] = {
  699. .type_name = "q2_K",
  700. .blck_size = QK_K,
  701. .type_size = sizeof(block_q2_K),
  702. .is_quantized = true,
  703. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  704. .from_float = quantize_row_q2_K,
  705. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  706. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  707. .vec_dot_type = GGML_TYPE_Q8_K,
  708. .nrows = 1,
  709. },
  710. [GGML_TYPE_Q3_K] = {
  711. .type_name = "q3_K",
  712. .blck_size = QK_K,
  713. .type_size = sizeof(block_q3_K),
  714. .is_quantized = true,
  715. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  716. .from_float = quantize_row_q3_K,
  717. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  718. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  719. .vec_dot_type = GGML_TYPE_Q8_K,
  720. .nrows = 1,
  721. },
  722. [GGML_TYPE_Q4_K] = {
  723. .type_name = "q4_K",
  724. .blck_size = QK_K,
  725. .type_size = sizeof(block_q4_K),
  726. .is_quantized = true,
  727. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  728. .from_float = quantize_row_q4_K,
  729. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  730. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  731. .vec_dot_type = GGML_TYPE_Q8_K,
  732. .nrows = 1,
  733. },
  734. [GGML_TYPE_Q5_K] = {
  735. .type_name = "q5_K",
  736. .blck_size = QK_K,
  737. .type_size = sizeof(block_q5_K),
  738. .is_quantized = true,
  739. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  740. .from_float = quantize_row_q5_K,
  741. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  742. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  743. .vec_dot_type = GGML_TYPE_Q8_K,
  744. .nrows = 1,
  745. },
  746. [GGML_TYPE_Q6_K] = {
  747. .type_name = "q6_K",
  748. .blck_size = QK_K,
  749. .type_size = sizeof(block_q6_K),
  750. .is_quantized = true,
  751. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  752. .from_float = quantize_row_q6_K,
  753. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  754. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  755. .vec_dot_type = GGML_TYPE_Q8_K,
  756. .nrows = 1,
  757. },
  758. [GGML_TYPE_IQ2_XXS] = {
  759. .type_name = "iq2_xxs",
  760. .blck_size = QK_K,
  761. .type_size = sizeof(block_iq2_xxs),
  762. .is_quantized = true,
  763. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  764. .from_float = NULL,
  765. .from_float_ref = NULL,
  766. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  767. .vec_dot_type = GGML_TYPE_Q8_K,
  768. .nrows = 1,
  769. },
  770. [GGML_TYPE_IQ2_XS] = {
  771. .type_name = "iq2_xs",
  772. .blck_size = QK_K,
  773. .type_size = sizeof(block_iq2_xs),
  774. .is_quantized = true,
  775. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  776. .from_float = NULL,
  777. .from_float_ref = NULL,
  778. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  779. .vec_dot_type = GGML_TYPE_Q8_K,
  780. .nrows = 1,
  781. },
  782. [GGML_TYPE_IQ3_XXS] = {
  783. .type_name = "iq3_xxs",
  784. .blck_size = QK_K,
  785. .type_size = sizeof(block_iq3_xxs),
  786. .is_quantized = true,
  787. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  788. .from_float = quantize_row_iq3_xxs,
  789. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  790. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  791. .vec_dot_type = GGML_TYPE_Q8_K,
  792. .nrows = 1,
  793. },
  794. [GGML_TYPE_IQ3_S] = {
  795. .type_name = "iq3_s",
  796. .blck_size = QK_K,
  797. .type_size = sizeof(block_iq3_s),
  798. .is_quantized = true,
  799. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  800. .from_float = quantize_row_iq3_s,
  801. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  802. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  803. .vec_dot_type = GGML_TYPE_Q8_K,
  804. .nrows = 1,
  805. },
  806. [GGML_TYPE_IQ2_S] = {
  807. .type_name = "iq2_s",
  808. .blck_size = QK_K,
  809. .type_size = sizeof(block_iq2_s),
  810. .is_quantized = true,
  811. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  812. .from_float = quantize_row_iq2_s,
  813. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  814. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  815. .vec_dot_type = GGML_TYPE_Q8_K,
  816. .nrows = 1,
  817. },
  818. [GGML_TYPE_IQ1_S] = {
  819. .type_name = "iq1_s",
  820. .blck_size = QK_K,
  821. .type_size = sizeof(block_iq1_s),
  822. .is_quantized = true,
  823. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  824. .from_float = NULL,
  825. .from_float_ref = NULL,
  826. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  827. .vec_dot_type = GGML_TYPE_Q8_K,
  828. .nrows = 1,
  829. },
  830. [GGML_TYPE_IQ1_M] = {
  831. .type_name = "iq1_m",
  832. .blck_size = QK_K,
  833. .type_size = sizeof(block_iq1_m),
  834. .is_quantized = true,
  835. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  836. .from_float = NULL,
  837. .from_float_ref = NULL,
  838. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  839. .vec_dot_type = GGML_TYPE_Q8_K,
  840. .nrows = 1,
  841. },
  842. [GGML_TYPE_IQ4_NL] = {
  843. .type_name = "iq4_nl",
  844. .blck_size = QK4_NL,
  845. .type_size = sizeof(block_iq4_nl),
  846. .is_quantized = true,
  847. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  848. .from_float = quantize_row_iq4_nl,
  849. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  850. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  851. .vec_dot_type = GGML_TYPE_Q8_0,
  852. .nrows = 1,
  853. },
  854. [GGML_TYPE_IQ4_XS] = {
  855. .type_name = "iq4_xs",
  856. .blck_size = QK_K,
  857. .type_size = sizeof(block_iq4_xs),
  858. .is_quantized = true,
  859. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  860. .from_float = quantize_row_iq4_xs,
  861. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  862. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  863. .vec_dot_type = GGML_TYPE_Q8_K,
  864. .nrows = 1,
  865. },
  866. [GGML_TYPE_Q8_K] = {
  867. .type_name = "q8_K",
  868. .blck_size = QK_K,
  869. .type_size = sizeof(block_q8_K),
  870. .is_quantized = true,
  871. .from_float = quantize_row_q8_K,
  872. },
  873. [GGML_TYPE_BF16] = {
  874. .type_name = "bf16",
  875. .blck_size = 1,
  876. .type_size = sizeof(ggml_bf16_t),
  877. .is_quantized = false,
  878. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  879. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  880. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  881. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  882. .vec_dot_type = GGML_TYPE_BF16,
  883. .nrows = 1,
  884. },
  885. [GGML_TYPE_Q4_0_4_4] = {
  886. .type_name = "q4_0_4x4",
  887. .blck_size = QK4_0,
  888. .blck_size_interleave = 4,
  889. .type_size = sizeof(block_q4_0),
  890. .is_quantized = true,
  891. .to_float = NULL,
  892. .from_float = NULL,
  893. .from_float_ref = NULL,
  894. .vec_dot = NULL,
  895. .vec_dot_type = GGML_TYPE_Q8_0,
  896. .nrows = 1,
  897. .ncols = 4,
  898. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  899. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  900. },
  901. [GGML_TYPE_Q4_0_4_8] = {
  902. .type_name = "q4_0_4x8",
  903. .blck_size = QK4_0,
  904. .blck_size_interleave = 8,
  905. .type_size = sizeof(block_q4_0),
  906. .is_quantized = true,
  907. .to_float = NULL,
  908. .from_float = NULL,
  909. .from_float_ref = NULL,
  910. .vec_dot = NULL,
  911. .vec_dot_type = GGML_TYPE_Q8_0,
  912. .nrows = 1,
  913. .ncols = 4,
  914. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  915. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  916. },
  917. [GGML_TYPE_Q4_0_8_8] = {
  918. .type_name = "q4_0_8x8",
  919. .blck_size = QK4_0,
  920. .blck_size_interleave = 8,
  921. .type_size = sizeof(block_q4_0),
  922. .is_quantized = true,
  923. .to_float = NULL,
  924. .from_float = NULL,
  925. .from_float_ref = NULL,
  926. .vec_dot = NULL,
  927. .vec_dot_type = GGML_TYPE_Q8_0,
  928. .nrows = 1,
  929. .ncols = 8,
  930. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  931. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  932. }
  933. };
  934. // For internal test use
  935. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  936. GGML_ASSERT(type < GGML_TYPE_COUNT);
  937. return type_traits[type];
  938. }
  939. //
  940. // simd mappings
  941. //
  942. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  943. // we then implement the fundamental computation operations below using only these macros
  944. // adding support for new architectures requires to define the corresponding SIMD macros
  945. //
  946. // GGML_F32_STEP / GGML_F16_STEP
  947. // number of elements to process in a single step
  948. //
  949. // GGML_F32_EPR / GGML_F16_EPR
  950. // number of elements to fit in a single register
  951. //
  952. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  953. #define GGML_SIMD
  954. // F32 NEON
  955. #define GGML_F32_STEP 16
  956. #define GGML_F32_EPR 4
  957. #define GGML_F32x4 float32x4_t
  958. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  959. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  960. #define GGML_F32x4_LOAD vld1q_f32
  961. #define GGML_F32x4_STORE vst1q_f32
  962. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  963. #define GGML_F32x4_ADD vaddq_f32
  964. #define GGML_F32x4_MUL vmulq_f32
  965. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  966. #define GGML_F32x4_REDUCE(res, x) \
  967. { \
  968. int offset = GGML_F32_ARR >> 1; \
  969. for (int i = 0; i < offset; ++i) { \
  970. x[i] = vaddq_f32(x[i], x[offset+i]); \
  971. } \
  972. offset >>= 1; \
  973. for (int i = 0; i < offset; ++i) { \
  974. x[i] = vaddq_f32(x[i], x[offset+i]); \
  975. } \
  976. offset >>= 1; \
  977. for (int i = 0; i < offset; ++i) { \
  978. x[i] = vaddq_f32(x[i], x[offset+i]); \
  979. } \
  980. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  981. }
  982. #define GGML_F32_VEC GGML_F32x4
  983. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  984. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  985. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  986. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  987. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  988. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  989. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  990. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  991. // F16 NEON
  992. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  993. #define GGML_F16_STEP 32
  994. #define GGML_F16_EPR 8
  995. #define GGML_F16x8 float16x8_t
  996. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  997. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  998. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  999. #define GGML_F16x8_STORE vst1q_f16
  1000. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1001. #define GGML_F16x8_ADD vaddq_f16
  1002. #define GGML_F16x8_MUL vmulq_f16
  1003. #define GGML_F16x8_REDUCE(res, x) \
  1004. do { \
  1005. int offset = GGML_F16_ARR >> 1; \
  1006. for (int i = 0; i < offset; ++i) { \
  1007. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1008. } \
  1009. offset >>= 1; \
  1010. for (int i = 0; i < offset; ++i) { \
  1011. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1012. } \
  1013. offset >>= 1; \
  1014. for (int i = 0; i < offset; ++i) { \
  1015. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1016. } \
  1017. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1018. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1019. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1020. } while (0)
  1021. #define GGML_F16_VEC GGML_F16x8
  1022. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1023. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1024. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1025. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  1026. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1027. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1028. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1029. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1030. #else
  1031. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1032. // and take advantage of the vcvt_ functions to convert to/from FP16
  1033. #define GGML_F16_STEP 16
  1034. #define GGML_F16_EPR 4
  1035. #define GGML_F32Cx4 float32x4_t
  1036. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1037. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1038. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1039. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1040. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1041. #define GGML_F32Cx4_ADD vaddq_f32
  1042. #define GGML_F32Cx4_MUL vmulq_f32
  1043. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1044. #define GGML_F16_VEC GGML_F32Cx4
  1045. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1046. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1047. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1048. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1049. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1050. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1051. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1052. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1053. #endif
  1054. #elif defined(__AVX512F__)
  1055. #define GGML_SIMD
  1056. // F32 AVX512
  1057. #define GGML_F32_STEP 64
  1058. #define GGML_F32_EPR 16
  1059. #define GGML_F32x16 __m512
  1060. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1061. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1062. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1063. #define GGML_F32x16_STORE _mm512_storeu_ps
  1064. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1065. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1066. #define GGML_F32x16_ADD _mm512_add_ps
  1067. #define GGML_F32x16_MUL _mm512_mul_ps
  1068. #define GGML_F32x16_REDUCE(res, x) \
  1069. do { \
  1070. int offset = GGML_F32_ARR >> 1; \
  1071. for (int i = 0; i < offset; ++i) { \
  1072. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1073. } \
  1074. offset >>= 1; \
  1075. for (int i = 0; i < offset; ++i) { \
  1076. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1077. } \
  1078. offset >>= 1; \
  1079. for (int i = 0; i < offset; ++i) { \
  1080. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1081. } \
  1082. res = _mm512_reduce_add_ps(x[0]); \
  1083. } while (0)
  1084. // TODO: is this optimal ?
  1085. #define GGML_F32_VEC GGML_F32x16
  1086. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1087. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1088. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1089. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1090. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1091. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1092. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1093. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1094. // F16 AVX512
  1095. // F16 AVX
  1096. #define GGML_F16_STEP 64
  1097. #define GGML_F16_EPR 16
  1098. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1099. #define GGML_F32Cx16 __m512
  1100. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1101. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1102. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1103. // so F16C guard isn't required
  1104. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1105. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1106. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1107. #define GGML_F32Cx16_ADD _mm512_add_ps
  1108. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1109. #define GGML_F32Cx16_REDUCE(res, x) \
  1110. do { \
  1111. int offset = GGML_F32_ARR >> 1; \
  1112. for (int i = 0; i < offset; ++i) { \
  1113. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1114. } \
  1115. offset >>= 1; \
  1116. for (int i = 0; i < offset; ++i) { \
  1117. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1118. } \
  1119. offset >>= 1; \
  1120. for (int i = 0; i < offset; ++i) { \
  1121. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1122. } \
  1123. res = _mm512_reduce_add_ps(x[0]); \
  1124. } while (0)
  1125. #define GGML_F16_VEC GGML_F32Cx16
  1126. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1127. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1128. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1129. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1130. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1131. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1132. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1133. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1134. #elif defined(__AVX__)
  1135. #define GGML_SIMD
  1136. // F32 AVX
  1137. #define GGML_F32_STEP 32
  1138. #define GGML_F32_EPR 8
  1139. #define GGML_F32x8 __m256
  1140. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1141. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1142. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1143. #define GGML_F32x8_STORE _mm256_storeu_ps
  1144. #if defined(__FMA__)
  1145. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1146. #else
  1147. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1148. #endif
  1149. #define GGML_F32x8_ADD _mm256_add_ps
  1150. #define GGML_F32x8_MUL _mm256_mul_ps
  1151. #define GGML_F32x8_REDUCE(res, x) \
  1152. do { \
  1153. int offset = GGML_F32_ARR >> 1; \
  1154. for (int i = 0; i < offset; ++i) { \
  1155. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1156. } \
  1157. offset >>= 1; \
  1158. for (int i = 0; i < offset; ++i) { \
  1159. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1160. } \
  1161. offset >>= 1; \
  1162. for (int i = 0; i < offset; ++i) { \
  1163. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1164. } \
  1165. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1166. _mm256_extractf128_ps(x[0], 1)); \
  1167. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1168. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1169. } while (0)
  1170. // TODO: is this optimal ?
  1171. #define GGML_F32_VEC GGML_F32x8
  1172. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1173. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1174. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1175. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1176. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1177. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1178. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1179. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1180. // F16 AVX
  1181. #define GGML_F16_STEP 32
  1182. #define GGML_F16_EPR 8
  1183. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1184. #define GGML_F32Cx8 __m256
  1185. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1186. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1187. #if defined(__F16C__)
  1188. // the _mm256_cvt intrinsics require F16C
  1189. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1190. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1191. #else
  1192. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1193. float tmp[8];
  1194. for (int i = 0; i < 8; i++) {
  1195. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1196. }
  1197. return _mm256_loadu_ps(tmp);
  1198. }
  1199. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1200. float arr[8];
  1201. _mm256_storeu_ps(arr, y);
  1202. for (int i = 0; i < 8; i++)
  1203. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1204. }
  1205. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1206. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1207. #endif
  1208. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1209. #define GGML_F32Cx8_ADD _mm256_add_ps
  1210. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1211. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1212. #define GGML_F16_VEC GGML_F32Cx8
  1213. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1214. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1215. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1216. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1217. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1218. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1219. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1220. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1221. #elif defined(__POWER9_VECTOR__)
  1222. #define GGML_SIMD
  1223. // F32 POWER9
  1224. #define GGML_F32_STEP 32
  1225. #define GGML_F32_EPR 4
  1226. #define GGML_F32x4 vector float
  1227. #define GGML_F32x4_ZERO 0.0f
  1228. #define GGML_F32x4_SET1 vec_splats
  1229. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1230. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1231. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1232. #define GGML_F32x4_ADD vec_add
  1233. #define GGML_F32x4_MUL vec_mul
  1234. #define GGML_F32x4_REDUCE(res, x) \
  1235. { \
  1236. int offset = GGML_F32_ARR >> 1; \
  1237. for (int i = 0; i < offset; ++i) { \
  1238. x[i] = vec_add(x[i], x[offset+i]); \
  1239. } \
  1240. offset >>= 1; \
  1241. for (int i = 0; i < offset; ++i) { \
  1242. x[i] = vec_add(x[i], x[offset+i]); \
  1243. } \
  1244. offset >>= 1; \
  1245. for (int i = 0; i < offset; ++i) { \
  1246. x[i] = vec_add(x[i], x[offset+i]); \
  1247. } \
  1248. res = vec_extract(x[0], 0) + \
  1249. vec_extract(x[0], 1) + \
  1250. vec_extract(x[0], 2) + \
  1251. vec_extract(x[0], 3); \
  1252. }
  1253. #define GGML_F32_VEC GGML_F32x4
  1254. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1255. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1256. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1257. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1258. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1259. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1260. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1261. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1262. // F16 POWER9
  1263. #define GGML_F16_STEP GGML_F32_STEP
  1264. #define GGML_F16_EPR GGML_F32_EPR
  1265. #define GGML_F16_VEC GGML_F32x4
  1266. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1267. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1268. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1269. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1270. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1271. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1272. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1273. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1274. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1275. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1276. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1277. #define GGML_F16_VEC_STORE(p, r, i) \
  1278. if (i & 0x1) \
  1279. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1280. r[i - GGML_ENDIAN_BYTE(0)]), \
  1281. 0, p - GGML_F16_EPR)
  1282. #elif defined(__wasm_simd128__)
  1283. #define GGML_SIMD
  1284. // F32 WASM
  1285. #define GGML_F32_STEP 16
  1286. #define GGML_F32_EPR 4
  1287. #define GGML_F32x4 v128_t
  1288. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1289. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1290. #define GGML_F32x4_LOAD wasm_v128_load
  1291. #define GGML_F32x4_STORE wasm_v128_store
  1292. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1293. #define GGML_F32x4_ADD wasm_f32x4_add
  1294. #define GGML_F32x4_MUL wasm_f32x4_mul
  1295. #define GGML_F32x4_REDUCE(res, x) \
  1296. { \
  1297. int offset = GGML_F32_ARR >> 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1304. } \
  1305. offset >>= 1; \
  1306. for (int i = 0; i < offset; ++i) { \
  1307. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1308. } \
  1309. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1310. wasm_f32x4_extract_lane(x[0], 1) + \
  1311. wasm_f32x4_extract_lane(x[0], 2) + \
  1312. wasm_f32x4_extract_lane(x[0], 3); \
  1313. }
  1314. #define GGML_F32_VEC GGML_F32x4
  1315. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1316. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1317. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1318. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1319. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1320. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1321. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1322. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1323. // F16 WASM
  1324. #define GGML_F16_STEP 16
  1325. #define GGML_F16_EPR 4
  1326. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1327. float tmp[4];
  1328. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1329. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1330. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1331. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1332. return wasm_v128_load(tmp);
  1333. }
  1334. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1335. float tmp[4];
  1336. wasm_v128_store(tmp, x);
  1337. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1338. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1339. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1340. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1341. }
  1342. #define GGML_F16x4 v128_t
  1343. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1344. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1345. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1346. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1347. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1348. #define GGML_F16x4_ADD wasm_f32x4_add
  1349. #define GGML_F16x4_MUL wasm_f32x4_mul
  1350. #define GGML_F16x4_REDUCE(res, x) \
  1351. { \
  1352. int offset = GGML_F16_ARR >> 1; \
  1353. for (int i = 0; i < offset; ++i) { \
  1354. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1355. } \
  1356. offset >>= 1; \
  1357. for (int i = 0; i < offset; ++i) { \
  1358. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1359. } \
  1360. offset >>= 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1363. } \
  1364. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1365. wasm_f32x4_extract_lane(x[0], 1) + \
  1366. wasm_f32x4_extract_lane(x[0], 2) + \
  1367. wasm_f32x4_extract_lane(x[0], 3); \
  1368. }
  1369. #define GGML_F16_VEC GGML_F16x4
  1370. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1371. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1372. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1373. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1374. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1375. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1376. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1377. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1378. #elif defined(__SSE3__)
  1379. #define GGML_SIMD
  1380. // F32 SSE
  1381. #define GGML_F32_STEP 32
  1382. #define GGML_F32_EPR 4
  1383. #define GGML_F32x4 __m128
  1384. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1385. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1386. #define GGML_F32x4_LOAD _mm_loadu_ps
  1387. #define GGML_F32x4_STORE _mm_storeu_ps
  1388. #if defined(__FMA__)
  1389. // TODO: Does this work?
  1390. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1391. #else
  1392. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1393. #endif
  1394. #define GGML_F32x4_ADD _mm_add_ps
  1395. #define GGML_F32x4_MUL _mm_mul_ps
  1396. #define GGML_F32x4_REDUCE(res, x) \
  1397. { \
  1398. int offset = GGML_F32_ARR >> 1; \
  1399. for (int i = 0; i < offset; ++i) { \
  1400. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1401. } \
  1402. offset >>= 1; \
  1403. for (int i = 0; i < offset; ++i) { \
  1404. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1405. } \
  1406. offset >>= 1; \
  1407. for (int i = 0; i < offset; ++i) { \
  1408. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1409. } \
  1410. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1411. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1412. }
  1413. // TODO: is this optimal ?
  1414. #define GGML_F32_VEC GGML_F32x4
  1415. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1416. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1417. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1418. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1419. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1420. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1421. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1422. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1423. // F16 SSE
  1424. #define GGML_F16_STEP 32
  1425. #define GGML_F16_EPR 4
  1426. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1427. float tmp[4];
  1428. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1429. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1430. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1431. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1432. return _mm_loadu_ps(tmp);
  1433. }
  1434. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1435. float arr[4];
  1436. _mm_storeu_ps(arr, y);
  1437. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1438. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1439. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1440. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1441. }
  1442. #define GGML_F32Cx4 __m128
  1443. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1444. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1445. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1446. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1447. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1448. #define GGML_F32Cx4_ADD _mm_add_ps
  1449. #define GGML_F32Cx4_MUL _mm_mul_ps
  1450. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1451. #define GGML_F16_VEC GGML_F32Cx4
  1452. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1453. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1454. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1455. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1456. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1457. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1458. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1459. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1460. #elif defined(__loongarch_asx)
  1461. #define GGML_SIMD
  1462. // F32 LASX
  1463. #define GGML_F32_STEP 32
  1464. #define GGML_F32_EPR 8
  1465. #define GGML_F32x8 __m256
  1466. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1467. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1468. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1469. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1470. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1471. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1472. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1473. #define GGML_F32x8_REDUCE(res, x) \
  1474. do { \
  1475. int offset = GGML_F32_ARR >> 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1478. } \
  1479. offset >>= 1; \
  1480. for (int i = 0; i < offset; ++i) { \
  1481. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1482. } \
  1483. offset >>= 1; \
  1484. for (int i = 0; i < offset; ++i) { \
  1485. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1486. } \
  1487. float *tmp_p = (float *)&x[0]; \
  1488. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1489. } while (0)
  1490. // TODO: is this optimal ?
  1491. #define GGML_F32_VEC GGML_F32x8
  1492. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1493. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1494. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1495. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1496. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1497. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1498. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1499. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1500. // F16 LASX
  1501. #define GGML_F16_STEP 32
  1502. #define GGML_F16_EPR 8
  1503. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1504. #define GGML_F32Cx8 __m256
  1505. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1506. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1507. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1508. float tmp[8];
  1509. for (int i = 0; i < 8; i++) {
  1510. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1511. }
  1512. return (__m256)__lasx_xvld(tmp, 0);
  1513. }
  1514. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1515. float arr[8];
  1516. __lasx_xvst(y, arr, 0);
  1517. for (int i = 0; i < 8; i++) {
  1518. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1519. }
  1520. }
  1521. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1522. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1523. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1524. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1525. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1526. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1527. #define GGML_F16_VEC GGML_F32Cx8
  1528. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1529. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1530. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1531. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1532. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1533. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1534. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1535. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1536. #elif defined(__loongarch_sx)
  1537. #define GGML_SIMD
  1538. // F32 LSX
  1539. #define GGML_F32_STEP 32
  1540. #define GGML_F32_EPR 4
  1541. #define GGML_F32x4 __m128
  1542. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1543. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1544. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1545. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1546. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1547. #define GGML_F32x4_ADD __lsx_vfadd_s
  1548. #define GGML_F32x4_MUL __lsx_vfmul_s
  1549. #define GGML_F32x4_REDUCE(res, x) \
  1550. { \
  1551. int offset = GGML_F32_ARR >> 1; \
  1552. for (int i = 0; i < offset; ++i) { \
  1553. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1554. } \
  1555. offset >>= 1; \
  1556. for (int i = 0; i < offset; ++i) { \
  1557. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1558. } \
  1559. offset >>= 1; \
  1560. for (int i = 0; i < offset; ++i) { \
  1561. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1562. } \
  1563. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1564. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1565. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1566. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1567. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1568. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1569. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1570. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1571. }
  1572. #define GGML_F32_VEC GGML_F32x4
  1573. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1574. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1575. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1576. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1577. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1578. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1579. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1580. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1581. // F16 LSX
  1582. #define GGML_F16_STEP 32
  1583. #define GGML_F16_EPR 4
  1584. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1585. float tmp[4];
  1586. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1587. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1588. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1589. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1590. return __lsx_vld(tmp, 0);
  1591. }
  1592. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1593. float arr[4];
  1594. __lsx_vst(y, arr, 0);
  1595. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1596. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1597. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1598. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1599. }
  1600. #define GGML_F32Cx4 __m128
  1601. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1602. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1603. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1604. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1605. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1606. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1607. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1608. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1609. #define GGML_F16_VEC GGML_F32Cx4
  1610. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1611. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1612. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1613. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1614. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1615. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1616. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1617. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1618. #endif
  1619. // GGML_F32_ARR / GGML_F16_ARR
  1620. // number of registers to use per step
  1621. #ifdef GGML_SIMD
  1622. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1623. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1624. #endif
  1625. //
  1626. // ggml context
  1627. //
  1628. struct ggml_context {
  1629. size_t mem_size;
  1630. void* mem_buffer;
  1631. bool mem_buffer_owned;
  1632. bool no_alloc;
  1633. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1634. int n_objects;
  1635. struct ggml_object * objects_begin;
  1636. struct ggml_object * objects_end;
  1637. struct ggml_scratch scratch;
  1638. struct ggml_scratch scratch_save;
  1639. };
  1640. struct ggml_context_container {
  1641. bool used;
  1642. struct ggml_context context;
  1643. };
  1644. struct ggml_compute_state_shared {
  1645. const struct ggml_cgraph * cgraph;
  1646. const struct ggml_cplan * cplan;
  1647. int n_threads;
  1648. // synchronization primitives
  1649. atomic_int n_barrier;
  1650. atomic_int n_barrier_passed;
  1651. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1652. void * abort_callback_data;
  1653. atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads
  1654. enum ggml_status ec;
  1655. };
  1656. struct ggml_compute_state {
  1657. ggml_thread_t thrd;
  1658. int ith;
  1659. struct ggml_compute_state_shared * shared;
  1660. };
  1661. struct ggml_compute_params {
  1662. // ith = thread index, nth = number of threads
  1663. int ith, nth;
  1664. // work buffer for all threads
  1665. size_t wsize;
  1666. void * wdata;
  1667. struct ggml_compute_state_shared * shared;
  1668. };
  1669. //
  1670. // fundamental operations
  1671. //
  1672. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1673. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1674. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1675. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1676. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1677. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1678. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1679. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1680. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1681. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1682. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1683. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1684. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1685. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1686. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1687. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1688. assert(nrc == 1);
  1689. UNUSED(nrc);
  1690. UNUSED(bx);
  1691. UNUSED(by);
  1692. UNUSED(bs);
  1693. #if defined(GGML_SIMD)
  1694. float sumf = 0.0f;
  1695. const int np = (n & ~(GGML_F32_STEP - 1));
  1696. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1697. GGML_F32_VEC ax[GGML_F32_ARR];
  1698. GGML_F32_VEC ay[GGML_F32_ARR];
  1699. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1700. for (int j = 0; j < GGML_F32_ARR; j++) {
  1701. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1702. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1703. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1704. }
  1705. }
  1706. // reduce sum0..sum3 to sum0
  1707. GGML_F32_VEC_REDUCE(sumf, sum);
  1708. // leftovers
  1709. for (int i = np; i < n; ++i) {
  1710. sumf += x[i]*y[i];
  1711. }
  1712. #else
  1713. // scalar
  1714. ggml_float sumf = 0.0;
  1715. for (int i = 0; i < n; ++i) {
  1716. sumf += (ggml_float)(x[i]*y[i]);
  1717. }
  1718. #endif
  1719. *s = sumf;
  1720. }
  1721. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1722. assert(nrc == 1);
  1723. UNUSED(nrc);
  1724. UNUSED(bx);
  1725. UNUSED(by);
  1726. UNUSED(bs);
  1727. int i = 0;
  1728. ggml_float sumf = 0;
  1729. #if defined(__AVX512BF16__)
  1730. __m512 c1 = _mm512_setzero_ps();
  1731. __m512 c2 = _mm512_setzero_ps();
  1732. for (; i + 64 <= n; i += 64) {
  1733. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1734. m512bh(_mm512_loadu_si512((y + i))));
  1735. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1736. m512bh(_mm512_loadu_si512((y + i + 32))));
  1737. }
  1738. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1739. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1740. #elif defined(__AVX512F__)
  1741. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1742. __m512 c1 = _mm512_setzero_ps();
  1743. __m512 c2 = _mm512_setzero_ps();
  1744. for (; i + 32 <= n; i += 32) {
  1745. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1746. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1747. }
  1748. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1749. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1750. #undef LOAD
  1751. #elif defined(__AVX2__)
  1752. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1753. __m256 c1 = _mm256_setzero_ps();
  1754. __m256 c2 = _mm256_setzero_ps();
  1755. __m256 c3 = _mm256_setzero_ps();
  1756. __m256 c4 = _mm256_setzero_ps();
  1757. for (; i + 32 <= n; i += 32) {
  1758. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1759. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1760. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1761. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1762. }
  1763. __m128 g;
  1764. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1765. _mm256_add_ps(c2, c4));
  1766. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1767. _mm256_castps256_ps128(c1));
  1768. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1769. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1770. sumf += (ggml_float)_mm_cvtss_f32(g);
  1771. #undef LOAD
  1772. #endif
  1773. for (; i < n; ++i) {
  1774. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1775. GGML_BF16_TO_FP32(y[i]));
  1776. }
  1777. *s = sumf;
  1778. }
  1779. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1780. assert(nrc == 1);
  1781. UNUSED(nrc);
  1782. UNUSED(bx);
  1783. UNUSED(by);
  1784. UNUSED(bs);
  1785. ggml_float sumf = 0.0;
  1786. #if defined(GGML_SIMD)
  1787. const int np = (n & ~(GGML_F16_STEP - 1));
  1788. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1789. GGML_F16_VEC ax[GGML_F16_ARR];
  1790. GGML_F16_VEC ay[GGML_F16_ARR];
  1791. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1792. for (int j = 0; j < GGML_F16_ARR; j++) {
  1793. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1794. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1795. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1796. }
  1797. }
  1798. // reduce sum0..sum3 to sum0
  1799. GGML_F16_VEC_REDUCE(sumf, sum);
  1800. // leftovers
  1801. for (int i = np; i < n; ++i) {
  1802. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1803. }
  1804. #else
  1805. for (int i = 0; i < n; ++i) {
  1806. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1807. }
  1808. #endif
  1809. *s = sumf;
  1810. }
  1811. // compute GGML_VEC_DOT_UNROLL dot products at once
  1812. // xs - x row stride in bytes
  1813. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1814. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1815. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1816. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1817. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1818. }
  1819. #if defined(GGML_SIMD)
  1820. const int np = (n & ~(GGML_F16_STEP - 1));
  1821. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1822. GGML_F16_VEC ax[GGML_F16_ARR];
  1823. GGML_F16_VEC ay[GGML_F16_ARR];
  1824. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1825. for (int j = 0; j < GGML_F16_ARR; j++) {
  1826. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1827. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1829. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1830. }
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1835. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1836. }
  1837. // leftovers
  1838. for (int i = np; i < n; ++i) {
  1839. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1840. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1841. }
  1842. }
  1843. #else
  1844. for (int i = 0; i < n; ++i) {
  1845. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1846. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1847. }
  1848. }
  1849. #endif
  1850. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1851. s[i] = sumf[i];
  1852. }
  1853. }
  1854. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1855. #if defined(GGML_SIMD)
  1856. const int np = (n & ~(GGML_F32_STEP - 1));
  1857. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1858. GGML_F32_VEC ax[GGML_F32_ARR];
  1859. GGML_F32_VEC ay[GGML_F32_ARR];
  1860. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1861. for (int j = 0; j < GGML_F32_ARR; j++) {
  1862. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1863. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1864. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1865. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1866. }
  1867. }
  1868. // leftovers
  1869. for (int i = np; i < n; ++i) {
  1870. y[i] += x[i]*v;
  1871. }
  1872. #else
  1873. // scalar
  1874. for (int i = 0; i < n; ++i) {
  1875. y[i] += x[i]*v;
  1876. }
  1877. #endif
  1878. }
  1879. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1880. #if defined(GGML_SIMD)
  1881. const int np = (n & ~(GGML_F16_STEP - 1));
  1882. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1883. GGML_F16_VEC ax[GGML_F16_ARR];
  1884. GGML_F16_VEC ay[GGML_F16_ARR];
  1885. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1886. for (int j = 0; j < GGML_F16_ARR; j++) {
  1887. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1888. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1889. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1890. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1891. }
  1892. }
  1893. // leftovers
  1894. for (int i = np; i < n; ++i) {
  1895. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1896. }
  1897. #else
  1898. // scalar
  1899. for (int i = 0; i < n; ++i) {
  1900. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1901. }
  1902. #endif
  1903. }
  1904. // xs and vs are byte strides of x and v
  1905. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1906. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1907. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1908. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1909. x[i] = (const float *) ((const char *) xv + i*xs);
  1910. v[i] = (const float *) ((const char *) vv + i*vs);
  1911. }
  1912. #if defined(GGML_SIMD)
  1913. const int np = (n & ~(GGML_F32_STEP - 1));
  1914. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1915. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1916. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1917. }
  1918. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1919. GGML_F32_VEC ay[GGML_F32_ARR];
  1920. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1921. for (int j = 0; j < GGML_F32_ARR; j++) {
  1922. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1923. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1924. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1925. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1926. }
  1927. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1928. }
  1929. }
  1930. // leftovers
  1931. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1932. for (int i = np; i < n; ++i) {
  1933. y[i] += x[k][i]*v[k][0];
  1934. }
  1935. }
  1936. #else
  1937. // scalar
  1938. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1939. for (int i = 0; i < n; ++i) {
  1940. y[i] += x[k][i]*v[k][0];
  1941. }
  1942. }
  1943. #endif
  1944. }
  1945. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1946. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1947. #if defined(GGML_USE_ACCELERATE)
  1948. vDSP_vsmul(y, 1, &v, y, 1, n);
  1949. #elif defined(GGML_SIMD)
  1950. const int np = (n & ~(GGML_F32_STEP - 1));
  1951. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1952. GGML_F32_VEC ay[GGML_F32_ARR];
  1953. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1954. for (int j = 0; j < GGML_F32_ARR; j++) {
  1955. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1956. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1957. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1958. }
  1959. }
  1960. // leftovers
  1961. for (int i = np; i < n; ++i) {
  1962. y[i] *= v;
  1963. }
  1964. #else
  1965. // scalar
  1966. for (int i = 0; i < n; ++i) {
  1967. y[i] *= v;
  1968. }
  1969. #endif
  1970. }
  1971. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1972. #if defined(GGML_SIMD)
  1973. const int np = (n & ~(GGML_F16_STEP - 1));
  1974. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1975. GGML_F16_VEC ay[GGML_F16_ARR];
  1976. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1977. for (int j = 0; j < GGML_F16_ARR; j++) {
  1978. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1979. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1980. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1981. }
  1982. }
  1983. // leftovers
  1984. for (int i = np; i < n; ++i) {
  1985. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1986. }
  1987. #else
  1988. // scalar
  1989. for (int i = 0; i < n; ++i) {
  1990. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1991. }
  1992. #endif
  1993. }
  1994. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1995. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1996. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1997. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1998. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1999. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2000. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2001. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2002. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2003. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2004. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2005. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2006. // TODO: optimize performance
  2007. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2008. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2009. static const float GELU_COEF_A = 0.044715f;
  2010. static const float GELU_QUICK_COEF = -1.702f;
  2011. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2012. inline static float ggml_gelu_f32(float x) {
  2013. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2014. }
  2015. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2016. const uint16_t * i16 = (const uint16_t *) x;
  2017. for (int i = 0; i < n; ++i) {
  2018. y[i] = ggml_table_gelu_f16[i16[i]];
  2019. }
  2020. }
  2021. #ifdef GGML_GELU_FP16
  2022. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2023. uint16_t t;
  2024. for (int i = 0; i < n; ++i) {
  2025. if (x[i] <= -10.0f) {
  2026. y[i] = 0.0f;
  2027. } else if (x[i] >= 10.0f) {
  2028. y[i] = x[i];
  2029. } else {
  2030. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2031. memcpy(&t, &fp16, sizeof(uint16_t));
  2032. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2033. }
  2034. }
  2035. }
  2036. #else
  2037. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2038. for (int i = 0; i < n; ++i) {
  2039. y[i] = ggml_gelu_f32(x[i]);
  2040. }
  2041. }
  2042. #endif
  2043. inline static float ggml_gelu_quick_f32(float x) {
  2044. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2045. }
  2046. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2047. // const uint16_t * i16 = (const uint16_t *) x;
  2048. // for (int i = 0; i < n; ++i) {
  2049. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2050. // }
  2051. //}
  2052. #ifdef GGML_GELU_QUICK_FP16
  2053. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2054. uint16_t t;
  2055. for (int i = 0; i < n; ++i) {
  2056. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2057. memcpy(&t, &fp16, sizeof(uint16_t));
  2058. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2059. }
  2060. }
  2061. #else
  2062. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2063. for (int i = 0; i < n; ++i) {
  2064. y[i] = ggml_gelu_quick_f32(x[i]);
  2065. }
  2066. }
  2067. #endif
  2068. // Sigmoid Linear Unit (SiLU) function
  2069. inline static float ggml_silu_f32(float x) {
  2070. return x/(1.0f + expf(-x));
  2071. }
  2072. #if __FINITE_MATH_ONLY__
  2073. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2074. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2075. #endif
  2076. #if defined(__ARM_NEON) && defined(__aarch64__)
  2077. // adapted from arm limited optimized routine
  2078. // the maximum error is 1.45358 plus 0.5 ulps
  2079. // numbers above 88.38 will flush to infinity
  2080. // numbers beneath -103.97 will flush to zero
  2081. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2082. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2083. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2084. const float32x4_t n = vsubq_f32(z, r);
  2085. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2086. vdupq_n_f32(0x1.7f7d1cp-20f));
  2087. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2088. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2089. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2090. const float32x4_t u = vmulq_f32(b, b);
  2091. const float32x4_t j = vfmaq_f32(
  2092. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2093. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2094. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2095. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2096. return vfmaq_f32(k, j, k);
  2097. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2098. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2099. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2100. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2101. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2102. }
  2103. // computes silu x/(1+exp(-x)) in single precision vector
  2104. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2105. const float32x4_t one = vdupq_n_f32(1.0f);
  2106. const float32x4_t zero = vdupq_n_f32(0.0f);
  2107. const float32x4_t neg_x = vsubq_f32(zero, x);
  2108. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2109. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2110. return vdivq_f32(x, one_plus_exp_neg_x);
  2111. }
  2112. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2113. // adapted from arm limited optimized routine
  2114. // the maximum error is 1.45358 plus 0.5 ulps
  2115. // numbers above 88.38 will flush to infinity
  2116. // numbers beneath -103.97 will flush to zero
  2117. inline static __m512 ggml_v_expf(__m512 x) {
  2118. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2119. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2120. const __m512 n = _mm512_sub_ps(z, r);
  2121. const __m512 b =
  2122. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2123. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2124. const __mmask16 d =
  2125. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2126. const __m512 u = _mm512_mul_ps(b, b);
  2127. const __m512 j = _mm512_fmadd_ps(
  2128. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2129. _mm512_set1_ps(0x1.573e2ep-5f)),
  2130. u,
  2131. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2132. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2133. u,
  2134. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2135. const __m512 res = _mm512_scalef_ps(j, n);
  2136. if (_mm512_kortestz(d, d))
  2137. return res;
  2138. const __m512 zero = _mm512_setzero_ps();
  2139. const __m512 alt = _mm512_mask_blend_ps(
  2140. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2141. return _mm512_mask_blend_ps(d, res, alt);
  2142. }
  2143. // computes silu x/(1+exp(-x)) in single precision vector
  2144. inline static __m512 ggml_v_silu(__m512 x) {
  2145. const __m512 one = _mm512_set1_ps(1);
  2146. const __m512 zero = _mm512_setzero_ps();
  2147. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2148. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2149. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2150. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2151. }
  2152. #elif defined(__AVX2__) && defined(__FMA__)
  2153. // adapted from arm limited optimized routine
  2154. // the maximum error is 1.45358 plus 0.5 ulps
  2155. // numbers above 88.38 will flush to infinity
  2156. // numbers beneath -103.97 will flush to zero
  2157. inline static __m256 ggml_v_expf(__m256 x) {
  2158. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2159. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2160. const __m256 n = _mm256_sub_ps(z, r);
  2161. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2162. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2163. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2164. const __m256 k = _mm256_castsi256_ps(
  2165. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2166. const __m256i c = _mm256_castps_si256(
  2167. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2168. _mm256_set1_ps(126), _CMP_GT_OQ));
  2169. const __m256 u = _mm256_mul_ps(b, b);
  2170. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2171. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2172. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2173. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2174. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2175. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2176. return _mm256_fmadd_ps(j, k, k);
  2177. const __m256i g = _mm256_and_si256(
  2178. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2179. _mm256_set1_epi32(0x82000000u));
  2180. const __m256 s1 =
  2181. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2182. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2183. const __m256i d = _mm256_castps_si256(
  2184. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2185. _mm256_set1_ps(192), _CMP_GT_OQ));
  2186. return _mm256_or_ps(
  2187. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2188. _mm256_andnot_ps(
  2189. _mm256_castsi256_ps(d),
  2190. _mm256_or_ps(
  2191. _mm256_and_ps(_mm256_castsi256_ps(c),
  2192. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2193. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2194. }
  2195. // computes silu x/(1+exp(-x)) in single precision vector
  2196. inline static __m256 ggml_v_silu(__m256 x) {
  2197. const __m256 one = _mm256_set1_ps(1);
  2198. const __m256 zero = _mm256_setzero_ps();
  2199. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2200. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2201. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2202. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2203. }
  2204. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2205. #if defined(__FMA__)
  2206. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2207. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2208. #else
  2209. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2210. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2211. #endif
  2212. // adapted from arm limited optimized routine
  2213. // the maximum error is 1.45358 plus 0.5 ulps
  2214. // numbers above 88.38 will flush to infinity
  2215. // numbers beneath -103.97 will flush to zero
  2216. inline static __m128 ggml_v_expf(__m128 x) {
  2217. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2218. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2219. const __m128 n = _mm_sub_ps(z, r);
  2220. const __m128 b =
  2221. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2222. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2223. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2224. const __m128i c =
  2225. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2226. const __m128 u = _mm_mul_ps(b, b);
  2227. const __m128 j =
  2228. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2229. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2230. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2231. if (!_mm_movemask_epi8(c))
  2232. return MADD128(j, k, k);
  2233. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2234. _mm_set1_epi32(0x82000000u));
  2235. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2236. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2237. const __m128i d =
  2238. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2239. return _mm_or_ps(
  2240. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2241. _mm_andnot_ps(_mm_castsi128_ps(d),
  2242. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2243. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2244. }
  2245. // computes silu x/(1+exp(-x)) in single precision vector
  2246. inline static __m128 ggml_v_silu(__m128 x) {
  2247. const __m128 one = _mm_set1_ps(1);
  2248. const __m128 zero = _mm_setzero_ps();
  2249. const __m128 neg_x = _mm_sub_ps(zero, x);
  2250. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2251. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2252. return _mm_div_ps(x, one_plus_exp_neg_x);
  2253. }
  2254. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2255. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2256. int i = 0;
  2257. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2258. for (; i + 15 < n; i += 16) {
  2259. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2260. }
  2261. #elif defined(__AVX2__) && defined(__FMA__)
  2262. for (; i + 7 < n; i += 8) {
  2263. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2264. }
  2265. #elif defined(__SSE2__)
  2266. for (; i + 3 < n; i += 4) {
  2267. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2268. }
  2269. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2270. for (; i + 3 < n; i += 4) {
  2271. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2272. }
  2273. #endif
  2274. for (; i < n; ++i) {
  2275. y[i] = ggml_silu_f32(x[i]);
  2276. }
  2277. }
  2278. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2279. int i = 0;
  2280. ggml_float sum = 0;
  2281. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2282. for (; i + 15 < n; i += 16) {
  2283. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2284. _mm512_set1_ps(max)));
  2285. _mm512_storeu_ps(y + i, val);
  2286. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2287. }
  2288. #elif defined(__AVX2__) && defined(__FMA__)
  2289. for (; i + 7 < n; i += 8) {
  2290. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2291. _mm256_set1_ps(max)));
  2292. _mm256_storeu_ps(y + i, val);
  2293. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2294. _mm256_castps256_ps128(val));
  2295. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2296. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2297. sum += (ggml_float)_mm_cvtss_f32(val2);
  2298. }
  2299. #elif defined(__SSE2__)
  2300. for (; i + 3 < n; i += 4) {
  2301. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2302. _mm_set1_ps(max)));
  2303. _mm_storeu_ps(y + i, val);
  2304. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2305. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2306. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2307. #else
  2308. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2309. val = _mm_add_ps(val, tmp);
  2310. tmp = _mm_movehl_ps(tmp, val);
  2311. val = _mm_add_ss(val, tmp);
  2312. #endif
  2313. sum += (ggml_float)_mm_cvtss_f32(val);
  2314. }
  2315. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2316. for (; i + 3 < n; i += 4) {
  2317. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2318. vdupq_n_f32(max)));
  2319. vst1q_f32(y + i, val);
  2320. sum += (ggml_float)vaddvq_f32(val);
  2321. }
  2322. #endif
  2323. for (; i < n; ++i) {
  2324. float val = expf(x[i] - max);
  2325. sum += (ggml_float)val;
  2326. y[i] = val;
  2327. }
  2328. return sum;
  2329. }
  2330. inline static float ggml_silu_backward_f32(float x, float dy) {
  2331. const float s = 1.0f/(1.0f + expf(-x));
  2332. return dy*s*(1.0f + x*(1.0f - s));
  2333. }
  2334. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2335. for (int i = 0; i < n; ++i) {
  2336. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2337. }
  2338. }
  2339. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2340. #ifndef GGML_USE_ACCELERATE
  2341. ggml_float sum = 0.0;
  2342. for (int i = 0; i < n; ++i) {
  2343. sum += (ggml_float)x[i];
  2344. }
  2345. *s = sum;
  2346. #else
  2347. vDSP_sve(x, 1, s, n);
  2348. #endif
  2349. }
  2350. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2351. ggml_float sum = 0.0;
  2352. for (int i = 0; i < n; ++i) {
  2353. sum += (ggml_float)x[i];
  2354. }
  2355. *s = sum;
  2356. }
  2357. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2358. float sum = 0.0f;
  2359. for (int i = 0; i < n; ++i) {
  2360. sum += GGML_FP16_TO_FP32(x[i]);
  2361. }
  2362. *s = sum;
  2363. }
  2364. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2365. float sum = 0.0f;
  2366. for (int i = 0; i < n; ++i) {
  2367. sum += GGML_BF16_TO_FP32(x[i]);
  2368. }
  2369. *s = sum;
  2370. }
  2371. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2372. #ifndef GGML_USE_ACCELERATE
  2373. float max = -INFINITY;
  2374. for (int i = 0; i < n; ++i) {
  2375. max = MAX(max, x[i]);
  2376. }
  2377. *s = max;
  2378. #else
  2379. vDSP_maxv(x, 1, s, n);
  2380. #endif
  2381. }
  2382. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2383. ggml_vec_norm_f32(n, s, x);
  2384. *s = 1.f/(*s);
  2385. }
  2386. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2387. float max = -INFINITY;
  2388. int idx = 0;
  2389. for (int i = 0; i < n; ++i) {
  2390. max = MAX(max, x[i]);
  2391. if (max == x[i]) { idx = i; }
  2392. }
  2393. *s = idx;
  2394. }
  2395. //
  2396. // data types
  2397. //
  2398. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2399. "NONE",
  2400. "DUP",
  2401. "ADD",
  2402. "ADD1",
  2403. "ACC",
  2404. "SUB",
  2405. "MUL",
  2406. "DIV",
  2407. "SQR",
  2408. "SQRT",
  2409. "LOG",
  2410. "SUM",
  2411. "SUM_ROWS",
  2412. "MEAN",
  2413. "ARGMAX",
  2414. "REPEAT",
  2415. "REPEAT_BACK",
  2416. "CONCAT",
  2417. "SILU_BACK",
  2418. "NORM",
  2419. "RMS_NORM",
  2420. "RMS_NORM_BACK",
  2421. "GROUP_NORM",
  2422. "MUL_MAT",
  2423. "MUL_MAT_ID",
  2424. "OUT_PROD",
  2425. "SCALE",
  2426. "SET",
  2427. "CPY",
  2428. "CONT",
  2429. "RESHAPE",
  2430. "VIEW",
  2431. "PERMUTE",
  2432. "TRANSPOSE",
  2433. "GET_ROWS",
  2434. "GET_ROWS_BACK",
  2435. "DIAG",
  2436. "DIAG_MASK_INF",
  2437. "DIAG_MASK_ZERO",
  2438. "SOFT_MAX",
  2439. "SOFT_MAX_BACK",
  2440. "ROPE",
  2441. "ROPE_BACK",
  2442. "CLAMP",
  2443. "CONV_TRANSPOSE_1D",
  2444. "IM2COL",
  2445. "CONV_TRANSPOSE_2D",
  2446. "POOL_1D",
  2447. "POOL_2D",
  2448. "UPSCALE",
  2449. "PAD",
  2450. "ARANGE",
  2451. "TIMESTEP_EMBEDDING",
  2452. "ARGSORT",
  2453. "LEAKY_RELU",
  2454. "FLASH_ATTN_EXT",
  2455. "FLASH_ATTN_BACK",
  2456. "SSM_CONV",
  2457. "SSM_SCAN",
  2458. "WIN_PART",
  2459. "WIN_UNPART",
  2460. "GET_REL_POS",
  2461. "ADD_REL_POS",
  2462. "UNARY",
  2463. "MAP_UNARY",
  2464. "MAP_BINARY",
  2465. "MAP_CUSTOM1_F32",
  2466. "MAP_CUSTOM2_F32",
  2467. "MAP_CUSTOM3_F32",
  2468. "MAP_CUSTOM1",
  2469. "MAP_CUSTOM2",
  2470. "MAP_CUSTOM3",
  2471. "CROSS_ENTROPY_LOSS",
  2472. "CROSS_ENTROPY_LOSS_BACK",
  2473. };
  2474. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2475. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2476. "none",
  2477. "x",
  2478. "x+y",
  2479. "x+y",
  2480. "view(x,nb,offset)+=y->x",
  2481. "x-y",
  2482. "x*y",
  2483. "x/y",
  2484. "x^2",
  2485. "√x",
  2486. "log(x)",
  2487. "Σx",
  2488. "Σx_k",
  2489. "Σx/n",
  2490. "argmax(x)",
  2491. "repeat(x)",
  2492. "repeat_back(x)",
  2493. "concat(x, y)",
  2494. "silu_back(x)",
  2495. "norm(x)",
  2496. "rms_norm(x)",
  2497. "rms_norm_back(x)",
  2498. "group_norm(x)",
  2499. "X*Y",
  2500. "X[i]*Y",
  2501. "X*Y",
  2502. "x*v",
  2503. "y-\\>view(x)",
  2504. "x-\\>y",
  2505. "cont(x)",
  2506. "reshape(x)",
  2507. "view(x)",
  2508. "permute(x)",
  2509. "transpose(x)",
  2510. "get_rows(x)",
  2511. "get_rows_back(x)",
  2512. "diag(x)",
  2513. "diag_mask_inf(x)",
  2514. "diag_mask_zero(x)",
  2515. "soft_max(x)",
  2516. "soft_max_back(x)",
  2517. "rope(x)",
  2518. "rope_back(x)",
  2519. "clamp(x)",
  2520. "conv_transpose_1d(x)",
  2521. "im2col(x)",
  2522. "conv_transpose_2d(x)",
  2523. "pool_1d(x)",
  2524. "pool_2d(x)",
  2525. "upscale(x)",
  2526. "pad(x)",
  2527. "arange(start, stop, step)",
  2528. "timestep_embedding(timesteps, dim, max_period)",
  2529. "argsort(x)",
  2530. "leaky_relu(x)",
  2531. "flash_attn_ext(x)",
  2532. "flash_attn_back(x)",
  2533. "ssm_conv(x)",
  2534. "ssm_scan(x)",
  2535. "win_part(x)",
  2536. "win_unpart(x)",
  2537. "get_rel_pos(x)",
  2538. "add_rel_pos(x)",
  2539. "unary(x)",
  2540. "f(x)",
  2541. "f(x,y)",
  2542. "custom_f32(x)",
  2543. "custom_f32(x,y)",
  2544. "custom_f32(x,y,z)",
  2545. "custom(x)",
  2546. "custom(x,y)",
  2547. "custom(x,y,z)",
  2548. "cross_entropy_loss(x,y)",
  2549. "cross_entropy_loss_back(x,y)",
  2550. };
  2551. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2552. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2553. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2554. "ABS",
  2555. "SGN",
  2556. "NEG",
  2557. "STEP",
  2558. "TANH",
  2559. "ELU",
  2560. "RELU",
  2561. "SIGMOID",
  2562. "GELU",
  2563. "GELU_QUICK",
  2564. "SILU",
  2565. "HARDSWISH",
  2566. "HARDSIGMOID",
  2567. };
  2568. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2569. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2570. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2571. //
  2572. // NUMA support
  2573. //
  2574. #define GGML_NUMA_MAX_NODES 8
  2575. #define GGML_NUMA_MAX_CPUS 512
  2576. struct ggml_numa_node {
  2577. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2578. uint32_t n_cpus;
  2579. };
  2580. struct ggml_numa_nodes {
  2581. enum ggml_numa_strategy numa_strategy;
  2582. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2583. uint32_t n_nodes;
  2584. uint32_t total_cpus; // hardware threads on system
  2585. uint32_t current_node; // node on which main process is execting
  2586. #if defined(__gnu_linux__)
  2587. cpu_set_t cpuset; // cpuset from numactl
  2588. #else
  2589. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2590. #endif
  2591. };
  2592. //
  2593. // ggml state
  2594. //
  2595. struct ggml_state {
  2596. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2597. struct ggml_numa_nodes numa;
  2598. };
  2599. // global state
  2600. static struct ggml_state g_state;
  2601. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2602. // critical section via spin lock
  2603. inline static void ggml_critical_section_start(void) {
  2604. while (atomic_flag_test_and_set(&g_state_critical)) {
  2605. // spin
  2606. sched_yield();
  2607. }
  2608. }
  2609. #ifdef GGML_USE_OPENMP
  2610. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2611. if (shared->n_threads == 1) {
  2612. return;
  2613. }
  2614. #pragma omp barrier
  2615. }
  2616. #else
  2617. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2618. if (shared->n_threads == 1) {
  2619. return;
  2620. }
  2621. atomic_int * n_barrier = &shared->n_barrier;
  2622. atomic_int * n_barrier_passed = &shared->n_barrier_passed;
  2623. int n_threads = shared->n_threads;
  2624. int passed_old = atomic_load(n_barrier_passed);
  2625. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  2626. // last thread
  2627. atomic_store(n_barrier, 0);
  2628. atomic_fetch_add(n_barrier_passed, 1);
  2629. } else {
  2630. // wait for other threads
  2631. const int n_spin_before_sleep = 100000;
  2632. while (true) {
  2633. for (int i = 0; i < n_spin_before_sleep; i++) {
  2634. if (atomic_load(n_barrier_passed) != passed_old) {
  2635. return;
  2636. }
  2637. #if defined(__SSE3__)
  2638. _mm_pause();
  2639. #endif
  2640. }
  2641. sched_yield();
  2642. }
  2643. }
  2644. }
  2645. #endif
  2646. // TODO: make this somehow automatically executed
  2647. // some sort of "sentry" mechanism
  2648. inline static void ggml_critical_section_end(void) {
  2649. atomic_flag_clear(&g_state_critical);
  2650. }
  2651. #if defined(__gnu_linux__)
  2652. static cpu_set_t ggml_get_numa_affinity(void) {
  2653. cpu_set_t cpuset;
  2654. pthread_t thread;
  2655. thread = pthread_self();
  2656. CPU_ZERO(&cpuset);
  2657. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2658. return cpuset;
  2659. }
  2660. #else
  2661. static uint32_t ggml_get_numa_affinity(void) {
  2662. return 0; // no NUMA support
  2663. }
  2664. #endif
  2665. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2666. if (g_state.numa.n_nodes > 0) {
  2667. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2668. return;
  2669. }
  2670. #if defined(__gnu_linux__)
  2671. struct stat st;
  2672. char path[256];
  2673. int rv;
  2674. // set numa scheme
  2675. g_state.numa.numa_strategy = numa_flag;
  2676. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2677. g_state.numa.cpuset = ggml_get_numa_affinity();
  2678. // enumerate nodes
  2679. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2680. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2681. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2682. if (stat(path, &st) != 0) { break; }
  2683. ++g_state.numa.n_nodes;
  2684. }
  2685. // enumerate CPUs
  2686. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2687. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2688. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2689. if (stat(path, &st) != 0) { break; }
  2690. ++g_state.numa.total_cpus;
  2691. }
  2692. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2693. // figure out which node we're on
  2694. uint current_cpu;
  2695. int getcpu_ret = 0;
  2696. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2697. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2698. #else
  2699. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2700. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2701. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2702. # endif
  2703. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2704. #endif
  2705. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2706. g_state.numa.n_nodes = 0;
  2707. return;
  2708. }
  2709. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2710. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2711. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2712. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2713. node->n_cpus = 0;
  2714. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2715. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2716. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2717. if (stat(path, &st) == 0) {
  2718. node->cpus[node->n_cpus++] = c;
  2719. GGML_PRINT_DEBUG(" %u", c);
  2720. }
  2721. }
  2722. GGML_PRINT_DEBUG("\n");
  2723. }
  2724. if (ggml_is_numa()) {
  2725. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2726. if (fptr != NULL) {
  2727. char buf[42];
  2728. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2729. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2730. }
  2731. fclose(fptr);
  2732. }
  2733. }
  2734. #else
  2735. UNUSED(numa_flag);
  2736. // TODO
  2737. #endif
  2738. }
  2739. bool ggml_is_numa(void) {
  2740. return g_state.numa.n_nodes > 1;
  2741. }
  2742. ////////////////////////////////////////////////////////////////////////////////
  2743. void ggml_print_object(const struct ggml_object * obj) {
  2744. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2745. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2746. }
  2747. void ggml_print_objects(const struct ggml_context * ctx) {
  2748. struct ggml_object * obj = ctx->objects_begin;
  2749. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2750. while (obj != NULL) {
  2751. ggml_print_object(obj);
  2752. obj = obj->next;
  2753. }
  2754. GGML_PRINT("%s: --- end ---\n", __func__);
  2755. }
  2756. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2757. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2758. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2759. }
  2760. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2761. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2762. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2763. }
  2764. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2765. size_t nbytes;
  2766. size_t blck_size = ggml_blck_size(tensor->type);
  2767. if (blck_size == 1) {
  2768. nbytes = ggml_type_size(tensor->type);
  2769. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2770. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2771. }
  2772. }
  2773. else {
  2774. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2775. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2776. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2777. }
  2778. }
  2779. return nbytes;
  2780. }
  2781. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2782. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2783. }
  2784. GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
  2785. return type_traits[type].blck_size;
  2786. }
  2787. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2788. return type_traits[type].type_size;
  2789. }
  2790. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2791. assert(ne % ggml_blck_size(type) == 0);
  2792. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2793. }
  2794. double ggml_type_sizef(enum ggml_type type) {
  2795. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2796. }
  2797. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2798. return type_traits[type].type_name;
  2799. }
  2800. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2801. return type_traits[type].is_quantized;
  2802. }
  2803. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2804. return GGML_OP_NAME[op];
  2805. }
  2806. const char * ggml_op_symbol(enum ggml_op op) {
  2807. return GGML_OP_SYMBOL[op];
  2808. }
  2809. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2810. return GGML_UNARY_OP_NAME[op];
  2811. }
  2812. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2813. if (t->op == GGML_OP_UNARY) {
  2814. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2815. return ggml_unary_op_name(uop);
  2816. }
  2817. return ggml_op_name(t->op);
  2818. }
  2819. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2820. return ggml_type_size(tensor->type);
  2821. }
  2822. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2823. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2824. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2825. }
  2826. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2827. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2828. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2829. }
  2830. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2831. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2832. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2833. }
  2834. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2835. return tensor->ne[3] == 1;
  2836. }
  2837. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2838. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2839. if (tensor->ne[i] > 1) {
  2840. return i + 1;
  2841. }
  2842. }
  2843. return 1;
  2844. }
  2845. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) &&
  2848. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2849. (t1->ne[3]%t0->ne[3] == 0);
  2850. }
  2851. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2853. return (t0->ne[1] == t1->ne[1]) &&
  2854. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2855. (t1->ne[3]%t0->ne[3] == 0);
  2856. }
  2857. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2858. enum ggml_type wtype = GGML_TYPE_COUNT;
  2859. switch (ftype) {
  2860. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2861. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2862. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2863. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2864. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2865. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2866. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2867. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2868. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2869. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2870. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2871. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2872. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2873. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2874. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2875. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2876. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2877. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2878. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2879. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2880. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2881. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2882. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  2883. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  2884. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  2885. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2886. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2887. }
  2888. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2889. return wtype;
  2890. }
  2891. size_t ggml_tensor_overhead(void) {
  2892. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2893. }
  2894. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2895. return tensor->nb[0] > tensor->nb[1];
  2896. }
  2897. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2898. size_t next_nb = ggml_type_size(tensor->type);
  2899. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2900. return false;
  2901. }
  2902. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2903. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2904. if (tensor->ne[i] != 1) {
  2905. if (i > n) {
  2906. if (tensor->nb[i] != next_nb) {
  2907. return false;
  2908. }
  2909. next_nb *= tensor->ne[i];
  2910. } else {
  2911. // this dimension does not need to be contiguous
  2912. next_nb = tensor->ne[i]*tensor->nb[i];
  2913. }
  2914. }
  2915. }
  2916. return true;
  2917. }
  2918. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2919. return ggml_is_contiguous_0(tensor);
  2920. }
  2921. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2922. return ggml_is_contiguous_n(tensor, 0);
  2923. }
  2924. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2925. return ggml_is_contiguous_n(tensor, 1);
  2926. }
  2927. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2928. return ggml_is_contiguous_n(tensor, 2);
  2929. }
  2930. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2931. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2932. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2933. }
  2934. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2935. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2936. return
  2937. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2938. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2939. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2940. }
  2941. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2942. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2943. if (tensor->ne[i] == 0) {
  2944. // empty if any dimension has no elements
  2945. return true;
  2946. }
  2947. }
  2948. return false;
  2949. }
  2950. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2951. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2952. return
  2953. (t0->ne[0] == t1->ne[0]) &&
  2954. (t0->ne[1] == t1->ne[1]) &&
  2955. (t0->ne[2] == t1->ne[2]) &&
  2956. (t0->ne[3] == t1->ne[3]);
  2957. }
  2958. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2959. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2960. return
  2961. (t0->nb[0] == t1->nb[0]) &&
  2962. (t0->nb[1] == t1->nb[1]) &&
  2963. (t0->nb[2] == t1->nb[2]) &&
  2964. (t0->nb[3] == t1->nb[3]);
  2965. }
  2966. // check if t1 can be represented as a repeatition of t0
  2967. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2969. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2970. (t1->ne[0]%t0->ne[0] == 0) &&
  2971. (t1->ne[1]%t0->ne[1] == 0) &&
  2972. (t1->ne[2]%t0->ne[2] == 0) &&
  2973. (t1->ne[3]%t0->ne[3] == 0);
  2974. }
  2975. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2977. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2978. }
  2979. static inline int ggml_up32(int n) {
  2980. return (n + 31) & ~31;
  2981. }
  2982. //static inline int ggml_up64(int n) {
  2983. // return (n + 63) & ~63;
  2984. //}
  2985. static inline int ggml_up(int n, int m) {
  2986. // assert m is a power of 2
  2987. GGML_ASSERT((m & (m - 1)) == 0);
  2988. return (n + m - 1) & ~(m - 1);
  2989. }
  2990. // assert that pointer is aligned to GGML_MEM_ALIGN
  2991. #define GGML_ASSERT_ALIGNED(ptr) \
  2992. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2993. ////////////////////////////////////////////////////////////////////////////////
  2994. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2995. // make this function thread safe
  2996. ggml_critical_section_start();
  2997. static bool is_first_call = true;
  2998. if (is_first_call) {
  2999. // initialize time system (required on Windows)
  3000. ggml_time_init();
  3001. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3002. {
  3003. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3004. for (int i = 0; i < (1 << 16); ++i) {
  3005. union {
  3006. uint16_t u16;
  3007. ggml_fp16_t fp16;
  3008. } u = {i};
  3009. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3010. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3011. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3012. }
  3013. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3014. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3015. }
  3016. // initialize g_state
  3017. {
  3018. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3019. g_state = (struct ggml_state) {
  3020. /*.contexts =*/ { { 0 } },
  3021. /*.numa =*/ {
  3022. .n_nodes = 0,
  3023. .total_cpus = 0,
  3024. },
  3025. };
  3026. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3027. g_state.contexts[i].used = false;
  3028. }
  3029. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3030. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3031. }
  3032. is_first_call = false;
  3033. }
  3034. // find non-used context in g_state
  3035. struct ggml_context * ctx = NULL;
  3036. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3037. if (!g_state.contexts[i].used) {
  3038. g_state.contexts[i].used = true;
  3039. ctx = &g_state.contexts[i].context;
  3040. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3041. break;
  3042. }
  3043. }
  3044. if (ctx == NULL) {
  3045. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3046. ggml_critical_section_end();
  3047. return NULL;
  3048. }
  3049. // allow to call ggml_init with 0 size
  3050. if (params.mem_size == 0) {
  3051. params.mem_size = GGML_MEM_ALIGN;
  3052. }
  3053. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3054. *ctx = (struct ggml_context) {
  3055. /*.mem_size =*/ mem_size,
  3056. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3057. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3058. /*.no_alloc =*/ params.no_alloc,
  3059. /*.no_alloc_save =*/ params.no_alloc,
  3060. /*.n_objects =*/ 0,
  3061. /*.objects_begin =*/ NULL,
  3062. /*.objects_end =*/ NULL,
  3063. /*.scratch =*/ { 0, 0, NULL, },
  3064. /*.scratch_save =*/ { 0, 0, NULL, },
  3065. };
  3066. GGML_ASSERT(ctx->mem_buffer != NULL);
  3067. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3068. #if defined(__ARM_FEATURE_SVE)
  3069. if (!ggml_sve_cnt_b) {
  3070. ggml_sve_cnt_b = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3071. }
  3072. #endif
  3073. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3074. ggml_critical_section_end();
  3075. return ctx;
  3076. }
  3077. void ggml_free(struct ggml_context * ctx) {
  3078. if (ctx == NULL) {
  3079. return;
  3080. }
  3081. // make this function thread safe
  3082. ggml_critical_section_start();
  3083. bool found = false;
  3084. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3085. if (&g_state.contexts[i].context == ctx) {
  3086. g_state.contexts[i].used = false;
  3087. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3088. __func__, i, ggml_used_mem(ctx));
  3089. if (ctx->mem_buffer_owned) {
  3090. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3091. }
  3092. found = true;
  3093. break;
  3094. }
  3095. }
  3096. if (!found) {
  3097. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3098. }
