convert_hf_to_gguf.py 162 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. fname_out: Path
  38. is_big_endian: bool
  39. endianess: gguf.GGUFEndian
  40. use_temp_file: bool
  41. lazy: bool
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. gguf_writer: gguf.GGUFWriter
  49. model_name: str | None
  50. metadata_override: Path | None
  51. dir_model_card: Path
  52. # subclasses should define this!
  53. model_arch: gguf.MODEL_ARCH
  54. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  55. use_temp_file: bool = False, eager: bool = False,
  56. metadata_override: Path | None = None, model_name: str | None = None,
  57. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  58. if type(self) is Model:
  59. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  60. self.dir_model = dir_model
  61. self.ftype = ftype
  62. self.fname_out = fname_out
  63. self.is_big_endian = is_big_endian
  64. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  65. self.use_temp_file = use_temp_file
  66. self.lazy = not eager
  67. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  68. self.is_safetensors = len(self.part_names) > 0
  69. if not self.is_safetensors:
  70. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  71. self.hparams = Model.load_hparams(self.dir_model)
  72. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  73. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  74. self.tensor_names = None
  75. self.metadata_override = metadata_override
  76. self.model_name = model_name
  77. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  78. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  79. if self.ftype == gguf.LlamaFileType.GUESSED:
  80. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  81. _, first_tensor = next(self.get_tensors())
  82. if first_tensor.dtype == torch.float16:
  83. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  84. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  85. else:
  86. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  88. # Configure GGUF Writer
  89. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  90. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  91. @classmethod
  92. def __init_subclass__(cls):
  93. # can't use an abstract property, because overriding it without type errors
  94. # would require using decorated functions instead of simply defining the property
  95. if "model_arch" not in cls.__dict__:
  96. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  97. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  98. key = next((k for k in keys if k in self.hparams), None)
  99. if key is not None:
  100. return self.hparams[key]
  101. if optional:
  102. return None
  103. raise KeyError(f"could not find any of: {keys}")
  104. def set_vocab(self):
  105. self._set_vocab_gpt2()
  106. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  107. tensor_names_from_parts: set[str] = set()
  108. if len(self.part_names) > 1:
  109. self.tensor_names = set()
  110. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  111. index_name += ".index.json"
  112. logger.info(f"gguf: loading model weight map from '{index_name}'")
  113. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  114. index: dict[str, Any] = json.load(f)
  115. weight_map = index.get("weight_map")
  116. if weight_map is None or not isinstance(weight_map, dict):
  117. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  118. self.tensor_names.update(weight_map.keys())
  119. else:
  120. self.tensor_names = tensor_names_from_parts
  121. for part_name in self.part_names:
  122. logger.info(f"gguf: loading model part '{part_name}'")
  123. ctx: ContextManager[Any]
  124. if self.is_safetensors:
  125. from safetensors import safe_open
  126. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  127. else:
  128. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  129. with ctx as model_part:
  130. tensor_names_from_parts.update(model_part.keys())
  131. for name in model_part.keys():
  132. if self.is_safetensors:
  133. if self.lazy:
  134. data = model_part.get_slice(name)
  135. data = LazyTorchTensor.from_safetensors_slice(data)
  136. else:
  137. data = model_part.get_tensor(name)
  138. else:
  139. data = model_part[name]
  140. if self.lazy:
  141. data = LazyTorchTensor.from_eager(data)
  142. yield name, data
  143. # only verify tensor name presence; it doesn't matter if they are not in the right files
  144. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  145. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  146. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  147. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  148. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  149. name: str = gguf.TENSOR_NAMES[key]
  150. if "{bid}" in name:
  151. assert bid is not None
  152. name = name.format(bid=bid)
  153. return name + suffix
  154. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  155. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  156. return False
  157. key_name: str = gguf.TENSOR_NAMES[key]
  158. if "{bid}" in key_name:
  159. if bid is None:
  160. return False
  161. key_name = key_name.format(bid=bid)
  162. else:
  163. if bid is not None:
  164. return False
  165. return name == (key_name + suffix)
  166. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  167. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  168. if new_name is None:
  169. raise ValueError(f"Can not map tensor {name!r}")
  170. return new_name
  171. def set_gguf_parameters(self):
  172. self.gguf_writer.add_block_count(self.block_count)
  173. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  174. self.gguf_writer.add_context_length(n_ctx)
  175. logger.info(f"gguf: context length = {n_ctx}")
  176. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  177. self.gguf_writer.add_embedding_length(n_embd)
  178. logger.info(f"gguf: embedding length = {n_embd}")
  179. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  180. self.gguf_writer.add_feed_forward_length(n_ff)
  181. logger.info(f"gguf: feed forward length = {n_ff}")
  182. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  183. self.gguf_writer.add_head_count(n_head)
  184. logger.info(f"gguf: head count = {n_head}")
  185. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  186. self.gguf_writer.add_head_count_kv(n_head_kv)
  187. logger.info(f"gguf: key-value head count = {n_head_kv}")
  188. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  189. self.gguf_writer.add_rope_freq_base(rope_theta)
  190. logger.info(f"gguf: rope theta = {rope_theta}")
  191. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  192. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  193. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  194. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  195. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  196. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  197. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  198. self.gguf_writer.add_expert_count(n_experts)
  199. logger.info(f"gguf: expert count = {n_experts}")
  200. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  201. self.gguf_writer.add_expert_used_count(n_experts_used)
  202. logger.info(f"gguf: experts used count = {n_experts_used}")
  203. self.gguf_writer.add_file_type(self.ftype)
  204. logger.info(f"gguf: file type = {self.ftype}")
  205. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  206. del bid # unused
  207. return [(self.map_tensor_name(name), data_torch)]
  208. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  209. del name, new_name, bid, n_dims # unused
  210. return False
  211. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  212. del name, new_name, bid, n_dims # unused
  213. return False
  214. def prepare_tensors(self):
  215. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  216. for name, data_torch in self.get_tensors():
  217. # we don't need these
  218. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  219. continue
  220. old_dtype = data_torch.dtype
  221. # convert any unsupported data types to float32
  222. if data_torch.dtype not in (torch.float16, torch.float32):
  223. data_torch = data_torch.to(torch.float32)
  224. # use the first number-like part of the tensor name as the block id
  225. bid = None
  226. for part in name.split("."):
  227. if part.isdecimal():
  228. bid = int(part)
  229. break
  230. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  231. data: np.ndarray # type hint
  232. n_dims = len(data.shape)
  233. data_dtype = data.dtype
  234. data_qtype: gguf.GGMLQuantizationType | None = None
  235. # when both are True, f32 should win
  236. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  237. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  240. extra_f32 = any(cond for cond in (
  241. extra_f32,
  242. n_dims == 1,
  243. new_name.endswith("_norm.weight"),
  244. ))
  245. # Some tensor types are always in float32
  246. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. ))
  251. # if f16 desired, convert any float32 2-dim weight tensors to float16
  252. extra_f16 = any(cond for cond in (
  253. extra_f16,
  254. (name.endswith(".weight") and n_dims >= 2),
  255. ))
  256. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  257. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  258. data = gguf.quantize_bf16(data)
  259. assert data.dtype == np.int16
  260. data_qtype = gguf.GGMLQuantizationType.BF16
  261. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  262. data = gguf.quantize_q8_0(data)
  263. assert data.dtype == np.uint8
  264. data_qtype = gguf.GGMLQuantizationType.Q8_0
  265. else: # default to float16 for quantized tensors
  266. if data_dtype != np.float16:
  267. data = data.astype(np.float16)
  268. data_qtype = gguf.GGMLQuantizationType.F16
  269. if data_qtype is None: # by default, convert to float32
  270. if data_dtype != np.float32:
  271. data = data.astype(np.float32)
  272. data_qtype = gguf.GGMLQuantizationType.F32
  273. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  274. # reverse shape to make it similar to the internal ggml dimension order
  275. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  276. # n_dims is implicit in the shape
  277. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  278. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  279. def set_type(self):
  280. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  281. def prepare_metadata(self, vocab_only: bool):
  282. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  283. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  284. # Fallback to model directory name if metadata name is still missing
  285. if self.metadata.name is None:
  286. self.metadata.name = self.dir_model.name
  287. # Generate parameter weight class (useful for leader boards) if not yet determined
  288. if self.metadata.size_label is None and total_params > 0:
  289. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  290. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  291. output_type: str = self.ftype.name.partition("_")[2]
  292. # Filename Output
  293. if self.fname_out.is_dir():
  294. # Generate default filename based on model specification and available metadata
  295. if not vocab_only:
  296. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  297. else:
  298. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  299. # Use the default filename
  300. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  301. else:
  302. # Output path is a custom defined templated filename
  303. # Note: `not is_dir()` is used because `.is_file()` will not detect
  304. # file template strings as it doesn't actually exist as a file
  305. # Process templated file name with the output ftype, useful with the "auto" ftype
  306. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  307. self.set_type()
  308. logger.info("Set meta model")
  309. self.metadata.set_gguf_meta_model(self.gguf_writer)
  310. logger.info("Set model parameters")
  311. self.set_gguf_parameters()
  312. logger.info("Set model tokenizer")
  313. self.set_vocab()
  314. logger.info("Set model quantization version")
  315. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  316. def write(self):
  317. self.prepare_tensors()
  318. self.prepare_metadata(vocab_only=False)
  319. self.gguf_writer.write_header_to_file(path=self.fname_out)
  320. self.gguf_writer.write_kv_data_to_file()
  321. self.gguf_writer.write_tensors_to_file(progress=True)
  322. self.gguf_writer.close()
  323. def write_vocab(self):
  324. if len(self.gguf_writer.tensors) != 1:
  325. raise ValueError('Splitting the vocabulary is not supported')
  326. self.prepare_metadata(vocab_only=True)
  327. self.gguf_writer.write_header_to_file(path=self.fname_out)
  328. self.gguf_writer.write_kv_data_to_file()
  329. self.gguf_writer.close()
  330. @staticmethod
  331. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  332. part_names: list[str] = []
  333. for filename in os.listdir(dir_model):
  334. if filename.startswith(prefix) and filename.endswith(suffix):
  335. part_names.append(filename)
  336. part_names.sort()
  337. return part_names
  338. @staticmethod
  339. def load_hparams(dir_model: Path):
  340. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  341. return json.load(f)
  342. @classmethod
  343. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  344. assert names
  345. def func(modelcls: AnyModel) -> AnyModel:
  346. for name in names:
  347. cls._model_classes[name] = modelcls
  348. return modelcls
  349. return func
  350. @classmethod
  351. def from_model_architecture(cls, arch: str) -> type[Model]:
  352. try:
  353. return cls._model_classes[arch]
  354. except KeyError:
  355. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  356. def does_token_look_special(self, token: str | bytes) -> bool:
  357. if isinstance(token, (bytes, bytearray)):
  358. token_text = token.decode(encoding="utf-8")
  359. elif isinstance(token, memoryview):
  360. token_text = token.tobytes().decode(encoding="utf-8")
  361. else:
  362. token_text = token
  363. # Some models mark some added tokens which ought to be control tokens as not special.
  364. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  365. seems_special = token_text in (
  366. "<pad>", # deepseek-coder
  367. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  368. )
  369. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  370. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  371. # TODO: should these be marked as UNUSED instead? (maybe not)
  372. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  373. return seems_special
  374. # used for GPT-2 BPE and WordPiece vocabs
  375. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  376. tokens: list[str] = []
  377. toktypes: list[int] = []
  378. from transformers import AutoTokenizer
  379. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  380. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  381. assert max(tokenizer.vocab.values()) < vocab_size
  382. tokpre = self.get_vocab_base_pre(tokenizer)
  383. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  384. added_vocab = tokenizer.get_added_vocab()
  385. for i in range(vocab_size):
  386. if i not in reverse_vocab:
  387. tokens.append(f"[PAD{i}]")
  388. toktypes.append(gguf.TokenType.UNUSED)
  389. else:
  390. token: str = reverse_vocab[i]
  391. if token in added_vocab:
  392. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  393. toktypes.append(gguf.TokenType.CONTROL)
  394. else:
  395. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  396. toktypes.append(gguf.TokenType.USER_DEFINED)
  397. else:
  398. toktypes.append(gguf.TokenType.NORMAL)
  399. tokens.append(token)
  400. return tokens, toktypes, tokpre
  401. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  402. # do not modify it manually!
  403. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  404. # Marker: Start get_vocab_base_pre
  405. def get_vocab_base_pre(self, tokenizer) -> str:
  406. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  407. # is specific for the BPE pre-tokenizer used by the model
  408. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  409. # use in llama.cpp to implement the same pre-tokenizer
  410. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  411. chktok = tokenizer.encode(chktxt)
  412. chkhsh = sha256(str(chktok).encode()).hexdigest()
  413. logger.debug(f"chktok: {chktok}")
  414. logger.debug(f"chkhsh: {chkhsh}")
  415. res = None
  416. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  417. # or pull the latest version of the model from Huggingface
  418. # don't edit the hashes manually!
