train-text-from-scratch.cpp 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. #include "ggml.h"
  2. #include "ggml-alloc.h"
  3. #include "common.h"
  4. #include "train.h"
  5. #include "llama.h"
  6. #include <unordered_map>
  7. #include <vector>
  8. #include <cassert>
  9. #include <climits>
  10. #include <cstring>
  11. #include <cstdarg>
  12. #include <ctime>
  13. #include <random>
  14. #include <stdexcept>
  15. #include <algorithm>
  16. #include <string>
  17. #if defined(_MSC_VER)
  18. #pragma warning(disable: 4244 4267) // possible loss of data
  19. #endif
  20. static const size_t tensor_alignment = 32;
  21. struct my_llama_hparams {
  22. uint32_t n_vocab = 32000;
  23. uint32_t n_ctx = 512;
  24. uint32_t n_embd = 4096;
  25. uint32_t n_head = 32;
  26. uint32_t n_layer = 32;
  27. uint32_t n_rot = 64;
  28. uint32_t n_ff = 11008;
  29. // float f_norm_eps = 1e-5f; // falcon
  30. float f_norm_rms_eps = 1e-5f; // llama
  31. float rope_freq_base = 10000.0f;
  32. float rope_freq_scale = 1.0f;
  33. };
  34. struct my_llama_layer {
  35. // normalization
  36. struct ggml_tensor * attention_norm;
  37. // attention
  38. struct ggml_tensor * wq;
  39. struct ggml_tensor * wk;
  40. struct ggml_tensor * wv;
  41. struct ggml_tensor * wo;
  42. // normalization
  43. struct ggml_tensor * ffn_norm;
  44. // ff
  45. struct ggml_tensor * w1;
  46. struct ggml_tensor * w2;
  47. struct ggml_tensor * w3;
  48. };
  49. struct my_llama_model {
  50. struct ggml_context * ctx = NULL;
  51. std::vector<uint8_t> data;
  52. my_llama_hparams hparams;
  53. struct ggml_tensor * tok_embeddings;
  54. struct ggml_tensor * norm;
  55. struct ggml_tensor * output;
  56. std::vector<my_llama_layer> layers;
  57. };
  58. // gguf constants (sync with gguf.py)
  59. static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
  60. static const char * LLM_KV_TRAINING_TYPE = "training.type";
  61. static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
  62. static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
  63. static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
  64. static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
  65. static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
  66. static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
  67. static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
  68. static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
  69. static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
  70. static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
  71. static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
  72. static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
  73. static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
  74. static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
  75. static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
  76. static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
  77. static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
  78. static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
  79. static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
  80. static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
  81. static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
  82. static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
  83. static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
  84. static const char * LLM_TENSOR_OUTPUT = "output";
  85. static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
  86. static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
  87. static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
  88. static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
  89. static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
  90. static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
  91. static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
  92. static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
  93. static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
  94. static void print_params(struct my_llama_hparams * params) {
  95. printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
  96. printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
  97. printf("%s: n_embd: %d\n", __func__, params->n_embd);
  98. printf("%s: n_head: %d\n", __func__, params->n_head);
  99. printf("%s: n_ff: %d\n", __func__, params->n_ff);
  100. printf("%s: n_layer: %d\n", __func__, params->n_layer);
  101. printf("%s: n_rot: %d\n", __func__, params->n_rot);
  102. }
  103. static void set_param_model(struct my_llama_model * model) {
  104. const auto& hparams = model->hparams;
  105. const uint32_t n_layer = hparams.n_layer;
  106. struct ggml_context* ctx = model->ctx;
  107. ggml_set_param(ctx, model->tok_embeddings);
  108. ggml_set_param(ctx, model->norm);
  109. ggml_set_param(ctx, model->output);
  110. for (uint32_t i = 0; i < n_layer; ++i) {
  111. auto & layer = model->layers[i];
  112. ggml_set_param(ctx, layer.attention_norm);
  113. ggml_set_param(ctx, layer.wq);
  114. ggml_set_param(ctx, layer.wk);
  115. ggml_set_param(ctx, layer.wv);
  116. ggml_set_param(ctx, layer.wo);
  117. ggml_set_param(ctx, layer.ffn_norm);
  118. ggml_set_param(ctx, layer.w1);
  119. ggml_set_param(ctx, layer.w2);
  120. ggml_set_param(ctx, layer.w3);
  121. }
  122. }
  123. static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) {
  124. ggml_allocr_alloc(alloc, model->tok_embeddings);
  125. ggml_allocr_alloc(alloc, model->norm);
  126. ggml_allocr_alloc(alloc, model->output);
  127. for (uint32_t i = 0; i < model->layers.size(); ++i) {
  128. auto & layer = model->layers[i];
  129. ggml_allocr_alloc(alloc, layer.attention_norm);
  130. ggml_allocr_alloc(alloc, layer.wq);
  131. ggml_allocr_alloc(alloc, layer.wk);
  132. ggml_allocr_alloc(alloc, layer.wv);
  133. ggml_allocr_alloc(alloc, layer.wo);
  134. ggml_allocr_alloc(alloc, layer.ffn_norm);
  135. ggml_allocr_alloc(alloc, layer.w1);
  136. ggml_allocr_alloc(alloc, layer.w2);