  3099. ggml_critical_section_end();
  3100. }
  3101. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3102. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3103. }
  3104. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3105. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3106. ctx->scratch = scratch;
  3107. return result;
  3108. }
  3109. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3110. return ctx->no_alloc;
  3111. }
  3112. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3113. ctx->no_alloc = no_alloc;
  3114. }
  3115. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3116. return ctx->mem_buffer;
  3117. }
  3118. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3119. return ctx->mem_size;
  3120. }
  3121. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3122. size_t max_size = 0;
  3123. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3124. size_t bytes = ggml_nbytes(tensor);
  3125. max_size = MAX(max_size, bytes);
  3126. }
  3127. return max_size;
  3128. }
  3129. // IMPORTANT:
  3130. // when creating "opt" tensors, always save and load the scratch buffer
  3131. // this is an error prone process, but it is necessary to support inplace
  3132. // operators when using scratch buffers
  3133. // TODO: implement a better way
  3134. static void ggml_scratch_save(struct ggml_context * ctx) {
  3135. // this is needed to allow opt tensors to store their data
  3136. // TODO: again, need to find a better way
  3137. ctx->no_alloc_save = ctx->no_alloc;
  3138. ctx->no_alloc = false;
  3139. ctx->scratch_save = ctx->scratch;
  3140. ctx->scratch.data = NULL;
  3141. }
  3142. static void ggml_scratch_load(struct ggml_context * ctx) {
  3143. ctx->no_alloc = ctx->no_alloc_save;
  3144. ctx->scratch = ctx->scratch_save;
  3145. }
  3146. ////////////////////////////////////////////////////////////////////////////////
  3147. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3148. // always insert objects at the end of the context's memory pool
  3149. struct ggml_object * obj_cur = ctx->objects_end;
  3150. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3151. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3152. const size_t cur_end = cur_offs + cur_size;
  3153. // align to GGML_MEM_ALIGN
  3154. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3155. char * const mem_buffer = ctx->mem_buffer;
  3156. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3157. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3158. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3159. __func__, cur_end + size_needed, ctx->mem_size);
  3160. assert(false);
  3161. return NULL;
  3162. }
  3163. *obj_new = (struct ggml_object) {
  3164. .offs = cur_end + GGML_OBJECT_SIZE,
  3165. .size = size_needed,
  3166. .next = NULL,
  3167. .type = type,
  3168. };
  3169. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3170. if (obj_cur != NULL) {
  3171. obj_cur->next = obj_new;
  3172. } else {
  3173. // this is the first object in this context
  3174. ctx->objects_begin = obj_new;
  3175. }
  3176. ctx->objects_end = obj_new;
  3177. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3178. return obj_new;
  3179. }
  3180. static struct ggml_tensor * ggml_new_tensor_impl(
  3181. struct ggml_context * ctx,
  3182. enum ggml_type type,
  3183. int n_dims,
  3184. const int64_t * ne,
  3185. struct ggml_tensor * view_src,
  3186. size_t view_offs) {
  3187. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3188. // find the base tensor and absolute offset
  3189. if (view_src != NULL && view_src->view_src != NULL) {
  3190. view_offs += view_src->view_offs;
  3191. view_src = view_src->view_src;
  3192. }
  3193. size_t data_size = ggml_row_size(type, ne[0]);
  3194. for (int i = 1; i < n_dims; i++) {
  3195. data_size *= ne[i];
  3196. }
  3197. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3198. void * data = view_src != NULL ? view_src->data : NULL;
  3199. if (data != NULL) {
  3200. data = (char *) data + view_offs;
  3201. }
  3202. size_t obj_alloc_size = 0;
  3203. if (view_src == NULL && !ctx->no_alloc) {
  3204. if (ctx->scratch.data != NULL) {
  3205. // allocate tensor data in the scratch buffer
  3206. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3207. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3208. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3209. assert(false);
  3210. return NULL;
  3211. }
  3212. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3213. ctx->scratch.offs += data_size;
  3214. } else {
  3215. // allocate tensor data in the context's memory pool
  3216. obj_alloc_size = data_size;
  3217. }
  3218. }
  3219. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3220. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3221. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3222. #ifdef __clang__
  3223. // temporary until ggml_tensor::backend is removed
  3224. #pragma clang diagnostic push
  3225. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3226. #endif
  3227. *result = (struct ggml_tensor) {
  3228. /*.type =*/ type,
  3229. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3230. /*.buffer =*/ NULL,
  3231. /*.ne =*/ { 1, 1, 1, 1 },
  3232. /*.nb =*/ { 0, 0, 0, 0 },
  3233. /*.op =*/ GGML_OP_NONE,
  3234. /*.op_params =*/ { 0 },
  3235. /*.flags =*/ 0,
  3236. /*.grad =*/ NULL,
  3237. /*.src =*/ { NULL },
  3238. /*.view_src =*/ view_src,
  3239. /*.view_offs =*/ view_offs,
  3240. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3241. /*.name =*/ { 0 },
  3242. /*.extra =*/ NULL,
  3243. ///*.padding =*/ { 0 },
  3244. };
  3245. #ifdef __clang__
  3246. #pragma clang diagnostic pop
  3247. #endif
  3248. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3249. //GGML_ASSERT_ALIGNED(result->data);
  3250. for (int i = 0; i < n_dims; i++) {
  3251. result->ne[i] = ne[i];
  3252. }
  3253. result->nb[0] = ggml_type_size(type);
  3254. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3255. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3256. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3257. }
  3258. ctx->n_objects++;
  3259. return result;
  3260. }
  3261. struct ggml_tensor * ggml_new_tensor(
  3262. struct ggml_context * ctx,
  3263. enum ggml_type type,
  3264. int n_dims,
  3265. const int64_t * ne) {
  3266. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3267. }
  3268. struct ggml_tensor * ggml_new_tensor_1d(
  3269. struct ggml_context * ctx,
  3270. enum ggml_type type,
  3271. int64_t ne0) {
  3272. return ggml_new_tensor(ctx, type, 1, &ne0);
  3273. }
  3274. struct ggml_tensor * ggml_new_tensor_2d(
  3275. struct ggml_context * ctx,
  3276. enum ggml_type type,
  3277. int64_t ne0,
  3278. int64_t ne1) {
  3279. const int64_t ne[2] = { ne0, ne1 };
  3280. return ggml_new_tensor(ctx, type, 2, ne);
  3281. }
  3282. struct ggml_tensor * ggml_new_tensor_3d(
  3283. struct ggml_context * ctx,
  3284. enum ggml_type type,
  3285. int64_t ne0,
  3286. int64_t ne1,
  3287. int64_t ne2) {
  3288. const int64_t ne[3] = { ne0, ne1, ne2 };
  3289. return ggml_new_tensor(ctx, type, 3, ne);
  3290. }
  3291. struct ggml_tensor * ggml_new_tensor_4d(
  3292. struct ggml_context * ctx,
  3293. enum ggml_type type,
  3294. int64_t ne0,
  3295. int64_t ne1,
  3296. int64_t ne2,
  3297. int64_t ne3) {
  3298. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3299. return ggml_new_tensor(ctx, type, 4, ne);
  3300. }
  3301. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3302. ggml_scratch_save(ctx);
  3303. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3304. ggml_scratch_load(ctx);
  3305. ggml_set_i32(result, value);
  3306. return result;
  3307. }
  3308. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3309. ggml_scratch_save(ctx);
  3310. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3311. ggml_scratch_load(ctx);
  3312. ggml_set_f32(result, value);
  3313. return result;
  3314. }
  3315. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3316. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3317. }
  3318. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3319. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3320. assert(params_size <= GGML_MAX_OP_PARAMS);
  3321. memcpy(tensor->op_params, params, params_size);
  3322. }
  3323. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3324. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3325. return ((const int32_t *)(tensor->op_params))[i];
  3326. }
  3327. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3328. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3329. return ((const float *)(tensor->op_params))[i];
  3330. }
  3331. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3332. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3333. ((int32_t *)(tensor->op_params))[i] = value;
  3334. }
  3335. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3336. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3337. ((float *)(tensor->op_params))[i] = value;
  3338. }
  3339. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3340. memset(tensor->data, 0, ggml_nbytes(tensor));
  3341. return tensor;
  3342. }
  3343. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3344. const int n = ggml_nrows(tensor);
  3345. const int nc = tensor->ne[0];
  3346. const size_t n1 = tensor->nb[1];
  3347. char * const data = tensor->data;
  3348. switch (tensor->type) {
  3349. case GGML_TYPE_I8:
  3350. {
  3351. assert(tensor->nb[0] == sizeof(int8_t));
  3352. for (int i = 0; i < n; i++) {
  3353. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3354. }
  3355. } break;
  3356. case GGML_TYPE_I16:
  3357. {
  3358. assert(tensor->nb[0] == sizeof(int16_t));
  3359. for (int i = 0; i < n; i++) {
  3360. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3361. }
  3362. } break;
  3363. case GGML_TYPE_I32:
  3364. {
  3365. assert(tensor->nb[0] == sizeof(int32_t));
  3366. for (int i = 0; i < n; i++) {
  3367. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3368. }
  3369. } break;
  3370. case GGML_TYPE_F16:
  3371. {
  3372. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3373. for (int i = 0; i < n; i++) {
  3374. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3375. }
  3376. } break;
  3377. case GGML_TYPE_BF16:
  3378. {
  3379. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3380. for (int i = 0; i < n; i++) {
  3381. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3382. }
  3383. } break;
  3384. case GGML_TYPE_F32:
  3385. {
  3386. assert(tensor->nb[0] == sizeof(float));
  3387. for (int i = 0; i < n; i++) {
  3388. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3389. }
  3390. } break;
  3391. default:
  3392. {
  3393. GGML_ABORT("fatal error");
  3394. }
  3395. }
  3396. return tensor;
  3397. }
  3398. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3399. const int n = ggml_nrows(tensor);
  3400. const int nc = tensor->ne[0];
  3401. const size_t n1 = tensor->nb[1];
  3402. char * const data = tensor->data;
  3403. switch (tensor->type) {
  3404. case GGML_TYPE_I8:
  3405. {
  3406. assert(tensor->nb[0] == sizeof(int8_t));
  3407. for (int i = 0; i < n; i++) {
  3408. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3409. }
  3410. } break;
  3411. case GGML_TYPE_I16:
  3412. {
  3413. assert(tensor->nb[0] == sizeof(int16_t));
  3414. for (int i = 0; i < n; i++) {
  3415. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3416. }
  3417. } break;
  3418. case GGML_TYPE_I32:
  3419. {
  3420. assert(tensor->nb[0] == sizeof(int32_t));
  3421. for (int i = 0; i < n; i++) {
  3422. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3423. }
  3424. } break;
  3425. case GGML_TYPE_F16:
  3426. {
  3427. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3428. for (int i = 0; i < n; i++) {
  3429. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3430. }
  3431. } break;
  3432. case GGML_TYPE_BF16:
  3433. {
  3434. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3435. for (int i = 0; i < n; i++) {
  3436. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3437. }
  3438. } break;
  3439. case GGML_TYPE_F32:
  3440. {
  3441. assert(tensor->nb[0] == sizeof(float));
  3442. for (int i = 0; i < n; i++) {
  3443. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3444. }
  3445. } break;
  3446. default:
  3447. {
  3448. GGML_ABORT("fatal error");
  3449. }
  3450. }
  3451. return tensor;
  3452. }
  3453. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3454. const int64_t ne2 = tensor->ne[2];
  3455. const int64_t ne1 = tensor->ne[1];
  3456. const int64_t ne0 = tensor->ne[0];
  3457. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3458. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3459. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3460. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3461. if (i0) {
  3462. * i0 = i0_;
  3463. }
  3464. if (i1) {
  3465. * i1 = i1_;
  3466. }
  3467. if (i2) {
  3468. * i2 = i2_;
  3469. }
  3470. if (i3) {
  3471. * i3 = i3_;
  3472. }
  3473. }
  3474. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3475. if (!ggml_is_contiguous(tensor)) {
  3476. int64_t id[4] = { 0, 0, 0, 0 };
  3477. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3478. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3479. }
  3480. switch (tensor->type) {
  3481. case GGML_TYPE_I8:
  3482. {
  3483. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3484. return ((int8_t *)(tensor->data))[i];
  3485. }
  3486. case GGML_TYPE_I16:
  3487. {
  3488. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3489. return ((int16_t *)(tensor->data))[i];
  3490. }
  3491. case GGML_TYPE_I32:
  3492. {
  3493. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3494. return ((int32_t *)(tensor->data))[i];
  3495. }
  3496. case GGML_TYPE_F16:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3499. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3500. }
  3501. case GGML_TYPE_BF16:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3504. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3505. }
  3506. case GGML_TYPE_F32:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3509. return ((float *)(tensor->data))[i];
  3510. }
  3511. default:
  3512. {
  3513. GGML_ABORT("fatal error");
  3514. }
  3515. }
  3516. }
  3517. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3518. if (!ggml_is_contiguous(tensor)) {
  3519. int64_t id[4] = { 0, 0, 0, 0 };
  3520. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3521. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3522. return;
  3523. }
  3524. switch (tensor->type) {
  3525. case GGML_TYPE_I8:
  3526. {
  3527. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3528. ((int8_t *)(tensor->data))[i] = value;
  3529. } break;
  3530. case GGML_TYPE_I16:
  3531. {
  3532. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3533. ((int16_t *)(tensor->data))[i] = value;
  3534. } break;
  3535. case GGML_TYPE_I32:
  3536. {
  3537. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3538. ((int32_t *)(tensor->data))[i] = value;
  3539. } break;
  3540. case GGML_TYPE_F16:
  3541. {
  3542. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3543. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3544. } break;
  3545. case GGML_TYPE_BF16:
  3546. {
  3547. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3548. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3549. } break;
  3550. case GGML_TYPE_F32:
  3551. {
  3552. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3553. ((float *)(tensor->data))[i] = value;
  3554. } break;
  3555. default:
  3556. {
  3557. GGML_ABORT("fatal error");
  3558. }
  3559. }
  3560. }
  3561. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3562. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3563. switch (tensor->type) {
  3564. case GGML_TYPE_I8:
  3565. return ((int8_t *) data)[0];
  3566. case GGML_TYPE_I16:
  3567. return ((int16_t *) data)[0];
  3568. case GGML_TYPE_I32:
  3569. return ((int32_t *) data)[0];
  3570. case GGML_TYPE_F16:
  3571. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3572. case GGML_TYPE_BF16:
  3573. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3574. case GGML_TYPE_F32:
  3575. return ((float *) data)[0];
  3576. default:
  3577. GGML_ABORT("fatal error");
  3578. }
  3579. }
  3580. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3581. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3582. switch (tensor->type) {
  3583. case GGML_TYPE_I8:
  3584. {
  3585. ((int8_t *)(data))[0] = value;
  3586. } break;
  3587. case GGML_TYPE_I16:
  3588. {
  3589. ((int16_t *)(data))[0] = value;
  3590. } break;
  3591. case GGML_TYPE_I32:
  3592. {
  3593. ((int32_t *)(data))[0] = value;
  3594. } break;
  3595. case GGML_TYPE_F16:
  3596. {
  3597. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3598. } break;
  3599. case GGML_TYPE_BF16:
  3600. {
  3601. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3602. } break;
  3603. case GGML_TYPE_F32:
  3604. {
  3605. ((float *)(data))[0] = value;
  3606. } break;
  3607. default:
  3608. {
  3609. GGML_ABORT("fatal error");
  3610. }
  3611. }
  3612. }
  3613. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3614. if (!ggml_is_contiguous(tensor)) {
  3615. int64_t id[4] = { 0, 0, 0, 0 };
  3616. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3617. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3618. }
  3619. switch (tensor->type) {
  3620. case GGML_TYPE_I8:
  3621. {
  3622. return ((int8_t *)(tensor->data))[i];
  3623. }
  3624. case GGML_TYPE_I16:
  3625. {
  3626. return ((int16_t *)(tensor->data))[i];
  3627. }
  3628. case GGML_TYPE_I32:
  3629. {
  3630. return ((int32_t *)(tensor->data))[i];
  3631. }
  3632. case GGML_TYPE_F16:
  3633. {
  3634. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3635. }
  3636. case GGML_TYPE_BF16:
  3637. {
  3638. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3639. }
  3640. case GGML_TYPE_F32:
  3641. {
  3642. return ((float *)(tensor->data))[i];
  3643. }
  3644. default:
  3645. {
  3646. GGML_ABORT("fatal error");
  3647. }
  3648. }
  3649. }
  3650. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3651. if (!ggml_is_contiguous(tensor)) {
  3652. int64_t id[4] = { 0, 0, 0, 0 };
  3653. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3654. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3655. return;
  3656. }
  3657. switch (tensor->type) {
  3658. case GGML_TYPE_I8:
  3659. {
  3660. ((int8_t *)(tensor->data))[i] = value;
  3661. } break;
  3662. case GGML_TYPE_I16:
  3663. {
  3664. ((int16_t *)(tensor->data))[i] = value;
  3665. } break;
  3666. case GGML_TYPE_I32:
  3667. {
  3668. ((int32_t *)(tensor->data))[i] = value;
  3669. } break;
  3670. case GGML_TYPE_F16:
  3671. {
  3672. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3673. } break;
  3674. case GGML_TYPE_BF16:
  3675. {
  3676. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3677. } break;
  3678. case GGML_TYPE_F32:
  3679. {
  3680. ((float *)(tensor->data))[i] = value;
  3681. } break;
  3682. default:
  3683. {
  3684. GGML_ABORT("fatal error");
  3685. }
  3686. }
  3687. }
  3688. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3689. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3690. switch (tensor->type) {
  3691. case GGML_TYPE_I8:
  3692. return ((int8_t *) data)[0];
  3693. case GGML_TYPE_I16:
  3694. return ((int16_t *) data)[0];
  3695. case GGML_TYPE_I32:
  3696. return ((int32_t *) data)[0];
  3697. case GGML_TYPE_F16:
  3698. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3699. case GGML_TYPE_BF16:
  3700. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3701. case GGML_TYPE_F32:
  3702. return ((float *) data)[0];
  3703. default:
  3704. GGML_ABORT("fatal error");
  3705. }
  3706. }
  3707. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3708. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3709. switch (tensor->type) {
  3710. case GGML_TYPE_I8:
  3711. {
  3712. ((int8_t *)(data))[0] = value;
  3713. } break;
  3714. case GGML_TYPE_I16:
  3715. {
  3716. ((int16_t *)(data))[0] = value;
  3717. } break;
  3718. case GGML_TYPE_I32:
  3719. {
  3720. ((int32_t *)(data))[0] = value;
  3721. } break;
  3722. case GGML_TYPE_F16:
  3723. {
  3724. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3725. } break;
  3726. case GGML_TYPE_BF16:
  3727. {
  3728. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3729. } break;
  3730. case GGML_TYPE_F32:
  3731. {
  3732. ((float *)(data))[0] = value;
  3733. } break;
  3734. default:
  3735. {
  3736. GGML_ABORT("fatal error");
  3737. }
  3738. }
  3739. }
  3740. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3741. return tensor->data;
  3742. }
  3743. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3744. assert(tensor->type == GGML_TYPE_F32);
  3745. return (float *)(tensor->data);
  3746. }
  3747. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3748. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3749. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3750. }
  3751. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3752. return tensor->name;
  3753. }
  3754. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3755. size_t i;
  3756. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  3757. tensor->name[i] = name[i];
  3758. }
  3759. tensor->name[i] = '\0';
  3760. return tensor;
  3761. }
  3762. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3763. va_list args;
  3764. va_start(args, fmt);
  3765. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3766. va_end(args);
  3767. return tensor;
  3768. }
  3769. struct ggml_tensor * ggml_view_tensor(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * src) {
  3772. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3773. ggml_format_name(result, "%s (view)", src->name);
  3774. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3775. result->nb[i] = src->nb[i];
  3776. }
  3777. return result;
  3778. }
  3779. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3780. struct ggml_object * obj = ctx->objects_begin;
  3781. char * const mem_buffer = ctx->mem_buffer;
  3782. while (obj != NULL) {
  3783. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3784. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3785. }
  3786. obj = obj->next;
  3787. }
  3788. return NULL;
  3789. }
  3790. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3791. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3792. obj = obj->next;
  3793. char * const mem_buffer = ctx->mem_buffer;
  3794. while (obj != NULL) {
  3795. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3796. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3797. }
  3798. obj = obj->next;
  3799. }
  3800. return NULL;
  3801. }
  3802. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3803. struct ggml_object * obj = ctx->objects_begin;
  3804. char * const mem_buffer = ctx->mem_buffer;
  3805. while (obj != NULL) {
  3806. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3807. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3808. if (strcmp(cur->name, name) == 0) {
  3809. return cur;
  3810. }
  3811. }
  3812. obj = obj->next;
  3813. }
  3814. return NULL;
  3815. }
  3816. ////////////////////////////////////////////////////////////////////////////////
  3817. // ggml_dup
  3818. static struct ggml_tensor * ggml_dup_impl(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. bool inplace) {
  3822. bool is_node = false;
  3823. if (!inplace && (a->grad)) {
  3824. is_node = true;
  3825. }
  3826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3827. result->op = GGML_OP_DUP;
  3828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3829. result->src[0] = a;
  3830. return result;
  3831. }
  3832. struct ggml_tensor * ggml_dup(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_dup_impl(ctx, a, false);
  3836. }
  3837. struct ggml_tensor * ggml_dup_inplace(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a) {
  3840. return ggml_dup_impl(ctx, a, true);
  3841. }
  3842. // ggml_add
  3843. static struct ggml_tensor * ggml_add_impl(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b,
  3847. bool inplace) {
  3848. GGML_ASSERT(ggml_can_repeat(b, a));
  3849. bool is_node = false;
  3850. if (!inplace && (a->grad || b->grad)) {
  3851. // TODO: support backward pass for broadcasting
  3852. GGML_ASSERT(ggml_are_same_shape(a, b));
  3853. is_node = true;
  3854. }
  3855. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3856. result->op = GGML_OP_ADD;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. result->src[1] = b;
  3860. return result;
  3861. }
  3862. struct ggml_tensor * ggml_add(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. struct ggml_tensor * b) {
  3866. return ggml_add_impl(ctx, a, b, false);
  3867. }
  3868. struct ggml_tensor * ggml_add_inplace(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. struct ggml_tensor * b) {
  3872. return ggml_add_impl(ctx, a, b, true);
  3873. }
  3874. // ggml_add_cast
  3875. static struct ggml_tensor * ggml_add_cast_impl(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a,
  3878. struct ggml_tensor * b,
  3879. enum ggml_type type) {
  3880. // TODO: support less-strict constraint
  3881. // GGML_ASSERT(ggml_can_repeat(b, a));
  3882. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3883. // currently only supported for quantized input and f16
  3884. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3885. a->type == GGML_TYPE_F16 ||
  3886. a->type == GGML_TYPE_BF16);
  3887. bool is_node = false;
  3888. if (a->grad || b->grad) {
  3889. // TODO: support backward pass for broadcasting
  3890. GGML_ASSERT(ggml_are_same_shape(a, b));
  3891. is_node = true;
  3892. }
  3893. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3894. result->op = GGML_OP_ADD;
  3895. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3896. result->src[0] = a;
  3897. result->src[1] = b;
  3898. return result;
  3899. }
  3900. struct ggml_tensor * ggml_add_cast(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. struct ggml_tensor * b,
  3904. enum ggml_type type) {
  3905. return ggml_add_cast_impl(ctx, a, b, type);
  3906. }
  3907. // ggml_add1
  3908. static struct ggml_tensor * ggml_add1_impl(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a,
  3911. struct ggml_tensor * b,
  3912. bool inplace) {
  3913. GGML_ASSERT(ggml_is_scalar(b));
  3914. GGML_ASSERT(ggml_is_padded_1d(a));
  3915. bool is_node = false;
  3916. if (a->grad || b->grad) {
  3917. is_node = true;
  3918. }
  3919. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3920. result->op = GGML_OP_ADD1;
  3921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3922. result->src[0] = a;
  3923. result->src[1] = b;
  3924. return result;
  3925. }
  3926. struct ggml_tensor * ggml_add1(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a,
  3929. struct ggml_tensor * b) {
  3930. return ggml_add1_impl(ctx, a, b, false);
  3931. }
  3932. struct ggml_tensor * ggml_add1_inplace(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. struct ggml_tensor * b) {
  3936. return ggml_add1_impl(ctx, a, b, true);
  3937. }
  3938. // ggml_acc
  3939. static struct ggml_tensor * ggml_acc_impl(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a,
  3942. struct ggml_tensor * b,
  3943. size_t nb1,
  3944. size_t nb2,
  3945. size_t nb3,
  3946. size_t offset,
  3947. bool inplace) {
  3948. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3949. GGML_ASSERT(ggml_is_contiguous(a));
  3950. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3951. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3952. bool is_node = false;
  3953. if (!inplace && (a->grad || b->grad)) {
  3954. is_node = true;
  3955. }
  3956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3957. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3958. ggml_set_op_params(result, params, sizeof(params));
  3959. result->op = GGML_OP_ACC;
  3960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3961. result->src[0] = a;
  3962. result->src[1] = b;
  3963. return result;
  3964. }
  3965. struct ggml_tensor * ggml_acc(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. struct ggml_tensor * b,
  3969. size_t nb1,
  3970. size_t nb2,
  3971. size_t nb3,
  3972. size_t offset) {
  3973. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3974. }
  3975. struct ggml_tensor * ggml_acc_inplace(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b,
  3979. size_t nb1,
  3980. size_t nb2,
  3981. size_t nb3,
  3982. size_t offset) {
  3983. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3984. }
  3985. // ggml_sub
  3986. static struct ggml_tensor * ggml_sub_impl(
  3987. struct ggml_context * ctx,
  3988. struct ggml_tensor * a,
  3989. struct ggml_tensor * b,
  3990. bool inplace) {
  3991. GGML_ASSERT(ggml_are_same_shape(a, b));
  3992. bool is_node = false;
  3993. if (!inplace && (a->grad || b->grad)) {
  3994. is_node = true;
  3995. }
  3996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3997. result->op = GGML_OP_SUB;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src[0] = a;
  4000. result->src[1] = b;
  4001. return result;
  4002. }
  4003. struct ggml_tensor * ggml_sub(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * b) {
  4007. return ggml_sub_impl(ctx, a, b, false);
  4008. }
  4009. struct ggml_tensor * ggml_sub_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. struct ggml_tensor * b) {
  4013. return ggml_sub_impl(ctx, a, b, true);
  4014. }
  4015. // ggml_mul
  4016. static struct ggml_tensor * ggml_mul_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b,
  4020. bool inplace) {
  4021. GGML_ASSERT(ggml_can_repeat(b, a));
  4022. bool is_node = false;
  4023. if (!inplace && (a->grad || b->grad)) {
  4024. // TODO: support backward pass for broadcasting
  4025. GGML_ASSERT(ggml_are_same_shape(a, b));
  4026. is_node = true;
  4027. }
  4028. if (inplace) {
  4029. GGML_ASSERT(!is_node);
  4030. }
  4031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4032. result->op = GGML_OP_MUL;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src[0] = a;
  4035. result->src[1] = b;
  4036. return result;
  4037. }
  4038. struct ggml_tensor * ggml_mul(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. struct ggml_tensor * b) {
  4042. return ggml_mul_impl(ctx, a, b, false);
  4043. }
  4044. struct ggml_tensor * ggml_mul_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. struct ggml_tensor * b) {
  4048. return ggml_mul_impl(ctx, a, b, true);
  4049. }
  4050. // ggml_div
  4051. static struct ggml_tensor * ggml_div_impl(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b,
  4055. bool inplace) {
  4056. GGML_ASSERT(ggml_can_repeat(b, a));
  4057. bool is_node = false;
  4058. if (!inplace && (a->grad || b->grad)) {
  4059. is_node = true;
  4060. }
  4061. if (inplace) {
  4062. GGML_ASSERT(!is_node);
  4063. }
  4064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4065. result->op = GGML_OP_DIV;
  4066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4067. result->src[0] = a;
  4068. result->src[1] = b;
  4069. return result;
  4070. }
  4071. struct ggml_tensor * ggml_div(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b) {
  4075. return ggml_div_impl(ctx, a, b, false);
  4076. }
  4077. struct ggml_tensor * ggml_div_inplace(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. struct ggml_tensor * b) {
  4081. return ggml_div_impl(ctx, a, b, true);
  4082. }
  4083. // ggml_sqr
  4084. static struct ggml_tensor * ggml_sqr_impl(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. bool inplace) {
  4088. bool is_node = false;
  4089. if (!inplace && (a->grad)) {
  4090. is_node = true;
  4091. }
  4092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. result->op = GGML_OP_SQR;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src[0] = a;
  4096. return result;
  4097. }
  4098. struct ggml_tensor * ggml_sqr(
  4099. struct ggml_context * ctx,
  4100. struct ggml_tensor * a) {
  4101. return ggml_sqr_impl(ctx, a, false);
  4102. }
  4103. struct ggml_tensor * ggml_sqr_inplace(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a) {
  4106. return ggml_sqr_impl(ctx, a, true);
  4107. }
  4108. // ggml_sqrt
  4109. static struct ggml_tensor * ggml_sqrt_impl(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. bool inplace) {
  4113. bool is_node = false;
  4114. if (!inplace && (a->grad)) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. result->op = GGML_OP_SQRT;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src[0] = a;
  4121. return result;
  4122. }
  4123. struct ggml_tensor * ggml_sqrt(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_sqrt_impl(ctx, a, false);
  4127. }
  4128. struct ggml_tensor * ggml_sqrt_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_sqrt_impl(ctx, a, true);
  4132. }
  4133. // ggml_log
  4134. static struct ggml_tensor * ggml_log_impl(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. bool inplace) {
  4138. bool is_node = false;
  4139. if (!inplace && (a->grad)) {
  4140. is_node = true;
  4141. }
  4142. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4143. result->op = GGML_OP_LOG;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src[0] = a;
  4146. return result;
  4147. }
  4148. struct ggml_tensor * ggml_log(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a) {
  4151. return ggml_log_impl(ctx, a, false);
  4152. }
  4153. struct ggml_tensor * ggml_log_inplace(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a) {
  4156. return ggml_log_impl(ctx, a, true);
  4157. }
  4158. // ggml_sum
  4159. struct ggml_tensor * ggml_sum(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a) {
  4162. bool is_node = false;
  4163. if (a->grad) {
  4164. is_node = true;
  4165. }
  4166. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4167. result->op = GGML_OP_SUM;
  4168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4169. result->src[0] = a;
  4170. return result;
  4171. }
  4172. // ggml_sum_rows
  4173. struct ggml_tensor * ggml_sum_rows(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a) {
  4176. bool is_node = false;
  4177. if (a->grad) {
  4178. is_node = true;
  4179. }
  4180. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4181. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4182. ne[i] = a->ne[i];
  4183. }
  4184. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4185. result->op = GGML_OP_SUM_ROWS;
  4186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4187. result->src[0] = a;
  4188. return result;
  4189. }
  4190. // ggml_mean
  4191. struct ggml_tensor * ggml_mean(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. bool is_node = false;
  4195. if (a->grad) {
  4196. GGML_ABORT("fatal error"); // TODO: implement
  4197. is_node = true;
  4198. }
  4199. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4200. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4201. result->op = GGML_OP_MEAN;
  4202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4203. result->src[0] = a;
  4204. return result;
  4205. }
  4206. // ggml_argmax
  4207. struct ggml_tensor * ggml_argmax(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. GGML_ASSERT(ggml_is_matrix(a));
  4211. bool is_node = false;
  4212. if (a->grad) {
  4213. GGML_ABORT("fatal error");
  4214. is_node = true;
  4215. }
  4216. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4217. result->op = GGML_OP_ARGMAX;
  4218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4219. result->src[0] = a;
  4220. return result;
  4221. }
  4222. // ggml_repeat
  4223. struct ggml_tensor * ggml_repeat(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b) {
  4227. GGML_ASSERT(ggml_can_repeat(a, b));
  4228. bool is_node = false;
  4229. if (a->grad) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4233. result->op = GGML_OP_REPEAT;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src[0] = a;
  4236. return result;
  4237. }
  4238. // ggml_repeat_back
  4239. struct ggml_tensor * ggml_repeat_back(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. struct ggml_tensor * b) {
  4243. GGML_ASSERT(ggml_can_repeat(b, a));
  4244. bool is_node = false;
  4245. if (a->grad) {
  4246. is_node = true;
  4247. }
  4248. if (ggml_are_same_shape(a, b) && !is_node) {
  4249. return a;
  4250. }
  4251. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4252. result->op = GGML_OP_REPEAT_BACK;
  4253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4254. result->src[0] = a;
  4255. return result;
  4256. }
  4257. // ggml_concat
  4258. struct ggml_tensor * ggml_concat(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. struct ggml_tensor * b,
  4262. int dim) {
  4263. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4264. int64_t ne[GGML_MAX_DIMS];
  4265. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4266. if (d == dim) {
  4267. ne[d] = a->ne[d] + b->ne[d];
  4268. continue;
  4269. }
  4270. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4271. ne[d] = a->ne[d];
  4272. }
  4273. bool is_node = false;
  4274. if (a->grad || b->grad) {
  4275. is_node = true;
  4276. }
  4277. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4278. ggml_set_op_params_i32(result, 0, dim);
  4279. result->op = GGML_OP_CONCAT;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src[0] = a;
  4282. result->src[1] = b;
  4283. return result;
  4284. }
  4285. // ggml_abs
  4286. struct ggml_tensor * ggml_abs(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a) {
  4289. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4290. }
  4291. struct ggml_tensor * ggml_abs_inplace(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4295. }
  4296. // ggml_sgn
  4297. struct ggml_tensor * ggml_sgn(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4301. }
  4302. struct ggml_tensor * ggml_sgn_inplace(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4306. }
  4307. // ggml_neg
  4308. struct ggml_tensor * ggml_neg(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a) {
  4311. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4312. }
  4313. struct ggml_tensor * ggml_neg_inplace(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a) {
  4316. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4317. }
  4318. // ggml_step
  4319. struct ggml_tensor * ggml_step(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a) {
  4322. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4323. }
  4324. struct ggml_tensor * ggml_step_inplace(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4328. }
  4329. // ggml_tanh
  4330. struct ggml_tensor * ggml_tanh(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a) {
  4333. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4334. }
  4335. struct ggml_tensor * ggml_tanh_inplace(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4339. }
  4340. // ggml_elu
  4341. struct ggml_tensor * ggml_elu(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a) {
  4344. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4345. }
  4346. struct ggml_tensor * ggml_elu_inplace(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a) {
  4349. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4350. }
  4351. // ggml_relu
  4352. struct ggml_tensor * ggml_relu(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a) {
  4355. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4356. }
  4357. struct ggml_tensor * ggml_relu_inplace(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a) {
  4360. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4361. }
  4362. // ggml_leaky_relu
  4363. struct ggml_tensor * ggml_leaky_relu(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4366. bool is_node = false;
  4367. if (!inplace && (a->grad)) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4372. result->op = GGML_OP_LEAKY_RELU;
  4373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4374. result->src[0] = a;
  4375. return result;
  4376. }
  4377. // ggml_sigmoid
  4378. struct ggml_tensor * ggml_sigmoid(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a) {
  4381. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4382. }
  4383. struct ggml_tensor * ggml_sigmoid_inplace(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4387. }
  4388. // ggml_gelu
  4389. struct ggml_tensor * ggml_gelu(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a) {
  4392. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4393. }
  4394. struct ggml_tensor * ggml_gelu_inplace(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a) {
  4397. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4398. }
  4399. // ggml_gelu_quick
  4400. struct ggml_tensor * ggml_gelu_quick(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4404. }
  4405. struct ggml_tensor * ggml_gelu_quick_inplace(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a) {
  4408. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4409. }
  4410. // ggml_silu
  4411. struct ggml_tensor * ggml_silu(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4415. }
  4416. struct ggml_tensor * ggml_silu_inplace(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4420. }
  4421. // ggml_silu_back
  4422. struct ggml_tensor * ggml_silu_back(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b) {
  4426. bool is_node = false;
  4427. if (a->grad || b->grad) {
  4428. // TODO: implement backward
  4429. is_node = true;
  4430. }
  4431. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4432. result->op = GGML_OP_SILU_BACK;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src[0] = a;
  4435. result->src[1] = b;
  4436. return result;
  4437. }
  4438. // ggml hardswish
  4439. struct ggml_tensor * ggml_hardswish(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a) {
  4442. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4443. }
  4444. // ggml hardsigmoid
  4445. struct ggml_tensor * ggml_hardsigmoid(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4449. }
  4450. // ggml_norm
  4451. static struct ggml_tensor * ggml_norm_impl(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. float eps,
  4455. bool inplace) {
  4456. bool is_node = false;
  4457. if (!inplace && (a->grad)) {
  4458. GGML_ABORT("fatal error"); // TODO: implement backward
  4459. is_node = true;
  4460. }
  4461. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4462. ggml_set_op_params(result, &eps, sizeof(eps));
  4463. result->op = GGML_OP_NORM;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. return result;
  4467. }
  4468. struct ggml_tensor * ggml_norm(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. float eps) {
  4472. return ggml_norm_impl(ctx, a, eps, false);
  4473. }
  4474. struct ggml_tensor * ggml_norm_inplace(
  4475. struct ggml_context * ctx,
  4476. struct ggml_tensor * a,
  4477. float eps) {
  4478. return ggml_norm_impl(ctx, a, eps, true);
  4479. }
  4480. // ggml_rms_norm
  4481. static struct ggml_tensor * ggml_rms_norm_impl(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. float eps,
  4485. bool inplace) {
  4486. bool is_node = false;
  4487. if (!inplace && (a->grad)) {
  4488. is_node = true;
  4489. }
  4490. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4491. ggml_set_op_params(result, &eps, sizeof(eps));
  4492. result->op = GGML_OP_RMS_NORM;
  4493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4494. result->src[0] = a;
  4495. return result;
  4496. }
  4497. struct ggml_tensor * ggml_rms_norm(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. float eps) {
  4501. return ggml_rms_norm_impl(ctx, a, eps, false);
  4502. }
  4503. struct ggml_tensor * ggml_rms_norm_inplace(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. float eps) {
  4507. return ggml_rms_norm_impl(ctx, a, eps, true);
  4508. }
  4509. // ggml_rms_norm_back
  4510. struct ggml_tensor * ggml_rms_norm_back(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. struct ggml_tensor * b,
  4514. float eps) {
  4515. bool is_node = false;
  4516. if (a->grad) {
  4517. // TODO: implement backward
  4518. is_node = true;
  4519. }
  4520. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4521. ggml_set_op_params(result, &eps, sizeof(eps));
  4522. result->op = GGML_OP_RMS_NORM_BACK;
  4523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4524. result->src[0] = a;
  4525. result->src[1] = b;
  4526. return result;
  4527. }
  4528. // ggml_group_norm
  4529. static struct ggml_tensor * ggml_group_norm_impl(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a,
  4532. int n_groups,
  4533. float eps,
  4534. bool inplace) {
  4535. bool is_node = false;
  4536. if (!inplace && (a->grad)) {
  4537. GGML_ABORT("fatal error"); // TODO: implement backward
  4538. is_node = true;
  4539. }
  4540. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4541. ggml_set_op_params_i32(result, 0, n_groups);
  4542. ggml_set_op_params_f32(result, 1, eps);
  4543. result->op = GGML_OP_GROUP_NORM;
  4544. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4545. result->src[0] = a;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_group_norm(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a,
  4551. int n_groups,
  4552. float eps) {
  4553. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4554. }
  4555. struct ggml_tensor * ggml_group_norm_inplace(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a,
  4558. int n_groups,
  4559. float eps) {
  4560. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4561. }
  4562. // ggml_mul_mat
  4563. struct ggml_tensor * ggml_mul_mat(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b) {
  4567. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4568. GGML_ASSERT(!ggml_is_transposed(a));
  4569. bool is_node = false;
  4570. if (a->grad || b->grad) {
  4571. is_node = true;
  4572. }
  4573. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4574. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4575. result->op = GGML_OP_MUL_MAT;
  4576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4577. result->src[0] = a;
  4578. result->src[1] = b;
  4579. return result;
  4580. }
  4581. void ggml_mul_mat_set_prec(
  4582. struct ggml_tensor * a,
  4583. enum ggml_prec prec) {
  4584. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4585. const int32_t prec_i32 = (int32_t) prec;
  4586. ggml_set_op_params_i32(a, 0, prec_i32);
  4587. }
  4588. // ggml_mul_mat_id
  4589. /*
  4590. c = ggml_mul_mat_id(ctx, as, b, ids);
  4591. as -> [cols, rows, n_expert]
  4592. ids -> [n_experts_used, n_tokens] (i32)
  4593. b -> [cols, n_expert_used, n_tokens]
  4594. c -> [rows, n_expert_used, n_tokens]
  4595. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4596. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4597. */
  4598. struct ggml_tensor * ggml_mul_mat_id(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * as,
  4601. struct ggml_tensor * b,
  4602. struct ggml_tensor * ids) {
  4603. GGML_ASSERT(!ggml_is_transposed(as));
  4604. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4605. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4606. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4607. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4608. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4609. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4610. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4611. bool is_node = false;
  4612. if (as->grad || b->grad) {
  4613. is_node = true;
  4614. }
  4615. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4617. result->op = GGML_OP_MUL_MAT_ID;
  4618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4619. result->src[0] = as;
  4620. result->src[1] = b;
  4621. result->src[2] = ids;
  4622. return result;
  4623. }
  4624. // ggml_out_prod
  4625. struct ggml_tensor * ggml_out_prod(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a,
  4628. struct ggml_tensor * b) {
  4629. GGML_ASSERT(ggml_can_out_prod(a, b));
  4630. GGML_ASSERT(!ggml_is_transposed(a));
  4631. bool is_node = false;
  4632. if (a->grad || b->grad) {
  4633. is_node = true;
  4634. }
  4635. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4636. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4637. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4638. result->op = GGML_OP_OUT_PROD;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src[0] = a;
  4641. result->src[1] = b;
  4642. return result;
  4643. }
  4644. // ggml_scale
  4645. static struct ggml_tensor * ggml_scale_impl(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * a,
  4648. float s,
  4649. bool inplace) {
  4650. GGML_ASSERT(ggml_is_padded_1d(a));
  4651. bool is_node = false;
  4652. if (a->grad) {
  4653. is_node = true;
  4654. }
  4655. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4656. ggml_set_op_params(result, &s, sizeof(s));
  4657. result->op = GGML_OP_SCALE;
  4658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4659. result->src[0] = a;
  4660. return result;
  4661. }
  4662. struct ggml_tensor * ggml_scale(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. float s) {
  4666. return ggml_scale_impl(ctx, a, s, false);
  4667. }
  4668. struct ggml_tensor * ggml_scale_inplace(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. float s) {
  4672. return ggml_scale_impl(ctx, a, s, true);
  4673. }
  4674. // ggml_set
  4675. static struct ggml_tensor * ggml_set_impl(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. struct ggml_tensor * b,
  4679. size_t nb1,
  4680. size_t nb2,
  4681. size_t nb3,
  4682. size_t offset,
  4683. bool inplace) {
  4684. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4685. bool is_node = false;
  4686. if (a->grad || b->grad) {
  4687. is_node = true;
  4688. }
  4689. // make a view of the destination
  4690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4691. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4692. ggml_set_op_params(result, params, sizeof(params));
  4693. result->op = GGML_OP_SET;
  4694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4695. result->src[0] = a;
  4696. result->src[1] = b;
  4697. return result;
  4698. }
  4699. struct ggml_tensor * ggml_set(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. struct ggml_tensor * b,
  4703. size_t nb1,
  4704. size_t nb2,
  4705. size_t nb3,
  4706. size_t offset) {
  4707. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4708. }
  4709. struct ggml_tensor * ggml_set_inplace(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. struct ggml_tensor * b,
  4713. size_t nb1,
  4714. size_t nb2,
  4715. size_t nb3,
  4716. size_t offset) {
  4717. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4718. }
  4719. struct ggml_tensor * ggml_set_1d(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a,
  4722. struct ggml_tensor * b,
  4723. size_t offset) {
  4724. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4725. }
  4726. struct ggml_tensor * ggml_set_1d_inplace(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b,
  4730. size_t offset) {
  4731. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4732. }
  4733. struct ggml_tensor * ggml_set_2d(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. struct ggml_tensor * b,
  4737. size_t nb1,
  4738. size_t offset) {
  4739. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4740. }
  4741. struct ggml_tensor * ggml_set_2d_inplace(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b,
  4745. size_t nb1,
  4746. size_t offset) {
  4747. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4748. }
  4749. // ggml_cpy
  4750. static struct ggml_tensor * ggml_cpy_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b) {
  4754. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4755. bool is_node = false;
  4756. if (a->grad || b->grad) {
  4757. // inplace is false and either one have a grad
  4758. is_node = true;
  4759. }
  4760. // make a view of the destination
  4761. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4762. if (strlen(b->name) > 0) {
  4763. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4764. } else {
  4765. ggml_format_name(result, "%s (copy)", a->name);
  4766. }
  4767. result->op = GGML_OP_CPY;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src[0] = a;
  4770. result->src[1] = b;
  4771. return result;
  4772. }
  4773. struct ggml_tensor * ggml_cpy(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a,
  4776. struct ggml_tensor * b) {
  4777. return ggml_cpy_impl(ctx, a, b);
  4778. }
  4779. struct ggml_tensor * ggml_cast(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. enum ggml_type type) {
  4783. bool is_node = false;
  4784. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4785. ggml_format_name(result, "%s (copy)", a->name);
  4786. result->op = GGML_OP_CPY;
  4787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4788. result->src[0] = a;
  4789. result->src[1] = result;
  4790. return result;
  4791. }
  4792. // ggml_cont
  4793. static struct ggml_tensor * ggml_cont_impl(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a) {
  4796. bool is_node = false;
  4797. if (a->grad) {
  4798. is_node = true;
  4799. }
  4800. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4801. ggml_format_name(result, "%s (cont)", a->name);
  4802. result->op = GGML_OP_CONT;
  4803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4804. result->src[0] = a;
  4805. return result;
  4806. }
  4807. struct ggml_tensor * ggml_cont(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a) {
  4810. return ggml_cont_impl(ctx, a);
  4811. }
  4812. // make contiguous, with new shape
  4813. GGML_API struct ggml_tensor * ggml_cont_1d(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. int64_t ne0) {
  4817. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4818. }
  4819. GGML_API struct ggml_tensor * ggml_cont_2d(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. int64_t ne0,
  4823. int64_t ne1) {
  4824. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4825. }
  4826. GGML_API struct ggml_tensor * ggml_cont_3d(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. int64_t ne0,
  4830. int64_t ne1,
  4831. int64_t ne2) {
  4832. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4833. }
  4834. struct ggml_tensor * ggml_cont_4d(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. int64_t ne0,
  4838. int64_t ne1,
  4839. int64_t ne2,
  4840. int64_t ne3) {
  4841. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4842. bool is_node = false;
  4843. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4844. ggml_format_name(result, "%s (cont)", a->name);
  4845. result->op = GGML_OP_CONT;
  4846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4847. result->src[0] = a;
  4848. return result;
  4849. }
  4850. // ggml_reshape
  4851. struct ggml_tensor * ggml_reshape(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b) {
  4855. GGML_ASSERT(ggml_is_contiguous(a));
  4856. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4857. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4858. bool is_node = false;
  4859. if (a->grad) {
  4860. is_node = true;
  4861. }
  4862. if (b->grad) {
  4863. // gradient propagation is not supported
  4864. //GGML_ABORT("fatal error");
  4865. }
  4866. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4867. ggml_format_name(result, "%s (reshaped)", a->name);
  4868. result->op = GGML_OP_RESHAPE;
  4869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4870. result->src[0] = a;
  4871. return result;
  4872. }
  4873. struct ggml_tensor * ggml_reshape_1d(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. int64_t ne0) {
  4877. GGML_ASSERT(ggml_is_contiguous(a));
  4878. GGML_ASSERT(ggml_nelements(a) == ne0);
  4879. bool is_node = false;
  4880. if (a->grad) {
  4881. is_node = true;
  4882. }
  4883. const int64_t ne[1] = { ne0 };
  4884. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4885. ggml_format_name(result, "%s (reshaped)", a->name);
  4886. result->op = GGML_OP_RESHAPE;
  4887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4888. result->src[0] = a;
  4889. return result;
  4890. }
  4891. struct ggml_tensor * ggml_reshape_2d(
  4892. struct ggml_context * ctx,
  4893. struct ggml_tensor * a,
  4894. int64_t ne0,
  4895. int64_t ne1) {
  4896. GGML_ASSERT(ggml_is_contiguous(a));
  4897. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4898. bool is_node = false;
  4899. if (a->grad) {
  4900. is_node = true;
  4901. }
  4902. const int64_t ne[2] = { ne0, ne1 };
  4903. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4904. ggml_format_name(result, "%s (reshaped)", a->name);
  4905. result->op = GGML_OP_RESHAPE;
  4906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4907. result->src[0] = a;
  4908. return result;
  4909. }
  4910. struct ggml_tensor * ggml_reshape_3d(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. int64_t ne0,
  4914. int64_t ne1,
  4915. int64_t ne2) {
  4916. GGML_ASSERT(ggml_is_contiguous(a));
  4917. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4918. bool is_node = false;
  4919. if (a->grad) {
  4920. is_node = true;
  4921. }
  4922. const int64_t ne[3] = { ne0, ne1, ne2 };
  4923. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4924. ggml_format_name(result, "%s (reshaped)", a->name);
  4925. result->op = GGML_OP_RESHAPE;
  4926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4927. result->src[0] = a;
  4928. return result;
  4929. }
  4930. struct ggml_tensor * ggml_reshape_4d(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. int64_t ne0,
  4934. int64_t ne1,
  4935. int64_t ne2,
  4936. int64_t ne3) {
  4937. GGML_ASSERT(ggml_is_contiguous(a));
  4938. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. is_node = true;
  4942. }
  4943. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4944. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4945. ggml_format_name(result, "%s (reshaped)", a->name);
  4946. result->op = GGML_OP_RESHAPE;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src[0] = a;
  4949. return result;
  4950. }
  4951. static struct ggml_tensor * ggml_view_impl(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. int n_dims,
  4955. const int64_t * ne,
  4956. size_t offset) {
  4957. bool is_node = false;
  4958. if (a->grad) {
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4962. ggml_format_name(result, "%s (view)", a->name);
  4963. ggml_set_op_params(result, &offset, sizeof(offset));
  4964. result->op = GGML_OP_VIEW;
  4965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4966. result->src[0] = a;
  4967. return result;
  4968. }
  4969. // ggml_view_1d
  4970. struct ggml_tensor * ggml_view_1d(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. int64_t ne0,
  4974. size_t offset) {
  4975. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4976. return result;
  4977. }
  4978. // ggml_view_2d
  4979. struct ggml_tensor * ggml_view_2d(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. int64_t ne0,
  4983. int64_t ne1,
  4984. size_t nb1,
  4985. size_t offset) {
  4986. const int64_t ne[2] = { ne0, ne1 };
  4987. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4988. result->nb[1] = nb1;
  4989. result->nb[2] = result->nb[1]*ne1;
  4990. result->nb[3] = result->nb[2];
  4991. return result;
  4992. }
  4993. // ggml_view_3d
  4994. struct ggml_tensor * ggml_view_3d(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. int64_t ne0,
  4998. int64_t ne1,
  4999. int64_t ne2,
  5000. size_t nb1,
  5001. size_t nb2,
  5002. size_t offset) {
  5003. const int64_t ne[3] = { ne0, ne1, ne2 };
  5004. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5005. result->nb[1] = nb1;
  5006. result->nb[2] = nb2;
  5007. result->nb[3] = result->nb[2]*ne2;
  5008. return result;
  5009. }
  5010. // ggml_view_4d
  5011. struct ggml_tensor * ggml_view_4d(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int64_t ne0,
  5015. int64_t ne1,
  5016. int64_t ne2,
  5017. int64_t ne3,
  5018. size_t nb1,
  5019. size_t nb2,
  5020. size_t nb3,
  5021. size_t offset) {
  5022. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5023. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5024. result->nb[1] = nb1;
  5025. result->nb[2] = nb2;
  5026. result->nb[3] = nb3;
  5027. return result;
  5028. }
  5029. // ggml_permute
  5030. struct ggml_tensor * ggml_permute(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. int axis0,
  5034. int axis1,
  5035. int axis2,
  5036. int axis3) {
  5037. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5038. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5039. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5040. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5041. GGML_ASSERT(axis0 != axis1);
  5042. GGML_ASSERT(axis0 != axis2);
  5043. GGML_ASSERT(axis0 != axis3);
  5044. GGML_ASSERT(axis1 != axis2);
  5045. GGML_ASSERT(axis1 != axis3);
  5046. GGML_ASSERT(axis2 != axis3);
  5047. bool is_node = false;
  5048. if (a->grad) {
  5049. is_node = true;
  5050. }
  5051. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5052. ggml_format_name(result, "%s (permuted)", a->name);
  5053. int ne[GGML_MAX_DIMS];
  5054. int nb[GGML_MAX_DIMS];
  5055. ne[axis0] = a->ne[0];
  5056. ne[axis1] = a->ne[1];
  5057. ne[axis2] = a->ne[2];
  5058. ne[axis3] = a->ne[3];
  5059. nb[axis0] = a->nb[0];
  5060. nb[axis1] = a->nb[1];
  5061. nb[axis2] = a->nb[2];
  5062. nb[axis3] = a->nb[3];
  5063. result->ne[0] = ne[0];
  5064. result->ne[1] = ne[1];
  5065. result->ne[2] = ne[2];
  5066. result->ne[3] = ne[3];
  5067. result->nb[0] = nb[0];
  5068. result->nb[1] = nb[1];
  5069. result->nb[2] = nb[2];
  5070. result->nb[3] = nb[3];
  5071. result->op = GGML_OP_PERMUTE;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5075. ggml_set_op_params(result, params, sizeof(params));
  5076. return result;
  5077. }
  5078. // ggml_transpose
  5079. struct ggml_tensor * ggml_transpose(
  5080. struct ggml_context * ctx,
  5081. struct ggml_tensor * a) {
  5082. bool is_node = false;
  5083. if (a->grad) {
  5084. is_node = true;
  5085. }
  5086. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5087. ggml_format_name(result, "%s (transposed)", a->name);
  5088. result->ne[0] = a->ne[1];
  5089. result->ne[1] = a->ne[0];
  5090. result->nb[0] = a->nb[1];
  5091. result->nb[1] = a->nb[0];
  5092. result->op = GGML_OP_TRANSPOSE;
  5093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5094. result->src[0] = a;
  5095. return result;
  5096. }
  5097. // ggml_get_rows
  5098. struct ggml_tensor * ggml_get_rows(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. struct ggml_tensor * b) {
  5102. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5103. GGML_ASSERT(b->ne[3] == 1);
  5104. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5105. bool is_node = false;
  5106. if (a->grad || b->grad) {
  5107. is_node = true;
  5108. }
  5109. // TODO: implement non F32 return
  5110. enum ggml_type type = GGML_TYPE_F32;
  5111. if (a->type == GGML_TYPE_I32) {
  5112. type = a->type;
  5113. }
  5114. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5115. result->op = GGML_OP_GET_ROWS;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = b;
  5119. return result;
  5120. }
  5121. // ggml_get_rows_back
  5122. struct ggml_tensor * ggml_get_rows_back(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * b,
  5126. struct ggml_tensor * c) {
  5127. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5128. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5129. bool is_node = false;
  5130. if (a->grad || b->grad) {
  5131. is_node = true;
  5132. }
  5133. // TODO: implement non F32 return
  5134. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5135. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5136. result->op = GGML_OP_GET_ROWS_BACK;
  5137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5138. result->src[0] = a;
  5139. result->src[1] = b;
  5140. return result;
  5141. }
  5142. // ggml_diag
  5143. struct ggml_tensor * ggml_diag(
  5144. struct ggml_context * ctx,
  5145. struct ggml_tensor * a) {
  5146. GGML_ASSERT(a->ne[1] == 1);
  5147. bool is_node = false;
  5148. if (a->grad) {
  5149. is_node = true;
  5150. }
  5151. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5152. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5153. result->op = GGML_OP_DIAG;
  5154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5155. result->src[0] = a;
  5156. return result;
  5157. }
  5158. // ggml_diag_mask_inf
  5159. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. int n_past,
  5163. bool inplace) {
  5164. bool is_node = false;
  5165. if (a->grad) {
  5166. is_node = true;
  5167. }
  5168. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5169. int32_t params[] = { n_past };
  5170. ggml_set_op_params(result, params, sizeof(params));
  5171. result->op = GGML_OP_DIAG_MASK_INF;
  5172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5173. result->src[0] = a;
  5174. return result;
  5175. }
  5176. struct ggml_tensor * ggml_diag_mask_inf(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a,
  5179. int n_past) {
  5180. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5181. }
  5182. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5183. struct ggml_context * ctx,
  5184. struct ggml_tensor * a,
  5185. int n_past) {
  5186. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5187. }
  5188. // ggml_diag_mask_zero
  5189. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. int n_past,
  5193. bool inplace) {
  5194. bool is_node = false;
  5195. if (a->grad) {
  5196. is_node = true;
  5197. }
  5198. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5199. int32_t params[] = { n_past };
  5200. ggml_set_op_params(result, params, sizeof(params));
  5201. result->op = GGML_OP_DIAG_MASK_ZERO;
  5202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5203. result->src[0] = a;
  5204. return result;
  5205. }
  5206. struct ggml_tensor * ggml_diag_mask_zero(
  5207. struct ggml_context * ctx,
  5208. struct ggml_tensor * a,
  5209. int n_past) {
  5210. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5211. }
  5212. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. int n_past) {
  5216. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5217. }
  5218. // ggml_soft_max
  5219. static struct ggml_tensor * ggml_soft_max_impl(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. struct ggml_tensor * mask,
  5223. float scale,
  5224. float max_bias,
  5225. bool inplace) {
  5226. GGML_ASSERT(ggml_is_contiguous(a));
  5227. if (mask) {
  5228. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5229. GGML_ASSERT(ggml_is_contiguous(mask));
  5230. GGML_ASSERT(ggml_is_matrix(mask));
  5231. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5232. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5233. }
  5234. if (max_bias > 0.0f) {
  5235. GGML_ASSERT(mask);
  5236. }
  5237. bool is_node = false;
  5238. if (a->grad) {
  5239. is_node = true;
  5240. }
  5241. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5242. float params[] = { scale, max_bias };
  5243. ggml_set_op_params(result, params, sizeof(params));
  5244. result->op = GGML_OP_SOFT_MAX;
  5245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5246. result->src[0] = a;
  5247. result->src[1] = mask;
  5248. return result;
  5249. }
  5250. struct ggml_tensor * ggml_soft_max(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a) {
  5253. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5254. }
  5255. struct ggml_tensor * ggml_soft_max_inplace(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a) {
  5258. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5259. }
  5260. struct ggml_tensor * ggml_soft_max_ext(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. struct ggml_tensor * mask,
  5264. float scale,
  5265. float max_bias) {
  5266. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5267. }
  5268. // ggml_soft_max_back
  5269. static struct ggml_tensor * ggml_soft_max_back_impl(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. struct ggml_tensor * b,
  5273. bool inplace) {
  5274. bool is_node = false;
  5275. if (a->grad || b->grad) {
  5276. is_node = true; // TODO : implement backward pass
  5277. }
  5278. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5279. result->op = GGML_OP_SOFT_MAX_BACK;
  5280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5281. result->src[0] = a;
  5282. result->src[1] = b;
  5283. return result;
  5284. }
  5285. struct ggml_tensor * ggml_soft_max_back(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. struct ggml_tensor * b) {
  5289. return ggml_soft_max_back_impl(ctx, a, b, false);
  5290. }
  5291. struct ggml_tensor * ggml_soft_max_back_inplace(
  5292. struct ggml_context * ctx,
  5293. struct ggml_tensor * a,
  5294. struct ggml_tensor * b) {
  5295. return ggml_soft_max_back_impl(ctx, a, b, true);
  5296. }
  5297. // ggml_rope
  5298. static struct ggml_tensor * ggml_rope_impl(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. struct ggml_tensor * b,
  5302. struct ggml_tensor * c,
  5303. int n_dims,
  5304. int mode,
  5305. int n_ctx_orig,
  5306. float freq_base,
  5307. float freq_scale,
  5308. float ext_factor,
  5309. float attn_factor,
  5310. float beta_fast,
  5311. float beta_slow,
  5312. bool inplace) {
  5313. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5314. GGML_ASSERT(ggml_is_vector(b));
  5315. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5316. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5317. if (c) {
  5318. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5319. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5320. }
  5321. bool is_node = false;
  5322. if (a->grad) {
  5323. is_node = true;
  5324. }
  5325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5326. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5327. memcpy(params + 5, &freq_base, sizeof(float));
  5328. memcpy(params + 6, &freq_scale, sizeof(float));
  5329. memcpy(params + 7, &ext_factor, sizeof(float));
  5330. memcpy(params + 8, &attn_factor, sizeof(float));
  5331. memcpy(params + 9, &beta_fast, sizeof(float));
  5332. memcpy(params + 10, &beta_slow, sizeof(float));
  5333. ggml_set_op_params(result, params, sizeof(params));
  5334. result->op = GGML_OP_ROPE;
  5335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5336. result->src[0] = a;
  5337. result->src[1] = b;
  5338. result->src[2] = c;
  5339. return result;
  5340. }
  5341. struct ggml_tensor * ggml_rope(
  5342. struct ggml_context * ctx,
  5343. struct ggml_tensor * a,
  5344. struct ggml_tensor * b,
  5345. int n_dims,
  5346. int mode) {
  5347. return ggml_rope_impl(
  5348. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5349. );
  5350. }
  5351. struct ggml_tensor * ggml_rope_inplace(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b,
  5355. int n_dims,
  5356. int mode) {
  5357. return ggml_rope_impl(
  5358. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5359. );
  5360. }
  5361. struct ggml_tensor * ggml_rope_ext(
  5362. struct ggml_context * ctx,
  5363. struct ggml_tensor * a,
  5364. struct ggml_tensor * b,
  5365. struct ggml_tensor * c,
  5366. int n_dims,
  5367. int mode,
  5368. int n_ctx_orig,
  5369. float freq_base,
  5370. float freq_scale,
  5371. float ext_factor,
  5372. float attn_factor,
  5373. float beta_fast,
  5374. float beta_slow) {
  5375. return ggml_rope_impl(
  5376. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5377. ext_factor, attn_factor, beta_fast, beta_slow, false
  5378. );
  5379. }
  5380. struct ggml_tensor * ggml_rope_ext_inplace(
  5381. struct ggml_context * ctx,
  5382. struct ggml_tensor * a,
  5383. struct ggml_tensor * b,
  5384. struct ggml_tensor * c,
  5385. int n_dims,
  5386. int mode,
  5387. int n_ctx_orig,
  5388. float freq_base,
  5389. float freq_scale,
  5390. float ext_factor,
  5391. float attn_factor,
  5392. float beta_fast,
  5393. float beta_slow) {
  5394. return ggml_rope_impl(
  5395. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5396. ext_factor, attn_factor, beta_fast, beta_slow, true
  5397. );
  5398. }
  5399. struct ggml_tensor * ggml_rope_custom(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. struct ggml_tensor * b,
  5403. int n_dims,
  5404. int mode,
  5405. int n_ctx_orig,
  5406. float freq_base,
  5407. float freq_scale,
  5408. float ext_factor,
  5409. float attn_factor,
  5410. float beta_fast,
  5411. float beta_slow) {
  5412. return ggml_rope_impl(
  5413. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5414. ext_factor, attn_factor, beta_fast, beta_slow, false
  5415. );
  5416. }
  5417. struct ggml_tensor * ggml_rope_custom_inplace(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. struct ggml_tensor * b,
  5421. int n_dims,
  5422. int mode,
  5423. int n_ctx_orig,
  5424. float freq_base,
  5425. float freq_scale,
  5426. float ext_factor,
  5427. float attn_factor,
  5428. float beta_fast,
  5429. float beta_slow) {
  5430. return ggml_rope_impl(
  5431. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5432. ext_factor, attn_factor, beta_fast, beta_slow, true
  5433. );
  5434. }
  5435. // ggml_rope_back
  5436. struct ggml_tensor * ggml_rope_back(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. struct ggml_tensor * b,
  5440. struct ggml_tensor * c,
  5441. int n_dims,
  5442. int mode,
  5443. int n_ctx_orig,
  5444. float freq_base,
  5445. float freq_scale,
  5446. float ext_factor,
  5447. float attn_factor,
  5448. float beta_fast,
  5449. float beta_slow) {
  5450. GGML_ASSERT(ggml_is_vector(b));
  5451. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5452. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5453. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5454. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5455. bool is_node = false;
  5456. if (a->grad) {
  5457. is_node = false; // TODO: implement backward
  5458. }
  5459. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5460. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5461. memcpy(params + 5, &freq_base, sizeof(float));
  5462. memcpy(params + 6, &freq_scale, sizeof(float));
  5463. memcpy(params + 7, &ext_factor, sizeof(float));
  5464. memcpy(params + 8, &attn_factor, sizeof(float));
  5465. memcpy(params + 9, &beta_fast, sizeof(float));
  5466. memcpy(params + 10, &beta_slow, sizeof(float));
  5467. ggml_set_op_params(result, params, sizeof(params));
  5468. result->op = GGML_OP_ROPE_BACK;
  5469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5470. result->src[0] = a;
  5471. result->src[1] = b;
  5472. return result;
  5473. }
  5474. // ggml_clamp
  5475. struct ggml_tensor * ggml_clamp(
  5476. struct ggml_context * ctx,
  5477. struct ggml_tensor * a,
  5478. float min,
  5479. float max) {
  5480. bool is_node = false;
  5481. if (a->grad) {
  5482. GGML_ABORT("fatal error"); // TODO: implement backward
  5483. is_node = true;
  5484. }
  5485. // TODO: when implement backward, fix this:
  5486. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5487. float params[] = { min, max };
  5488. ggml_set_op_params(result, params, sizeof(params));
  5489. result->op = GGML_OP_CLAMP;
  5490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5491. result->src[0] = a;
  5492. return result;
  5493. }
  5494. // ggml_conv_1d
  5495. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5496. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5497. }
  5498. GGML_API struct ggml_tensor * ggml_conv_1d(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a,
  5501. struct ggml_tensor * b,
  5502. int s0,
  5503. int p0,
  5504. int d0) {
  5505. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5506. struct ggml_tensor * result =
  5507. ggml_mul_mat(ctx,
  5508. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5509. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5510. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5511. return result;
  5512. }
  5513. // ggml_conv_1d_ph
  5514. struct ggml_tensor* ggml_conv_1d_ph(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a,
  5517. struct ggml_tensor * b,
  5518. int s,
  5519. int d) {
  5520. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5521. }
  5522. // ggml_conv_transpose_1d
  5523. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5524. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5525. }
  5526. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. struct ggml_tensor * b,
  5530. int s0,
  5531. int p0,
  5532. int d0) {
  5533. GGML_ASSERT(ggml_is_matrix(b));
  5534. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5535. GGML_ASSERT(a->ne[3] == 1);
  5536. GGML_ASSERT(p0 == 0);
  5537. GGML_ASSERT(d0 == 1);
  5538. bool is_node = false;
  5539. if (a->grad || b->grad) {
  5540. GGML_ABORT("fatal error"); // TODO: implement backward
  5541. is_node = true;
  5542. }
  5543. const int64_t ne[4] = {
  5544. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5545. a->ne[1], b->ne[2], 1,
  5546. };
  5547. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5548. int32_t params[] = { s0, p0, d0 };
  5549. ggml_set_op_params(result, params, sizeof(params));
  5550. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5552. result->src[0] = a;
  5553. result->src[1] = b;
  5554. return result;
  5555. }
  5556. // ggml_conv_depthwise
  5557. struct ggml_tensor * ggml_conv_depthwise_2d(
  5558. struct ggml_context * ctx,
  5559. struct ggml_tensor * a,
  5560. struct ggml_tensor * b,
  5561. int s0,
  5562. int s1,
  5563. int p0,
  5564. int p1,
  5565. int d0,
  5566. int d1) {
  5567. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5568. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5569. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5570. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5571. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5572. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5573. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5574. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5575. return result;
  5576. }
  5577. // ggml_conv_2d
  5578. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5579. // a: [OC,IC, KH, KW]
  5580. // b: [N, IC, IH, IW]
  5581. // result: [N, OH, OW, IC*KH*KW]
  5582. struct ggml_tensor * ggml_im2col(
  5583. struct ggml_context * ctx,
  5584. struct ggml_tensor * a,
  5585. struct ggml_tensor * b,
  5586. int s0,
  5587. int s1,
  5588. int p0,
  5589. int p1,
  5590. int d0,
  5591. int d1,
  5592. bool is_2D,
  5593. enum ggml_type dst_type) {
  5594. if(is_2D) {
  5595. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5596. } else {
  5597. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5598. }
  5599. bool is_node = false;
  5600. if (a->grad || b->grad) {
  5601. GGML_ABORT("fatal error"); // TODO: implement backward
  5602. is_node = true;
  5603. }
  5604. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5605. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5606. const int64_t ne[4] = {
  5607. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5608. OW,
  5609. is_2D ? OH : b->ne[2],
  5610. is_2D ? b->ne[3] : 1,
  5611. };
  5612. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5613. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5614. ggml_set_op_params(result, params, sizeof(params));
  5615. result->op = GGML_OP_IM2COL;
  5616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5617. result->src[0] = a;
  5618. result->src[1] = b;
  5619. return result;
  5620. }
  5621. // a: [OC,IC, KH, KW]
  5622. // b: [N, IC, IH, IW]
  5623. // result: [N, OC, OH, OW]
  5624. struct ggml_tensor * ggml_conv_2d(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. struct ggml_tensor * b,
  5628. int s0,
  5629. int s1,
  5630. int p0,
  5631. int p1,
  5632. int d0,
  5633. int d1) {
  5634. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5635. struct ggml_tensor * result =
  5636. ggml_mul_mat(ctx,
  5637. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5638. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5639. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5640. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5641. return result;
  5642. }
  5643. // ggml_conv_2d_sk_p0
  5644. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5645. struct ggml_context * ctx,
  5646. struct ggml_tensor * a,
  5647. struct ggml_tensor * b) {
  5648. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5649. }
  5650. // ggml_conv_2d_s1_ph
  5651. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5652. struct ggml_context * ctx,
  5653. struct ggml_tensor * a,
  5654. struct ggml_tensor * b) {
  5655. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5656. }
  5657. // ggml_conv_transpose_2d_p0
  5658. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5659. return (ins - 1) * s - 2 * p + ks;
  5660. }
  5661. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5662. struct ggml_context * ctx,
  5663. struct ggml_tensor * a,
  5664. struct ggml_tensor * b,
  5665. int stride) {
  5666. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5667. bool is_node = false;
  5668. if (a->grad || b->grad) {
  5669. GGML_ABORT("fatal error"); // TODO: implement backward
  5670. is_node = true;
  5671. }
  5672. const int64_t ne[4] = {
  5673. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5674. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5675. a->ne[2], b->ne[3],
  5676. };
  5677. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5678. ggml_set_op_params_i32(result, 0, stride);
  5679. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5681. result->src[0] = a;
  5682. result->src[1] = b;
  5683. return result;
  5684. }
  5685. // ggml_pool_*
  5686. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5687. return (ins + 2 * p - ks) / s + 1;
  5688. }
  5689. // ggml_pool_1d
  5690. struct ggml_tensor * ggml_pool_1d(
  5691. struct ggml_context * ctx,
  5692. struct ggml_tensor * a,
  5693. enum ggml_op_pool op,
  5694. int k0,
  5695. int s0,
  5696. int p0) {
  5697. bool is_node = false;
  5698. if (a->grad) {
  5699. GGML_ABORT("fatal error"); // TODO: implement backward
  5700. is_node = true;
  5701. }
  5702. const int64_t ne[4] = {
  5703. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5704. a->ne[1],
  5705. a->ne[2],
  5706. a->ne[3],
  5707. };
  5708. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5709. int32_t params[] = { op, k0, s0, p0 };
  5710. ggml_set_op_params(result, params, sizeof(params));
  5711. result->op = GGML_OP_POOL_1D;
  5712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5713. result->src[0] = a;
  5714. return result;
  5715. }
  5716. // ggml_pool_2d
  5717. struct ggml_tensor * ggml_pool_2d(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * a,
  5720. enum ggml_op_pool op,
  5721. int k0,
  5722. int k1,
  5723. int s0,
  5724. int s1,
  5725. float p0,
  5726. float p1) {
  5727. bool is_node = false;
  5728. if (a->grad) {
  5729. GGML_ABORT("fatal error"); // TODO: implement backward
  5730. is_node = true;
  5731. }
  5732. struct ggml_tensor * result;
  5733. const int64_t ne[3] = {
  5734. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5735. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5736. a->ne[2],
  5737. };
  5738. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5739. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5740. ggml_set_op_params(result, params, sizeof(params));
  5741. result->op = GGML_OP_POOL_2D;
  5742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5743. result->src[0] = a;
  5744. return result;
  5745. }
  5746. // ggml_upscale
  5747. static struct ggml_tensor * ggml_upscale_impl(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * a,
  5750. int ne0,
  5751. int ne1,
  5752. int ne2,
  5753. int ne3) {
  5754. bool is_node = false;
  5755. if (a->grad) {
  5756. GGML_ABORT("fatal error"); // TODO: implement backward
  5757. is_node = true;
  5758. }
  5759. GGML_ASSERT(a->ne[0] <= ne0);
  5760. GGML_ASSERT(a->ne[1] <= ne1);
  5761. GGML_ASSERT(a->ne[2] <= ne2);
  5762. GGML_ASSERT(a->ne[3] <= ne3);
  5763. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5764. ne0,
  5765. ne1,
  5766. ne2,
  5767. ne3
  5768. );
  5769. result->op = GGML_OP_UPSCALE;
  5770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5771. result->src[0] = a;
  5772. return result;
  5773. }
  5774. struct ggml_tensor * ggml_upscale(
  5775. struct ggml_context * ctx,
  5776. struct ggml_tensor * a,
  5777. int scale_factor) {
  5778. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5779. }
  5780. struct ggml_tensor * ggml_upscale_ext(
  5781. struct ggml_context * ctx,
  5782. struct ggml_tensor * a,
  5783. int ne0,
  5784. int ne1,
  5785. int ne2,
  5786. int ne3) {
  5787. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5788. }
  5789. // ggml_pad
  5790. struct ggml_tensor * ggml_pad(
  5791. struct ggml_context * ctx,
  5792. struct ggml_tensor * a,
  5793. int p0, int p1, int p2, int p3) {
  5794. bool is_node = false;
  5795. if (a->grad) {
  5796. GGML_ABORT("fatal error"); // TODO: implement backward
  5797. is_node = true;
  5798. }
  5799. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5800. a->ne[0] + p0,
  5801. a->ne[1] + p1,
  5802. a->ne[2] + p2,
  5803. a->ne[3] + p3);
  5804. result->op = GGML_OP_PAD;
  5805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5806. result->src[0] = a;
  5807. return result;
  5808. }
  5809. // ggml_arange
  5810. struct ggml_tensor * ggml_arange(
  5811. struct ggml_context * ctx,
  5812. float start,
  5813. float stop,
  5814. float step) {
  5815. GGML_ASSERT(stop > start);
  5816. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5817. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5818. result->op = GGML_OP_ARANGE;
  5819. ggml_set_op_params_f32(result, 0, start);
  5820. ggml_set_op_params_f32(result, 1, stop);
  5821. ggml_set_op_params_f32(result, 2, step);
  5822. return result;
  5823. }
  5824. // ggml_timestep_embedding
  5825. struct ggml_tensor * ggml_timestep_embedding(
  5826. struct ggml_context * ctx,
  5827. struct ggml_tensor * timesteps,
  5828. int dim,
  5829. int max_period) {
  5830. bool is_node = false;
  5831. if (timesteps->grad) {
  5832. GGML_ABORT("fatal error"); // TODO: implement backward
  5833. is_node = true;
  5834. }
  5835. int actual_dim = dim;
  5836. if (dim % 2 != 0) {
  5837. actual_dim = dim + 1;
  5838. }
  5839. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5840. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5841. ggml_set_op_params_i32(result, 0, dim);
  5842. ggml_set_op_params_i32(result, 1, max_period);
  5843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5844. result->src[0] = timesteps;
  5845. return result;
  5846. }
  5847. // ggml_argsort
  5848. struct ggml_tensor * ggml_argsort(
  5849. struct ggml_context * ctx,
  5850. struct ggml_tensor * a,
  5851. enum ggml_sort_order order) {
  5852. bool is_node = false;
  5853. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5854. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5855. result->op = GGML_OP_ARGSORT;
  5856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5857. result->src[0] = a;
  5858. return result;
  5859. }
  5860. // ggml_top_k
  5861. struct ggml_tensor * ggml_top_k(
  5862. struct ggml_context * ctx,
  5863. struct ggml_tensor * a,
  5864. int k) {
  5865. GGML_ASSERT(a->ne[0] >= k);
  5866. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5867. result = ggml_view_4d(ctx, result,
  5868. k, result->ne[1], result->ne[2], result->ne[3],
  5869. result->nb[1], result->nb[2], result->nb[3],
  5870. 0);
  5871. return result;
  5872. }
  5873. // ggml_flash_attn_ext
  5874. struct ggml_tensor * ggml_flash_attn_ext(
  5875. struct ggml_context * ctx,
  5876. struct ggml_tensor * q,
  5877. struct ggml_tensor * k,
  5878. struct ggml_tensor * v,
  5879. struct ggml_tensor * mask,
  5880. float scale,
  5881. float max_bias) {
  5882. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5883. // TODO: check if vT can be multiplied by (k*qT)
  5884. if (mask) {
  5885. GGML_ASSERT(ggml_is_contiguous(mask));
  5886. GGML_ASSERT(mask->ne[2] == 1);
  5887. GGML_ASSERT(mask->ne[3] == 1);
  5888. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5889. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5890. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5891. }
  5892. if (max_bias > 0.0f) {
  5893. GGML_ASSERT(mask);
  5894. }
  5895. bool is_node = false;
  5896. if (q->grad || k->grad || v->grad) {
  5897. is_node = true;
  5898. }
  5899. // permute(0, 2, 1, 3)
  5900. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5901. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5902. float params[] = { scale, max_bias };
  5903. ggml_set_op_params(result, params, sizeof(params));
  5904. result->op = GGML_OP_FLASH_ATTN_EXT;
  5905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5906. result->src[0] = q;
  5907. result->src[1] = k;
  5908. result->src[2] = v;
  5909. result->src[3] = mask;
  5910. return result;
  5911. }
  5912. void ggml_flash_attn_ext_set_prec(
  5913. struct ggml_tensor * a,
  5914. enum ggml_prec prec) {
  5915. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5916. const int32_t prec_i32 = (int32_t) prec;
  5917. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5918. }
  5919. // ggml_flash_attn_back
  5920. struct ggml_tensor * ggml_flash_attn_back(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * q,
  5923. struct ggml_tensor * k,
  5924. struct ggml_tensor * v,
  5925. struct ggml_tensor * d,
  5926. bool masked) {
  5927. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  5928. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5929. // TODO: check if vT can be multiplied by (k*qT)
  5930. // d shape [D,N,ne2,ne3]
  5931. // q shape [D,N,ne2,ne3]
  5932. // k shape [D,M,kvne2,ne3]
  5933. // v shape [M,D,kvne2,ne3]
  5934. const int64_t D = q->ne[0];
  5935. const int64_t N = q->ne[1];
  5936. const int64_t M = k->ne[1];
  5937. const int64_t ne2 = q->ne[2];
  5938. const int64_t ne3 = q->ne[3];
  5939. const int64_t kvne2 = k->ne[2];
  5940. GGML_ASSERT(k->ne[0] == D);
  5941. GGML_ASSERT(v->ne[0] == M);
  5942. GGML_ASSERT(v->ne[1] == D);
  5943. GGML_ASSERT(d->ne[0] == D);
  5944. GGML_ASSERT(d->ne[1] == N);
  5945. GGML_ASSERT(k->ne[2] == kvne2);
  5946. GGML_ASSERT(k->ne[3] == ne3);
  5947. GGML_ASSERT(v->ne[2] == kvne2);
  5948. GGML_ASSERT(v->ne[3] == ne3);
  5949. GGML_ASSERT(d->ne[2] == ne2);
  5950. GGML_ASSERT(d->ne[3] == ne3);
  5951. GGML_ASSERT(ne2 % kvne2 == 0);
  5952. bool is_node = false;
  5953. if (q->grad || k->grad || v->grad) {
  5954. // when using this operation (in backwards pass) these grads are set.