  419. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  420. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  421. res = "llama-bpe"
  422. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  423. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  424. res = "deepseek-llm"
  425. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  426. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  427. res = "deepseek-coder"
  428. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  429. # ref: https://huggingface.co/tiiuae/falcon-7b
  430. res = "falcon"
  431. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  432. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  433. res = "bert-bge"
  434. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  435. # ref: https://huggingface.co/mosaicml/mpt-7b
  436. res = "mpt"
  437. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  438. # ref: https://huggingface.co/bigcode/starcoder2-3b
  439. res = "starcoder"
  440. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  441. # ref: https://huggingface.co/openai-community/gpt2
  442. res = "gpt-2"
  443. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  444. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  445. res = "stablelm2"
  446. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  447. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  448. res = "refact"
  449. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  450. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  451. res = "command-r"
  452. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  453. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  454. res = "qwen2"
  455. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  456. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  457. res = "olmo"
  458. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  459. # ref: https://huggingface.co/databricks/dbrx-base
  460. res = "dbrx"
  461. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  462. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  463. res = "jina-v2-en"
  464. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  465. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  466. res = "jina-v2-es"
  467. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  468. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  469. res = "jina-v2-de"
  470. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  471. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  472. res = "smaug-bpe"
  473. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  474. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  475. res = "poro-chat"
  476. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  477. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  478. res = "jina-v2-code"
  479. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  480. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  481. res = "chatglm-bpe"
  482. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  483. # ref: https://huggingface.co/LumiOpen/Viking-7B
  484. res = "viking"
  485. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  486. # ref: https://huggingface.co/core42/jais-13b
  487. res = "jais"
  488. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  489. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  490. res = "tekken"
  491. if res is None:
  492. logger.warning("\n")
  493. logger.warning("**************************************************************************************")
  494. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  495. logger.warning("** There are 2 possible reasons for this:")
  496. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  497. logger.warning("** - the pre-tokenization config has changed upstream")
  498. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  499. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  500. logger.warning("**")
  501. logger.warning(f"** chkhsh: {chkhsh}")
  502. logger.warning("**************************************************************************************")
  503. logger.warning("\n")
  504. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  505. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  506. logger.debug(f"chkhsh: {chkhsh}")
  507. return res
  508. # Marker: End get_vocab_base_pre
  509. def _set_vocab_gpt2(self) -> None:
  510. tokens, toktypes, tokpre = self.get_vocab_base()
  511. self.gguf_writer.add_tokenizer_model("gpt2")
  512. self.gguf_writer.add_tokenizer_pre(tokpre)
  513. self.gguf_writer.add_token_list(tokens)
  514. self.gguf_writer.add_token_types(toktypes)
  515. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  516. special_vocab.add_to_gguf(self.gguf_writer)
  517. def _set_vocab_qwen(self):
  518. dir_model = self.dir_model
  519. hparams = self.hparams
  520. tokens: list[str] = []
  521. toktypes: list[int] = []
  522. from transformers import AutoTokenizer
  523. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  524. vocab_size = hparams["vocab_size"]
  525. assert max(tokenizer.get_vocab().values()) < vocab_size
  526. tokpre = self.get_vocab_base_pre(tokenizer)
  527. merges = []
  528. vocab = {}
  529. mergeable_ranks = tokenizer.mergeable_ranks
  530. for token, rank in mergeable_ranks.items():
  531. vocab[QwenModel.token_bytes_to_string(token)] = rank
  532. if len(token) == 1:
  533. continue
  534. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  535. assert len(merged) == 2
  536. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  537. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  538. added_vocab = tokenizer.special_tokens
  539. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  540. for i in range(vocab_size):
  541. if i not in reverse_vocab:
  542. tokens.append(f"[PAD{i}]")
  543. toktypes.append(gguf.TokenType.UNUSED)
  544. elif reverse_vocab[i] in added_vocab:
  545. tokens.append(reverse_vocab[i])
  546. toktypes.append(gguf.TokenType.CONTROL)
  547. else:
  548. tokens.append(reverse_vocab[i])
  549. toktypes.append(gguf.TokenType.NORMAL)
  550. self.gguf_writer.add_tokenizer_model("gpt2")
  551. self.gguf_writer.add_tokenizer_pre(tokpre)
  552. self.gguf_writer.add_token_list(tokens)
  553. self.gguf_writer.add_token_types(toktypes)
  554. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  555. special_vocab.merges = merges
  556. # only add special tokens when they were not already loaded from config.json
  557. if len(special_vocab.special_token_ids) == 0:
  558. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  559. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  560. # this one is usually not in config.json anyway
  561. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  562. special_vocab.add_to_gguf(self.gguf_writer)
  563. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  564. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  565. self.gguf_writer.add_tokenizer_model("llama")
  566. self.gguf_writer.add_tokenizer_pre("default")
  567. self.gguf_writer.add_token_list(tokens)
  568. self.gguf_writer.add_token_scores(scores)
  569. self.gguf_writer.add_token_types(toktypes)
  570. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  571. special_vocab.add_to_gguf(self.gguf_writer)
  572. def _create_vocab_sentencepiece(self):
  573. from sentencepiece import SentencePieceProcessor
  574. tokenizer_path = self.dir_model / 'tokenizer.model'
  575. if not tokenizer_path.is_file():
  576. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  577. tokenizer = SentencePieceProcessor()
  578. tokenizer.LoadFromFile(str(tokenizer_path))
  579. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  580. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  581. scores: list[float] = [-10000.0] * vocab_size
  582. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  583. for token_id in range(tokenizer.vocab_size()):
  584. piece = tokenizer.IdToPiece(token_id)
  585. text = piece.encode("utf-8")
  586. score = tokenizer.GetScore(token_id)
  587. toktype = SentencePieceTokenTypes.NORMAL
  588. if tokenizer.IsUnknown(token_id):
  589. toktype = SentencePieceTokenTypes.UNKNOWN
  590. elif tokenizer.IsControl(token_id):
  591. toktype = SentencePieceTokenTypes.CONTROL
  592. elif tokenizer.IsUnused(token_id):
  593. toktype = SentencePieceTokenTypes.UNUSED
  594. elif tokenizer.IsByte(token_id):
  595. toktype = SentencePieceTokenTypes.BYTE
  596. tokens[token_id] = text
  597. scores[token_id] = score
  598. toktypes[token_id] = toktype
  599. added_tokens_file = self.dir_model / 'added_tokens.json'
  600. if added_tokens_file.is_file():
  601. with open(added_tokens_file, "r", encoding="utf-8") as f:
  602. added_tokens_json = json.load(f)
  603. for key in added_tokens_json:
  604. token_id = added_tokens_json[key]
  605. if (token_id >= vocab_size):
  606. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  607. continue
  608. tokens[token_id] = key.encode("utf-8")
  609. scores[token_id] = -1000.0
  610. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  611. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  612. if tokenizer_config_file.is_file():
  613. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  614. tokenizer_config_json = json.load(f)
  615. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  616. for token_id, token_data in added_tokens_decoder.items():
  617. token_id = int(token_id)
  618. token: str = token_data["content"]
  619. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  620. if tokens[token_id] != token.encode("utf-8"):
  621. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  622. if token_data.get("special") or self.does_token_look_special(token):
  623. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  624. else:
  625. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  626. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  627. scores[token_id] = -1000.0
  628. tokens[token_id] = token.encode("utf-8")
  629. if vocab_size > len(tokens):
  630. pad_count = vocab_size - len(tokens)
  631. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  632. for i in range(1, pad_count + 1):
  633. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  634. scores.append(-1000.0)
  635. toktypes.append(SentencePieceTokenTypes.UNUSED)
  636. return tokens, scores, toktypes
  637. def _set_vocab_llama_hf(self):
  638. vocab = gguf.LlamaHfVocab(self.dir_model)
  639. tokens = []
  640. scores = []
  641. toktypes = []
  642. for text, score, toktype in vocab.all_tokens():
  643. tokens.append(text)
  644. scores.append(score)
  645. toktypes.append(toktype)
  646. assert len(tokens) == vocab.vocab_size
  647. self.gguf_writer.add_tokenizer_model("llama")
  648. self.gguf_writer.add_tokenizer_pre("default")
  649. self.gguf_writer.add_token_list(tokens)
  650. self.gguf_writer.add_token_scores(scores)
  651. self.gguf_writer.add_token_types(toktypes)
  652. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  653. special_vocab.add_to_gguf(self.gguf_writer)
  654. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  655. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  656. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  657. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  658. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  659. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  660. assert field # tokenizer model
  661. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  662. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  663. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  664. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  665. assert field # token list
  666. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  667. if model_name == "llama-spm":
  668. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  669. assert field # token scores
  670. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  671. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  672. assert field # token types
  673. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  674. if model_name != "llama-spm":
  675. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  676. assert field # token merges
  677. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  678. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  679. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  680. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  681. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  682. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  683. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  684. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  685. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  686. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  687. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  688. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  689. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  690. @Model.register("GPTNeoXForCausalLM")
  691. class GPTNeoXModel(Model):
  692. model_arch = gguf.MODEL_ARCH.GPTNEOX
  693. def set_gguf_parameters(self):
  694. block_count = self.hparams["num_hidden_layers"]
  695. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  696. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  697. self.gguf_writer.add_block_count(block_count)
  698. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  699. self.gguf_writer.add_rope_dimension_count(
  700. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  701. )
  702. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  703. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  704. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  706. del bid # unused
  707. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  708. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  709. tensors: list[tuple[str, Tensor]] = []
  710. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  711. # Map bloom-style qkv_linear to gpt-style qkv_linear
  712. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  713. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  714. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  715. data_torch = torch.cat(
  716. (
  717. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  718. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  719. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  720. ),
  721. dim=0,
  722. )
  723. logger.info("re-format attention.linear_qkv.weight")
  724. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  725. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  726. data_torch = torch.cat(
  727. (
  728. qkv_bias[:, 0, :].reshape((n_embed,)),
  729. qkv_bias[:, 1, :].reshape((n_embed,)),
  730. qkv_bias[:, 2, :].reshape((n_embed,)),
  731. ),
  732. dim=0,
  733. )
  734. logger.info("re-format attention.linear_qkv.bias")
  735. tensors.append((self.map_tensor_name(name), data_torch))
  736. return tensors
  737. @Model.register("BloomForCausalLM")
  738. class BloomModel(Model):
  739. model_arch = gguf.MODEL_ARCH.BLOOM
  740. def set_gguf_parameters(self):
  741. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  742. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  743. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  744. self.gguf_writer.add_embedding_length(n_embed)
  745. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  746. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  747. self.gguf_writer.add_head_count(n_head)
  748. self.gguf_writer.add_head_count_kv(n_head)
  749. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  750. self.gguf_writer.add_file_type(self.ftype)
  751. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  752. del bid # unused
  753. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  754. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  755. name = re.sub(r'transformer\.', '', name)
  756. tensors: list[tuple[str, Tensor]] = []
  757. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  758. # Map bloom-style qkv_linear to gpt-style qkv_linear
  759. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  760. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  761. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  762. data_torch = torch.cat(
  763. (
  764. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  765. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  766. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  767. ),
  768. dim=0,
  769. )
  770. logger.info("re-format attention.linear_qkv.weight")
  771. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  772. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  773. data_torch = torch.cat(
  774. (
  775. qkv_bias[:, 0, :].reshape((n_embed,)),
  776. qkv_bias[:, 1, :].reshape((n_embed,)),
  777. qkv_bias[:, 2, :].reshape((n_embed,)),
  778. ),
  779. dim=0,
  780. )
  781. logger.info("re-format attention.linear_qkv.bias")
  782. tensors.append((self.map_tensor_name(name), data_torch))
  783. if name == "word_embeddings.weight":
  784. assert self.tensor_names is not None
  785. # TODO: tie them at runtime, don't duplicate in the model file
  786. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  787. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  788. return tensors
  789. @Model.register("MPTForCausalLM")
  790. class MPTModel(Model):
  791. model_arch = gguf.MODEL_ARCH.MPT
  792. def set_vocab(self):
  793. try:
  794. self._set_vocab_gpt2()
  795. except Exception:
  796. # Fallback for SEA-LION model
  797. self._set_vocab_sentencepiece()
  798. self.gguf_writer.add_add_bos_token(False)
  799. self.gguf_writer.add_pad_token_id(3)
  800. self.gguf_writer.add_eos_token_id(1)
  801. self.gguf_writer.add_unk_token_id(0)
  802. def set_gguf_parameters(self):
  803. block_count = self.hparams["n_layers"]
  804. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  805. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  806. self.gguf_writer.add_block_count(block_count)
  807. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  808. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  809. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  810. self.gguf_writer.add_head_count_kv(kv_n_heads)
  811. self.gguf_writer.add_layer_norm_eps(1e-5)
  812. if self.hparams["attn_config"]["clip_qkv"] is not None:
  813. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  814. if self.hparams["attn_config"]["alibi"]:
  815. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  816. else:
  817. self.gguf_writer.add_max_alibi_bias(0.0)
  818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  819. del bid # unused
  820. if "scales" in name:
  821. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  822. new_name = new_name.replace("scales", "act.scales")
  823. else:
  824. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  825. return [(new_name, data_torch)]
  826. @Model.register("OrionForCausalLM")
  827. class OrionModel(Model):
  828. model_arch = gguf.MODEL_ARCH.ORION
  829. def set_vocab(self):
  830. self._set_vocab_sentencepiece()
  831. def set_gguf_parameters(self):
  832. block_count = self.hparams["num_hidden_layers"]
  833. head_count = self.hparams["num_attention_heads"]
  834. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  835. ctx_length = 0
  836. if "max_sequence_length" in self.hparams:
  837. ctx_length = self.hparams["max_sequence_length"]
  838. elif "max_position_embeddings" in self.hparams:
  839. ctx_length = self.hparams["max_position_embeddings"]
  840. elif "model_max_length" in self.hparams:
  841. ctx_length = self.hparams["model_max_length"]
  842. else:
  843. raise ValueError("gguf: can not find ctx length parameter.")