  137. ggml_allocr_alloc(alloc, layer.w3);
  138. }
  139. ggml_allocr_alloc(alloc, model->tok_embeddings->grad);
  140. ggml_allocr_alloc(alloc, model->norm->grad);
  141. ggml_allocr_alloc(alloc, model->output->grad);
  142. for (uint32_t i = 0; i < model->layers.size(); ++i) {
  143. auto & layer = model->layers[i];
  144. ggml_allocr_alloc(alloc, layer.attention_norm->grad);
  145. ggml_allocr_alloc(alloc, layer.wq->grad);
  146. ggml_allocr_alloc(alloc, layer.wk->grad);
  147. ggml_allocr_alloc(alloc, layer.wv->grad);
  148. ggml_allocr_alloc(alloc, layer.wo->grad);
  149. ggml_allocr_alloc(alloc, layer.ffn_norm->grad);
  150. ggml_allocr_alloc(alloc, layer.w1->grad);
  151. ggml_allocr_alloc(alloc, layer.w2->grad);
  152. ggml_allocr_alloc(alloc, layer.w3->grad);
  153. }
  154. }
  155. static void init_model(struct my_llama_model * model) {
  156. const auto & hparams = model->hparams;
  157. const uint32_t n_embd = hparams.n_embd;
  158. const uint32_t n_layer = hparams.n_layer;
  159. const uint32_t n_vocab = hparams.n_vocab;
  160. const uint32_t n_ff = hparams.n_ff;
  161. std::vector<char> tn_buf;
  162. tn_buf.resize(GGML_MAX_NAME);
  163. auto tn = [&tn_buf](const char * key) -> const char * {
  164. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
  165. return tn_buf.data();
  166. };
  167. auto tni = [&tn_buf](const char * key, int bid) -> const char * {
  168. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  169. std::string s = tn_buf.data();
  170. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
  171. return tn_buf.data();
  172. };
  173. // context for model tensors without their data
  174. struct ggml_init_params ctx_model_params;
  175. ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
  176. ctx_model_params.mem_buffer = NULL;
  177. ctx_model_params.no_alloc = true;
  178. struct ggml_context * ctx = ggml_init(ctx_model_params);
  179. model->ctx = ctx;
  180. model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  181. model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  182. model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  183. ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
  184. ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM));
  185. ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT));
  186. model->layers.resize(n_layer);
  187. for (uint32_t i = 0; i < n_layer; ++i) {
  188. auto & layer = model->layers[i];
  189. layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  190. layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  191. layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  192. layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  193. layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  194. layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  195. layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  196. layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
  197. layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  198. ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
  199. ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i));
  200. ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i));
  201. ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i));
  202. ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i));
  203. ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i));
  204. ggml_set_name(layer.w1, tni(LLM_TENSOR_FFN_GATE, i));
  205. ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i));
  206. ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i));
  207. }
  208. set_param_model(model);
  209. // measure data size
  210. struct ggml_allocr * alloc = NULL;
  211. alloc = ggml_allocr_new_measure(tensor_alignment);
  212. alloc_model(alloc, model);
  213. // allocate data
  214. model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
  215. ggml_allocr_free(alloc);
  216. alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
  217. alloc_model(alloc, model);
  218. ggml_allocr_free(alloc);
  219. }
  220. static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
  221. const auto & hparams = model->hparams;
  222. const uint32_t n_layer = hparams.n_layer;
  223. struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
  224. randomize_tensor_normal(model->tok_embeddings, rnd);
  225. randomize_tensor_normal(model->norm, rnd);
  226. randomize_tensor_normal(model->output, rnd);
  227. for (uint32_t i = 0; i < n_layer; ++i) {
  228. auto & layer = model->layers[i];
  229. randomize_tensor_normal(layer.attention_norm, rnd);
  230. randomize_tensor_normal(layer.wq, rnd);
  231. randomize_tensor_normal(layer.wk, rnd);
  232. randomize_tensor_normal(layer.wv, rnd);
  233. randomize_tensor_normal(layer.wo, rnd);
  234. randomize_tensor_normal(layer.ffn_norm, rnd);
  235. randomize_tensor_normal(layer.w1, rnd);
  236. randomize_tensor_normal(layer.w2, rnd);
  237. randomize_tensor_normal(layer.w3, rnd);
  238. }
  239. free_random_normal_distribution(rnd);
  240. }
  241. static struct ggml_tensor * llama_build_train_graphs(
  242. struct my_llama_model * model,
  243. struct ggml_allocr * alloc,
  244. struct ggml_context * ctx,
  245. struct ggml_cgraph * gf,
  246. struct ggml_cgraph * gb,
  247. struct ggml_cgraph * gb_tmp,
  248. struct ggml_tensor * * logits,
  249. struct ggml_tensor * tokens_input,
  250. struct ggml_tensor * targets,
  251. const int n_tokens,
  252. const int n_batch,
  253. const bool enable_flash_attn,
  254. const bool enable_checkpointing) {
  255. ggml_set_scratch(ctx, { 0, 0, nullptr, });
  256. const int n_past = 0;
  257. const int N = n_tokens;
  258. const auto & hparams = model->hparams;
  259. const int n_ctx = hparams.n_ctx;
  260. const int n_vocab = hparams.n_vocab;
  261. const int n_embd = hparams.n_embd;
  262. const int n_layer = hparams.n_layer;
  263. const int n_head = hparams.n_head;
  264. const int n_rot = hparams.n_rot;
  265. const int n_ff = hparams.n_ff;
  266. const float f_norm_rms_eps = hparams.f_norm_rms_eps;
  267. const float rope_freq_base = hparams.rope_freq_base;