  5955. // we don't want to create (big) grad of our result, so is_node is false.
  5956. is_node = false;
  5957. }
  5958. // store gradients of q, k and v as continuous tensors concatenated in result.
  5959. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5960. const int64_t elem_q = ggml_nelements(q);
  5961. const int64_t elem_k = ggml_nelements(k);
  5962. const int64_t elem_v = ggml_nelements(v);
  5963. enum ggml_type result_type = GGML_TYPE_F32;
  5964. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5965. const size_t tsize = ggml_type_size(result_type);
  5966. const size_t offs_q = 0;
  5967. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5968. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5969. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5970. const size_t nelements = (end + tsize - 1)/tsize;
  5971. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5972. int32_t masked_i = masked ? 1 : 0;
  5973. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5974. result->op = GGML_OP_FLASH_ATTN_BACK;
  5975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5976. result->src[0] = q;
  5977. result->src[1] = k;
  5978. result->src[2] = v;
  5979. result->src[3] = d;
  5980. return result;
  5981. }
  5982. // ggml_ssm_conv
  5983. struct ggml_tensor * ggml_ssm_conv(
  5984. struct ggml_context * ctx,
  5985. struct ggml_tensor * s,
  5986. struct ggml_tensor * x,
  5987. struct ggml_tensor * c,
  5988. struct ggml_tensor * sq) {
  5989. GGML_ASSERT(ggml_is_3d(s));
  5990. GGML_ASSERT(ggml_is_matrix(x));
  5991. GGML_ASSERT(ggml_is_matrix(c));
  5992. GGML_ASSERT(ggml_is_matrix(sq));
  5993. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5994. const int64_t d_conv = c->ne[0];
  5995. const int64_t d_inner = c->ne[1];
  5996. const int64_t n_tokens = x->ne[1];
  5997. const int64_t n_kv = s->ne[2];
  5998. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5999. GGML_ASSERT( s->ne[1] == d_inner);
  6000. GGML_ASSERT( x->ne[0] == d_inner);
  6001. GGML_ASSERT(sq->ne[0] == n_kv);
  6002. GGML_ASSERT(sq->ne[1] == n_tokens);
  6003. bool is_node = false;
  6004. if (s->grad || x->grad || c->grad || sq->grad) {
  6005. GGML_ABORT("fatal error"); // TODO: implement
  6006. is_node = true;
  6007. }
  6008. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  6009. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  6010. result->op = GGML_OP_SSM_CONV;
  6011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6012. result->src[0] = s;
  6013. result->src[1] = x;
  6014. result->src[2] = c;
  6015. result->src[3] = sq;
  6016. return result;
  6017. }
  6018. // ggml_ssm_scan
  6019. struct ggml_tensor * ggml_ssm_scan(
  6020. struct ggml_context * ctx,
  6021. struct ggml_tensor * s,
  6022. struct ggml_tensor * x,
  6023. struct ggml_tensor * dt,
  6024. struct ggml_tensor * A,
  6025. struct ggml_tensor * B,
  6026. struct ggml_tensor * C,
  6027. struct ggml_tensor * sq) {
  6028. GGML_ASSERT(ggml_is_contiguous(s));
  6029. GGML_ASSERT(ggml_is_contiguous(x));
  6030. GGML_ASSERT(ggml_is_contiguous(dt));
  6031. GGML_ASSERT(ggml_is_contiguous(A));
  6032. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  6033. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6034. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6035. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6036. {
  6037. const int64_t d_state = s->ne[0];
  6038. const int64_t d_inner = s->ne[1];
  6039. const int64_t n_tokens = x->ne[1];
  6040. GGML_ASSERT(x->ne[0] == d_inner);
  6041. GGML_ASSERT(A->ne[0] == d_state);
  6042. GGML_ASSERT(A->ne[1] == d_inner);
  6043. GGML_ASSERT(B->ne[0] == d_state);
  6044. GGML_ASSERT(B->ne[1] == n_tokens);
  6045. GGML_ASSERT(C->ne[0] == d_state);
  6046. GGML_ASSERT(C->ne[1] == n_tokens);
  6047. }
  6048. bool is_node = false;
  6049. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  6050. GGML_ABORT("fatal error"); // TODO: implement
  6051. is_node = true;
  6052. }
  6053. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  6054. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6055. result->op = GGML_OP_SSM_SCAN;
  6056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6057. result->src[0] = s;
  6058. result->src[1] = x;
  6059. result->src[2] = dt;
  6060. result->src[3] = A;
  6061. result->src[4] = B;
  6062. result->src[5] = C;
  6063. result->src[6] = sq;
  6064. return result;
  6065. }
  6066. // ggml_win_part
  6067. struct ggml_tensor * ggml_win_part(
  6068. struct ggml_context * ctx,
  6069. struct ggml_tensor * a,
  6070. int w) {
  6071. GGML_ASSERT(a->ne[3] == 1);
  6072. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6073. bool is_node = false;
  6074. if (a->grad) {
  6075. GGML_ABORT("fatal error"); // TODO: implement backward
  6076. is_node = true;
  6077. }
  6078. // padding
  6079. const int px = (w - a->ne[1]%w)%w;
  6080. const int py = (w - a->ne[2]%w)%w;
  6081. const int npx = (px + a->ne[1])/w;
  6082. const int npy = (py + a->ne[2])/w;
  6083. const int np = npx*npy;
  6084. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6085. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6086. int32_t params[] = { npx, npy, w };
  6087. ggml_set_op_params(result, params, sizeof(params));
  6088. result->op = GGML_OP_WIN_PART;
  6089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6090. result->src[0] = a;
  6091. return result;
  6092. }
  6093. // ggml_win_unpart
  6094. struct ggml_tensor * ggml_win_unpart(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. int w0,
  6098. int h0,
  6099. int w) {
  6100. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6101. bool is_node = false;
  6102. if (a->grad) {
  6103. GGML_ABORT("fatal error"); // TODO: implement backward
  6104. is_node = true;
  6105. }
  6106. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6107. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6108. int32_t params[] = { w };
  6109. ggml_set_op_params(result, params, sizeof(params));
  6110. result->op = GGML_OP_WIN_UNPART;
  6111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6112. result->src[0] = a;
  6113. return result;
  6114. }
  6115. // ggml_get_rel_pos
  6116. struct ggml_tensor * ggml_get_rel_pos(
  6117. struct ggml_context * ctx,
  6118. struct ggml_tensor * a,
  6119. int qh,
  6120. int kh) {
  6121. GGML_ASSERT(qh == kh);
  6122. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6123. bool is_node = false;
  6124. if (a->grad) {
  6125. GGML_ABORT("fatal error"); // TODO: implement backward
  6126. is_node = true;
  6127. }
  6128. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6129. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6130. result->op = GGML_OP_GET_REL_POS;
  6131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6132. result->src[0] = a;
  6133. return result;
  6134. }
  6135. // ggml_add_rel_pos
  6136. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6137. struct ggml_context * ctx,
  6138. struct ggml_tensor * a,
  6139. struct ggml_tensor * pw,
  6140. struct ggml_tensor * ph,
  6141. bool inplace) {
  6142. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6143. GGML_ASSERT(ggml_is_contiguous(a));
  6144. GGML_ASSERT(ggml_is_contiguous(pw));
  6145. GGML_ASSERT(ggml_is_contiguous(ph));
  6146. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6147. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6148. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6149. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6150. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6151. bool is_node = false;
  6152. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6153. is_node = true;
  6154. }
  6155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6156. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6157. result->op = GGML_OP_ADD_REL_POS;
  6158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6159. result->src[0] = a;
  6160. result->src[1] = pw;
  6161. result->src[2] = ph;
  6162. return result;
  6163. }
  6164. struct ggml_tensor * ggml_add_rel_pos(
  6165. struct ggml_context * ctx,
  6166. struct ggml_tensor * a,
  6167. struct ggml_tensor * pw,
  6168. struct ggml_tensor * ph) {
  6169. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6170. }
  6171. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6172. struct ggml_context * ctx,
  6173. struct ggml_tensor * a,
  6174. struct ggml_tensor * pw,
  6175. struct ggml_tensor * ph) {
  6176. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6177. }
  6178. // ggml_unary
  6179. static struct ggml_tensor * ggml_unary_impl(
  6180. struct ggml_context * ctx,
  6181. struct ggml_tensor * a,
  6182. enum ggml_unary_op op,
  6183. bool inplace) {
  6184. GGML_ASSERT(ggml_is_contiguous_1(a));
  6185. bool is_node = false;
  6186. if (!inplace && (a->grad)) {
  6187. is_node = true;
  6188. }
  6189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6190. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6191. result->op = GGML_OP_UNARY;
  6192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6193. result->src[0] = a;
  6194. return result;
  6195. }
  6196. struct ggml_tensor * ggml_unary(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. enum ggml_unary_op op) {
  6200. return ggml_unary_impl(ctx, a, op, false);
  6201. }
  6202. struct ggml_tensor * ggml_unary_inplace(
  6203. struct ggml_context * ctx,
  6204. struct ggml_tensor * a,
  6205. enum ggml_unary_op op) {
  6206. return ggml_unary_impl(ctx, a, op, true);
  6207. }
  6208. // ggml_map_unary
  6209. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6210. struct ggml_context * ctx,
  6211. struct ggml_tensor * a,
  6212. const ggml_unary_op_f32_t fun,
  6213. bool inplace) {
  6214. bool is_node = false;
  6215. if (!inplace && a->grad) {
  6216. is_node = true;
  6217. }
  6218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6219. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6220. result->op = GGML_OP_MAP_UNARY;
  6221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6222. result->src[0] = a;
  6223. return result;
  6224. }
  6225. struct ggml_tensor * ggml_map_unary_f32(
  6226. struct ggml_context * ctx,
  6227. struct ggml_tensor * a,
  6228. const ggml_unary_op_f32_t fun) {
  6229. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6230. }
  6231. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6232. struct ggml_context * ctx,
  6233. struct ggml_tensor * a,
  6234. const ggml_unary_op_f32_t fun) {
  6235. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6236. }
  6237. // ggml_map_binary
  6238. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6239. struct ggml_context * ctx,
  6240. struct ggml_tensor * a,
  6241. struct ggml_tensor * b,
  6242. const ggml_binary_op_f32_t fun,
  6243. bool inplace) {
  6244. GGML_ASSERT(ggml_are_same_shape(a, b));
  6245. bool is_node = false;
  6246. if (!inplace && (a->grad || b->grad)) {
  6247. is_node = true;
  6248. }
  6249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6250. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6251. result->op = GGML_OP_MAP_BINARY;
  6252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6253. result->src[0] = a;
  6254. result->src[1] = b;
  6255. return result;
  6256. }
  6257. struct ggml_tensor * ggml_map_binary_f32(
  6258. struct ggml_context * ctx,
  6259. struct ggml_tensor * a,
  6260. struct ggml_tensor * b,
  6261. const ggml_binary_op_f32_t fun) {
  6262. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6263. }
  6264. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6265. struct ggml_context * ctx,
  6266. struct ggml_tensor * a,
  6267. struct ggml_tensor * b,
  6268. const ggml_binary_op_f32_t fun) {
  6269. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6270. }
  6271. // ggml_map_custom1_f32
  6272. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6273. struct ggml_context * ctx,
  6274. struct ggml_tensor * a,
  6275. const ggml_custom1_op_f32_t fun,
  6276. bool inplace) {
  6277. bool is_node = false;
  6278. if (!inplace && a->grad) {
  6279. is_node = true;
  6280. }
  6281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6282. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6283. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6285. result->src[0] = a;
  6286. return result;
  6287. }
  6288. struct ggml_tensor * ggml_map_custom1_f32(
  6289. struct ggml_context * ctx,
  6290. struct ggml_tensor * a,
  6291. const ggml_custom1_op_f32_t fun) {
  6292. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6293. }
  6294. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6295. struct ggml_context * ctx,
  6296. struct ggml_tensor * a,
  6297. const ggml_custom1_op_f32_t fun) {
  6298. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6299. }
  6300. // ggml_map_custom2_f32
  6301. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. struct ggml_tensor * b,
  6305. const ggml_custom2_op_f32_t fun,
  6306. bool inplace) {
  6307. bool is_node = false;
  6308. if (!inplace && (a->grad || b->grad)) {
  6309. is_node = true;
  6310. }
  6311. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6312. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6313. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6315. result->src[0] = a;
  6316. result->src[1] = b;
  6317. return result;
  6318. }
  6319. struct ggml_tensor * ggml_map_custom2_f32(
  6320. struct ggml_context * ctx,
  6321. struct ggml_tensor * a,
  6322. struct ggml_tensor * b,
  6323. const ggml_custom2_op_f32_t fun) {
  6324. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6325. }
  6326. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6327. struct ggml_context * ctx,
  6328. struct ggml_tensor * a,
  6329. struct ggml_tensor * b,
  6330. const ggml_custom2_op_f32_t fun) {
  6331. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6332. }
  6333. // ggml_map_custom3_f32
  6334. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6335. struct ggml_context * ctx,
  6336. struct ggml_tensor * a,
  6337. struct ggml_tensor * b,
  6338. struct ggml_tensor * c,
  6339. const ggml_custom3_op_f32_t fun,
  6340. bool inplace) {
  6341. bool is_node = false;
  6342. if (!inplace && (a->grad || b->grad || c->grad)) {
  6343. is_node = true;
  6344. }
  6345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6346. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6347. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6349. result->src[0] = a;
  6350. result->src[1] = b;
  6351. result->src[2] = c;
  6352. return result;
  6353. }
  6354. struct ggml_tensor * ggml_map_custom3_f32(
  6355. struct ggml_context * ctx,
  6356. struct ggml_tensor * a,
  6357. struct ggml_tensor * b,
  6358. struct ggml_tensor * c,
  6359. const ggml_custom3_op_f32_t fun) {
  6360. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6361. }
  6362. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6363. struct ggml_context * ctx,
  6364. struct ggml_tensor * a,
  6365. struct ggml_tensor * b,
  6366. struct ggml_tensor * c,
  6367. const ggml_custom3_op_f32_t fun) {
  6368. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6369. }
  6370. // ggml_map_custom1
  6371. struct ggml_map_custom1_op_params {
  6372. ggml_custom1_op_t fun;
  6373. int n_tasks;
  6374. void * userdata;
  6375. };
  6376. static struct ggml_tensor * ggml_map_custom1_impl(
  6377. struct ggml_context * ctx,
  6378. struct ggml_tensor * a,
  6379. const ggml_custom1_op_t fun,
  6380. int n_tasks,
  6381. void * userdata,
  6382. bool inplace) {
  6383. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6384. bool is_node = false;
  6385. if (!inplace && a->grad) {
  6386. is_node = true;
  6387. }
  6388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6389. struct ggml_map_custom1_op_params params = {
  6390. /*.fun =*/ fun,
  6391. /*.n_tasks =*/ n_tasks,
  6392. /*.userdata =*/ userdata
  6393. };
  6394. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6395. result->op = GGML_OP_MAP_CUSTOM1;
  6396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6397. result->src[0] = a;
  6398. return result;
  6399. }
  6400. struct ggml_tensor * ggml_map_custom1(
  6401. struct ggml_context * ctx,
  6402. struct ggml_tensor * a,
  6403. const ggml_custom1_op_t fun,
  6404. int n_tasks,
  6405. void * userdata) {
  6406. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6407. }
  6408. struct ggml_tensor * ggml_map_custom1_inplace(
  6409. struct ggml_context * ctx,
  6410. struct ggml_tensor * a,
  6411. const ggml_custom1_op_t fun,
  6412. int n_tasks,
  6413. void * userdata) {
  6414. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6415. }
  6416. // ggml_map_custom2
  6417. struct ggml_map_custom2_op_params {
  6418. ggml_custom2_op_t fun;
  6419. int n_tasks;
  6420. void * userdata;
  6421. };
  6422. static struct ggml_tensor * ggml_map_custom2_impl(
  6423. struct ggml_context * ctx,
  6424. struct ggml_tensor * a,
  6425. struct ggml_tensor * b,
  6426. const ggml_custom2_op_t fun,
  6427. int n_tasks,
  6428. void * userdata,
  6429. bool inplace) {
  6430. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6431. bool is_node = false;
  6432. if (!inplace && (a->grad || b->grad)) {
  6433. is_node = true;
  6434. }
  6435. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6436. struct ggml_map_custom2_op_params params = {
  6437. /*.fun =*/ fun,
  6438. /*.n_tasks =*/ n_tasks,
  6439. /*.userdata =*/ userdata
  6440. };
  6441. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6442. result->op = GGML_OP_MAP_CUSTOM2;
  6443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6444. result->src[0] = a;
  6445. result->src[1] = b;
  6446. return result;
  6447. }
  6448. struct ggml_tensor * ggml_map_custom2(
  6449. struct ggml_context * ctx,
  6450. struct ggml_tensor * a,
  6451. struct ggml_tensor * b,
  6452. const ggml_custom2_op_t fun,
  6453. int n_tasks,
  6454. void * userdata) {
  6455. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6456. }
  6457. struct ggml_tensor * ggml_map_custom2_inplace(
  6458. struct ggml_context * ctx,
  6459. struct ggml_tensor * a,
  6460. struct ggml_tensor * b,
  6461. const ggml_custom2_op_t fun,
  6462. int n_tasks,
  6463. void * userdata) {
  6464. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6465. }
  6466. // ggml_map_custom3
  6467. struct ggml_map_custom3_op_params {
  6468. ggml_custom3_op_t fun;
  6469. int n_tasks;
  6470. void * userdata;
  6471. };
  6472. static struct ggml_tensor * ggml_map_custom3_impl(
  6473. struct ggml_context * ctx,
  6474. struct ggml_tensor * a,
  6475. struct ggml_tensor * b,
  6476. struct ggml_tensor * c,
  6477. const ggml_custom3_op_t fun,
  6478. int n_tasks,
  6479. void * userdata,
  6480. bool inplace) {
  6481. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6482. bool is_node = false;
  6483. if (!inplace && (a->grad || b->grad || c->grad)) {
  6484. is_node = true;
  6485. }
  6486. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6487. struct ggml_map_custom3_op_params params = {
  6488. /*.fun =*/ fun,
  6489. /*.n_tasks =*/ n_tasks,
  6490. /*.userdata =*/ userdata
  6491. };
  6492. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6493. result->op = GGML_OP_MAP_CUSTOM3;
  6494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6495. result->src[0] = a;
  6496. result->src[1] = b;
  6497. result->src[2] = c;
  6498. return result;
  6499. }
  6500. struct ggml_tensor * ggml_map_custom3(
  6501. struct ggml_context * ctx,
  6502. struct ggml_tensor * a,
  6503. struct ggml_tensor * b,
  6504. struct ggml_tensor * c,
  6505. const ggml_custom3_op_t fun,
  6506. int n_tasks,
  6507. void * userdata) {
  6508. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6509. }
  6510. struct ggml_tensor * ggml_map_custom3_inplace(
  6511. struct ggml_context * ctx,
  6512. struct ggml_tensor * a,
  6513. struct ggml_tensor * b,
  6514. struct ggml_tensor * c,
  6515. const ggml_custom3_op_t fun,
  6516. int n_tasks,
  6517. void * userdata) {
  6518. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6519. }
  6520. // ggml_cross_entropy_loss
  6521. struct ggml_tensor * ggml_cross_entropy_loss(
  6522. struct ggml_context * ctx,
  6523. struct ggml_tensor * a,
  6524. struct ggml_tensor * b) {
  6525. GGML_ASSERT(ggml_are_same_shape(a, b));
  6526. bool is_node = false;
  6527. if (a->grad || b->grad) {
  6528. is_node = true;
  6529. }
  6530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6531. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6533. result->src[0] = a;
  6534. result->src[1] = b;
  6535. return result;
  6536. }
  6537. // ggml_cross_entropy_loss_back
  6538. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6539. struct ggml_context * ctx,
  6540. struct ggml_tensor * a,
  6541. struct ggml_tensor * b,
  6542. struct ggml_tensor * c) {
  6543. GGML_ASSERT(ggml_are_same_shape(a, b));
  6544. GGML_ASSERT(ggml_is_scalar(c));
  6545. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6546. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6547. result->grad = NULL;
  6548. result->src[0] = a;
  6549. result->src[1] = b;
  6550. result->src[2] = c;
  6551. return result;
  6552. }
  6553. ////////////////////////////////////////////////////////////////////////////////
  6554. void ggml_set_param(
  6555. struct ggml_context * ctx,
  6556. struct ggml_tensor * tensor) {
  6557. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6558. GGML_ASSERT(tensor->grad == NULL);
  6559. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6560. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6561. }
  6562. // ggml_compute_forward_dup
  6563. static void ggml_compute_forward_dup_same_cont(
  6564. const struct ggml_compute_params * params,
  6565. struct ggml_tensor * dst) {
  6566. const struct ggml_tensor * src0 = dst->src[0];
  6567. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6568. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6569. GGML_ASSERT(src0->type == dst->type);
  6570. const size_t nb00 = src0->nb[0];
  6571. const size_t nb0 = dst->nb[0];
  6572. const int ith = params->ith; // thread index
  6573. const int nth = params->nth; // number of threads
  6574. // parallelize by elements
  6575. const int ne = ggml_nelements(dst);
  6576. const int dr = (ne + nth - 1) / nth;
  6577. const int ie0 = dr * ith;
  6578. const int ie1 = MIN(ie0 + dr, ne);
  6579. if (ie0 < ie1) {
  6580. memcpy(
  6581. ((char *) dst->data + ie0*nb0),
  6582. ((char *) src0->data + ie0*nb00),
  6583. (ie1 - ie0) * ggml_type_size(src0->type));
  6584. }
  6585. }
  6586. static void ggml_compute_forward_dup_f16(
  6587. const struct ggml_compute_params * params,
  6588. struct ggml_tensor * dst) {
  6589. const struct ggml_tensor * src0 = dst->src[0];
  6590. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6591. GGML_TENSOR_UNARY_OP_LOCALS
  6592. const int ith = params->ith; // thread index
  6593. const int nth = params->nth; // number of threads
  6594. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6595. ggml_compute_forward_dup_same_cont(params, dst);
  6596. return;
  6597. }
  6598. // parallelize by rows
  6599. const int nr = ne01;
  6600. // number of rows per thread
  6601. const int dr = (nr + nth - 1) / nth;
  6602. // row range for this thread
  6603. const int ir0 = dr * ith;
  6604. const int ir1 = MIN(ir0 + dr, nr);
  6605. if (src0->type == dst->type &&
  6606. ne00 == ne0 &&
  6607. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6608. // copy by rows
  6609. const size_t rs = ne00*nb00;
  6610. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6611. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6612. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6613. memcpy(
  6614. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6615. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6616. rs);
  6617. }
  6618. }
  6619. }
  6620. return;
  6621. }
  6622. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6623. if (ggml_is_contiguous(dst)) {
  6624. if (nb00 == sizeof(ggml_fp16_t)) {
  6625. if (dst->type == GGML_TYPE_F16) {
  6626. size_t id = 0;
  6627. const size_t rs = ne00 * nb00;
  6628. char * dst_ptr = (char *) dst->data;
  6629. for (int i03 = 0; i03 < ne03; i03++) {
  6630. for (int i02 = 0; i02 < ne02; i02++) {
  6631. id += rs * ir0;
  6632. for (int i01 = ir0; i01 < ir1; i01++) {
  6633. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6634. memcpy(dst_ptr + id, src0_ptr, rs);
  6635. id += rs;
  6636. }
  6637. id += rs * (ne01 - ir1);
  6638. }
  6639. }
  6640. } else if (dst->type == GGML_TYPE_F32) {
  6641. size_t id = 0;
  6642. float * dst_ptr = (float *) dst->data;
  6643. for (int i03 = 0; i03 < ne03; i03++) {
  6644. for (int i02 = 0; i02 < ne02; i02++) {
  6645. id += ne00 * ir0;
  6646. for (int i01 = ir0; i01 < ir1; i01++) {
  6647. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6648. for (int i00 = 0; i00 < ne00; i00++) {
  6649. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6650. id++;
  6651. }
  6652. }
  6653. id += ne00 * (ne01 - ir1);
  6654. }
  6655. }
  6656. } else if (type_traits[dst->type].from_float) {
  6657. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6658. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6659. size_t id = 0;
  6660. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6661. char * dst_ptr = (char *) dst->data;
  6662. for (int i03 = 0; i03 < ne03; i03++) {
  6663. for (int i02 = 0; i02 < ne02; i02++) {
  6664. id += rs * ir0;
  6665. for (int i01 = ir0; i01 < ir1; i01++) {
  6666. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6667. for (int i00 = 0; i00 < ne00; i00++) {
  6668. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6669. }
  6670. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6671. id += rs;
  6672. }
  6673. id += rs * (ne01 - ir1);
  6674. }
  6675. }
  6676. } else {
  6677. GGML_ABORT("fatal error"); // TODO: implement
  6678. }
  6679. } else {
  6680. //printf("%s: this is not optimal - fix me\n", __func__);
  6681. if (dst->type == GGML_TYPE_F32) {
  6682. size_t id = 0;
  6683. float * dst_ptr = (float *) dst->data;
  6684. for (int i03 = 0; i03 < ne03; i03++) {
  6685. for (int i02 = 0; i02 < ne02; i02++) {
  6686. id += ne00 * ir0;
  6687. for (int i01 = ir0; i01 < ir1; i01++) {
  6688. for (int i00 = 0; i00 < ne00; i00++) {
  6689. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6690. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6691. id++;
  6692. }
  6693. }
  6694. id += ne00 * (ne01 - ir1);
  6695. }
  6696. }
  6697. } else if (dst->type == GGML_TYPE_F16) {
  6698. size_t id = 0;
  6699. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6700. for (int i03 = 0; i03 < ne03; i03++) {
  6701. for (int i02 = 0; i02 < ne02; i02++) {
  6702. id += ne00 * ir0;
  6703. for (int i01 = ir0; i01 < ir1; i01++) {
  6704. for (int i00 = 0; i00 < ne00; i00++) {
  6705. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6706. dst_ptr[id] = *src0_ptr;
  6707. id++;
  6708. }
  6709. }
  6710. id += ne00 * (ne01 - ir1);
  6711. }
  6712. }
  6713. } else {
  6714. GGML_ABORT("fatal error"); // TODO: implement
  6715. }
  6716. }
  6717. return;
  6718. }
  6719. // dst counters
  6720. int64_t i10 = 0;
  6721. int64_t i11 = 0;
  6722. int64_t i12 = 0;
  6723. int64_t i13 = 0;
  6724. if (dst->type == GGML_TYPE_F16) {
  6725. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6726. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6727. i10 += ne00 * ir0;
  6728. while (i10 >= ne0) {
  6729. i10 -= ne0;
  6730. if (++i11 == ne1) {
  6731. i11 = 0;
  6732. if (++i12 == ne2) {
  6733. i12 = 0;
  6734. if (++i13 == ne3) {
  6735. i13 = 0;
  6736. }
  6737. }
  6738. }
  6739. }
  6740. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6741. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6742. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6743. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6744. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6745. if (++i10 == ne00) {
  6746. i10 = 0;
  6747. if (++i11 == ne01) {
  6748. i11 = 0;
  6749. if (++i12 == ne02) {
  6750. i12 = 0;
  6751. if (++i13 == ne03) {
  6752. i13 = 0;
  6753. }
  6754. }
  6755. }
  6756. }
  6757. }
  6758. }
  6759. i10 += ne00 * (ne01 - ir1);
  6760. while (i10 >= ne0) {
  6761. i10 -= ne0;
  6762. if (++i11 == ne1) {
  6763. i11 = 0;
  6764. if (++i12 == ne2) {
  6765. i12 = 0;
  6766. if (++i13 == ne3) {
  6767. i13 = 0;
  6768. }
  6769. }
  6770. }
  6771. }
  6772. }
  6773. }
  6774. } else if (dst->type == GGML_TYPE_F32) {
  6775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6777. i10 += ne00 * ir0;
  6778. while (i10 >= ne0) {
  6779. i10 -= ne0;
  6780. if (++i11 == ne1) {
  6781. i11 = 0;
  6782. if (++i12 == ne2) {
  6783. i12 = 0;
  6784. if (++i13 == ne3) {
  6785. i13 = 0;
  6786. }
  6787. }
  6788. }
  6789. }
  6790. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6791. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6792. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6793. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6794. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6795. if (++i10 == ne0) {
  6796. i10 = 0;
  6797. if (++i11 == ne1) {
  6798. i11 = 0;
  6799. if (++i12 == ne2) {
  6800. i12 = 0;
  6801. if (++i13 == ne3) {
  6802. i13 = 0;
  6803. }
  6804. }
  6805. }
  6806. }
  6807. }
  6808. }
  6809. i10 += ne00 * (ne01 - ir1);
  6810. while (i10 >= ne0) {
  6811. i10 -= ne0;
  6812. if (++i11 == ne1) {
  6813. i11 = 0;
  6814. if (++i12 == ne2) {
  6815. i12 = 0;
  6816. if (++i13 == ne3) {
  6817. i13 = 0;
  6818. }
  6819. }
  6820. }
  6821. }
  6822. }
  6823. }
  6824. } else {
  6825. GGML_ABORT("fatal error"); // TODO: implement
  6826. }
  6827. }
  6828. static void ggml_compute_forward_dup_bf16(
  6829. const struct ggml_compute_params * params,
  6830. struct ggml_tensor * dst) {
  6831. const struct ggml_tensor * src0 = dst->src[0];
  6832. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6833. GGML_TENSOR_UNARY_OP_LOCALS
  6834. const int ith = params->ith; // thread index
  6835. const int nth = params->nth; // number of threads
  6836. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6837. ggml_compute_forward_dup_same_cont(params, dst);
  6838. return;
  6839. }
  6840. // parallelize by rows
  6841. const int nr = ne01;
  6842. // number of rows per thread
  6843. const int dr = (nr + nth - 1) / nth;
  6844. // row range for this thread
  6845. const int ir0 = dr * ith;
  6846. const int ir1 = MIN(ir0 + dr, nr);
  6847. if (src0->type == dst->type &&
  6848. ne00 == ne0 &&
  6849. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6850. // copy by rows
  6851. const size_t rs = ne00*nb00;
  6852. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6853. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6854. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6855. memcpy(
  6856. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6857. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6858. rs);
  6859. }
  6860. }
  6861. }
  6862. return;
  6863. }
  6864. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6865. if (ggml_is_contiguous(dst)) {
  6866. if (nb00 == sizeof(ggml_bf16_t)) {
  6867. if (dst->type == GGML_TYPE_BF16) {
  6868. size_t id = 0;
  6869. const size_t rs = ne00 * nb00;
  6870. char * dst_ptr = (char *) dst->data;
  6871. for (int i03 = 0; i03 < ne03; i03++) {
  6872. for (int i02 = 0; i02 < ne02; i02++) {
  6873. id += rs * ir0;
  6874. for (int i01 = ir0; i01 < ir1; i01++) {
  6875. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6876. memcpy(dst_ptr + id, src0_ptr, rs);
  6877. id += rs;
  6878. }
  6879. id += rs * (ne01 - ir1);
  6880. }
  6881. }
  6882. } else if (dst->type == GGML_TYPE_F16) {
  6883. size_t id = 0;
  6884. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6885. for (int i03 = 0; i03 < ne03; i03++) {
  6886. for (int i02 = 0; i02 < ne02; i02++) {
  6887. id += ne00 * ir0;
  6888. for (int i01 = ir0; i01 < ir1; i01++) {
  6889. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6890. for (int i00 = 0; i00 < ne00; i00++) {
  6891. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6892. id++;
  6893. }
  6894. }
  6895. id += ne00 * (ne01 - ir1);
  6896. }
  6897. }
  6898. } else if (dst->type == GGML_TYPE_F32) {
  6899. size_t id = 0;
  6900. float * dst_ptr = (float *) dst->data;
  6901. for (int i03 = 0; i03 < ne03; i03++) {
  6902. for (int i02 = 0; i02 < ne02; i02++) {
  6903. id += ne00 * ir0;
  6904. for (int i01 = ir0; i01 < ir1; i01++) {
  6905. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6906. for (int i00 = 0; i00 < ne00; i00++) {
  6907. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6908. id++;
  6909. }
  6910. }
  6911. id += ne00 * (ne01 - ir1);
  6912. }
  6913. }
  6914. } else if (type_traits[dst->type].from_float) {
  6915. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6916. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6917. size_t id = 0;
  6918. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6919. char * dst_ptr = (char *) dst->data;
  6920. for (int i03 = 0; i03 < ne03; i03++) {
  6921. for (int i02 = 0; i02 < ne02; i02++) {
  6922. id += rs * ir0;
  6923. for (int i01 = ir0; i01 < ir1; i01++) {
  6924. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6925. for (int i00 = 0; i00 < ne00; i00++) {
  6926. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6927. }
  6928. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6929. id += rs;
  6930. }
  6931. id += rs * (ne01 - ir1);
  6932. }
  6933. }
  6934. } else {
  6935. GGML_ABORT("fatal error"); // TODO: implement
  6936. }
  6937. } else {
  6938. //printf("%s: this is not optimal - fix me\n", __func__);
  6939. if (dst->type == GGML_TYPE_F32) {
  6940. size_t id = 0;
  6941. float * dst_ptr = (float *) dst->data;
  6942. for (int i03 = 0; i03 < ne03; i03++) {
  6943. for (int i02 = 0; i02 < ne02; i02++) {
  6944. id += ne00 * ir0;
  6945. for (int i01 = ir0; i01 < ir1; i01++) {
  6946. for (int i00 = 0; i00 < ne00; i00++) {
  6947. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6948. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6949. id++;
  6950. }
  6951. }
  6952. id += ne00 * (ne01 - ir1);
  6953. }
  6954. }
  6955. } else if (dst->type == GGML_TYPE_BF16) {
  6956. size_t id = 0;
  6957. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6958. for (int i03 = 0; i03 < ne03; i03++) {
  6959. for (int i02 = 0; i02 < ne02; i02++) {
  6960. id += ne00 * ir0;
  6961. for (int i01 = ir0; i01 < ir1; i01++) {
  6962. for (int i00 = 0; i00 < ne00; i00++) {
  6963. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6964. dst_ptr[id] = *src0_ptr;
  6965. id++;
  6966. }
  6967. }
  6968. id += ne00 * (ne01 - ir1);
  6969. }
  6970. }
  6971. } else if (dst->type == GGML_TYPE_F16) {
  6972. size_t id = 0;
  6973. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6974. for (int i03 = 0; i03 < ne03; i03++) {
  6975. for (int i02 = 0; i02 < ne02; i02++) {
  6976. id += ne00 * ir0;
  6977. for (int i01 = ir0; i01 < ir1; i01++) {
  6978. for (int i00 = 0; i00 < ne00; i00++) {
  6979. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6980. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6981. id++;
  6982. }
  6983. }
  6984. id += ne00 * (ne01 - ir1);
  6985. }
  6986. }
  6987. } else {
  6988. GGML_ABORT("fatal error"); // TODO: implement
  6989. }
  6990. }
  6991. return;
  6992. }
  6993. // dst counters
  6994. int64_t i10 = 0;
  6995. int64_t i11 = 0;
  6996. int64_t i12 = 0;
  6997. int64_t i13 = 0;
  6998. if (dst->type == GGML_TYPE_BF16) {
  6999. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7000. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7001. i10 += ne00 * ir0;
  7002. while (i10 >= ne0) {
  7003. i10 -= ne0;
  7004. if (++i11 == ne1) {
  7005. i11 = 0;
  7006. if (++i12 == ne2) {
  7007. i12 = 0;
  7008. if (++i13 == ne3) {
  7009. i13 = 0;
  7010. }
  7011. }
  7012. }
  7013. }
  7014. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7015. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7016. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7017. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7018. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7019. if (++i10 == ne00) {
  7020. i10 = 0;
  7021. if (++i11 == ne01) {
  7022. i11 = 0;
  7023. if (++i12 == ne02) {
  7024. i12 = 0;
  7025. if (++i13 == ne03) {
  7026. i13 = 0;
  7027. }
  7028. }
  7029. }
  7030. }
  7031. }
  7032. }
  7033. i10 += ne00 * (ne01 - ir1);
  7034. while (i10 >= ne0) {
  7035. i10 -= ne0;
  7036. if (++i11 == ne1) {
  7037. i11 = 0;
  7038. if (++i12 == ne2) {
  7039. i12 = 0;
  7040. if (++i13 == ne3) {
  7041. i13 = 0;
  7042. }
  7043. }
  7044. }
  7045. }
  7046. }
  7047. }
  7048. } else if (dst->type == GGML_TYPE_F16) {
  7049. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7050. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7051. i10 += ne00 * ir0;
  7052. while (i10 >= ne0) {
  7053. i10 -= ne0;
  7054. if (++i11 == ne1) {
  7055. i11 = 0;
  7056. if (++i12 == ne2) {
  7057. i12 = 0;
  7058. if (++i13 == ne3) {
  7059. i13 = 0;
  7060. }
  7061. }
  7062. }
  7063. }
  7064. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7065. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7066. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7067. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7068. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7069. if (++i10 == ne0) {
  7070. i10 = 0;
  7071. if (++i11 == ne1) {
  7072. i11 = 0;
  7073. if (++i12 == ne2) {
  7074. i12 = 0;
  7075. if (++i13 == ne3) {
  7076. i13 = 0;
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. i10 += ne00 * (ne01 - ir1);
  7084. while (i10 >= ne0) {
  7085. i10 -= ne0;
  7086. if (++i11 == ne1) {
  7087. i11 = 0;
  7088. if (++i12 == ne2) {
  7089. i12 = 0;
  7090. if (++i13 == ne3) {
  7091. i13 = 0;
  7092. }
  7093. }
  7094. }
  7095. }
  7096. }
  7097. }
  7098. } else if (dst->type == GGML_TYPE_F32) {
  7099. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7100. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7101. i10 += ne00 * ir0;
  7102. while (i10 >= ne0) {
  7103. i10 -= ne0;
  7104. if (++i11 == ne1) {
  7105. i11 = 0;
  7106. if (++i12 == ne2) {
  7107. i12 = 0;
  7108. if (++i13 == ne3) {
  7109. i13 = 0;
  7110. }
  7111. }
  7112. }
  7113. }
  7114. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7115. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7116. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7117. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7118. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7119. if (++i10 == ne0) {
  7120. i10 = 0;
  7121. if (++i11 == ne1) {
  7122. i11 = 0;
  7123. if (++i12 == ne2) {
  7124. i12 = 0;
  7125. if (++i13 == ne3) {
  7126. i13 = 0;
  7127. }
  7128. }
  7129. }
  7130. }
  7131. }
  7132. }
  7133. i10 += ne00 * (ne01 - ir1);
  7134. while (i10 >= ne0) {
  7135. i10 -= ne0;
  7136. if (++i11 == ne1) {
  7137. i11 = 0;
  7138. if (++i12 == ne2) {
  7139. i12 = 0;
  7140. if (++i13 == ne3) {
  7141. i13 = 0;
  7142. }
  7143. }
  7144. }
  7145. }
  7146. }
  7147. }
  7148. } else {
  7149. GGML_ABORT("fatal error"); // TODO: implement
  7150. }
  7151. }
  7152. static void ggml_compute_forward_dup_f32(
  7153. const struct ggml_compute_params * params,
  7154. struct ggml_tensor * dst) {
  7155. const struct ggml_tensor * src0 = dst->src[0];
  7156. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7157. GGML_TENSOR_UNARY_OP_LOCALS
  7158. const int ith = params->ith; // thread index
  7159. const int nth = params->nth; // number of threads
  7160. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7161. ggml_compute_forward_dup_same_cont(params, dst);
  7162. return;
  7163. }
  7164. // parallelize by rows
  7165. const int nr = ne01;
  7166. // number of rows per thread
  7167. const int dr = (nr + nth - 1) / nth;
  7168. // row range for this thread
  7169. const int ir0 = dr * ith;
  7170. const int ir1 = MIN(ir0 + dr, nr);
  7171. if (src0->type == dst->type &&
  7172. ne00 == ne0 &&
  7173. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7174. // copy by rows
  7175. const size_t rs = ne00*nb00;
  7176. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7177. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7178. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7179. memcpy(
  7180. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7181. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7182. rs);
  7183. }
  7184. }
  7185. }
  7186. return;
  7187. }
  7188. if (ggml_is_contiguous(dst)) {
  7189. // TODO: simplify
  7190. if (nb00 == sizeof(float)) {
  7191. if (dst->type == GGML_TYPE_F32) {
  7192. size_t id = 0;
  7193. const size_t rs = ne00 * nb00;
  7194. char * dst_ptr = (char *) dst->data;
  7195. for (int i03 = 0; i03 < ne03; i03++) {
  7196. for (int i02 = 0; i02 < ne02; i02++) {
  7197. id += rs * ir0;
  7198. for (int i01 = ir0; i01 < ir1; i01++) {
  7199. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7200. memcpy(dst_ptr + id, src0_ptr, rs);
  7201. id += rs;
  7202. }
  7203. id += rs * (ne01 - ir1);
  7204. }
  7205. }
  7206. } else if (type_traits[dst->type].from_float) {
  7207. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7208. size_t id = 0;
  7209. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7210. char * dst_ptr = (char *) dst->data;
  7211. for (int i03 = 0; i03 < ne03; i03++) {
  7212. for (int i02 = 0; i02 < ne02; i02++) {
  7213. id += rs * ir0;
  7214. for (int i01 = ir0; i01 < ir1; i01++) {
  7215. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7216. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7217. id += rs;
  7218. }
  7219. id += rs * (ne01 - ir1);
  7220. }
  7221. }
  7222. } else {
  7223. GGML_ABORT("fatal error"); // TODO: implement
  7224. }
  7225. } else {
  7226. //printf("%s: this is not optimal - fix me\n", __func__);
  7227. if (dst->type == GGML_TYPE_F32) {
  7228. size_t id = 0;
  7229. float * dst_ptr = (float *) dst->data;
  7230. for (int i03 = 0; i03 < ne03; i03++) {
  7231. for (int i02 = 0; i02 < ne02; i02++) {
  7232. id += ne00 * ir0;
  7233. for (int i01 = ir0; i01 < ir1; i01++) {
  7234. for (int i00 = 0; i00 < ne00; i00++) {
  7235. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7236. dst_ptr[id] = *src0_ptr;
  7237. id++;
  7238. }
  7239. }
  7240. id += ne00 * (ne01 - ir1);
  7241. }
  7242. }
  7243. } else if (dst->type == GGML_TYPE_F16) {
  7244. size_t id = 0;
  7245. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7246. for (int i03 = 0; i03 < ne03; i03++) {
  7247. for (int i02 = 0; i02 < ne02; i02++) {
  7248. id += ne00 * ir0;
  7249. for (int i01 = ir0; i01 < ir1; i01++) {
  7250. for (int i00 = 0; i00 < ne00; i00++) {
  7251. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7252. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7253. id++;
  7254. }
  7255. }
  7256. id += ne00 * (ne01 - ir1);
  7257. }
  7258. }
  7259. } else if (dst->type == GGML_TYPE_BF16) {
  7260. size_t id = 0;
  7261. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7262. for (int i03 = 0; i03 < ne03; i03++) {
  7263. for (int i02 = 0; i02 < ne02; i02++) {
  7264. id += ne00 * ir0;
  7265. for (int i01 = ir0; i01 < ir1; i01++) {
  7266. for (int i00 = 0; i00 < ne00; i00++) {
  7267. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7268. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7269. id++;
  7270. }
  7271. }
  7272. id += ne00 * (ne01 - ir1);
  7273. }
  7274. }
  7275. } else {
  7276. GGML_ABORT("fatal error"); // TODO: implement
  7277. }
  7278. }
  7279. return;
  7280. }
  7281. // dst counters
  7282. int64_t i10 = 0;
  7283. int64_t i11 = 0;
  7284. int64_t i12 = 0;
  7285. int64_t i13 = 0;
  7286. if (dst->type == GGML_TYPE_F32) {
  7287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7289. i10 += ne00 * ir0;
  7290. while (i10 >= ne0) {
  7291. i10 -= ne0;
  7292. if (++i11 == ne1) {
  7293. i11 = 0;
  7294. if (++i12 == ne2) {
  7295. i12 = 0;
  7296. if (++i13 == ne3) {
  7297. i13 = 0;
  7298. }
  7299. }
  7300. }
  7301. }
  7302. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7303. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7304. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7305. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7306. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7307. if (++i10 == ne0) {
  7308. i10 = 0;
  7309. if (++i11 == ne1) {
  7310. i11 = 0;
  7311. if (++i12 == ne2) {
  7312. i12 = 0;
  7313. if (++i13 == ne3) {
  7314. i13 = 0;
  7315. }
  7316. }
  7317. }
  7318. }
  7319. }
  7320. }
  7321. i10 += ne00 * (ne01 - ir1);
  7322. while (i10 >= ne0) {
  7323. i10 -= ne0;
  7324. if (++i11 == ne1) {
  7325. i11 = 0;
  7326. if (++i12 == ne2) {
  7327. i12 = 0;
  7328. if (++i13 == ne3) {
  7329. i13 = 0;
  7330. }
  7331. }
  7332. }
  7333. }
  7334. }
  7335. }
  7336. } else if (dst->type == GGML_TYPE_F16) {
  7337. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7338. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7339. i10 += ne00 * ir0;
  7340. while (i10 >= ne0) {
  7341. i10 -= ne0;
  7342. if (++i11 == ne1) {
  7343. i11 = 0;
  7344. if (++i12 == ne2) {
  7345. i12 = 0;
  7346. if (++i13 == ne3) {
  7347. i13 = 0;
  7348. }
  7349. }
  7350. }
  7351. }
  7352. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7353. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7354. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7355. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7356. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7357. if (++i10 == ne0) {
  7358. i10 = 0;
  7359. if (++i11 == ne1) {
  7360. i11 = 0;
  7361. if (++i12 == ne2) {
  7362. i12 = 0;
  7363. if (++i13 == ne3) {
  7364. i13 = 0;
  7365. }
  7366. }
  7367. }
  7368. }
  7369. }
  7370. }
  7371. i10 += ne00 * (ne01 - ir1);
  7372. while (i10 >= ne0) {
  7373. i10 -= ne0;
  7374. if (++i11 == ne1) {
  7375. i11 = 0;
  7376. if (++i12 == ne2) {
  7377. i12 = 0;
  7378. if (++i13 == ne3) {
  7379. i13 = 0;
  7380. }
  7381. }
  7382. }
  7383. }
  7384. }
  7385. }
  7386. } else if (dst->type == GGML_TYPE_BF16) {
  7387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7389. i10 += ne00 * ir0;
  7390. while (i10 >= ne0) {
  7391. i10 -= ne0;
  7392. if (++i11 == ne1) {
  7393. i11 = 0;
  7394. if (++i12 == ne2) {
  7395. i12 = 0;
  7396. if (++i13 == ne3) {
  7397. i13 = 0;
  7398. }
  7399. }
  7400. }
  7401. }
  7402. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7403. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7404. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7405. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7406. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7407. if (++i10 == ne0) {
  7408. i10 = 0;
  7409. if (++i11 == ne1) {
  7410. i11 = 0;
  7411. if (++i12 == ne2) {
  7412. i12 = 0;
  7413. if (++i13 == ne3) {
  7414. i13 = 0;
  7415. }
  7416. }
  7417. }
  7418. }
  7419. }
  7420. }
  7421. i10 += ne00 * (ne01 - ir1);
  7422. while (i10 >= ne0) {
  7423. i10 -= ne0;
  7424. if (++i11 == ne1) {
  7425. i11 = 0;
  7426. if (++i12 == ne2) {
  7427. i12 = 0;
  7428. if (++i13 == ne3) {
  7429. i13 = 0;
  7430. }
  7431. }
  7432. }
  7433. }
  7434. }
  7435. }
  7436. } else {
  7437. GGML_ABORT("fatal error"); // TODO: implement
  7438. }
  7439. }
  7440. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7441. static void ggml_compute_forward_dup_bytes(
  7442. const struct ggml_compute_params * params,
  7443. struct ggml_tensor * dst) {
  7444. const struct ggml_tensor * src0 = dst->src[0];
  7445. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7446. GGML_ASSERT(src0->type == dst->type);
  7447. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7448. ggml_compute_forward_dup_same_cont(params, dst);
  7449. return;
  7450. }
  7451. GGML_TENSOR_UNARY_OP_LOCALS;
  7452. const size_t type_size = ggml_type_size(src0->type);
  7453. const int ith = params->ith; // thread index
  7454. const int nth = params->nth; // number of threads
  7455. // parallelize by rows
  7456. const int nr = ne01;
  7457. // number of rows per thread
  7458. const int dr = (nr + nth - 1) / nth;
  7459. // row range for this thread
  7460. const int ir0 = dr * ith;
  7461. const int ir1 = MIN(ir0 + dr, nr);
  7462. if (src0->type == dst->type &&
  7463. ne00 == ne0 &&
  7464. nb00 == type_size && nb0 == type_size) {
  7465. // copy by rows
  7466. const size_t rs = ne00 * type_size;
  7467. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7468. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7469. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7470. memcpy(
  7471. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7472. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7473. rs);
  7474. }
  7475. }
  7476. }
  7477. return;
  7478. }
  7479. if (ggml_is_contiguous(dst)) {
  7480. size_t id = 0;
  7481. char * dst_ptr = (char *) dst->data;
  7482. const size_t rs = ne00 * type_size;
  7483. if (nb00 == type_size) {
  7484. // src0 is contigous on first dimension, copy by rows
  7485. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7487. id += rs * ir0;
  7488. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7489. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7490. memcpy(dst_ptr + id, src0_ptr, rs);
  7491. id += rs;
  7492. }
  7493. id += rs * (ne01 - ir1);
  7494. }
  7495. }
  7496. } else {
  7497. //printf("%s: this is not optimal - fix me\n", __func__);
  7498. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7499. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7500. id += rs * ir0;
  7501. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7502. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7503. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7504. memcpy(dst_ptr + id, src0_ptr, type_size);
  7505. id += type_size;
  7506. }
  7507. }
  7508. id += rs * (ne01 - ir1);
  7509. }
  7510. }
  7511. }
  7512. return;
  7513. }
  7514. // dst counters
  7515. int64_t i10 = 0;
  7516. int64_t i11 = 0;
  7517. int64_t i12 = 0;
  7518. int64_t i13 = 0;
  7519. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7520. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7521. i10 += ne00 * ir0;
  7522. while (i10 >= ne0) {
  7523. i10 -= ne0;
  7524. if (++i11 == ne1) {
  7525. i11 = 0;
  7526. if (++i12 == ne2) {
  7527. i12 = 0;
  7528. if (++i13 == ne3) {
  7529. i13 = 0;
  7530. }
  7531. }
  7532. }
  7533. }
  7534. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7535. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7536. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7537. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7538. memcpy(dst_ptr, src0_ptr, type_size);
  7539. if (++i10 == ne0) {
  7540. i10 = 0;
  7541. if (++i11 == ne1) {
  7542. i11 = 0;
  7543. if (++i12 == ne2) {
  7544. i12 = 0;
  7545. if (++i13 == ne3) {
  7546. i13 = 0;
  7547. }
  7548. }
  7549. }
  7550. }
  7551. }
  7552. }
  7553. i10 += ne00 * (ne01 - ir1);
  7554. while (i10 >= ne0) {
  7555. i10 -= ne0;
  7556. if (++i11 == ne1) {
  7557. i11 = 0;
  7558. if (++i12 == ne2) {
  7559. i12 = 0;
  7560. if (++i13 == ne3) {
  7561. i13 = 0;
  7562. }
  7563. }
  7564. }
  7565. }
  7566. }
  7567. }
  7568. }
  7569. static void ggml_compute_forward_dup(
  7570. const struct ggml_compute_params * params,
  7571. struct ggml_tensor * dst) {
  7572. const struct ggml_tensor * src0 = dst->src[0];
  7573. if (src0->type == dst->type) {
  7574. ggml_compute_forward_dup_bytes(params, dst);
  7575. return;
  7576. }
  7577. switch (src0->type) {
  7578. case GGML_TYPE_F16:
  7579. {
  7580. ggml_compute_forward_dup_f16(params, dst);
  7581. } break;
  7582. case GGML_TYPE_BF16:
  7583. {
  7584. ggml_compute_forward_dup_bf16(params, dst);
  7585. } break;
  7586. case GGML_TYPE_F32:
  7587. {
  7588. ggml_compute_forward_dup_f32(params, dst);
  7589. } break;
  7590. default:
  7591. {
  7592. GGML_ABORT("fatal error");
  7593. }
  7594. }
  7595. }
  7596. // ggml_compute_forward_add
  7597. static void ggml_compute_forward_add_f32(
  7598. const struct ggml_compute_params * params,
  7599. struct ggml_tensor * dst) {
  7600. const struct ggml_tensor * src0 = dst->src[0];
  7601. const struct ggml_tensor * src1 = dst->src[1];
  7602. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7603. const int ith = params->ith;
  7604. const int nth = params->nth;
  7605. const int nr = ggml_nrows(src0);
  7606. GGML_TENSOR_BINARY_OP_LOCALS
  7607. GGML_ASSERT( nb0 == sizeof(float));
  7608. GGML_ASSERT(nb00 == sizeof(float));
  7609. // rows per thread
  7610. const int dr = (nr + nth - 1)/nth;
  7611. // row range for this thread
  7612. const int ir0 = dr*ith;
  7613. const int ir1 = MIN(ir0 + dr, nr);
  7614. if (nb10 == sizeof(float)) {
  7615. for (int ir = ir0; ir < ir1; ++ir) {
  7616. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7617. const int64_t i03 = ir/(ne02*ne01);
  7618. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7619. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7620. const int64_t i13 = i03 % ne13;
  7621. const int64_t i12 = i02 % ne12;
  7622. const int64_t i11 = i01 % ne11;
  7623. const int64_t nr0 = ne00 / ne10;
  7624. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7625. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7626. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7627. for (int64_t r = 0; r < nr0; ++r) {
  7628. #ifdef GGML_USE_ACCELERATE
  7629. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7630. #else
  7631. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7632. #endif
  7633. }
  7634. }
  7635. } else {
  7636. // src1 is not contiguous
  7637. for (int ir = ir0; ir < ir1; ++ir) {
  7638. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7639. const int64_t i03 = ir/(ne02*ne01);
  7640. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7641. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7642. const int64_t i13 = i03 % ne13;
  7643. const int64_t i12 = i02 % ne12;
  7644. const int64_t i11 = i01 % ne11;
  7645. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7646. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7647. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7648. const int64_t i10 = i0 % ne10;
  7649. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7650. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7651. }
  7652. }
  7653. }
  7654. }
  7655. static void ggml_compute_forward_add_f16_f32(
  7656. const struct ggml_compute_params * params,
  7657. struct ggml_tensor * dst) {
  7658. const struct ggml_tensor * src0 = dst->src[0];
  7659. const struct ggml_tensor * src1 = dst->src[1];
  7660. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7661. const int ith = params->ith;
  7662. const int nth = params->nth;
  7663. const int nr = ggml_nrows(src0);
  7664. GGML_TENSOR_BINARY_OP_LOCALS
  7665. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7666. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7667. if (dst->type == GGML_TYPE_F32) {
  7668. GGML_ASSERT( nb0 == sizeof(float));
  7669. }
  7670. else {
  7671. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7672. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7673. }
  7674. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7675. // rows per thread
  7676. const int dr = (nr + nth - 1)/nth;
  7677. // row range for this thread
  7678. const int ir0 = dr*ith;
  7679. const int ir1 = MIN(ir0 + dr, nr);
  7680. if (nb10 == sizeof(float)) {
  7681. if (dst->type == GGML_TYPE_F16) {
  7682. for (int ir = ir0; ir < ir1; ++ir) {
  7683. // src0, src1 and dst are same shape => same indices
  7684. const int i3 = ir/(ne2*ne1);
  7685. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7686. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7687. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7688. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7689. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7690. for (int i = 0; i < ne0; i++) {
  7691. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7692. }
  7693. }
  7694. } else {
  7695. for (int ir = ir0; ir < ir1; ++ir) {
  7696. // src0, src1 and dst are same shape => same indices
  7697. const int i3 = ir/(ne2*ne1);
  7698. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7699. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7700. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7701. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7702. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7703. for (int i = 0; i < ne0; i++) {
  7704. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7705. }
  7706. }
  7707. }
  7708. }
  7709. else {
  7710. // src1 is not contiguous
  7711. GGML_ABORT("fatal error");
  7712. }
  7713. }
  7714. static void ggml_compute_forward_add_bf16_f32(
  7715. const struct ggml_compute_params * params,
  7716. struct ggml_tensor * dst) {
  7717. const struct ggml_tensor * src0 = dst->src[0];
  7718. const struct ggml_tensor * src1 = dst->src[1];
  7719. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7720. const int ith = params->ith;
  7721. const int nth = params->nth;
  7722. const int nr = ggml_nrows(src0);
  7723. GGML_TENSOR_BINARY_OP_LOCALS
  7724. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7725. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7726. if (dst->type == GGML_TYPE_F32) {
  7727. GGML_ASSERT( nb0 == sizeof(float));
  7728. }
  7729. else {
  7730. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7731. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7732. }
  7733. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7734. // rows per thread
  7735. const int dr = (nr + nth - 1)/nth;
  7736. // row range for this thread
  7737. const int ir0 = dr*ith;
  7738. const int ir1 = MIN(ir0 + dr, nr);
  7739. if (nb10 == sizeof(float)) {
  7740. if (dst->type == GGML_TYPE_BF16) {
  7741. for (int ir = ir0; ir < ir1; ++ir) {
  7742. // src0, src1 and dst are same shape => same indices
  7743. const int i3 = ir/(ne2*ne1);
  7744. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7745. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7746. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7747. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7748. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7749. for (int i = 0; i < ne0; i++) {
  7750. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7751. }
  7752. }
  7753. } else {
  7754. for (int ir = ir0; ir < ir1; ++ir) {
  7755. // src0, src1 and dst are same shape => same indices
  7756. const int i3 = ir/(ne2*ne1);
  7757. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7758. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7759. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7760. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7761. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7762. for (int i = 0; i < ne0; i++) {
  7763. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7764. }
  7765. }
  7766. }
  7767. }
  7768. else {
  7769. // src1 is not contiguous
  7770. GGML_ABORT("fatal error");
  7771. }
  7772. }
  7773. static void ggml_compute_forward_add_f16_f16(
  7774. const struct ggml_compute_params * params,
  7775. struct ggml_tensor * dst) {
  7776. const struct ggml_tensor * src0 = dst->src[0];
  7777. const struct ggml_tensor * src1 = dst->src[1];
  7778. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7779. const int ith = params->ith;
  7780. const int nth = params->nth;
  7781. const int nr = ggml_nrows(src0);
  7782. GGML_TENSOR_BINARY_OP_LOCALS
  7783. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7784. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7785. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7786. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7787. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7788. // rows per thread
  7789. const int dr = (nr + nth - 1)/nth;
  7790. // row range for this thread
  7791. const int ir0 = dr*ith;
  7792. const int ir1 = MIN(ir0 + dr, nr);
  7793. if (nb10 == sizeof(ggml_fp16_t)) {
  7794. for (int ir = ir0; ir < ir1; ++ir) {
  7795. // src0, src1 and dst are same shape => same indices
  7796. const int i3 = ir/(ne2*ne1);
  7797. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7798. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7799. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7800. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7801. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7802. for (int i = 0; i < ne0; i++) {
  7803. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7804. }
  7805. }
  7806. }
  7807. else {
  7808. // src1 is not contiguous
  7809. GGML_ABORT("fatal error");
  7810. }
  7811. }
  7812. static void ggml_compute_forward_add_bf16_bf16(
  7813. const struct ggml_compute_params * params,
  7814. struct ggml_tensor * dst) {
  7815. const struct ggml_tensor * src0 = dst->src[0];
  7816. const struct ggml_tensor * src1 = dst->src[1];
  7817. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7818. const int ith = params->ith;
  7819. const int nth = params->nth;
  7820. const int nr = ggml_nrows(src0);
  7821. GGML_TENSOR_BINARY_OP_LOCALS
  7822. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7823. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7824. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7825. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7826. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7827. // rows per thread
  7828. const int dr = (nr + nth - 1)/nth;
  7829. // row range for this thread
  7830. const int ir0 = dr*ith;
  7831. const int ir1 = MIN(ir0 + dr, nr);
  7832. if (nb10 == sizeof(ggml_bf16_t)) {
  7833. for (int ir = ir0; ir < ir1; ++ir) {
  7834. // src0, src1 and dst are same shape => same indices
  7835. const int i3 = ir/(ne2*ne1);
  7836. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7837. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7838. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7839. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7840. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7841. for (int i = 0; i < ne0; i++) {
  7842. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7843. }
  7844. }
  7845. }
  7846. else {
  7847. // src1 is not contiguous
  7848. GGML_ABORT("fatal error");
  7849. }
  7850. }
  7851. static void ggml_compute_forward_add_q_f32(
  7852. const struct ggml_compute_params * params,
  7853. struct ggml_tensor * dst) {
  7854. const struct ggml_tensor * src0 = dst->src[0];
  7855. const struct ggml_tensor * src1 = dst->src[1];
  7856. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7857. const int nr = ggml_nrows(src0);
  7858. GGML_TENSOR_BINARY_OP_LOCALS
  7859. const int ith = params->ith;
  7860. const int nth = params->nth;
  7861. const enum ggml_type type = src0->type;
  7862. const enum ggml_type dtype = dst->type;
  7863. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7864. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7865. // we don't support permuted src0 or src1
  7866. GGML_ASSERT(nb00 == ggml_type_size(type));
  7867. GGML_ASSERT(nb10 == sizeof(float));
  7868. // dst cannot be transposed or permuted
  7869. GGML_ASSERT(nb0 <= nb1);
  7870. GGML_ASSERT(nb1 <= nb2);
  7871. GGML_ASSERT(nb2 <= nb3);
  7872. GGML_ASSERT(ggml_is_quantized(src0->type));
  7873. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7874. // rows per thread
  7875. const int dr = (nr + nth - 1)/nth;
  7876. // row range for this thread
  7877. const int ir0 = dr*ith;
  7878. const int ir1 = MIN(ir0 + dr, nr);
  7879. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7880. for (int ir = ir0; ir < ir1; ++ir) {
  7881. // src0 indices
  7882. const int i03 = ir/(ne02*ne01);
  7883. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7884. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7885. // src1 and dst are same shape as src0 => same indices
  7886. const int i13 = i03;
  7887. const int i12 = i02;
  7888. const int i11 = i01;
  7889. const int i3 = i03;
  7890. const int i2 = i02;
  7891. const int i1 = i01;
  7892. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7893. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7894. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7895. assert(ne00 % 32 == 0);
  7896. // unquantize row from src0 to temp buffer
  7897. dequantize_row_q(src0_row, wdata, ne00);
  7898. // add src1
  7899. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7900. // quantize row to dst
  7901. if (quantize_row_q != NULL) {
  7902. quantize_row_q(wdata, dst_row, ne00);
  7903. } else {
  7904. memcpy(dst_row, wdata, ne0*nb0);
  7905. }
  7906. }
  7907. }
  7908. static void ggml_compute_forward_add(
  7909. const struct ggml_compute_params * params,
  7910. struct ggml_tensor * dst) {
  7911. const struct ggml_tensor * src0 = dst->src[0];
  7912. const struct ggml_tensor * src1 = dst->src[1];
  7913. switch (src0->type) {
  7914. case GGML_TYPE_F32:
  7915. {
  7916. if (src1->type == GGML_TYPE_F32) {
  7917. ggml_compute_forward_add_f32(params, dst);
  7918. }
  7919. else {
  7920. GGML_ABORT("fatal error");
  7921. }
  7922. } break;
  7923. case GGML_TYPE_F16:
  7924. {
  7925. if (src1->type == GGML_TYPE_F16) {
  7926. ggml_compute_forward_add_f16_f16(params, dst);
  7927. }
  7928. else if (src1->type == GGML_TYPE_F32) {
  7929. ggml_compute_forward_add_f16_f32(params, dst);
  7930. }
  7931. else {
  7932. GGML_ABORT("fatal error");
  7933. }
  7934. } break;
  7935. case GGML_TYPE_BF16:
  7936. {
  7937. if (src1->type == GGML_TYPE_BF16) {
  7938. ggml_compute_forward_add_bf16_bf16(params, dst);
  7939. }
  7940. else if (src1->type == GGML_TYPE_F32) {
  7941. ggml_compute_forward_add_bf16_f32(params, dst);
  7942. }
  7943. else {
  7944. GGML_ABORT("fatal error");
  7945. }
  7946. } break;
  7947. case GGML_TYPE_Q4_0:
  7948. case GGML_TYPE_Q4_1:
  7949. case GGML_TYPE_Q5_0:
  7950. case GGML_TYPE_Q5_1:
  7951. case GGML_TYPE_Q8_0:
  7952. case GGML_TYPE_Q2_K:
  7953. case GGML_TYPE_Q3_K:
  7954. case GGML_TYPE_Q4_K:
  7955. case GGML_TYPE_Q5_K:
  7956. case GGML_TYPE_Q6_K:
  7957. case GGML_TYPE_IQ2_XXS:
  7958. case GGML_TYPE_IQ2_XS:
  7959. case GGML_TYPE_IQ3_XXS:
  7960. case GGML_TYPE_IQ1_S:
  7961. case GGML_TYPE_IQ1_M:
  7962. case GGML_TYPE_IQ4_NL:
  7963. case GGML_TYPE_IQ4_XS:
  7964. case GGML_TYPE_IQ3_S:
  7965. case GGML_TYPE_IQ2_S:
  7966. case GGML_TYPE_Q4_0_4_4:
  7967. case GGML_TYPE_Q4_0_4_8:
  7968. case GGML_TYPE_Q4_0_8_8:
  7969. {
  7970. ggml_compute_forward_add_q_f32(params, dst);
  7971. } break;
  7972. default:
  7973. {
  7974. GGML_ABORT("fatal error");
  7975. }
  7976. }
  7977. }
  7978. // ggml_compute_forward_add1
  7979. static void ggml_compute_forward_add1_f32(
  7980. const struct ggml_compute_params * params,
  7981. struct ggml_tensor * dst) {
  7982. const struct ggml_tensor * src0 = dst->src[0];
  7983. const struct ggml_tensor * src1 = dst->src[1];
  7984. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7985. GGML_ASSERT(ggml_is_scalar(src1));
  7986. const int ith = params->ith;
  7987. const int nth = params->nth;
  7988. const int nr = ggml_nrows(src0);
  7989. GGML_TENSOR_UNARY_OP_LOCALS
  7990. GGML_ASSERT( nb0 == sizeof(float));
  7991. GGML_ASSERT(nb00 == sizeof(float));
  7992. // rows per thread
  7993. const int dr = (nr + nth - 1)/nth;
  7994. // row range for this thread
  7995. const int ir0 = dr*ith;
  7996. const int ir1 = MIN(ir0 + dr, nr);
  7997. for (int ir = ir0; ir < ir1; ++ir) {
  7998. // src0 and dst are same shape => same indices
  7999. const int i3 = ir/(ne2*ne1);
  8000. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8001. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8002. #ifdef GGML_USE_ACCELERATE
  8003. UNUSED(ggml_vec_add1_f32);
  8004. vDSP_vadd(
  8005. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8006. (float *) ((char *) src1->data), 0,
  8007. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8008. ne0);
  8009. #else
  8010. ggml_vec_add1_f32(ne0,
  8011. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8012. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8013. *(float *) src1->data);
  8014. #endif
  8015. }
  8016. }
  8017. static void ggml_compute_forward_add1_f16_f32(
  8018. const struct ggml_compute_params * params,
  8019. struct ggml_tensor * dst) {
  8020. const struct ggml_tensor * src0 = dst->src[0];
  8021. const struct ggml_tensor * src1 = dst->src[1];
  8022. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8023. GGML_ASSERT(ggml_is_scalar(src1));
  8024. // scalar to add
  8025. const float v = *(float *) src1->data;
  8026. const int ith = params->ith;
  8027. const int nth = params->nth;
  8028. const int nr = ggml_nrows(src0);
  8029. GGML_TENSOR_UNARY_OP_LOCALS
  8030. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8031. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8032. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8033. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8034. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8035. // rows per thread
  8036. const int dr = (nr + nth - 1)/nth;
  8037. // row range for this thread
  8038. const int ir0 = dr*ith;
  8039. const int ir1 = MIN(ir0 + dr, nr);
  8040. for (int ir = ir0; ir < ir1; ++ir) {
  8041. // src0 and dst are same shape => same indices
  8042. const int i3 = ir/(ne2*ne1);
  8043. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8044. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8045. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8046. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8047. for (int i = 0; i < ne0; i++) {
  8048. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8049. }
  8050. }
  8051. }
  8052. static void ggml_compute_forward_add1_f16_f16(
  8053. const struct ggml_compute_params * params,
  8054. struct ggml_tensor * dst) {
  8055. const struct ggml_tensor * src0 = dst->src[0];
  8056. const struct ggml_tensor * src1 = dst->src[1];
  8057. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8058. GGML_ASSERT(ggml_is_scalar(src1));
  8059. // scalar to add
  8060. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8061. const int ith = params->ith;
  8062. const int nth = params->nth;
  8063. const int nr = ggml_nrows(src0);
  8064. GGML_TENSOR_UNARY_OP_LOCALS
  8065. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8066. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8067. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8068. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8069. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8070. // rows per thread
  8071. const int dr = (nr + nth - 1)/nth;
  8072. // row range for this thread
  8073. const int ir0 = dr*ith;
  8074. const int ir1 = MIN(ir0 + dr, nr);
  8075. for (int ir = ir0; ir < ir1; ++ir) {
  8076. // src0 and dst are same shape => same indices
  8077. const int i3 = ir/(ne2*ne1);
  8078. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8079. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8080. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8081. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8082. for (int i = 0; i < ne0; i++) {
  8083. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8084. }
  8085. }
  8086. }
  8087. static void ggml_compute_forward_add1_q_f32(
  8088. const struct ggml_compute_params * params,
  8089. struct ggml_tensor * dst) {
  8090. const struct ggml_tensor * src0 = dst->src[0];
  8091. const struct ggml_tensor * src1 = dst->src[1];
  8092. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8093. GGML_ASSERT(ggml_is_scalar(src1));
  8094. // scalar to add
  8095. const float v = *(float *) src1->data;
  8096. const int ith = params->ith;
  8097. const int nth = params->nth;
  8098. const int nr = ggml_nrows(src0);
  8099. GGML_TENSOR_UNARY_OP_LOCALS
  8100. const enum ggml_type type = src0->type;
  8101. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8102. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8103. // we don't support permuted src0
  8104. GGML_ASSERT(nb00 == ggml_type_size(type));
  8105. // dst cannot be transposed or permuted
  8106. GGML_ASSERT(nb0 <= nb1);
  8107. GGML_ASSERT(nb1 <= nb2);
  8108. GGML_ASSERT(nb2 <= nb3);
  8109. GGML_ASSERT(ggml_is_quantized(src0->type));
  8110. GGML_ASSERT(dst->type == src0->type);
  8111. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8112. // rows per thread
  8113. const int dr = (nr + nth - 1)/nth;
  8114. // row range for this thread
  8115. const int ir0 = dr*ith;
  8116. const int ir1 = MIN(ir0 + dr, nr);
  8117. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8118. for (int ir = ir0; ir < ir1; ++ir) {
  8119. // src0 and dst are same shape => same indices
  8120. const int i3 = ir/(ne2*ne1);
  8121. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8122. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8123. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8124. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8125. assert(ne0 % 32 == 0);
  8126. // unquantize row from src0 to temp buffer
  8127. dequantize_row_q(src0_row, wdata, ne0);
  8128. // add src1
  8129. ggml_vec_acc1_f32(ne0, wdata, v);
  8130. // quantize row to dst
  8131. quantize_row_q(wdata, dst_row, ne0);
  8132. }
  8133. }
  8134. static void ggml_compute_forward_add1_bf16_f32(
  8135. const struct ggml_compute_params * params,
  8136. struct ggml_tensor * dst) {
  8137. const struct ggml_tensor * src0 = dst->src[0];
  8138. const struct ggml_tensor * src1 = dst->src[1];
  8139. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8140. GGML_ASSERT(ggml_is_scalar(src1));
  8141. // scalar to add
  8142. const float v = *(float *) src1->data;
  8143. const int ith = params->ith;
  8144. const int nth = params->nth;
  8145. const int nr = ggml_nrows(src0);
  8146. GGML_TENSOR_UNARY_OP_LOCALS
  8147. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8148. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8149. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8150. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8151. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8152. // rows per thread
  8153. const int dr = (nr + nth - 1)/nth;
  8154. // row range for this thread
  8155. const int ir0 = dr*ith;
  8156. const int ir1 = MIN(ir0 + dr, nr);
  8157. for (int ir = ir0; ir < ir1; ++ir) {
  8158. // src0 and dst are same shape => same indices
  8159. const int i3 = ir/(ne2*ne1);
  8160. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8161. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8162. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8163. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8164. for (int i = 0; i < ne0; i++) {
  8165. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8166. }
  8167. }
  8168. }
  8169. static void ggml_compute_forward_add1_bf16_bf16(
  8170. const struct ggml_compute_params * params,
  8171. struct ggml_tensor * dst) {
  8172. const struct ggml_tensor * src0 = dst->src[0];
  8173. const struct ggml_tensor * src1 = dst->src[1];
  8174. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8175. GGML_ASSERT(ggml_is_scalar(src1));
  8176. // scalar to add
  8177. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8178. const int ith = params->ith;
  8179. const int nth = params->nth;
  8180. const int nr = ggml_nrows(src0);
  8181. GGML_TENSOR_UNARY_OP_LOCALS
  8182. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8183. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8184. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8185. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8186. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8187. // rows per thread
  8188. const int dr = (nr + nth - 1)/nth;
  8189. // row range for this thread
  8190. const int ir0 = dr*ith;
  8191. const int ir1 = MIN(ir0 + dr, nr);
  8192. for (int ir = ir0; ir < ir1; ++ir) {
  8193. // src0 and dst are same shape => same indices
  8194. const int i3 = ir/(ne2*ne1);
  8195. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8196. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8197. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8198. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8199. for (int i = 0; i < ne0; i++) {
  8200. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8201. }
  8202. }
  8203. }
  8204. static void ggml_compute_forward_add1(
  8205. const struct ggml_compute_params * params,
  8206. struct ggml_tensor * dst) {
  8207. const struct ggml_tensor * src0 = dst->src[0];
  8208. const struct ggml_tensor * src1 = dst->src[1];
  8209. switch (src0->type) {
  8210. case GGML_TYPE_F32:
  8211. {
  8212. ggml_compute_forward_add1_f32(params, dst);
  8213. } break;
  8214. case GGML_TYPE_F16:
  8215. {
  8216. if (src1->type == GGML_TYPE_F16) {
  8217. ggml_compute_forward_add1_f16_f16(params, dst);
  8218. }
  8219. else if (src1->type == GGML_TYPE_F32) {
  8220. ggml_compute_forward_add1_f16_f32(params, dst);
  8221. }
  8222. else {
  8223. GGML_ABORT("fatal error");
  8224. }
  8225. } break;
  8226. case GGML_TYPE_BF16:
  8227. {
  8228. if (src1->type == GGML_TYPE_BF16) {
  8229. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8230. }
  8231. else if (src1->type == GGML_TYPE_F32) {
  8232. ggml_compute_forward_add1_bf16_f32(params, dst);
  8233. }
  8234. else {
  8235. GGML_ABORT("fatal error");
  8236. }
  8237. } break;
  8238. case GGML_TYPE_Q4_0:
  8239. case GGML_TYPE_Q4_1:
  8240. case GGML_TYPE_Q5_0:
  8241. case GGML_TYPE_Q5_1:
  8242. case GGML_TYPE_Q8_0:
  8243. case GGML_TYPE_Q8_1:
  8244. case GGML_TYPE_Q2_K:
  8245. case GGML_TYPE_Q3_K:
  8246. case GGML_TYPE_Q4_K:
  8247. case GGML_TYPE_Q5_K:
  8248. case GGML_TYPE_Q6_K:
  8249. case GGML_TYPE_IQ2_XXS:
  8250. case GGML_TYPE_IQ2_XS:
  8251. case GGML_TYPE_IQ3_XXS:
  8252. case GGML_TYPE_IQ1_S:
  8253. case GGML_TYPE_IQ1_M:
  8254. case GGML_TYPE_IQ4_NL:
  8255. case GGML_TYPE_IQ4_XS:
  8256. case GGML_TYPE_IQ3_S:
  8257. case GGML_TYPE_IQ2_S:
  8258. case GGML_TYPE_Q4_0_4_4:
  8259. case GGML_TYPE_Q4_0_4_8:
  8260. case GGML_TYPE_Q4_0_8_8:
  8261. {
  8262. ggml_compute_forward_add1_q_f32(params, dst);
  8263. } break;
  8264. default:
  8265. {
  8266. GGML_ABORT("fatal error");
  8267. }
  8268. }
  8269. }
  8270. // ggml_compute_forward_acc
  8271. static void ggml_compute_forward_acc_f32(
  8272. const struct ggml_compute_params * params,
  8273. struct ggml_tensor * dst) {
  8274. const struct ggml_tensor * src0 = dst->src[0];
  8275. const struct ggml_tensor * src1 = dst->src[1];
  8276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8277. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8278. // view src0 and dst with these strides and data offset inbytes during acc
  8279. // nb0 is implicitly element_size because src0 and dst are contiguous
  8280. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8281. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8282. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8283. size_t offset = ((int32_t *) dst->op_params)[3];
  8284. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8285. if (!inplace) {
  8286. if (params->ith == 0) {
  8287. // memcpy needs to be synchronized across threads to avoid race conditions.