  844. self.gguf_writer.add_file_type(self.ftype)
  845. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  846. self.gguf_writer.add_context_length(ctx_length)
  847. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  848. self.gguf_writer.add_block_count(block_count)
  849. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  850. self.gguf_writer.add_head_count(head_count)
  851. self.gguf_writer.add_head_count_kv(head_count_kv)
  852. # note: config provides rms norm but it is actually layer norm
  853. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  854. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  855. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  856. class BaichuanModel(Model):
  857. model_arch = gguf.MODEL_ARCH.BAICHUAN
  858. def set_vocab(self):
  859. self._set_vocab_sentencepiece()
  860. def set_gguf_parameters(self):
  861. block_count = self.hparams["num_hidden_layers"]
  862. head_count = self.hparams["num_attention_heads"]
  863. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  864. ctx_length = 0
  865. if "max_sequence_length" in self.hparams:
  866. ctx_length = self.hparams["max_sequence_length"]
  867. elif "max_position_embeddings" in self.hparams:
  868. ctx_length = self.hparams["max_position_embeddings"]
  869. elif "model_max_length" in self.hparams:
  870. ctx_length = self.hparams["model_max_length"]
  871. else:
  872. raise ValueError("gguf: can not find ctx length parameter.")
  873. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  874. self.gguf_writer.add_context_length(ctx_length)
  875. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  876. self.gguf_writer.add_block_count(block_count)
  877. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  878. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  879. self.gguf_writer.add_head_count(head_count)
  880. self.gguf_writer.add_head_count_kv(head_count_kv)
  881. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  882. self.gguf_writer.add_file_type(self.ftype)
  883. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  884. if self.hparams["rope_scaling"].get("type") == "linear":
  885. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  886. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  888. head_count = self.hparams["num_attention_heads"]
  889. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  890. tensors: list[tuple[str, Tensor]] = []
  891. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  892. logger.info(f"Unpacking and permuting layer {bid}")
  893. tensors = [
  894. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  895. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  896. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  897. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  898. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  899. self._reverse_hf_part(data_torch, 2)),
  900. ]
  901. else:
  902. tensors = [(self.map_tensor_name(name), data_torch)]
  903. return tensors
  904. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  905. if n_kv_head is not None and n_head != n_kv_head:
  906. n_head //= n_kv_head
  907. return (
  908. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  909. .swapaxes(1, 2)
  910. .reshape(weights.shape)
  911. )
  912. def _reverse_hf_permute_part(
  913. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  914. ) -> Tensor:
  915. r = weights.shape[0] // 3
  916. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  917. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  918. r = weights.shape[0] // 3
  919. return weights[r * n_part:r * n_part + r, ...]
  920. @Model.register("XverseForCausalLM")
  921. class XverseModel(Model):
  922. model_arch = gguf.MODEL_ARCH.XVERSE
  923. def set_vocab(self):
  924. assert (self.dir_model / "tokenizer.json").is_file()
  925. dir_model = self.dir_model
  926. hparams = self.hparams
  927. tokens: list[bytes] = []
  928. toktypes: list[int] = []
  929. from transformers import AutoTokenizer
  930. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  931. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  932. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  933. # because vocab_size is the count of items, and indexes start at 0.
  934. max_vocab_index = max(tokenizer.get_vocab().values())
  935. if max_vocab_index >= vocab_size:
  936. raise ValueError("Vocabulary size exceeds expected maximum size.")
  937. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  938. added_vocab = tokenizer.get_added_vocab()
  939. for token_id in range(vocab_size):
  940. token_text = reverse_vocab[token_id].encode('utf-8')
  941. # replace "\x00" to string with length > 0
  942. if token_text == b"\x00":
  943. toktype = gguf.TokenType.BYTE # special
  944. token_text = f"<{token_text}>".encode('utf-8')
  945. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  946. toktype = gguf.TokenType.BYTE # special
  947. elif reverse_vocab[token_id] in added_vocab:
  948. if tokenizer.added_tokens_decoder[token_id].special:
  949. toktype = gguf.TokenType.CONTROL
  950. else:
  951. toktype = gguf.TokenType.USER_DEFINED
  952. else:
  953. toktype = gguf.TokenType.NORMAL
  954. tokens.append(token_text)
  955. toktypes.append(toktype)
  956. self.gguf_writer.add_tokenizer_model("llama")
  957. self.gguf_writer.add_tokenizer_pre("default")
  958. self.gguf_writer.add_token_list(tokens)
  959. self.gguf_writer.add_token_types(toktypes)
  960. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  961. special_vocab.add_to_gguf(self.gguf_writer)
  962. def set_gguf_parameters(self):
  963. block_count = self.hparams["num_hidden_layers"]
  964. head_count = self.hparams["num_attention_heads"]
  965. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  966. ctx_length = 0
  967. if "max_sequence_length" in self.hparams:
  968. ctx_length = self.hparams["max_sequence_length"]
  969. elif "max_position_embeddings" in self.hparams:
  970. ctx_length = self.hparams["max_position_embeddings"]
  971. elif "model_max_length" in self.hparams:
  972. ctx_length = self.hparams["model_max_length"]
  973. else:
  974. raise ValueError("gguf: can not find ctx length parameter.")
  975. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  976. self.gguf_writer.add_context_length(ctx_length)
  977. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  978. self.gguf_writer.add_block_count(block_count)
  979. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  980. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  981. self.gguf_writer.add_head_count(head_count)
  982. self.gguf_writer.add_head_count_kv(head_count_kv)
  983. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  984. self.gguf_writer.add_file_type(self.ftype)
  985. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  986. if self.hparams["rope_scaling"].get("type") == "linear":
  987. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  988. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  989. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  990. del bid # unused
  991. head_count = self.hparams["num_attention_heads"]
  992. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  993. # HF models permute some of the tensors, so we need to undo that
  994. if name.endswith("q_proj.weight"):
  995. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  996. if name.endswith("k_proj.weight"):
  997. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  998. return [(self.map_tensor_name(name), data_torch)]
  999. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1000. if n_kv_head is not None and n_head != n_kv_head:
  1001. n_head //= n_kv_head
  1002. return (
  1003. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1004. .swapaxes(1, 2)
  1005. .reshape(weights.shape)
  1006. )
  1007. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1008. class FalconModel(Model):
  1009. model_arch = gguf.MODEL_ARCH.FALCON
  1010. def set_gguf_parameters(self):
  1011. block_count = self.hparams.get("num_hidden_layers")
  1012. if block_count is None:
  1013. block_count = self.hparams["n_layer"] # old name
  1014. n_head = self.hparams.get("num_attention_heads")
  1015. if n_head is None:
  1016. n_head = self.hparams["n_head"] # old name
  1017. n_head_kv = self.hparams.get("num_kv_heads")
  1018. if n_head_kv is None:
  1019. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1020. self.gguf_writer.add_context_length(2048) # not in config.json
  1021. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1022. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1023. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1024. self.gguf_writer.add_block_count(block_count)
  1025. self.gguf_writer.add_head_count(n_head)
  1026. self.gguf_writer.add_head_count_kv(n_head_kv)
  1027. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1028. self.gguf_writer.add_file_type(self.ftype)
  1029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1030. del bid # unused
  1031. # QKV tensor transform
  1032. # The original query_key_value tensor contains n_head_kv "kv groups",
  1033. # each consisting of n_head/n_head_kv query weights followed by one key
  1034. # and one value weight (shared by all query heads in the kv group).
  1035. # This layout makes it a big pain to work with in GGML.
  1036. # So we rearrange them here,, so that we have n_head query weights
  1037. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1038. # in contiguous fashion.
  1039. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1040. if "query_key_value" in name:
  1041. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1042. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1043. head_dim = self.hparams["hidden_size"] // n_head
  1044. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1045. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1046. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1047. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1048. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1049. return [(self.map_tensor_name(name), data_torch)]
  1050. @Model.register("GPTBigCodeForCausalLM")
  1051. class StarCoderModel(Model):
  1052. model_arch = gguf.MODEL_ARCH.STARCODER
  1053. def set_gguf_parameters(self):
  1054. block_count = self.hparams["n_layer"]
  1055. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1056. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1057. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1058. self.gguf_writer.add_block_count(block_count)
  1059. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1060. self.gguf_writer.add_head_count_kv(1)
  1061. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1062. self.gguf_writer.add_file_type(self.ftype)
  1063. @Model.register("GPTRefactForCausalLM")
  1064. class RefactModel(Model):
  1065. model_arch = gguf.MODEL_ARCH.REFACT
  1066. def set_vocab(self):
  1067. super().set_vocab()
  1068. # TODO: how to determine special FIM tokens automatically?
  1069. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1070. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1071. special_vocab._set_special_token("prefix", 1)
  1072. special_vocab._set_special_token("suffix", 3)
  1073. special_vocab._set_special_token("middle", 2)
  1074. special_vocab.chat_template = None # do not add it twice
  1075. special_vocab.add_to_gguf(self.gguf_writer)
  1076. def set_gguf_parameters(self):
  1077. hidden_dim = self.hparams["n_embd"]
  1078. inner_dim = 4 * hidden_dim
  1079. hidden_dim = int(2 * inner_dim / 3)
  1080. multiple_of = 256
  1081. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1082. block_count = self.hparams["n_layer"]
  1083. # refact uses Alibi. So this is from config.json which might be used by training.