  268. const float rope_freq_scale = hparams.rope_freq_scale;
  269. auto set_name = [](struct ggml_tensor * t, const char * n) {
  270. ggml_set_name(t, n);
  271. if (t->grad) {
  272. ggml_format_name(t->grad, "%s->grad", n);
  273. }
  274. };
  275. // KQ_pos - contains the positions
  276. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
  277. ggml_allocr_alloc(alloc, KQ_pos);
  278. if (!ggml_allocr_is_measure(alloc)) {
  279. int * data = (int *) KQ_pos->data;
  280. for (int i = 0; i < N; ++i) {
  281. data[i] = n_past + i;
  282. }
  283. }
  284. // rope has so much parameters that we make a custom function for it
  285. auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
  286. (struct ggml_tensor * t) -> struct ggml_tensor * {
  287. // not capturing these, to silcence warnings
  288. const int rope_mode = 0;
  289. return ggml_rope_custom(ctx,
  290. t, KQ_pos, n_rot, rope_mode, n_ctx,
  291. rope_freq_base, rope_freq_scale);
  292. };
  293. set_name(tokens_input, "tokens_input");
  294. set_name(targets, "targets");
  295. GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
  296. struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
  297. struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
  298. struct ggml_tensor * cur = t01;
  299. std::vector<struct ggml_tensor *> checkpoints;
  300. checkpoints.push_back(tokens_input);
  301. checkpoints.push_back(targets);
  302. checkpoints.push_back(t00);
  303. checkpoints.push_back(t01);
  304. struct ggml_tensor * kv_scale = NULL;
  305. if (!enable_flash_attn) {
  306. kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
  307. }
  308. for (int il = 0; il < n_layer; ++il) {
  309. struct my_llama_layer & layer = model->layers[il];
  310. struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
  311. struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
  312. struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
  313. struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
  314. struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
  315. struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
  316. struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch);
  317. struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
  318. struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
  319. struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd);
  320. struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
  321. struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
  322. struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
  323. struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
  324. struct ggml_tensor * t16;
  325. if (enable_flash_attn) {
  326. t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
  327. } else {
  328. struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
  329. struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
  330. struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
  331. struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
  332. t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
  333. }
  334. struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
  335. struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
  336. struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
  337. struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
  338. struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
  339. struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
  340. struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
  341. struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
  342. struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
  343. struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
  344. struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
  345. struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
  346. struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
  347. struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
  348. cur = t30;
  349. checkpoints.push_back(cur);
  350. }
  351. struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
  352. struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
  353. struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
  354. struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
  355. struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
  356. struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
  357. checkpoints.push_back(t31);
  358. checkpoints.push_back(t32);
  359. checkpoints.push_back(t33);
  360. checkpoints.push_back(t34);
  361. checkpoints.push_back(t35);
  362. checkpoints.push_back(t36);
  363. ggml_build_forward_expand(gf, t36);
  364. if (enable_checkpointing) {
  365. ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
  366. } else {
  367. *gb = *gf;
  368. ggml_build_backward_expand(ctx, gf, gb, true);
  369. }
  370. if (alloc) {
  371. // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
  372. int n_leafs_before = gb->n_leafs;
  373. int n_nodes_before = gb->n_nodes;
  374. struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
  375. // output tensors
  376. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
  377. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
  378. // input gradient
  379. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
  380. // KQ_pos
  381. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
  382. GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
  383. ggml_allocr_alloc(alloc, t36->grad);
  384. // allocating checkpoints in one block to reduce memory fragmentation
  385. // note: they will be freed in reverse order
  386. for (int i = 0; i < (int) checkpoints.size(); ++i) {
  387. if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
  388. ggml_allocr_alloc(alloc, checkpoints[i]);
  389. }
  390. }
  391. //int n_leafs_after = gb->n_leafs;
  392. //int n_nodes_after = gb->n_nodes;
  393. ggml_allocr_alloc_graph(alloc, gb);
  394. // remove the additional nodes and leafs