  8288. // => do it in INIT phase
  8289. memcpy(
  8290. ((char *) dst->data),
  8291. ((char *) src0->data),
  8292. ggml_nbytes(dst));
  8293. }
  8294. ggml_barrier(params->shared);
  8295. }
  8296. const int ith = params->ith;
  8297. const int nth = params->nth;
  8298. const int nr = ggml_nrows(src1);
  8299. const int nc = src1->ne[0];
  8300. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8301. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8302. // src0 and dst as viewed during acc
  8303. const size_t nb0 = ggml_element_size(src0);
  8304. const size_t nb00 = nb0;
  8305. const size_t nb01 = nb1;
  8306. const size_t nb02 = nb2;
  8307. const size_t nb03 = nb3;
  8308. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8309. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8310. GGML_ASSERT(nb10 == sizeof(float));
  8311. // rows per thread
  8312. const int dr = (nr + nth - 1)/nth;
  8313. // row range for this thread
  8314. const int ir0 = dr*ith;
  8315. const int ir1 = MIN(ir0 + dr, nr);
  8316. for (int ir = ir0; ir < ir1; ++ir) {
  8317. // src0 and dst are viewed with shape of src1 and offset
  8318. // => same indices
  8319. const int i3 = ir/(ne12*ne11);
  8320. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8321. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8322. #ifdef GGML_USE_ACCELERATE
  8323. vDSP_vadd(
  8324. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8325. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8326. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8327. #else
  8328. ggml_vec_add_f32(nc,
  8329. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8330. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8331. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8332. #endif
  8333. }
  8334. }
  8335. static void ggml_compute_forward_acc(
  8336. const struct ggml_compute_params * params,
  8337. struct ggml_tensor * dst) {
  8338. const struct ggml_tensor * src0 = dst->src[0];
  8339. switch (src0->type) {
  8340. case GGML_TYPE_F32:
  8341. {
  8342. ggml_compute_forward_acc_f32(params, dst);
  8343. } break;
  8344. case GGML_TYPE_F16:
  8345. case GGML_TYPE_BF16:
  8346. case GGML_TYPE_Q4_0:
  8347. case GGML_TYPE_Q4_1:
  8348. case GGML_TYPE_Q5_0:
  8349. case GGML_TYPE_Q5_1:
  8350. case GGML_TYPE_Q8_0:
  8351. case GGML_TYPE_Q8_1:
  8352. case GGML_TYPE_Q2_K:
  8353. case GGML_TYPE_Q3_K:
  8354. case GGML_TYPE_Q4_K:
  8355. case GGML_TYPE_Q5_K:
  8356. case GGML_TYPE_Q6_K:
  8357. case GGML_TYPE_IQ2_XXS:
  8358. case GGML_TYPE_IQ2_XS:
  8359. case GGML_TYPE_IQ3_XXS:
  8360. case GGML_TYPE_IQ1_S:
  8361. case GGML_TYPE_IQ1_M:
  8362. case GGML_TYPE_IQ4_NL:
  8363. case GGML_TYPE_IQ4_XS:
  8364. case GGML_TYPE_IQ3_S:
  8365. case GGML_TYPE_IQ2_S:
  8366. case GGML_TYPE_Q4_0_4_4:
  8367. case GGML_TYPE_Q4_0_4_8:
  8368. case GGML_TYPE_Q4_0_8_8:
  8369. default:
  8370. {
  8371. GGML_ABORT("fatal error");
  8372. }
  8373. }
  8374. }
  8375. // ggml_compute_forward_sub
  8376. static void ggml_compute_forward_sub_f32(
  8377. const struct ggml_compute_params * params,
  8378. struct ggml_tensor * dst) {
  8379. const struct ggml_tensor * src0 = dst->src[0];
  8380. const struct ggml_tensor * src1 = dst->src[1];
  8381. if (params->ith != 0) {
  8382. return;
  8383. }
  8384. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8385. const int nr = ggml_nrows(src0);
  8386. GGML_TENSOR_BINARY_OP_LOCALS
  8387. GGML_ASSERT( nb0 == sizeof(float));
  8388. GGML_ASSERT(nb00 == sizeof(float));
  8389. if (nb10 == sizeof(float)) {
  8390. for (int ir = 0; ir < nr; ++ir) {
  8391. // src0, src1 and dst are same shape => same indices
  8392. const int i3 = ir/(ne2*ne1);
  8393. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8394. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8395. #ifdef GGML_USE_ACCELERATE
  8396. vDSP_vsub(
  8397. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8398. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8399. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8400. ne0);
  8401. #else
  8402. ggml_vec_sub_f32(ne0,
  8403. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8404. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8405. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8406. #endif
  8407. // }
  8408. // }
  8409. }
  8410. } else {
  8411. // src1 is not contiguous
  8412. for (int ir = 0; ir < nr; ++ir) {
  8413. // src0, src1 and dst are same shape => same indices
  8414. const int i3 = ir/(ne2*ne1);
  8415. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8416. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8417. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8418. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8419. for (int i0 = 0; i0 < ne0; i0++) {
  8420. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8421. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8422. }
  8423. }
  8424. }
  8425. }
  8426. static void ggml_compute_forward_sub(
  8427. const struct ggml_compute_params * params,
  8428. struct ggml_tensor * dst) {
  8429. const struct ggml_tensor * src0 = dst->src[0];
  8430. switch (src0->type) {
  8431. case GGML_TYPE_F32:
  8432. {
  8433. ggml_compute_forward_sub_f32(params, dst);
  8434. } break;
  8435. default:
  8436. {
  8437. GGML_ABORT("fatal error");
  8438. }
  8439. }
  8440. }
  8441. // ggml_compute_forward_mul
  8442. static void ggml_compute_forward_mul_f32(
  8443. const struct ggml_compute_params * params,
  8444. struct ggml_tensor * dst) {
  8445. const struct ggml_tensor * src0 = dst->src[0];
  8446. const struct ggml_tensor * src1 = dst->src[1];
  8447. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8448. const int ith = params->ith;
  8449. const int nth = params->nth;
  8450. const int64_t nr = ggml_nrows(src0);
  8451. GGML_TENSOR_BINARY_OP_LOCALS
  8452. GGML_ASSERT( nb0 == sizeof(float));
  8453. GGML_ASSERT(nb00 == sizeof(float));
  8454. if (nb10 == sizeof(float)) {
  8455. for (int64_t ir = ith; ir < nr; ir += nth) {
  8456. // src0 and dst are same shape => same indices
  8457. const int64_t i03 = ir/(ne02*ne01);
  8458. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8459. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8460. const int64_t i13 = i03 % ne13;
  8461. const int64_t i12 = i02 % ne12;
  8462. const int64_t i11 = i01 % ne11;
  8463. const int64_t nr0 = ne00 / ne10;
  8464. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8465. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8466. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8467. for (int64_t r = 0 ; r < nr0; ++r) {
  8468. #ifdef GGML_USE_ACCELERATE
  8469. UNUSED(ggml_vec_mul_f32);
  8470. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8471. #else
  8472. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8473. #endif
  8474. }
  8475. }
  8476. } else {
  8477. // src1 is not contiguous
  8478. for (int64_t ir = ith; ir < nr; ir += nth) {
  8479. // src0 and dst are same shape => same indices
  8480. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8481. const int64_t i03 = ir/(ne02*ne01);
  8482. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8483. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8484. const int64_t i13 = i03 % ne13;
  8485. const int64_t i12 = i02 % ne12;
  8486. const int64_t i11 = i01 % ne11;
  8487. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8488. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8489. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8490. const int64_t i10 = i0 % ne10;
  8491. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8492. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8493. }
  8494. }
  8495. }
  8496. }
  8497. static void ggml_compute_forward_mul(
  8498. const struct ggml_compute_params * params,
  8499. struct ggml_tensor * dst) {
  8500. const struct ggml_tensor * src0 = dst->src[0];
  8501. const struct ggml_tensor * src1 = dst->src[1];
  8502. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8503. switch (src0->type) {
  8504. case GGML_TYPE_F32:
  8505. {
  8506. ggml_compute_forward_mul_f32(params, dst);
  8507. } break;
  8508. default:
  8509. {
  8510. GGML_ABORT("fatal error");
  8511. }
  8512. }
  8513. }
  8514. // ggml_compute_forward_div
  8515. static void ggml_compute_forward_div_f32(
  8516. const struct ggml_compute_params * params,
  8517. struct ggml_tensor * dst) {
  8518. const struct ggml_tensor * src0 = dst->src[0];
  8519. const struct ggml_tensor * src1 = dst->src[1];
  8520. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8521. const int ith = params->ith;
  8522. const int nth = params->nth;
  8523. const int64_t nr = ggml_nrows(src0);
  8524. GGML_TENSOR_BINARY_OP_LOCALS
  8525. GGML_ASSERT( nb0 == sizeof(float));
  8526. GGML_ASSERT(nb00 == sizeof(float));
  8527. if (nb10 == sizeof(float)) {
  8528. for (int64_t ir = ith; ir < nr; ir += nth) {
  8529. // src0 and dst are same shape => same indices
  8530. const int64_t i03 = ir/(ne02*ne01);
  8531. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8532. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8533. const int64_t i13 = i03 % ne13;
  8534. const int64_t i12 = i02 % ne12;
  8535. const int64_t i11 = i01 % ne11;
  8536. const int64_t nr0 = ne00 / ne10;
  8537. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8538. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8539. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8540. for (int64_t r = 0; r < nr0; ++r) {
  8541. #ifdef GGML_USE_ACCELERATE
  8542. UNUSED(ggml_vec_div_f32);
  8543. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8544. #else
  8545. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8546. #endif
  8547. }
  8548. }
  8549. } else {
  8550. // src1 is not contiguous
  8551. for (int64_t ir = ith; ir < nr; ir += nth) {
  8552. // src0 and dst are same shape => same indices
  8553. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8554. const int64_t i03 = ir/(ne02*ne01);
  8555. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8556. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8557. const int64_t i13 = i03 % ne13;
  8558. const int64_t i12 = i02 % ne12;
  8559. const int64_t i11 = i01 % ne11;
  8560. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8561. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8562. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8563. const int64_t i10 = i0 % ne10;
  8564. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8565. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8566. }
  8567. }
  8568. }
  8569. }
  8570. static void ggml_compute_forward_div(
  8571. const struct ggml_compute_params * params,
  8572. struct ggml_tensor * dst) {
  8573. const struct ggml_tensor * src0 = dst->src[0];
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_div_f32(params, dst);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ABORT("fatal error");
  8582. }
  8583. }
  8584. }
  8585. // ggml_compute_forward_sqr
  8586. static void ggml_compute_forward_sqr_f32(
  8587. const struct ggml_compute_params * params,
  8588. struct ggml_tensor * dst) {
  8589. const struct ggml_tensor * src0 = dst->src[0];
  8590. if (params->ith != 0) {
  8591. return;
  8592. }
  8593. assert(ggml_are_same_shape(src0, dst));
  8594. const int n = ggml_nrows(src0);
  8595. const int nc = src0->ne[0];
  8596. assert( dst->nb[0] == sizeof(float));
  8597. assert(src0->nb[0] == sizeof(float));
  8598. for (int i = 0; i < n; i++) {
  8599. ggml_vec_sqr_f32(nc,
  8600. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8601. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8602. }
  8603. }
  8604. static void ggml_compute_forward_sqr(
  8605. const struct ggml_compute_params * params,
  8606. struct ggml_tensor * dst) {
  8607. const struct ggml_tensor * src0 = dst->src[0];
  8608. switch (src0->type) {
  8609. case GGML_TYPE_F32:
  8610. {
  8611. ggml_compute_forward_sqr_f32(params, dst);
  8612. } break;
  8613. default:
  8614. {
  8615. GGML_ABORT("fatal error");
  8616. }
  8617. }
  8618. }
  8619. // ggml_compute_forward_sqrt
  8620. static void ggml_compute_forward_sqrt_f32(
  8621. const struct ggml_compute_params * params,
  8622. struct ggml_tensor * dst) {
  8623. const struct ggml_tensor * src0 = dst->src[0];
  8624. if (params->ith != 0) {
  8625. return;
  8626. }
  8627. assert(ggml_are_same_shape(src0, dst));
  8628. const int n = ggml_nrows(src0);
  8629. const int nc = src0->ne[0];
  8630. assert( dst->nb[0] == sizeof(float));
  8631. assert(src0->nb[0] == sizeof(float));
  8632. for (int i = 0; i < n; i++) {
  8633. ggml_vec_sqrt_f32(nc,
  8634. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8635. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8636. }
  8637. }
  8638. static void ggml_compute_forward_sqrt(
  8639. const struct ggml_compute_params * params,
  8640. struct ggml_tensor * dst) {
  8641. const struct ggml_tensor * src0 = dst->src[0];
  8642. switch (src0->type) {
  8643. case GGML_TYPE_F32:
  8644. {
  8645. ggml_compute_forward_sqrt_f32(params, dst);
  8646. } break;
  8647. default:
  8648. {
  8649. GGML_ABORT("fatal error");
  8650. }
  8651. }
  8652. }
  8653. // ggml_compute_forward_log
  8654. static void ggml_compute_forward_log_f32(
  8655. const struct ggml_compute_params * params,
  8656. struct ggml_tensor * dst) {
  8657. const struct ggml_tensor * src0 = dst->src[0];
  8658. if (params->ith != 0) {
  8659. return;
  8660. }
  8661. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8662. const int n = ggml_nrows(src0);
  8663. const int nc = src0->ne[0];
  8664. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8665. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8666. for (int i = 0; i < n; i++) {
  8667. ggml_vec_log_f32(nc,
  8668. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8669. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8670. }
  8671. }
  8672. static void ggml_compute_forward_log(
  8673. const struct ggml_compute_params * params,
  8674. struct ggml_tensor * dst) {
  8675. const struct ggml_tensor * src0 = dst->src[0];
  8676. switch (src0->type) {
  8677. case GGML_TYPE_F32:
  8678. {
  8679. ggml_compute_forward_log_f32(params, dst);
  8680. } break;
  8681. default:
  8682. {
  8683. GGML_ABORT("fatal error");
  8684. }
  8685. }
  8686. }
  8687. // ggml_compute_forward_sum
  8688. static void ggml_compute_forward_sum_f32(
  8689. const struct ggml_compute_params * params,
  8690. struct ggml_tensor * dst) {
  8691. const struct ggml_tensor * src0 = dst->src[0];
  8692. if (params->ith != 0) {
  8693. return;
  8694. }
  8695. assert(ggml_is_scalar(dst));
  8696. assert(ggml_is_scalar(dst));
  8697. assert(src0->nb[0] == sizeof(float));
  8698. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8699. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8700. ggml_float sum = 0;
  8701. ggml_float row_sum = 0;
  8702. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8704. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8705. ggml_vec_sum_f32_ggf(ne00,
  8706. &row_sum,
  8707. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8708. sum += row_sum;
  8709. }
  8710. }
  8711. }
  8712. ((float *) dst->data)[0] = sum;
  8713. }
  8714. static void ggml_compute_forward_sum_f16(
  8715. const struct ggml_compute_params * params,
  8716. struct ggml_tensor * dst) {
  8717. const struct ggml_tensor * src0 = dst->src[0];
  8718. if (params->ith != 0) {
  8719. return;
  8720. }
  8721. assert(ggml_is_scalar(dst));
  8722. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8723. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8724. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8725. float sum = 0;
  8726. float row_sum = 0;
  8727. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8728. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8729. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8730. ggml_vec_sum_f16_ggf(ne00,
  8731. &row_sum,
  8732. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8733. sum += row_sum;
  8734. }
  8735. }
  8736. }
  8737. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8738. }
  8739. static void ggml_compute_forward_sum_bf16(
  8740. const struct ggml_compute_params * params,
  8741. struct ggml_tensor * dst) {
  8742. const struct ggml_tensor * src0 = dst->src[0];
  8743. if (params->ith != 0) {
  8744. return;
  8745. }
  8746. assert(ggml_is_scalar(dst));
  8747. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8748. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8749. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8750. float sum = 0;
  8751. float row_sum = 0;
  8752. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8753. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8754. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8755. ggml_vec_sum_bf16_ggf(ne00,
  8756. &row_sum,
  8757. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8758. sum += row_sum;
  8759. }
  8760. }
  8761. }
  8762. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8763. }
  8764. static void ggml_compute_forward_sum(
  8765. const struct ggml_compute_params * params,
  8766. struct ggml_tensor * dst) {
  8767. const struct ggml_tensor * src0 = dst->src[0];
  8768. switch (src0->type) {
  8769. case GGML_TYPE_F32:
  8770. {
  8771. ggml_compute_forward_sum_f32(params, dst);
  8772. } break;
  8773. case GGML_TYPE_F16:
  8774. {
  8775. ggml_compute_forward_sum_f16(params, dst);
  8776. } break;
  8777. case GGML_TYPE_BF16:
  8778. {
  8779. ggml_compute_forward_sum_bf16(params, dst);
  8780. } break;
  8781. default:
  8782. {
  8783. GGML_ABORT("fatal error");
  8784. }
  8785. }
  8786. }
  8787. // ggml_compute_forward_sum_rows
  8788. static void ggml_compute_forward_sum_rows_f32(
  8789. const struct ggml_compute_params * params,
  8790. struct ggml_tensor * dst) {
  8791. const struct ggml_tensor * src0 = dst->src[0];
  8792. if (params->ith != 0) {
  8793. return;
  8794. }
  8795. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8796. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8797. GGML_TENSOR_UNARY_OP_LOCALS
  8798. GGML_ASSERT(ne0 == 1);
  8799. GGML_ASSERT(ne1 == ne01);
  8800. GGML_ASSERT(ne2 == ne02);
  8801. GGML_ASSERT(ne3 == ne03);
  8802. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8803. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8804. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8805. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8806. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8807. float row_sum = 0;
  8808. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8809. dst_row[0] = row_sum;
  8810. }
  8811. }
  8812. }
  8813. }
  8814. static void ggml_compute_forward_sum_rows(
  8815. const struct ggml_compute_params * params,
  8816. struct ggml_tensor * dst) {
  8817. const struct ggml_tensor * src0 = dst->src[0];
  8818. switch (src0->type) {
  8819. case GGML_TYPE_F32:
  8820. {
  8821. ggml_compute_forward_sum_rows_f32(params, dst);
  8822. } break;
  8823. default:
  8824. {
  8825. GGML_ABORT("fatal error");
  8826. }
  8827. }
  8828. }
  8829. // ggml_compute_forward_mean
  8830. static void ggml_compute_forward_mean_f32(
  8831. const struct ggml_compute_params * params,
  8832. struct ggml_tensor * dst) {
  8833. const struct ggml_tensor * src0 = dst->src[0];
  8834. if (params->ith != 0) {
  8835. return;
  8836. }
  8837. assert(src0->nb[0] == sizeof(float));
  8838. GGML_TENSOR_UNARY_OP_LOCALS
  8839. assert(ne0 == 1);
  8840. assert(ne1 == ne01);
  8841. assert(ne2 == ne02);
  8842. assert(ne3 == ne03);
  8843. UNUSED(ne0);
  8844. UNUSED(ne1);
  8845. UNUSED(ne2);
  8846. UNUSED(ne3);
  8847. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8848. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8849. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8850. ggml_vec_sum_f32(ne00,
  8851. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8852. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8853. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8854. }
  8855. }
  8856. }
  8857. }
  8858. static void ggml_compute_forward_mean(
  8859. const struct ggml_compute_params * params,
  8860. struct ggml_tensor * dst) {
  8861. const struct ggml_tensor * src0 = dst->src[0];
  8862. switch (src0->type) {
  8863. case GGML_TYPE_F32:
  8864. {
  8865. ggml_compute_forward_mean_f32(params, dst);
  8866. } break;
  8867. default:
  8868. {
  8869. GGML_ABORT("fatal error");
  8870. }
  8871. }
  8872. }
  8873. // ggml_compute_forward_argmax
  8874. static void ggml_compute_forward_argmax_f32(
  8875. const struct ggml_compute_params * params,
  8876. struct ggml_tensor * dst) {
  8877. const struct ggml_tensor * src0 = dst->src[0];
  8878. if (params->ith != 0) {
  8879. return;
  8880. }
  8881. assert(src0->nb[0] == sizeof(float));
  8882. assert(dst->nb[0] == sizeof(float));
  8883. const int64_t ne00 = src0->ne[0];
  8884. const int64_t ne01 = src0->ne[1];
  8885. const size_t nb01 = src0->nb[1];
  8886. const size_t nb0 = dst->nb[0];
  8887. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8888. float * src = (float *) ((char *) src0->data + i1*nb01);
  8889. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8890. int v = 0;
  8891. ggml_vec_argmax_f32(ne00, &v, src);
  8892. dst_[0] = v;
  8893. }
  8894. }
  8895. static void ggml_compute_forward_argmax(
  8896. const struct ggml_compute_params * params,
  8897. struct ggml_tensor * dst) {
  8898. const struct ggml_tensor * src0 = dst->src[0];
  8899. switch (src0->type) {
  8900. case GGML_TYPE_F32:
  8901. {
  8902. ggml_compute_forward_argmax_f32(params, dst);
  8903. } break;
  8904. default:
  8905. {
  8906. GGML_ABORT("fatal error");
  8907. }
  8908. }
  8909. }
  8910. // ggml_compute_forward_repeat
  8911. static void ggml_compute_forward_repeat_f32(
  8912. const struct ggml_compute_params * params,
  8913. struct ggml_tensor * dst) {
  8914. const struct ggml_tensor * src0 = dst->src[0];
  8915. if (params->ith != 0) {
  8916. return;
  8917. }
  8918. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8919. GGML_TENSOR_UNARY_OP_LOCALS
  8920. // guaranteed to be an integer due to the check in ggml_can_repeat
  8921. const int nr0 = (int)(ne0/ne00);
  8922. const int nr1 = (int)(ne1/ne01);
  8923. const int nr2 = (int)(ne2/ne02);
  8924. const int nr3 = (int)(ne3/ne03);
  8925. // TODO: support for transposed / permuted tensors
  8926. GGML_ASSERT(nb0 == sizeof(float));
  8927. GGML_ASSERT(nb00 == sizeof(float));
  8928. // TODO: maybe this is not optimal?
  8929. for (int i3 = 0; i3 < nr3; i3++) {
  8930. for (int k3 = 0; k3 < ne03; k3++) {
  8931. for (int i2 = 0; i2 < nr2; i2++) {
  8932. for (int k2 = 0; k2 < ne02; k2++) {
  8933. for (int i1 = 0; i1 < nr1; i1++) {
  8934. for (int k1 = 0; k1 < ne01; k1++) {
  8935. for (int i0 = 0; i0 < nr0; i0++) {
  8936. ggml_vec_cpy_f32(ne00,
  8937. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8938. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8939. }
  8940. }
  8941. }
  8942. }
  8943. }
  8944. }
  8945. }
  8946. }
  8947. static void ggml_compute_forward_repeat_f16(
  8948. const struct ggml_compute_params * params,
  8949. struct ggml_tensor * dst) {
  8950. const struct ggml_tensor * src0 = dst->src[0];
  8951. if (params->ith != 0) {
  8952. return;
  8953. }
  8954. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8955. GGML_TENSOR_UNARY_OP_LOCALS
  8956. // guaranteed to be an integer due to the check in ggml_can_repeat
  8957. const int nr0 = (int)(ne0/ne00);
  8958. const int nr1 = (int)(ne1/ne01);
  8959. const int nr2 = (int)(ne2/ne02);
  8960. const int nr3 = (int)(ne3/ne03);
  8961. // TODO: support for transposed / permuted tensors
  8962. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8963. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8964. // TODO: maybe this is not optimal?
  8965. for (int i3 = 0; i3 < nr3; i3++) {
  8966. for (int k3 = 0; k3 < ne03; k3++) {
  8967. for (int i2 = 0; i2 < nr2; i2++) {
  8968. for (int k2 = 0; k2 < ne02; k2++) {
  8969. for (int i1 = 0; i1 < nr1; i1++) {
  8970. for (int k1 = 0; k1 < ne01; k1++) {
  8971. for (int i0 = 0; i0 < nr0; i0++) {
  8972. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8973. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8974. // ggml_vec_cpy_f16(ne00, y, x)
  8975. for (int i = 0; i < ne00; ++i) {
  8976. y[i] = x[i];
  8977. }
  8978. }
  8979. }
  8980. }
  8981. }
  8982. }
  8983. }
  8984. }
  8985. }
  8986. static void ggml_compute_forward_repeat(
  8987. const struct ggml_compute_params * params,
  8988. struct ggml_tensor * dst) {
  8989. const struct ggml_tensor * src0 = dst->src[0];
  8990. switch (src0->type) {
  8991. case GGML_TYPE_F16:
  8992. case GGML_TYPE_BF16:
  8993. case GGML_TYPE_I16:
  8994. {
  8995. ggml_compute_forward_repeat_f16(params, dst);
  8996. } break;
  8997. case GGML_TYPE_F32:
  8998. case GGML_TYPE_I32:
  8999. {
  9000. ggml_compute_forward_repeat_f32(params, dst);
  9001. } break;
  9002. default:
  9003. {
  9004. GGML_ABORT("fatal error");
  9005. }
  9006. }
  9007. }
  9008. // ggml_compute_forward_repeat_back
  9009. static void ggml_compute_forward_repeat_back_f32(
  9010. const struct ggml_compute_params * params,
  9011. struct ggml_tensor * dst) {
  9012. const struct ggml_tensor * src0 = dst->src[0];
  9013. if (params->ith != 0) {
  9014. return;
  9015. }
  9016. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9017. GGML_TENSOR_UNARY_OP_LOCALS
  9018. // guaranteed to be an integer due to the check in ggml_can_repeat
  9019. const int nr0 = (int)(ne00/ne0);
  9020. const int nr1 = (int)(ne01/ne1);
  9021. const int nr2 = (int)(ne02/ne2);
  9022. const int nr3 = (int)(ne03/ne3);
  9023. // TODO: support for transposed / permuted tensors
  9024. GGML_ASSERT(nb0 == sizeof(float));
  9025. GGML_ASSERT(nb00 == sizeof(float));
  9026. if (ggml_is_contiguous(dst)) {
  9027. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9028. } else {
  9029. for (int k3 = 0; k3 < ne3; k3++) {
  9030. for (int k2 = 0; k2 < ne2; k2++) {
  9031. for (int k1 = 0; k1 < ne1; k1++) {
  9032. ggml_vec_set_f32(ne0,
  9033. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9034. 0);
  9035. }
  9036. }
  9037. }
  9038. }
  9039. // TODO: maybe this is not optimal?
  9040. for (int i3 = 0; i3 < nr3; i3++) {
  9041. for (int k3 = 0; k3 < ne3; k3++) {
  9042. for (int i2 = 0; i2 < nr2; i2++) {
  9043. for (int k2 = 0; k2 < ne2; k2++) {
  9044. for (int i1 = 0; i1 < nr1; i1++) {
  9045. for (int k1 = 0; k1 < ne1; k1++) {
  9046. for (int i0 = 0; i0 < nr0; i0++) {
  9047. ggml_vec_acc_f32(ne0,
  9048. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9049. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9050. }
  9051. }
  9052. }
  9053. }
  9054. }
  9055. }
  9056. }
  9057. }
  9058. static void ggml_compute_forward_repeat_back(
  9059. const struct ggml_compute_params * params,
  9060. struct ggml_tensor * dst) {
  9061. const struct ggml_tensor * src0 = dst->src[0];
  9062. switch (src0->type) {
  9063. case GGML_TYPE_F32:
  9064. {
  9065. ggml_compute_forward_repeat_back_f32(params, dst);
  9066. } break;
  9067. default:
  9068. {
  9069. GGML_ABORT("fatal error");
  9070. }
  9071. }
  9072. }
  9073. // ggml_compute_forward_concat
  9074. static void ggml_compute_forward_concat_f32(
  9075. const struct ggml_compute_params * params,
  9076. struct ggml_tensor * dst) {
  9077. const struct ggml_tensor * src0 = dst->src[0];
  9078. const struct ggml_tensor * src1 = dst->src[1];
  9079. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9080. const int ith = params->ith;
  9081. const int nth = params->nth;
  9082. GGML_TENSOR_BINARY_OP_LOCALS
  9083. // TODO: support for transposed / permuted tensors
  9084. GGML_ASSERT(nb0 == sizeof(float));
  9085. GGML_ASSERT(nb00 == sizeof(float));
  9086. GGML_ASSERT(nb10 == sizeof(float));
  9087. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9088. GGML_ASSERT(dim >= 0 && dim < 4);
  9089. int64_t o[4] = {0, 0, 0, 0};
  9090. o[dim] = src0->ne[dim];
  9091. const float * x;
  9092. // TODO: smarter multi-theading
  9093. for (int i3 = 0; i3 < ne3; i3++) {
  9094. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9095. for (int i1 = 0; i1 < ne1; i1++) {
  9096. for (int i0 = 0; i0 < ne0; i0++) {
  9097. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9098. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9099. } else {
  9100. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9101. }
  9102. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9103. *y = *x;
  9104. }
  9105. }
  9106. }
  9107. }
  9108. }
  9109. static void ggml_compute_forward_concat(
  9110. const struct ggml_compute_params * params,
  9111. struct ggml_tensor * dst) {
  9112. const struct ggml_tensor * src0 = dst->src[0];
  9113. switch (src0->type) {
  9114. case GGML_TYPE_F32:
  9115. case GGML_TYPE_I32:
  9116. {
  9117. ggml_compute_forward_concat_f32(params, dst);
  9118. } break;
  9119. default:
  9120. {
  9121. GGML_ABORT("fatal error");
  9122. }
  9123. }
  9124. }
  9125. // ggml_compute_forward_abs
  9126. static void ggml_compute_forward_abs_f32(
  9127. const struct ggml_compute_params * params,
  9128. struct ggml_tensor * dst) {
  9129. const struct ggml_tensor * src0 = dst->src[0];
  9130. if (params->ith != 0) {
  9131. return;
  9132. }
  9133. assert(ggml_is_contiguous_1(src0));
  9134. assert(ggml_is_contiguous_1(dst));
  9135. assert(ggml_are_same_shape(src0, dst));
  9136. const int n = ggml_nrows(src0);
  9137. const int nc = src0->ne[0];
  9138. for (int i = 0; i < n; i++) {
  9139. ggml_vec_abs_f32(nc,
  9140. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9141. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9142. }
  9143. }
  9144. static void ggml_compute_forward_abs(
  9145. const struct ggml_compute_params * params,
  9146. struct ggml_tensor * dst) {
  9147. const struct ggml_tensor * src0 = dst->src[0];
  9148. switch (src0->type) {
  9149. case GGML_TYPE_F32:
  9150. {
  9151. ggml_compute_forward_abs_f32(params, dst);
  9152. } break;
  9153. default:
  9154. {
  9155. GGML_ABORT("fatal error");
  9156. }
  9157. }
  9158. }
  9159. // ggml_compute_forward_sgn
  9160. static void ggml_compute_forward_sgn_f32(
  9161. const struct ggml_compute_params * params,
  9162. struct ggml_tensor * dst) {
  9163. const struct ggml_tensor * src0 = dst->src[0];
  9164. if (params->ith != 0) {
  9165. return;
  9166. }
  9167. assert(ggml_is_contiguous_1(src0));
  9168. assert(ggml_is_contiguous_1(dst));
  9169. assert(ggml_are_same_shape(src0, dst));
  9170. const int n = ggml_nrows(src0);
  9171. const int nc = src0->ne[0];
  9172. for (int i = 0; i < n; i++) {
  9173. ggml_vec_sgn_f32(nc,
  9174. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9175. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9176. }
  9177. }
  9178. static void ggml_compute_forward_sgn(
  9179. const struct ggml_compute_params * params,
  9180. struct ggml_tensor * dst) {
  9181. const struct ggml_tensor * src0 = dst->src[0];
  9182. switch (src0->type) {
  9183. case GGML_TYPE_F32:
  9184. {
  9185. ggml_compute_forward_sgn_f32(params, dst);
  9186. } break;
  9187. default:
  9188. {
  9189. GGML_ABORT("fatal error");
  9190. }
  9191. }
  9192. }
  9193. // ggml_compute_forward_neg
  9194. static void ggml_compute_forward_neg_f32(
  9195. const struct ggml_compute_params * params,
  9196. struct ggml_tensor * dst) {
  9197. const struct ggml_tensor * src0 = dst->src[0];
  9198. if (params->ith != 0) {
  9199. return;
  9200. }
  9201. assert(ggml_is_contiguous_1(src0));
  9202. assert(ggml_is_contiguous_1(dst));
  9203. assert(ggml_are_same_shape(src0, dst));
  9204. const int n = ggml_nrows(src0);
  9205. const int nc = src0->ne[0];
  9206. for (int i = 0; i < n; i++) {
  9207. ggml_vec_neg_f32(nc,
  9208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9210. }
  9211. }
  9212. static void ggml_compute_forward_neg(
  9213. const struct ggml_compute_params * params,
  9214. struct ggml_tensor * dst) {
  9215. const struct ggml_tensor * src0 = dst->src[0];
  9216. switch (src0->type) {
  9217. case GGML_TYPE_F32:
  9218. {
  9219. ggml_compute_forward_neg_f32(params, dst);
  9220. } break;
  9221. default:
  9222. {
  9223. GGML_ABORT("fatal error");
  9224. }
  9225. }
  9226. }
  9227. // ggml_compute_forward_step
  9228. static void ggml_compute_forward_step_f32(
  9229. const struct ggml_compute_params * params,
  9230. struct ggml_tensor * dst) {
  9231. const struct ggml_tensor * src0 = dst->src[0];
  9232. if (params->ith != 0) {
  9233. return;
  9234. }
  9235. assert(ggml_is_contiguous_1(src0));
  9236. assert(ggml_is_contiguous_1(dst));
  9237. assert(ggml_are_same_shape(src0, dst));
  9238. const int n = ggml_nrows(src0);
  9239. const int nc = src0->ne[0];
  9240. for (int i = 0; i < n; i++) {
  9241. ggml_vec_step_f32(nc,
  9242. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9243. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9244. }
  9245. }
  9246. static void ggml_compute_forward_step(
  9247. const struct ggml_compute_params * params,
  9248. struct ggml_tensor * dst) {
  9249. const struct ggml_tensor * src0 = dst->src[0];
  9250. switch (src0->type) {
  9251. case GGML_TYPE_F32:
  9252. {
  9253. ggml_compute_forward_step_f32(params, dst);
  9254. } break;
  9255. default:
  9256. {
  9257. GGML_ABORT("fatal error");
  9258. }
  9259. }
  9260. }
  9261. // ggml_compute_forward_tanh
  9262. static void ggml_compute_forward_tanh_f32(
  9263. const struct ggml_compute_params * params,
  9264. struct ggml_tensor * dst) {
  9265. const struct ggml_tensor * src0 = dst->src[0];
  9266. if (params->ith != 0) {
  9267. return;
  9268. }
  9269. assert(ggml_is_contiguous_1(src0));
  9270. assert(ggml_is_contiguous_1(dst));
  9271. assert(ggml_are_same_shape(src0, dst));
  9272. const int n = ggml_nrows(src0);
  9273. const int nc = src0->ne[0];
  9274. for (int i = 0; i < n; i++) {
  9275. ggml_vec_tanh_f32(nc,
  9276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9278. }
  9279. }
  9280. static void ggml_compute_forward_tanh(
  9281. const struct ggml_compute_params * params,
  9282. struct ggml_tensor * dst) {
  9283. const struct ggml_tensor * src0 = dst->src[0];
  9284. switch (src0->type) {
  9285. case GGML_TYPE_F32:
  9286. {
  9287. ggml_compute_forward_tanh_f32(params, dst);
  9288. } break;
  9289. default:
  9290. {
  9291. GGML_ABORT("fatal error");
  9292. }
  9293. }
  9294. }
  9295. // ggml_compute_forward_elu
  9296. static void ggml_compute_forward_elu_f32(
  9297. const struct ggml_compute_params * params,
  9298. struct ggml_tensor * dst) {
  9299. const struct ggml_tensor * src0 = dst->src[0];
  9300. if (params->ith != 0) {
  9301. return;
  9302. }
  9303. assert(ggml_is_contiguous_1(src0));
  9304. assert(ggml_is_contiguous_1(dst));
  9305. assert(ggml_are_same_shape(src0, dst));
  9306. const int n = ggml_nrows(src0);
  9307. const int nc = src0->ne[0];
  9308. for (int i = 0; i < n; i++) {
  9309. ggml_vec_elu_f32(nc,
  9310. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9311. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9312. }
  9313. }
  9314. static void ggml_compute_forward_elu(
  9315. const struct ggml_compute_params * params,
  9316. struct ggml_tensor * dst) {
  9317. const struct ggml_tensor * src0 = dst->src[0];
  9318. switch (src0->type) {
  9319. case GGML_TYPE_F32:
  9320. {
  9321. ggml_compute_forward_elu_f32(params, dst);
  9322. } break;
  9323. default:
  9324. {
  9325. GGML_ABORT("fatal error");
  9326. }
  9327. }
  9328. }
  9329. // ggml_compute_forward_relu
  9330. static void ggml_compute_forward_relu_f32(
  9331. const struct ggml_compute_params * params,
  9332. struct ggml_tensor * dst) {
  9333. const struct ggml_tensor * src0 = dst->src[0];
  9334. if (params->ith != 0) {
  9335. return;
  9336. }
  9337. assert(ggml_is_contiguous_1(src0));
  9338. assert(ggml_is_contiguous_1(dst));
  9339. assert(ggml_are_same_shape(src0, dst));
  9340. const int n = ggml_nrows(src0);
  9341. const int nc = src0->ne[0];
  9342. for (int i = 0; i < n; i++) {
  9343. ggml_vec_relu_f32(nc,
  9344. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9345. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9346. }
  9347. }
  9348. static void ggml_compute_forward_relu(
  9349. const struct ggml_compute_params * params,
  9350. struct ggml_tensor * dst) {
  9351. const struct ggml_tensor * src0 = dst->src[0];
  9352. switch (src0->type) {
  9353. case GGML_TYPE_F32:
  9354. {
  9355. ggml_compute_forward_relu_f32(params, dst);
  9356. } break;
  9357. default:
  9358. {
  9359. GGML_ABORT("fatal error");
  9360. }
  9361. }
  9362. }
  9363. // ggml_compute_forward_sigmoid
  9364. static void ggml_compute_forward_sigmoid_f32(
  9365. const struct ggml_compute_params * params,
  9366. struct ggml_tensor * dst) {
  9367. const struct ggml_tensor * src0 = dst->src[0];
  9368. if (params->ith != 0) {
  9369. return;
  9370. }
  9371. assert(ggml_is_contiguous_1(src0));
  9372. assert(ggml_is_contiguous_1(dst));
  9373. assert(ggml_are_same_shape(src0, dst));
  9374. const int n = ggml_nrows(src0);
  9375. const int nc = src0->ne[0];
  9376. for (int i = 0; i < n; i++) {
  9377. ggml_vec_sigmoid_f32(nc,
  9378. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9379. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9380. }
  9381. }
  9382. static void ggml_compute_forward_sigmoid(
  9383. const struct ggml_compute_params * params,
  9384. struct ggml_tensor * dst) {
  9385. const struct ggml_tensor * src0 = dst->src[0];
  9386. switch (src0->type) {
  9387. case GGML_TYPE_F32:
  9388. {
  9389. ggml_compute_forward_sigmoid_f32(params, dst);
  9390. } break;
  9391. default:
  9392. {
  9393. GGML_ABORT("fatal error");
  9394. }
  9395. }
  9396. }
  9397. // ggml_compute_forward_gelu
  9398. static void ggml_compute_forward_gelu_f32(
  9399. const struct ggml_compute_params * params,
  9400. struct ggml_tensor * dst) {
  9401. const struct ggml_tensor * src0 = dst->src[0];
  9402. assert(ggml_is_contiguous_1(src0));
  9403. assert(ggml_is_contiguous_1(dst));
  9404. assert(ggml_are_same_shape(src0, dst));
  9405. const int ith = params->ith;
  9406. const int nth = params->nth;
  9407. const int nc = src0->ne[0];
  9408. const int nr = ggml_nrows(src0);
  9409. // rows per thread
  9410. const int dr = (nr + nth - 1)/nth;
  9411. // row range for this thread
  9412. const int ir0 = dr*ith;
  9413. const int ir1 = MIN(ir0 + dr, nr);
  9414. for (int i1 = ir0; i1 < ir1; i1++) {
  9415. ggml_vec_gelu_f32(nc,
  9416. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9417. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9418. #ifndef NDEBUG
  9419. for (int k = 0; k < nc; k++) {
  9420. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9421. UNUSED(x);
  9422. assert(!isnan(x));
  9423. assert(!isinf(x));
  9424. }
  9425. #endif
  9426. }
  9427. }
  9428. static void ggml_compute_forward_gelu(
  9429. const struct ggml_compute_params * params,
  9430. struct ggml_tensor * dst) {
  9431. const struct ggml_tensor * src0 = dst->src[0];
  9432. switch (src0->type) {
  9433. case GGML_TYPE_F32:
  9434. {
  9435. ggml_compute_forward_gelu_f32(params, dst);
  9436. } break;
  9437. default:
  9438. {
  9439. GGML_ABORT("fatal error");
  9440. }
  9441. }
  9442. }
  9443. // ggml_compute_forward_gelu_quick
  9444. static void ggml_compute_forward_gelu_quick_f32(
  9445. const struct ggml_compute_params * params,
  9446. struct ggml_tensor * dst) {
  9447. const struct ggml_tensor * src0 = dst->src[0];
  9448. assert(ggml_is_contiguous_1(src0));
  9449. assert(ggml_is_contiguous_1(dst));
  9450. assert(ggml_are_same_shape(src0, dst));
  9451. const int ith = params->ith;
  9452. const int nth = params->nth;
  9453. const int nc = src0->ne[0];
  9454. const int nr = ggml_nrows(src0);
  9455. // rows per thread
  9456. const int dr = (nr + nth - 1)/nth;
  9457. // row range for this thread
  9458. const int ir0 = dr*ith;
  9459. const int ir1 = MIN(ir0 + dr, nr);
  9460. for (int i1 = ir0; i1 < ir1; i1++) {
  9461. ggml_vec_gelu_quick_f32(nc,
  9462. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9463. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9464. #ifndef NDEBUG
  9465. for (int k = 0; k < nc; k++) {
  9466. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9467. UNUSED(x);
  9468. assert(!isnan(x));
  9469. assert(!isinf(x));
  9470. }
  9471. #endif
  9472. }
  9473. }
  9474. static void ggml_compute_forward_gelu_quick(
  9475. const struct ggml_compute_params * params,
  9476. struct ggml_tensor * dst) {
  9477. const struct ggml_tensor * src0 = dst->src[0];
  9478. switch (src0->type) {
  9479. case GGML_TYPE_F32:
  9480. {
  9481. ggml_compute_forward_gelu_quick_f32(params, dst);
  9482. } break;
  9483. default:
  9484. {
  9485. GGML_ABORT("fatal error");
  9486. }
  9487. }
  9488. }
  9489. // ggml_compute_forward_silu
  9490. static void ggml_compute_forward_silu_f32(
  9491. const struct ggml_compute_params * params,
  9492. struct ggml_tensor * dst) {
  9493. const struct ggml_tensor * src0 = dst->src[0];
  9494. assert(ggml_is_contiguous_1(src0));
  9495. assert(ggml_is_contiguous_1(dst));
  9496. assert(ggml_are_same_shape(src0, dst));
  9497. const int ith = params->ith;
  9498. const int nth = params->nth;
  9499. const int nc = src0->ne[0];
  9500. const int nr = ggml_nrows(src0);
  9501. // rows per thread
  9502. const int dr = (nr + nth - 1)/nth;
  9503. // row range for this thread
  9504. const int ir0 = dr*ith;
  9505. const int ir1 = MIN(ir0 + dr, nr);
  9506. for (int i1 = ir0; i1 < ir1; i1++) {
  9507. ggml_vec_silu_f32(nc,
  9508. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9509. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9510. #ifndef NDEBUG
  9511. for (int k = 0; k < nc; k++) {
  9512. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9513. UNUSED(x);
  9514. assert(!isnan(x));
  9515. assert(!isinf(x));
  9516. }
  9517. #endif
  9518. }
  9519. }
  9520. static void ggml_compute_forward_silu(
  9521. const struct ggml_compute_params * params,
  9522. struct ggml_tensor * dst) {
  9523. const struct ggml_tensor * src0 = dst->src[0];
  9524. switch (src0->type) {
  9525. case GGML_TYPE_F32:
  9526. {
  9527. ggml_compute_forward_silu_f32(params, dst);
  9528. } break;
  9529. default:
  9530. {
  9531. GGML_ABORT("fatal error");
  9532. }
  9533. }
  9534. }
  9535. // ggml_compute_forward_leaky_relu
  9536. static void ggml_compute_forward_leaky_relu_f32(
  9537. const struct ggml_compute_params * params,
  9538. struct ggml_tensor * dst) {
  9539. const struct ggml_tensor * src0 = dst->src[0];
  9540. if (params->ith != 0) {
  9541. return;
  9542. }
  9543. assert(ggml_is_contiguous_1(src0));
  9544. assert(ggml_is_contiguous_1(dst));
  9545. assert(ggml_are_same_shape(src0, dst));
  9546. const int n = ggml_nrows(src0);
  9547. const int nc = src0->ne[0];
  9548. float negative_slope;
  9549. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9550. assert(dst->nb[0] == sizeof(float));
  9551. assert(src0->nb[0] == sizeof(float));
  9552. for (int i = 0; i < n; i++) {
  9553. ggml_vec_leaky_relu_f32(nc,
  9554. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9555. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9556. }
  9557. }
  9558. static void ggml_compute_forward_leaky_relu(
  9559. const struct ggml_compute_params * params,
  9560. struct ggml_tensor * dst) {
  9561. const struct ggml_tensor * src0 = dst->src[0];
  9562. switch (src0->type) {
  9563. case GGML_TYPE_F32:
  9564. {
  9565. ggml_compute_forward_leaky_relu_f32(params, dst);
  9566. } break;
  9567. default:
  9568. {
  9569. GGML_ABORT("fatal error");
  9570. }
  9571. }
  9572. }
  9573. // ggml_compute_forward_silu_back
  9574. static void ggml_compute_forward_silu_back_f32(
  9575. const struct ggml_compute_params * params,
  9576. struct ggml_tensor * dst) {
  9577. const struct ggml_tensor * src0 = dst->src[0];
  9578. const struct ggml_tensor * grad = dst->src[1];
  9579. assert(ggml_is_contiguous_1(grad));
  9580. assert(ggml_is_contiguous_1(src0));
  9581. assert(ggml_is_contiguous_1(dst));
  9582. assert(ggml_are_same_shape(src0, dst));
  9583. assert(ggml_are_same_shape(src0, grad));
  9584. const int ith = params->ith;
  9585. const int nth = params->nth;
  9586. const int nc = src0->ne[0];
  9587. const int nr = ggml_nrows(src0);
  9588. // rows per thread
  9589. const int dr = (nr + nth - 1)/nth;
  9590. // row range for this thread
  9591. const int ir0 = dr*ith;
  9592. const int ir1 = MIN(ir0 + dr, nr);
  9593. for (int i1 = ir0; i1 < ir1; i1++) {
  9594. ggml_vec_silu_backward_f32(nc,
  9595. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9596. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9597. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9598. #ifndef NDEBUG
  9599. for (int k = 0; k < nc; k++) {
  9600. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9601. UNUSED(x);
  9602. assert(!isnan(x));
  9603. assert(!isinf(x));
  9604. }
  9605. #endif
  9606. }
  9607. }
  9608. static void ggml_compute_forward_silu_back(
  9609. const struct ggml_compute_params * params,
  9610. struct ggml_tensor * dst) {
  9611. const struct ggml_tensor * src0 = dst->src[0];
  9612. switch (src0->type) {
  9613. case GGML_TYPE_F32:
  9614. {
  9615. ggml_compute_forward_silu_back_f32(params, dst);
  9616. } break;
  9617. default:
  9618. {
  9619. GGML_ABORT("fatal error");
  9620. }
  9621. }
  9622. }
  9623. static void ggml_compute_forward_hardswish_f32(
  9624. const struct ggml_compute_params * params,
  9625. struct ggml_tensor * dst) {
  9626. const struct ggml_tensor * src0 = dst->src[0];
  9627. if (params->ith != 0) {
  9628. return;
  9629. }
  9630. assert(ggml_is_contiguous_1(src0));
  9631. assert(ggml_is_contiguous_1(dst));
  9632. assert(ggml_are_same_shape(src0, dst));
  9633. const int n = ggml_nrows(src0);
  9634. const int nc = src0->ne[0];
  9635. for (int i = 0; i < n; i++) {
  9636. ggml_vec_hardswish_f32(nc,
  9637. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9638. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9639. }
  9640. }
  9641. static void ggml_compute_forward_hardswish(
  9642. const struct ggml_compute_params * params,
  9643. struct ggml_tensor * dst) {
  9644. const struct ggml_tensor * src0 = dst->src[0];
  9645. switch (src0->type) {
  9646. case GGML_TYPE_F32:
  9647. {
  9648. ggml_compute_forward_hardswish_f32(params, dst);
  9649. } break;
  9650. default:
  9651. {
  9652. GGML_ABORT("fatal error");
  9653. }
  9654. }
  9655. }
  9656. static void ggml_compute_forward_hardsigmoid_f32(
  9657. const struct ggml_compute_params * params,
  9658. struct ggml_tensor * dst) {
  9659. const struct ggml_tensor * src0 = dst->src[0];
  9660. if (params->ith != 0) {
  9661. return;
  9662. }
  9663. assert(ggml_is_contiguous_1(src0));
  9664. assert(ggml_is_contiguous_1(dst));
  9665. assert(ggml_are_same_shape(src0, dst));
  9666. const int n = ggml_nrows(src0);
  9667. const int nc = src0->ne[0];
  9668. for (int i = 0; i < n; i++) {
  9669. ggml_vec_hardsigmoid_f32(nc,
  9670. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9671. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9672. }
  9673. }
  9674. static void ggml_compute_forward_hardsigmoid(
  9675. const struct ggml_compute_params * params,
  9676. struct ggml_tensor * dst) {
  9677. const struct ggml_tensor * src0 = dst->src[0];
  9678. switch (src0->type) {
  9679. case GGML_TYPE_F32:
  9680. {
  9681. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9682. } break;
  9683. default:
  9684. {
  9685. GGML_ABORT("fatal error");
  9686. }
  9687. }
  9688. }
  9689. // ggml_compute_forward_norm
  9690. static void ggml_compute_forward_norm_f32(
  9691. const struct ggml_compute_params * params,
  9692. struct ggml_tensor * dst) {
  9693. const struct ggml_tensor * src0 = dst->src[0];
  9694. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9695. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9696. const int ith = params->ith;
  9697. const int nth = params->nth;
  9698. GGML_TENSOR_UNARY_OP_LOCALS
  9699. float eps;
  9700. memcpy(&eps, dst->op_params, sizeof(float));
  9701. GGML_ASSERT(eps > 0.0f);
  9702. // TODO: optimize
  9703. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9704. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9705. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9706. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9707. ggml_float sum = 0.0;
  9708. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9709. sum += (ggml_float)x[i00];
  9710. }
  9711. float mean = sum/ne00;
  9712. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9713. ggml_float sum2 = 0.0;
  9714. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9715. float v = x[i00] - mean;
  9716. y[i00] = v;
  9717. sum2 += (ggml_float)(v*v);
  9718. }
  9719. float variance = sum2/ne00;
  9720. const float scale = 1.0f/sqrtf(variance + eps);
  9721. ggml_vec_scale_f32(ne00, y, scale);
  9722. }
  9723. }
  9724. }
  9725. }
  9726. static void ggml_compute_forward_norm(
  9727. const struct ggml_compute_params * params,
  9728. struct ggml_tensor * dst) {
  9729. const struct ggml_tensor * src0 = dst->src[0];
  9730. switch (src0->type) {
  9731. case GGML_TYPE_F32:
  9732. {
  9733. ggml_compute_forward_norm_f32(params, dst);
  9734. } break;
  9735. default:
  9736. {
  9737. GGML_ABORT("fatal error");
  9738. }
  9739. }
  9740. }
  9741. // ggml_compute_forward_group_rms_norm
  9742. static void ggml_compute_forward_rms_norm_f32(
  9743. const struct ggml_compute_params * params,
  9744. struct ggml_tensor * dst) {
  9745. const struct ggml_tensor * src0 = dst->src[0];
  9746. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9747. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9748. const int ith = params->ith;
  9749. const int nth = params->nth;
  9750. GGML_TENSOR_UNARY_OP_LOCALS
  9751. float eps;
  9752. memcpy(&eps, dst->op_params, sizeof(float));
  9753. GGML_ASSERT(eps > 0.0f);
  9754. // TODO: optimize
  9755. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9756. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9757. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9758. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9759. ggml_float sum = 0.0;
  9760. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9761. sum += (ggml_float)(x[i00] * x[i00]);
  9762. }
  9763. const float mean = sum/ne00;
  9764. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9765. memcpy(y, x, ne00 * sizeof(float));
  9766. // for (int i00 = 0; i00 < ne00; i00++) {
  9767. // y[i00] = x[i00];
  9768. // }
  9769. const float scale = 1.0f/sqrtf(mean + eps);
  9770. ggml_vec_scale_f32(ne00, y, scale);
  9771. }
  9772. }
  9773. }
  9774. }
  9775. static void ggml_compute_forward_rms_norm(
  9776. const struct ggml_compute_params * params,
  9777. struct ggml_tensor * dst) {
  9778. const struct ggml_tensor * src0 = dst->src[0];
  9779. switch (src0->type) {
  9780. case GGML_TYPE_F32:
  9781. {
  9782. ggml_compute_forward_rms_norm_f32(params, dst);
  9783. } break;
  9784. default:
  9785. {
  9786. GGML_ABORT("fatal error");
  9787. }
  9788. }
  9789. }
  9790. static void ggml_compute_forward_rms_norm_back_f32(
  9791. const struct ggml_compute_params * params,
  9792. struct ggml_tensor * dst) {
  9793. const struct ggml_tensor * src0 = dst->src[0];
  9794. const struct ggml_tensor * src1 = dst->src[1];
  9795. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9796. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9797. const int ith = params->ith;
  9798. const int nth = params->nth;
  9799. GGML_TENSOR_BINARY_OP_LOCALS
  9800. float eps;
  9801. memcpy(&eps, dst->op_params, sizeof(float));
  9802. // TODO: optimize
  9803. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9804. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9805. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9806. // src1 is same shape as src0 => same indices
  9807. const int64_t i11 = i01;
  9808. const int64_t i12 = i02;
  9809. const int64_t i13 = i03;
  9810. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9811. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9812. ggml_float sum_xx = 0.0;
  9813. ggml_float sum_xdz = 0.0;
  9814. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9815. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9816. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9817. }
  9818. //const float mean = (float)(sum_xx)/ne00;
  9819. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9820. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9821. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9822. // we could cache rms from forward pass to improve performance.