  1084. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1085. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1086. self.gguf_writer.add_feed_forward_length(ff_dim)
  1087. self.gguf_writer.add_block_count(block_count)
  1088. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1089. self.gguf_writer.add_head_count_kv(1)
  1090. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1091. self.gguf_writer.add_file_type(self.ftype)
  1092. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1093. hidden_dim = self.hparams["n_embd"]
  1094. inner_dim = 4 * hidden_dim
  1095. hidden_dim = int(2 * inner_dim / 3)
  1096. multiple_of = 256
  1097. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1098. n_head = self.hparams["n_head"]
  1099. n_head_kv = 1
  1100. head_dim = self.hparams["n_embd"] // n_head
  1101. tensors: list[tuple[str, Tensor]] = []
  1102. if bid is not None:
  1103. if name == f"transformer.h.{bid}.attn.kv.weight":
  1104. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1105. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1106. elif name == f"transformer.h.{bid}.attn.q.weight":
  1107. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1108. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1109. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1110. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1111. if len(tensors) == 0:
  1112. tensors.append((self.map_tensor_name(name), data_torch))
  1113. return tensors
  1114. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1115. class StableLMModel(Model):
  1116. model_arch = gguf.MODEL_ARCH.STABLELM
  1117. def set_vocab(self):
  1118. if (self.dir_model / "tokenizer.json").is_file():
  1119. self._set_vocab_gpt2()
  1120. else:
  1121. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1122. self._set_vocab_qwen()
  1123. def set_gguf_parameters(self):
  1124. hparams = self.hparams
  1125. block_count = hparams["num_hidden_layers"]
  1126. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1127. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1128. self.gguf_writer.add_block_count(block_count)
  1129. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1130. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1131. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1132. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1133. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1134. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1135. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1136. self.gguf_writer.add_file_type(self.ftype)
  1137. _q_norms: list[dict[str, Tensor]] | None = None
  1138. _k_norms: list[dict[str, Tensor]] | None = None
  1139. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1140. n_head = self.hparams["num_attention_heads"]
  1141. n_kv_head = self.hparams["num_key_value_heads"]
  1142. if name.find("q_layernorm.norms") != -1:
  1143. assert bid is not None
  1144. if self._q_norms is None:
  1145. self._q_norms = [{} for _ in range(self.block_count)]
  1146. self._q_norms[bid][name] = data_torch
  1147. if len(self._q_norms[bid]) >= n_head:
  1148. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1149. else:
  1150. return []
  1151. if name.find("k_layernorm.norms") != -1:
  1152. assert bid is not None
  1153. if self._k_norms is None:
  1154. self._k_norms = [{} for _ in range(self.block_count)]
  1155. self._k_norms[bid][name] = data_torch
  1156. if len(self._k_norms[bid]) >= n_kv_head:
  1157. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1158. else:
  1159. return []
  1160. return [(self.map_tensor_name(name), data_torch)]
  1161. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1162. datas: list[Tensor] = []
  1163. # extract the norms in order
  1164. for xid in range(n_head):
  1165. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1166. datas.append(norms[ename])
  1167. del norms[ename]
  1168. data_torch = torch.stack(datas, dim=0)
  1169. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1170. new_name = self.map_tensor_name(merged_name)
  1171. return [(new_name, data_torch)]
  1172. def prepare_tensors(self):
  1173. super().prepare_tensors()
  1174. if self._q_norms is not None or self._k_norms is not None:
  1175. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1176. norms = (
  1177. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1178. ) + (
  1179. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1180. )
  1181. if len(norms) > 0:
  1182. raise ValueError(f"Unprocessed norms: {norms}")
  1183. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1184. class LlamaModel(Model):
  1185. model_arch = gguf.MODEL_ARCH.LLAMA
  1186. def set_vocab(self):
  1187. try:
  1188. self._set_vocab_sentencepiece()
  1189. except FileNotFoundError:
  1190. try:
  1191. self._set_vocab_llama_hf()
  1192. except (FileNotFoundError, TypeError):
  1193. # Llama 3
  1194. self._set_vocab_gpt2()
  1195. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1196. if self.hparams.get("vocab_size", 32000) == 32016:
  1197. special_vocab = gguf.SpecialVocab(
  1198. self.dir_model, load_merges=False,
  1199. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1200. )
  1201. special_vocab._set_special_token("prefix", 32007)
  1202. special_vocab._set_special_token("suffix", 32008)
  1203. special_vocab._set_special_token("middle", 32009)
  1204. special_vocab._set_special_token("eot", 32010)
  1205. special_vocab.add_to_gguf(self.gguf_writer)
  1206. def set_gguf_parameters(self):
  1207. super().set_gguf_parameters()
  1208. hparams = self.hparams
  1209. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1210. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1211. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1212. if self.hparams["rope_scaling"].get("type") == "linear":
  1213. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1214. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1215. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1216. if tokenizer_config_file.is_file():
  1217. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1218. tokenizer_config_json = json.load(f)
  1219. if "add_prefix_space" in tokenizer_config_json:
  1220. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1221. # Apply to granite small models only
  1222. if self.hparams.get("vocab_size", 32000) == 49152:
  1223. self.gguf_writer.add_add_bos_token(False)
  1224. @staticmethod
  1225. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1226. if n_head_kv is not None and n_head != n_head_kv:
  1227. n_head = n_head_kv
  1228. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1229. .swapaxes(1, 2)
  1230. .reshape(weights.shape))
  1231. _experts: list[dict[str, Tensor]] | None = None
  1232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1233. n_head = self.hparams["num_attention_heads"]
  1234. n_kv_head = self.hparams.get("num_key_value_heads")
  1235. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1236. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1237. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1238. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1239. # process the experts separately
  1240. if name.find("block_sparse_moe.experts") != -1:
  1241. n_experts = self.hparams["num_local_experts"]
  1242. assert bid is not None
  1243. if self._experts is None:
  1244. self._experts = [{} for _ in range(self.block_count)]
  1245. self._experts[bid][name] = data_torch
  1246. if len(self._experts[bid]) >= n_experts * 3:
  1247. tensors: list[tuple[str, Tensor]] = []
  1248. # merge the experts into a single 3d tensor
  1249. for wid in ["w1", "w2", "w3"]:
  1250. datas: list[Tensor] = []
  1251. for xid in range(n_experts):
  1252. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1253. datas.append(self._experts[bid][ename])
  1254. del self._experts[bid][ename]
  1255. data_torch = torch.stack(datas, dim=0)
  1256. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1257. new_name = self.map_tensor_name(merged_name)
  1258. tensors.append((new_name, data_torch))
  1259. return tensors
  1260. else:
  1261. return []
  1262. return [(self.map_tensor_name(name), data_torch)]
  1263. def prepare_tensors(self):
  1264. super().prepare_tensors()
  1265. if self._experts is not None:
  1266. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1267. experts = [k for d in self._experts for k in d.keys()]
  1268. if len(experts) > 0:
  1269. raise ValueError(f"Unprocessed experts: {experts}")
  1270. @Model.register("BitnetForCausalLM")
  1271. class BitnetModel(Model):
  1272. model_arch = gguf.MODEL_ARCH.BITNET
  1273. def set_vocab(self):
  1274. self._set_vocab_sentencepiece()
  1275. def set_gguf_parameters(self):
  1276. super().set_gguf_parameters()
  1277. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1278. self.gguf_writer.add_rope_scaling_factor(1.0)
  1279. def weight_quant(self, weight):
  1280. dtype = weight.dtype
  1281. weight = weight.float()
  1282. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1283. weight = (weight * s).round().clamp(-1, 1) / s
  1284. scale = weight.abs().max().unsqueeze(0)
  1285. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1286. weight = torch.sign(weight).type(dtype)
  1287. return weight.type(dtype), scale.type(torch.float32)
  1288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1289. new_name = self.map_tensor_name(name)
  1290. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1291. gguf.MODEL_TENSOR.ATTN_Q,
  1292. gguf.MODEL_TENSOR.ATTN_K,
  1293. gguf.MODEL_TENSOR.ATTN_V,
  1294. gguf.MODEL_TENSOR.ATTN_OUT,
  1295. gguf.MODEL_TENSOR.FFN_UP,
  1296. gguf.MODEL_TENSOR.FFN_DOWN,
  1297. gguf.MODEL_TENSOR.FFN_GATE,
  1298. ]):
  1299. # transform weight into 1/0/-1 (in fp32)
  1300. weight_torch, scale_torch = self.weight_quant(data_torch)
  1301. yield (new_name, weight_torch)
  1302. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1303. else:
  1304. yield (new_name, data_torch)
  1305. @Model.register("GrokForCausalLM")
  1306. class GrokModel(Model):
  1307. model_arch = gguf.MODEL_ARCH.GROK
  1308. def set_vocab(self):
  1309. self._set_vocab_sentencepiece()
  1310. def __init__(self, *args, **kwargs):
  1311. super().__init__(*args, **kwargs)
  1312. def set_gguf_parameters(self):
  1313. super().set_gguf_parameters()
  1314. _experts: list[dict[str, Tensor]] | None = None
  1315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1316. # process the experts separately
  1317. if name.find(".moe.") != -1:
  1318. n_experts = self.hparams["num_local_experts"]
  1319. assert bid is not None
  1320. if self._experts is None:
  1321. self._experts = [{} for _ in range(self.block_count)]
  1322. self._experts[bid][name] = data_torch
  1323. if len(self._experts[bid]) >= n_experts * 3:
  1324. tensors: list[tuple[str, Tensor]] = []
  1325. # merge the experts into a single 3d tensor
  1326. for wid in ["linear", "linear_1", "linear_v"]:
  1327. datas: list[Tensor] = []
  1328. for xid in range(n_experts):
  1329. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1330. datas.append(self._experts[bid][ename])
  1331. del self._experts[bid][ename]
  1332. data_torch = torch.stack(datas, dim=0)
  1333. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1334. new_name = self.map_tensor_name(merged_name)
  1335. tensors.append((new_name, data_torch))
  1336. return tensors
  1337. else:
  1338. return []
  1339. return [(self.map_tensor_name(name), data_torch)]
  1340. @Model.register("DbrxForCausalLM")
  1341. class DbrxModel(Model):
  1342. model_arch = gguf.MODEL_ARCH.DBRX
  1343. def set_gguf_parameters(self):
  1344. ffn_config = self.hparams["ffn_config"]
  1345. attn_config = self.hparams["attn_config"]
  1346. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1347. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1348. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1349. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1350. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1351. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1352. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1353. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1354. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1355. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1356. self.gguf_writer.add_layer_norm_eps(1e-5)
  1357. self.gguf_writer.add_file_type(self.ftype)
  1358. logger.info(f"gguf: file type = {self.ftype}")
  1359. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1360. del bid # unused
  1361. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1362. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1363. n_embd = self.hparams["d_model"]
  1364. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1365. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1366. # But llama.cpp moe graph works differently
  1367. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1368. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1369. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1370. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1371. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1372. experts = False
  1373. for exp_tensor_name in exp_tensor_names.keys():
  1374. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1375. experts = True
  1376. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1377. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1378. data_torch = data_torch.permute(*permute_tensor)
  1379. break
  1380. # map tensor names
  1381. # In MoE models the ffn tensors are typically most of the model weights,
  1382. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1383. # Every other model has the weight names ending in .weight,
  1384. # let's assume that is the convention which is not the case for dbrx:
  1385. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1386. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1387. return [(new_name, data_torch)]
  1388. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1389. del name, new_name, bid # unused
  1390. return n_dims > 1
  1391. @Model.register("MiniCPMForCausalLM")
  1392. class MiniCPMModel(Model):
  1393. model_arch = gguf.MODEL_ARCH.MINICPM
  1394. def set_gguf_parameters(self):
  1395. block_count = self.hparams["num_hidden_layers"]
  1396. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1397. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1398. self.gguf_writer.add_block_count(block_count)
  1399. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1400. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1401. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1402. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1403. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1404. self.gguf_writer.add_file_type(self.ftype)
  1405. def set_vocab(self):
  1406. self._set_vocab_llama_hf()
  1407. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1408. if n_kv_head is not None and n_head != n_kv_head:
  1409. n_head //= n_kv_head
  1410. return (
  1411. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1412. .swapaxes(1, 2)
  1413. .reshape(weights.shape)
  1414. )
  1415. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1416. del bid # unused
  1417. n_head = self.hparams["num_attention_heads"]
  1418. n_kv_head = self.hparams.get("num_key_value_heads")
  1419. # HF models permute some of the tensors, so we need to undo that
  1420. if name.endswith(("q_proj.weight")):
  1421. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1422. if name.endswith(("k_proj.weight")):
  1423. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1424. return [(self.map_tensor_name(name), data_torch)]
  1425. @Model.register("QWenLMHeadModel")
  1426. class QwenModel(Model):
  1427. model_arch = gguf.MODEL_ARCH.QWEN
  1428. @staticmethod
  1429. def token_bytes_to_string(b):
  1430. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1431. byte_encoder = bytes_to_unicode()
  1432. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1433. @staticmethod
  1434. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1435. parts = [bytes([b]) for b in token]
  1436. while True:
  1437. min_idx = None
  1438. min_rank = None
  1439. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1440. rank = mergeable_ranks.get(pair[0] + pair[1])
  1441. if rank is not None and (min_rank is None or rank < min_rank):
  1442. min_idx = i
  1443. min_rank = rank
  1444. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1445. break
  1446. assert min_idx is not None
  1447. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1448. return parts
  1449. def set_vocab(self):
  1450. self._set_vocab_qwen()
  1451. def set_gguf_parameters(self):
  1452. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1453. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1454. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1455. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1456. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1457. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1458. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1459. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1460. self.gguf_writer.add_file_type(self.ftype)
  1461. @Model.register("Qwen2ForCausalLM")
  1462. class Qwen2Model(Model):
  1463. model_arch = gguf.MODEL_ARCH.QWEN2
  1464. def set_vocab(self):
  1465. try:
  1466. self._set_vocab_sentencepiece()
  1467. except FileNotFoundError:
  1468. self._set_vocab_gpt2()
  1469. @Model.register("Qwen2MoeForCausalLM")
  1470. class Qwen2MoeModel(Model):
  1471. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1472. def set_gguf_parameters(self):
  1473. super().set_gguf_parameters()
  1474. if (n_experts := self.hparams.get("num_experts")) is not None:
  1475. self.gguf_writer.add_expert_count(n_experts)
  1476. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1477. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1478. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1479. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1480. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1481. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1482. _experts: list[dict[str, Tensor]] | None = None
  1483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1484. # process the experts separately
  1485. if name.find("experts") != -1:
  1486. n_experts = self.hparams["num_experts"]
  1487. assert bid is not None
  1488. if self._experts is None:
  1489. self._experts = [{} for _ in range(self.block_count)]
  1490. self._experts[bid][name] = data_torch
  1491. if len(self._experts[bid]) >= n_experts * 3:
  1492. tensors: list[tuple[str, Tensor]] = []
  1493. # merge the experts into a single 3d tensor