  395. for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
  396. gb->leafs[i] = NULL;
  397. }
  398. for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
  399. gb->nodes[i] = NULL;
  400. }
  401. gb->n_leafs = n_leafs_before;
  402. gb->n_nodes = n_nodes_before;
  403. }
  404. *logits = t35;
  405. return t36;
  406. }
  407. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  408. do { \
  409. const std::string skey(key); \
  410. const int kid = gguf_find_key(ctx, skey.c_str()); \
  411. if (kid >= 0) { \
  412. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  413. if (ktype != (type)) { \
  414. die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
  415. } \
  416. (dst) = func(ctx, kid); \
  417. } else if (req) { \
  418. die_fmt("key not found in model: %s", skey.c_str()); \
  419. } \
  420. } while (0)
  421. static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
  422. // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
  423. std::string arch;
  424. std::vector<char> keybuf;
  425. keybuf.resize(512);
  426. auto kv = [&arch, &keybuf](const char * key) -> const char * {
  427. snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
  428. return keybuf.data();
  429. };
  430. std::vector<char> tn_buf;
  431. tn_buf.resize(GGML_MAX_NAME);
  432. auto tn = [&tn_buf](const char * key) -> const char * {
  433. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
  434. return tn_buf.data();
  435. };
  436. auto tni = [&tn_buf](const char * key, int bid) -> const char * {
  437. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  438. std::string s = tn_buf.data();
  439. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
  440. return tn_buf.data();
  441. };
  442. GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
  443. GGML_ASSERT(arch == "llama");
  444. uint32_t ftype_u;
  445. GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
  446. GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
  447. // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
  448. GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
  449. GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  450. GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  451. GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  452. GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  453. model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
  454. GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  455. float rope_freq_scale = 1.0f;
  456. GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  457. GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  458. GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  459. if (rope_freq_scale != 1.0f) {
  460. model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
  461. }
  462. init_model(model);
  463. copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
  464. copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
  465. copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
  466. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  467. auto & layer = model->layers[i];
  468. copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
  469. copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
  470. copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
  471. copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
  472. copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
  473. copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
  474. copy_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
  475. copy_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
  476. copy_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
  477. }
  478. }
  479. static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
  480. const char * arch = "llama";
  481. enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  482. std::vector<char> keybuf;
  483. keybuf.resize(512);
  484. auto kv = [arch, &keybuf](const char * key) -> const char * {
  485. snprintf(keybuf.data(), keybuf.size(), key, arch);
  486. return keybuf.data();
  487. };
  488. // set arch
  489. gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
  490. gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
  491. // set hparams
  492. gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx );
  493. gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd );
  494. gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff );
  495. gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head );
  496. gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer );
  497. gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot );
  498. gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps );
  499. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp
  500. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale );
  501. // set vocab by copying from vocab_model gguf file
  502. {
  503. struct gguf_init_params params = {
  504. /*.no_alloc = */ false,
  505. /*.ctx = */ NULL,
  506. };
  507. struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
  508. const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
  509. if (token_idx == -1) {
  510. die("cannot find tokenizer vocab in model file");
  511. }
  512. const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
  513. const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
  514. if (score_idx == -1) {
  515. die("cannot find tokenizer scores in model file");
  516. }
  517. const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
  518. const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
  519. if (toktype_idx == -1) {
  520. die("cannot find token type list in GGUF file");
  521. }
  522. const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
  523. std::string tokenizer_name;
  524. GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  525. gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
  526. gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
  527. gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