  9823. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9824. //const float rms = sqrtf(mean_eps);
  9825. const float rrms = 1.0f / sqrtf(mean_eps);
  9826. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9827. {
  9828. // z = rms_norm(x)
  9829. //
  9830. // rms_norm(src0) =
  9831. // scale(
  9832. // src0,
  9833. // div(
  9834. // 1,
  9835. // sqrt(
  9836. // add(
  9837. // scale(
  9838. // sum(
  9839. // sqr(
  9840. // src0)),
  9841. // (1.0/N)),
  9842. // eps))));
  9843. // postorder:
  9844. // ## op args grad
  9845. // 00 param src0 grad[#00]
  9846. // 01 const 1
  9847. // 02 sqr (#00) grad[#02]
  9848. // 03 sum (#02) grad[#03]
  9849. // 04 const 1/N
  9850. // 05 scale (#03, #04) grad[#05]
  9851. // 06 const eps
  9852. // 07 add (#05, #06) grad[#07]
  9853. // 08 sqrt (#07) grad[#08]
  9854. // 09 div (#01,#08) grad[#09]
  9855. // 10 scale (#00,#09) grad[#10]
  9856. //
  9857. // backward pass, given grad[#10]
  9858. // #10: scale
  9859. // grad[#00] += scale(grad[#10],#09)
  9860. // grad[#09] += sum(mul(grad[#10],#00))
  9861. // #09: div
  9862. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9863. // #08: sqrt
  9864. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9865. // #07: add
  9866. // grad[#05] += grad[#07]
  9867. // #05: scale
  9868. // grad[#03] += scale(grad[#05],#04)
  9869. // #03: sum
  9870. // grad[#02] += repeat(grad[#03], #02)
  9871. // #02:
  9872. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9873. //
  9874. // substitute and simplify:
  9875. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9876. // grad[#02] = repeat(grad[#03], #02)
  9877. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9878. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9879. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9880. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9881. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9882. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9883. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9884. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9885. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9886. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9887. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9888. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9889. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9890. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9891. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9892. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9893. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9894. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9895. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9896. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9897. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9898. // a = b*c + d*e
  9899. // a = b*c*f/f + d*e*f/f
  9900. // a = (b*c*f + d*e*f)*(1/f)
  9901. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9902. // a = (b + d*e/c)*c
  9903. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9904. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9905. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9906. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9907. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9908. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9909. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9910. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9911. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9912. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9913. }
  9914. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9915. // post-order:
  9916. // dx := x
  9917. // dx := scale(dx,-mean_xdz/mean_eps)
  9918. // dx := add(dx, dz)
  9919. // dx := scale(dx, rrms)
  9920. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9921. ggml_vec_cpy_f32 (ne00, dx, x);
  9922. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9923. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9924. ggml_vec_acc_f32 (ne00, dx, dz);
  9925. ggml_vec_scale_f32(ne00, dx, rrms);
  9926. }
  9927. }
  9928. }
  9929. }
  9930. static void ggml_compute_forward_rms_norm_back(
  9931. const struct ggml_compute_params * params,
  9932. struct ggml_tensor * dst) {
  9933. const struct ggml_tensor * src0 = dst->src[0];
  9934. switch (src0->type) {
  9935. case GGML_TYPE_F32:
  9936. {
  9937. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9938. } break;
  9939. default:
  9940. {
  9941. GGML_ABORT("fatal error");
  9942. }
  9943. }
  9944. }
  9945. // ggml_compute_forward_group_norm
  9946. static void ggml_compute_forward_group_norm_f32(
  9947. const struct ggml_compute_params * params,
  9948. struct ggml_tensor * dst) {
  9949. const struct ggml_tensor * src0 = dst->src[0];
  9950. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9951. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9952. const int ith = params->ith;
  9953. const int nth = params->nth;
  9954. GGML_TENSOR_UNARY_OP_LOCALS
  9955. // TODO: optimize
  9956. float eps;
  9957. memcpy(&eps, dst->op_params + 1, sizeof(float));
  9958. int n_channels = src0->ne[2];
  9959. int n_groups = dst->op_params[0];
  9960. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9961. for (int i = ith; i < n_groups; i += nth) {
  9962. int start = i * n_channels_per_group;
  9963. int end = start + n_channels_per_group;
  9964. if (end > n_channels) {
  9965. end = n_channels;
  9966. }
  9967. int step = end - start;
  9968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9969. ggml_float sum = 0.0;
  9970. for (int64_t i02 = start; i02 < end; i02++) {
  9971. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9972. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9973. ggml_float sumr = 0.0;
  9974. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9975. sumr += (ggml_float)x[i00];
  9976. }
  9977. sum += sumr;
  9978. }
  9979. }
  9980. const float mean = sum / (ne00 * ne01 * step);
  9981. ggml_float sum2 = 0.0;
  9982. for (int64_t i02 = start; i02 < end; i02++) {
  9983. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9984. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9985. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9986. ggml_float sumr = 0.0;
  9987. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9988. float v = x[i00] - mean;
  9989. y[i00] = v;
  9990. sumr += (ggml_float)(v * v);
  9991. }
  9992. sum2 += sumr;
  9993. }
  9994. }
  9995. const float variance = sum2 / (ne00 * ne01 * step);
  9996. const float scale = 1.0f / sqrtf(variance + eps);
  9997. for (int64_t i02 = start; i02 < end; i02++) {
  9998. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9999. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10000. ggml_vec_scale_f32(ne00, y, scale);
  10001. }
  10002. }
  10003. }
  10004. }
  10005. }
  10006. static void ggml_compute_forward_group_norm(
  10007. const struct ggml_compute_params * params,
  10008. struct ggml_tensor * dst) {
  10009. const struct ggml_tensor * src0 = dst->src[0];
  10010. switch (src0->type) {
  10011. case GGML_TYPE_F32:
  10012. {
  10013. ggml_compute_forward_group_norm_f32(params, dst);
  10014. } break;
  10015. default:
  10016. {
  10017. GGML_ABORT("fatal error");
  10018. }
  10019. }
  10020. }
  10021. // ggml_compute_forward_mul_mat
  10022. static void ggml_compute_forward_mul_mat_one_chunk(
  10023. const struct ggml_compute_params * params,
  10024. struct ggml_tensor * dst,
  10025. const int64_t num_rows_per_vec_dot,
  10026. const int64_t ir0_start,
  10027. const int64_t ir0_end,
  10028. const int64_t ir1_start,
  10029. const int64_t ir1_end) {
  10030. const struct ggml_tensor * src0 = dst->src[0];
  10031. const struct ggml_tensor * src1 = dst->src[1];
  10032. GGML_TENSOR_BINARY_OP_LOCALS
  10033. const enum ggml_type type = src0->type;
  10034. const bool src1_cont = ggml_is_contiguous(src1);
  10035. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10036. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10037. // broadcast factors
  10038. const int64_t r2 = ne12 / ne02;
  10039. const int64_t r3 = ne13 / ne03;
  10040. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10041. // threads with no work simply yield (not sure if it helps)
  10042. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10043. return;
  10044. }
  10045. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10046. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10047. assert(ne12 % ne02 == 0);
  10048. assert(ne13 % ne03 == 0);
  10049. // block-tiling attempt
  10050. const int64_t blck_0 = 16;
  10051. const int64_t blck_1 = 16;
  10052. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10053. // attempt to reduce false-sharing (does not seem to make a difference)
  10054. // 16 * 2, accounting for mmla kernels
  10055. float tmp[32];
  10056. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10057. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10058. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10059. const int64_t i13 = (ir1 / (ne12 * ne1));
  10060. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10061. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10062. // broadcast src0 into src1
  10063. const int64_t i03 = i13 / r3;
  10064. const int64_t i02 = i12 / r2;
  10065. const int64_t i1 = i11;
  10066. const int64_t i2 = i12;
  10067. const int64_t i3 = i13;
  10068. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10069. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10070. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10071. // the original src1 data pointer, so we should index using the indices directly
  10072. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10073. const char * src1_col = (const char*)wdata +
  10074. (src1_cont || src1->type != vec_dot_type
  10075. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10076. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10077. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10078. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10079. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10080. //}
  10081. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10082. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10083. }
  10084. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10085. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10086. }
  10087. }
  10088. }
  10089. }
  10090. }
  10091. static void ggml_compute_forward_mul_mat(
  10092. const struct ggml_compute_params * params,
  10093. struct ggml_tensor * dst) {
  10094. const struct ggml_tensor * src0 = dst->src[0];
  10095. const struct ggml_tensor * src1 = dst->src[1];
  10096. GGML_TENSOR_BINARY_OP_LOCALS
  10097. const int ith = params->ith;
  10098. const int nth = params->nth;
  10099. const enum ggml_type type = src0->type;
  10100. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10101. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10102. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10103. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10104. int64_t const matmul_num_cols = type_traits[type].ncols;
  10105. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10106. ggml_gemv_t const gemv = type_traits[type].gemv;
  10107. ggml_gemm_t const gemm = type_traits[type].gemm;
  10108. GGML_ASSERT(ne0 == ne01);
  10109. GGML_ASSERT(ne1 == ne11);
  10110. GGML_ASSERT(ne2 == ne12);
  10111. GGML_ASSERT(ne3 == ne13);
  10112. // we don't support permuted src0 or src1
  10113. GGML_ASSERT(nb00 == ggml_type_size(type));
  10114. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10115. // dst cannot be transposed or permuted
  10116. GGML_ASSERT(nb0 == sizeof(float));
  10117. GGML_ASSERT(nb0 <= nb1);
  10118. GGML_ASSERT(nb1 <= nb2);
  10119. GGML_ASSERT(nb2 <= nb3);
  10120. // nb01 >= nb00 - src0 is not transposed
  10121. // compute by src0 rows
  10122. #if GGML_USE_LLAMAFILE
  10123. // broadcast factors
  10124. const int64_t r2 = ne12 / ne02;
  10125. const int64_t r3 = ne13 / ne03;
  10126. const bool src1_cont = ggml_is_contiguous(src1);
  10127. if (src1_cont) {
  10128. for (int64_t i13 = 0; i13 < ne13; i13++)
  10129. for (int64_t i12 = 0; i12 < ne12; i12++)
  10130. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10131. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10132. nb01/ggml_type_size(src0->type),
  10133. (const char *)src1->data + i12*nb12 + i13*nb13,
  10134. nb11/ggml_type_size(src1->type),
  10135. (char *)dst->data + i12*nb2 + i13*nb3,
  10136. nb1/ggml_type_size(dst->type),
  10137. ith, nth,
  10138. src0->type,
  10139. src1->type,
  10140. dst->type))
  10141. goto UseGgmlGemm1;
  10142. return;
  10143. }
  10144. UseGgmlGemm1:;
  10145. #endif
  10146. if (src1->type != vec_dot_type) {
  10147. char * wdata = params->wdata;
  10148. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10149. const size_t nbw2 = nbw1*ne11;
  10150. const size_t nbw3 = nbw2*ne12;
  10151. assert(params->wsize >= ne13*nbw3);
  10152. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10153. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10154. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10155. int64_t i11_processed = 0;
  10156. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10157. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10158. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10159. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10160. 4, ne10, blck_size_interleave);
  10161. }
  10162. i11_processed = ne11 - ne11 % 4;
  10163. }
  10164. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10165. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10166. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10167. ne10);
  10168. }
  10169. }
  10170. }
  10171. }
  10172. if (ith == 0) {
  10173. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10174. atomic_store(&params->shared->current_chunk, nth);
  10175. }
  10176. ggml_barrier(params->shared);
  10177. #if GGML_USE_LLAMAFILE
  10178. if (src1->type != vec_dot_type) {
  10179. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10180. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10181. for (int64_t i13 = 0; i13 < ne13; i13++)
  10182. for (int64_t i12 = 0; i12 < ne12; i12++)
  10183. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10184. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10185. nb01/ggml_type_size(src0->type),
  10186. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10187. row_size/ggml_type_size(vec_dot_type),
  10188. (char *)dst->data + i12*nb2 + i13*nb3,
  10189. nb1/ggml_type_size(dst->type),
  10190. ith, nth,
  10191. src0->type,
  10192. vec_dot_type,
  10193. dst->type))
  10194. goto UseGgmlGemm2;
  10195. return;
  10196. }
  10197. UseGgmlGemm2:;
  10198. #endif
  10199. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10200. const int64_t nr0 = ne0;
  10201. // This is the size of the rest of the dimensions of the result
  10202. const int64_t nr1 = ne1 * ne2 * ne3;
  10203. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10204. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10205. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10206. // this check can be removed once they are extended to support odd numbered rows/cols too
  10207. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10208. num_rows_per_vec_dot = 1;
  10209. }
  10210. // Now select a reasonable chunk size.
  10211. int chunk_size = 16;
  10212. // We need to step up the size if it's small
  10213. if (nr0 == 1 || nr1 == 1) {
  10214. chunk_size = 64;
  10215. }
  10216. // distribute the work across the inner or outer loop based on which one is larger
  10217. // The number of chunks in the 0/1 dim.
  10218. // CEIL(nr0/chunk_size)
  10219. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10220. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10221. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10222. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10223. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10224. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10225. // distribute the thread work across the inner or outer loop based on which one is larger
  10226. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10227. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10228. }
  10229. // The number of elements in each chunk
  10230. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10231. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10232. if ((ggml_n_dims(src0) == 2) && gemv) {
  10233. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10234. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10235. int64_t src0_start = (ith * ne01) / nth;
  10236. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10237. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10238. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10239. if (src0_start >= src0_end) return;
  10240. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10241. if (gemm && (ne11 > 3)) {
  10242. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10243. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10244. }
  10245. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10246. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10247. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10248. src0_end - src0_start);
  10249. }
  10250. return;
  10251. }
  10252. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10253. int current_chunk = ith;
  10254. while (current_chunk < nchunk0 * nchunk1) {
  10255. const int64_t ith0 = current_chunk % nchunk0;
  10256. const int64_t ith1 = current_chunk / nchunk0;
  10257. const int64_t ir0_start = dr0 * ith0;
  10258. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10259. const int64_t ir1_start = dr1 * ith1;
  10260. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10261. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10262. if (nth >= nchunk0 * nchunk1) {
  10263. break;
  10264. }
  10265. current_chunk = atomic_fetch_add(&params->shared->current_chunk, 1);
  10266. }
  10267. }
  10268. // ggml_compute_forward_mul_mat_id
  10269. static void ggml_compute_forward_mul_mat_id(
  10270. const struct ggml_compute_params * params,
  10271. struct ggml_tensor * dst) {
  10272. const struct ggml_tensor * src0 = dst->src[0];
  10273. const struct ggml_tensor * src1 = dst->src[1];
  10274. const struct ggml_tensor * ids = dst->src[2];
  10275. GGML_TENSOR_BINARY_OP_LOCALS
  10276. const int ith = params->ith;
  10277. const int nth = params->nth;
  10278. const enum ggml_type type = src0->type;
  10279. const bool src1_cont = ggml_is_contiguous(src1);
  10280. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10281. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10282. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10283. int64_t const matmul_num_cols = type_traits[type].ncols;
  10284. ggml_gemv_t const gemv = type_traits[type].gemv;
  10285. // we don't support permuted src0 or src1
  10286. GGML_ASSERT(nb00 == ggml_type_size(type));
  10287. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10288. // dst cannot be transposed or permuted
  10289. GGML_ASSERT(nb0 == sizeof(float));
  10290. GGML_ASSERT(nb0 <= nb1);
  10291. GGML_ASSERT(nb1 <= nb2);
  10292. GGML_ASSERT(nb2 <= nb3);
  10293. // row groups
  10294. const int n_ids = ids->ne[0]; // n_expert_used
  10295. const int n_as = ne02; // n_expert
  10296. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10297. (char *) params->wdata :
  10298. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10299. struct mmid_row_mapping {
  10300. int32_t i1;
  10301. int32_t i2;
  10302. };
  10303. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10304. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10305. if (src1->type != vec_dot_type) {
  10306. char * wdata = params->wdata;
  10307. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10308. const size_t nbw2 = nbw1*ne11;
  10309. const size_t nbw3 = nbw2*ne12;
  10310. assert(params->wsize >= ne13*nbw3);
  10311. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10312. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10313. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10314. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10315. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10316. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10317. ne10);
  10318. }
  10319. }
  10320. }
  10321. }
  10322. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10323. if (ith == 0) {
  10324. // initialize matrix_row_counts
  10325. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10326. // group rows by src0 matrix
  10327. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10328. for (int id = 0; id < n_ids; ++id) {
  10329. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10330. assert(i02 >= 0 && i02 < n_as);
  10331. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10332. matrix_row_counts[i02] += 1;
  10333. }
  10334. }
  10335. }
  10336. ggml_barrier(params->shared);
  10337. // compute each matrix multiplication in sequence
  10338. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10339. const int64_t cne1 = matrix_row_counts[cur_a];
  10340. if (cne1 == 0) {
  10341. continue;
  10342. }
  10343. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10344. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10345. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10346. const int64_t nr0 = ne01; // src0 rows
  10347. const int64_t nr1 = cne1; // src1 rows
  10348. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10349. int64_t src0_cur_start = (ith * ne01) / nth;
  10350. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10351. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10352. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10353. if (src0_cur_start >= src0_cur_end) return;
  10354. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10355. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10356. const int id = row_mapping.i1; // selected expert index
  10357. const int64_t i11 = id % ne11;
  10358. const int64_t i12 = row_mapping.i2; // row index in src1
  10359. const int64_t i1 = id; // selected expert index
  10360. const int64_t i2 = i12; // row
  10361. const char * src1_col = (const char *) wdata +
  10362. (src1_cont || src1->type != vec_dot_type
  10363. ? (i11 + i12 * ne11) * row_size
  10364. : (i11 * nb11 + i12 * nb12));
  10365. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10366. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10367. }
  10368. continue;
  10369. }
  10370. // distribute the thread work across the inner or outer loop based on which one is larger
  10371. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10372. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10373. const int64_t ith0 = ith % nth0;
  10374. const int64_t ith1 = ith / nth0;
  10375. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10376. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10377. const int64_t ir010 = dr0*ith0;
  10378. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10379. const int64_t ir110 = dr1*ith1;
  10380. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10381. // threads with no work simply yield (not sure if it helps)
  10382. //if (ir010 >= ir011 || ir110 >= ir111) {
  10383. // sched_yield();
  10384. // continue;
  10385. //}
  10386. // block-tiling attempt
  10387. const int64_t blck_0 = 16;
  10388. const int64_t blck_1 = 16;
  10389. // attempt to reduce false-sharing (does not seem to make a difference)
  10390. float tmp[16];
  10391. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10392. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10393. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10394. const int64_t _i12 = ir1; // logical row index for this expert
  10395. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10396. const int id = row_mapping.i1; // selected expert index
  10397. const int64_t i11 = id % ne11;
  10398. const int64_t i12 = row_mapping.i2; // row index in src1
  10399. const int64_t i1 = id; // selected expert index
  10400. const int64_t i2 = i12; // row
  10401. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10402. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10403. // the original src1 data pointer, so we should index using the indices directly
  10404. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10405. const char * src1_col = (const char *) wdata +
  10406. (src1_cont || src1->type != vec_dot_type
  10407. ? (i11 + i12*ne11)*row_size
  10408. : (i11*nb11 + i12*nb12));
  10409. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10410. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10411. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10412. //}
  10413. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10414. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10415. }
  10416. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10417. }
  10418. }
  10419. }
  10420. }
  10421. #undef MMID_MATRIX_ROW
  10422. }
  10423. // ggml_compute_forward_out_prod
  10424. static void ggml_compute_forward_out_prod_f32(
  10425. const struct ggml_compute_params * params,
  10426. struct ggml_tensor * dst) {
  10427. const struct ggml_tensor * src0 = dst->src[0];
  10428. const struct ggml_tensor * src1 = dst->src[1];
  10429. GGML_TENSOR_BINARY_OP_LOCALS
  10430. const int ith = params->ith;
  10431. const int nth = params->nth;
  10432. GGML_ASSERT(ne0 == ne00);
  10433. GGML_ASSERT(ne1 == ne10);
  10434. GGML_ASSERT(ne2 == ne02);
  10435. GGML_ASSERT(ne02 == ne12);
  10436. GGML_ASSERT(ne3 == ne13);
  10437. GGML_ASSERT(ne03 == ne13);
  10438. // we don't support permuted src0 or src1
  10439. GGML_ASSERT(nb00 == sizeof(float));
  10440. // dst cannot be transposed or permuted
  10441. GGML_ASSERT(nb0 == sizeof(float));
  10442. // GGML_ASSERT(nb0 <= nb1);
  10443. // GGML_ASSERT(nb1 <= nb2);
  10444. // GGML_ASSERT(nb2 <= nb3);
  10445. // nb01 >= nb00 - src0 is not transposed
  10446. // compute by src0 rows
  10447. if (ith == 0) {
  10448. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10449. }
  10450. ggml_barrier(params->shared);
  10451. // dst[:,:,:,:] = 0
  10452. // for i2,i3:
  10453. // for i1:
  10454. // for i01:
  10455. // for i0:
  10456. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10457. // parallelize by last three dimensions
  10458. // total rows in dst
  10459. const int64_t nr = ne1*ne2*ne3;
  10460. // rows per thread
  10461. const int64_t dr = (nr + nth - 1)/nth;
  10462. // row range for this thread
  10463. const int64_t ir0 = dr*ith;
  10464. const int64_t ir1 = MIN(ir0 + dr, nr);
  10465. // block-tiling attempt
  10466. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10467. const int64_t blck_1 = 16;
  10468. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10469. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10470. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10471. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10472. for (int64_t ir = bir; ir < bir1; ++ir) {
  10473. // dst indices
  10474. const int64_t i3 = ir/(ne2*ne1);
  10475. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10476. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10477. const int64_t i02 = i2;
  10478. const int64_t i03 = i3;
  10479. //const int64_t i10 = i1;
  10480. const int64_t i12 = i2;
  10481. const int64_t i13 = i3;
  10482. #if GGML_VEC_MAD_UNROLL > 2
  10483. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10484. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10485. const int64_t i11 = i01;
  10486. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10487. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10488. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10489. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10490. }
  10491. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10492. const int64_t i11 = i01;
  10493. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10494. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10495. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10496. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10497. }
  10498. #else
  10499. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10500. const int64_t i11 = i01;
  10501. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10502. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10503. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10504. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10505. }
  10506. #endif
  10507. }
  10508. }
  10509. }
  10510. }
  10511. static void ggml_compute_forward_out_prod_q_f32(
  10512. const struct ggml_compute_params * params,
  10513. struct ggml_tensor * dst) {
  10514. const struct ggml_tensor * src0 = dst->src[0];
  10515. const struct ggml_tensor * src1 = dst->src[1];
  10516. GGML_TENSOR_BINARY_OP_LOCALS;
  10517. const int ith = params->ith;
  10518. const int nth = params->nth;
  10519. const enum ggml_type type = src0->type;
  10520. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10521. GGML_ASSERT(ne02 == ne12);
  10522. GGML_ASSERT(ne03 == ne13);
  10523. GGML_ASSERT(ne2 == ne12);
  10524. GGML_ASSERT(ne3 == ne13);
  10525. // we don't support permuted src0 dim0
  10526. GGML_ASSERT(nb00 == ggml_type_size(type));
  10527. // dst dim0 cannot be transposed or permuted
  10528. GGML_ASSERT(nb0 == sizeof(float));
  10529. // GGML_ASSERT(nb0 <= nb1);
  10530. // GGML_ASSERT(nb1 <= nb2);
  10531. // GGML_ASSERT(nb2 <= nb3);
  10532. GGML_ASSERT(ne0 == ne00);
  10533. GGML_ASSERT(ne1 == ne10);
  10534. GGML_ASSERT(ne2 == ne02);
  10535. GGML_ASSERT(ne3 == ne03);
  10536. // nb01 >= nb00 - src0 is not transposed
  10537. // compute by src0 rows
  10538. if (ith == 0) {
  10539. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10540. }
  10541. ggml_barrier(params->shared);
  10542. // parallelize by last three dimensions
  10543. // total rows in dst
  10544. const int64_t nr = ne1*ne2*ne3;
  10545. // rows per thread
  10546. const int64_t dr = (nr + nth - 1)/nth;
  10547. // row range for this thread
  10548. const int64_t ir0 = dr*ith;
  10549. const int64_t ir1 = MIN(ir0 + dr, nr);
  10550. // dst[:,:,:,:] = 0
  10551. // for i2,i3:
  10552. // for i1:
  10553. // for i01:
  10554. // for i0:
  10555. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10556. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10557. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10558. // dst indices
  10559. const int64_t i3 = ir/(ne2*ne1);
  10560. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10561. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10562. const int64_t i02 = i2;
  10563. const int64_t i03 = i3;
  10564. //const int64_t i10 = i1;
  10565. const int64_t i12 = i2;
  10566. const int64_t i13 = i3;
  10567. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10568. const int64_t i11 = i01;
  10569. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10570. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10571. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10572. dequantize_row_q(s0, wdata, ne0);
  10573. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10574. }
  10575. }
  10576. }
  10577. static void ggml_compute_forward_out_prod(
  10578. const struct ggml_compute_params * params,
  10579. struct ggml_tensor * dst) {
  10580. const struct ggml_tensor * src0 = dst->src[0];
  10581. switch (src0->type) {
  10582. case GGML_TYPE_Q4_0:
  10583. case GGML_TYPE_Q4_1:
  10584. case GGML_TYPE_Q5_0:
  10585. case GGML_TYPE_Q5_1:
  10586. case GGML_TYPE_Q8_0:
  10587. case GGML_TYPE_Q2_K:
  10588. case GGML_TYPE_Q3_K:
  10589. case GGML_TYPE_Q4_K:
  10590. case GGML_TYPE_Q5_K:
  10591. case GGML_TYPE_Q6_K:
  10592. case GGML_TYPE_IQ2_XXS:
  10593. case GGML_TYPE_IQ2_XS:
  10594. case GGML_TYPE_IQ3_XXS:
  10595. case GGML_TYPE_IQ1_S:
  10596. case GGML_TYPE_IQ1_M:
  10597. case GGML_TYPE_IQ4_NL:
  10598. case GGML_TYPE_IQ4_XS:
  10599. case GGML_TYPE_IQ3_S:
  10600. case GGML_TYPE_IQ2_S:
  10601. case GGML_TYPE_Q4_0_4_4:
  10602. case GGML_TYPE_Q4_0_4_8:
  10603. case GGML_TYPE_Q4_0_8_8:
  10604. {
  10605. ggml_compute_forward_out_prod_q_f32(params, dst);
  10606. } break;
  10607. case GGML_TYPE_F16:
  10608. {
  10609. GGML_ABORT("fatal error"); // todo
  10610. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10611. }
  10612. case GGML_TYPE_F32:
  10613. {
  10614. ggml_compute_forward_out_prod_f32(params, dst);
  10615. } break;
  10616. default:
  10617. {
  10618. GGML_ABORT("fatal error");
  10619. }
  10620. }
  10621. }
  10622. // ggml_compute_forward_scale
  10623. static void ggml_compute_forward_scale_f32(
  10624. const struct ggml_compute_params * params,
  10625. struct ggml_tensor * dst) {
  10626. const struct ggml_tensor * src0 = dst->src[0];
  10627. GGML_ASSERT(ggml_is_contiguous(src0));
  10628. GGML_ASSERT(ggml_is_contiguous(dst));
  10629. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10630. // scale factor
  10631. float v;
  10632. memcpy(&v, dst->op_params, sizeof(float));
  10633. const int ith = params->ith;
  10634. const int nth = params->nth;
  10635. const int nc = src0->ne[0];
  10636. const int nr = ggml_nrows(src0);
  10637. // rows per thread
  10638. const int dr = (nr + nth - 1)/nth;
  10639. // row range for this thread
  10640. const int ir0 = dr*ith;
  10641. const int ir1 = MIN(ir0 + dr, nr);
  10642. const size_t nb01 = src0->nb[1];
  10643. const size_t nb1 = dst->nb[1];
  10644. for (int i1 = ir0; i1 < ir1; i1++) {
  10645. if (dst->data != src0->data) {
  10646. // src0 is same shape as dst => same indices
  10647. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10648. }
  10649. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10650. }
  10651. }
  10652. static void ggml_compute_forward_scale(
  10653. const struct ggml_compute_params * params,
  10654. struct ggml_tensor * dst) {
  10655. const struct ggml_tensor * src0 = dst->src[0];
  10656. switch (src0->type) {
  10657. case GGML_TYPE_F32:
  10658. {
  10659. ggml_compute_forward_scale_f32(params, dst);
  10660. } break;
  10661. default:
  10662. {
  10663. GGML_ABORT("fatal error");
  10664. }
  10665. }
  10666. }
  10667. // ggml_compute_forward_set
  10668. static void ggml_compute_forward_set_f32(
  10669. const struct ggml_compute_params * params,
  10670. struct ggml_tensor * dst) {
  10671. const struct ggml_tensor * src0 = dst->src[0];
  10672. const struct ggml_tensor * src1 = dst->src[1];
  10673. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10674. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10675. // view src0 and dst with these strides and data offset inbytes during set
  10676. // nb0 is implicitly element_size because src0 and dst are contiguous
  10677. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10678. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10679. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10680. size_t offset = ((int32_t *) dst->op_params)[3];
  10681. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10682. if (!inplace) {
  10683. if (params->ith == 0) {
  10684. // memcpy needs to be synchronized across threads to avoid race conditions.
  10685. // => do it in INIT phase
  10686. memcpy(
  10687. ((char *) dst->data),
  10688. ((char *) src0->data),
  10689. ggml_nbytes(dst));
  10690. }
  10691. ggml_barrier(params->shared);
  10692. }
  10693. const int ith = params->ith;
  10694. const int nth = params->nth;
  10695. const int nr = ggml_nrows(src1);
  10696. const int nc = src1->ne[0];
  10697. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10698. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10699. // src0 and dst as viewed during set
  10700. const size_t nb0 = ggml_element_size(src0);
  10701. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10702. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10703. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10704. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10705. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10706. GGML_ASSERT(nb10 == sizeof(float));
  10707. // rows per thread
  10708. const int dr = (nr + nth - 1)/nth;
  10709. // row range for this thread
  10710. const int ir0 = dr*ith;
  10711. const int ir1 = MIN(ir0 + dr, nr);
  10712. for (int ir = ir0; ir < ir1; ++ir) {
  10713. // src0 and dst are viewed with shape of src1 and offset
  10714. // => same indices
  10715. const int i3 = ir/(ne12*ne11);
  10716. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10717. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10718. ggml_vec_cpy_f32(nc,
  10719. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10720. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10721. }
  10722. }
  10723. static void ggml_compute_forward_set(
  10724. const struct ggml_compute_params * params,
  10725. struct ggml_tensor * dst) {
  10726. const struct ggml_tensor * src0 = dst->src[0];
  10727. switch (src0->type) {
  10728. case GGML_TYPE_F32:
  10729. {
  10730. ggml_compute_forward_set_f32(params, dst);
  10731. } break;
  10732. case GGML_TYPE_F16:
  10733. case GGML_TYPE_BF16:
  10734. case GGML_TYPE_Q4_0:
  10735. case GGML_TYPE_Q4_1:
  10736. case GGML_TYPE_Q5_0:
  10737. case GGML_TYPE_Q5_1:
  10738. case GGML_TYPE_Q8_0:
  10739. case GGML_TYPE_Q8_1:
  10740. case GGML_TYPE_Q2_K:
  10741. case GGML_TYPE_Q3_K:
  10742. case GGML_TYPE_Q4_K:
  10743. case GGML_TYPE_Q5_K:
  10744. case GGML_TYPE_Q6_K:
  10745. case GGML_TYPE_IQ2_XXS:
  10746. case GGML_TYPE_IQ2_XS:
  10747. case GGML_TYPE_IQ3_XXS:
  10748. case GGML_TYPE_IQ1_S:
  10749. case GGML_TYPE_IQ1_M:
  10750. case GGML_TYPE_IQ4_NL:
  10751. case GGML_TYPE_IQ4_XS:
  10752. case GGML_TYPE_IQ3_S:
  10753. case GGML_TYPE_IQ2_S:
  10754. case GGML_TYPE_Q4_0_4_4:
  10755. case GGML_TYPE_Q4_0_4_8:
  10756. case GGML_TYPE_Q4_0_8_8:
  10757. default:
  10758. {
  10759. GGML_ABORT("fatal error");
  10760. }
  10761. }
  10762. }
  10763. // ggml_compute_forward_cpy
  10764. static void ggml_compute_forward_cpy(
  10765. const struct ggml_compute_params * params,
  10766. struct ggml_tensor * dst) {
  10767. ggml_compute_forward_dup(params, dst);
  10768. }
  10769. // ggml_compute_forward_cont
  10770. static void ggml_compute_forward_cont(
  10771. const struct ggml_compute_params * params,
  10772. struct ggml_tensor * dst) {
  10773. ggml_compute_forward_dup(params, dst);
  10774. }
  10775. // ggml_compute_forward_reshape
  10776. static void ggml_compute_forward_reshape(
  10777. const struct ggml_compute_params * params,
  10778. struct ggml_tensor * dst) {
  10779. // NOP
  10780. UNUSED(params);
  10781. UNUSED(dst);
  10782. }
  10783. // ggml_compute_forward_view
  10784. static void ggml_compute_forward_view(
  10785. const struct ggml_compute_params * params,
  10786. const struct ggml_tensor * dst) {
  10787. // NOP
  10788. UNUSED(params);
  10789. UNUSED(dst);
  10790. }
  10791. // ggml_compute_forward_permute
  10792. static void ggml_compute_forward_permute(
  10793. const struct ggml_compute_params * params,
  10794. const struct ggml_tensor * dst) {
  10795. // NOP
  10796. UNUSED(params);
  10797. UNUSED(dst);
  10798. }
  10799. // ggml_compute_forward_transpose
  10800. static void ggml_compute_forward_transpose(
  10801. const struct ggml_compute_params * params,
  10802. const struct ggml_tensor * dst) {
  10803. // NOP
  10804. UNUSED(params);
  10805. UNUSED(dst);
  10806. }
  10807. // ggml_compute_forward_get_rows
  10808. static void ggml_compute_forward_get_rows_q(
  10809. const struct ggml_compute_params * params,
  10810. struct ggml_tensor * dst) {
  10811. const struct ggml_tensor * src0 = dst->src[0];
  10812. const struct ggml_tensor * src1 = dst->src[1];
  10813. GGML_TENSOR_BINARY_OP_LOCALS
  10814. const int64_t nc = ne00;
  10815. const int64_t nr = ggml_nelements(src1);
  10816. const enum ggml_type type = src0->type;
  10817. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10818. assert(ne0 == nc);
  10819. assert(ne02 == ne11);
  10820. assert(nb00 == ggml_type_size(type));
  10821. assert(ggml_nrows(dst) == nr);
  10822. const int ith = params->ith;
  10823. const int nth = params->nth;
  10824. // rows per thread
  10825. const int dr = (nr + nth - 1)/nth;
  10826. // row range for this thread
  10827. const int ir0 = dr*ith;
  10828. const int ir1 = MIN(ir0 + dr, nr);
  10829. for (int64_t i = ir0; i < ir1; ++i) {
  10830. const int64_t i12 = i/(ne11*ne10);
  10831. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10832. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10833. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10834. assert(i01 >= 0 && i01 < ne01);
  10835. dequantize_row_q(
  10836. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10837. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10838. }
  10839. }
  10840. static void ggml_compute_forward_get_rows_f16(
  10841. const struct ggml_compute_params * params,
  10842. struct ggml_tensor * dst) {
  10843. const struct ggml_tensor * src0 = dst->src[0];
  10844. const struct ggml_tensor * src1 = dst->src[1];
  10845. GGML_TENSOR_BINARY_OP_LOCALS
  10846. const int64_t nc = ne00;
  10847. const int64_t nr = ggml_nelements(src1);
  10848. assert(ne0 == nc);
  10849. assert(ne02 == ne11);
  10850. assert(nb00 == sizeof(ggml_fp16_t));
  10851. assert(ggml_nrows(dst) == nr);
  10852. const int ith = params->ith;
  10853. const int nth = params->nth;
  10854. // rows per thread
  10855. const int dr = (nr + nth - 1)/nth;
  10856. // row range for this thread
  10857. const int ir0 = dr*ith;
  10858. const int ir1 = MIN(ir0 + dr, nr);
  10859. for (int64_t i = ir0; i < ir1; ++i) {
  10860. const int64_t i12 = i/(ne11*ne10);
  10861. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10862. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10863. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10864. assert(i01 >= 0 && i01 < ne01);
  10865. ggml_fp16_to_fp32_row(
  10866. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10867. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10868. }
  10869. }
  10870. static void ggml_compute_forward_get_rows_bf16(
  10871. const struct ggml_compute_params * params,
  10872. struct ggml_tensor * dst) {
  10873. const struct ggml_tensor * src0 = dst->src[0];
  10874. const struct ggml_tensor * src1 = dst->src[1];
  10875. GGML_TENSOR_BINARY_OP_LOCALS
  10876. const int64_t nc = ne00;
  10877. const int64_t nr = ggml_nelements(src1);
  10878. assert(ne0 == nc);
  10879. assert(ne02 == ne11);
  10880. assert(nb00 == sizeof(ggml_bf16_t));
  10881. assert(ggml_nrows(dst) == nr);
  10882. const int ith = params->ith;
  10883. const int nth = params->nth;
  10884. // rows per thread
  10885. const int dr = (nr + nth - 1)/nth;
  10886. // row range for this thread
  10887. const int ir0 = dr*ith;
  10888. const int ir1 = MIN(ir0 + dr, nr);
  10889. for (int64_t i = ir0; i < ir1; ++i) {
  10890. const int64_t i12 = i/(ne11*ne10);
  10891. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10892. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10893. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10894. assert(i01 >= 0 && i01 < ne01);
  10895. ggml_bf16_to_fp32_row(
  10896. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10897. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10898. }
  10899. }
  10900. static void ggml_compute_forward_get_rows_f32(
  10901. const struct ggml_compute_params * params,
  10902. struct ggml_tensor * dst) {
  10903. const struct ggml_tensor * src0 = dst->src[0];
  10904. const struct ggml_tensor * src1 = dst->src[1];
  10905. GGML_TENSOR_BINARY_OP_LOCALS
  10906. const int64_t nc = ne00;
  10907. const int64_t nr = ggml_nelements(src1);
  10908. assert(ne0 == nc);
  10909. assert(ne02 == ne11);
  10910. assert(nb00 == sizeof(float));
  10911. assert(ggml_nrows(dst) == nr);
  10912. const int ith = params->ith;
  10913. const int nth = params->nth;
  10914. // rows per thread
  10915. const int dr = (nr + nth - 1)/nth;
  10916. // row range for this thread
  10917. const int ir0 = dr*ith;
  10918. const int ir1 = MIN(ir0 + dr, nr);
  10919. for (int64_t i = ir0; i < ir1; ++i) {
  10920. const int64_t i12 = i/(ne11*ne10);
  10921. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10922. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10923. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10924. assert(i01 >= 0 && i01 < ne01);
  10925. ggml_vec_cpy_f32(nc,
  10926. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10927. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10928. }
  10929. }
  10930. static void ggml_compute_forward_get_rows(
  10931. const struct ggml_compute_params * params,
  10932. struct ggml_tensor * dst) {
  10933. const struct ggml_tensor * src0 = dst->src[0];
  10934. switch (src0->type) {
  10935. case GGML_TYPE_Q4_0:
  10936. case GGML_TYPE_Q4_1:
  10937. case GGML_TYPE_Q5_0:
  10938. case GGML_TYPE_Q5_1:
  10939. case GGML_TYPE_Q8_0:
  10940. case GGML_TYPE_Q8_1:
  10941. case GGML_TYPE_Q2_K:
  10942. case GGML_TYPE_Q3_K:
  10943. case GGML_TYPE_Q4_K:
  10944. case GGML_TYPE_Q5_K:
  10945. case GGML_TYPE_Q6_K:
  10946. case GGML_TYPE_IQ2_XXS:
  10947. case GGML_TYPE_IQ2_XS:
  10948. case GGML_TYPE_IQ3_XXS:
  10949. case GGML_TYPE_IQ1_S:
  10950. case GGML_TYPE_IQ1_M:
  10951. case GGML_TYPE_IQ4_NL:
  10952. case GGML_TYPE_IQ4_XS:
  10953. case GGML_TYPE_IQ3_S:
  10954. case GGML_TYPE_IQ2_S:
  10955. case GGML_TYPE_Q4_0_4_4:
  10956. case GGML_TYPE_Q4_0_4_8:
  10957. case GGML_TYPE_Q4_0_8_8:
  10958. {
  10959. ggml_compute_forward_get_rows_q(params, dst);
  10960. } break;
  10961. case GGML_TYPE_F16:
  10962. {
  10963. ggml_compute_forward_get_rows_f16(params, dst);
  10964. } break;
  10965. case GGML_TYPE_BF16:
  10966. {
  10967. ggml_compute_forward_get_rows_bf16(params, dst);
  10968. } break;
  10969. case GGML_TYPE_F32:
  10970. case GGML_TYPE_I32:
  10971. {
  10972. ggml_compute_forward_get_rows_f32(params, dst);
  10973. } break;
  10974. default:
  10975. {
  10976. GGML_ABORT("fatal error");
  10977. }
  10978. }
  10979. //static bool first = true;
  10980. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10981. //if (first) {
  10982. // first = false;
  10983. //} else {
  10984. // for (int k = 0; k < dst->ne[1]; ++k) {
  10985. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10986. // for (int i = 0; i < 16; ++i) {
  10987. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10988. // }
  10989. // printf("\n");
  10990. // }
  10991. // printf("\n");
  10992. // }
  10993. // printf("\n");
  10994. // exit(0);
  10995. //}
  10996. }
  10997. // ggml_compute_forward_get_rows_back
  10998. static void ggml_compute_forward_get_rows_back_f32_f16(
  10999. const struct ggml_compute_params * params,
  11000. struct ggml_tensor * dst) {
  11001. const struct ggml_tensor * src0 = dst->src[0];
  11002. const struct ggml_tensor * src1 = dst->src[1];
  11003. if (params->ith != 0) {
  11004. return;
  11005. }
  11006. GGML_ASSERT(ggml_is_contiguous(dst));
  11007. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11008. memset(dst->data, 0, ggml_nbytes(dst));
  11009. const int nc = src0->ne[0];
  11010. const int nr = ggml_nelements(src1);
  11011. GGML_ASSERT( dst->ne[0] == nc);
  11012. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11013. for (int i = 0; i < nr; ++i) {
  11014. const int r = ((int32_t *) src1->data)[i];
  11015. for (int j = 0; j < nc; ++j) {
  11016. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11017. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11018. }
  11019. }
  11020. }
  11021. static void ggml_compute_forward_get_rows_back_f32(
  11022. const struct ggml_compute_params * params,
  11023. struct ggml_tensor * dst) {
  11024. const struct ggml_tensor * src0 = dst->src[0];
  11025. const struct ggml_tensor * src1 = dst->src[1];
  11026. if (params->ith != 0) {
  11027. return;
  11028. }
  11029. GGML_ASSERT(ggml_is_contiguous(dst));
  11030. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11031. memset(dst->data, 0, ggml_nbytes(dst));
  11032. const int nc = src0->ne[0];
  11033. const int nr = ggml_nelements(src1);
  11034. GGML_ASSERT( dst->ne[0] == nc);
  11035. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11036. for (int i = 0; i < nr; ++i) {
  11037. const int r = ((int32_t *) src1->data)[i];
  11038. ggml_vec_add_f32(nc,
  11039. (float *) ((char *) dst->data + r*dst->nb[1]),
  11040. (float *) ((char *) dst->data + r*dst->nb[1]),
  11041. (float *) ((char *) src0->data + i*src0->nb[1]));
  11042. }
  11043. }
  11044. static void ggml_compute_forward_get_rows_back(
  11045. const struct ggml_compute_params * params,
  11046. struct ggml_tensor * dst) {
  11047. const struct ggml_tensor * src0 = dst->src[0];
  11048. switch (src0->type) {
  11049. case GGML_TYPE_F16:
  11050. {
  11051. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11052. } break;
  11053. case GGML_TYPE_F32:
  11054. {
  11055. ggml_compute_forward_get_rows_back_f32(params, dst);
  11056. } break;
  11057. default:
  11058. {
  11059. GGML_ABORT("fatal error");
  11060. }
  11061. }
  11062. //static bool first = true;
  11063. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11064. //if (first) {
  11065. // first = false;
  11066. //} else {
  11067. // for (int k = 0; k < dst->ne[1]; ++k) {
  11068. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11069. // for (int i = 0; i < 16; ++i) {
  11070. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11071. // }
  11072. // printf("\n");
  11073. // }
  11074. // printf("\n");
  11075. // }
  11076. // printf("\n");
  11077. // exit(0);
  11078. //}
  11079. }
  11080. // ggml_compute_forward_diag
  11081. static void ggml_compute_forward_diag_f32(
  11082. const struct ggml_compute_params * params,
  11083. struct ggml_tensor * dst) {
  11084. const struct ggml_tensor * src0 = dst->src[0];
  11085. if (params->ith != 0) {
  11086. return;
  11087. }
  11088. // TODO: handle transposed/permuted matrices
  11089. GGML_TENSOR_UNARY_OP_LOCALS
  11090. GGML_ASSERT(ne00 == ne0);
  11091. GGML_ASSERT(ne00 == ne1);
  11092. GGML_ASSERT(ne01 == 1);
  11093. GGML_ASSERT(ne02 == ne2);
  11094. GGML_ASSERT(ne03 == ne3);
  11095. GGML_ASSERT(nb00 == sizeof(float));
  11096. GGML_ASSERT(nb0 == sizeof(float));
  11097. for (int i3 = 0; i3 < ne3; i3++) {
  11098. for (int i2 = 0; i2 < ne2; i2++) {
  11099. for (int i1 = 0; i1 < ne1; i1++) {
  11100. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11101. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11102. for (int i0 = 0; i0 < i1; i0++) {
  11103. d[i0] = 0;
  11104. }
  11105. d[i1] = s[i1];
  11106. for (int i0 = i1+1; i0 < ne0; i0++) {
  11107. d[i0] = 0;
  11108. }
  11109. }
  11110. }
  11111. }
  11112. }
  11113. static void ggml_compute_forward_diag(
  11114. const struct ggml_compute_params * params,
  11115. struct ggml_tensor * dst) {
  11116. const struct ggml_tensor * src0 = dst->src[0];
  11117. switch (src0->type) {
  11118. case GGML_TYPE_F32:
  11119. {
  11120. ggml_compute_forward_diag_f32(params, dst);
  11121. } break;
  11122. default:
  11123. {
  11124. GGML_ABORT("fatal error");
  11125. }
  11126. }
  11127. }
  11128. // ggml_compute_forward_diag_mask_inf
  11129. static void ggml_compute_forward_diag_mask_f32(
  11130. const struct ggml_compute_params * params,
  11131. struct ggml_tensor * dst,
  11132. const float value) {
  11133. const struct ggml_tensor * src0 = dst->src[0];
  11134. const int ith = params->ith;
  11135. const int nth = params->nth;
  11136. const int n_past = ((int32_t *) dst->op_params)[0];
  11137. const bool inplace = src0->data == dst->data;
  11138. GGML_ASSERT(n_past >= 0);
  11139. if (!inplace) {
  11140. if (ith == 0) {
  11141. // memcpy needs to be synchronized across threads to avoid race conditions.
  11142. // => do it in INIT phase
  11143. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11144. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11145. memcpy(
  11146. ((char *) dst->data),
  11147. ((char *) src0->data),
  11148. ggml_nbytes(dst));
  11149. }
  11150. ggml_barrier(params->shared);
  11151. }
  11152. // TODO: handle transposed/permuted matrices
  11153. const int n = ggml_nrows(src0);
  11154. const int nc = src0->ne[0];
  11155. const int nr = src0->ne[1];
  11156. const int nz = n/nr;
  11157. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11158. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11159. for (int k = 0; k < nz; k++) {
  11160. for (int j = ith; j < nr; j += nth) {
  11161. for (int i = n_past; i < nc; i++) {
  11162. if (i > n_past + j) {
  11163. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11164. }
  11165. }
  11166. }
  11167. }
  11168. }
  11169. static void ggml_compute_forward_diag_mask_inf(
  11170. const struct ggml_compute_params * params,
  11171. struct ggml_tensor * dst) {
  11172. const struct ggml_tensor * src0 = dst->src[0];
  11173. switch (src0->type) {
  11174. case GGML_TYPE_F32:
  11175. {
  11176. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11177. } break;
  11178. default:
  11179. {
  11180. GGML_ABORT("fatal error");
  11181. }
  11182. }
  11183. }
  11184. static void ggml_compute_forward_diag_mask_zero(
  11185. const struct ggml_compute_params * params,
  11186. struct ggml_tensor * dst) {
  11187. const struct ggml_tensor * src0 = dst->src[0];
  11188. switch (src0->type) {
  11189. case GGML_TYPE_F32:
  11190. {
  11191. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11192. } break;
  11193. default:
  11194. {
  11195. GGML_ABORT("fatal error");
  11196. }
  11197. }
  11198. }
  11199. // ggml_compute_forward_soft_max
  11200. static void ggml_compute_forward_soft_max_f32(
  11201. const struct ggml_compute_params * params,
  11202. struct ggml_tensor * dst) {
  11203. const struct ggml_tensor * src0 = dst->src[0];
  11204. const struct ggml_tensor * src1 = dst->src[1];
  11205. assert(ggml_is_contiguous(dst));
  11206. assert(ggml_are_same_shape(src0, dst));
  11207. float scale = 1.0f;
  11208. float max_bias = 0.0f;
  11209. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11210. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11211. // TODO: handle transposed/permuted matrices
  11212. const int ith = params->ith;
  11213. const int nth = params->nth;
  11214. GGML_TENSOR_UNARY_OP_LOCALS
  11215. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11216. // TODO: is this supposed to be ceil instead of floor?
  11217. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11218. const uint32_t n_head = ne02;
  11219. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11220. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11221. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11222. const int nc = src0->ne[0];
  11223. const int nr = ggml_nrows(src0);
  11224. // rows per thread
  11225. const int dr = (nr + nth - 1)/nth;
  11226. // row range for this thread
  11227. const int ir0 = dr*ith;
  11228. const int ir1 = MIN(ir0 + dr, nr);
  11229. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11230. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11231. for (int i1 = ir0; i1 < ir1; i1++) {
  11232. // ALiBi
  11233. const uint32_t h = (i1/ne01)%ne02; // head
  11234. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11235. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11236. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11237. // broadcast the mask across rows
  11238. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11239. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11240. ggml_vec_cpy_f32 (nc, wp, sp);
  11241. ggml_vec_scale_f32(nc, wp, scale);
  11242. if (mp_f32) {
  11243. if (use_f16) {
  11244. for (int i = 0; i < nc; ++i) {
  11245. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11246. }
  11247. } else {
  11248. for (int i = 0; i < nc; ++i) {
  11249. wp[i] += slope*mp_f32[i];
  11250. }
  11251. }
  11252. }
  11253. #ifndef NDEBUG
  11254. for (int i = 0; i < nc; ++i) {
  11255. //printf("p[%d] = %f\n", i, p[i]);
  11256. assert(!isnan(wp[i]));
  11257. }
  11258. #endif
  11259. float max = -INFINITY;
  11260. ggml_vec_max_f32(nc, &max, wp);
  11261. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11262. assert(sum > 0.0);
  11263. sum = 1.0/sum;
  11264. ggml_vec_scale_f32(nc, dp, sum);
  11265. #ifndef NDEBUG
  11266. for (int i = 0; i < nc; ++i) {
  11267. assert(!isnan(dp[i]));
  11268. assert(!isinf(dp[i]));
  11269. }
  11270. #endif
  11271. }
  11272. }
  11273. static void ggml_compute_forward_soft_max(
  11274. const struct ggml_compute_params * params,
  11275. struct ggml_tensor * dst) {
  11276. const struct ggml_tensor * src0 = dst->src[0];
  11277. switch (src0->type) {
  11278. case GGML_TYPE_F32:
  11279. {
  11280. ggml_compute_forward_soft_max_f32(params, dst);
  11281. } break;
  11282. default:
  11283. {
  11284. GGML_ABORT("fatal error");
  11285. }
  11286. }
  11287. }
  11288. // ggml_compute_forward_soft_max_back
  11289. static void ggml_compute_forward_soft_max_back_f32(
  11290. const struct ggml_compute_params * params,
  11291. struct ggml_tensor * dst) {
  11292. const struct ggml_tensor * src0 = dst->src[0];
  11293. const struct ggml_tensor * src1 = dst->src[1];
  11294. GGML_ASSERT(ggml_is_contiguous(src0));
  11295. GGML_ASSERT(ggml_is_contiguous(src1));
  11296. GGML_ASSERT(ggml_is_contiguous(dst));
  11297. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11298. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11299. // TODO: handle transposed/permuted matrices
  11300. const int ith = params->ith;
  11301. const int nth = params->nth;
  11302. const int nc = src0->ne[0];
  11303. const int nr = ggml_nrows(src0);
  11304. // rows per thread
  11305. const int dr = (nr + nth - 1)/nth;
  11306. // row range for this thread
  11307. const int ir0 = dr*ith;
  11308. const int ir1 = MIN(ir0 + dr, nr);
  11309. for (int i1 = ir0; i1 < ir1; i1++) {
  11310. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11311. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11312. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11313. #ifndef NDEBUG
  11314. for (int i = 0; i < nc; ++i) {
  11315. //printf("p[%d] = %f\n", i, p[i]);
  11316. assert(!isnan(dy[i]));
  11317. assert(!isnan(y[i]));
  11318. }
  11319. #endif
  11320. // Jii = yi - yi*yi
  11321. // Jij = -yi*yj
  11322. // J = diag(y)-y.T*y
  11323. // dx = J * dy
  11324. // dxk = sum_i(Jki * dyi)
  11325. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11326. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11327. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11328. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11329. // dxk = -yk * dot(y, dy) + yk*dyk
  11330. // dxk = yk * (- dot(y, dy) + dyk)
  11331. // dxk = yk * (dyk - dot(y, dy))
  11332. //
  11333. // post-order:
  11334. // dot_y_dy := dot(y, dy)
  11335. // dx := dy
  11336. // dx := dx - dot_y_dy
  11337. // dx := dx * y
  11338. // linear runtime, no additional memory
  11339. float dot_y_dy = 0;
  11340. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11341. ggml_vec_cpy_f32 (nc, dx, dy);
  11342. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11343. ggml_vec_mul_f32 (nc, dx, dx, y);
  11344. #ifndef NDEBUG
  11345. for (int i = 0; i < nc; ++i) {
  11346. assert(!isnan(dx[i]));
  11347. assert(!isinf(dx[i]));
  11348. }
  11349. #endif
  11350. }
  11351. }
  11352. static void ggml_compute_forward_soft_max_back(
  11353. const struct ggml_compute_params * params,
  11354. struct ggml_tensor * dst) {
  11355. const struct ggml_tensor * src0 = dst->src[0];
  11356. switch (src0->type) {
  11357. case GGML_TYPE_F32:
  11358. {
  11359. ggml_compute_forward_soft_max_back_f32(params, dst);
  11360. } break;
  11361. default:
  11362. {
  11363. GGML_ABORT("fatal error");
  11364. }
  11365. }
  11366. }
  11367. // ggml_compute_forward_clamp
  11368. static void ggml_compute_forward_clamp_f32(
  11369. const struct ggml_compute_params * params,
  11370. struct ggml_tensor * dst) {
  11371. const struct ggml_tensor * src0 = dst->src[0];
  11372. if (params->ith != 0) {
  11373. return;
  11374. }
  11375. float min;
  11376. float max;
  11377. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11378. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11379. const int ith = params->ith;
  11380. const int nth = params->nth;
  11381. const int n = ggml_nrows(src0);
  11382. const int nc = src0->ne[0];
  11383. const size_t nb00 = src0->nb[0];
  11384. const size_t nb01 = src0->nb[1];
  11385. const size_t nb0 = dst->nb[0];
  11386. const size_t nb1 = dst->nb[1];
  11387. GGML_ASSERT( nb0 == sizeof(float));
  11388. GGML_ASSERT(nb00 == sizeof(float));
  11389. for (int j = ith; j < n; j += nth) {
  11390. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11391. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11392. for (int i = 0; i < nc; i++) {
  11393. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11394. }
  11395. }
  11396. }
  11397. static void ggml_compute_forward_clamp(
  11398. const struct ggml_compute_params * params,
  11399. struct ggml_tensor * dst) {
  11400. const struct ggml_tensor * src0 = dst->src[0];
  11401. switch (src0->type) {
  11402. case GGML_TYPE_F32:
  11403. {
  11404. ggml_compute_forward_clamp_f32(params, dst);
  11405. } break;
  11406. case GGML_TYPE_F16:
  11407. case GGML_TYPE_BF16:
  11408. case GGML_TYPE_Q4_0:
  11409. case GGML_TYPE_Q4_1:
  11410. case GGML_TYPE_Q5_0:
  11411. case GGML_TYPE_Q5_1:
  11412. case GGML_TYPE_Q8_0:
  11413. case GGML_TYPE_Q8_1:
  11414. case GGML_TYPE_Q2_K:
  11415. case GGML_TYPE_Q3_K:
  11416. case GGML_TYPE_Q4_K:
  11417. case GGML_TYPE_Q5_K:
  11418. case GGML_TYPE_Q6_K:
  11419. case GGML_TYPE_IQ2_XXS:
  11420. case GGML_TYPE_IQ2_XS:
  11421. case GGML_TYPE_IQ3_XXS:
  11422. case GGML_TYPE_IQ1_S:
  11423. case GGML_TYPE_IQ1_M:
  11424. case GGML_TYPE_IQ4_NL:
  11425. case GGML_TYPE_IQ4_XS:
  11426. case GGML_TYPE_IQ3_S:
  11427. case GGML_TYPE_IQ2_S:
  11428. case GGML_TYPE_Q8_K:
  11429. case GGML_TYPE_Q4_0_4_4:
  11430. case GGML_TYPE_Q4_0_4_8:
  11431. case GGML_TYPE_Q4_0_8_8:
  11432. case GGML_TYPE_I8:
  11433. case GGML_TYPE_I16:
  11434. case GGML_TYPE_I32:
  11435. case GGML_TYPE_I64:
  11436. case GGML_TYPE_F64:
  11437. case GGML_TYPE_COUNT:
  11438. {
  11439. GGML_ABORT("fatal error");
  11440. }
  11441. }
  11442. }
  11443. // ggml_compute_forward_rope
  11444. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11445. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11446. return 1 - MIN(1, MAX(0, y));
  11447. }
  11448. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11449. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11450. static void rope_yarn(
  11451. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11452. float * cos_theta, float * sin_theta) {
  11453. // Get n-d rotational scaling corrected for extrapolation
  11454. float theta_interp = freq_scale * theta_extrap;
  11455. float theta = theta_interp;
  11456. if (ext_factor != 0.0f) {
  11457. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11458. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11459. // Get n-d magnitude scaling corrected for interpolation
  11460. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11461. }
  11462. *cos_theta = cosf(theta) * mscale;
  11463. *sin_theta = sinf(theta) * mscale;
  11464. }
  11465. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11466. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11467. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11468. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11469. }
  11470. static void ggml_rope_cache_init(
  11471. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11472. float * cache, float sin_sign, float theta_scale) {
  11473. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11474. float theta = theta_base;
  11475. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11476. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11477. rope_yarn(
  11478. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11479. );
  11480. cache[i0 + 1] *= sin_sign;
  11481. theta *= theta_scale;
  11482. }
  11483. }
  11484. GGML_CALL void ggml_rope_yarn_corr_dims(
  11485. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11486. ) {
  11487. // start and end correction dims
  11488. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11489. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11490. dims[0] = MAX(0, start);
  11491. dims[1] = MIN(n_dims - 1, end);
  11492. }
  11493. static void ggml_compute_forward_rope_f32(
  11494. const struct ggml_compute_params * params,
  11495. struct ggml_tensor * dst,
  11496. const bool forward) {
  11497. const struct ggml_tensor * src0 = dst->src[0];
  11498. const struct ggml_tensor * src1 = dst->src[1];
  11499. const struct ggml_tensor * src2 = dst->src[2];
  11500. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11501. //const int n_past = ((int32_t *) dst->op_params)[0];
  11502. const int n_dims = ((int32_t *) dst->op_params)[1];
  11503. const int mode = ((int32_t *) dst->op_params)[2];
  11504. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11505. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11506. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11507. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11508. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11509. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11510. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11511. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11512. GGML_TENSOR_UNARY_OP_LOCALS
  11513. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11514. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11515. GGML_ASSERT(nb00 == sizeof(float));
  11516. const int ith = params->ith;
  11517. const int nth = params->nth;
  11518. const int nr = ggml_nrows(dst);
  11519. GGML_ASSERT(n_dims <= ne0);
  11520. GGML_ASSERT(n_dims % 2 == 0);
  11521. // rows per thread
  11522. const int dr = (nr + nth - 1)/nth;
  11523. // row range for this thread
  11524. const int ir0 = dr*ith;
  11525. const int ir1 = MIN(ir0 + dr, nr);
  11526. // row index used to determine which thread to use
  11527. int ir = 0;
  11528. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11529. float corr_dims[2];
  11530. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11531. const bool is_neox = mode & 2;
  11532. const float * freq_factors = NULL;
  11533. if (src2 != NULL) {
  11534. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11535. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11536. freq_factors = (const float *) src2->data;
  11537. }
  11538. // backward process uses inverse rotation by cos and sin.
  11539. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11540. // this essentially just switches the sign of sin.
  11541. const float sin_sign = forward ? 1.0f : -1.0f;
  11542. const int32_t * pos = (const int32_t *) src1->data;
  11543. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11544. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11545. const int64_t p = pos[i2];
  11546. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11547. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11548. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11549. if (ir++ < ir0) continue;
  11550. if (ir > ir1) break;
  11551. if (!is_neox) {
  11552. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11553. const float cos_theta = cache[i0 + 0];
  11554. const float sin_theta = cache[i0 + 1];
  11555. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11556. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11557. const float x0 = src[0];
  11558. const float x1 = src[1];
  11559. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11560. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11561. }
  11562. } else {
  11563. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11564. const int64_t ic = i0/2;
  11565. const float cos_theta = cache[i0 + 0];
  11566. const float sin_theta = cache[i0 + 1];
  11567. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11568. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11569. const float x0 = src[0];
  11570. const float x1 = src[n_dims/2];
  11571. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11572. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11573. }
  11574. }
  11575. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11576. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11577. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11578. dst_data[0] = src[0];
  11579. dst_data[1] = src[1];
  11580. }
  11581. }
  11582. }
  11583. }
  11584. }
  11585. // TODO: deduplicate f16/f32 code
  11586. static void ggml_compute_forward_rope_f16(
  11587. const struct ggml_compute_params * params,
  11588. struct ggml_tensor * dst,
  11589. const bool forward) {
  11590. const struct ggml_tensor * src0 = dst->src[0];
  11591. const struct ggml_tensor * src1 = dst->src[1];
  11592. const struct ggml_tensor * src2 = dst->src[2];
  11593. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11594. //const int n_past = ((int32_t *) dst->op_params)[0];
  11595. const int n_dims = ((int32_t *) dst->op_params)[1];
  11596. const int mode = ((int32_t *) dst->op_params)[2];
  11597. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11598. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11599. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11600. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11601. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11602. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11603. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11604. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11605. GGML_TENSOR_UNARY_OP_LOCALS
  11606. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11607. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11608. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11609. const int ith = params->ith;
  11610. const int nth = params->nth;
  11611. const int nr = ggml_nrows(dst);
  11612. GGML_ASSERT(n_dims <= ne0);
  11613. GGML_ASSERT(n_dims % 2 == 0);
  11614. // rows per thread
  11615. const int dr = (nr + nth - 1)/nth;
  11616. // row range for this thread
  11617. const int ir0 = dr*ith;
  11618. const int ir1 = MIN(ir0 + dr, nr);
  11619. // row index used to determine which thread to use
  11620. int ir = 0;
  11621. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11622. float corr_dims[2];
  11623. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11624. const bool is_neox = mode & 2;
  11625. const float * freq_factors = NULL;
  11626. if (src2 != NULL) {
  11627. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11628. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11629. freq_factors = (const float *) src2->data;
  11630. }
  11631. // backward process uses inverse rotation by cos and sin.
  11632. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11633. // this essentially just switches the sign of sin.