  1494. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1495. datas: list[Tensor] = []
  1496. for xid in range(n_experts):
  1497. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1498. datas.append(self._experts[bid][ename])
  1499. del self._experts[bid][ename]
  1500. data_torch = torch.stack(datas, dim=0)
  1501. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1502. new_name = self.map_tensor_name(merged_name)
  1503. tensors.append((new_name, data_torch))
  1504. return tensors
  1505. else:
  1506. return []
  1507. return [(self.map_tensor_name(name), data_torch)]
  1508. def prepare_tensors(self):
  1509. super().prepare_tensors()
  1510. if self._experts is not None:
  1511. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1512. experts = [k for d in self._experts for k in d.keys()]
  1513. if len(experts) > 0:
  1514. raise ValueError(f"Unprocessed experts: {experts}")
  1515. @Model.register("GPT2LMHeadModel")
  1516. class GPT2Model(Model):
  1517. model_arch = gguf.MODEL_ARCH.GPT2
  1518. def set_gguf_parameters(self):
  1519. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1520. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1521. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1522. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1523. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1524. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1525. self.gguf_writer.add_file_type(self.ftype)
  1526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1527. del bid # unused
  1528. tensors: list[tuple[str, Tensor]] = []
  1529. # we don't need these
  1530. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1531. return tensors
  1532. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1533. data_torch = data_torch.transpose(1, 0)
  1534. new_name = self.map_tensor_name(name)
  1535. tensors.append((new_name, data_torch))
  1536. # note: GPT2 output is tied to (same as) wte in original model
  1537. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1538. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1539. return tensors
  1540. @Model.register("PhiForCausalLM")
  1541. class Phi2Model(Model):
  1542. model_arch = gguf.MODEL_ARCH.PHI2
  1543. def set_gguf_parameters(self):
  1544. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1545. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1546. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1547. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1548. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1549. self.gguf_writer.add_embedding_length(n_embd)
  1550. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1551. self.gguf_writer.add_block_count(block_count)
  1552. self.gguf_writer.add_head_count(n_head)
  1553. self.gguf_writer.add_head_count_kv(n_head)
  1554. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1555. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1556. self.gguf_writer.add_file_type(self.ftype)
  1557. self.gguf_writer.add_add_bos_token(False)
  1558. @Model.register("Phi3ForCausalLM")
  1559. class Phi3MiniModel(Model):
  1560. model_arch = gguf.MODEL_ARCH.PHI3
  1561. def set_vocab(self):
  1562. from sentencepiece import SentencePieceProcessor
  1563. tokenizer_path = self.dir_model / 'tokenizer.model'
  1564. if not tokenizer_path.is_file():
  1565. raise ValueError(f'Error: Missing {tokenizer_path}')
  1566. tokenizer = SentencePieceProcessor()
  1567. tokenizer.LoadFromFile(str(tokenizer_path))
  1568. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1569. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1570. scores: list[float] = [-10000.0] * vocab_size
  1571. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1572. for token_id in range(tokenizer.vocab_size()):
  1573. piece = tokenizer.IdToPiece(token_id)
  1574. text = piece.encode("utf-8")
  1575. score = tokenizer.GetScore(token_id)
  1576. toktype = SentencePieceTokenTypes.NORMAL
  1577. if tokenizer.IsUnknown(token_id):
  1578. toktype = SentencePieceTokenTypes.UNKNOWN
  1579. elif tokenizer.IsControl(token_id):
  1580. toktype = SentencePieceTokenTypes.CONTROL
  1581. elif tokenizer.IsUnused(token_id):
  1582. toktype = SentencePieceTokenTypes.UNUSED
  1583. elif tokenizer.IsByte(token_id):
  1584. toktype = SentencePieceTokenTypes.BYTE
  1585. tokens[token_id] = text
  1586. scores[token_id] = score
  1587. toktypes[token_id] = toktype
  1588. added_tokens_file = self.dir_model / 'added_tokens.json'
  1589. if added_tokens_file.is_file():
  1590. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1591. added_tokens_json = json.load(f)
  1592. for key in added_tokens_json:
  1593. token_id = added_tokens_json[key]
  1594. if (token_id >= vocab_size):
  1595. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1596. continue
  1597. tokens[token_id] = key.encode("utf-8")
  1598. scores[token_id] = -1000.0
  1599. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1600. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1601. if tokenizer_config_file.is_file():
  1602. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1603. tokenizer_config_json = json.load(f)
  1604. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1605. for token_id, foken_data in added_tokens_decoder.items():
  1606. token_id = int(token_id)
  1607. token = foken_data["content"].encode("utf-8")
  1608. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1609. if tokens[token_id] != token:
  1610. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1611. tokens[token_id] = token
  1612. scores[token_id] = -1000.0
  1613. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1614. if foken_data.get("special"):
  1615. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1616. tokenizer_file = self.dir_model / 'tokenizer.json'
  1617. if tokenizer_file.is_file():
  1618. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1619. tokenizer_json = json.load(f)
  1620. added_tokens = tokenizer_json.get("added_tokens", [])
  1621. for foken_data in added_tokens:
  1622. token_id = int(foken_data["id"])
  1623. token = foken_data["content"].encode("utf-8")
  1624. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1625. if tokens[token_id] != token:
  1626. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1627. tokens[token_id] = token
  1628. scores[token_id] = -1000.0
  1629. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1630. if foken_data.get("special"):
  1631. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1632. self.gguf_writer.add_tokenizer_model("llama")
  1633. self.gguf_writer.add_tokenizer_pre("default")
  1634. self.gguf_writer.add_token_list(tokens)
  1635. self.gguf_writer.add_token_scores(scores)
  1636. self.gguf_writer.add_token_types(toktypes)
  1637. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1638. special_vocab.add_to_gguf(self.gguf_writer)
  1639. def set_gguf_parameters(self):
  1640. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1641. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1642. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1643. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1644. rms_eps = self.find_hparam(["rms_norm_eps"])
  1645. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1646. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1647. rope_dims = n_embd // n_head
  1648. self.gguf_writer.add_context_length(max_pos_embds)
  1649. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1650. self.gguf_writer.add_embedding_length(n_embd)
  1651. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1652. self.gguf_writer.add_block_count(block_count)
  1653. self.gguf_writer.add_head_count(n_head)
  1654. self.gguf_writer.add_head_count_kv(n_head_kv)
  1655. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1656. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1657. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1658. self.gguf_writer.add_file_type(self.ftype)
  1659. # write rope scaling for long context (128k) model
  1660. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1661. if (rope_scaling is None):
  1662. return
  1663. scale = max_pos_embds / orig_max_pos_embds
  1664. rope_scaling_type = rope_scaling.get('type', '').lower()
  1665. if len(rope_scaling_type) == 0:
  1666. raise KeyError('Missing the required key rope_scaling.type')
  1667. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1668. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1669. elif rope_scaling_type == 'yarn':
  1670. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1671. else:
  1672. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1673. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1674. long_factors = rope_scaling.get('long_factor', None)
  1675. short_factors = rope_scaling.get('short_factor', None)
  1676. if long_factors is None or short_factors is None:
  1677. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1678. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1679. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1680. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1681. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1682. @Model.register("PlamoForCausalLM")
  1683. class PlamoModel(Model):
  1684. model_arch = gguf.MODEL_ARCH.PLAMO
  1685. def set_vocab(self):
  1686. self._set_vocab_sentencepiece()
  1687. def set_gguf_parameters(self):
  1688. hparams = self.hparams
  1689. block_count = hparams["num_hidden_layers"]
  1690. self.gguf_writer.add_context_length(4096) # not in config.json
  1691. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1692. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1693. self.gguf_writer.add_block_count(block_count)
  1694. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1695. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1696. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1697. self.gguf_writer.add_file_type(self.ftype)
  1698. def shuffle_attn_q_weight(self, data_torch):
  1699. assert data_torch.size() == (5120, 5120)
  1700. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1701. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1702. data_torch = torch.reshape(data_torch, (5120, 5120))
  1703. return data_torch
  1704. def shuffle_attn_output_weight(self, data_torch):
  1705. assert data_torch.size() == (5120, 5120)
  1706. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1707. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1708. data_torch = torch.reshape(data_torch, (5120, 5120))
  1709. return data_torch
  1710. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1711. del bid # unused
  1712. new_name = self.map_tensor_name(name)
  1713. # shuffle for broadcasting of gqa in ggml_mul_mat
  1714. if new_name.endswith("attn_q.weight"):
  1715. data_torch = self.shuffle_attn_q_weight(data_torch)
  1716. elif new_name.endswith("attn_output.weight"):
  1717. data_torch = self.shuffle_attn_output_weight(data_torch)
  1718. return [(new_name, data_torch)]
  1719. @Model.register("CodeShellForCausalLM")
  1720. class CodeShellModel(Model):
  1721. model_arch = gguf.MODEL_ARCH.CODESHELL
  1722. def set_gguf_parameters(self):
  1723. block_count = self.hparams["n_layer"]
  1724. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1725. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1726. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1727. self.gguf_writer.add_block_count(block_count)
  1728. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1729. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1730. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1731. self.gguf_writer.add_file_type(self.ftype)
  1732. self.gguf_writer.add_rope_freq_base(10000.0)
  1733. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1734. self.gguf_writer.add_rope_scaling_factor(1.0)
  1735. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1736. del bid # unused
  1737. new_name = self.map_tensor_name(name)
  1738. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1739. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1740. assert self.tensor_names is not None
  1741. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1742. # copy tok_embd.weight to output.weight
  1743. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1744. return tensors
  1745. @Model.register("InternLM2ForCausalLM")
  1746. class InternLM2Model(Model):
  1747. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1748. def set_vocab(self):
  1749. # (TODO): Is there a better way?
  1750. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1751. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1752. # recognized as an empty string in C++.
  1753. from sentencepiece import SentencePieceProcessor
  1754. from sentencepiece import sentencepiece_model_pb2 as model
  1755. tokenizer_path = self.dir_model / 'tokenizer.model'
  1756. tokens: list[bytes] = []
  1757. scores: list[float] = []
  1758. toktypes: list[int] = []
  1759. if not tokenizer_path.is_file():
  1760. logger.error(f'Error: Missing {tokenizer_path}')
  1761. sys.exit(1)
  1762. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1763. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1764. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1765. tokenizer = SentencePieceProcessor()
  1766. tokenizer.LoadFromFile(str(tokenizer_path))
  1767. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1768. for token_id in range(vocab_size):
  1769. piece = tokenizer.IdToPiece(token_id)
  1770. text = piece.encode("utf-8")
  1771. score = tokenizer.GetScore(token_id)
  1772. if text == b"\x00":
  1773. # (TODO): fixme
  1774. # Hack here and replace the \x00 characters.
  1775. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1776. text = "🐉".encode("utf-8")
  1777. toktype = SentencePieceTokenTypes.NORMAL
  1778. if tokenizer.IsUnknown(token_id):
  1779. toktype = SentencePieceTokenTypes.UNKNOWN
  1780. elif tokenizer.IsControl(token_id):
  1781. toktype = SentencePieceTokenTypes.CONTROL
  1782. elif tokenizer.IsUnused(token_id):
  1783. toktype = SentencePieceTokenTypes.UNUSED
  1784. elif tokenizer.IsByte(token_id):
  1785. toktype = SentencePieceTokenTypes.BYTE
  1786. # take care of ununsed raw token
  1787. if piece.startswith('[UNUSED'):
  1788. toktype = SentencePieceTokenTypes.UNUSED
  1789. tokens.append(text)
  1790. scores.append(score)
  1791. toktypes.append(toktype)
  1792. added_tokens_file = self.dir_model / 'added_tokens.json'
  1793. if added_tokens_file.is_file():
  1794. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1795. added_tokens_json = json.load(f)
  1796. for key in added_tokens_json:
  1797. tokens.append(key.encode("utf-8"))
  1798. scores.append(-1000.0)
  1799. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1800. chat_eos_token = '<|im_end|>'
  1801. chat_eos_token_id = None
  1802. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1803. if tokenizer_config_file.is_file():
  1804. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1805. tokenizer_config_json = json.load(f)
  1806. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1807. for token_id, foken_data in added_tokens_decoder.items():
  1808. token_id = int(token_id)
  1809. token = foken_data["content"]
  1810. if token == chat_eos_token:
  1811. chat_eos_token_id = token_id
  1812. token = token.encode("utf-8")
  1813. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1814. if tokens[token_id] != token:
  1815. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1816. tokens[token_id] = token
  1817. scores[token_id] = -1000.0
  1818. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1819. if foken_data.get("special"):
  1820. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1821. tokenizer_file = self.dir_model / 'tokenizer.json'
  1822. if tokenizer_file.is_file():
  1823. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1824. tokenizer_json = json.load(f)
  1825. added_tokens = tokenizer_json.get("added_tokens", [])
  1826. for foken_data in added_tokens:
  1827. token_id = int(foken_data["id"])
  1828. token = foken_data["content"]
  1829. if token == chat_eos_token:
  1830. chat_eos_token_id = token_id
  1831. token = token.encode("utf-8")
  1832. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1833. if tokens[token_id] != token:
  1834. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1835. tokens[token_id] = token
  1836. scores[token_id] = -1000.0
  1837. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1838. if foken_data.get("special"):
  1839. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1840. self.gguf_writer.add_tokenizer_model("llama")
  1841. self.gguf_writer.add_tokenizer_pre("default")
  1842. self.gguf_writer.add_token_list(tokens)
  1843. self.gguf_writer.add_token_scores(scores)
  1844. self.gguf_writer.add_token_types(toktypes)
  1845. self.gguf_writer.add_add_space_prefix(add_prefix)
  1846. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1847. old_eos = special_vocab.special_token_ids["eos"]
  1848. if chat_eos_token_id is not None:
  1849. # For the chat model, we replace the eos with '<|im_end|>'.
  1850. # TODO: this is a hack, should be fixed
  1851. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1852. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1853. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1854. " in chat mode so that the conversation can end normally.")
  1855. special_vocab.add_to_gguf(self.gguf_writer)
  1856. def set_gguf_parameters(self):
  1857. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1858. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1859. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1860. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1861. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1862. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1863. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1864. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1865. self.gguf_writer.add_file_type(self.ftype)
  1866. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1867. if self.hparams["rope_scaling"].get("type") == "linear":
  1868. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1869. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1871. num_heads = self.hparams["num_attention_heads"]
  1872. num_kv_heads = self.hparams["num_key_value_heads"]
  1873. n_embd = self.hparams["hidden_size"]
  1874. q_per_kv = num_heads // num_kv_heads
  1875. head_dim = n_embd // num_heads
  1876. num_groups = num_heads // q_per_kv
  1877. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1878. qkv = data_torch
  1879. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1880. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1881. # The model weights of q and k equire additional reshape.