  528. int32_t special_bos_id = 1;
  529. int32_t special_eos_id = 2;
  530. int32_t special_unk_id = 0;
  531. int32_t special_sep_id = -1;
  532. int32_t special_pad_id = -1;
  533. if (tokenizer_name == "llama") {
  534. // default special tokens
  535. special_bos_id = 1;
  536. special_eos_id = 2;
  537. special_unk_id = 0;
  538. special_sep_id = -1;
  539. special_pad_id = -1;
  540. } else if (tokenizer_name == "gpt2") {
  541. // read and copy bpe merges
  542. const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
  543. if (merges_keyidx == -1) {
  544. die("cannot find tokenizer merges in model file");
  545. }
  546. const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
  547. std::vector<const char*> merges;
  548. merges.resize(n_merges);
  549. for (int i = 0; i < n_merges; i++) {
  550. merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
  551. }
  552. gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
  553. // default special tokens
  554. special_bos_id = 11;
  555. special_eos_id = 11;
  556. special_unk_id = -1;
  557. special_sep_id = -1;
  558. special_pad_id = -1;
  559. } else {
  560. fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  561. fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
  562. }
  563. std::vector<const char*> tokens;
  564. tokens.resize(n_vocab);
  565. for (uint32_t i = 0; i < n_vocab; i++) {
  566. tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
  567. }
  568. gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
  569. GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  570. GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  571. GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  572. GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  573. GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  574. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
  575. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
  576. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
  577. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
  578. gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
  579. gguf_free(vctx);
  580. }
  581. // add tensors
  582. gguf_add_tensor(fctx, model->tok_embeddings);
  583. gguf_add_tensor(fctx, model->norm);
  584. gguf_add_tensor(fctx, model->output);
  585. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  586. auto & layer = model->layers[i];
  587. gguf_add_tensor(fctx, layer.attention_norm);
  588. gguf_add_tensor(fctx, layer.wq);
  589. gguf_add_tensor(fctx, layer.wk);
  590. gguf_add_tensor(fctx, layer.wv);
  591. gguf_add_tensor(fctx, layer.wo);
  592. gguf_add_tensor(fctx, layer.ffn_norm);
  593. gguf_add_tensor(fctx, layer.w1);
  594. gguf_add_tensor(fctx, layer.w2);
  595. gguf_add_tensor(fctx, layer.w3);
  596. }
  597. }
  598. static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
  599. printf("%s: saving to %s\n", __func__, filename);
  600. struct gguf_context * fctx = gguf_init_empty();
  601. save_llama_model_gguf(fctx, fn_vocab_model, model);
  602. // write file
  603. const bool only_meta = false;
  604. gguf_write_to_file(fctx, filename, only_meta);
  605. gguf_free(fctx);
  606. }
  607. static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
  608. load_llama_model_gguf(fctx, f_ggml_ctx, model);
  609. if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
  610. std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
  611. GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
  612. GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
  613. } else {
  614. printf("%s: loaded llama model as checkpoint\n", __func__);
  615. }
  616. }
  617. static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
  618. gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
  619. save_llama_model_gguf(fctx, fn_vocab_model, model);
  620. save_train_state_gguf(fctx, train);
  621. }
  622. static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
  623. struct ggml_context * f_ggml_ctx;
  624. struct gguf_init_params params;
  625. params.no_alloc = false;
  626. params.ctx = &f_ggml_ctx;
  627. struct gguf_context * fctx = gguf_init_from_file(filename, params);
  628. if (fctx == NULL) {
  629. return false;
  630. }
  631. load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
  632. return true;
  633. }
  634. static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
  635. printf("%s: saving to %s\n", __func__, filename);
  636. struct gguf_context * fctx = gguf_init_empty();
  637. save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
  638. // write file
  639. const bool only_meta = false;
  640. gguf_write_to_file(fctx, filename, only_meta);
  641. gguf_free(fctx);
  642. }
  643. struct train_params {
  644. struct train_params_common common;
  645. const char * fn_vocab_model;
  646. const char * fn_model_out;
  647. bool only_write_model;
  648. int n_ctx;
  649. int n_embd;
  650. int n_head;
  651. int n_layer;
  652. int n_ff;
  653. float f_norm_rms_eps;
  654. float rope_freq_base;
  655. float rope_freq_scale;
  656. };
  657. static struct train_params get_default_train_params() {
  658. struct train_params params;
  659. params.common = get_default_train_params_common();
  660. params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
  661. params.fn_model_out = "ggml-checkpoint-f32.bin";
  662. params.only_write_model = false;
  663. params.n_ctx = 128;
  664. params.n_embd = 256;
  665. params.n_head = 8;
  666. params.n_layer = 16;
  667. params.n_ff = 768;
  668. params.f_norm_rms_eps = 1e-5f;
  669. params.rope_freq_base = 10000.0f;
  670. params.rope_freq_scale = 1.0f;
  671. return params;
  672. }
  673. static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
  674. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  675. fprintf(stderr, "\n");
  676. fprintf(stderr, "options:\n");
  677. fprintf(stderr, " -h, --help show this help message and exit\n");
  678. fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
  679. fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