  11634. const float sin_sign = forward ? 1.0f : -1.0f;
  11635. const int32_t * pos = (const int32_t *) src1->data;
  11636. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11637. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11638. const int64_t p = pos[i2];
  11639. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11640. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11641. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11642. if (ir++ < ir0) continue;
  11643. if (ir > ir1) break;
  11644. if (!is_neox) {
  11645. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11646. const float cos_theta = cache[i0 + 0];
  11647. const float sin_theta = cache[i0 + 1];
  11648. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11649. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11650. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11651. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11652. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11653. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11654. }
  11655. } else {
  11656. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11657. const int64_t ic = i0/2;
  11658. const float cos_theta = cache[i0 + 0];
  11659. const float sin_theta = cache[i0 + 1];
  11660. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11661. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11662. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11663. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11664. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11665. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11666. }
  11667. }
  11668. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11669. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11670. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11671. dst_data[0] = src[0];
  11672. dst_data[1] = src[1];
  11673. }
  11674. }
  11675. }
  11676. }
  11677. }
  11678. static void ggml_compute_forward_rope(
  11679. const struct ggml_compute_params * params,
  11680. struct ggml_tensor * dst) {
  11681. const struct ggml_tensor * src0 = dst->src[0];
  11682. switch (src0->type) {
  11683. case GGML_TYPE_F16:
  11684. {
  11685. ggml_compute_forward_rope_f16(params, dst, true);
  11686. } break;
  11687. case GGML_TYPE_F32:
  11688. {
  11689. ggml_compute_forward_rope_f32(params, dst, true);
  11690. } break;
  11691. default:
  11692. {
  11693. GGML_ABORT("fatal error");
  11694. }
  11695. }
  11696. }
  11697. // ggml_compute_forward_rope_back
  11698. static void ggml_compute_forward_rope_back(
  11699. const struct ggml_compute_params * params,
  11700. struct ggml_tensor * dst) {
  11701. const struct ggml_tensor * src0 = dst->src[0];
  11702. switch (src0->type) {
  11703. case GGML_TYPE_F16:
  11704. {
  11705. ggml_compute_forward_rope_f16(params, dst, false);
  11706. } break;
  11707. case GGML_TYPE_F32:
  11708. {
  11709. ggml_compute_forward_rope_f32(params, dst, false);
  11710. } break;
  11711. default:
  11712. {
  11713. GGML_ABORT("fatal error");
  11714. }
  11715. }
  11716. }
  11717. // ggml_compute_forward_conv_transpose_1d
  11718. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11719. const struct ggml_compute_params * params,
  11720. struct ggml_tensor * dst) {
  11721. const struct ggml_tensor * src0 = dst->src[0];
  11722. const struct ggml_tensor * src1 = dst->src[1];
  11723. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11724. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11725. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11726. GGML_TENSOR_BINARY_OP_LOCALS
  11727. const int ith = params->ith;
  11728. const int nth = params->nth;
  11729. const int nk = ne00*ne01*ne02;
  11730. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11731. GGML_ASSERT(nb10 == sizeof(float));
  11732. if (ith == 0) {
  11733. memset(params->wdata, 0, params->wsize);
  11734. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11735. {
  11736. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11738. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11739. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11740. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11741. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11742. dst_data[i00*ne02 + i02] = src[i00];
  11743. }
  11744. }
  11745. }
  11746. }
  11747. // permute source data (src1) from (L x Cin) to (Cin x L)
  11748. {
  11749. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11750. ggml_fp16_t * dst_data = wdata;
  11751. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11752. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11753. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11754. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11755. }
  11756. }
  11757. }
  11758. // need to zero dst since we are accumulating into it
  11759. memset(dst->data, 0, ggml_nbytes(dst));
  11760. }
  11761. ggml_barrier(params->shared);
  11762. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11763. // total rows in dst
  11764. const int nr = ne1;
  11765. // rows per thread
  11766. const int dr = (nr + nth - 1)/nth;
  11767. // row range for this thread
  11768. const int ir0 = dr*ith;
  11769. const int ir1 = MIN(ir0 + dr, nr);
  11770. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11771. ggml_fp16_t * const wdata_src = wdata + nk;
  11772. for (int i1 = ir0; i1 < ir1; i1++) {
  11773. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11774. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11775. for (int i10 = 0; i10 < ne10; i10++) {
  11776. const int i1n = i10*ne11;
  11777. for (int i00 = 0; i00 < ne00; i00++) {
  11778. float v = 0;
  11779. ggml_vec_dot_f16(ne02, &v, 0,
  11780. (ggml_fp16_t *) wdata_src + i1n, 0,
  11781. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11782. dst_data[i10*s0 + i00] += v;
  11783. }
  11784. }
  11785. }
  11786. }
  11787. static void ggml_compute_forward_conv_transpose_1d_f32(
  11788. const struct ggml_compute_params * params,
  11789. struct ggml_tensor * dst) {
  11790. const struct ggml_tensor * src0 = dst->src[0];
  11791. const struct ggml_tensor * src1 = dst->src[1];
  11792. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11793. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11794. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11795. GGML_TENSOR_BINARY_OP_LOCALS
  11796. const int ith = params->ith;
  11797. const int nth = params->nth;
  11798. const int nk = ne00*ne01*ne02;
  11799. GGML_ASSERT(nb00 == sizeof(float));
  11800. GGML_ASSERT(nb10 == sizeof(float));
  11801. if (ith == 0) {
  11802. memset(params->wdata, 0, params->wsize);
  11803. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11804. {
  11805. float * const wdata = (float *) params->wdata + 0;
  11806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11807. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11808. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11809. float * dst_data = wdata + i01*ne00*ne02;
  11810. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11811. dst_data[i00*ne02 + i02] = src[i00];
  11812. }
  11813. }
  11814. }
  11815. }
  11816. // prepare source data (src1)
  11817. {
  11818. float * const wdata = (float *) params->wdata + nk;
  11819. float * dst_data = wdata;
  11820. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11821. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11822. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11823. dst_data[i10*ne11 + i11] = src[i10];
  11824. }
  11825. }
  11826. }
  11827. // need to zero dst since we are accumulating into it
  11828. memset(dst->data, 0, ggml_nbytes(dst));
  11829. }
  11830. ggml_barrier(params->shared);
  11831. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11832. // total rows in dst
  11833. const int nr = ne1;
  11834. // rows per thread
  11835. const int dr = (nr + nth - 1)/nth;
  11836. // row range for this thread
  11837. const int ir0 = dr*ith;
  11838. const int ir1 = MIN(ir0 + dr, nr);
  11839. float * const wdata = (float *) params->wdata + 0;
  11840. float * const wdata_src = wdata + nk;
  11841. for (int i1 = ir0; i1 < ir1; i1++) {
  11842. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11843. float * wdata_kernel = wdata + i1*ne02*ne00;
  11844. for (int i10 = 0; i10 < ne10; i10++) {
  11845. const int i1n = i10*ne11;
  11846. for (int i00 = 0; i00 < ne00; i00++) {
  11847. float v = 0;
  11848. ggml_vec_dot_f32(ne02, &v, 0,
  11849. wdata_src + i1n, 0,
  11850. wdata_kernel + i00*ne02, 0, 1);
  11851. dst_data[i10*s0 + i00] += v;
  11852. }
  11853. }
  11854. }
  11855. }
  11856. static void ggml_compute_forward_conv_transpose_1d(
  11857. const struct ggml_compute_params * params,
  11858. struct ggml_tensor * dst) {
  11859. const struct ggml_tensor * src0 = dst->src[0];
  11860. switch (src0->type) {
  11861. case GGML_TYPE_F16:
  11862. {
  11863. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11864. } break;
  11865. case GGML_TYPE_F32:
  11866. {
  11867. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11868. } break;
  11869. default:
  11870. {
  11871. GGML_ABORT("fatal error");
  11872. }
  11873. }
  11874. }
  11875. // src0: kernel [OC, IC, KH, KW]
  11876. // src1: image [N, IC, IH, IW]
  11877. // dst: result [N, OH, OW, IC*KH*KW]
  11878. static void ggml_compute_forward_im2col_f32(
  11879. const struct ggml_compute_params * params,
  11880. struct ggml_tensor * dst) {
  11881. const struct ggml_tensor * src0 = dst->src[0];
  11882. const struct ggml_tensor * src1 = dst->src[1];
  11883. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11884. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11885. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11886. GGML_TENSOR_BINARY_OP_LOCALS;
  11887. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11888. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11889. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11890. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11891. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11892. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11893. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11894. const int ith = params->ith;
  11895. const int nth = params->nth;
  11896. const int64_t N = is_2D ? ne13 : ne12;
  11897. const int64_t IC = is_2D ? ne12 : ne11;
  11898. const int64_t IH = is_2D ? ne11 : 1;
  11899. const int64_t IW = ne10;
  11900. const int64_t KH = is_2D ? ne01 : 1;
  11901. const int64_t KW = ne00;
  11902. const int64_t OH = is_2D ? ne2 : 1;
  11903. const int64_t OW = ne1;
  11904. int ofs0 = is_2D ? nb13 : nb12;
  11905. int ofs1 = is_2D ? nb12 : nb11;
  11906. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11907. GGML_ASSERT(nb10 == sizeof(float));
  11908. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11909. {
  11910. float * const wdata = (float *) dst->data;
  11911. for (int64_t in = 0; in < N; in++) {
  11912. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11913. for (int64_t iow = 0; iow < OW; iow++) {
  11914. for (int64_t iic = ith; iic < IC; iic += nth) {
  11915. // micro kernel
  11916. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11917. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11918. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11919. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11920. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11921. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11922. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11923. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11924. } else {
  11925. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11926. }
  11927. }
  11928. }
  11929. }
  11930. }
  11931. }
  11932. }
  11933. }
  11934. }
  11935. // src0: kernel [OC, IC, KH, KW]
  11936. // src1: image [N, IC, IH, IW]
  11937. // dst: result [N, OH, OW, IC*KH*KW]
  11938. static void ggml_compute_forward_im2col_f16(
  11939. const struct ggml_compute_params * params,
  11940. struct ggml_tensor * dst) {
  11941. const struct ggml_tensor * src0 = dst->src[0];
  11942. const struct ggml_tensor * src1 = dst->src[1];
  11943. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11944. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11945. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11946. GGML_TENSOR_BINARY_OP_LOCALS;
  11947. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11948. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11949. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11950. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11951. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11952. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11953. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11954. const int ith = params->ith;
  11955. const int nth = params->nth;
  11956. const int64_t N = is_2D ? ne13 : ne12;
  11957. const int64_t IC = is_2D ? ne12 : ne11;
  11958. const int64_t IH = is_2D ? ne11 : 1;
  11959. const int64_t IW = ne10;
  11960. const int64_t KH = is_2D ? ne01 : 1;
  11961. const int64_t KW = ne00;
  11962. const int64_t OH = is_2D ? ne2 : 1;
  11963. const int64_t OW = ne1;
  11964. int ofs0 = is_2D ? nb13 : nb12;
  11965. int ofs1 = is_2D ? nb12 : nb11;
  11966. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11967. GGML_ASSERT(nb10 == sizeof(float));
  11968. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11969. {
  11970. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11971. for (int64_t in = 0; in < N; in++) {
  11972. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11973. for (int64_t iow = 0; iow < OW; iow++) {
  11974. for (int64_t iic = ith; iic < IC; iic += nth) {
  11975. // micro kernel
  11976. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11977. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11978. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11979. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11980. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11981. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11982. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11983. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11984. } else {
  11985. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11986. }
  11987. }
  11988. }
  11989. }
  11990. }
  11991. }
  11992. }
  11993. }
  11994. }
  11995. static void ggml_compute_forward_im2col(
  11996. const struct ggml_compute_params * params,
  11997. struct ggml_tensor * dst) {
  11998. switch (dst->type) {
  11999. case GGML_TYPE_F16:
  12000. {
  12001. ggml_compute_forward_im2col_f16(params, dst);
  12002. } break;
  12003. case GGML_TYPE_F32:
  12004. {
  12005. ggml_compute_forward_im2col_f32(params, dst);
  12006. } break;
  12007. default:
  12008. {
  12009. GGML_ABORT("fatal error");
  12010. }
  12011. }
  12012. }
  12013. // ggml_compute_forward_conv_transpose_2d
  12014. static void ggml_compute_forward_conv_transpose_2d(
  12015. const struct ggml_compute_params * params,
  12016. struct ggml_tensor * dst) {
  12017. const struct ggml_tensor * src0 = dst->src[0];
  12018. const struct ggml_tensor * src1 = dst->src[1];
  12019. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12020. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12021. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12022. GGML_TENSOR_BINARY_OP_LOCALS
  12023. const int ith = params->ith;
  12024. const int nth = params->nth;
  12025. const int nk = ne00*ne01*ne02*ne03;
  12026. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12027. GGML_ASSERT(nb10 == sizeof(float));
  12028. if (ith == 0) {
  12029. memset(params->wdata, 0, params->wsize);
  12030. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12031. {
  12032. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12035. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12036. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12037. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12038. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12039. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12040. }
  12041. }
  12042. }
  12043. }
  12044. }
  12045. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12046. {
  12047. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12048. for (int i12 = 0; i12 < ne12; i12++) {
  12049. for (int i11 = 0; i11 < ne11; i11++) {
  12050. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12051. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12052. for (int i10 = 0; i10 < ne10; i10++) {
  12053. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12054. }
  12055. }
  12056. }
  12057. }
  12058. memset(dst->data, 0, ggml_nbytes(dst));
  12059. }
  12060. ggml_barrier(params->shared);
  12061. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12062. // total patches in dst
  12063. const int np = ne2;
  12064. // patches per thread
  12065. const int dp = (np + nth - 1)/nth;
  12066. // patch range for this thread
  12067. const int ip0 = dp*ith;
  12068. const int ip1 = MIN(ip0 + dp, np);
  12069. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12070. ggml_fp16_t * const wdata_src = wdata + nk;
  12071. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12072. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12073. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12074. for (int i11 = 0; i11 < ne11; i11++) {
  12075. for (int i10 = 0; i10 < ne10; i10++) {
  12076. const int i1n = i11*ne10*ne12 + i10*ne12;
  12077. for (int i01 = 0; i01 < ne01; i01++) {
  12078. for (int i00 = 0; i00 < ne00; i00++) {
  12079. float v = 0;
  12080. ggml_vec_dot_f16(ne03, &v, 0,
  12081. wdata_src + i1n, 0,
  12082. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12083. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12084. }
  12085. }
  12086. }
  12087. }
  12088. }
  12089. }
  12090. // ggml_compute_forward_pool_1d_sk_p0
  12091. static void ggml_compute_forward_pool_1d_sk_p0(
  12092. const struct ggml_compute_params * params,
  12093. const enum ggml_op_pool op,
  12094. const int k,
  12095. struct ggml_tensor * dst) {
  12096. const struct ggml_tensor * src = dst->src[0];
  12097. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12098. if (params->ith != 0) {
  12099. return;
  12100. }
  12101. const char * cdata = (const char *)src->data;
  12102. const char * const data_end = cdata + ggml_nbytes(src);
  12103. float * drow = (float *)dst->data;
  12104. const int64_t rs = dst->ne[0];
  12105. while (cdata < data_end) {
  12106. const void * srow = (const void *)cdata;
  12107. int j = 0;
  12108. for (int64_t i = 0; i < rs; ++i) {
  12109. switch (op) {
  12110. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12111. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12112. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12113. }
  12114. for (int ki = 0; ki < k; ++ki) {
  12115. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12116. switch (op) {
  12117. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12118. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12119. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12120. }
  12121. ++j;
  12122. }
  12123. switch (op) {
  12124. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12125. case GGML_OP_POOL_MAX: break;
  12126. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12127. }
  12128. }
  12129. cdata += src->nb[1];
  12130. drow += rs;
  12131. }
  12132. }
  12133. // ggml_compute_forward_pool_1d
  12134. static void ggml_compute_forward_pool_1d(
  12135. const struct ggml_compute_params * params,
  12136. struct ggml_tensor * dst) {
  12137. const int32_t * opts = (const int32_t *)dst->op_params;
  12138. enum ggml_op_pool op = opts[0];
  12139. const int k0 = opts[1];
  12140. const int s0 = opts[2];
  12141. const int p0 = opts[3];
  12142. GGML_ASSERT(p0 == 0); // padding not supported
  12143. GGML_ASSERT(k0 == s0); // only s = k supported
  12144. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12145. }
  12146. // ggml_compute_forward_pool_2d
  12147. static void ggml_compute_forward_pool_2d(
  12148. const struct ggml_compute_params * params,
  12149. struct ggml_tensor * dst) {
  12150. const struct ggml_tensor * src = dst->src[0];
  12151. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12152. if (params->ith != 0) {
  12153. return;
  12154. }
  12155. const int32_t * opts = (const int32_t *)dst->op_params;
  12156. enum ggml_op_pool op = opts[0];
  12157. const int k0 = opts[1];
  12158. const int k1 = opts[2];
  12159. const int s0 = opts[3];
  12160. const int s1 = opts[4];
  12161. const int p0 = opts[5];
  12162. const int p1 = opts[6];
  12163. const char * cdata = (const char*)src->data;
  12164. const char * const data_end = cdata + ggml_nbytes(src);
  12165. const int64_t px = dst->ne[0];
  12166. const int64_t py = dst->ne[1];
  12167. const int64_t pa = px * py;
  12168. float * dplane = (float *)dst->data;
  12169. const int ka = k0 * k1;
  12170. const int offset0 = -p0;
  12171. const int offset1 = -p1;
  12172. while (cdata < data_end) {
  12173. for (int oy = 0; oy < py; ++oy) {
  12174. float * const drow = dplane + oy * px;
  12175. for (int ox = 0; ox < px; ++ox) {
  12176. float * const out = drow + ox;
  12177. switch (op) {
  12178. case GGML_OP_POOL_AVG: *out = 0; break;
  12179. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12180. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12181. }
  12182. const int ix = offset0 + ox * s0;
  12183. const int iy = offset1 + oy * s1;
  12184. for (int ky = 0; ky < k1; ++ky) {
  12185. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12186. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12187. for (int kx = 0; kx < k0; ++kx) {
  12188. int j = ix + kx;
  12189. if (j < 0 || j >= src->ne[0]) continue;
  12190. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12191. switch (op) {
  12192. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12193. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12194. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12195. }
  12196. }
  12197. }
  12198. switch (op) {
  12199. case GGML_OP_POOL_AVG: *out /= ka; break;
  12200. case GGML_OP_POOL_MAX: break;
  12201. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12202. }
  12203. }
  12204. }
  12205. cdata += src->nb[2];
  12206. dplane += pa;
  12207. }
  12208. }
  12209. // ggml_compute_forward_upscale
  12210. static void ggml_compute_forward_upscale_f32(
  12211. const struct ggml_compute_params * params,
  12212. struct ggml_tensor * dst) {
  12213. const struct ggml_tensor * src0 = dst->src[0];
  12214. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12215. const int ith = params->ith;
  12216. const int nth = params->nth;
  12217. GGML_TENSOR_UNARY_OP_LOCALS
  12218. const float sf0 = (float)ne0/src0->ne[0];
  12219. const float sf1 = (float)ne1/src0->ne[1];
  12220. const float sf2 = (float)ne2/src0->ne[2];
  12221. const float sf3 = (float)ne3/src0->ne[3];
  12222. // TODO: optimize
  12223. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12224. const int64_t i03 = i3 / sf3;
  12225. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12226. const int64_t i02 = i2 / sf2;
  12227. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12228. const int64_t i01 = i1 / sf1;
  12229. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12230. const int64_t i00 = i0 / sf0;
  12231. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12232. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12233. *y = *x;
  12234. }
  12235. }
  12236. }
  12237. }
  12238. }
  12239. static void ggml_compute_forward_upscale(
  12240. const struct ggml_compute_params * params,
  12241. struct ggml_tensor * dst) {
  12242. const struct ggml_tensor * src0 = dst->src[0];
  12243. switch (src0->type) {
  12244. case GGML_TYPE_F32:
  12245. {
  12246. ggml_compute_forward_upscale_f32(params, dst);
  12247. } break;
  12248. default:
  12249. {
  12250. GGML_ABORT("fatal error");
  12251. }
  12252. }
  12253. }
  12254. // ggml_compute_forward_pad
  12255. static void ggml_compute_forward_pad_f32(
  12256. const struct ggml_compute_params * params,
  12257. struct ggml_tensor * dst) {
  12258. const struct ggml_tensor * src0 = dst->src[0];
  12259. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12260. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12261. const int ith = params->ith;
  12262. const int nth = params->nth;
  12263. GGML_TENSOR_UNARY_OP_LOCALS
  12264. float * dst_ptr = (float *) dst->data;
  12265. // TODO: optimize
  12266. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12267. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12268. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12269. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12270. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12271. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12272. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12273. dst_ptr[dst_idx] = *src_ptr;
  12274. } else {
  12275. dst_ptr[dst_idx] = 0;
  12276. }
  12277. }
  12278. }
  12279. }
  12280. }
  12281. }
  12282. static void ggml_compute_forward_pad(
  12283. const struct ggml_compute_params * params,
  12284. struct ggml_tensor * dst) {
  12285. const struct ggml_tensor * src0 = dst->src[0];
  12286. switch (src0->type) {
  12287. case GGML_TYPE_F32:
  12288. {
  12289. ggml_compute_forward_pad_f32(params, dst);
  12290. } break;
  12291. default:
  12292. {
  12293. GGML_ABORT("fatal error");
  12294. }
  12295. }
  12296. }
  12297. // ggml_compute_forward_arange
  12298. static void ggml_compute_forward_arange_f32(
  12299. const struct ggml_compute_params * params,
  12300. struct ggml_tensor * dst) {
  12301. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12302. const int ith = params->ith;
  12303. const int nth = params->nth;
  12304. const float start = ggml_get_op_params_f32(dst, 0);
  12305. const float stop = ggml_get_op_params_f32(dst, 1);
  12306. const float step = ggml_get_op_params_f32(dst, 2);
  12307. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12308. GGML_ASSERT(ggml_nelements(dst) == steps);
  12309. for (int64_t i = ith; i < steps; i+= nth) {
  12310. float value = start + step * i;
  12311. ((float *)dst->data)[i] = value;
  12312. }
  12313. }
  12314. static void ggml_compute_forward_arange(
  12315. const struct ggml_compute_params * params,
  12316. struct ggml_tensor * dst) {
  12317. switch (dst->type) {
  12318. case GGML_TYPE_F32:
  12319. {
  12320. ggml_compute_forward_arange_f32(params, dst);
  12321. } break;
  12322. default:
  12323. {
  12324. GGML_ABORT("fatal error");
  12325. }
  12326. }
  12327. }
  12328. static void ggml_compute_forward_timestep_embedding_f32(
  12329. const struct ggml_compute_params * params,
  12330. struct ggml_tensor * dst) {
  12331. const struct ggml_tensor * src0 = dst->src[0];
  12332. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12333. const int ith = params->ith;
  12334. const int nth = params->nth;
  12335. GGML_TENSOR_UNARY_OP_LOCALS
  12336. const int dim = ggml_get_op_params_i32(dst, 0);
  12337. const int max_period = ggml_get_op_params_i32(dst, 1);
  12338. int half = dim / 2;
  12339. for (int64_t i = 0; i < ne00; i++) {
  12340. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12341. for (int64_t j = ith; j < half; j += nth) {
  12342. float timestep = ((float *)src0->data)[i];
  12343. float freq = (float)expf(-logf(max_period) * j / half);
  12344. float arg = timestep * freq;
  12345. embed_data[j] = cosf(arg);
  12346. embed_data[j + half] = sinf(arg);
  12347. }
  12348. if (dim % 2 != 0 && ith == 0) {
  12349. embed_data[dim] = 0.f;
  12350. }
  12351. }
  12352. }
  12353. static void ggml_compute_forward_timestep_embedding(
  12354. const struct ggml_compute_params * params,
  12355. struct ggml_tensor * dst) {
  12356. const struct ggml_tensor * src0 = dst->src[0];
  12357. switch (src0->type) {
  12358. case GGML_TYPE_F32:
  12359. {
  12360. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12361. } break;
  12362. default:
  12363. {
  12364. GGML_ABORT("fatal error");
  12365. }
  12366. }
  12367. }
  12368. // ggml_compute_forward_argsort
  12369. static void ggml_compute_forward_argsort_f32(
  12370. const struct ggml_compute_params * params,
  12371. struct ggml_tensor * dst) {
  12372. const struct ggml_tensor * src0 = dst->src[0];
  12373. GGML_TENSOR_UNARY_OP_LOCALS
  12374. GGML_ASSERT(nb0 == sizeof(float));
  12375. const int ith = params->ith;
  12376. const int nth = params->nth;
  12377. const int64_t nr = ggml_nrows(src0);
  12378. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12379. for (int64_t i = ith; i < nr; i += nth) {
  12380. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12381. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12382. for (int64_t j = 0; j < ne0; j++) {
  12383. dst_data[j] = j;
  12384. }
  12385. // C doesn't have a functional sort, so we do a bubble sort instead
  12386. for (int64_t j = 0; j < ne0; j++) {
  12387. for (int64_t k = j + 1; k < ne0; k++) {
  12388. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12389. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12390. int32_t tmp = dst_data[j];
  12391. dst_data[j] = dst_data[k];
  12392. dst_data[k] = tmp;
  12393. }
  12394. }
  12395. }
  12396. }
  12397. }
  12398. static void ggml_compute_forward_argsort(
  12399. const struct ggml_compute_params * params,
  12400. struct ggml_tensor * dst) {
  12401. const struct ggml_tensor * src0 = dst->src[0];
  12402. switch (src0->type) {
  12403. case GGML_TYPE_F32:
  12404. {
  12405. ggml_compute_forward_argsort_f32(params, dst);
  12406. } break;
  12407. default:
  12408. {
  12409. GGML_ABORT("fatal error");
  12410. }
  12411. }
  12412. }
  12413. // ggml_compute_forward_flash_attn_ext
  12414. static void ggml_compute_forward_flash_attn_ext_f16(
  12415. const struct ggml_compute_params * params,
  12416. const struct ggml_tensor * q,
  12417. const struct ggml_tensor * k,
  12418. const struct ggml_tensor * v,
  12419. const struct ggml_tensor * mask,
  12420. struct ggml_tensor * dst) {
  12421. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12422. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12423. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12424. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12425. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12426. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12427. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12428. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12429. const int ith = params->ith;
  12430. const int nth = params->nth;
  12431. const int64_t D = neq0;
  12432. const int64_t N = neq1;
  12433. GGML_ASSERT(ne0 == D);
  12434. GGML_ASSERT(ne2 == N);
  12435. // input tensor rows must be contiguous
  12436. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12437. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12438. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12439. GGML_ASSERT(neq0 == D);
  12440. GGML_ASSERT(nek0 == D);
  12441. GGML_ASSERT(nev0 == D);
  12442. GGML_ASSERT(neq1 == N);
  12443. GGML_ASSERT(nev0 == D);
  12444. // dst cannot be transposed or permuted
  12445. GGML_ASSERT(nb0 == sizeof(float));
  12446. GGML_ASSERT(nb0 <= nb1);
  12447. GGML_ASSERT(nb1 <= nb2);
  12448. GGML_ASSERT(nb2 <= nb3);
  12449. // broadcast factors
  12450. const int64_t rk2 = neq2/nek2;
  12451. const int64_t rk3 = neq3/nek3;
  12452. const int64_t rv2 = neq2/nev2;
  12453. const int64_t rv3 = neq3/nev3;
  12454. // parallelize by q rows using ggml_vec_dot_f32
  12455. // total rows in q
  12456. const int nr = neq1*neq2*neq3;
  12457. // rows per thread
  12458. const int dr = (nr + nth - 1)/nth;
  12459. // row range for this thread
  12460. const int ir0 = dr*ith;
  12461. const int ir1 = MIN(ir0 + dr, nr);
  12462. float scale = 1.0f;
  12463. float max_bias = 0.0f;
  12464. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12465. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12466. const uint32_t n_head = neq2;
  12467. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12468. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12469. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12470. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12471. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12472. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12473. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12474. // loop over n_batch and n_head
  12475. for (int ir = ir0; ir < ir1; ++ir) {
  12476. // q indices
  12477. const int iq3 = ir/(neq2*neq1);
  12478. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12479. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12480. const uint32_t h = iq2; // head index
  12481. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12482. float S = 0.0f; // sum
  12483. float M = -INFINITY; // maximum KQ value
  12484. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12485. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12486. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12487. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12488. if (v->type == GGML_TYPE_F16) {
  12489. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12490. } else {
  12491. memset(VKQ32, 0, D*sizeof(float));
  12492. }
  12493. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12494. // k indices
  12495. const int ik3 = iq3 / rk3;
  12496. const int ik2 = iq2 / rk2;
  12497. // v indices
  12498. const int iv3 = iq3 / rv3;
  12499. const int iv2 = iq2 / rv2;
  12500. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12501. q_to_vec_dot(pq, Q_q, D);
  12502. // online softmax / attention
  12503. // loop over n_kv and n_head_kv
  12504. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12505. for (int64_t ic = 0; ic < nek1; ++ic) {
  12506. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12507. if (mv == -INFINITY) {
  12508. continue;
  12509. }
  12510. float s; // KQ value
  12511. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12512. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12513. s = s*scale + mv; // scale KQ value and apply mask
  12514. const float Mold = M;
  12515. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12516. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12517. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12518. if (v->type== GGML_TYPE_F16) {
  12519. if (s > M) {
  12520. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12521. M = s;
  12522. ms = expf(Mold - M);
  12523. // V = V*expf(Mold - M)
  12524. ggml_vec_scale_f16(D, VKQ16, ms);
  12525. } else {
  12526. // no new maximum, ms == 1.0f, vs != 1.0f
  12527. vs = expf(s - M);
  12528. }
  12529. // V += v*expf(s - M)
  12530. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12531. } else {
  12532. if (s > M) {
  12533. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12534. M = s;
  12535. ms = expf(Mold - M);
  12536. // V = V*expf(Mold - M)
  12537. ggml_vec_scale_f32(D, VKQ32, ms);
  12538. } else {
  12539. // no new maximum, ms == 1.0f, vs != 1.0f
  12540. vs = expf(s - M);
  12541. }
  12542. v_to_float(v_data, V32, D);
  12543. // V += v*expf(s - M)
  12544. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12545. }
  12546. S = S*ms + vs; // scale and increment sum with partial sum
  12547. }
  12548. if (v->type == GGML_TYPE_F16) {
  12549. for (int64_t d = 0; d < D; ++d) {
  12550. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12551. }
  12552. }
  12553. // V /= S
  12554. const float S_inv = 1.0f/S;
  12555. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12556. // dst indices
  12557. const int i1 = iq1;
  12558. const int i2 = iq2;
  12559. const int i3 = iq3;
  12560. // original
  12561. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12562. // permute(0, 2, 1, 3)
  12563. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12564. }
  12565. }
  12566. static void ggml_compute_forward_flash_attn_ext(
  12567. const struct ggml_compute_params * params,
  12568. const struct ggml_tensor * q,
  12569. const struct ggml_tensor * k,
  12570. const struct ggml_tensor * v,
  12571. const struct ggml_tensor * mask,
  12572. struct ggml_tensor * dst) {
  12573. switch (dst->op_params[2]) {
  12574. case GGML_PREC_DEFAULT:
  12575. case GGML_PREC_F32:
  12576. {
  12577. // uses F32 accumulators
  12578. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12579. } break;
  12580. default:
  12581. {
  12582. GGML_ABORT("fatal error");
  12583. }
  12584. }
  12585. }
  12586. // ggml_compute_forward_flash_attn_back
  12587. static void ggml_compute_forward_flash_attn_back_f32(
  12588. const struct ggml_compute_params * params,
  12589. const bool masked,
  12590. struct ggml_tensor * dst) {
  12591. const struct ggml_tensor * q = dst->src[0];
  12592. const struct ggml_tensor * k = dst->src[1];
  12593. const struct ggml_tensor * v = dst->src[2];
  12594. const struct ggml_tensor * d = dst->src[3];
  12595. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12596. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12597. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12598. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12599. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12600. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12601. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12602. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12603. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12604. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12605. const int ith = params->ith;
  12606. const int nth = params->nth;
  12607. const int64_t D = neq0;
  12608. const int64_t N = neq1;
  12609. const int64_t P = nek1 - N;
  12610. const int64_t M = P + N;
  12611. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12612. const int mxDM = MAX(D, Mup);
  12613. // GGML_ASSERT(ne0 == D);
  12614. // GGML_ASSERT(ne1 == N);
  12615. GGML_ASSERT(P >= 0);
  12616. GGML_ASSERT(nbq0 == sizeof(float));
  12617. GGML_ASSERT(nbk0 == sizeof(float));
  12618. GGML_ASSERT(nbv0 == sizeof(float));
  12619. GGML_ASSERT(neq0 == D);
  12620. GGML_ASSERT(nek0 == D);
  12621. GGML_ASSERT(nev1 == D);
  12622. GGML_ASSERT(ned0 == D);
  12623. GGML_ASSERT(neq1 == N);
  12624. GGML_ASSERT(nek1 == N + P);
  12625. GGML_ASSERT(nev1 == D);
  12626. GGML_ASSERT(ned1 == N);
  12627. // dst cannot be transposed or permuted
  12628. GGML_ASSERT(nb0 == sizeof(float));
  12629. GGML_ASSERT(nb0 <= nb1);
  12630. GGML_ASSERT(nb1 <= nb2);
  12631. GGML_ASSERT(nb2 <= nb3);
  12632. if (ith == 0) {
  12633. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12634. }
  12635. ggml_barrier(params->shared);
  12636. const int64_t elem_q = ggml_nelements(q);
  12637. const int64_t elem_k = ggml_nelements(k);
  12638. enum ggml_type result_type = dst->type;
  12639. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12640. const size_t tsize = ggml_type_size(result_type);
  12641. const size_t offs_q = 0;
  12642. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12643. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12644. void * grad_q = (char *) dst->data;
  12645. void * grad_k = (char *) dst->data + offs_k;
  12646. void * grad_v = (char *) dst->data + offs_v;
  12647. const size_t nbgq1 = nb0*neq0;
  12648. const size_t nbgq2 = nb0*neq0*neq1;
  12649. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12650. const size_t nbgk1 = nb0*nek0;
  12651. const size_t nbgk2 = nb0*nek0*nek1;
  12652. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12653. const size_t nbgv1 = nb0*nev0;
  12654. const size_t nbgv2 = nb0*nev0*nev1;
  12655. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12656. // parallelize by k rows using ggml_vec_dot_f32
  12657. // total rows in k
  12658. const int nr = nek2*nek3;
  12659. // rows per thread
  12660. const int dr = (nr + nth - 1)/nth;
  12661. // row range for this thread
  12662. const int ir0 = dr*ith;
  12663. const int ir1 = MIN(ir0 + dr, nr);
  12664. const float scale = 1.0f/sqrtf(D);
  12665. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12666. // how often k2 (and v2) is repeated in q2
  12667. int nrep = neq2/nek2;
  12668. for (int ir = ir0; ir < ir1; ++ir) {
  12669. // q indices
  12670. const int ik3 = ir/(nek2);
  12671. const int ik2 = ir - ik3*nek2;
  12672. const int iq3 = ik3;
  12673. const int id3 = ik3;
  12674. const int iv3 = ik3;
  12675. const int iv2 = ik2;
  12676. for (int irep = 0; irep < nrep; ++irep) {
  12677. const int iq2 = ik2 + irep*nek2;
  12678. const int id2 = iq2;
  12679. // (ik2 + irep*nek2) % nek2 == ik2
  12680. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12681. const int id1 = iq1;
  12682. // not sure about CACHE_LINE_SIZE_F32..
  12683. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12684. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12685. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12686. for (int i = M; i < Mup; ++i) {
  12687. S[i] = -INFINITY;
  12688. }
  12689. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12690. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12691. // k indices
  12692. const int ik1 = ic;
  12693. // S indices
  12694. const int i1 = ik1;
  12695. ggml_vec_dot_f32(neq0,
  12696. S + i1, 0,
  12697. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12698. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12699. }
  12700. // scale
  12701. ggml_vec_scale_f32(masked_begin, S, scale);
  12702. for (int64_t i = masked_begin; i < M; i++) {
  12703. S[i] = -INFINITY;
  12704. }
  12705. // softmax
  12706. // exclude known -INF S[..] values from max and loop
  12707. // dont forget to set their SM values to zero
  12708. {
  12709. float max = -INFINITY;
  12710. ggml_vec_max_f32(masked_begin, &max, S);
  12711. ggml_float sum = 0.0;
  12712. {
  12713. #ifdef GGML_SOFT_MAX_ACCELERATE
  12714. max = -max;
  12715. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12716. vvexpf(SM, SM, &Mup);
  12717. ggml_vec_sum_f32(Mup, &sum, SM);
  12718. #else
  12719. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12720. #endif
  12721. }
  12722. assert(sum > 0.0);
  12723. sum = 1.0/sum;
  12724. ggml_vec_scale_f32(masked_begin, SM, sum);
  12725. }
  12726. // step-by-step explanation
  12727. {
  12728. // forward-process shape grads from backward process
  12729. // parallel_for ik2,ik3:
  12730. // for irep:
  12731. // iq2 = ik2 + irep*nek2
  12732. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12733. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12734. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12735. // for iq1:
  12736. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12737. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12738. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12739. // S0 = -Inf [D,1,1,1]
  12740. // ~S1[i] = dot(kcur[:D,i], qcur)
  12741. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12742. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12743. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12744. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12745. // ~S5[i] = dot(vcur[:,i], S4)
  12746. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12747. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12748. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12749. // dst backward-/ grad[dst] = d
  12750. //
  12751. // output gradients with their dependencies:
  12752. //
  12753. // grad[kcur] = grad[S1].T @ qcur
  12754. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12755. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12756. // grad[S4] = grad[S5] @ vcur
  12757. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12758. // grad[qcur] = grad[S1] @ kcur
  12759. // grad[vcur] = grad[S5].T @ S4
  12760. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12761. //
  12762. // in post-order:
  12763. //
  12764. // S1 = qcur @ kcur.T
  12765. // S2 = S1 * scale
  12766. // S3 = diag_mask_inf(S2, P)
  12767. // S4 = softmax(S3)
  12768. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12769. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12770. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12771. // grad[qcur] = grad[S1] @ kcur
  12772. // grad[kcur] = grad[S1].T @ qcur
  12773. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12774. //
  12775. // using less variables (SM=S4):
  12776. //
  12777. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12778. // SM = softmax(S)
  12779. // S = d[:D,iq1,iq2,iq3] @ vcur
  12780. // dot_SM_gradSM = dot(SM, S)
  12781. // S = SM * (S - dot(SM, S))
  12782. // S = diag_mask_zero(S, P) * scale
  12783. //
  12784. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12785. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12786. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12787. }
  12788. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12789. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12790. // for ic:
  12791. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12792. // exclude known future zero S[..] values from operation
  12793. ggml_vec_set_f32(masked_begin, S, 0);
  12794. for (int64_t ic = 0; ic < D; ++ic) {
  12795. ggml_vec_mad_f32(masked_begin,
  12796. S,
  12797. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12798. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12799. }
  12800. // S = SM * (S - dot(SM, S))
  12801. float dot_SM_gradSM = 0;
  12802. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12803. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12804. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12805. // S = diag_mask_zero(S, P) * scale
  12806. // already done by above ggml_vec_set_f32
  12807. // exclude known zero S[..] values from operation
  12808. ggml_vec_scale_f32(masked_begin, S, scale);
  12809. // S shape [M,1]
  12810. // SM shape [M,1]
  12811. // kcur shape [D,M]
  12812. // qcur shape [D,1]
  12813. // vcur shape [M,D]
  12814. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12815. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12816. // for ic:
  12817. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12818. // exclude known zero S[..] values from loop
  12819. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12820. ggml_vec_mad_f32(D,
  12821. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12822. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12823. S[ic]);
  12824. }
  12825. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12826. // for ic:
  12827. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12828. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12829. // exclude known zero S[..] values from loop
  12830. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12831. ggml_vec_mad_f32(D,
  12832. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12833. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12834. S[ic]);
  12835. }
  12836. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12837. // for ic:
  12838. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12839. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12840. // exclude known zero SM[..] values from mad
  12841. for (int64_t ic = 0; ic < D; ++ic) {
  12842. ggml_vec_mad_f32(masked_begin,
  12843. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12844. SM,
  12845. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12846. }
  12847. }
  12848. }
  12849. }
  12850. }
  12851. static void ggml_compute_forward_flash_attn_back(
  12852. const struct ggml_compute_params * params,
  12853. const bool masked,
  12854. struct ggml_tensor * dst) {
  12855. const struct ggml_tensor * q = dst->src[0];
  12856. switch (q->type) {
  12857. case GGML_TYPE_F32:
  12858. {
  12859. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12860. } break;
  12861. default:
  12862. {
  12863. GGML_ABORT("fatal error");
  12864. }
  12865. }
  12866. }
  12867. // ggml_compute_forward_ssm_conv
  12868. static void ggml_compute_forward_ssm_conv_f32(
  12869. const struct ggml_compute_params * params,
  12870. struct ggml_tensor * dst) {
  12871. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12872. const struct ggml_tensor * src1 = dst->src[1]; // x
  12873. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12874. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12875. const int ith = params->ith;
  12876. const int nth = params->nth;
  12877. const int nc = src2->ne[0]; // d_conv
  12878. const int nr = src0->ne[1]; // d_inner
  12879. const int n_t = src1->ne[1]; // n_tokens
  12880. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12881. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12882. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12883. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12884. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12885. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12886. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12887. // for use with the destination state offset between sequences
  12888. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12889. // rows per thread
  12890. const int dr = (nr + nth - 1)/nth;
  12891. // row range for this thread
  12892. const int ir0 = dr*ith;
  12893. const int ir1 = MIN(ir0 + dr, nr);
  12894. const int ir = ir1 - ir0;
  12895. if (n_kv > 1) {
  12896. // multiple sequences means it's hard to know when it's the first time a state is read,
  12897. // so copy them all over to the destination, just to be sure.
  12898. for (int i3 = 0; i3 < n_kv; ++i3) {
  12899. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12900. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12901. // can't use memcpy because of d_conv vs d_conv - 1
  12902. for (int i1 = 0; i1 < ir; ++i1) {
  12903. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12904. // copy s0 to last (d_conv - 1) columns of s
  12905. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12906. }
  12907. }
  12908. }
  12909. }
  12910. for (int i2 = 0; i2 < n_t; ++i2) {
  12911. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12912. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12913. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12914. float * s0; // {d_conv - 1, d_inner, n_kv}
  12915. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12916. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12917. int ne0s0;
  12918. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12919. // avoid needing to copy the state for the first token
  12920. if (i2 == 0) {
  12921. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12922. ne0s0 = src0->ne[0];
  12923. } else {
  12924. // the source is the last (d_conv - 1) columns of the destination
  12925. s0 = s + 1;
  12926. ne0s0 = nc;
  12927. }
  12928. // d_inner
  12929. for (int i1 = 0; i1 < ir; ++i1) {
  12930. // shift state left
  12931. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12932. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12933. }
  12934. // insert x on the last column
  12935. s[(nc - 1) + i1*nc] = x0[i1];
  12936. }
  12937. // handle copies when there are multiple output states
  12938. for (int i3 = 1; i3 < n_kv; ++i3) {
  12939. int32_t seq = sq[i3];
  12940. if (0 <= seq && seq < n_kv) {
  12941. float * s1 = s + (seq - sq[0])*nc*nr;
  12942. memcpy(s1, s, nc*ir*sizeof(float));
  12943. } else {
  12944. // stop at negative or too big seq_ids
  12945. break;
  12946. }
  12947. }
  12948. // it seems a little faster when this is separate from the state shift
  12949. for (int i1 = 0; i1 < ir; ++i1) {
  12950. // rowwise dot product
  12951. float sumf = 0.0f;
  12952. for (int i0 = 0; i0 < nc; ++i0) {
  12953. int i = i0 + i1*nc;
  12954. sumf += s[i] * c[i];
  12955. }
  12956. x[i1] = sumf;
  12957. }
  12958. }
  12959. }
  12960. static void ggml_compute_forward_ssm_conv(
  12961. const struct ggml_compute_params * params,
  12962. struct ggml_tensor * dst) {
  12963. switch (dst->src[0]->type) {
  12964. case GGML_TYPE_F32:
  12965. {
  12966. ggml_compute_forward_ssm_conv_f32(params, dst);
  12967. } break;
  12968. default:
  12969. {
  12970. GGML_ABORT("fatal error");
  12971. }
  12972. }
  12973. }
  12974. // ggml_compute_forward_ssm_scan
  12975. static void ggml_compute_forward_ssm_scan_f32(
  12976. const struct ggml_compute_params * params,
  12977. struct ggml_tensor * dst) {
  12978. const struct ggml_tensor * src0 = dst->src[0]; // s
  12979. const struct ggml_tensor * src1 = dst->src[1]; // x
  12980. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12981. const struct ggml_tensor * src3 = dst->src[3]; // A
  12982. const struct ggml_tensor * src4 = dst->src[4]; // B
  12983. const struct ggml_tensor * src5 = dst->src[5]; // C
  12984. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12985. const int ith = params->ith;
  12986. const int nth = params->nth;
  12987. const int64_t nc = src0->ne[0]; // d_state
  12988. const int64_t nr = src0->ne[1]; // d_inner
  12989. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12990. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12991. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12992. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12993. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12994. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12995. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12996. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12997. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12998. // required for the dot product between s and C, and when copying the states
  12999. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13000. // required for per-sequence offsets for states
  13001. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13002. // required to get correct offset for state destination (i.e. src1->nb[2])
  13003. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13004. // rows per thread
  13005. const int dr = (nr + nth - 1)/nth;
  13006. // row range for this thread
  13007. const int ir0 = dr*ith;
  13008. const int ir1 = MIN(ir0 + dr, nr);
  13009. const int ir = ir1 - ir0;
  13010. if (n_kv > 1) {
  13011. // it's hard to know if the source states have already been copied
  13012. // when there are multiple, so copy them already.
  13013. for (int i3 = 0; i3 < n_kv; ++i3) {
  13014. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13015. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13016. memcpy(s, s0, nc*ir*sizeof(float));
  13017. }
  13018. }
  13019. for (int i2 = 0; i2 < n_t; ++i2) {
  13020. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13021. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13022. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13023. float * s0;
  13024. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13025. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13026. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13027. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13028. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13029. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13030. // avoid needing to copy the state for the first token
  13031. if (i2 == 0) {
  13032. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13033. } else {
  13034. // otherwise the source is the same as the destination
  13035. s0 = s;
  13036. }
  13037. // d_inner
  13038. for (int i1 = 0; i1 < ir; ++i1) {
  13039. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13040. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13041. float x_dt = x[i1] * dt_soft_plus;
  13042. float sumf = 0.0f;
  13043. // d_state
  13044. for (int i0 = 0; i0 < nc; ++i0) {
  13045. int i = i0 + i1*nc;
  13046. // state = prev_state * dA + dB * x
  13047. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13048. // y = rowwise_dotprod(state, C)
  13049. sumf += state * C[i0];
  13050. s[i] = state;
  13051. }
  13052. y[i1] = sumf;
  13053. }
  13054. // handle copies when there are multiple output states
  13055. for (int i3 = 1; i3 < n_kv; ++i3) {
  13056. int32_t seq = sq[i3];
  13057. if (0 <= seq && seq < n_kv) {
  13058. float * s1 = s + (seq - sq[0])*nc*nr;
  13059. memcpy(s1, s, nc*ir*sizeof(float));
  13060. } else {
  13061. // stop at negative or too big seq_ids
  13062. break;
  13063. }
  13064. }
  13065. }
  13066. }
  13067. static void ggml_compute_forward_ssm_scan(
  13068. const struct ggml_compute_params * params,
  13069. struct ggml_tensor * dst) {
  13070. switch (dst->src[0]->type) {
  13071. case GGML_TYPE_F32:
  13072. {
  13073. ggml_compute_forward_ssm_scan_f32(params, dst);
  13074. } break;
  13075. default:
  13076. {
  13077. GGML_ABORT("fatal error");
  13078. }
  13079. }
  13080. }
  13081. // ggml_compute_forward_win_part
  13082. static void ggml_compute_forward_win_part_f32(
  13083. const struct ggml_compute_params * params,
  13084. struct ggml_tensor * dst) {
  13085. UNUSED(params);
  13086. const struct ggml_tensor * src0 = dst->src[0];
  13087. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13088. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13089. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13090. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13091. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13092. assert(ne00 == ne0);
  13093. assert(ne3 == nep0*nep1);
  13094. // TODO: optimize / multi-thread
  13095. for (int py = 0; py < nep1; ++py) {
  13096. for (int px = 0; px < nep0; ++px) {
  13097. const int64_t i3 = py*nep0 + px;
  13098. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13099. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13100. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13101. const int64_t i02 = py*w + i2;
  13102. const int64_t i01 = px*w + i1;
  13103. const int64_t i00 = i0;
  13104. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13105. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13106. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13107. ((float *) dst->data)[i] = 0.0f;
  13108. } else {
  13109. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13110. }
  13111. }
  13112. }
  13113. }
  13114. }
  13115. }
  13116. }
  13117. static void ggml_compute_forward_win_part(
  13118. const struct ggml_compute_params * params,
  13119. struct ggml_tensor * dst) {
  13120. const struct ggml_tensor * src0 = dst->src[0];
  13121. switch (src0->type) {
  13122. case GGML_TYPE_F32:
  13123. {
  13124. ggml_compute_forward_win_part_f32(params, dst);
  13125. } break;
  13126. default:
  13127. {
  13128. GGML_ABORT("fatal error");
  13129. }
  13130. }
  13131. }
  13132. // ggml_compute_forward_win_unpart
  13133. static void ggml_compute_forward_win_unpart_f32(
  13134. const struct ggml_compute_params * params,
  13135. struct ggml_tensor * dst) {
  13136. UNUSED(params);
  13137. const struct ggml_tensor * src0 = dst->src[0];
  13138. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13139. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13140. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13141. // padding
  13142. const int px = (w - ne1%w)%w;
  13143. //const int py = (w - ne2%w)%w;
  13144. const int npx = (px + ne1)/w;
  13145. //const int npy = (py + ne2)/w;
  13146. assert(ne0 == ne00);
  13147. // TODO: optimize / multi-thread
  13148. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13149. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13150. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13151. const int ip2 = i2/w;
  13152. const int ip1 = i1/w;
  13153. const int64_t i02 = i2%w;
  13154. const int64_t i01 = i1%w;
  13155. const int64_t i00 = i0;
  13156. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13157. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13158. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13159. }
  13160. }
  13161. }
  13162. }
  13163. static void ggml_compute_forward_win_unpart(
  13164. const struct ggml_compute_params * params,
  13165. struct ggml_tensor * dst) {
  13166. const struct ggml_tensor * src0 = dst->src[0];
  13167. switch (src0->type) {
  13168. case GGML_TYPE_F32:
  13169. {
  13170. ggml_compute_forward_win_unpart_f32(params, dst);
  13171. } break;
  13172. default:
  13173. {
  13174. GGML_ABORT("fatal error");
  13175. }
  13176. }
  13177. }
  13178. //gmml_compute_forward_unary
  13179. static void ggml_compute_forward_unary(
  13180. const struct ggml_compute_params * params,
  13181. struct ggml_tensor * dst) {
  13182. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13183. switch (op) {
  13184. case GGML_UNARY_OP_ABS:
  13185. {
  13186. ggml_compute_forward_abs(params, dst);
  13187. } break;
  13188. case GGML_UNARY_OP_SGN:
  13189. {
  13190. ggml_compute_forward_sgn(params, dst);
  13191. } break;
  13192. case GGML_UNARY_OP_NEG:
  13193. {
  13194. ggml_compute_forward_neg(params, dst);
  13195. } break;
  13196. case GGML_UNARY_OP_STEP:
  13197. {
  13198. ggml_compute_forward_step(params, dst);
  13199. } break;
  13200. case GGML_UNARY_OP_TANH:
  13201. {
  13202. ggml_compute_forward_tanh(params, dst);
  13203. } break;
  13204. case GGML_UNARY_OP_ELU:
  13205. {
  13206. ggml_compute_forward_elu(params, dst);
  13207. } break;
  13208. case GGML_UNARY_OP_RELU:
  13209. {
  13210. ggml_compute_forward_relu(params, dst);
  13211. } break;
  13212. case GGML_UNARY_OP_SIGMOID:
  13213. {
  13214. ggml_compute_forward_sigmoid(params, dst);
  13215. } break;
  13216. case GGML_UNARY_OP_GELU:
  13217. {
  13218. ggml_compute_forward_gelu(params, dst);
  13219. } break;
  13220. case GGML_UNARY_OP_GELU_QUICK:
  13221. {
  13222. ggml_compute_forward_gelu_quick(params, dst);
  13223. } break;
  13224. case GGML_UNARY_OP_SILU:
  13225. {
  13226. ggml_compute_forward_silu(params, dst);
  13227. } break;
  13228. case GGML_UNARY_OP_HARDSWISH:
  13229. {
  13230. ggml_compute_forward_hardswish(params, dst);
  13231. } break;
  13232. case GGML_UNARY_OP_HARDSIGMOID:
  13233. {
  13234. ggml_compute_forward_hardsigmoid(params, dst);
  13235. } break;
  13236. default:
  13237. {
  13238. GGML_ABORT("fatal error");
  13239. }
  13240. }
  13241. }
  13242. // ggml_compute_forward_get_rel_pos
  13243. static void ggml_compute_forward_get_rel_pos_f16(
  13244. const struct ggml_compute_params * params,
  13245. struct ggml_tensor * dst) {
  13246. UNUSED(params);
  13247. const struct ggml_tensor * src0 = dst->src[0];
  13248. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13249. GGML_TENSOR_UNARY_OP_LOCALS
  13250. const int64_t w = ne1;
  13251. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13252. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13253. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13254. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13255. const int64_t pos = (w - i1 - 1) + i2;
  13256. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13257. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13258. }
  13259. }
  13260. }
  13261. }
  13262. static void ggml_compute_forward_get_rel_pos(
  13263. const struct ggml_compute_params * params,
  13264. struct ggml_tensor * dst) {
  13265. const struct ggml_tensor * src0 = dst->src[0];
  13266. switch (src0->type) {
  13267. case GGML_TYPE_F16:
  13268. case GGML_TYPE_BF16:
  13269. {
  13270. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13271. } break;
  13272. default:
  13273. {
  13274. GGML_ABORT("fatal error");
  13275. }
  13276. }
  13277. }
  13278. // ggml_compute_forward_add_rel_pos
  13279. static void ggml_compute_forward_add_rel_pos_f32(
  13280. const struct ggml_compute_params * params,
  13281. struct ggml_tensor * dst) {
  13282. const struct ggml_tensor * src0 = dst->src[0];
  13283. const struct ggml_tensor * src1 = dst->src[1];
  13284. const struct ggml_tensor * src2 = dst->src[2];
  13285. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13286. if (!inplace) {
  13287. if (params->ith == 0) {
  13288. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13289. }
  13290. ggml_barrier(params->shared);
  13291. }
  13292. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13293. float * src1_data = (float *) src1->data;
  13294. float * src2_data = (float *) src2->data;
  13295. float * dst_data = (float *) dst->data;
  13296. const int64_t ne10 = src1->ne[0];
  13297. const int64_t ne11 = src1->ne[1];
  13298. const int64_t ne12 = src1->ne[2];
  13299. const int64_t ne13 = src1->ne[3];
  13300. const int ith = params->ith;
  13301. const int nth = params->nth;
  13302. // total patches in dst
  13303. const int np = ne13;
  13304. // patches per thread
  13305. const int dp = (np + nth - 1)/nth;
  13306. // patch range for this thread
  13307. const int ip0 = dp*ith;
  13308. const int ip1 = MIN(ip0 + dp, np);
  13309. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13310. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13311. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13312. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13313. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13314. const int64_t jp0 = jp1 + i10;
  13315. const float src1_e = src1_data[jp0];
  13316. const float src2_e = src2_data[jp0];
  13317. const int64_t jdh = jp0 * ne10;
  13318. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13319. for (int64_t j = 0; j < ne10; ++j) {
  13320. dst_data[jdh + j ] += src2_e;
  13321. dst_data[jdw + j*ne10] += src1_e;
  13322. }
  13323. }
  13324. }
  13325. }
  13326. }
  13327. }
  13328. static void ggml_compute_forward_add_rel_pos(
  13329. const struct ggml_compute_params * params,
  13330. struct ggml_tensor * dst) {
  13331. const struct ggml_tensor * src0 = dst->src[0];
  13332. switch (src0->type) {
  13333. case GGML_TYPE_F32:
  13334. {
  13335. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13336. } break;
  13337. default:
  13338. {
  13339. GGML_ABORT("fatal error");
  13340. }
  13341. }
  13342. }
  13343. // ggml_compute_forward_map_unary
  13344. static void ggml_compute_forward_map_unary_f32(
  13345. const struct ggml_compute_params * params,
  13346. struct ggml_tensor * dst,
  13347. const ggml_unary_op_f32_t fun) {
  13348. const struct ggml_tensor * src0 = dst->src[0];
  13349. if (params->ith != 0) {
  13350. return;
  13351. }
  13352. assert(ggml_is_contiguous_1(src0));
  13353. assert(ggml_is_contiguous_1(dst));
  13354. assert(ggml_are_same_shape(src0, dst));
  13355. const int n = ggml_nrows(src0);
  13356. const int nc = src0->ne[0];
  13357. for (int i = 0; i < n; i++) {
  13358. fun(nc,
  13359. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13360. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13361. }
  13362. }
  13363. static void ggml_compute_forward_map_unary(
  13364. const struct ggml_compute_params * params,
  13365. struct ggml_tensor * dst,
  13366. const ggml_unary_op_f32_t fun) {
  13367. const struct ggml_tensor * src0 = dst->src[0];
  13368. switch (src0->type) {
  13369. case GGML_TYPE_F32:
  13370. {
  13371. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13372. } break;
  13373. default:
  13374. {
  13375. GGML_ABORT("fatal error");
  13376. }
  13377. }
  13378. }
  13379. // ggml_compute_forward_map_binary
  13380. static void ggml_compute_forward_map_binary_f32(
  13381. const struct ggml_compute_params * params,
  13382. struct ggml_tensor * dst,
  13383. const ggml_binary_op_f32_t fun) {
  13384. const struct ggml_tensor * src0 = dst->src[0];
  13385. const struct ggml_tensor * src1 = dst->src[1];
  13386. if (params->ith != 0) {
  13387. return;
  13388. }
  13389. assert(ggml_is_contiguous_1(src0));
  13390. assert(ggml_is_contiguous_1(src1));
  13391. assert(ggml_is_contiguous_1(dst));
  13392. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13393. const int n = ggml_nrows(src0);
  13394. const int nc = src0->ne[0];
  13395. for (int i = 0; i < n; i++) {
  13396. fun(nc,
  13397. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13398. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13399. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13400. }
  13401. }
  13402. static void ggml_compute_forward_map_binary(
  13403. const struct ggml_compute_params * params,
  13404. struct ggml_tensor * dst,
  13405. const ggml_binary_op_f32_t fun) {
  13406. const struct ggml_tensor * src0 = dst->src[0];
  13407. switch (src0->type) {
  13408. case GGML_TYPE_F32:
  13409. {
  13410. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13411. } break;
  13412. default:
  13413. {
  13414. GGML_ABORT("fatal error");
  13415. }
  13416. }
  13417. }
  13418. // ggml_compute_forward_map_custom1
  13419. static void ggml_compute_forward_map_custom1_f32(
  13420. const struct ggml_compute_params * params,
  13421. struct ggml_tensor * dst,
  13422. const ggml_custom1_op_f32_t fun) {
  13423. const struct ggml_tensor * a = dst->src[0];
  13424. if (params->ith != 0) {
  13425. return;
  13426. }
  13427. fun(dst, a);
  13428. }
  13429. // ggml_compute_forward_map_custom2
  13430. static void ggml_compute_forward_map_custom2_f32(
  13431. const struct ggml_compute_params * params,
  13432. struct ggml_tensor * dst,
  13433. const ggml_custom2_op_f32_t fun) {
  13434. const struct ggml_tensor * a = dst->src[0];
  13435. const struct ggml_tensor * b = dst->src[1];
  13436. if (params->ith != 0) {
  13437. return;
  13438. }
  13439. fun(dst, a, b);
  13440. }
  13441. // ggml_compute_forward_map_custom3
  13442. static void ggml_compute_forward_map_custom3_f32(
  13443. const struct ggml_compute_params * params,
  13444. struct ggml_tensor * dst,
  13445. const ggml_custom3_op_f32_t fun) {
  13446. const struct ggml_tensor * a = dst->src[0];
  13447. const struct ggml_tensor * b = dst->src[1];
  13448. const struct ggml_tensor * c = dst->src[1];
  13449. if (params->ith != 0) {
  13450. return;
  13451. }
  13452. fun(dst, a, b, c);
  13453. }
  13454. // ggml_compute_forward_map_custom1
  13455. static void ggml_compute_forward_map_custom1(
  13456. const struct ggml_compute_params * params,
  13457. struct ggml_tensor * dst) {
  13458. const struct ggml_tensor * a = dst->src[0];
  13459. struct ggml_map_custom1_op_params p;
  13460. memcpy(&p, dst->op_params, sizeof(p));
  13461. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13462. }
  13463. // ggml_compute_forward_map_custom2
  13464. static void ggml_compute_forward_map_custom2(
  13465. const struct ggml_compute_params * params,
  13466. struct ggml_tensor * dst) {
  13467. const struct ggml_tensor * a = dst->src[0];
  13468. const struct ggml_tensor * b = dst->src[1];
  13469. struct ggml_map_custom2_op_params p;
  13470. memcpy(&p, dst->op_params, sizeof(p));
  13471. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13472. }
  13473. // ggml_compute_forward_map_custom3
  13474. static void ggml_compute_forward_map_custom3(
  13475. const struct ggml_compute_params * params,
  13476. struct ggml_tensor * dst) {
  13477. const struct ggml_tensor * a = dst->src[0];
  13478. const struct ggml_tensor * b = dst->src[1];
  13479. const struct ggml_tensor * c = dst->src[2];
  13480. struct ggml_map_custom3_op_params p;
  13481. memcpy(&p, dst->op_params, sizeof(p));
  13482. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13483. }
  13484. // ggml_compute_forward_cross_entropy_loss
  13485. static void ggml_compute_forward_cross_entropy_loss_f32(
  13486. const struct ggml_compute_params * params,
  13487. struct ggml_tensor * dst) {
  13488. const struct ggml_tensor * src0 = dst->src[0];
  13489. const struct ggml_tensor * src1 = dst->src[1];
  13490. GGML_ASSERT(ggml_is_contiguous(src0));
  13491. GGML_ASSERT(ggml_is_contiguous(src1));
  13492. GGML_ASSERT(ggml_is_scalar(dst));
  13493. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13494. const int ith = params->ith;
  13495. const int nth = params->nth;
  13496. float * sums = (float *) params->wdata;
  13497. // TODO: handle transposed/permuted matrices
  13498. const int nc = src0->ne[0];
  13499. const int nr = ggml_nrows(src0);
  13500. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13501. if (ith == 0) {
  13502. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13503. }
  13504. ggml_barrier(params->shared);
  13505. const double eps = 1e-9;
  13506. // rows per thread
  13507. const int dr = (nr + nth - 1)/nth;
  13508. // row range for this thread
  13509. const int ir0 = dr*ith;
  13510. const int ir1 = MIN(ir0 + dr, nr);
  13511. for (int i1 = ir0; i1 < ir1; i1++) {
  13512. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13513. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13514. float * st = ((float *) params->wdata) + nth + ith*nc;
  13515. #ifndef NDEBUG
  13516. for (int i = 0; i < nc; ++i) {
  13517. //printf("p[%d] = %f\n", i, p[i]);
  13518. assert(!isnan(s0[i]));
  13519. assert(!isnan(s1[i]));
  13520. }