  1882. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1883. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1884. v = v.reshape((-1, v.shape[-1]))
  1885. return [
  1886. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1887. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1888. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1889. ]
  1890. else:
  1891. return [(self.map_tensor_name(name), data_torch)]
  1892. @Model.register("BertModel", "CamembertModel")
  1893. class BertModel(Model):
  1894. model_arch = gguf.MODEL_ARCH.BERT
  1895. def __init__(self, *args, **kwargs):
  1896. super().__init__(*args, **kwargs)
  1897. self.vocab_size = None
  1898. def set_gguf_parameters(self):
  1899. super().set_gguf_parameters()
  1900. self.gguf_writer.add_causal_attention(False)
  1901. # get pooling path
  1902. pooling_path = None
  1903. module_path = self.dir_model / "modules.json"
  1904. if module_path.is_file():
  1905. with open(module_path, encoding="utf-8") as f:
  1906. modules = json.load(f)
  1907. for mod in modules:
  1908. if mod["type"] == "sentence_transformers.models.Pooling":
  1909. pooling_path = mod["path"]
  1910. break
  1911. # get pooling type
  1912. if pooling_path is not None:
  1913. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1914. pooling = json.load(f)
  1915. if pooling["pooling_mode_mean_tokens"]:
  1916. pooling_type = gguf.PoolingType.MEAN
  1917. elif pooling["pooling_mode_cls_token"]:
  1918. pooling_type = gguf.PoolingType.CLS
  1919. else:
  1920. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1921. self.gguf_writer.add_pooling_type(pooling_type)
  1922. def set_vocab(self):
  1923. tokens, toktypes, tokpre = self.get_vocab_base()
  1924. self.vocab_size = len(tokens)
  1925. # we need this to validate the size of the token_type embeddings
  1926. # though currently we are passing all zeros to the token_type embeddings
  1927. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1928. # convert to phantom space vocab
  1929. def phantom(tok):
  1930. if tok.startswith("[") and tok.endswith("]"):
  1931. return tok
  1932. if tok.startswith("##"):
  1933. return tok[2:]
  1934. return "\u2581" + tok
  1935. tokens = list(map(phantom, tokens))
  1936. # add vocab to gguf
  1937. self.gguf_writer.add_tokenizer_model("bert")
  1938. self.gguf_writer.add_tokenizer_pre(tokpre)
  1939. self.gguf_writer.add_token_list(tokens)
  1940. self.gguf_writer.add_token_types(toktypes)
  1941. # handle special tokens
  1942. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1943. special_vocab.add_to_gguf(self.gguf_writer)
  1944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1945. del bid # unused
  1946. # we are only using BERT for embeddings so we don't need the pooling layer
  1947. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1948. return [] # we don't need these
  1949. return [(self.map_tensor_name(name), data_torch)]
  1950. @Model.register("NomicBertModel")
  1951. class NomicBertModel(BertModel):
  1952. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1953. def __init__(self, *args, **kwargs):
  1954. super().__init__(*args, **kwargs)
  1955. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1956. self.hparams["n_ctx"] = 2048
  1957. # SwigLU activation
  1958. assert self.hparams["activation_function"] == "swiglu"
  1959. # this doesn't do anything in the HF version
  1960. assert self.hparams["causal"] is False
  1961. # no bias tensors
  1962. assert self.hparams["qkv_proj_bias"] is False
  1963. assert self.hparams["mlp_fc1_bias"] is False
  1964. assert self.hparams["mlp_fc2_bias"] is False
  1965. # norm at end of layer
  1966. assert self.hparams["prenorm"] is False
  1967. # standard RoPE
  1968. assert self.hparams["rotary_emb_fraction"] == 1.0
  1969. assert self.hparams["rotary_emb_interleaved"] is False
  1970. assert self.hparams["rotary_emb_scale_base"] is None
  1971. def set_gguf_parameters(self):
  1972. super().set_gguf_parameters()
  1973. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1974. @Model.register("GemmaForCausalLM")
  1975. class GemmaModel(Model):
  1976. model_arch = gguf.MODEL_ARCH.GEMMA
  1977. def set_vocab(self):
  1978. self._set_vocab_sentencepiece()
  1979. # TODO: these special tokens should be exported only for the CodeGemma family
  1980. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1981. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1982. special_vocab._set_special_token("prefix", 67)
  1983. special_vocab._set_special_token("suffix", 69)
  1984. special_vocab._set_special_token("middle", 68)
  1985. special_vocab._set_special_token("fsep", 70)
  1986. special_vocab._set_special_token("eot", 107)
  1987. special_vocab.chat_template = None # do not add it twice
  1988. special_vocab.add_to_gguf(self.gguf_writer)
  1989. self.gguf_writer.add_add_space_prefix(False)
  1990. def set_gguf_parameters(self):
  1991. hparams = self.hparams
  1992. block_count = hparams["num_hidden_layers"]
  1993. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1994. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1995. self.gguf_writer.add_block_count(block_count)
  1996. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1997. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1998. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1999. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2000. self.gguf_writer.add_key_length(hparams["head_dim"])
  2001. self.gguf_writer.add_value_length(hparams["head_dim"])
  2002. self.gguf_writer.add_file_type(self.ftype)
  2003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2004. del bid # unused
  2005. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2006. # To prevent errors, skip loading lm_head.weight.
  2007. if name == "lm_head.weight":
  2008. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2009. return []
  2010. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2011. if name.endswith("norm.weight"):
  2012. data_torch = data_torch + 1
  2013. return [(self.map_tensor_name(name), data_torch)]
  2014. @Model.register("Gemma2ForCausalLM")
  2015. class Gemma2Model(Model):
  2016. model_arch = gguf.MODEL_ARCH.GEMMA2
  2017. def set_vocab(self):
  2018. self._set_vocab_sentencepiece()
  2019. self.gguf_writer.add_add_space_prefix(False)
  2020. def set_gguf_parameters(self):
  2021. hparams = self.hparams
  2022. block_count = hparams["num_hidden_layers"]
  2023. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2024. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2025. self.gguf_writer.add_block_count(block_count)
  2026. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2027. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2028. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2029. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2030. self.gguf_writer.add_key_length(hparams["head_dim"])
  2031. self.gguf_writer.add_value_length(hparams["head_dim"])
  2032. self.gguf_writer.add_file_type(self.ftype)
  2033. self.gguf_writer.add_attn_logit_softcapping(
  2034. self.hparams["attn_logit_softcapping"]
  2035. )
  2036. self.gguf_writer.add_final_logit_softcapping(
  2037. self.hparams["final_logit_softcapping"]
  2038. )
  2039. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2041. del bid # unused
  2042. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2043. # To prevent errors, skip loading lm_head.weight.
  2044. if name == "lm_head.weight":
  2045. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2046. return []
  2047. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2048. if name.endswith("norm.weight"):
  2049. data_torch = data_torch + 1
  2050. return [(self.map_tensor_name(name), data_torch)]
  2051. @Model.register("Starcoder2ForCausalLM")
  2052. class StarCoder2Model(Model):
  2053. model_arch = gguf.MODEL_ARCH.STARCODER2
  2054. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2055. class MambaModel(Model):
  2056. model_arch = gguf.MODEL_ARCH.MAMBA
  2057. def set_vocab(self):
  2058. vocab_size = self.hparams["vocab_size"]
  2059. # Round vocab size to next multiple of 8
  2060. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2061. # pad using ceiling division
  2062. # ref: https://stackoverflow.com/a/17511341/22827863
  2063. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2064. self.hparams["vocab_size"] = vocab_size
  2065. if (self.dir_model / "tokenizer.json").is_file():
  2066. self._set_vocab_gpt2()
  2067. elif (self.dir_model / "tokenizer.model").is_file():
  2068. self._set_vocab_sentencepiece()
  2069. else:
  2070. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2071. self._set_vocab_builtin("gpt-neox", vocab_size)
  2072. def set_gguf_parameters(self):
  2073. d_model = self.find_hparam(["hidden_size", "d_model"])
  2074. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2075. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2076. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2077. # ceiling division
  2078. # ref: https://stackoverflow.com/a/17511341/22827863
  2079. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2080. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2081. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2082. # Fail early for models which don't have a block expansion factor of 2
  2083. assert d_inner == 2 * d_model
  2084. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2085. self.gguf_writer.add_embedding_length(d_model)
  2086. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2087. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2088. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2089. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2090. self.gguf_writer.add_ssm_inner_size(d_inner)
  2091. self.gguf_writer.add_ssm_state_size(d_state)
  2092. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2093. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2094. self.gguf_writer.add_file_type(self.ftype)
  2095. _tok_embd = None
  2096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2097. del bid # unused
  2098. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2099. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2100. new_name = self.map_tensor_name(name)
  2101. if name.endswith(".A_log"):
  2102. logger.debug("A_log --> A ==> " + new_name)
  2103. data_torch = -torch.exp(data_torch)
  2104. # assuming token_embd.weight is seen before output.weight
  2105. if self._tok_embd is not None and new_name == output_name:
  2106. if torch.equal(self._tok_embd, data_torch):
  2107. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2108. return []
  2109. elif new_name == tok_embd_name:
  2110. self._tok_embd = data_torch
  2111. return [(new_name, data_torch)]
  2112. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2113. del n_dims # unused
  2114. return bid is not None and new_name in (
  2115. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2116. gguf.MODEL_TENSOR.SSM_CONV1D,
  2117. gguf.MODEL_TENSOR.SSM_X,
  2118. gguf.MODEL_TENSOR.SSM_DT,
  2119. gguf.MODEL_TENSOR.SSM_A,
  2120. gguf.MODEL_TENSOR.SSM_D,
  2121. ]
  2122. )
  2123. @Model.register("CohereForCausalLM")
  2124. class CommandR2Model(Model):
  2125. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2126. def __init__(self, *args, **kwargs):
  2127. super().__init__(*args, **kwargs)
  2128. # max_position_embeddings = 8192 in config.json but model was actually
  2129. # trained on 128k context length
  2130. # aya-23 models don't have model_max_length specified
  2131. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2132. def set_gguf_parameters(self):
  2133. super().set_gguf_parameters()
  2134. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2135. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2136. @Model.register("OlmoForCausalLM")
  2137. @Model.register("OLMoForCausalLM")
  2138. class OlmoModel(Model):
  2139. model_arch = gguf.MODEL_ARCH.OLMO
  2140. def set_gguf_parameters(self):
  2141. super().set_gguf_parameters()
  2142. self.gguf_writer.add_layer_norm_eps(1e-5)
  2143. clip_qkv = self.hparams.get("clip_qkv")
  2144. if clip_qkv is not None:
  2145. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2146. # Same as super class, but permuting q_proj, k_proj
  2147. # Copied from: LlamaModel
  2148. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2149. del bid # unused
  2150. n_head = self.hparams["num_attention_heads"]
  2151. n_kv_head = self.hparams.get("num_key_value_heads")
  2152. if name.endswith("q_proj.weight"):
  2153. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2154. if name.endswith("k_proj.weight"):
  2155. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2156. return [(self.map_tensor_name(name), data_torch)]
  2157. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2158. class JinaBertV2Model(BertModel):
  2159. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2160. def __init__(self, *args, **kwargs):
  2161. super().__init__(*args, **kwargs)
  2162. self.intermediate_size = self.hparams["intermediate_size"]
  2163. def get_tensors(self):
  2164. for name, data in super().get_tensors():
  2165. if 'gated_layer' in name:
  2166. d1 = data[:self.intermediate_size, :]
  2167. name1 = name.replace('gated_layers', 'gated_layers_w')
  2168. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2169. d2 = data[self.intermediate_size:, :]
  2170. name2 = name.replace('gated_layers', 'gated_layers_v')
  2171. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2172. yield name1, d1
  2173. yield name2, d2
  2174. continue
  2175. yield name, data
  2176. def set_vocab(self, *args, **kwargs):
  2177. tokenizer_class = 'BertTokenizer'
  2178. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2179. tokenizer_class = json.load(f)['tokenizer_class']
  2180. if tokenizer_class == 'BertTokenizer':
  2181. super().set_vocab()
  2182. elif tokenizer_class == 'RobertaTokenizer':
  2183. self._set_vocab_gpt2()
  2184. self.gguf_writer.add_token_type_count(2)
  2185. else:
  2186. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2187. self.gguf_writer.add_add_bos_token(True)
  2188. self.gguf_writer.add_add_eos_token(True)
  2189. @Model.register("OpenELMForCausalLM")
  2190. class OpenELMModel(Model):
  2191. model_arch = gguf.MODEL_ARCH.OPENELM
  2192. @staticmethod
  2193. def _make_divisible(v: float | int, divisor: int) -> int:
  2194. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2195. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2196. # Make sure that round down does not go down by more than 10%.