  680. fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
  681. fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
  682. fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff);
  683. fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
  684. fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer);
  685. fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
  686. fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
  687. fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
  688. print_common_train_usage(argc, argv, &params->common);
  689. }
  690. static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
  691. bool invalid_param = false;
  692. std::string arg;
  693. struct train_params default_params = get_default_train_params();
  694. const std::string arg_prefix = "--";
  695. for (int i = 1; i < argc; i++) {
  696. arg = argv[i];
  697. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  698. std::replace(arg.begin(), arg.end(), '_', '-');
  699. }
  700. if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
  701. if (invalid_param) {
  702. break;
  703. } else if (params->common.print_usage) {
  704. train_print_usage(argc, argv, &default_params);
  705. exit(0);
  706. }
  707. } else if (arg == "--vocab-model") {
  708. if (++i >= argc) {
  709. invalid_param = true;
  710. break;
  711. }
  712. params->fn_vocab_model = argv[i];
  713. } else if (arg == "--model-out") {
  714. if (++i >= argc) {
  715. invalid_param = true;
  716. break;
  717. }
  718. params->fn_model_out = argv[i];
  719. } else if (arg == "--only-write-model") {
  720. params->only_write_model = true;
  721. } else if (arg == "--embd") {
  722. if (++i >= argc) {
  723. invalid_param = true;
  724. break;
  725. }
  726. params->n_embd = std::stoi(argv[i]);
  727. } else if (arg == "--ff") {
  728. if (++i >= argc) {
  729. invalid_param = true;
  730. break;
  731. }
  732. params->n_ff = std::stoi(argv[i]);
  733. } else if (arg == "--head") {
  734. if (++i >= argc) {
  735. invalid_param = true;
  736. break;
  737. }
  738. params->n_head = std::stoi(argv[i]);
  739. } else if (arg == "--layer") {
  740. if (++i >= argc) {
  741. invalid_param = true;
  742. break;
  743. }
  744. params->n_layer = std::stoi(argv[i]);
  745. } else if (arg == "--norm-rms-eps") {
  746. if (++i >= argc) {
  747. invalid_param = true;
  748. break;
  749. }
  750. params->f_norm_rms_eps = std::stof(argv[i]);
  751. } else if (arg == "--rope-freq-base") {
  752. if (++i >= argc) {
  753. invalid_param = true;
  754. break;
  755. }
  756. params->rope_freq_base = std::stof(argv[i]);
  757. } else if (arg == "--rope-freq-scale") {
  758. if (++i >= argc) {
  759. invalid_param = true;
  760. break;
  761. }
  762. params->rope_freq_scale = std::stof(argv[i]);
  763. } else {
  764. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  765. train_print_usage(argc, argv, &default_params);
  766. exit(1);
  767. }
  768. }
  769. if (invalid_param) {
  770. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  771. train_print_usage(argc, argv, &default_params);
  772. exit(1);
  773. }
  774. finish_processing_train_args(&params->common);
  775. return true;
  776. }
  777. struct save_train_files_data {
  778. const char * fn_checkpoint_out;
  779. const char * fn_model_out;
  780. const char * fn_vocab_model;
  781. const char * pattern_fn_it;
  782. const char * fn_latest;
  783. struct my_llama_model * model;
  784. };
  785. static void save_train_files(void * vdata, struct train_state * train) {
  786. struct save_train_files_data * data = (struct save_train_files_data *) vdata;
  787. int64_t iter = train->opt->iter;
  788. if (strlen(data->fn_checkpoint_out) > 0) {
  789. save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
  790. save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train);
  791. }
  792. if (strlen(data->fn_model_out) > 0) {
  793. save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
  794. save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model);
  795. }
  796. }
  797. static int64_t get_parameter_count(struct my_llama_model* model) {
  798. int64_t nx = 0;
  799. nx += ggml_nelements(model->tok_embeddings);
  800. nx += ggml_nelements(model->norm);
  801. nx += ggml_nelements(model->output);
  802. for (uint32_t i = 0; i < model->layers.size(); ++i) {
  803. auto & layer = model->layers[i];
  804. nx += ggml_nelements(layer.attention_norm);
  805. nx += ggml_nelements(layer.wq);
  806. nx += ggml_nelements(layer.wk);
  807. nx += ggml_nelements(layer.wv);
  808. nx += ggml_nelements(layer.wo);
  809. nx += ggml_nelements(layer.ffn_norm);
  810. nx += ggml_nelements(layer.w1);
  811. nx += ggml_nelements(layer.w2);
  812. nx += ggml_nelements(layer.w3);
  813. }
  814. return nx;
  815. }
  816. int main(int argc, char ** argv) {
  817. struct train_params params = get_default_train_params();
  818. if (!train_params_parse(argc, argv, &params)) {
  819. return 1;
  820. }
  821. if (params.common.seed == LLAMA_DEFAULT_SEED) {
  822. params.common.seed = time(NULL);
  823. }
  824. printf("%s: seed: %u\n", __func__, params.common.seed);
  825. srand(params.common.seed);
  826. struct llama_model_params mparams = llama_model_default_params();
  827. mparams.vocab_only = true;
  828. struct llama_context_params cparams = llama_context_default_params();
  829. struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
  830. struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
  831. struct my_llama_model model;
  832. model.hparams.n_vocab = llama_n_vocab(lmodel);
  833. model.hparams.n_ctx = params.common.n_ctx;
  834. model.hparams.n_embd = params.n_embd;
  835. model.hparams.n_head = params.n_head;
  836. model.hparams.n_layer = params.n_layer;
  837. model.hparams.n_ff = params.n_ff;
  838. // llama.cpp requires n_rot to be exactly n_embd / n_head
  839. model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
  840. model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
  841. model.hparams.rope_freq_base = params.rope_freq_base;