  13521. #endif
  13522. // soft_max
  13523. float max = -INFINITY;
  13524. ggml_vec_max_f32(nc, &max, s0);
  13525. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13526. assert(sum > 0.0);
  13527. sum = (1.0 - eps) / sum;
  13528. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13529. ggml_vec_scale_f32(nc, st, sum);
  13530. ggml_vec_add1_f32(nc, st, st, eps);
  13531. ggml_vec_log_f32(nc, st, st);
  13532. ggml_vec_mul_f32(nc, st, st, s1);
  13533. float st_sum = 0;
  13534. ggml_vec_sum_f32(nc, &st_sum, st);
  13535. sums[ith] += st_sum;
  13536. #ifndef NDEBUG
  13537. for (int i = 0; i < nc; ++i) {
  13538. assert(!isnan(st[i]));
  13539. assert(!isinf(st[i]));
  13540. }
  13541. #endif
  13542. }
  13543. ggml_barrier(params->shared);
  13544. if (ith == 0) {
  13545. float * dp = (float *) dst->data;
  13546. ggml_vec_sum_f32(nth, dp, sums);
  13547. dp[0] *= -1.0f / (float) nr;
  13548. }
  13549. }
  13550. static void ggml_compute_forward_cross_entropy_loss(
  13551. const struct ggml_compute_params * params,
  13552. struct ggml_tensor * dst) {
  13553. const struct ggml_tensor * src0 = dst->src[0];
  13554. switch (src0->type) {
  13555. case GGML_TYPE_F32:
  13556. {
  13557. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13558. } break;
  13559. default:
  13560. {
  13561. GGML_ABORT("fatal error");
  13562. }
  13563. }
  13564. }
  13565. // ggml_compute_forward_cross_entropy_loss_back
  13566. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13567. const struct ggml_compute_params * params,
  13568. struct ggml_tensor * dst) {
  13569. const struct ggml_tensor * src0 = dst->src[0];
  13570. const struct ggml_tensor * src1 = dst->src[1];
  13571. const struct ggml_tensor * opt0 = dst->src[2];
  13572. GGML_ASSERT(ggml_is_contiguous(dst));
  13573. GGML_ASSERT(ggml_is_contiguous(src0));
  13574. GGML_ASSERT(ggml_is_contiguous(src1));
  13575. GGML_ASSERT(ggml_is_contiguous(opt0));
  13576. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13577. const int64_t ith = params->ith;
  13578. const int64_t nth = params->nth;
  13579. const double eps = 1e-9;
  13580. // TODO: handle transposed/permuted matrices
  13581. const int64_t nc = src0->ne[0];
  13582. const int64_t nr = ggml_nrows(src0);
  13583. // rows per thread
  13584. const int64_t dr = (nr + nth - 1)/nth;
  13585. // row range for this thread
  13586. const int64_t ir0 = dr*ith;
  13587. const int64_t ir1 = MIN(ir0 + dr, nr);
  13588. float * d = (float *) opt0->data;
  13589. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13590. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13591. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13592. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13593. #ifndef NDEBUG
  13594. for (int i = 0; i < nc; ++i) {
  13595. //printf("p[%d] = %f\n", i, p[i]);
  13596. assert(!isnan(s0[i]));
  13597. assert(!isnan(s1[i]));
  13598. }
  13599. #endif
  13600. // soft_max
  13601. float max = -INFINITY;
  13602. ggml_vec_max_f32(nc, &max, s0);
  13603. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13604. assert(sum > 0.0);
  13605. sum = (1.0 - eps) / sum;
  13606. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13607. ggml_vec_scale_f32(nc, ds0, sum);
  13608. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13609. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13610. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13611. #ifndef NDEBUG
  13612. for (int i = 0; i < nc; ++i) {
  13613. assert(!isnan(ds0[i]));
  13614. assert(!isinf(ds0[i]));
  13615. }
  13616. #endif
  13617. }
  13618. }
  13619. static void ggml_compute_forward_cross_entropy_loss_back(
  13620. const struct ggml_compute_params * params,
  13621. struct ggml_tensor * dst) {
  13622. const struct ggml_tensor * src0 = dst->src[0];
  13623. switch (src0->type) {
  13624. case GGML_TYPE_F32:
  13625. {
  13626. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13627. } break;
  13628. default:
  13629. {
  13630. GGML_ABORT("fatal error");
  13631. }
  13632. }
  13633. }
  13634. /////////////////////////////////
  13635. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13636. GGML_ASSERT(params);
  13637. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13638. return;
  13639. }
  13640. switch (tensor->op) {
  13641. case GGML_OP_DUP:
  13642. {
  13643. ggml_compute_forward_dup(params, tensor);
  13644. } break;
  13645. case GGML_OP_ADD:
  13646. {
  13647. ggml_compute_forward_add(params, tensor);
  13648. } break;
  13649. case GGML_OP_ADD1:
  13650. {
  13651. ggml_compute_forward_add1(params, tensor);
  13652. } break;
  13653. case GGML_OP_ACC:
  13654. {
  13655. ggml_compute_forward_acc(params, tensor);
  13656. } break;
  13657. case GGML_OP_SUB:
  13658. {
  13659. ggml_compute_forward_sub(params, tensor);
  13660. } break;
  13661. case GGML_OP_MUL:
  13662. {
  13663. ggml_compute_forward_mul(params, tensor);
  13664. } break;
  13665. case GGML_OP_DIV:
  13666. {
  13667. ggml_compute_forward_div(params, tensor);
  13668. } break;
  13669. case GGML_OP_SQR:
  13670. {
  13671. ggml_compute_forward_sqr(params, tensor);
  13672. } break;
  13673. case GGML_OP_SQRT:
  13674. {
  13675. ggml_compute_forward_sqrt(params, tensor);
  13676. } break;
  13677. case GGML_OP_LOG:
  13678. {
  13679. ggml_compute_forward_log(params, tensor);
  13680. } break;
  13681. case GGML_OP_SUM:
  13682. {
  13683. ggml_compute_forward_sum(params, tensor);
  13684. } break;
  13685. case GGML_OP_SUM_ROWS:
  13686. {
  13687. ggml_compute_forward_sum_rows(params, tensor);
  13688. } break;
  13689. case GGML_OP_MEAN:
  13690. {
  13691. ggml_compute_forward_mean(params, tensor);
  13692. } break;
  13693. case GGML_OP_ARGMAX:
  13694. {
  13695. ggml_compute_forward_argmax(params, tensor);
  13696. } break;
  13697. case GGML_OP_REPEAT:
  13698. {
  13699. ggml_compute_forward_repeat(params, tensor);
  13700. } break;
  13701. case GGML_OP_REPEAT_BACK:
  13702. {
  13703. ggml_compute_forward_repeat_back(params, tensor);
  13704. } break;
  13705. case GGML_OP_CONCAT:
  13706. {
  13707. ggml_compute_forward_concat(params, tensor);
  13708. } break;
  13709. case GGML_OP_SILU_BACK:
  13710. {
  13711. ggml_compute_forward_silu_back(params, tensor);
  13712. } break;
  13713. case GGML_OP_NORM:
  13714. {
  13715. ggml_compute_forward_norm(params, tensor);
  13716. } break;
  13717. case GGML_OP_RMS_NORM:
  13718. {
  13719. ggml_compute_forward_rms_norm(params, tensor);
  13720. } break;
  13721. case GGML_OP_RMS_NORM_BACK:
  13722. {
  13723. ggml_compute_forward_rms_norm_back(params, tensor);
  13724. } break;
  13725. case GGML_OP_GROUP_NORM:
  13726. {
  13727. ggml_compute_forward_group_norm(params, tensor);
  13728. } break;
  13729. case GGML_OP_MUL_MAT:
  13730. {
  13731. ggml_compute_forward_mul_mat(params, tensor);
  13732. } break;
  13733. case GGML_OP_MUL_MAT_ID:
  13734. {
  13735. ggml_compute_forward_mul_mat_id(params, tensor);
  13736. } break;
  13737. case GGML_OP_OUT_PROD:
  13738. {
  13739. ggml_compute_forward_out_prod(params, tensor);
  13740. } break;
  13741. case GGML_OP_SCALE:
  13742. {
  13743. ggml_compute_forward_scale(params, tensor);
  13744. } break;
  13745. case GGML_OP_SET:
  13746. {
  13747. ggml_compute_forward_set(params, tensor);
  13748. } break;
  13749. case GGML_OP_CPY:
  13750. {
  13751. ggml_compute_forward_cpy(params, tensor);
  13752. } break;
  13753. case GGML_OP_CONT:
  13754. {
  13755. ggml_compute_forward_cont(params, tensor);
  13756. } break;
  13757. case GGML_OP_RESHAPE:
  13758. {
  13759. ggml_compute_forward_reshape(params, tensor);
  13760. } break;
  13761. case GGML_OP_VIEW:
  13762. {
  13763. ggml_compute_forward_view(params, tensor);
  13764. } break;
  13765. case GGML_OP_PERMUTE:
  13766. {
  13767. ggml_compute_forward_permute(params, tensor);
  13768. } break;
  13769. case GGML_OP_TRANSPOSE:
  13770. {
  13771. ggml_compute_forward_transpose(params, tensor);
  13772. } break;
  13773. case GGML_OP_GET_ROWS:
  13774. {
  13775. ggml_compute_forward_get_rows(params, tensor);
  13776. } break;
  13777. case GGML_OP_GET_ROWS_BACK:
  13778. {
  13779. ggml_compute_forward_get_rows_back(params, tensor);
  13780. } break;
  13781. case GGML_OP_DIAG:
  13782. {
  13783. ggml_compute_forward_diag(params, tensor);
  13784. } break;
  13785. case GGML_OP_DIAG_MASK_INF:
  13786. {
  13787. ggml_compute_forward_diag_mask_inf(params, tensor);
  13788. } break;
  13789. case GGML_OP_DIAG_MASK_ZERO:
  13790. {
  13791. ggml_compute_forward_diag_mask_zero(params, tensor);
  13792. } break;
  13793. case GGML_OP_SOFT_MAX:
  13794. {
  13795. ggml_compute_forward_soft_max(params, tensor);
  13796. } break;
  13797. case GGML_OP_SOFT_MAX_BACK:
  13798. {
  13799. ggml_compute_forward_soft_max_back(params, tensor);
  13800. } break;
  13801. case GGML_OP_ROPE:
  13802. {
  13803. ggml_compute_forward_rope(params, tensor);
  13804. } break;
  13805. case GGML_OP_ROPE_BACK:
  13806. {
  13807. ggml_compute_forward_rope_back(params, tensor);
  13808. } break;
  13809. case GGML_OP_CLAMP:
  13810. {
  13811. ggml_compute_forward_clamp(params, tensor);
  13812. } break;
  13813. case GGML_OP_CONV_TRANSPOSE_1D:
  13814. {
  13815. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13816. } break;
  13817. case GGML_OP_IM2COL:
  13818. {
  13819. ggml_compute_forward_im2col(params, tensor);
  13820. } break;
  13821. case GGML_OP_CONV_TRANSPOSE_2D:
  13822. {
  13823. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13824. } break;
  13825. case GGML_OP_POOL_1D:
  13826. {
  13827. ggml_compute_forward_pool_1d(params, tensor);
  13828. } break;
  13829. case GGML_OP_POOL_2D:
  13830. {
  13831. ggml_compute_forward_pool_2d(params, tensor);
  13832. } break;
  13833. case GGML_OP_UPSCALE:
  13834. {
  13835. ggml_compute_forward_upscale(params, tensor);
  13836. } break;
  13837. case GGML_OP_PAD:
  13838. {
  13839. ggml_compute_forward_pad(params, tensor);
  13840. } break;
  13841. case GGML_OP_ARANGE:
  13842. {
  13843. ggml_compute_forward_arange(params, tensor);
  13844. } break;
  13845. case GGML_OP_TIMESTEP_EMBEDDING:
  13846. {
  13847. ggml_compute_forward_timestep_embedding(params, tensor);
  13848. } break;
  13849. case GGML_OP_ARGSORT:
  13850. {
  13851. ggml_compute_forward_argsort(params, tensor);
  13852. } break;
  13853. case GGML_OP_LEAKY_RELU:
  13854. {
  13855. ggml_compute_forward_leaky_relu(params, tensor);
  13856. } break;
  13857. case GGML_OP_FLASH_ATTN_EXT:
  13858. {
  13859. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13860. } break;
  13861. case GGML_OP_FLASH_ATTN_BACK:
  13862. {
  13863. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13864. GGML_ASSERT(t == 0 || t == 1);
  13865. bool masked = t != 0;
  13866. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13867. } break;
  13868. case GGML_OP_SSM_CONV:
  13869. {
  13870. ggml_compute_forward_ssm_conv(params, tensor);
  13871. } break;
  13872. case GGML_OP_SSM_SCAN:
  13873. {
  13874. ggml_compute_forward_ssm_scan(params, tensor);
  13875. } break;
  13876. case GGML_OP_WIN_PART:
  13877. {
  13878. ggml_compute_forward_win_part(params, tensor);
  13879. } break;
  13880. case GGML_OP_WIN_UNPART:
  13881. {
  13882. ggml_compute_forward_win_unpart(params, tensor);
  13883. } break;
  13884. case GGML_OP_UNARY:
  13885. {
  13886. ggml_compute_forward_unary(params, tensor);
  13887. } break;
  13888. case GGML_OP_GET_REL_POS:
  13889. {
  13890. ggml_compute_forward_get_rel_pos(params, tensor);
  13891. } break;
  13892. case GGML_OP_ADD_REL_POS:
  13893. {
  13894. ggml_compute_forward_add_rel_pos(params, tensor);
  13895. } break;
  13896. case GGML_OP_MAP_UNARY:
  13897. {
  13898. ggml_unary_op_f32_t fun;
  13899. memcpy(&fun, tensor->op_params, sizeof(fun));
  13900. ggml_compute_forward_map_unary(params, tensor, fun);
  13901. }
  13902. break;
  13903. case GGML_OP_MAP_BINARY:
  13904. {
  13905. ggml_binary_op_f32_t fun;
  13906. memcpy(&fun, tensor->op_params, sizeof(fun));
  13907. ggml_compute_forward_map_binary(params, tensor, fun);
  13908. }
  13909. break;
  13910. case GGML_OP_MAP_CUSTOM1_F32:
  13911. {
  13912. ggml_custom1_op_f32_t fun;
  13913. memcpy(&fun, tensor->op_params, sizeof(fun));
  13914. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13915. }
  13916. break;
  13917. case GGML_OP_MAP_CUSTOM2_F32:
  13918. {
  13919. ggml_custom2_op_f32_t fun;
  13920. memcpy(&fun, tensor->op_params, sizeof(fun));
  13921. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13922. }
  13923. break;
  13924. case GGML_OP_MAP_CUSTOM3_F32:
  13925. {
  13926. ggml_custom3_op_f32_t fun;
  13927. memcpy(&fun, tensor->op_params, sizeof(fun));
  13928. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13929. }
  13930. break;
  13931. case GGML_OP_MAP_CUSTOM1:
  13932. {
  13933. ggml_compute_forward_map_custom1(params, tensor);
  13934. }
  13935. break;
  13936. case GGML_OP_MAP_CUSTOM2:
  13937. {
  13938. ggml_compute_forward_map_custom2(params, tensor);
  13939. }
  13940. break;
  13941. case GGML_OP_MAP_CUSTOM3:
  13942. {
  13943. ggml_compute_forward_map_custom3(params, tensor);
  13944. }
  13945. break;
  13946. case GGML_OP_CROSS_ENTROPY_LOSS:
  13947. {
  13948. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13949. }
  13950. break;
  13951. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13952. {
  13953. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13954. }
  13955. break;
  13956. case GGML_OP_NONE:
  13957. {
  13958. // nop
  13959. } break;
  13960. case GGML_OP_COUNT:
  13961. {
  13962. GGML_ABORT("fatal error");
  13963. }
  13964. }
  13965. }
  13966. ////////////////////////////////////////////////////////////////////////////////
  13967. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13968. size = ggml_hash_size(size);
  13969. struct ggml_hash_set result;
  13970. result.size = size;
  13971. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13972. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  13973. return result;
  13974. }
  13975. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  13976. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  13977. }
  13978. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  13979. GGML_FREE(hash_set->used);
  13980. GGML_FREE(hash_set->keys);
  13981. }
  13982. size_t ggml_hash_size(size_t min_sz) {
  13983. // next primes after powers of two
  13984. static const size_t primes[] = {
  13985. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13986. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13987. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13988. 16777259, 33554467, 67108879, 134217757, 268435459,
  13989. 536870923, 1073741827, 2147483659
  13990. };
  13991. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13992. // find the smallest prime that is larger or equal than min_sz
  13993. size_t l = 0;
  13994. size_t r = n_primes;
  13995. while (l < r) {
  13996. size_t m = (l + r)/2;
  13997. if (primes[m] < min_sz) {
  13998. l = m + 1;
  13999. } else {
  14000. r = m;
  14001. }
  14002. }
  14003. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14004. return sz;
  14005. }
  14006. struct hash_map {
  14007. struct ggml_hash_set set;
  14008. struct ggml_tensor ** vals;
  14009. };
  14010. static struct hash_map * ggml_new_hash_map(size_t size) {
  14011. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14012. result->set = ggml_hash_set_new(size);
  14013. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14014. return result;
  14015. }
  14016. static void ggml_hash_map_free(struct hash_map * map) {
  14017. ggml_hash_set_free(&map->set);
  14018. GGML_FREE(map->vals);
  14019. GGML_FREE(map);
  14020. }
  14021. // gradient checkpointing
  14022. static struct ggml_tensor * ggml_recompute_graph_node(
  14023. struct ggml_context * ctx,
  14024. struct ggml_cgraph * graph,
  14025. struct hash_map * replacements,
  14026. struct ggml_tensor * node) {
  14027. if (node == NULL) {
  14028. return NULL;
  14029. }
  14030. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14031. return node;
  14032. }
  14033. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14034. return node;
  14035. }
  14036. int count_children = 0;
  14037. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14038. if (node->src[k]) {
  14039. ++count_children;
  14040. }
  14041. }
  14042. if (count_children == 0) {
  14043. return node;
  14044. }
  14045. size_t i = ggml_hash_find(&replacements->set, node);
  14046. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14047. if (replacements->set.keys[i] == node) {
  14048. return replacements->vals[i];
  14049. }
  14050. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14051. // insert clone into replacements
  14052. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14053. replacements->set.keys[i] = node;
  14054. replacements->vals[i] = clone;
  14055. clone->op = node->op;
  14056. clone->grad = node->grad;
  14057. clone->flags = node->flags;
  14058. clone->extra = node->extra;
  14059. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14060. clone->nb[k] = node->nb[k];
  14061. }
  14062. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14063. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14064. }
  14065. if (node->view_src != NULL) {
  14066. clone->data = (node->view_src->data == NULL)
  14067. ? NULL // view_src not yet allocated
  14068. : (char *) node->view_src->data // view_src already allocated
  14069. + node->view_offs;
  14070. clone->view_src = node->view_src;
  14071. clone->view_offs = node->view_offs;
  14072. }
  14073. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14074. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14075. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14076. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14077. return clone;
  14078. }
  14079. void ggml_build_backward_gradient_checkpointing(
  14080. struct ggml_context * ctx,
  14081. struct ggml_cgraph * gf,
  14082. struct ggml_cgraph * gb,
  14083. struct ggml_cgraph * gb_tmp,
  14084. struct ggml_tensor * * checkpoints,
  14085. int n_checkpoints) {
  14086. ggml_graph_cpy(gf, gb_tmp);
  14087. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14088. if (n_checkpoints <= 0) {
  14089. ggml_graph_cpy(gb_tmp, gb);
  14090. return;
  14091. }
  14092. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14093. // insert checkpoints in replacements
  14094. for (int i = 0; i < n_checkpoints; ++i) {
  14095. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14096. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14097. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14098. replacements->set.keys[k] = checkpoints[i];
  14099. replacements->vals[k] = checkpoints[i];
  14100. }
  14101. ggml_graph_cpy(gf, gb);
  14102. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14103. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14104. // by recomputing them from checkpoints
  14105. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14106. struct ggml_tensor * node = gb_tmp->nodes[i];
  14107. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14108. // insert new tensors recomputing src, reusing already made replacements,
  14109. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14110. // recurse for input tensors,
  14111. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14112. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14113. }
  14114. // insert rewritten backward node with replacements made into resulting backward graph gb
  14115. ggml_build_forward_expand(gb, node);
  14116. }
  14117. ggml_hash_map_free(replacements);
  14118. }
  14119. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14120. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14121. if (ggml_hash_contains(zero_table, a)) {
  14122. return b;
  14123. } else {
  14124. return ggml_add_impl(ctx, a, b, false);
  14125. }
  14126. }
  14127. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set * zero_table) {
  14128. if (ggml_hash_contains(zero_table, a)) {
  14129. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14130. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14131. } else {
  14132. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14133. }
  14134. }
  14135. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14136. if (ggml_hash_contains(zero_table, a)) {
  14137. return ggml_repeat(ctx, b, a);
  14138. } else {
  14139. return ggml_add1_impl(ctx, a, b, false);
  14140. }
  14141. }
  14142. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14143. if (ggml_hash_contains(zero_table, a)) {
  14144. return ggml_neg(ctx, b);
  14145. } else {
  14146. return ggml_sub_impl(ctx, a, b, false);
  14147. }
  14148. }
  14149. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table) {
  14150. struct ggml_tensor * src0 = tensor->src[0];
  14151. struct ggml_tensor * src1 = tensor->src[1];
  14152. struct ggml_tensor * src2 = tensor->src[2];
  14153. switch (tensor->op) {
  14154. case GGML_OP_DUP:
  14155. {
  14156. if (src0->grad) {
  14157. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14158. }
  14159. } break;
  14160. case GGML_OP_ADD:
  14161. {
  14162. if (src0->grad) {
  14163. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14164. }
  14165. if (src1->grad) {
  14166. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14167. }
  14168. } break;
  14169. case GGML_OP_ADD1:
  14170. {
  14171. if (src0->grad) {
  14172. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14173. }
  14174. if (src1->grad) {
  14175. src1->grad = ggml_add_or_set(ctx,
  14176. src1->grad,
  14177. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14178. zero_table);
  14179. }
  14180. } break;
  14181. case GGML_OP_ACC:
  14182. {
  14183. if (src0->grad) {
  14184. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14185. }
  14186. if (src1->grad) {
  14187. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14188. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14189. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14190. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14191. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14192. tensor->grad,
  14193. src1->grad->ne[0],
  14194. src1->grad->ne[1],
  14195. src1->grad->ne[2],
  14196. src1->grad->ne[3],
  14197. nb1, nb2, nb3, offset);
  14198. src1->grad =
  14199. ggml_add_or_set(ctx,
  14200. src1->grad,
  14201. ggml_reshape(ctx,
  14202. ggml_cont(ctx, tensor_grad_view),
  14203. src1->grad),
  14204. zero_table);
  14205. }
  14206. } break;
  14207. case GGML_OP_SUB:
  14208. {
  14209. if (src0->grad) {
  14210. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14211. }
  14212. if (src1->grad) {
  14213. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14214. }
  14215. } break;
  14216. case GGML_OP_MUL:
  14217. {
  14218. if (src0->grad) {
  14219. src0->grad =
  14220. ggml_add_or_set(ctx,
  14221. src0->grad,
  14222. ggml_mul(ctx, src1, tensor->grad),
  14223. zero_table);
  14224. }
  14225. if (src1->grad) {
  14226. src1->grad =
  14227. ggml_add_or_set(ctx,
  14228. src1->grad,
  14229. ggml_mul(ctx, src0, tensor->grad),
  14230. zero_table);
  14231. }
  14232. } break;
  14233. case GGML_OP_DIV:
  14234. {
  14235. if (src0->grad) {
  14236. src0->grad =
  14237. ggml_add_or_set(ctx,
  14238. src0->grad,
  14239. ggml_div(ctx, tensor->grad, src1),
  14240. zero_table);
  14241. }
  14242. if (src1->grad) {
  14243. src1->grad =
  14244. ggml_sub_or_set(ctx,
  14245. src1->grad,
  14246. ggml_mul(ctx,
  14247. tensor->grad,
  14248. ggml_div(ctx, tensor, src1)),
  14249. zero_table);
  14250. }
  14251. } break;
  14252. case GGML_OP_SQR:
  14253. {
  14254. if (src0->grad) {
  14255. src0->grad =
  14256. ggml_add_or_set(ctx,
  14257. src0->grad,
  14258. ggml_scale(ctx,
  14259. ggml_mul(ctx, src0, tensor->grad),
  14260. 2.0f),
  14261. zero_table);
  14262. }
  14263. } break;
  14264. case GGML_OP_SQRT:
  14265. {
  14266. if (src0->grad) {
  14267. src0->grad =
  14268. ggml_add_or_set(ctx,
  14269. src0->grad,
  14270. ggml_scale(ctx,
  14271. ggml_div(ctx,
  14272. tensor->grad,
  14273. tensor),
  14274. 0.5f),
  14275. zero_table);
  14276. }
  14277. } break;
  14278. case GGML_OP_LOG:
  14279. {
  14280. if (src0->grad) {
  14281. src0->grad =
  14282. ggml_add_or_set(ctx,
  14283. src0->grad,
  14284. ggml_div(ctx,
  14285. tensor->grad,
  14286. src0),
  14287. zero_table);
  14288. }
  14289. } break;
  14290. case GGML_OP_SUM:
  14291. {
  14292. if (src0->grad) {
  14293. src0->grad =
  14294. ggml_add1_or_set(ctx,
  14295. src0->grad,
  14296. tensor->grad,
  14297. zero_table);
  14298. }
  14299. } break;
  14300. case GGML_OP_SUM_ROWS:
  14301. {
  14302. if (src0->grad) {
  14303. src0->grad =
  14304. ggml_add_or_set(ctx,
  14305. src0->grad,
  14306. ggml_repeat(ctx,
  14307. tensor->grad,
  14308. src0->grad),
  14309. zero_table);
  14310. }
  14311. } break;
  14312. case GGML_OP_MEAN:
  14313. case GGML_OP_ARGMAX:
  14314. {
  14315. GGML_ABORT("fatal error"); // TODO: implement
  14316. }
  14317. case GGML_OP_REPEAT:
  14318. {
  14319. // necessary for llama
  14320. if (src0->grad) {
  14321. src0->grad = ggml_add_or_set(ctx,
  14322. src0->grad,
  14323. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14324. zero_table);
  14325. }
  14326. } break;
  14327. case GGML_OP_REPEAT_BACK:
  14328. {
  14329. if (src0->grad) {
  14330. // TODO: test this
  14331. src0->grad = ggml_add_or_set(ctx,
  14332. src0->grad,
  14333. ggml_repeat(ctx, tensor->grad, src0->grad),
  14334. zero_table);
  14335. }
  14336. } break;
  14337. case GGML_OP_CONCAT:
  14338. {
  14339. GGML_ABORT("fatal error"); // TODO: implement
  14340. }
  14341. case GGML_OP_SILU_BACK:
  14342. {
  14343. GGML_ABORT("fatal error"); // TODO: not implemented
  14344. }
  14345. case GGML_OP_NORM:
  14346. {
  14347. GGML_ABORT("fatal error"); // TODO: not implemented
  14348. }
  14349. case GGML_OP_RMS_NORM:
  14350. {
  14351. // necessary for llama
  14352. if (src0->grad) {
  14353. float eps;
  14354. memcpy(&eps, tensor->op_params, sizeof(float));
  14355. src0->grad = ggml_add_or_set(ctx,
  14356. src0->grad,
  14357. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14358. zero_table);
  14359. }
  14360. } break;
  14361. case GGML_OP_RMS_NORM_BACK:
  14362. {
  14363. GGML_ABORT("fatal error"); // TODO: not implemented
  14364. }
  14365. case GGML_OP_GROUP_NORM:
  14366. {
  14367. GGML_ABORT("fatal error"); // TODO: not implemented
  14368. }
  14369. case GGML_OP_MUL_MAT:
  14370. {
  14371. // https://cs231n.github.io/optimization-2/#staged
  14372. // # forward pass
  14373. // s0 = np.random.randn(5, 10)
  14374. // s1 = np.random.randn(10, 3)
  14375. // t = s0.dot(s1)
  14376. // # now suppose we had the gradient on t from above in the circuit
  14377. // dt = np.random.randn(*t.shape) # same shape as t
  14378. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14379. // ds1 = t.T.dot(dt)
  14380. // tensor.shape [m,p,qq,rr]
  14381. // src0.shape [n,m,q1,r1]
  14382. // src1.shape [n,p,qq,rr]
  14383. // necessary for llama
  14384. if (src0->grad) {
  14385. struct ggml_tensor * s1_tg =
  14386. ggml_out_prod(ctx, // [n,m,qq,rr]
  14387. src1, // [n,p,qq,rr]
  14388. tensor->grad); // [m,p,qq,rr]
  14389. const int64_t qq = s1_tg->ne[2];
  14390. const int64_t rr = s1_tg->ne[3];
  14391. const int64_t q1 = src0->ne[2];
  14392. const int64_t r1 = src0->ne[3];
  14393. const bool ne2_broadcasted = qq > q1;
  14394. const bool ne3_broadcasted = rr > r1;
  14395. if (ne2_broadcasted || ne3_broadcasted) {
  14396. // sum broadcast repetitions of s1_tg into shape of src0
  14397. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14398. }
  14399. src0->grad =
  14400. ggml_add_or_set(ctx,
  14401. src0->grad, // [n,m,q1,r1]
  14402. s1_tg, // [n,m,q1,r1]
  14403. zero_table);
  14404. }
  14405. if (src1->grad) {
  14406. src1->grad =
  14407. ggml_add_or_set(ctx,
  14408. src1->grad, // [n,p,qq,rr]
  14409. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14410. // ggml_cont(ctx, // [m,n,q1,r1]
  14411. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14412. // tensor->grad), // [m,p,qq,rr]
  14413. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14414. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14415. // // and then use ggml_out_prod
  14416. ggml_out_prod(ctx, // [n,p,qq,rr]
  14417. src0, // [n,m,q1,r1]
  14418. ggml_transpose(ctx, // [p,m,qq,rr]
  14419. tensor->grad)), // [m,p,qq,rr]
  14420. zero_table);
  14421. }
  14422. } break;
  14423. case GGML_OP_MUL_MAT_ID:
  14424. {
  14425. GGML_ABORT("fatal error"); // TODO: not implemented
  14426. }
  14427. case GGML_OP_OUT_PROD:
  14428. {
  14429. GGML_ABORT("fatal error"); // TODO: not implemented
  14430. }
  14431. case GGML_OP_SCALE:
  14432. {
  14433. // necessary for llama
  14434. if (src0->grad) {
  14435. float s;
  14436. memcpy(&s, tensor->op_params, sizeof(float));
  14437. src0->grad =
  14438. ggml_add_or_set(ctx,
  14439. src0->grad,
  14440. ggml_scale_impl(ctx, tensor->grad, s, false),
  14441. zero_table);
  14442. }
  14443. } break;
  14444. case GGML_OP_SET:
  14445. {
  14446. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14447. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14448. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14449. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14450. struct ggml_tensor * tensor_grad_view = NULL;
  14451. if (src0->grad || src1->grad) {
  14452. GGML_ASSERT(src0->type == tensor->type);
  14453. GGML_ASSERT(tensor->grad->type == tensor->type);
  14454. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14455. tensor_grad_view = ggml_view_4d(ctx,
  14456. tensor->grad,
  14457. src1->grad->ne[0],
  14458. src1->grad->ne[1],
  14459. src1->grad->ne[2],
  14460. src1->grad->ne[3],
  14461. nb1, nb2, nb3, offset);
  14462. }
  14463. if (src0->grad) {
  14464. src0->grad = ggml_add_or_set(ctx,
  14465. src0->grad,
  14466. ggml_acc_impl(ctx,
  14467. tensor->grad,
  14468. ggml_neg(ctx, tensor_grad_view),
  14469. nb1, nb2, nb3, offset, false),
  14470. zero_table);
  14471. }
  14472. if (src1->grad) {
  14473. src1->grad =
  14474. ggml_add_or_set(ctx,
  14475. src1->grad,
  14476. ggml_reshape(ctx,
  14477. ggml_cont(ctx, tensor_grad_view),
  14478. src1->grad),
  14479. zero_table);
  14480. }
  14481. } break;
  14482. case GGML_OP_CPY:
  14483. {
  14484. // necessary for llama
  14485. // cpy overwrites value of src1 by src0 and returns view(src1)
  14486. // the overwriting is mathematically equivalent to:
  14487. // tensor = src0 * 1 + src1 * 0
  14488. if (src0->grad) {
  14489. // dsrc0 = dtensor * 1
  14490. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14491. }
  14492. if (src1->grad) {
  14493. // dsrc1 = dtensor * 0 -> noop
  14494. }
  14495. } break;
  14496. case GGML_OP_CONT:
  14497. {
  14498. // same as cpy
  14499. if (src0->grad) {
  14500. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14501. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14502. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14503. }
  14504. } break;
  14505. case GGML_OP_RESHAPE:
  14506. {
  14507. // necessary for llama
  14508. if (src0->grad) {
  14509. src0->grad =
  14510. ggml_add_or_set(ctx, src0->grad,
  14511. ggml_reshape(ctx,
  14512. ggml_is_contiguous(tensor->grad)
  14513. ? tensor->grad
  14514. : ggml_cont(ctx, tensor->grad),
  14515. src0->grad),
  14516. zero_table);
  14517. }
  14518. } break;
  14519. case GGML_OP_VIEW:
  14520. {
  14521. // necessary for llama
  14522. if (src0->grad) {
  14523. size_t offset;
  14524. memcpy(&offset, tensor->op_params, sizeof(offset));
  14525. size_t nb1 = tensor->nb[1];
  14526. size_t nb2 = tensor->nb[2];
  14527. size_t nb3 = tensor->nb[3];
  14528. if (src0->type != src0->grad->type) {
  14529. // gradient is typically F32, but src0 could be other type
  14530. size_t ng = ggml_element_size(src0->grad);
  14531. size_t n0 = ggml_element_size(src0);
  14532. GGML_ASSERT(offset % n0 == 0);
  14533. GGML_ASSERT(nb1 % n0 == 0);
  14534. GGML_ASSERT(nb2 % n0 == 0);
  14535. GGML_ASSERT(nb3 % n0 == 0);
  14536. offset = (offset / n0) * ng;
  14537. nb1 = (nb1 / n0) * ng;
  14538. nb2 = (nb2 / n0) * ng;
  14539. nb3 = (nb3 / n0) * ng;
  14540. }
  14541. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14542. }
  14543. } break;
  14544. case GGML_OP_PERMUTE:
  14545. {
  14546. // necessary for llama
  14547. if (src0->grad) {
  14548. int32_t * axes = (int32_t *) tensor->op_params;
  14549. int axis0 = axes[0] & 0x3;
  14550. int axis1 = axes[1] & 0x3;
  14551. int axis2 = axes[2] & 0x3;
  14552. int axis3 = axes[3] & 0x3;
  14553. int axes_backward[4] = {0,0,0,0};
  14554. axes_backward[axis0] = 0;
  14555. axes_backward[axis1] = 1;
  14556. axes_backward[axis2] = 2;
  14557. axes_backward[axis3] = 3;
  14558. src0->grad =
  14559. ggml_add_or_set(ctx, src0->grad,
  14560. ggml_permute(ctx,
  14561. tensor->grad,
  14562. axes_backward[0],
  14563. axes_backward[1],
  14564. axes_backward[2],
  14565. axes_backward[3]),
  14566. zero_table);
  14567. }
  14568. } break;
  14569. case GGML_OP_TRANSPOSE:
  14570. {
  14571. // necessary for llama
  14572. if (src0->grad) {
  14573. src0->grad =
  14574. ggml_add_or_set(ctx, src0->grad,
  14575. ggml_transpose(ctx, tensor->grad),
  14576. zero_table);
  14577. }
  14578. } break;
  14579. case GGML_OP_GET_ROWS:
  14580. {
  14581. // necessary for llama (only for tokenizer)
  14582. if (src0->grad) {
  14583. src0->grad =
  14584. ggml_add_or_set(ctx, src0->grad,
  14585. // last ggml_get_rows_back argument src0->grad is only
  14586. // necessary to setup correct output shape
  14587. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14588. zero_table);
  14589. }
  14590. if (src1->grad) {
  14591. // noop
  14592. }
  14593. } break;
  14594. case GGML_OP_GET_ROWS_BACK:
  14595. {
  14596. GGML_ABORT("fatal error"); // TODO: not implemented
  14597. }
  14598. case GGML_OP_DIAG:
  14599. {
  14600. GGML_ABORT("fatal error"); // TODO: not implemented
  14601. }
  14602. case GGML_OP_DIAG_MASK_INF:
  14603. {
  14604. // necessary for llama
  14605. if (src0->grad) {
  14606. const int n_past = ((int32_t *) tensor->op_params)[0];
  14607. src0->grad =
  14608. ggml_add_or_set(ctx, src0->grad,
  14609. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14610. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14611. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14612. zero_table);
  14613. }
  14614. } break;
  14615. case GGML_OP_DIAG_MASK_ZERO:
  14616. {
  14617. // necessary for llama
  14618. if (src0->grad) {
  14619. const int n_past = ((int32_t *) tensor->op_params)[0];
  14620. src0->grad =
  14621. ggml_add_or_set(ctx, src0->grad,
  14622. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14623. zero_table);
  14624. }
  14625. } break;
  14626. case GGML_OP_SOFT_MAX:
  14627. {
  14628. // necessary for llama
  14629. if (src0->grad) {
  14630. src0->grad =
  14631. ggml_add_or_set(ctx, src0->grad,
  14632. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14633. zero_table);
  14634. }
  14635. } break;
  14636. case GGML_OP_SOFT_MAX_BACK:
  14637. {
  14638. GGML_ABORT("fatal error"); // TODO: not implemented
  14639. }
  14640. case GGML_OP_ROPE:
  14641. {
  14642. // necessary for llama
  14643. if (src0->grad) {
  14644. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14645. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14646. const int mode = ((int32_t *) tensor->op_params)[2];
  14647. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14648. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14649. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14650. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14651. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14652. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14653. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14654. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14655. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14656. src0->grad = ggml_add_or_set(ctx,
  14657. src0->grad,
  14658. ggml_rope_back(ctx,
  14659. tensor->grad,
  14660. src1,
  14661. src2,
  14662. n_dims,
  14663. mode,
  14664. n_ctx_orig,
  14665. freq_base,
  14666. freq_scale,
  14667. ext_factor,
  14668. attn_factor,
  14669. beta_fast,
  14670. beta_slow),
  14671. zero_table);
  14672. }
  14673. } break;
  14674. case GGML_OP_ROPE_BACK:
  14675. {
  14676. if (src0->grad) {
  14677. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14678. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14679. const int mode = ((int32_t *) tensor->op_params)[2];
  14680. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14681. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14682. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14683. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14684. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14685. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14686. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14687. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14688. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14689. src0->grad = ggml_add_or_set(ctx,
  14690. src0->grad,
  14691. ggml_rope_impl(ctx,
  14692. tensor->grad,
  14693. src1,
  14694. src2,
  14695. n_dims,
  14696. mode,
  14697. n_ctx_orig,
  14698. freq_base,
  14699. freq_scale,
  14700. ext_factor,
  14701. attn_factor,
  14702. beta_fast,
  14703. beta_slow,
  14704. false),
  14705. zero_table);
  14706. }
  14707. } break;
  14708. case GGML_OP_CLAMP:
  14709. {
  14710. GGML_ABORT("fatal error"); // TODO: not implemented
  14711. }
  14712. case GGML_OP_CONV_TRANSPOSE_1D:
  14713. {
  14714. GGML_ABORT("fatal error"); // TODO: not implemented
  14715. }
  14716. case GGML_OP_IM2COL:
  14717. {
  14718. GGML_ABORT("fatal error"); // TODO: not implemented
  14719. }
  14720. case GGML_OP_CONV_TRANSPOSE_2D:
  14721. {
  14722. GGML_ABORT("fatal error"); // TODO: not implemented
  14723. }
  14724. case GGML_OP_POOL_1D:
  14725. {
  14726. GGML_ABORT("fatal error"); // TODO: not implemented
  14727. }
  14728. case GGML_OP_POOL_2D:
  14729. {
  14730. GGML_ABORT("fatal error"); // TODO: not implemented
  14731. }
  14732. case GGML_OP_UPSCALE:
  14733. {
  14734. GGML_ABORT("fatal error"); // TODO: not implemented
  14735. }
  14736. case GGML_OP_PAD:
  14737. {
  14738. GGML_ABORT("fatal error"); // TODO: not implemented
  14739. }
  14740. case GGML_OP_ARANGE:
  14741. {
  14742. GGML_ABORT("fatal error"); // TODO: not implemented
  14743. }
  14744. case GGML_OP_TIMESTEP_EMBEDDING:
  14745. {
  14746. GGML_ABORT("fatal error"); // TODO: not implemented
  14747. }
  14748. case GGML_OP_ARGSORT:
  14749. {
  14750. GGML_ABORT("fatal error"); // TODO: not implemented
  14751. }
  14752. case GGML_OP_LEAKY_RELU:
  14753. {
  14754. GGML_ABORT("fatal error"); // TODO: not implemented
  14755. }
  14756. case GGML_OP_FLASH_ATTN_EXT:
  14757. {
  14758. struct ggml_tensor * flash_grad = NULL;
  14759. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14760. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14761. GGML_ASSERT(t == 0 || t == 1);
  14762. bool masked = t != 0;
  14763. flash_grad =
  14764. ggml_flash_attn_back(ctx,
  14765. src0,
  14766. src1,
  14767. tensor->src[2],
  14768. tensor->grad,
  14769. masked);
  14770. }
  14771. const int64_t elem_q = ggml_nelements(src0);
  14772. const int64_t elem_k = ggml_nelements(src1);
  14773. const int64_t elem_v = ggml_nelements(src2);
  14774. enum ggml_type result_type = flash_grad->type;
  14775. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14776. const size_t tsize = ggml_type_size(result_type);
  14777. const size_t offs_q = 0;
  14778. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14779. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14780. if (src0->grad) {
  14781. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14782. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14783. src0->grad = ggml_add_or_set(ctx,
  14784. src0->grad,
  14785. grad_q,
  14786. zero_table);
  14787. }
  14788. if (src1->grad) {
  14789. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14790. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14791. src1->grad = ggml_add_or_set(ctx,
  14792. src1->grad,
  14793. grad_k,
  14794. zero_table);
  14795. }
  14796. if (src2->grad) {
  14797. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14798. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14799. src2->grad = ggml_add_or_set(ctx,
  14800. src2->grad,
  14801. grad_v,
  14802. zero_table);
  14803. }
  14804. } break;
  14805. case GGML_OP_FLASH_ATTN_BACK:
  14806. {
  14807. GGML_ABORT("fatal error"); // not supported
  14808. }
  14809. case GGML_OP_SSM_CONV:
  14810. case GGML_OP_SSM_SCAN:
  14811. {
  14812. GGML_ABORT("fatal error"); // TODO: not implemented
  14813. }
  14814. case GGML_OP_WIN_PART:
  14815. case GGML_OP_WIN_UNPART:
  14816. case GGML_OP_UNARY:
  14817. {
  14818. switch (ggml_get_unary_op(tensor)) {
  14819. case GGML_UNARY_OP_ABS:
  14820. {
  14821. if (src0->grad) {
  14822. src0->grad =
  14823. ggml_add_or_set(ctx,
  14824. src0->grad,
  14825. ggml_mul(ctx,
  14826. ggml_sgn(ctx, src0),
  14827. tensor->grad),
  14828. zero_table);
  14829. }
  14830. } break;
  14831. case GGML_UNARY_OP_SGN:
  14832. {
  14833. if (src0->grad) {
  14834. // noop
  14835. }
  14836. } break;
  14837. case GGML_UNARY_OP_NEG:
  14838. {
  14839. if (src0->grad) {
  14840. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14841. }
  14842. } break;
  14843. case GGML_UNARY_OP_STEP:
  14844. {
  14845. if (src0->grad) {
  14846. // noop
  14847. }
  14848. } break;
  14849. case GGML_UNARY_OP_TANH:
  14850. {
  14851. GGML_ABORT("fatal error"); // TODO: not implemented
  14852. }
  14853. case GGML_UNARY_OP_ELU:
  14854. {
  14855. GGML_ABORT("fatal error"); // TODO: not implemented
  14856. }
  14857. case GGML_UNARY_OP_RELU:
  14858. {
  14859. if (src0->grad) {
  14860. src0->grad = ggml_add_or_set(ctx,
  14861. src0->grad,
  14862. ggml_mul(ctx,
  14863. ggml_step(ctx, src0),
  14864. tensor->grad),
  14865. zero_table);
  14866. }
  14867. } break;
  14868. case GGML_UNARY_OP_SIGMOID:
  14869. {
  14870. GGML_ABORT("fatal error"); // TODO: not implemented
  14871. }
  14872. case GGML_UNARY_OP_GELU:
  14873. {
  14874. GGML_ABORT("fatal error"); // TODO: not implemented
  14875. }
  14876. case GGML_UNARY_OP_GELU_QUICK:
  14877. {
  14878. GGML_ABORT("fatal error"); // TODO: not implemented
  14879. }
  14880. case GGML_UNARY_OP_SILU:
  14881. {
  14882. // necessary for llama
  14883. if (src0->grad) {
  14884. src0->grad = ggml_add_or_set(ctx,
  14885. src0->grad,
  14886. ggml_silu_back(ctx, src0, tensor->grad),
  14887. zero_table);
  14888. }
  14889. } break;
  14890. default:
  14891. GGML_ABORT("fatal error");
  14892. }
  14893. } break;
  14894. case GGML_OP_GET_REL_POS:
  14895. case GGML_OP_ADD_REL_POS:
  14896. case GGML_OP_MAP_UNARY:
  14897. case GGML_OP_MAP_BINARY:
  14898. case GGML_OP_MAP_CUSTOM1_F32:
  14899. case GGML_OP_MAP_CUSTOM2_F32:
  14900. case GGML_OP_MAP_CUSTOM3_F32:
  14901. case GGML_OP_MAP_CUSTOM1:
  14902. case GGML_OP_MAP_CUSTOM2:
  14903. case GGML_OP_MAP_CUSTOM3:
  14904. {
  14905. GGML_ABORT("fatal error"); // not supported
  14906. }
  14907. case GGML_OP_CROSS_ENTROPY_LOSS:
  14908. {
  14909. if (src0->grad) {
  14910. src0->grad = ggml_add_or_set(ctx,
  14911. src0->grad,
  14912. ggml_cross_entropy_loss_back(ctx,
  14913. src0,
  14914. src1,
  14915. tensor->grad),
  14916. zero_table);
  14917. }
  14918. } break;
  14919. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14920. {
  14921. GGML_ABORT("fatal error"); // not supported
  14922. }
  14923. case GGML_OP_NONE:
  14924. {
  14925. // nop
  14926. } break;
  14927. case GGML_OP_COUNT:
  14928. {
  14929. GGML_ABORT("fatal error");
  14930. }
  14931. }
  14932. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14933. if (tensor->src[i] && tensor->src[i]->grad) {
  14934. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14935. }
  14936. }
  14937. }
  14938. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14939. if (node->grad == NULL) {
  14940. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14941. // it can also happen during forward pass, if the user performs computations with constants
  14942. if (node->op != GGML_OP_NONE) {
  14943. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14944. }
  14945. }
  14946. // check if already visited
  14947. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  14948. return;
  14949. }
  14950. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14951. const int k =
  14952. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14953. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14954. /* unknown order, just fall back to using i*/ i;
  14955. if (node->src[k]) {
  14956. ggml_visit_parents(cgraph, node->src[k]);
  14957. }
  14958. }
  14959. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14960. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14961. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14962. if (strlen(node->name) == 0) {
  14963. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14964. }
  14965. cgraph->leafs[cgraph->n_leafs] = node;
  14966. cgraph->n_leafs++;
  14967. } else {
  14968. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14969. if (strlen(node->name) == 0) {
  14970. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14971. }
  14972. cgraph->nodes[cgraph->n_nodes] = node;
  14973. if (cgraph->grads) {
  14974. cgraph->grads[cgraph->n_nodes] = node->grad;
  14975. }
  14976. cgraph->n_nodes++;
  14977. }
  14978. }
  14979. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14980. if (!expand) {
  14981. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14982. ggml_graph_clear(cgraph);
  14983. }
  14984. const int n0 = cgraph->n_nodes;
  14985. ggml_visit_parents(cgraph, tensor);
  14986. const int n_new = cgraph->n_nodes - n0;
  14987. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14988. if (n_new > 0) {
  14989. // the last added node should always be starting point
  14990. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14991. }
  14992. }
  14993. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14994. ggml_build_forward_impl(cgraph, tensor, true);
  14995. }
  14996. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14997. GGML_ASSERT(gf->n_nodes > 0);
  14998. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14999. if (keep) {
  15000. for (int i = 0; i < gf->n_nodes; i++) {
  15001. struct ggml_tensor * node = gf->nodes[i];
  15002. if (node->grad) {
  15003. node->grad = ggml_dup_tensor(ctx, node);
  15004. gf->grads[i] = node->grad;
  15005. }
  15006. }
  15007. }
  15008. // remember original gradients which start with zero values
  15009. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15010. for (int i = 0; i < gf->n_nodes; i++) {
  15011. if (gf->grads[i]) {
  15012. ggml_hash_insert(&zero_table, gf->grads[i]);
  15013. }
  15014. }
  15015. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15016. struct ggml_tensor * node = gf->nodes[i];
  15017. // inplace operations to add gradients are not created by ggml_compute_backward
  15018. // use allocator to automatically make inplace operations
  15019. if (node->grad) {
  15020. ggml_compute_backward(ctx, node, &zero_table);
  15021. }
  15022. }
  15023. for (int i = 0; i < gf->n_nodes; i++) {
  15024. struct ggml_tensor * node = gf->nodes[i];
  15025. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15026. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15027. ggml_build_forward_expand(gb, node->grad);
  15028. }
  15029. }
  15030. ggml_hash_set_free(&zero_table);
  15031. }
  15032. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15033. void * ptr = *p;
  15034. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15035. *p = (void *) ((char *) ptr + size);
  15036. return ptr;
  15037. }
  15038. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15039. size_t hash_size = ggml_hash_size(size * 2);
  15040. void * p = 0;
  15041. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15042. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15043. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15044. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15045. if (grads) {
  15046. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15047. }
  15048. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15049. size_t nbytes = (size_t) p;
  15050. return nbytes;
  15051. }
  15052. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15053. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15054. }
  15055. size_t ggml_graph_overhead(void) {
  15056. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15057. }
  15058. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15059. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15060. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15061. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15062. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15063. size_t hash_size = ggml_hash_size(size * 2);
  15064. void * p = cgraph + 1;
  15065. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15066. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15067. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15068. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15069. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15070. // check that we allocated the correct amount of memory
  15071. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15072. *cgraph = (struct ggml_cgraph) {
  15073. /*.size =*/ size,
  15074. /*.n_nodes =*/ 0,
  15075. /*.n_leafs =*/ 0,
  15076. /*.nodes =*/ nodes_ptr,
  15077. /*.grads =*/ grads_ptr,
  15078. /*.leafs =*/ leafs_ptr,
  15079. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15080. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15081. };
  15082. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15083. return cgraph;
  15084. }
  15085. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15086. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15087. }
  15088. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15089. struct ggml_cgraph cgraph = {
  15090. /*.size =*/ 0,
  15091. /*.n_nodes =*/ i1 - i0,
  15092. /*.n_leafs =*/ 0,
  15093. /*.nodes =*/ cgraph0->nodes + i0,
  15094. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15095. /*.leafs =*/ NULL,
  15096. /*.hash_table =*/ { 0, NULL, NULL },
  15097. /*.order =*/ cgraph0->order,
  15098. };
  15099. return cgraph;
  15100. }
  15101. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15102. GGML_ASSERT(dst->size >= src->n_leafs);
  15103. GGML_ASSERT(dst->size >= src->n_nodes);
  15104. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15105. dst->n_leafs = src->n_leafs;
  15106. dst->n_nodes = src->n_nodes;
  15107. dst->order = src->order;
  15108. for (int i = 0; i < src->n_leafs; ++i) {
  15109. dst->leafs[i] = src->leafs[i];
  15110. }
  15111. for (int i = 0; i < src->n_nodes; ++i) {
  15112. dst->nodes[i] = src->nodes[i];
  15113. }
  15114. if (src->grads) {
  15115. GGML_ASSERT(dst->grads != NULL);
  15116. for (int i = 0; i < src->n_nodes; ++i) {
  15117. dst->grads[i] = src->grads[i];
  15118. }
  15119. }
  15120. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15121. if (src->visited_hash_set.keys[i]) {
  15122. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15123. }
  15124. }
  15125. }
  15126. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15127. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15128. ggml_graph_cpy(cgraph, result);
  15129. return result;
  15130. }
  15131. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15132. GGML_ASSERT(cgraph->grads != NULL);
  15133. for (int i = 0; i < cgraph->n_nodes; i++) {
  15134. struct ggml_tensor * grad = cgraph->grads[i];
  15135. if (grad) {
  15136. ggml_set_zero(grad);
  15137. }
  15138. }
  15139. }
  15140. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15141. cgraph->n_leafs = 0;
  15142. cgraph->n_nodes = 0;
  15143. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15144. }
  15145. //
  15146. // thread data
  15147. //
  15148. // synchronization is done via busy loops
  15149. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15150. //
  15151. #ifdef __APPLE__
  15152. //#include <os/lock.h>
  15153. //
  15154. //typedef os_unfair_lock ggml_lock_t;
  15155. //
  15156. //#define ggml_lock_init(x) UNUSED(x)
  15157. //#define ggml_lock_destroy(x) UNUSED(x)
  15158. //#define ggml_lock_lock os_unfair_lock_lock
  15159. //#define ggml_lock_unlock os_unfair_lock_unlock
  15160. //
  15161. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15162. typedef int ggml_lock_t;
  15163. #define ggml_lock_init(x) UNUSED(x)
  15164. #define ggml_lock_destroy(x) UNUSED(x)
  15165. #define ggml_lock_lock(x) UNUSED(x)
  15166. #define ggml_lock_unlock(x) UNUSED(x)
  15167. #define GGML_LOCK_INITIALIZER 0
  15168. #define ggml_thread_create pthread_create
  15169. #define ggml_thread_join pthread_join
  15170. #else
  15171. //typedef pthread_spinlock_t ggml_lock_t;
  15172. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15173. //#define ggml_lock_destroy pthread_spin_destroy
  15174. //#define ggml_lock_lock pthread_spin_lock
  15175. //#define ggml_lock_unlock pthread_spin_unlock
  15176. typedef int ggml_lock_t;
  15177. #define ggml_lock_init(x) UNUSED(x)
  15178. #define ggml_lock_destroy(x) UNUSED(x)
  15179. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15180. #define ggml_lock_lock(x) _mm_pause()
  15181. #else
  15182. #define ggml_lock_lock(x) UNUSED(x)
  15183. #endif
  15184. #define ggml_lock_unlock(x) UNUSED(x)
  15185. #define GGML_LOCK_INITIALIZER 0
  15186. #define ggml_thread_create pthread_create
  15187. #define ggml_thread_join pthread_join
  15188. #endif
  15189. // Android's libc implementation "bionic" does not support setting affinity
  15190. #if defined(__gnu_linux__)
  15191. static void set_numa_thread_affinity(int thread_n) {
  15192. if (!ggml_is_numa()) {
  15193. return;
  15194. }
  15195. int node_num;
  15196. int rv;
  15197. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15198. switch(g_state.numa.numa_strategy) {
  15199. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15200. // run thread on node_num thread_n / (threads per node)
  15201. node_num = thread_n % g_state.numa.n_nodes;
  15202. break;
  15203. case GGML_NUMA_STRATEGY_ISOLATE:
  15204. // run thread on current_node
  15205. node_num = g_state.numa.current_node;
  15206. break;
  15207. case GGML_NUMA_STRATEGY_NUMACTL:
  15208. // use the cpuset that numactl gave us
  15209. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15210. if (rv) {
  15211. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15212. }
  15213. return;
  15214. default:
  15215. return;
  15216. }
  15217. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15218. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15219. CPU_ZERO_S(setsize, cpus);
  15220. for (size_t i = 0; i < node->n_cpus; ++i) {
  15221. CPU_SET_S(node->cpus[i], setsize, cpus);
  15222. }
  15223. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15224. if (rv) {
  15225. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15226. }
  15227. CPU_FREE(cpus);
  15228. }
  15229. static void clear_numa_thread_affinity(void) {
  15230. if (!ggml_is_numa()) {
  15231. return;
  15232. }
  15233. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15234. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15235. CPU_ZERO_S(setsize, cpus);
  15236. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15237. CPU_SET_S(i, setsize, cpus);
  15238. }
  15239. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15240. if (rv) {
  15241. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15242. }
  15243. CPU_FREE(cpus);
  15244. }
  15245. #else
  15246. // TODO: Windows etc.
  15247. // (the linux implementation may also work on BSD, someone should test)
  15248. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15249. static void clear_numa_thread_affinity(void) {}
  15250. #endif
  15251. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15252. int n_tasks = 0;
  15253. if (ggml_is_empty(node)) {
  15254. // no need to multi-thread a no-op
  15255. n_tasks = 1;
  15256. return n_tasks;
  15257. }
  15258. switch (node->op) {
  15259. case GGML_OP_CPY:
  15260. case GGML_OP_DUP:
  15261. case GGML_OP_CONT:
  15262. case GGML_OP_ADD:
  15263. case GGML_OP_ADD1:
  15264. case GGML_OP_ACC:
  15265. {
  15266. n_tasks = n_threads;
  15267. } break;
  15268. case GGML_OP_SUB:
  15269. case GGML_OP_SQR:
  15270. case GGML_OP_SQRT:
  15271. case GGML_OP_LOG:
  15272. case GGML_OP_SUM:
  15273. case GGML_OP_SUM_ROWS:
  15274. case GGML_OP_MEAN:
  15275. case GGML_OP_ARGMAX:
  15276. case GGML_OP_REPEAT:
  15277. case GGML_OP_REPEAT_BACK:
  15278. case GGML_OP_LEAKY_RELU:
  15279. {
  15280. n_tasks = 1;
  15281. } break;
  15282. case GGML_OP_UNARY:
  15283. switch (ggml_get_unary_op(node)) {
  15284. case GGML_UNARY_OP_ABS:
  15285. case GGML_UNARY_OP_SGN:
  15286. case GGML_UNARY_OP_NEG:
  15287. case GGML_UNARY_OP_STEP:
  15288. case GGML_UNARY_OP_TANH:
  15289. case GGML_UNARY_OP_ELU:
  15290. case GGML_UNARY_OP_RELU:
  15291. case GGML_UNARY_OP_SIGMOID:
  15292. case GGML_UNARY_OP_HARDSWISH:
  15293. case GGML_UNARY_OP_HARDSIGMOID:
  15294. {
  15295. n_tasks = 1;
  15296. } break;
  15297. case GGML_UNARY_OP_GELU:
  15298. case GGML_UNARY_OP_GELU_QUICK:
  15299. case GGML_UNARY_OP_SILU:
  15300. {
  15301. n_tasks = n_threads;
  15302. } break;
  15303. default:
  15304. GGML_ABORT("fatal error");
  15305. }
  15306. break;
  15307. case GGML_OP_SILU_BACK:
  15308. case GGML_OP_MUL:
  15309. case GGML_OP_DIV:
  15310. case GGML_OP_NORM:
  15311. case GGML_OP_RMS_NORM:
  15312. case GGML_OP_RMS_NORM_BACK:
  15313. case GGML_OP_GROUP_NORM:
  15314. case GGML_OP_CONCAT:
  15315. case GGML_OP_MUL_MAT:
  15316. case GGML_OP_MUL_MAT_ID:
  15317. case GGML_OP_OUT_PROD:
  15318. {
  15319. n_tasks = n_threads;
  15320. } break;
  15321. case GGML_OP_GET_ROWS:
  15322. {
  15323. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15324. // decreases performance with GPU offloading
  15325. //n_tasks = n_threads;
  15326. n_tasks = 1;
  15327. } break;
  15328. case GGML_OP_SCALE:
  15329. case GGML_OP_SET:
  15330. case GGML_OP_RESHAPE:
  15331. case GGML_OP_VIEW:
  15332. case GGML_OP_PERMUTE:
  15333. case GGML_OP_TRANSPOSE:
  15334. case GGML_OP_GET_ROWS_BACK:
  15335. case GGML_OP_DIAG:
  15336. {
  15337. n_tasks = 1;
  15338. } break;
  15339. case GGML_OP_DIAG_MASK_ZERO:
  15340. case GGML_OP_DIAG_MASK_INF:
  15341. case GGML_OP_SOFT_MAX_BACK:
  15342. case GGML_OP_ROPE:
  15343. case GGML_OP_ROPE_BACK:
  15344. case GGML_OP_ADD_REL_POS:
  15345. {
  15346. n_tasks = n_threads;
  15347. } break;
  15348. case GGML_OP_CLAMP:
  15349. {
  15350. n_tasks = 1; //TODO
  15351. } break;
  15352. case GGML_OP_SOFT_MAX:
  15353. {
  15354. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15355. } break;
  15356. case GGML_OP_IM2COL:
  15357. case GGML_OP_CONV_TRANSPOSE_1D:
  15358. case GGML_OP_CONV_TRANSPOSE_2D:
  15359. {
  15360. n_tasks = n_threads;
  15361. } break;
  15362. case GGML_OP_POOL_1D:
  15363. case GGML_OP_POOL_2D:
  15364. {
  15365. n_tasks = 1;
  15366. } break;
  15367. case GGML_OP_UPSCALE:
  15368. case GGML_OP_PAD:
  15369. case GGML_OP_ARANGE:
  15370. case GGML_OP_TIMESTEP_EMBEDDING:
  15371. case GGML_OP_ARGSORT:
  15372. case GGML_OP_FLASH_ATTN_EXT:
  15373. case GGML_OP_FLASH_ATTN_BACK:
  15374. case GGML_OP_SSM_CONV:
  15375. case GGML_OP_SSM_SCAN:
  15376. {
  15377. n_tasks = n_threads;
  15378. } break;
  15379. case GGML_OP_WIN_PART:
  15380. case GGML_OP_WIN_UNPART:
  15381. case GGML_OP_GET_REL_POS:
  15382. case GGML_OP_MAP_UNARY:
  15383. case GGML_OP_MAP_BINARY:
  15384. case GGML_OP_MAP_CUSTOM1_F32:
  15385. case GGML_OP_MAP_CUSTOM2_F32:
  15386. case GGML_OP_MAP_CUSTOM3_F32:
  15387. {
  15388. n_tasks = 1;
  15389. } break;
  15390. case GGML_OP_MAP_CUSTOM1:
  15391. {
  15392. struct ggml_map_custom1_op_params p;
  15393. memcpy(&p, node->op_params, sizeof(p));
  15394. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15395. n_tasks = n_threads;
  15396. } else {
  15397. n_tasks = MIN(p.n_tasks, n_threads);
  15398. }
  15399. } break;
  15400. case GGML_OP_MAP_CUSTOM2:
  15401. {
  15402. struct ggml_map_custom2_op_params p;
  15403. memcpy(&p, node->op_params, sizeof(p));
  15404. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15405. n_tasks = n_threads;
  15406. } else {
  15407. n_tasks = MIN(p.n_tasks, n_threads);
  15408. }
  15409. } break;
  15410. case GGML_OP_MAP_CUSTOM3:
  15411. {
  15412. struct ggml_map_custom3_op_params p;
  15413. memcpy(&p, node->op_params, sizeof(p));
  15414. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15415. n_tasks = n_threads;
  15416. } else {
  15417. n_tasks = MIN(p.n_tasks, n_threads);
  15418. }
  15419. } break;
  15420. case GGML_OP_CROSS_ENTROPY_LOSS:
  15421. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15422. {
  15423. n_tasks = n_threads;
  15424. } break;
  15425. case GGML_OP_NONE:
  15426. {
  15427. n_tasks = 1;
  15428. } break;
  15429. case GGML_OP_COUNT:
  15430. {
  15431. GGML_ABORT("fatal error");
  15432. }
  15433. default:
  15434. {
  15435. fprintf(stderr, "%s: op not implemented: ", __func__);
  15436. if (node->op < GGML_OP_COUNT) {
  15437. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15438. } else {
  15439. fprintf(stderr, "%d\n", node->op);
  15440. }
  15441. GGML_ABORT("fatal error");
  15442. }
  15443. }
  15444. assert(n_tasks > 0);
  15445. return n_tasks;
  15446. }
  15447. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15448. if (n_threads <= 0) {
  15449. n_threads = GGML_DEFAULT_N_THREADS;
  15450. }
  15451. size_t work_size = 0;
  15452. struct ggml_cplan cplan;
  15453. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15454. int max_tasks = 1;
  15455. // thread scheduling for the different operations + work buffer size estimation
  15456. for (int i = 0; i < cgraph->n_nodes; i++) {
  15457. struct ggml_tensor * node = cgraph->nodes[i];
  15458. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  15459. max_tasks = MAX(max_tasks, n_tasks);
  15460. size_t cur = 0;
  15461. switch (node->op) {
  15462. case GGML_OP_CPY:
  15463. case GGML_OP_DUP:
  15464. {
  15465. if (ggml_is_quantized(node->type) ||
  15466. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15467. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15468. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15469. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15470. }
  15471. } break;
  15472. case GGML_OP_ADD:
  15473. case GGML_OP_ADD1:
  15474. {
  15475. if (ggml_is_quantized(node->src[0]->type)) {
  15476. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15477. }
  15478. } break;
  15479. case GGML_OP_ACC:
  15480. {
  15481. if (ggml_is_quantized(node->src[0]->type)) {
  15482. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15483. }
  15484. } break;
  15485. case GGML_OP_MUL_MAT:
  15486. {
  15487. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15488. if (node->src[1]->type != vec_dot_type) {
  15489. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15490. }
  15491. } break;
  15492. case GGML_OP_MUL_MAT_ID:
  15493. {
  15494. cur = 0;
  15495. const struct ggml_tensor * src0 = node->src[0];
  15496. const struct ggml_tensor * src1 = node->src[1];
  15497. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15498. if (src1->type != vec_dot_type) {
  15499. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15500. }
  15501. const int n_as = src0->ne[2];
  15502. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15503. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15504. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15505. } break;
  15506. case GGML_OP_OUT_PROD:
  15507. {
  15508. if (ggml_is_quantized(node->src[0]->type)) {
  15509. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15510. }
  15511. } break;
  15512. case GGML_OP_SOFT_MAX:
  15513. case GGML_OP_ROPE:
  15514. {
  15515. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15516. } break;
  15517. case GGML_OP_CONV_TRANSPOSE_1D:
  15518. {
  15519. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15520. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15521. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15522. const int64_t ne00 = node->src[0]->ne[0]; // K
  15523. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15524. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15525. const int64_t ne10 = node->src[1]->ne[0]; // L
  15526. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15527. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15528. node->src[0]->type == GGML_TYPE_BF16) &&
  15529. node->src[1]->type == GGML_TYPE_F32) {
  15530. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15531. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15532. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15533. node->src[1]->type == GGML_TYPE_F32) {
  15534. cur += sizeof(float)*ne00*ne01*ne02;
  15535. cur += sizeof(float)*ne10*ne11;
  15536. } else {
  15537. GGML_ABORT("fatal error");
  15538. }
  15539. } break;
  15540. case GGML_OP_CONV_TRANSPOSE_2D:
  15541. {
  15542. const int64_t ne00 = node->src[0]->ne[0]; // W
  15543. const int64_t ne01 = node->src[0]->ne[1]; // H
  15544. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15545. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15546. const int64_t ne10 = node->src[1]->ne[0]; // W
  15547. const int64_t ne11 = node->src[1]->ne[1]; // H
  15548. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15549. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15550. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15551. } break;
  15552. case GGML_OP_FLASH_ATTN_EXT:
  15553. {
  15554. const int64_t ne00 = node->src[0]->ne[0]; // D
  15555. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15556. } break;
  15557. case GGML_OP_FLASH_ATTN_BACK:
  15558. {
  15559. const int64_t D = node->src[0]->ne[0];
  15560. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15561. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15562. if (node->src[1]->type == GGML_TYPE_F32) {
  15563. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15564. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15565. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15566. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15567. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15568. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15569. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15570. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15571. }
  15572. } break;
  15573. case GGML_OP_CROSS_ENTROPY_LOSS:
  15574. {
  15575. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15576. } break;
  15577. case GGML_OP_COUNT:
  15578. {
  15579. GGML_ABORT("fatal error");
  15580. }
  15581. default:
  15582. break;
  15583. }
  15584. work_size = MAX(work_size, cur);
  15585. }
  15586. if (work_size > 0) {
  15587. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15588. }
  15589. cplan.n_threads = MIN(max_tasks, n_threads);
  15590. cplan.work_size = work_size;
  15591. cplan.work_data = NULL;
  15592. return cplan;
  15593. }
  15594. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15595. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15596. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15597. const struct ggml_cplan * cplan = state->shared->cplan;
  15598. set_numa_thread_affinity(state->ith);
  15599. struct ggml_compute_params params = {
  15600. /*.ith =*/ state->ith,
  15601. /*.nth =*/ state->shared->n_threads,
  15602. /*.wsize =*/ cplan->work_size,
  15603. /*.wdata =*/ cplan->work_data,
  15604. /*.shared=*/ state->shared,
  15605. };
  15606. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  15607. struct ggml_tensor * node = cgraph->nodes[node_n];
  15608. ggml_compute_forward(&params, node);
  15609. if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15610. state->shared->ec = GGML_STATUS_ABORTED;
  15611. }
  15612. ggml_barrier(state->shared);
  15613. if (state->shared->ec != GGML_STATUS_SUCCESS) {
  15614. break;
  15615. }
  15616. }
  15617. return 0;
  15618. }
  15619. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15620. GGML_ASSERT(cplan);
  15621. GGML_ASSERT(cplan->n_threads > 0);
  15622. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  15623. int n_threads = cplan->n_threads;
  15624. struct ggml_compute_state_shared state_shared = {
  15625. /*.cgraph =*/ cgraph,
  15626. /*.cgraph_plan =*/ cplan,
  15627. /*.n_threads =*/ n_threads,
  15628. /*.n_barrier =*/ 0,
  15629. /*.n_barrier_passed =*/ 0,
  15630. /*.abort_callback =*/ NULL,
  15631. /*.abort_callback_data =*/ NULL,
  15632. /*.current_chunk =*/ 0,
  15633. /*.ec =*/ GGML_STATUS_SUCCESS,
  15634. };
  15635. #ifdef GGML_USE_OPENMP
  15636. if (n_threads > 1) {
  15637. #pragma omp parallel num_threads(n_threads)
  15638. {
  15639. #pragma omp single
  15640. {
  15641. // update the number of threads from the actual number of threads that we got from OpenMP
  15642. n_threads = omp_get_num_threads();
  15643. state_shared.n_threads = n_threads;
  15644. }
  15645. struct ggml_compute_state worker = {
  15646. .thrd = 0,
  15647. .ith = omp_get_thread_num(),
  15648. .shared = &state_shared,
  15649. };
  15650. ggml_graph_compute_thread(&worker);
  15651. }
  15652. } else {
  15653. struct ggml_compute_state worker = {
  15654. .thrd = 0,
  15655. .ith = 0,
  15656. .shared = &state_shared,
  15657. };
  15658. ggml_graph_compute_thread(&worker);
  15659. }
  15660. #else
  15661. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15662. for (int j = 0; j < n_threads; ++j) {
  15663. workers[j] = (struct ggml_compute_state) {
  15664. .thrd = 0,
  15665. .ith = j,
  15666. .shared = &state_shared,
  15667. };
  15668. }
  15669. // create thread pool
  15670. for (int j = 1; j < n_threads; ++j) {
  15671. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15672. GGML_ASSERT(rc == 0);
  15673. UNUSED(rc);
  15674. }
  15675. // this is a work thread too
  15676. ggml_graph_compute_thread(&workers[0]);
  15677. // join or kill thread pool
  15678. if (n_threads > 1) {
  15679. for (int j = 1; j < n_threads; j++) {
  15680. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15681. GGML_ASSERT(rc == 0);
  15682. UNUSED(rc);
  15683. }
  15684. }
  15685. #endif
  15686. // don't leave affinity set on the main thread
  15687. clear_numa_thread_affinity();
  15688. return state_shared.ec;
  15689. }
  15690. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15691. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15692. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15693. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15694. return ggml_graph_compute(cgraph, &cplan);
  15695. }
  15696. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15697. for (int i = 0; i < cgraph->n_leafs; i++) {
  15698. struct ggml_tensor * leaf = cgraph->leafs[i];
  15699. if (strcmp(leaf->name, name) == 0) {
  15700. return leaf;
  15701. }
  15702. }
  15703. for (int i = 0; i < cgraph->n_nodes; i++) {
  15704. struct ggml_tensor * node = cgraph->nodes[i];
  15705. if (strcmp(node->name, name) == 0) {
  15706. return node;
  15707. }
  15708. }
  15709. return NULL;
  15710. }
  15711. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15712. const int64_t * ne = tensor->ne;
  15713. const size_t * nb = tensor->nb;
  15714. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15715. ggml_type_name(tensor->type),
  15716. ggml_op_name (tensor->op),
  15717. ggml_n_dims(tensor),
  15718. ne[0], ne[1], ne[2], ne[3],
  15719. nb[0], nb[1], nb[2], nb[3],
  15720. tensor->data,
  15721. tensor->name);
  15722. }
  15723. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15724. const int64_t * ne = tensor->ne;
  15725. const size_t * nb = tensor->nb;
  15726. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15727. arg,
  15728. ggml_type_name(tensor->type),
  15729. ggml_op_name (tensor->op),
  15730. ggml_n_dims(tensor),
  15731. ne[0], ne[1], ne[2], ne[3],
  15732. nb[0], nb[1], nb[2], nb[3],
  15733. tensor->data,
  15734. tensor->name);
  15735. }
  15736. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15737. uint64_t size_eval = 0;
  15738. // compute size of intermediate results
  15739. // TODO: does not take into account scratch buffers !!!!