  2197. if new_v < 0.9 * v:
  2198. new_v += divisor
  2199. return new_v
  2200. def __init__(self, *args, **kwargs):
  2201. super().__init__(*args, **kwargs)
  2202. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2203. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2204. self._n_embd: int = self.hparams["model_dim"]
  2205. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2206. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2207. self._ffn_dims: list[int] = [
  2208. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2209. for multiplier in ffn_multipliers
  2210. ]
  2211. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2212. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2213. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2214. def set_vocab(self):
  2215. try:
  2216. self._set_vocab_sentencepiece()
  2217. except FileNotFoundError:
  2218. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2219. def set_gguf_parameters(self):
  2220. n_embd = self._n_embd
  2221. head_dim = self.hparams["head_dim"]
  2222. rot_pct = 1.0
  2223. assert self.block_count == len(self._num_kv_heads)
  2224. assert self.block_count == len(self._num_query_heads)
  2225. assert self.block_count == len(self._ffn_dims)
  2226. self.gguf_writer.add_block_count(self.block_count)
  2227. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2228. self.gguf_writer.add_embedding_length(n_embd)
  2229. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2230. self.gguf_writer.add_head_count(self._num_query_heads)
  2231. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2232. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2233. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2234. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2235. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2236. self.gguf_writer.add_key_length(head_dim)
  2237. self.gguf_writer.add_value_length(head_dim)
  2238. self.gguf_writer.add_file_type(self.ftype)
  2239. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2240. if "n_layers" in keys:
  2241. return self.hparams["num_transformer_layers"]
  2242. return super().find_hparam(keys, optional)
  2243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2244. # split ff
  2245. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2246. ff_dim = self._ffn_dims[bid]
  2247. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2248. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2249. return
  2250. yield (self.map_tensor_name(name), data_torch)
  2251. @Model.register("ArcticForCausalLM")
  2252. class ArcticModel(Model):
  2253. model_arch = gguf.MODEL_ARCH.ARCTIC
  2254. def set_vocab(self):
  2255. # The reason for using a custom implementation here is that the
  2256. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2257. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2258. from sentencepiece import SentencePieceProcessor
  2259. tokenizer_path = self.dir_model / 'tokenizer.model'
  2260. if not tokenizer_path.is_file():
  2261. logger.error(f'Error: Missing {tokenizer_path}')
  2262. sys.exit(1)
  2263. # Read the whole vocabulary from the tokenizer.model file
  2264. tokenizer = SentencePieceProcessor()
  2265. tokenizer.LoadFromFile(str(tokenizer_path))
  2266. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2267. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2268. scores: list[float] = [-10000.0] * vocab_size
  2269. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2270. for token_id in range(tokenizer.vocab_size()):
  2271. piece = tokenizer.IdToPiece(token_id)
  2272. text = piece.encode("utf-8")
  2273. score = tokenizer.GetScore(token_id)
  2274. toktype = SentencePieceTokenTypes.NORMAL
  2275. if tokenizer.IsUnknown(token_id):
  2276. toktype = SentencePieceTokenTypes.UNKNOWN
  2277. elif tokenizer.IsControl(token_id):
  2278. toktype = SentencePieceTokenTypes.CONTROL
  2279. elif tokenizer.IsUnused(token_id):
  2280. toktype = SentencePieceTokenTypes.UNUSED
  2281. elif tokenizer.IsByte(token_id):
  2282. toktype = SentencePieceTokenTypes.BYTE
  2283. tokens[token_id] = text
  2284. scores[token_id] = score
  2285. toktypes[token_id] = toktype
  2286. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2287. # of information about added/redefined tokens and modify them accordingly.
  2288. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2289. if tokenizer_config_file.is_file():
  2290. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2291. tokenizer_config_json = json.load(f)
  2292. if "added_tokens_decoder" in tokenizer_config_json:
  2293. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2294. for token_id, token_json in added_tokens_decoder.items():
  2295. token_id = int(token_id)
  2296. if (token_id >= vocab_size):
  2297. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2298. continue
  2299. token_content = token_json["content"]
  2300. token_type = SentencePieceTokenTypes.USER_DEFINED
  2301. token_score = -10000.0
  2302. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2303. # Set the score to 0.0 as in the original tokenizer.model
  2304. if ("special" in token_json) and token_json["special"]:
  2305. if token_content == tokenizer_config_json["unk_token"]:
  2306. token_type = SentencePieceTokenTypes.UNKNOWN
  2307. else:
  2308. token_type = SentencePieceTokenTypes.CONTROL
  2309. token_score = 0.0
  2310. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2311. tokens[token_id] = token_content.encode("utf-8")
  2312. toktypes[token_id] = token_type
  2313. scores[token_id] = token_score
  2314. self.gguf_writer.add_tokenizer_model("llama")
  2315. self.gguf_writer.add_tokenizer_pre("default")
  2316. self.gguf_writer.add_token_list(tokens)
  2317. self.gguf_writer.add_token_scores(scores)
  2318. self.gguf_writer.add_token_types(toktypes)
  2319. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2320. special_vocab.add_to_gguf(self.gguf_writer)
  2321. def set_gguf_parameters(self):
  2322. super().set_gguf_parameters()
  2323. hparams = self.hparams
  2324. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2325. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2326. _experts: list[dict[str, Tensor]] | None = None
  2327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2328. n_head = self.hparams["num_attention_heads"]
  2329. n_kv_head = self.hparams.get("num_key_value_heads")
  2330. if name.endswith("q_proj.weight"):
  2331. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2332. if name.endswith("k_proj.weight"):
  2333. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2334. # process the experts separately
  2335. if name.find("block_sparse_moe.experts") != -1:
  2336. n_experts = self.hparams["num_local_experts"]
  2337. assert bid is not None
  2338. if self._experts is None:
  2339. self._experts = [{} for _ in range(self.block_count)]
  2340. self._experts[bid][name] = data_torch
  2341. if len(self._experts[bid]) >= n_experts * 3:
  2342. tensors: list[tuple[str, Tensor]] = []
  2343. # merge the experts into a single 3d tensor
  2344. for wid in ["w1", "w2", "w3"]:
  2345. datas: list[Tensor] = []
  2346. for xid in range(n_experts):
  2347. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2348. datas.append(self._experts[bid][ename])
  2349. del self._experts[bid][ename]
  2350. data_torch = torch.stack(datas, dim=0)
  2351. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2352. new_name = self.map_tensor_name(merged_name)
  2353. tensors.append((new_name, data_torch))
  2354. return tensors
  2355. else:
  2356. return []
  2357. return [(self.map_tensor_name(name), data_torch)]
  2358. def prepare_tensors(self):
  2359. super().prepare_tensors()
  2360. if self._experts is not None:
  2361. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2362. experts = [k for d in self._experts for k in d.keys()]
  2363. if len(experts) > 0:
  2364. raise ValueError(f"Unprocessed experts: {experts}")
  2365. @Model.register("DeepseekV2ForCausalLM")
  2366. class DeepseekV2Model(Model):
  2367. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2368. def set_vocab(self):
  2369. self._set_vocab_gpt2()
  2370. def set_gguf_parameters(self):
  2371. super().set_gguf_parameters()
  2372. hparams = self.hparams
  2373. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2374. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2375. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2376. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2377. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2378. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2379. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2380. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2381. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2382. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2383. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2384. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2385. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2386. if self.hparams["rope_scaling"].get("type") == "yarn":
  2387. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2388. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2389. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2390. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2391. _experts: list[dict[str, Tensor]] | None = None
  2392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2393. # process the experts separately
  2394. if name.find("mlp.experts") != -1:
  2395. n_experts = self.hparams["n_routed_experts"]
  2396. assert bid is not None
  2397. if self._experts is None:
  2398. self._experts = [{} for _ in range(self.block_count)]
  2399. self._experts[bid][name] = data_torch
  2400. if len(self._experts[bid]) >= n_experts * 3:
  2401. tensors: list[tuple[str, Tensor]] = []
  2402. # merge the experts into a single 3d tensor
  2403. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2404. datas: list[Tensor] = []
  2405. for xid in range(n_experts):
  2406. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2407. datas.append(self._experts[bid][ename])
  2408. del self._experts[bid][ename]
  2409. data_torch = torch.stack(datas, dim=0)
  2410. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2411. new_name = self.map_tensor_name(merged_name)
  2412. tensors.append((new_name, data_torch))
  2413. return tensors
  2414. else:
  2415. return []
  2416. return [(self.map_tensor_name(name), data_torch)]
  2417. def prepare_tensors(self):
  2418. super().prepare_tensors()
  2419. if self._experts is not None:
  2420. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2421. experts = [k for d in self._experts for k in d.keys()]
  2422. if len(experts) > 0:
  2423. raise ValueError(f"Unprocessed experts: {experts}")
  2424. @Model.register("T5WithLMHeadModel")
  2425. @Model.register("T5ForConditionalGeneration")
  2426. @Model.register("MT5ForConditionalGeneration")
  2427. @Model.register("UMT5ForConditionalGeneration")
  2428. class T5Model(Model):
  2429. model_arch = gguf.MODEL_ARCH.T5
  2430. def __init__(self, *args, **kwargs):
  2431. super().__init__(*args, **kwargs)
  2432. self.shared_token_embeddings_found = False
  2433. def set_vocab(self):
  2434. # to avoid TypeError: Descriptors cannot be created directly
  2435. # exception when importing sentencepiece_model_pb2
  2436. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2437. from sentencepiece import SentencePieceProcessor
  2438. from sentencepiece import sentencepiece_model_pb2 as model
  2439. tokenizer_path = self.dir_model / 'tokenizer.model'
  2440. # many older models use spiece.model tokenizer model filename
  2441. if not tokenizer_path.is_file():
  2442. tokenizer_path = self.dir_model / 'spiece.model'
  2443. if not tokenizer_path.is_file():
  2444. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2445. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2446. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2447. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2448. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2449. # assure the tokenizer model file name is correct
  2450. assert tokenizer_path.name == 'tokenizer.model'
  2451. return self._set_vocab_sentencepiece()
  2452. else:
  2453. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2454. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2455. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2456. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2457. tokenizer = SentencePieceProcessor()
  2458. tokenizer.LoadFromFile(str(tokenizer_path))
  2459. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2460. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2461. scores: list[float] = [-10000.0] * vocab_size
  2462. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2463. for token_id in range(tokenizer.vocab_size()):
  2464. piece = tokenizer.IdToPiece(token_id)
  2465. text = piece.encode("utf-8")
  2466. score = tokenizer.GetScore(token_id)
  2467. toktype = SentencePieceTokenTypes.NORMAL
  2468. if tokenizer.IsUnknown(token_id):
  2469. toktype = SentencePieceTokenTypes.UNKNOWN
  2470. elif tokenizer.IsControl(token_id):
  2471. toktype = SentencePieceTokenTypes.CONTROL
  2472. elif tokenizer.IsUnused(token_id):
  2473. toktype = SentencePieceTokenTypes.UNUSED
  2474. elif tokenizer.IsByte(token_id):
  2475. toktype = SentencePieceTokenTypes.BYTE
  2476. tokens[token_id] = text
  2477. scores[token_id] = score
  2478. toktypes[token_id] = toktype
  2479. added_tokens_file = self.dir_model / 'added_tokens.json'
  2480. if added_tokens_file.is_file():
  2481. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2482. added_tokens_json = json.load(f)
  2483. for key in added_tokens_json:
  2484. token_id = added_tokens_json[key]
  2485. if (token_id >= vocab_size):
  2486. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2487. continue
  2488. tokens[token_id] = key.encode("utf-8")
  2489. scores[token_id] = -1000.0
  2490. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2491. if vocab_size > len(tokens):
  2492. pad_count = vocab_size - len(tokens)
  2493. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2494. for i in range(1, pad_count + 1):
  2495. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2496. scores.append(-1000.0)
  2497. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2498. self.gguf_writer.add_tokenizer_model("t5")
  2499. self.gguf_writer.add_tokenizer_pre("default")
  2500. self.gguf_writer.add_token_list(tokens)
  2501. self.gguf_writer.add_token_scores(scores)
  2502. self.gguf_writer.add_token_types(toktypes)
  2503. self.gguf_writer.add_add_space_prefix(add_prefix)
  2504. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2505. if precompiled_charsmap:
  2506. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2507. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2508. special_vocab.add_to_gguf(self.gguf_writer)
  2509. self.gguf_writer.add_add_bos_token(False)
  2510. self.gguf_writer.add_add_eos_token(True)
  2511. def set_gguf_parameters(self):
  2512. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2513. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2514. n_ctx = 512
  2515. self.gguf_writer.add_context_length(n_ctx)
  2516. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2517. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2518. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2519. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2520. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2521. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2522. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2523. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2524. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2525. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2526. self.gguf_writer.add_file_type(self.ftype)
  2527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2528. del bid # unused
  2529. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2530. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2531. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2532. # and decoder and ignore the remaining ones.
  2533. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2534. if not self.shared_token_embeddings_found:
  2535. name = "shared.weight"
  2536. self.shared_token_embeddings_found = True
  2537. else:
  2538. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2539. return []
  2540. return [(self.map_tensor_name(name), data_torch)]
  2541. @Model.register("JAISLMHeadModel")
  2542. class JaisModel(Model):
  2543. model_arch = gguf.MODEL_ARCH.JAIS
  2544. def __init__(self, *args, **kwargs):
  2545. super().__init__(*args, **kwargs)
  2546. # SwigLU activation
  2547. assert self.hparams["activation_function"] == "swiglu"
  2548. # ALiBi position embedding
  2549. assert self.hparams["position_embedding_type"] == "alibi"
  2550. # Embeddings scale
  2551. self.embeddings_scale = 1.0
  2552. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2553. self.output_is_wte = False
  2554. if 'mup_embeddings_scale' in self.hparams:
  2555. self.output_is_wte = True # Hack (?)