  842. model.hparams.rope_freq_scale = params.rope_freq_scale;
  843. struct train_state * train = init_train_state();
  844. struct ggml_opt_context * opt = train->opt;
  845. // set opt params from command line
  846. opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
  847. opt->params.print_forward_graph = false;
  848. opt->params.print_backward_graph = false;
  849. opt->params.n_threads = params.common.n_threads;
  850. opt->params.past = params.common.opt_past;
  851. opt->params.delta = params.common.opt_delta;
  852. opt->params.max_no_improvement = params.common.opt_max_no_improvement;
  853. opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
  854. opt->params.adam.n_iter = params.common.adam_n_iter;
  855. opt->params.adam.sched = 1.0f;
  856. opt->params.adam.alpha = params.common.adam_alpha;
  857. opt->params.adam.decay = params.common.adam_decay;
  858. opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
  859. opt->params.adam.beta1 = params.common.adam_beta1;
  860. opt->params.adam.beta2 = params.common.adam_beta2;
  861. opt->params.adam.gclip = params.common.adam_gclip;
  862. opt->params.adam.eps_f = params.common.adam_eps_f;
  863. printf("%s: init model\n", __func__);
  864. bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
  865. if (existed) {
  866. // overwrite last n_ctx with user provided n_ctx
  867. if (params.common.custom_n_ctx) {
  868. model.hparams.n_ctx = params.common.n_ctx;
  869. }
  870. const bool opt_past_changed = opt->params.past != params.common.opt_past;
  871. if (opt_past_changed) {
  872. die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
  873. // need to discard previous optimizer past function value statistics and opt_init with new shapes
  874. // TODO
  875. }
  876. } else {
  877. init_model(&model);
  878. randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
  879. if (!params.only_write_model) {
  880. ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
  881. }
  882. }
  883. opt->iter = train->train_its;
  884. print_params(&model.hparams);
  885. printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
  886. printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
  887. printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
  888. printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
  889. printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f));
  890. if (params.only_write_model) {
  891. save_train_files_data save_data;
  892. save_data.fn_checkpoint_out = "";
  893. save_data.fn_model_out = params.fn_model_out;
  894. save_data.fn_vocab_model = params.fn_vocab_model;
  895. save_data.pattern_fn_it = params.common.pattern_fn_it;
  896. save_data.fn_latest = params.common.fn_latest;
  897. save_data.model = &model;
  898. save_train_files(&save_data, train);
  899. free_train_state(train);
  900. ggml_free(model.ctx);
  901. llama_free(lctx);
  902. llama_free_model(lmodel);
  903. return 0;
  904. }
  905. printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
  906. printf("%s: opt iter %d\n", __func__, opt->iter);
  907. int n_tokens = model.hparams.n_ctx;
  908. int n_vocab = model.hparams.n_vocab;
  909. int n_batch = params.common.n_batch;
  910. std::vector<uint8_t> mem_input_data;
  911. std::vector<uint8_t> mem_compute_data;
  912. ggml_allocr * alloc = NULL;
  913. // context for input tensors without their data
  914. struct ggml_init_params ctx_input_params = {
  915. ggml_tensor_overhead() * 2, // mem_size
  916. NULL, // mem_buffer
  917. true, // no_alloc
  918. };
  919. struct ggml_context * ctx_input = ggml_init(ctx_input_params);
  920. // the input tensors
  921. struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
  922. struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
  923. // measure required memory for input tensors
  924. alloc = ggml_allocr_new_measure(tensor_alignment);
  925. ggml_allocr_alloc(alloc, tokens_input);
  926. ggml_allocr_alloc(alloc, target_probs);
  927. size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
  928. ggml_allocr_free(alloc);
  929. printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
  930. // allocate input tensors
  931. mem_input_data.resize(max_input_size);
  932. alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
  933. ggml_allocr_alloc(alloc, tokens_input);
  934. ggml_allocr_alloc(alloc, target_probs);
  935. ggml_allocr_free(alloc);
  936. // context for compute tensors without their data
  937. size_t estimated_compute_size_wo_data = (
  938. ggml_tensor_overhead()*GGML_MAX_NODES*2
  939. + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
  940. params.common.use_checkpointing ? 3 : 2
  941. )
  942. );
  943. struct ggml_init_params ctx_compute_params = {
  944. estimated_compute_size_wo_data, // mem_size
  945. NULL, // mem_buffer
  946. true, // no_alloc
  947. };
  948. struct ggml_context * ctx_compute = NULL;
  949. struct ggml_tensor * loss = NULL;
  950. struct ggml_tensor * logits = NULL;
  951. struct ggml_cgraph * gf = NULL;
  952. struct ggml_cgraph * gb = NULL;
  953. struct ggml_cgraph * gb_tmp = NULL;
  954. // measure required memory for compute tensors
  955. size_t best_compute_size = SIZE_MAX;
  956. enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
  957. // find best evaluation order
  958. for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
  959. ctx_compute = ggml_init(ctx_compute_params);
  960. alloc = ggml_allocr_new_measure(tensor_alignment);
  961. gf = ggml_new_graph(ctx_compute);
  962. gf->order = (enum ggml_cgraph_eval_order) order;
  963. gb = ggml_new_graph(ctx_compute);
  964. gb_tmp = params.common.use_checkpointing
  965. ? ggml_new_graph(ctx_compute)
  966. : NULL;
  967. loss = llama_build_train_graphs(
  968. &model, alloc, ctx_compute,
  969. gf, gb, gb_tmp,
  970. &logits, tokens_input, target_probs,
  971. n_tokens, n_batch,
  972. params.common.use_flash,
  973. params.common.use_checkpointing
  974. );
  975. size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
  976. if (max_compute_size < best_compute_size) {