  15740. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15741. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15742. }
  15743. // print
  15744. {
  15745. FILE * fout = stdout;
  15746. fprintf(fout, "\n");
  15747. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15748. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15749. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15750. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15751. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15752. // header
  15753. fprintf(fout, "\n");
  15754. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15755. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15756. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15757. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15758. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15759. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15760. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15761. }
  15762. // header
  15763. fprintf(fout, "\n");
  15764. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15765. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15766. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15767. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15768. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15769. if (cgraph->nodes[i]->src[j]) {
  15770. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15771. }
  15772. }
  15773. fprintf(fout, "\n");
  15774. }
  15775. fprintf(fout, "\n");
  15776. }
  15777. // write binary data
  15778. {
  15779. FILE * fout = ggml_fopen(fname, "wb");
  15780. if (!fout) {
  15781. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  15782. return;
  15783. }
  15784. // header
  15785. {
  15786. const uint32_t magic = GGML_FILE_MAGIC;
  15787. const uint32_t version = GGML_FILE_VERSION;
  15788. const uint32_t n_leafs = cgraph->n_leafs;
  15789. const uint32_t n_nodes = cgraph->n_nodes;
  15790. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15791. fwrite(&version, sizeof(uint32_t), 1, fout);
  15792. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15793. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15794. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15795. }
  15796. // leafs
  15797. {
  15798. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15799. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15800. const uint32_t type = tensor->type;
  15801. const uint32_t op = tensor->op;
  15802. fwrite(&type, sizeof(uint32_t), 1, fout);
  15803. fwrite(&op, sizeof(uint32_t), 1, fout);
  15804. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15805. const uint64_t ne = tensor->ne[j];
  15806. const uint64_t nb = tensor->nb[j];
  15807. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15808. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15809. }
  15810. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15811. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15812. // dump the data
  15813. // TODO: pad this to 32 byte boundary
  15814. {
  15815. const size_t size = ggml_nbytes(tensor);
  15816. fwrite(tensor->data, sizeof(char), size, fout);
  15817. }
  15818. }
  15819. }
  15820. // nodes
  15821. {
  15822. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15823. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15824. const uint32_t type = tensor->type;
  15825. const uint32_t op = tensor->op;
  15826. fwrite(&type, sizeof(uint32_t), 1, fout);
  15827. fwrite(&op, sizeof(uint32_t), 1, fout);
  15828. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15829. const uint64_t ne = tensor->ne[j];
  15830. const uint64_t nb = tensor->nb[j];
  15831. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15832. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15833. }
  15834. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15835. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15836. // output the op arguments
  15837. {
  15838. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15839. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15840. args[j] = tensor->src[j];
  15841. }
  15842. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15843. if (args[j]) {
  15844. int32_t idx = -1;
  15845. // check if leaf
  15846. {
  15847. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15848. if (args[j] == cgraph->leafs[k]) {
  15849. idx = k;
  15850. break;
  15851. }
  15852. }
  15853. }
  15854. // check if node
  15855. if (idx == -1) {
  15856. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15857. if (args[j] == cgraph->nodes[k]) {
  15858. idx = cgraph->n_leafs + k;
  15859. break;
  15860. }
  15861. }
  15862. }
  15863. if (idx == -1) {
  15864. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15865. fclose(fout);
  15866. return;
  15867. }
  15868. fwrite(&idx, sizeof(int32_t), 1, fout);
  15869. } else {
  15870. const int32_t nul = -1;
  15871. fwrite(&nul, sizeof(int32_t), 1, fout);
  15872. }
  15873. }
  15874. }
  15875. }
  15876. }
  15877. fclose(fout);
  15878. }
  15879. }
  15880. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15881. assert(*ctx_data == NULL);
  15882. assert(*ctx_eval == NULL);
  15883. struct ggml_cgraph * result = NULL;
  15884. struct ggml_tensor * data = NULL;
  15885. // read file into data
  15886. {
  15887. FILE * fin = ggml_fopen(fname, "rb");
  15888. if (!fin) {
  15889. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  15890. return result;
  15891. }
  15892. size_t fsize = 0;
  15893. fseek(fin, 0, SEEK_END);
  15894. fsize = ftell(fin);
  15895. fseek(fin, 0, SEEK_SET);
  15896. // create the data context
  15897. {
  15898. const size_t overhead = 1*ggml_tensor_overhead();
  15899. struct ggml_init_params params = {
  15900. .mem_size = fsize + overhead,
  15901. .mem_buffer = NULL,
  15902. .no_alloc = false,
  15903. };
  15904. *ctx_data = ggml_init(params);
  15905. if (!*ctx_data) {
  15906. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15907. fclose(fin);
  15908. return result;
  15909. }
  15910. }
  15911. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15912. {
  15913. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15914. if (ret != fsize) {
  15915. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15916. fclose(fin);
  15917. return result;
  15918. }
  15919. }
  15920. fclose(fin);
  15921. }
  15922. // populate result
  15923. {
  15924. char * ptr = (char *) data->data;
  15925. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15926. if (magic != GGML_FILE_MAGIC) {
  15927. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15928. return result;
  15929. }
  15930. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15931. if (version != GGML_FILE_VERSION) {
  15932. fprintf(stderr, "%s: invalid version number\n", __func__);
  15933. return result;
  15934. }
  15935. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15936. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15937. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15938. const int graph_size = MAX(n_leafs, n_nodes);
  15939. // create the data context
  15940. {
  15941. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15942. struct ggml_init_params params = {
  15943. .mem_size = size_eval + overhead,
  15944. .mem_buffer = NULL,
  15945. .no_alloc = true,
  15946. };
  15947. *ctx_eval = ggml_init(params);
  15948. if (!*ctx_eval) {
  15949. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15950. return result;
  15951. }
  15952. }
  15953. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15954. result->n_leafs = n_leafs;
  15955. result->n_nodes = n_nodes;
  15956. // leafs
  15957. {
  15958. uint32_t type;
  15959. uint32_t op;
  15960. for (uint32_t i = 0; i < n_leafs; ++i) {
  15961. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15962. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15963. int64_t ne[GGML_MAX_DIMS];
  15964. size_t nb[GGML_MAX_DIMS];
  15965. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15966. uint64_t ne_cur;
  15967. uint64_t nb_cur;
  15968. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15969. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15970. ne[j] = ne_cur;
  15971. nb[j] = nb_cur;
  15972. }
  15973. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15974. tensor->op = (enum ggml_op) op;
  15975. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15976. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15977. tensor->data = (void *) ptr;
  15978. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15979. tensor->nb[j] = nb[j];
  15980. }
  15981. result->leafs[i] = tensor;
  15982. ptr += ggml_nbytes(tensor);
  15983. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15984. }
  15985. }
  15986. ggml_set_no_alloc(*ctx_eval, false);
  15987. // nodes
  15988. {
  15989. uint32_t type;
  15990. uint32_t op;
  15991. for (uint32_t i = 0; i < n_nodes; ++i) {
  15992. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15993. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15994. enum ggml_op eop = (enum ggml_op) op;
  15995. int64_t ne[GGML_MAX_DIMS];
  15996. size_t nb[GGML_MAX_DIMS];
  15997. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15998. uint64_t ne_cur;
  15999. uint64_t nb_cur;
  16000. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16001. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16002. ne[j] = ne_cur;
  16003. nb[j] = nb_cur;
  16004. }
  16005. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16006. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16007. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16008. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16009. // parse args
  16010. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16011. const int32_t arg_idx = ptr_arg_idx[j];
  16012. if (arg_idx == -1) {
  16013. continue;
  16014. }
  16015. if (arg_idx < result->n_leafs) {
  16016. args[j] = result->leafs[arg_idx];
  16017. } else {
  16018. args[j] = result->nodes[arg_idx - result->n_leafs];
  16019. }
  16020. }
  16021. // create the tensor
  16022. // "view" operations are handled differently
  16023. // TODO: handle inplace ops - currently a copy is always made
  16024. struct ggml_tensor * tensor = NULL;
  16025. switch (eop) {
  16026. // TODO: implement other view ops
  16027. case GGML_OP_RESHAPE:
  16028. {
  16029. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16030. } break;
  16031. case GGML_OP_VIEW:
  16032. {
  16033. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16034. size_t offs;
  16035. memcpy(&offs, ptr_op_params, sizeof(offs));
  16036. tensor->data = ((char *) tensor->data) + offs;
  16037. } break;
  16038. case GGML_OP_TRANSPOSE:
  16039. {
  16040. tensor = ggml_transpose(*ctx_eval, args[0]);
  16041. } break;
  16042. case GGML_OP_PERMUTE:
  16043. {
  16044. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16045. } break;
  16046. default:
  16047. {
  16048. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16049. tensor->op = eop;
  16050. } break;
  16051. }
  16052. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16053. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16054. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16055. tensor->nb[j] = nb[j];
  16056. }
  16057. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16058. tensor->src[j] = args[j];
  16059. }
  16060. result->nodes[i] = tensor;
  16061. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16062. }
  16063. }
  16064. }
  16065. return result;
  16066. }
  16067. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16068. GGML_PRINT("=== GRAPH ===\n");
  16069. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16070. for (int i = 0; i < cgraph->n_nodes; i++) {
  16071. struct ggml_tensor * node = cgraph->nodes[i];
  16072. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  16073. i,
  16074. node->ne[0], node->ne[1], node->ne[2],
  16075. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  16076. }
  16077. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16078. for (int i = 0; i < cgraph->n_leafs; i++) {
  16079. struct ggml_tensor * node = cgraph->leafs[i];
  16080. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16081. i,
  16082. node->ne[0], node->ne[1],
  16083. ggml_op_name(node->op),
  16084. ggml_get_name(node));
  16085. }
  16086. GGML_PRINT("========================================\n");
  16087. }
  16088. // check if node is part of the graph
  16089. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16090. if (cgraph == NULL) {
  16091. return true;
  16092. }
  16093. for (int i = 0; i < cgraph->n_nodes; i++) {
  16094. if (cgraph->nodes[i] == node) {
  16095. return true;
  16096. }
  16097. }
  16098. return false;
  16099. }
  16100. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16101. for (int i = 0; i < cgraph->n_nodes; i++) {
  16102. struct ggml_tensor * parent = cgraph->nodes[i];
  16103. if (parent->grad == node) {
  16104. return parent;
  16105. }
  16106. }
  16107. return NULL;
  16108. }
  16109. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16110. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16111. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16112. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16113. gparent0 ? (void *) gparent0 : (void *) parent,
  16114. gparent0 ? "g" : "x",
  16115. gparent ? (void *) gparent : (void *) node,
  16116. gparent ? "g" : "x",
  16117. gparent ? "empty" : "vee",
  16118. gparent ? "dashed" : "solid",
  16119. label);
  16120. }
  16121. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16122. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16123. (void *) parent, "x",
  16124. (void *) node, "x",
  16125. label);
  16126. }
  16127. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16128. char color[16];
  16129. FILE * fp = ggml_fopen(filename, "w");
  16130. GGML_ASSERT(fp);
  16131. fprintf(fp, "digraph G {\n");
  16132. fprintf(fp, " newrank = true;\n");
  16133. fprintf(fp, " rankdir = TB;\n");
  16134. for (int i = 0; i < gb->n_nodes; i++) {
  16135. struct ggml_tensor * node = gb->nodes[i];
  16136. if (ggml_graph_get_parent(gb, node) != NULL) {
  16137. continue;
  16138. }
  16139. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16140. snprintf(color, sizeof(color), "yellow");
  16141. } else if (node->grad) {
  16142. if (ggml_graph_find(gf, node)) {
  16143. snprintf(color, sizeof(color), "green");
  16144. } else {
  16145. snprintf(color, sizeof(color), "lightblue");
  16146. }
  16147. } else {
  16148. snprintf(color, sizeof(color), "white");
  16149. }
  16150. fprintf(fp, " \"%p\" [ "
  16151. "style = filled; fillcolor = %s; shape = record; "
  16152. "label=\"",
  16153. (void *) node, color);
  16154. if (strlen(node->name) > 0) {
  16155. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16156. } else {
  16157. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16158. }
  16159. if (ggml_is_matrix(node)) {
  16160. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16161. } else {
  16162. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16163. }
  16164. if (node->grad) {
  16165. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16166. } else {
  16167. fprintf(fp, "\"; ]\n");
  16168. }
  16169. }
  16170. for (int i = 0; i < gb->n_leafs; i++) {
  16171. struct ggml_tensor * node = gb->leafs[i];
  16172. snprintf(color, sizeof(color), "pink");
  16173. fprintf(fp, " \"%p\" [ "
  16174. "style = filled; fillcolor = %s; shape = record; "
  16175. "label=\"<x>",
  16176. (void *) node, color);
  16177. if (strlen(node->name) > 0) {
  16178. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16179. } else {
  16180. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16181. }
  16182. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16183. if (ggml_nelements(node) < 5 && node->data != NULL) {
  16184. fprintf(fp, " | (");
  16185. for (int j = 0; j < ggml_nelements(node); j++) {
  16186. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16187. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16188. }
  16189. else if (node->type == GGML_TYPE_F32 ||
  16190. node->type == GGML_TYPE_F16 ||
  16191. node->type == GGML_TYPE_BF16) {
  16192. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16193. }
  16194. else {
  16195. fprintf(fp, "#");
  16196. }
  16197. if (j < ggml_nelements(node) - 1) {
  16198. fprintf(fp, ", ");
  16199. }
  16200. }
  16201. fprintf(fp, ")");
  16202. }
  16203. fprintf(fp, "\"; ]\n");
  16204. }
  16205. for (int i = 0; i < gb->n_nodes; i++) {
  16206. struct ggml_tensor * node = gb->nodes[i];
  16207. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16208. if (node->src[j]) {
  16209. char label[16];
  16210. snprintf(label, sizeof(label), "src %d", j);
  16211. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16212. }
  16213. }
  16214. }
  16215. for (int i = 0; i < gb->n_leafs; i++) {
  16216. struct ggml_tensor * node = gb->leafs[i];
  16217. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16218. if (node->src[j]) {
  16219. char label[16];
  16220. snprintf(label, sizeof(label), "src %d", j);
  16221. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16222. }
  16223. }
  16224. }
  16225. fprintf(fp, "}\n");
  16226. fclose(fp);
  16227. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16228. }
  16229. ////////////////////////////////////////////////////////////////////////////////
  16230. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16231. int i = 0;
  16232. for (int p = 0; p < np; ++p) {
  16233. const int64_t ne = ggml_nelements(ps[p]) ;
  16234. // TODO: add function to set tensor from array
  16235. for (int64_t j = 0; j < ne; ++j) {
  16236. ggml_set_f32_1d(ps[p], j, x[i++]);
  16237. }
  16238. }
  16239. }
  16240. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16241. int i = 0;
  16242. for (int p = 0; p < np; ++p) {
  16243. const int64_t ne = ggml_nelements(ps[p]) ;
  16244. // TODO: add function to get all elements at once
  16245. for (int64_t j = 0; j < ne; ++j) {
  16246. x[i++] = ggml_get_f32_1d(ps[p], j);
  16247. }
  16248. }
  16249. }
  16250. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16251. int64_t i = 0;
  16252. for (int p = 0; p < np; ++p) {
  16253. const int64_t ne = ggml_nelements(ps[p]) ;
  16254. // TODO: add function to get all elements at once
  16255. for (int64_t j = 0; j < ne; ++j) {
  16256. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16257. }
  16258. }
  16259. }
  16260. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16261. int64_t i = 0;
  16262. for (int p = 0; p < np; ++p) {
  16263. const int64_t ne = ggml_nelements(ps[p]) ;
  16264. // TODO: add function to get all elements at once
  16265. for (int64_t j = 0; j < ne; ++j) {
  16266. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16267. }
  16268. }
  16269. }
  16270. //
  16271. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16272. //
  16273. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16274. //
  16275. static enum ggml_opt_result ggml_opt_adam(
  16276. struct ggml_context * ctx,
  16277. struct ggml_opt_context * opt,
  16278. struct ggml_opt_params params,
  16279. struct ggml_tensor * f,
  16280. struct ggml_cgraph * gf,
  16281. struct ggml_cgraph * gb,
  16282. ggml_opt_callback callback,
  16283. void * callback_data) {
  16284. GGML_ASSERT(ggml_is_scalar(f));
  16285. // these will store the parameters we want to optimize
  16286. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16287. int np = 0;
  16288. int64_t nx = 0;
  16289. for (int i = 0; i < gf->n_nodes; ++i) {
  16290. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16291. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16292. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16293. ps[np++] = gf->nodes[i];
  16294. nx += ggml_nelements(gf->nodes[i]);
  16295. }
  16296. }
  16297. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16298. int iter = opt->iter;
  16299. ggml_opt_init(opt->ctx, opt, params, nx);
  16300. opt->iter = iter;
  16301. }
  16302. // constants
  16303. float sched = params.adam.sched;
  16304. const float alpha = params.adam.alpha;
  16305. const float decay = params.adam.decay * alpha;
  16306. const float beta1 = params.adam.beta1;
  16307. const float beta2 = params.adam.beta2;
  16308. const float eps = params.adam.eps;
  16309. const float gclip = params.adam.gclip;
  16310. const int decay_min_ndim = params.adam.decay_min_ndim;
  16311. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16312. const float accum_norm = 1.0f / (float) n_accum;
  16313. float * g = opt->adam.g->data; // gradients
  16314. float * m = opt->adam.m->data; // first moment
  16315. float * v = opt->adam.v->data; // second moment
  16316. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16317. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16318. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16319. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16320. bool cancel = false;
  16321. // compute the function value
  16322. float fx = 0;
  16323. ggml_set_zero(opt->adam.g);
  16324. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16325. if (callback) {
  16326. callback(callback_data, accum_step, &sched, &cancel);
  16327. if (cancel) {
  16328. return GGML_OPT_RESULT_CANCEL;
  16329. }
  16330. }
  16331. // ggml_graph_reset (gf);
  16332. ggml_set_f32 (f->grad, 1.0f);
  16333. ggml_graph_compute(gb, &cplan);
  16334. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16335. fx += ggml_get_f32_1d(f, 0);
  16336. }
  16337. fx *= accum_norm;
  16338. opt->adam.fx_prev = fx;
  16339. opt->adam.fx_best = opt->adam.fx_prev;
  16340. if (pf) {
  16341. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16342. }
  16343. opt->loss_before = opt->adam.fx_prev;
  16344. opt->loss_after = opt->adam.fx_prev;
  16345. // initialize
  16346. if (opt->just_initialized) {
  16347. opt->adam.n_no_improvement = 0;
  16348. opt->just_initialized = false;
  16349. }
  16350. float * fx_best = &opt->adam.fx_best;
  16351. float * fx_prev = &opt->adam.fx_prev;
  16352. int * n_no_improvement = &opt->adam.n_no_improvement;
  16353. int iter0 = opt->iter;
  16354. // run the optimizer
  16355. for (int t = 0; t < params.adam.n_iter; ++t) {
  16356. opt->iter = iter0 + t + 1;
  16357. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16358. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16359. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16360. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16361. for (int i = 0; i < np; ++i) {
  16362. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16363. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16364. }
  16365. const int64_t t_start_wall = ggml_time_us();
  16366. const int64_t t_start_cpu = ggml_cycles();
  16367. UNUSED(t_start_wall);
  16368. UNUSED(t_start_cpu);
  16369. {
  16370. float gnorm = 1.0f;
  16371. if (gclip > 0.0f) {
  16372. // gradient clipping
  16373. ggml_float sum = 0.0;
  16374. for (int64_t i = 0; i < nx; ++i) {
  16375. sum += (ggml_float)(g[i]*g[i]);
  16376. }
  16377. ggml_float norm = sqrt(sum);
  16378. if (norm > (ggml_float) gclip) {
  16379. gnorm = (float) ((ggml_float) gclip / norm);
  16380. }
  16381. }
  16382. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16383. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16384. int64_t i = 0;
  16385. for (int p = 0; p < np; ++p) {
  16386. const int64_t ne = ggml_nelements(ps[p]);
  16387. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16388. for (int64_t j = 0; j < ne; ++j) {
  16389. float x = ggml_get_f32_1d(ps[p], j);
  16390. float g_ = g[i]*gnorm;
  16391. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16392. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16393. float mh = m[i]*beta1h;
  16394. float vh = v[i]*beta2h;
  16395. vh = sqrtf(vh) + eps;
  16396. x = x*(1.0f - p_decay) - mh/vh;
  16397. ggml_set_f32_1d(ps[p], j, x);
  16398. ++i;
  16399. }
  16400. }
  16401. }
  16402. fx = 0;
  16403. ggml_set_zero(opt->adam.g);
  16404. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16405. if (callback) {
  16406. callback(callback_data, accum_step, &sched, &cancel);
  16407. if (cancel) {
  16408. return GGML_OPT_RESULT_CANCEL;;
  16409. }
  16410. }
  16411. // ggml_graph_reset (gf);
  16412. ggml_set_f32 (f->grad, 1.0f);
  16413. ggml_graph_compute(gb, &cplan);
  16414. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16415. fx += ggml_get_f32_1d(f, 0);
  16416. }
  16417. fx *= accum_norm;
  16418. opt->loss_after = fx;
  16419. // check convergence
  16420. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16421. GGML_PRINT_DEBUG("converged\n");
  16422. return GGML_OPT_RESULT_OK;
  16423. }
  16424. // delta-based convergence test
  16425. if (pf != NULL) {
  16426. // need at least params.past iterations to start checking for convergence
  16427. if (params.past <= iter0 + t) {
  16428. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16429. if (fabsf(rate) < params.delta) {
  16430. return GGML_OPT_RESULT_OK;
  16431. }
  16432. }
  16433. pf[(iter0 + t)%params.past] = fx;
  16434. }
  16435. // check for improvement
  16436. if (params.max_no_improvement > 0) {
  16437. if (fx_best[0] > fx) {
  16438. fx_best[0] = fx;
  16439. n_no_improvement[0] = 0;
  16440. } else {
  16441. ++n_no_improvement[0];
  16442. if (n_no_improvement[0] >= params.max_no_improvement) {
  16443. return GGML_OPT_RESULT_OK;
  16444. }
  16445. }
  16446. }
  16447. fx_prev[0] = fx;
  16448. {
  16449. const int64_t t_end_cpu = ggml_cycles();
  16450. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16451. UNUSED(t_end_cpu);
  16452. const int64_t t_end_wall = ggml_time_us();
  16453. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16454. UNUSED(t_end_wall);
  16455. }
  16456. }
  16457. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16458. }
  16459. //
  16460. // L-BFGS
  16461. //
  16462. // the L-BFGS implementation below is based on the following implementation:
  16463. //
  16464. // https://github.com/chokkan/liblbfgs
  16465. //
  16466. struct ggml_lbfgs_iteration_data {
  16467. float alpha;
  16468. float ys;
  16469. float * s;
  16470. float * y;
  16471. };
  16472. static enum ggml_opt_result linesearch_backtracking(
  16473. const struct ggml_opt_params * params,
  16474. int nx,
  16475. float * x,
  16476. float * fx,
  16477. float * g,
  16478. float * d,
  16479. float * step,
  16480. const float * xp,
  16481. struct ggml_tensor * f,
  16482. struct ggml_cgraph * gb,
  16483. struct ggml_cplan * cplan,
  16484. const int np,
  16485. struct ggml_tensor * ps[],
  16486. bool * cancel,
  16487. ggml_opt_callback callback,
  16488. void * callback_data) {
  16489. int count = 0;
  16490. float width = 0.0f;
  16491. float dg = 0.0f;
  16492. float finit = 0.0f;
  16493. float dginit = 0.0f;
  16494. float dgtest = 0.0f;
  16495. const float dec = 0.5f;
  16496. const float inc = 2.1f;
  16497. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16498. const float accum_norm = 1.0f / (float) n_accum;
  16499. if (*step <= 0.f) {
  16500. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16501. }
  16502. // compute the initial gradient in the search direction
  16503. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16504. // make sure that d points to a descent direction
  16505. if (0 < dginit) {
  16506. return GGML_LINESEARCH_FAIL;
  16507. }
  16508. // initialize local variables
  16509. finit = *fx;
  16510. dgtest = params->lbfgs.ftol*dginit;
  16511. while (true) {
  16512. ggml_vec_cpy_f32(nx, x, xp);
  16513. ggml_vec_mad_f32(nx, x, d, *step);
  16514. // evaluate the function and gradient values
  16515. {
  16516. ggml_opt_set_params(np, ps, x);
  16517. *fx = 0;
  16518. memset(g, 0, sizeof(float)*nx);
  16519. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16520. if (callback) {
  16521. // LBFG-S does not support learning rate -> ignore learning schedule
  16522. float sched = 0;
  16523. callback(callback_data, accum_step, &sched, cancel);
  16524. if (*cancel) {
  16525. return GGML_OPT_RESULT_CANCEL;
  16526. }
  16527. }
  16528. // ggml_graph_reset (gf);
  16529. ggml_set_f32 (f->grad, 1.0f);
  16530. ggml_graph_compute(gb, cplan);
  16531. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16532. *fx += ggml_get_f32_1d(f, 0);
  16533. }
  16534. *fx *= accum_norm;
  16535. }
  16536. ++count;
  16537. if (*fx > finit + (*step)*dgtest) {
  16538. width = dec;
  16539. } else {
  16540. // Armijo condition is satisfied
  16541. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16542. return count;
  16543. }
  16544. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16545. // check the Wolfe condition
  16546. if (dg < params->lbfgs.wolfe * dginit) {
  16547. width = inc;
  16548. } else {
  16549. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16550. // regular Wolfe conditions
  16551. return count;
  16552. }
  16553. if(dg > -params->lbfgs.wolfe*dginit) {
  16554. width = dec;
  16555. } else {
  16556. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16557. return count;
  16558. }
  16559. }
  16560. }
  16561. if (*step < params->lbfgs.min_step) {
  16562. return GGML_LINESEARCH_MINIMUM_STEP;
  16563. }
  16564. if (*step > params->lbfgs.max_step) {
  16565. return GGML_LINESEARCH_MAXIMUM_STEP;
  16566. }
  16567. if (params->lbfgs.max_linesearch <= count) {
  16568. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16569. }
  16570. (*step) *= width;
  16571. }
  16572. GGML_ABORT("line search failed");
  16573. //return GGML_LINESEARCH_FAIL;
  16574. }
  16575. static enum ggml_opt_result ggml_opt_lbfgs(
  16576. struct ggml_context * ctx,
  16577. struct ggml_opt_context * opt,
  16578. struct ggml_opt_params params,
  16579. struct ggml_tensor * f,
  16580. struct ggml_cgraph * gf,
  16581. struct ggml_cgraph * gb,
  16582. ggml_opt_callback callback,
  16583. void * callback_data) {
  16584. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16585. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16586. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16587. return GGML_OPT_RESULT_INVALID_WOLFE;
  16588. }
  16589. }
  16590. const int m = params.lbfgs.m;
  16591. // these will store the parameters we want to optimize
  16592. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16593. int np = 0;
  16594. int nx = 0;
  16595. for (int i = 0; i < gf->n_nodes; ++i) {
  16596. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16597. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16598. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16599. ps[np++] = gf->nodes[i];
  16600. nx += ggml_nelements(gf->nodes[i]);
  16601. }
  16602. }
  16603. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16604. int iter = opt->iter;
  16605. ggml_opt_init(ctx, opt, params, nx);
  16606. opt->iter = iter;
  16607. }
  16608. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16609. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16610. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16611. float * x = opt->lbfgs.x->data; // current parameters
  16612. float * xp = opt->lbfgs.xp->data; // previous parameters
  16613. float * g = opt->lbfgs.g->data; // current gradient
  16614. float * gp = opt->lbfgs.gp->data; // previous gradient
  16615. float * d = opt->lbfgs.d->data; // search direction
  16616. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16617. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16618. const float accum_norm = 1.0f / (float) n_accum;
  16619. float fx = 0.0f; // cost function value
  16620. float xnorm = 0.0f; // ||x||
  16621. float gnorm = 0.0f; // ||g||
  16622. // initialize x from the graph nodes
  16623. ggml_opt_get_params(np, ps, x);
  16624. // the L-BFGS memory
  16625. float * lm_alpha = opt->lbfgs.lmal->data;
  16626. float * lm_ys = opt->lbfgs.lmys->data;
  16627. float * lm_s = opt->lbfgs.lms->data;
  16628. float * lm_y = opt->lbfgs.lmy->data;
  16629. bool cancel = false;
  16630. // evaluate the function value and its gradient
  16631. {
  16632. ggml_opt_set_params(np, ps, x);
  16633. fx = 0;
  16634. memset(g, 0, sizeof(float)*nx);
  16635. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16636. if (callback) {
  16637. // LBFG-S does not support learning rate -> ignore learning schedule
  16638. float sched = 0;
  16639. callback(callback_data, accum_step, &sched, &cancel);
  16640. if (cancel) {
  16641. return GGML_OPT_RESULT_CANCEL;
  16642. }
  16643. }
  16644. // ggml_graph_reset (gf);
  16645. ggml_set_f32 (f->grad, 1.0f);
  16646. ggml_graph_compute(gb, &cplan);
  16647. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16648. fx += ggml_get_f32_1d(f, 0);
  16649. }
  16650. fx *= accum_norm;
  16651. opt->loss_before = fx;
  16652. opt->loss_after = fx;
  16653. }
  16654. // search direction = -gradient
  16655. ggml_vec_neg_f32(nx, d, g);
  16656. // ||x||, ||g||
  16657. ggml_vec_norm_f32(nx, &xnorm, x);
  16658. ggml_vec_norm_f32(nx, &gnorm, g);
  16659. if (xnorm < 1.0f) {
  16660. xnorm = 1.0f;
  16661. }
  16662. // already optimized
  16663. if (gnorm/xnorm <= params.lbfgs.eps) {
  16664. return GGML_OPT_RESULT_OK;
  16665. }
  16666. if (opt->just_initialized) {
  16667. if (pf) {
  16668. pf[0] = fx;
  16669. }
  16670. opt->lbfgs.fx_best = fx;
  16671. // initial step
  16672. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16673. opt->lbfgs.j = 0;
  16674. opt->lbfgs.k = 1;
  16675. opt->lbfgs.end = 0;
  16676. opt->lbfgs.n_no_improvement = 0;
  16677. opt->just_initialized = false;
  16678. }
  16679. float * fx_best = &opt->lbfgs.fx_best;
  16680. float * step = &opt->lbfgs.step;
  16681. int * j = &opt->lbfgs.j;
  16682. int * k = &opt->lbfgs.k;
  16683. int * end = &opt->lbfgs.end;
  16684. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16685. int ls = 0;
  16686. int bound = 0;
  16687. float ys = 0.0f;
  16688. float yy = 0.0f;
  16689. float beta = 0.0f;
  16690. int it = 0;
  16691. while (true) {
  16692. // store the current position and gradient vectors
  16693. ggml_vec_cpy_f32(nx, xp, x);
  16694. ggml_vec_cpy_f32(nx, gp, g);
  16695. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16696. // to determine if the optimization should be cancelled
  16697. // this is a simple change, but not doing this atm, since I don't have a nice
  16698. // way to test and don't want to break something with so many changes lined up
  16699. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16700. if (cancel) {
  16701. return GGML_OPT_RESULT_CANCEL;
  16702. }
  16703. if (ls < 0) {
  16704. // linesearch failed - go back to the previous point and return
  16705. ggml_vec_cpy_f32(nx, x, xp);
  16706. ggml_vec_cpy_f32(nx, g, gp);
  16707. return ls;
  16708. }
  16709. opt->loss_after = fx;
  16710. ggml_vec_norm_f32(nx, &xnorm, x);
  16711. ggml_vec_norm_f32(nx, &gnorm, g);
  16712. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16713. if (xnorm < 1.0f) {
  16714. xnorm = 1.0f;
  16715. }
  16716. if (gnorm/xnorm <= params.lbfgs.eps) {
  16717. // converged
  16718. return GGML_OPT_RESULT_OK;
  16719. }
  16720. // delta-based convergence test
  16721. if (pf != NULL) {
  16722. // need at least params.past iterations to start checking for convergence
  16723. if (params.past <= k[0]) {
  16724. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16725. if (fabsf(rate) < params.delta) {
  16726. return GGML_OPT_RESULT_OK;
  16727. }
  16728. }
  16729. pf[k[0]%params.past] = fx;
  16730. }
  16731. // check for improvement
  16732. if (params.max_no_improvement > 0) {
  16733. if (fx < fx_best[0]) {
  16734. fx_best[0] = fx;
  16735. n_no_improvement[0] = 0;
  16736. } else {
  16737. n_no_improvement[0]++;
  16738. if (n_no_improvement[0] >= params.max_no_improvement) {
  16739. return GGML_OPT_RESULT_OK;
  16740. }
  16741. }
  16742. }
  16743. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16744. // reached the maximum number of iterations
  16745. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16746. }
  16747. // update vectors s and y:
  16748. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16749. // y_{k+1} = g_{k+1} - g_{k}.
  16750. //
  16751. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16752. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16753. // compute scalars ys and yy:
  16754. // ys = y^t \cdot s -> 1 / \rho.
  16755. // yy = y^t \cdot y.
  16756. //
  16757. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16758. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16759. lm_ys[end[0]] = ys;
  16760. // find new search direction
  16761. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16762. bound = (m <= k[0]) ? m : k[0];
  16763. k[0]++;
  16764. it++;
  16765. end[0] = (end[0] + 1)%m;
  16766. // initialize search direction with -g
  16767. ggml_vec_neg_f32(nx, d, g);
  16768. j[0] = end[0];
  16769. for (int i = 0; i < bound; ++i) {
  16770. j[0] = (j[0] + m - 1) % m;
  16771. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16772. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16773. lm_alpha[j[0]] /= lm_ys[j[0]];
  16774. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16775. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16776. }
  16777. ggml_vec_scale_f32(nx, d, ys/yy);
  16778. for (int i = 0; i < bound; ++i) {
  16779. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16780. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16781. beta /= lm_ys[j[0]];
  16782. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16783. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16784. j[0] = (j[0] + 1)%m;
  16785. }
  16786. step[0] = 1.0;
  16787. }
  16788. GGML_ABORT("lbfgs failed");
  16789. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16790. }
  16791. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16792. struct ggml_opt_params result;
  16793. switch (type) {
  16794. case GGML_OPT_TYPE_ADAM:
  16795. {
  16796. result = (struct ggml_opt_params) {
  16797. .type = GGML_OPT_TYPE_ADAM,
  16798. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16799. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16800. .past = 0,
  16801. .delta = 1e-5f,
  16802. .max_no_improvement = 100,
  16803. .print_forward_graph = true,
  16804. .print_backward_graph = true,
  16805. .n_gradient_accumulation = 1,
  16806. .adam = {
  16807. .n_iter = 10000,
  16808. .sched = 1.000f,
  16809. .decay = 0.0f,
  16810. .decay_min_ndim = 2,
  16811. .alpha = 0.001f,
  16812. .beta1 = 0.9f,
  16813. .beta2 = 0.999f,
  16814. .eps = 1e-8f,
  16815. .eps_f = 1e-5f,
  16816. .eps_g = 1e-3f,
  16817. .gclip = 0.0f,
  16818. },
  16819. };
  16820. } break;
  16821. case GGML_OPT_TYPE_LBFGS:
  16822. {
  16823. result = (struct ggml_opt_params) {
  16824. .type = GGML_OPT_TYPE_LBFGS,
  16825. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16826. .n_threads = 1,
  16827. .past = 0,
  16828. .delta = 1e-5f,
  16829. .max_no_improvement = 0,
  16830. .print_forward_graph = true,
  16831. .print_backward_graph = true,
  16832. .n_gradient_accumulation = 1,
  16833. .lbfgs = {
  16834. .m = 6,
  16835. .n_iter = 100,
  16836. .max_linesearch = 20,
  16837. .eps = 1e-5f,
  16838. .ftol = 1e-4f,
  16839. .wolfe = 0.9f,
  16840. .min_step = 1e-20f,
  16841. .max_step = 1e+20f,
  16842. .linesearch = GGML_LINESEARCH_DEFAULT,
  16843. },
  16844. };
  16845. } break;
  16846. }
  16847. return result;
  16848. }
  16849. GGML_API void ggml_opt_init(
  16850. struct ggml_context * ctx,
  16851. struct ggml_opt_context * opt,
  16852. struct ggml_opt_params params,
  16853. int64_t nx) {
  16854. opt->ctx = ctx;
  16855. opt->params = params;
  16856. opt->iter = 0;
  16857. opt->nx = nx;
  16858. opt->just_initialized = true;
  16859. if (opt->ctx == NULL) {
  16860. struct ggml_init_params ctx_opt_params;
  16861. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16862. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16863. if (opt->params.past > 0) {
  16864. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16865. }
  16866. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16867. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16868. if (opt->params.past > 0) {
  16869. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16870. }
  16871. }
  16872. ctx_opt_params.mem_buffer = NULL;
  16873. ctx_opt_params.no_alloc = false;
  16874. opt->ctx = ggml_init(ctx_opt_params);
  16875. }
  16876. switch (opt->params.type) {
  16877. case GGML_OPT_TYPE_ADAM:
  16878. {
  16879. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16880. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16881. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16882. opt->adam.pf = params.past > 0
  16883. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16884. : NULL;
  16885. ggml_set_zero(opt->adam.m);
  16886. ggml_set_zero(opt->adam.v);
  16887. if (opt->adam.pf) {
  16888. ggml_set_zero(opt->adam.pf);
  16889. }
  16890. } break;
  16891. case GGML_OPT_TYPE_LBFGS:
  16892. {
  16893. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16894. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16895. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16896. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16897. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16898. opt->lbfgs.pf = params.past > 0
  16899. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16900. : NULL;
  16901. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16902. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16903. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16904. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16905. ggml_set_zero(opt->lbfgs.x);
  16906. ggml_set_zero(opt->lbfgs.xp);
  16907. ggml_set_zero(opt->lbfgs.g);
  16908. ggml_set_zero(opt->lbfgs.gp);
  16909. ggml_set_zero(opt->lbfgs.d);
  16910. if (opt->lbfgs.pf) {
  16911. ggml_set_zero(opt->lbfgs.pf);
  16912. }
  16913. ggml_set_zero(opt->lbfgs.lmal);
  16914. ggml_set_zero(opt->lbfgs.lmys);
  16915. ggml_set_zero(opt->lbfgs.lms);
  16916. ggml_set_zero(opt->lbfgs.lmy);
  16917. } break;
  16918. }
  16919. }
  16920. enum ggml_opt_result ggml_opt(
  16921. struct ggml_context * ctx,
  16922. struct ggml_opt_params params,
  16923. struct ggml_tensor * f) {
  16924. bool free_ctx = false;
  16925. if (ctx == NULL) {
  16926. struct ggml_init_params params_ctx = {
  16927. .mem_size = 16*1024*1024,
  16928. .mem_buffer = NULL,
  16929. .no_alloc = false,
  16930. };
  16931. ctx = ggml_init(params_ctx);
  16932. if (ctx == NULL) {
  16933. return GGML_OPT_RESULT_NO_CONTEXT;
  16934. }
  16935. free_ctx = true;
  16936. }
  16937. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16938. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16939. ggml_opt_init(ctx, opt, params, 0);
  16940. result = ggml_opt_resume(ctx, opt, f);
  16941. if (free_ctx) {
  16942. ggml_free(ctx);
  16943. }
  16944. return result;
  16945. }
  16946. enum ggml_opt_result ggml_opt_resume(
  16947. struct ggml_context * ctx,
  16948. struct ggml_opt_context * opt,
  16949. struct ggml_tensor * f) {
  16950. // build forward + backward compute graphs
  16951. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16952. ggml_build_forward_expand(gf, f);
  16953. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16954. ggml_build_backward_expand(ctx, gf, gb, true);
  16955. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16956. }
  16957. enum ggml_opt_result ggml_opt_resume_g(
  16958. struct ggml_context * ctx,
  16959. struct ggml_opt_context * opt,
  16960. struct ggml_tensor * f,
  16961. struct ggml_cgraph * gf,
  16962. struct ggml_cgraph * gb,
  16963. ggml_opt_callback callback,
  16964. void * callback_data) {
  16965. // build forward + backward compute graphs
  16966. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16967. switch (opt->params.type) {
  16968. case GGML_OPT_TYPE_ADAM:
  16969. {
  16970. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16971. } break;
  16972. case GGML_OPT_TYPE_LBFGS:
  16973. {
  16974. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16975. } break;
  16976. }
  16977. if (opt->params.print_forward_graph) {
  16978. ggml_graph_print (gf);
  16979. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16980. }
  16981. if (opt->params.print_backward_graph) {
  16982. ggml_graph_print (gb);
  16983. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16984. }
  16985. return result;
  16986. }
  16987. ////////////////////////////////////////////////////////////////////////////////
  16988. void ggml_set_input(struct ggml_tensor * tensor) {
  16989. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16990. }
  16991. void ggml_set_output(struct ggml_tensor * tensor) {
  16992. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16993. }
  16994. ////////////////////////////////////////////////////////////////////////////////
  16995. void ggml_quantize_init(enum ggml_type type) {
  16996. ggml_critical_section_start();
  16997. switch (type) {
  16998. case GGML_TYPE_IQ2_XXS:
  16999. case GGML_TYPE_IQ2_XS:
  17000. case GGML_TYPE_IQ2_S:
  17001. case GGML_TYPE_IQ1_S:
  17002. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17003. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17004. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17005. default: // nothing
  17006. break;
  17007. }
  17008. ggml_critical_section_end();
  17009. }
  17010. void ggml_quantize_free(void) {
  17011. ggml_critical_section_start();
  17012. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17013. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17014. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17015. iq3xs_free_impl(256);
  17016. ggml_critical_section_end();
  17017. }
  17018. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17019. return
  17020. type == GGML_TYPE_IQ2_XXS ||
  17021. type == GGML_TYPE_IQ2_XS ||
  17022. type == GGML_TYPE_IQ1_S;// ||
  17023. //type == GGML_TYPE_IQ1_M;
  17024. }
  17025. size_t ggml_quantize_chunk(
  17026. enum ggml_type type,
  17027. const float * src,
  17028. void * dst,
  17029. int64_t start,
  17030. int64_t nrows,
  17031. int64_t n_per_row,
  17032. const float * imatrix) {
  17033. const int64_t n = (int64_t) nrows * n_per_row;
  17034. if (ggml_quantize_requires_imatrix(type)) {
  17035. GGML_ASSERT(imatrix != NULL);
  17036. }
  17037. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17038. GGML_ASSERT(start % n_per_row == 0);
  17039. ggml_quantize_init(type); // this is noop if already initialized
  17040. const size_t start_row = start / n_per_row;
  17041. const size_t row_size = ggml_row_size(type, n_per_row);
  17042. size_t result = 0;
  17043. switch (type) {
  17044. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17045. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17046. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17047. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17048. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17049. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17050. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17051. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17052. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17053. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17054. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17055. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17056. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17057. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17058. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17059. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17060. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17061. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17062. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17063. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17064. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17065. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17066. case GGML_TYPE_F16:
  17067. {
  17068. size_t elemsize = sizeof(ggml_fp16_t);
  17069. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17070. result = n * elemsize;
  17071. } break;
  17072. case GGML_TYPE_BF16:
  17073. {
  17074. size_t elemsize = sizeof(ggml_bf16_t);
  17075. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  17076. result = n * elemsize;
  17077. } break;
  17078. case GGML_TYPE_F32:
  17079. {
  17080. size_t elemsize = sizeof(float);
  17081. result = n * elemsize;
  17082. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17083. } break;
  17084. default:
  17085. assert(false);
  17086. }
  17087. GGML_ASSERT(result == nrows * row_size);
  17088. return result;
  17089. }
  17090. ////////////////////////////////////////////////////////////////////////////////
  17091. struct gguf_str {
  17092. uint64_t n; // GGUFv2
  17093. char * data;
  17094. };
  17095. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17096. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17097. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17098. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17099. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17100. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17101. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17102. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17103. [GGUF_TYPE_BOOL] = sizeof(bool),
  17104. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17105. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17106. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17107. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17108. [GGUF_TYPE_ARRAY] = 0, // undefined
  17109. };
  17110. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17111. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17112. [GGUF_TYPE_UINT8] = "u8",
  17113. [GGUF_TYPE_INT8] = "i8",
  17114. [GGUF_TYPE_UINT16] = "u16",
  17115. [GGUF_TYPE_INT16] = "i16",
  17116. [GGUF_TYPE_UINT32] = "u32",
  17117. [GGUF_TYPE_INT32] = "i32",
  17118. [GGUF_TYPE_FLOAT32] = "f32",
  17119. [GGUF_TYPE_BOOL] = "bool",
  17120. [GGUF_TYPE_STRING] = "str",
  17121. [GGUF_TYPE_ARRAY] = "arr",
  17122. [GGUF_TYPE_UINT64] = "u64",
  17123. [GGUF_TYPE_INT64] = "i64",
  17124. [GGUF_TYPE_FLOAT64] = "f64",
  17125. };
  17126. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17127. union gguf_value {
  17128. uint8_t uint8;
  17129. int8_t int8;
  17130. uint16_t uint16;
  17131. int16_t int16;
  17132. uint32_t uint32;
  17133. int32_t int32;
  17134. float float32;
  17135. uint64_t uint64;
  17136. int64_t int64;
  17137. double float64;
  17138. bool bool_;
  17139. struct gguf_str str;
  17140. struct {
  17141. enum gguf_type type;
  17142. uint64_t n; // GGUFv2
  17143. void * data;
  17144. } arr;
  17145. };
  17146. struct gguf_kv {
  17147. struct gguf_str key;
  17148. enum gguf_type type;
  17149. union gguf_value value;
  17150. };
  17151. struct gguf_header {
  17152. char magic[4];
  17153. uint32_t version;
  17154. uint64_t n_tensors; // GGUFv2
  17155. uint64_t n_kv; // GGUFv2
  17156. };
  17157. struct gguf_tensor_info {
  17158. struct gguf_str name;
  17159. uint32_t n_dims;
  17160. uint64_t ne[GGML_MAX_DIMS];
  17161. enum ggml_type type;
  17162. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17163. // for writing API
  17164. const void * data;
  17165. size_t size;
  17166. };
  17167. struct gguf_context {
  17168. struct gguf_header header;
  17169. struct gguf_kv * kv;
  17170. struct gguf_tensor_info * infos;
  17171. size_t alignment;
  17172. size_t offset; // offset of `data` from beginning of file
  17173. size_t size; // size of `data` in bytes
  17174. //uint8_t * padding;
  17175. void * data;
  17176. };
  17177. static size_t gguf_type_size(enum gguf_type type) {
  17178. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17179. return GGUF_TYPE_SIZE[type];
  17180. }
  17181. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17182. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17183. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17184. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17185. GGML_ASSERT(info->ne[i] > 0);
  17186. }
  17187. // prevent overflow for total number of elements
  17188. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17189. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17190. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17191. }
  17192. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17193. const size_t n = fread(dst, 1, size, file);
  17194. *offset += n;
  17195. return n == size;
  17196. }
  17197. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17198. p->n = 0;
  17199. p->data = NULL;
  17200. bool ok = true;
  17201. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17202. // early exit if string length is invalid, prevents from integer overflow
  17203. if (p->n == SIZE_MAX) {
  17204. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17205. return false;
  17206. }
  17207. p->data = GGML_CALLOC(p->n + 1, 1);
  17208. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17209. return ok;
  17210. }
  17211. static void gguf_free_kv(struct gguf_kv * kv) {
  17212. if (kv->key.data) {
  17213. GGML_FREE(kv->key.data);
  17214. }
  17215. if (kv->type == GGUF_TYPE_STRING) {
  17216. if (kv->value.str.data) {
  17217. GGML_FREE(kv->value.str.data);
  17218. }
  17219. }
  17220. if (kv->type == GGUF_TYPE_ARRAY) {
  17221. if (kv->value.arr.data) {
  17222. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17223. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17224. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17225. if (str->data) {
  17226. GGML_FREE(str->data);
  17227. }
  17228. }
  17229. }
  17230. GGML_FREE(kv->value.arr.data);
  17231. }
  17232. }
  17233. }
  17234. struct gguf_context * gguf_init_empty(void) {
  17235. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17236. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17237. ctx->header.version = GGUF_VERSION;
  17238. ctx->header.n_tensors = 0;
  17239. ctx->header.n_kv = 0;
  17240. ctx->kv = NULL;
  17241. ctx->infos = NULL;
  17242. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17243. ctx->offset = 0;
  17244. ctx->size = 0;
  17245. ctx->data = NULL;
  17246. return ctx;
  17247. }
  17248. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17249. FILE * file = ggml_fopen(fname, "rb");
  17250. if (!file) {
  17251. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  17252. return NULL;
  17253. }
  17254. // offset from start of file
  17255. size_t offset = 0;
  17256. char magic[4];
  17257. // check the magic before making allocations
  17258. {
  17259. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17260. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17261. if (magic[i] != GGUF_MAGIC[i]) {
  17262. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17263. fclose(file);
  17264. return NULL;
  17265. }
  17266. }
  17267. }
  17268. bool ok = true;
  17269. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17270. // read the header
  17271. {
  17272. strncpy(ctx->header.magic, magic, 4);
  17273. ctx->kv = NULL;
  17274. ctx->infos = NULL;
  17275. ctx->data = NULL;
  17276. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17277. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17278. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17279. if (ctx->header.version == 1) {
  17280. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17281. fclose(file);
  17282. gguf_free(ctx);
  17283. return NULL;
  17284. }
  17285. // sanity-checks to prevent from integer/buffer overflows
  17286. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17287. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17288. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17289. if (!ok) {
  17290. fprintf(stderr, "%s: failed to read header\n", __func__);
  17291. fclose(file);
  17292. gguf_free(ctx);
  17293. return NULL;
  17294. }
  17295. }
  17296. // read the kv pairs
  17297. {
  17298. const uint64_t n_kv = ctx->header.n_kv;
  17299. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17300. ctx->header.n_kv = 0;
  17301. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17302. for (uint64_t i = 0; i < n_kv; ++i) {
  17303. struct gguf_kv * kv = &ctx->kv[i];
  17304. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17305. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17306. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17307. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17308. switch (kv->type) {
  17309. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17310. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17311. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17312. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17313. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17314. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17315. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17316. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17317. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17318. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17319. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17320. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17321. case GGUF_TYPE_ARRAY:
  17322. {
  17323. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17324. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17325. switch (kv->value.arr.type) {
  17326. case GGUF_TYPE_UINT8:
  17327. case GGUF_TYPE_INT8:
  17328. case GGUF_TYPE_UINT16:
  17329. case GGUF_TYPE_INT16:
  17330. case GGUF_TYPE_UINT32:
  17331. case GGUF_TYPE_INT32:
  17332. case GGUF_TYPE_FLOAT32:
  17333. case GGUF_TYPE_UINT64:
  17334. case GGUF_TYPE_INT64:
  17335. case GGUF_TYPE_FLOAT64:
  17336. case GGUF_TYPE_BOOL:
  17337. {
  17338. // prevent from integer overflow in the malloc below
  17339. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17340. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17341. fclose(file);
  17342. gguf_free(ctx);
  17343. return NULL;
  17344. }
  17345. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17346. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17347. } break;
  17348. case GGUF_TYPE_STRING:
  17349. {
  17350. // prevent from integer overflow in the malloc below
  17351. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17352. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17353. fclose(file);
  17354. gguf_free(ctx);
  17355. return NULL;
  17356. }
  17357. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17358. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17359. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17360. }
  17361. } break;
  17362. case GGUF_TYPE_ARRAY:
  17363. default: GGML_ABORT("invalid type");
  17364. }
  17365. } break;
  17366. default: GGML_ABORT("invalid type");
  17367. }
  17368. if (!ok) {
  17369. break;
  17370. }
  17371. ctx->header.n_kv++;
  17372. }
  17373. if (!ok) {
  17374. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17375. fclose(file);
  17376. gguf_free(ctx);
  17377. return NULL;
  17378. }
  17379. }
  17380. // read the tensor infos
  17381. if (ctx->header.n_tensors > 0) {
  17382. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17383. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17384. struct gguf_tensor_info * info = &ctx->infos[i];
  17385. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17386. info->ne[j] = 1;
  17387. }
  17388. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17389. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17390. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17391. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17392. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17393. }
  17394. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17395. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17396. // TODO: return an error instead of crashing with GGML_ASSERT
  17397. gguf_tensor_info_sanitize(info);
  17398. // make sure there is no duplicated tensor names
  17399. for (uint64_t j = 0; j < i && ok; ++j) {
  17400. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17401. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17402. ok = false;
  17403. }
  17404. }
  17405. if (!ok) {
  17406. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17407. fclose(file);
  17408. gguf_free(ctx);
  17409. return NULL;
  17410. }
  17411. }
  17412. }
  17413. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17414. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17415. if (alignment_idx != -1) {
  17416. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17417. }
  17418. // we require the data section to be aligned, so take into account any padding
  17419. {
  17420. const size_t offset_pad = offset % ctx->alignment;
  17421. if (offset_pad != 0) {
  17422. offset += ctx->alignment - offset_pad;
  17423. fseek(file, offset, SEEK_SET);
  17424. }
  17425. }
  17426. // store the current file offset - this is where the data section starts
  17427. ctx->offset = offset;
  17428. // compute the total size of the data section, taking into account the alignment
  17429. {
  17430. ctx->size = 0;
  17431. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17432. struct gguf_tensor_info * info = &ctx->infos[i];
  17433. const int64_t ne =
  17434. (int64_t) info->ne[0] *
  17435. (int64_t) info->ne[1] *
  17436. (int64_t) info->ne[2] *
  17437. (int64_t) info->ne[3];
  17438. if (ne % ggml_blck_size(info->type) != 0) {
  17439. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  17440. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17441. fclose(file);
  17442. gguf_free(ctx);
  17443. return NULL;
  17444. }
  17445. const size_t size_cur = ggml_row_size(info->type, ne);
  17446. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17447. }
  17448. }
  17449. // load the tensor data only if requested
  17450. if (params.ctx != NULL) {
  17451. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17452. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17453. // the ggml_tensor structs to the appropriate locations in the binary blob
  17454. // compute the exact size needed for the new ggml_context
  17455. const size_t mem_size =
  17456. params.no_alloc ?
  17457. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17458. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17459. struct ggml_init_params pdata = {
  17460. .mem_size = mem_size,
  17461. .mem_buffer = NULL,
  17462. .no_alloc = params.no_alloc,
  17463. };
  17464. *params.ctx = ggml_init(pdata);
  17465. if (*params.ctx == NULL) {
  17466. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  17467. fclose(file);
  17468. gguf_free(ctx);
  17469. return NULL;
  17470. }
  17471. struct ggml_context * ctx_data = *params.ctx;
  17472. struct ggml_tensor * data = NULL;
  17473. if (!params.no_alloc) {
  17474. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17475. ok = ok && data != NULL;
  17476. // read the binary blob with the tensor data
  17477. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17478. if (!ok) {
  17479. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17480. fclose(file);
  17481. ggml_free(ctx_data);
  17482. gguf_free(ctx);
  17483. return NULL;
  17484. }
  17485. ctx->data = data->data;
  17486. }
  17487. ggml_set_no_alloc(ctx_data, true);
  17488. // create the tensors
  17489. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17490. const int64_t ne[GGML_MAX_DIMS] = {
  17491. ctx->infos[i].ne[0],
  17492. ctx->infos[i].ne[1],
  17493. ctx->infos[i].ne[2],
  17494. ctx->infos[i].ne[3],
  17495. };
  17496. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17497. ok = ok && cur != NULL;
  17498. if (!ok) {
  17499. break;
  17500. }
  17501. ggml_set_name(cur, ctx->infos[i].name.data);
  17502. // point the data member to the appropriate location in the binary blob using the tensor infos
  17503. if (!params.no_alloc) {
  17504. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17505. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17506. }
  17507. }
  17508. if (!ok) {
  17509. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17510. fclose(file);
  17511. ggml_free(ctx_data);
  17512. gguf_free(ctx);
  17513. return NULL;
  17514. }
  17515. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17516. }
  17517. fclose(file);
  17518. return ctx;
  17519. }
  17520. void gguf_free(struct gguf_context * ctx) {
  17521. if (ctx == NULL) {
  17522. return;
  17523. }
  17524. if (ctx->kv) {
  17525. // free string memory - not great..
  17526. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17527. gguf_free_kv(&ctx->kv[i]);
  17528. }
  17529. GGML_FREE(ctx->kv);
  17530. }
  17531. if (ctx->infos) {
  17532. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17533. struct gguf_tensor_info * info = &ctx->infos[i];
  17534. if (info->name.data) {
  17535. GGML_FREE(info->name.data);
  17536. }
  17537. }
  17538. GGML_FREE(ctx->infos);
  17539. }
  17540. GGML_FREE(ctx);
  17541. }
  17542. const char * gguf_type_name(enum gguf_type type) {
  17543. return GGUF_TYPE_NAME[type];
  17544. }
  17545. int gguf_get_version(const struct gguf_context * ctx) {
  17546. return ctx->header.version;
  17547. }
  17548. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17549. return ctx->alignment;
  17550. }
  17551. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17552. return ctx->offset;
  17553. }
  17554. void * gguf_get_data(const struct gguf_context * ctx) {
  17555. return ctx->data;
  17556. }
  17557. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17558. return ctx->header.n_kv;
  17559. }
  17560. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17561. // return -1 if key not found
  17562. int keyfound = -1;
  17563. const int n_kv = gguf_get_n_kv(ctx);
  17564. for (int i = 0; i < n_kv; ++i) {
  17565. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17566. keyfound = i;
  17567. break;
  17568. }
  17569. }
  17570. return keyfound;
  17571. }
  17572. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17573. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17574. return ctx->kv[key_id].key.data;
  17575. }
  17576. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17577. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17578. return ctx->kv[key_id].type;
  17579. }
  17580. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17581. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17582. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17583. return ctx->kv[key_id].value.arr.type;
  17584. }
  17585. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17586. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17587. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17588. return ctx->kv[key_id].value.arr.data;
  17589. }
  17590. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17591. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17592. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17593. struct gguf_kv * kv = &ctx->kv[key_id];
  17594. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17595. return str->data;
  17596. }
  17597. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17598. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17599. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17600. return ctx->kv[key_id].value.arr.n;
  17601. }
  17602. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17603. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17604. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17605. return ctx->kv[key_id].value.uint8;
  17606. }
  17607. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17608. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17609. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17610. return ctx->kv[key_id].value.int8;
  17611. }
  17612. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17613. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17614. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17615. return ctx->kv[key_id].value.uint16;
  17616. }
  17617. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17618. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17619. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17620. return ctx->kv[key_id].value.int16;
  17621. }
  17622. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17623. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17624. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17625. return ctx->kv[key_id].value.uint32;
  17626. }
  17627. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17628. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17629. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17630. return ctx->kv[key_id].value.int32;
  17631. }
  17632. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17633. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17634. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17635. return ctx->kv[key_id].value.float32;
  17636. }
  17637. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17638. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17639. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17640. return ctx->kv[key_id].value.uint64;
  17641. }
  17642. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17643. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17644. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17645. return ctx->kv[key_id].value.int64;
  17646. }
  17647. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17648. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17649. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17650. return ctx->kv[key_id].value.float64;
  17651. }
  17652. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17653. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17654. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17655. return ctx->kv[key_id].value.bool_;
  17656. }
  17657. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17658. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17659. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17660. return ctx->kv[key_id].value.str.data;
  17661. }
  17662. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17663. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17664. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17665. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17666. return &ctx->kv[key_id].value;
  17667. }
  17668. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17669. return ctx->header.n_tensors;
  17670. }
  17671. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17672. // return -1 if tensor not found
  17673. int tensorfound = -1;
  17674. const int n_tensors = gguf_get_n_tensors(ctx);
  17675. for (int i = 0; i < n_tensors; ++i) {
  17676. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17677. tensorfound = i;
  17678. break;
  17679. }
  17680. }
  17681. return tensorfound;
  17682. }
  17683. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17684. return ctx->infos[i].offset;
  17685. }
  17686. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17687. return ctx->infos[i].name.data;
  17688. }
  17689. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17690. return ctx->infos[i].type;
  17691. }
  17692. // returns the index
  17693. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17694. const int idx = gguf_find_key(ctx, key);
  17695. if (idx >= 0) {
  17696. return idx;
  17697. }
  17698. const int n_kv = gguf_get_n_kv(ctx);
  17699. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17700. ctx->kv[n_kv].key.n = strlen(key);
  17701. ctx->kv[n_kv].key.data = strdup(key);
  17702. ctx->header.n_kv++;
  17703. return n_kv;
  17704. }
  17705. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17706. const int idx = gguf_find_key(ctx, key);
  17707. if (idx >= 0) {
  17708. const int n_kv = gguf_get_n_kv(ctx);
  17709. gguf_free_kv(&ctx->kv[idx]);
  17710. for (int i = idx; i < n_kv-1; ++i) {
  17711. ctx->kv[i] = ctx->kv[i+1];
  17712. }
  17713. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17714. ctx->header.n_kv--;
  17715. }
  17716. }
  17717. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17718. const int idx = gguf_get_or_add_key(ctx, key);
  17719. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17720. ctx->kv[idx].value.uint8 = val;
  17721. }
  17722. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17723. const int idx = gguf_get_or_add_key(ctx, key);
  17724. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17725. ctx->kv[idx].value.int8 = val;
  17726. }
  17727. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17728. const int idx = gguf_get_or_add_key(ctx, key);
  17729. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17730. ctx->kv[idx].value.uint16 = val;
  17731. }
  17732. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17733. const int idx = gguf_get_or_add_key(ctx, key);
  17734. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17735. ctx->kv[idx].value.int16 = val;
  17736. }
  17737. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17738. const int idx = gguf_get_or_add_key(ctx, key);
  17739. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17740. ctx->kv[idx].value.uint32 = val;
  17741. }
  17742. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17743. const int idx = gguf_get_or_add_key(ctx, key);
  17744. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17745. ctx->kv[idx].value.int32 = val;
  17746. }
  17747. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17748. const int idx = gguf_get_or_add_key(ctx, key);
  17749. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17750. ctx->kv[idx].value.float32 = val;
  17751. }
  17752. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17753. const int idx = gguf_get_or_add_key(ctx, key);
  17754. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17755. ctx->kv[idx].value.uint64 = val;
  17756. }
  17757. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17758. const int idx = gguf_get_or_add_key(ctx, key);
  17759. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17760. ctx->kv[idx].value.int64 = val;
  17761. }
  17762. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17763. const int idx = gguf_get_or_add_key(ctx, key);
  17764. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17765. ctx->kv[idx].value.float64 = val;
  17766. }
  17767. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17768. const int idx = gguf_get_or_add_key(ctx, key);
  17769. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17770. ctx->kv[idx].value.bool_ = val;
  17771. }
  17772. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17773. const int idx = gguf_get_or_add_key(ctx, key);
  17774. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17775. ctx->kv[idx].value.str.n = strlen(val);
  17776. ctx->kv[idx].value.str.data = strdup(val);
  17777. }
  17778. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17779. const int idx = gguf_get_or_add_key(ctx, key);
  17780. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17781. ctx->kv[idx].value.arr.type = type;
  17782. ctx->kv[idx].value.arr.n = n;
  17783. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  17784. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17785. }
  17786. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17787. const int idx = gguf_get_or_add_key(ctx, key);
  17788. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17789. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17790. ctx->kv[idx].value.arr.n = n;
  17791. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  17792. for (int i = 0; i < n; i++) {
  17793. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17794. str->n = strlen(data[i]);
  17795. str->data = strdup(data[i]);
  17796. }
  17797. }
  17798. // set or add KV pairs from another context
  17799. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17800. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17801. switch (src->kv[i].type) {
  17802. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17803. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17804. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17805. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17806. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17807. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17808. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17809. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17810. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17811. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17812. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17813. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17814. case GGUF_TYPE_ARRAY:
  17815. {
  17816. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17817. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  17818. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17819. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17820. }
  17821. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17822. GGML_FREE((void *)data);
  17823. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17824. GGML_ABORT("nested arrays not supported");
  17825. } else {
  17826. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17827. }
  17828. } break;
  17829. default: GGML_ABORT("invalid type");
  17830. }
  17831. }
  17832. }
  17833. void gguf_add_tensor(
  17834. struct gguf_context * ctx,
  17835. const struct ggml_tensor * tensor) {
  17836. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  17837. GGML_ABORT("duplicated tensor name");
  17838. }
  17839. const int idx = ctx->header.n_tensors;
  17840. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17841. ctx->infos[idx].name.n = strlen(tensor->name);
  17842. ctx->infos[idx].name.data = strdup(tensor->name);
  17843. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17844. ctx->infos[idx].ne[i] = 1;
  17845. }
  17846. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17847. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17848. ctx->infos[idx].ne[i] = tensor->ne[i];
  17849. }
  17850. ctx->infos[idx].type = tensor->type;
  17851. ctx->infos[idx].offset = 0;
  17852. ctx->infos[idx].data = tensor->data;
  17853. ctx->infos[idx].size = ggml_nbytes(tensor);
  17854. if (ctx->header.n_tensors > 0) {
  17855. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17856. }
  17857. ctx->header.n_tensors++;
  17858. }
  17859. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17860. const int idx = gguf_find_tensor(ctx, name);
  17861. if (idx < 0) {
  17862. GGML_ABORT("tensor not found");
  17863. }
  17864. ctx->infos[idx].type = type;
  17865. }
  17866. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17867. const int idx = gguf_find_tensor(ctx, name);
  17868. if (idx < 0) {
  17869. GGML_ABORT("tensor not found");
  17870. }
  17871. ctx->infos[idx].data = data;
  17872. ctx->infos[idx].size = size;
  17873. // update offsets
  17874. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17875. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17876. }
  17877. }
  17878. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17879. // fwrite(&val->n, sizeof(val->n), 1, file);
  17880. // fwrite(val->data, sizeof(char), val->n, file);
  17881. //}
  17882. //
  17883. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17884. // fwrite(val, sizeof(char), size, file);
  17885. //}
  17886. struct gguf_buf {
  17887. void * data;
  17888. size_t size;
  17889. size_t offset;
  17890. };
  17891. static struct gguf_buf gguf_buf_init(size_t size) {
  17892. struct gguf_buf buf = {
  17893. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  17894. /*buf.size =*/ size,
  17895. /*buf.offset =*/ 0,
  17896. };
  17897. return buf;
  17898. }
  17899. static void gguf_buf_free(struct gguf_buf buf) {
  17900. if (buf.data) {
  17901. GGML_FREE(buf.data);
  17902. }
  17903. }
  17904. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17905. if (buf->offset + size > buf->size) {
  17906. buf->size = 1.5*(buf->offset + size);
  17907. if (buf->data) {
  17908. buf->data = realloc(buf->data, buf->size);
  17909. }
  17910. }
  17911. }
  17912. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17913. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17914. if (buf->data) {
  17915. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17916. }
  17917. buf->offset += sizeof(val->n);
  17918. if (buf->data) {
  17919. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17920. }
  17921. buf->offset += val->n;
  17922. }
  17923. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17924. gguf_buf_grow(buf, el_size);
  17925. if (buf->data) {
  17926. memcpy((char *) buf->data + buf->offset, val, el_size);
  17927. }
  17928. buf->offset += el_size;
  17929. }
  17930. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17931. // write header
  17932. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17933. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17934. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17935. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17936. // write key-value pairs
  17937. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17938. struct gguf_kv * kv = &ctx->kv[i];
  17939. gguf_bwrite_str(buf, &kv->key);
  17940. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17941. switch (kv->type) {
  17942. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17943. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17944. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17945. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17946. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17947. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17948. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17949. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17950. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17951. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17952. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17953. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17954. case GGUF_TYPE_ARRAY:
  17955. {
  17956. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17957. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17958. switch (kv->value.arr.type) {
  17959. case GGUF_TYPE_UINT8:
  17960. case GGUF_TYPE_INT8:
  17961. case GGUF_TYPE_UINT16:
  17962. case GGUF_TYPE_INT16:
  17963. case GGUF_TYPE_UINT32:
  17964. case GGUF_TYPE_INT32:
  17965. case GGUF_TYPE_FLOAT32:
  17966. case GGUF_TYPE_UINT64:
  17967. case GGUF_TYPE_INT64:
  17968. case GGUF_TYPE_FLOAT64:
  17969. case GGUF_TYPE_BOOL:
  17970. {
  17971. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17972. } break;
  17973. case GGUF_TYPE_STRING:
  17974. {
  17975. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17976. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17977. }
  17978. } break;
  17979. case GGUF_TYPE_ARRAY:
  17980. default: GGML_ABORT("invalid type");
  17981. }
  17982. } break;
  17983. default: GGML_ABORT("invalid type");
  17984. }
  17985. }
  17986. // write tensor infos
  17987. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17988. struct gguf_tensor_info * info = &ctx->infos[i];
  17989. gguf_bwrite_str(buf, &info->name);
  17990. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17991. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17992. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17993. }
  17994. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17995. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17996. }
  17997. // we require the data section to be aligned, so take into account any padding
  17998. {
  17999. const size_t offset = buf->offset;
  18000. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18001. if (offset_pad != offset) {
  18002. uint8_t pad = 0;
  18003. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18004. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18005. }
  18006. }
  18007. }
  18008. if (only_meta) {
  18009. return;
  18010. }
  18011. size_t offset = 0;
  18012. // write tensor data
  18013. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18014. struct gguf_tensor_info * info = &ctx->infos[i];
  18015. const size_t size = info->size;
  18016. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18017. gguf_bwrite_el(buf, info->data, size);
  18018. if (size_pad != size) {
  18019. uint8_t pad = 0;
  18020. for (size_t j = 0; j < size_pad - size; ++j) {
  18021. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18022. }
  18023. }
  18024. GGML_ASSERT(offset == info->offset);
  18025. offset += size_pad;
  18026. }
  18027. }
  18028. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18029. FILE * file = ggml_fopen(fname, "wb");
  18030. if (!file) {
  18031. GGML_ABORT("failed to open file for writing");
  18032. }
  18033. struct gguf_buf buf = gguf_buf_init(16*1024);
  18034. gguf_write_to_buf(ctx, &buf, only_meta);
  18035. fwrite(buf.data, 1, buf.offset, file);
  18036. gguf_buf_free(buf);
  18037. fclose(file);
  18038. }
  18039. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18040. // no allocs - only compute size
  18041. struct gguf_buf buf = gguf_buf_init(0);
  18042. gguf_write_to_buf(ctx, &buf, true);
  18043. return buf.offset;
  18044. }
  18045. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18046. struct gguf_buf buf = gguf_buf_init(16*1024);
  18047. gguf_write_to_buf(ctx, &buf, true);
  18048. memcpy(data, buf.data, buf.offset);
  18049. gguf_buf_free(buf);
  18050. }
  18051. ////////////////////////////////////////////////////////////////////////////////
  18052. int ggml_cpu_has_avx(void) {
  18053. #if defined(__AVX__)
  18054. return 1;
  18055. #else
  18056. return 0;
  18057. #endif
  18058. }
  18059. int ggml_cpu_has_avx_vnni(void) {
  18060. #if defined(__AVXVNNI__)
  18061. return 1;
  18062. #else
  18063. return 0;
  18064. #endif
  18065. }
  18066. int ggml_cpu_has_avx2(void) {
  18067. #if defined(__AVX2__)
  18068. return 1;
  18069. #else
  18070. return 0;
  18071. #endif
  18072. }
  18073. int ggml_cpu_has_avx512(void) {
  18074. #if defined(__AVX512F__)
  18075. return 1;
  18076. #else
  18077. return 0;
  18078. #endif
  18079. }
  18080. int ggml_cpu_has_avx512_vbmi(void) {
  18081. #if defined(__AVX512VBMI__)
  18082. return 1;
  18083. #else
  18084. return 0;
  18085. #endif
  18086. }
  18087. int ggml_cpu_has_avx512_vnni(void) {
  18088. #if defined(__AVX512VNNI__)
  18089. return 1;
  18090. #else
  18091. return 0;
  18092. #endif
  18093. }
  18094. int ggml_cpu_has_avx512_bf16(void) {
  18095. #if defined(__AVX512BF16__)
  18096. return 1;
  18097. #else
  18098. return 0;
  18099. #endif
  18100. }
  18101. int ggml_cpu_has_fma(void) {
  18102. #if defined(__FMA__)
  18103. return 1;
  18104. #else
  18105. return 0;
  18106. #endif
  18107. }
  18108. int ggml_cpu_has_neon(void) {
  18109. #if defined(__ARM_NEON)
  18110. return 1;
  18111. #else
  18112. return 0;
  18113. #endif
  18114. }
  18115. int ggml_cpu_has_sve(void) {
  18116. #if defined(__ARM_FEATURE_SVE)
  18117. return 1;
  18118. #else
  18119. return 0;
  18120. #endif
  18121. }
  18122. int ggml_cpu_has_arm_fma(void) {
  18123. #if defined(__ARM_FEATURE_FMA)
  18124. return 1;
  18125. #else
  18126. return 0;
  18127. #endif
  18128. }
  18129. int ggml_cpu_has_metal(void) {
  18130. #if defined(GGML_USE_METAL)
  18131. return 1;
  18132. #else
  18133. return 0;
  18134. #endif
  18135. }
  18136. int ggml_cpu_has_f16c(void) {
  18137. #if defined(__F16C__)
  18138. return 1;
  18139. #else
  18140. return 0;
  18141. #endif
  18142. }
  18143. int ggml_cpu_has_fp16_va(void) {
  18144. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18145. return 1;
  18146. #else
  18147. return 0;
  18148. #endif
  18149. }
  18150. int ggml_cpu_has_wasm_simd(void) {
  18151. #if defined(__wasm_simd128__)
  18152. return 1;
  18153. #else
  18154. return 0;
  18155. #endif
  18156. }
  18157. int ggml_cpu_has_blas(void) {
  18158. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18159. return 1;
  18160. #else
  18161. return 0;
  18162. #endif
  18163. }
  18164. int ggml_cpu_has_cuda(void) {
  18165. #if defined(GGML_USE_CUDA)
  18166. return 1;
  18167. #else
  18168. return 0;
  18169. #endif
  18170. }
  18171. int ggml_cpu_has_vulkan(void) {
  18172. #if defined(GGML_USE_VULKAN)
  18173. return 1;
  18174. #else
  18175. return 0;
  18176. #endif
  18177. }
  18178. int ggml_cpu_has_kompute(void) {
  18179. #if defined(GGML_USE_KOMPUTE)
  18180. return 1;
  18181. #else
  18182. return 0;
  18183. #endif
  18184. }
  18185. int ggml_cpu_has_sycl(void) {
  18186. #if defined(GGML_USE_SYCL)
  18187. return 1;
  18188. #else
  18189. return 0;
  18190. #endif
  18191. }
  18192. int ggml_cpu_has_rpc(void) {
  18193. #if defined(GGML_USE_RPC)
  18194. return 1;
  18195. #else
  18196. return 0;
  18197. #endif
  18198. }
  18199. int ggml_cpu_has_cann(void) {
  18200. #if defined(GGML_USE_CANN)
  18201. return 1;
  18202. #else
  18203. return 0;
  18204. #endif
  18205. }
  18206. int ggml_cpu_has_llamafile(void) {
  18207. #if defined(GGML_USE_LLAMAFILE)
  18208. return 1;
  18209. #else
  18210. return 0;
  18211. #endif
  18212. }
  18213. int ggml_cpu_has_gpublas(void) {
  18214. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18215. }
  18216. int ggml_cpu_has_sse3(void) {
  18217. #if defined(__SSE3__)
  18218. return 1;
  18219. #else
  18220. return 0;
  18221. #endif
  18222. }
  18223. int ggml_cpu_has_ssse3(void) {
  18224. #if defined(__SSSE3__)
  18225. return 1;
  18226. #else
  18227. return 0;
  18228. #endif
  18229. }
  18230. int ggml_cpu_has_vsx(void) {
  18231. #if defined(__POWER9_VECTOR__)
  18232. return 1;
  18233. #else
  18234. return 0;
  18235. #endif
  18236. }
  18237. int ggml_cpu_has_matmul_int8(void) {
  18238. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18239. return 1;
  18240. #else
  18241. return 0;
  18242. #endif
  18243. }
  18244. ////////////////////////////////////////////////////////////////////////////////