  2556. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2557. elif 'embeddings_scale' in self.hparams:
  2558. self.embeddings_scale = self.hparams['embeddings_scale']
  2559. else:
  2560. assert False
  2561. self.width_scale = 1.0
  2562. if 'mup_output_alpha' in self.hparams:
  2563. assert 'mup_width_scale' in self.hparams
  2564. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2565. elif 'width_scale' in self.hparams:
  2566. self.width_scale = self.hparams['width_scale']
  2567. else:
  2568. assert False
  2569. self.max_alibi_bias = 8.0
  2570. def set_vocab(self):
  2571. self._set_vocab_gpt2()
  2572. def set_gguf_parameters(self):
  2573. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2574. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2575. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2576. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2577. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2578. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2579. self.gguf_writer.add_file_type(self.ftype)
  2580. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2581. del bid # unused
  2582. tensors: list[tuple[str, Tensor]] = []
  2583. # we don't need these
  2584. if name.endswith((".attn.bias")):
  2585. return tensors
  2586. if name.endswith(("relative_pe.slopes")):
  2587. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2588. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2589. # but Jais's PyTorch model simply precalculates the slope values and places them
  2590. # in relative_pes.slopes
  2591. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2592. first_val = float(data_torch[0].item())
  2593. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2594. return tensors
  2595. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2596. data_torch = data_torch.transpose(1, 0)
  2597. new_name = self.map_tensor_name(name)
  2598. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2599. tensors.append((new_name, data_torch * self.embeddings_scale))
  2600. if self.output_is_wte:
  2601. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2602. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2603. assert not self.output_is_wte
  2604. tensors.append((new_name, data_torch * self.width_scale))
  2605. else:
  2606. tensors.append((new_name, data_torch))
  2607. return tensors
  2608. def prepare_tensors(self):
  2609. super().prepare_tensors()
  2610. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2611. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2612. class ChatGLMModel(Model):
  2613. model_arch = gguf.MODEL_ARCH.CHATGLM
  2614. def set_vocab_chatglm3(self):
  2615. dir_model = self.dir_model
  2616. hparams = self.hparams
  2617. tokens: list[bytes] = []
  2618. toktypes: list[int] = []
  2619. scores: list[float] = []
  2620. from transformers import AutoTokenizer
  2621. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2622. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2623. assert max(tokenizer.get_vocab().values()) < vocab_size
  2624. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2625. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2626. for token_id in range(vocab_size):
  2627. piece = tokenizer._convert_id_to_token(token_id)
  2628. if token_id == 0:
  2629. piece = "<unk>"
  2630. elif token_id == 1:
  2631. piece = "<bos>"
  2632. elif token_id == 2:
  2633. piece = "<eos>"
  2634. text = piece.encode("utf-8")
  2635. score = 0.0
  2636. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2637. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2638. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2639. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2640. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2641. if piece in special_tokens:
  2642. toktype = SentencePieceTokenTypes.CONTROL
  2643. elif len(piece) == 0:
  2644. text = f"[PAD{token_id}]".encode("utf-8")
  2645. toktype = SentencePieceTokenTypes.UNUSED
  2646. else:
  2647. toktype = SentencePieceTokenTypes.USER_DEFINED
  2648. tokens.append(text)
  2649. scores.append(score)
  2650. toktypes.append(toktype)
  2651. continue
  2652. toktype = SentencePieceTokenTypes.NORMAL
  2653. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2654. toktype = SentencePieceTokenTypes.UNKNOWN
  2655. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2656. toktype = SentencePieceTokenTypes.CONTROL
  2657. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2658. toktype = SentencePieceTokenTypes.UNUSED
  2659. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2660. toktype = SentencePieceTokenTypes.BYTE
  2661. tokens.append(text)
  2662. scores.append(score)
  2663. toktypes.append(toktype)
  2664. self.gguf_writer.add_tokenizer_model("llama")
  2665. # glm3 needs prefix and suffix formatted as:
  2666. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2667. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2668. self.gguf_writer.add_token_list(tokens)
  2669. self.gguf_writer.add_token_scores(scores)
  2670. self.gguf_writer.add_token_types(toktypes)
  2671. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2672. special_vocab.add_to_gguf(self.gguf_writer)
  2673. @staticmethod
  2674. def token_bytes_to_string(b):
  2675. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2676. byte_encoder = bytes_to_unicode()
  2677. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2678. @staticmethod
  2679. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2680. parts = [bytes([b]) for b in token]
  2681. while True:
  2682. min_idx = None
  2683. min_rank = None
  2684. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2685. rank = mergeable_ranks.get(pair[0] + pair[1])
  2686. if rank is not None and (min_rank is None or rank < min_rank):
  2687. min_idx = i
  2688. min_rank = rank
  2689. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2690. break
  2691. assert min_idx is not None
  2692. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2693. return parts
  2694. def set_vocab(self):
  2695. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2696. self.set_vocab_chatglm3()
  2697. return
  2698. dir_model = self.dir_model
  2699. hparams = self.hparams
  2700. tokens: list[str] = []
  2701. toktypes: list[int] = []
  2702. from transformers import AutoTokenizer
  2703. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2704. vocab_size = hparams["padded_vocab_size"]
  2705. assert max(tokenizer.get_vocab().values()) < vocab_size
  2706. tokpre = self.get_vocab_base_pre(tokenizer)
  2707. merges = []
  2708. vocab = {}
  2709. mergeable_ranks = tokenizer.mergeable_ranks
  2710. for token, rank in mergeable_ranks.items():
  2711. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2712. if len(token) == 1:
  2713. continue
  2714. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2715. assert len(merged) >= 2 and len(merged) <= 7
  2716. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2717. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2718. added_vocab = tokenizer.get_added_vocab()
  2719. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2720. for i in range(vocab_size):
  2721. if i not in reverse_vocab:
  2722. tokens.append(f"[PAD{i}]")
  2723. toktypes.append(gguf.TokenType.UNUSED)
  2724. elif reverse_vocab[i] in added_vocab:
  2725. tokens.append(reverse_vocab[i])
  2726. if tokenizer.added_tokens_decoder[i].special:
  2727. toktypes.append(gguf.TokenType.CONTROL)
  2728. else:
  2729. toktypes.append(gguf.TokenType.USER_DEFINED)
  2730. else:
  2731. tokens.append(reverse_vocab[i])
  2732. toktypes.append(gguf.TokenType.NORMAL)
  2733. self.gguf_writer.add_tokenizer_model("gpt2")
  2734. self.gguf_writer.add_tokenizer_pre(tokpre)
  2735. self.gguf_writer.add_token_list(tokens)
  2736. self.gguf_writer.add_token_types(toktypes)
  2737. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2738. special_vocab.merges = merges
  2739. # only add special tokens when they were not already loaded from config.json
  2740. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2741. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2742. # this one is usually not in config.json anyway
  2743. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2744. special_vocab.add_to_gguf(self.gguf_writer)
  2745. def set_gguf_parameters(self):
  2746. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2747. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2748. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2749. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2750. self.gguf_writer.add_embedding_length(n_embed)
  2751. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2752. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2753. self.gguf_writer.add_head_count(n_head)
  2754. self.gguf_writer.add_head_count_kv(n_head_kv)
  2755. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2756. self.gguf_writer.add_file_type(self.ftype)
  2757. self.gguf_writer.add_rope_dimension_count(64)
  2758. self.gguf_writer.add_add_bos_token(False)
  2759. rope_freq = 10000
  2760. if "rope_ratio" in self.hparams:
  2761. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2762. self.gguf_writer.add_rope_freq_base(rope_freq)
  2763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2764. del bid # unused
  2765. if name.endswith(".rotary_pos_emb.inv_freq"):
  2766. return []
  2767. name = name.removeprefix("transformer.")
  2768. return [(self.map_tensor_name(name), data_torch)]
  2769. ###### CONVERSION LOGIC ######
  2770. # tree of lazy tensors
  2771. class LazyTorchTensor(gguf.LazyBase):
  2772. _tensor_type = torch.Tensor
  2773. # to keep the type-checker happy
  2774. dtype: torch.dtype
  2775. shape: torch.Size
  2776. # only used when converting a torch.Tensor to a np.ndarray
  2777. _dtype_map: dict[torch.dtype, type] = {
  2778. torch.float16: np.float16,
  2779. torch.float32: np.float32,
  2780. }
  2781. # used for safetensors slices
  2782. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  2783. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  2784. _dtype_str_map: dict[str, torch.dtype] = {
  2785. "F64": torch.float64,
  2786. "F32": torch.float32,
  2787. "BF16": torch.bfloat16,
  2788. "F16": torch.float16,
  2789. # "U64": torch.uint64,
  2790. "I64": torch.int64,
  2791. # "U32": torch.uint32,
  2792. "I32": torch.int32,
  2793. # "U16": torch.uint16,
  2794. "I16": torch.int16,
  2795. "U8": torch.uint8,
  2796. "I8": torch.int8,
  2797. "BOOL": torch.bool,
  2798. "F8_E4M3": torch.float8_e4m3fn,
  2799. "F8_E5M2": torch.float8_e5m2,
  2800. }
  2801. def numpy(self) -> gguf.LazyNumpyTensor:
  2802. dtype = self._dtype_map[self.dtype]
  2803. return gguf.LazyNumpyTensor(
  2804. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2805. args=(self,),
  2806. func=(lambda s: s.numpy())
  2807. )
  2808. @classmethod
  2809. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  2810. return torch.empty(size=shape, dtype=dtype, device="meta")
  2811. @classmethod
  2812. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  2813. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  2814. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  2815. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  2816. return cast(torch.Tensor, lazy)
  2817. @classmethod
  2818. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2819. del types # unused
  2820. if kwargs is None:
  2821. kwargs = {}
  2822. if func is torch.Tensor.numpy:
  2823. return args[0].numpy()
  2824. return cls._wrap_fn(func)(*args, **kwargs)
  2825. def parse_args() -> argparse.Namespace:
  2826. parser = argparse.ArgumentParser(
  2827. description="Convert a huggingface model to a GGML compatible file")
  2828. parser.add_argument(
  2829. "--vocab-only", action="store_true",
  2830. help="extract only the vocab",
  2831. )
  2832. parser.add_argument(
  2833. "--outfile", type=Path,
  2834. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2835. )
  2836. parser.add_argument(
  2837. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2838. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2839. )
  2840. parser.add_argument(
  2841. "--bigendian", action="store_true",
  2842. help="model is executed on big endian machine",
  2843. )
  2844. parser.add_argument(
  2845. "model", type=Path,
  2846. help="directory containing model file",
  2847. )
  2848. parser.add_argument(
  2849. "--use-temp-file", action="store_true",
  2850. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2851. )
  2852. parser.add_argument(
  2853. "--no-lazy", action="store_true",
  2854. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2855. )
  2856. parser.add_argument(
  2857. "--model-name", type=str, default=None,
  2858. help="name of the model",
  2859. )
  2860. parser.add_argument(
  2861. "--verbose", action="store_true",
  2862. help="increase output verbosity",
  2863. )
  2864. parser.add_argument(
  2865. "--split-max-tensors", type=int, default=0,
  2866. help="max tensors in each split",
  2867. )
  2868. parser.add_argument(
  2869. "--split-max-size", type=str, default="0",
  2870. help="max size per split N(M|G)",
  2871. )
  2872. parser.add_argument(
  2873. "--dry-run", action="store_true",
  2874. help="only print out a split plan and exit, without writing any new files",
  2875. )
  2876. parser.add_argument(
  2877. "--no-tensor-first-split", action="store_true",
  2878. help="do not add tensors to the first split (disabled by default)"
  2879. )
  2880. parser.add_argument(
  2881. "--metadata", type=Path,
  2882. help="Specify the path for an authorship metadata override file"
  2883. )
  2884. return parser.parse_args()
  2885. def split_str_to_n_bytes(split_str: str) -> int:
  2886. if split_str.endswith("K"):
  2887. n = int(split_str[:-1]) * 1000
  2888. elif split_str.endswith("M"):
  2889. n = int(split_str[:-1]) * 1000 * 1000
  2890. elif split_str.endswith("G"):
  2891. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2892. elif split_str.isnumeric():
  2893. n = int(split_str)
  2894. else:
  2895. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2896. if n < 0:
  2897. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2898. return n
  2899. def main() -> None:
  2900. args = parse_args()
  2901. if args.verbose:
  2902. logging.basicConfig(level=logging.DEBUG)
  2903. else:
  2904. logging.basicConfig(level=logging.INFO)
  2905. dir_model = args.model
  2906. if not dir_model.is_dir():
  2907. logger.error(f'Error: {args.model} is not a directory')
  2908. sys.exit(1)
  2909. ftype_map: dict[str, gguf.LlamaFileType] = {
  2910. "f32": gguf.LlamaFileType.ALL_F32,
  2911. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2912. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2913. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2914. "auto": gguf.LlamaFileType.GUESSED,
  2915. }
  2916. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2917. if args.use_temp_file and is_split:
  2918. logger.error("Error: Cannot use temp file when splitting")
  2919. sys.exit(1)
  2920. if args.outfile is not None:
  2921. fname_out = args.outfile
  2922. else:
  2923. fname_out = dir_model
  2924. logger.info(f"Loading model: {dir_model.name}")
  2925. hparams = Model.load_hparams(dir_model)
  2926. with torch.inference_mode():
  2927. output_type = ftype_map[args.outtype]
  2928. model_architecture = hparams["architectures"][0]
  2929. try:
  2930. model_class = Model.from_model_architecture(model_architecture)
  2931. except NotImplementedError:
  2932. logger.error(f"Model {model_architecture} is not supported")
  2933. sys.exit(1)
  2934. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  2935. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  2936. eager=args.no_lazy,
  2937. metadata_override=args.metadata, model_name=args.model_name,
  2938. split_max_tensors=args.split_max_tensors,
  2939. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2940. small_first_shard=args.no_tensor_first_split)
  2941. if args.vocab_only:
  2942. logger.info("Exporting model vocab...")
  2943. model_instance.write_vocab()
  2944. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2945. else:
  2946. logger.info("Exporting model...")
  2947. model_instance.write()
  2948. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2949. logger.info(f"Model successfully exported to {out_path}")
  2950. if __name__ == '__main__':
  2951. main()