  977. best_compute_size = max_compute_size;
  978. best_order = gf->order;
  979. }
  980. ggml_allocr_free(alloc);
  981. ggml_free(ctx_compute);
  982. }
  983. size_t max_compute_size = best_compute_size;
  984. printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
  985. printf("%s: evaluation order = %s\n", __func__,
  986. (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
  987. (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
  988. "invalid");
  989. // allocate compute tensors
  990. mem_compute_data.resize(max_compute_size);
  991. ctx_compute = ggml_init(ctx_compute_params);
  992. alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
  993. gf = ggml_new_graph(ctx_compute);
  994. gf->order = best_order;
  995. gb = ggml_new_graph(ctx_compute);
  996. gb_tmp = params.common.use_checkpointing
  997. ? ggml_new_graph(ctx_compute)
  998. : NULL;
  999. loss = llama_build_train_graphs(
  1000. &model, alloc, ctx_compute,
  1001. gf, gb, gb_tmp,
  1002. &logits, tokens_input, target_probs,
  1003. n_tokens, n_batch,
  1004. params.common.use_flash,
  1005. params.common.use_checkpointing
  1006. );
  1007. ggml_allocr_free(alloc);
  1008. std::vector<llama_token> train_tokens;
  1009. std::vector<size_t> train_samples_begin;
  1010. std::vector<size_t> train_samples_size;
  1011. printf("%s: tokenize training data\n", __func__);
  1012. tokenize_file(lctx,
  1013. params.common.fn_train_data,
  1014. params.common.sample_start,
  1015. params.common.include_sample_start,
  1016. params.common.overlapping_samples,
  1017. n_tokens,
  1018. train_tokens,
  1019. train_samples_begin,
  1020. train_samples_size);
  1021. GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
  1022. printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
  1023. size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
  1024. const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
  1025. if (changed_train_data) {
  1026. printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
  1027. }
  1028. if (params.common.force_reshuffle) {
  1029. printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
  1030. }
  1031. if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
  1032. train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
  1033. train->shuffle_sample_count = train_samples_size.size();
  1034. train->shuffle_next_sample = 0;
  1035. train->shuffle_samples_hash = shuffle_samples_hash;
  1036. }
  1037. std::vector<size_t> train_shuffled_samples_offs;
  1038. std::vector<size_t> train_shuffled_samples_begin;
  1039. std::vector<size_t> train_shuffled_samples_size;
  1040. train_shuffled_samples_offs.resize(train_samples_begin.size());
  1041. train_shuffled_samples_begin.resize(train_samples_begin.size());
  1042. train_shuffled_samples_size.resize(train_samples_size.size());
  1043. train->shuffle_rng_state_next = shuffle_samples(
  1044. train->shuffle_rng_state_current,
  1045. train_shuffled_samples_offs.data(),
  1046. train_shuffled_samples_begin.data(),
  1047. train_shuffled_samples_size.data(),
  1048. train_samples_begin.data(),
  1049. train_samples_size.data(),
  1050. train_samples_size.size());
  1051. printf("%s: begin training\n", __func__);
  1052. save_train_files_data save_data;
  1053. save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
  1054. save_data.fn_model_out = params.fn_model_out;
  1055. save_data.fn_vocab_model = params.fn_vocab_model;
  1056. save_data.pattern_fn_it = params.common.pattern_fn_it;
  1057. save_data.fn_latest = params.common.fn_latest;
  1058. save_data.model = &model;
  1059. struct train_opt_callback_data opt_cb_data;
  1060. opt_cb_data.params = &params.common;
  1061. opt_cb_data.train = train;
  1062. opt_cb_data.save_cb = &save_train_files;
  1063. opt_cb_data.save_data = &save_data;
  1064. opt_cb_data.lctx = lctx;
  1065. opt_cb_data.last_save_iter = opt->iter;
  1066. opt_cb_data.tokens_data = train_tokens.data();
  1067. opt_cb_data.tokens_size = train_tokens.size();
  1068. opt_cb_data.samples_begin = train_samples_begin.data();
  1069. opt_cb_data.samples_size = train_samples_size.data();
  1070. opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
  1071. opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
  1072. opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
  1073. opt_cb_data.samples_count = train_samples_size.size();
  1074. opt_cb_data.tokens_input = tokens_input;
  1075. opt_cb_data.target_probs = target_probs;
  1076. opt_cb_data.first_iter = opt->iter;
  1077. opt_cb_data.first_epoch = train->train_epochs;
  1078. opt_cb_data.iter_at_last_epoch = -1;
  1079. opt_cb_data.last_time = ggml_time_ms();
  1080. opt_cb_data.millis_per_iter = 0.0;
  1081. // measure required memory for work buffer
  1082. size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
  1083. printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
  1084. // context for work buffer
  1085. struct ggml_init_params ctx_work_params = {
  1086. max_work_size, // mem_size
  1087. NULL, // mem_buffer
  1088. false, // no_alloc
  1089. };
  1090. struct ggml_context * ctx_work = ggml_init(ctx_work_params);
  1091. int64_t t0 = ggml_time_ms();
  1092. ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
  1093. ggml_free(ctx_work);
  1094. ggml_free(ctx_compute);
  1095. ggml_free(ctx_input);
  1096. int64_t t1 = ggml_time_ms();
  1097. printf("%s: total training time: ", __func__);
  1098. print_duration((double) (t1 - t0));
  1099. printf("\n");
  1100. int new_iters = opt->iter - opt_cb_data.last_save_iter;
  1101. if (new_iters > 0) {
  1102. train->train_its += new_iters;
  1103. train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
  1104. save_train_files(&save_data, train);
  1105. opt_cb_data.last_save_iter = opt->iter;
  1106. }
  1107. if (alloc) {
  1108. ggml_allocr_free(alloc);
  1109. }
  1110. ggml_free(opt->ctx);
  1111. free_train_state(train);
  1112. ggml_free(model.ctx);
  1113. llama_free(lctx);
  1114. llama_free_model(lmodel);
  1115. return 0;
  1116. }