tensor_mapping.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. ),
  27. # Token type embeddings
  28. MODEL_TENSOR.TOKEN_TYPES: (
  29. "embeddings.token_type_embeddings", # bert nomic-bert
  30. ),
  31. # Normalization of token embeddings
  32. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  33. "word_embeddings_layernorm", # bloom
  34. "embeddings.LayerNorm", # bert
  35. "emb_ln", # nomic-bert
  36. "transformer.norm", # openelm
  37. ),
  38. # Position embeddings
  39. MODEL_TENSOR.POS_EMBD: (
  40. "transformer.wpe", # gpt2
  41. "embeddings.position_embeddings", # bert
  42. "wpe", # gpt2
  43. ),
  44. # Output
  45. MODEL_TENSOR.OUTPUT: (
  46. "embed_out", # gptneox
  47. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
  48. "output", # llama-pth bloom internlm2
  49. "word_embeddings_for_head", # persimmon
  50. "lm_head.linear", # phi2
  51. "output_layer", # chatglm
  52. ),
  53. # Output norm
  54. MODEL_TENSOR.OUTPUT_NORM: (
  55. "gpt_neox.final_layer_norm", # gptneox
  56. "transformer.ln_f", # gpt2 gpt-j falcon jais
  57. "model.norm", # llama-hf baichuan internlm2
  58. "norm", # llama-pth
  59. "transformer.norm_f", # mpt dbrx
  60. "ln_f", # refact bloom qwen gpt2
  61. "language_model.encoder.final_layernorm", # persimmon
  62. "model.final_layernorm", # persimmon
  63. "lm_head.ln", # phi2
  64. "model.norm_f", # mamba-qbert
  65. "backbone.norm_f", # mamba
  66. "transformer.rms_norm", # Grok
  67. "encoder.final_layernorm", # chatglm
  68. "transformer.norm", # openelm
  69. ),
  70. # Rope frequencies
  71. MODEL_TENSOR.ROPE_FREQS: (
  72. "rope.freqs", # llama-pth
  73. "rotary_pos_emb.inv_freq", # chatglm
  74. ),
  75. }
  76. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  77. # Attention norm
  78. MODEL_TENSOR.ATTN_NORM: (
  79. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  80. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
  81. "transformer.blocks.{bid}.norm_1", # mpt
  82. "transformer.h.{bid}.input_layernorm", # falcon7b
  83. "h.{bid}.input_layernorm", # bloom
  84. "transformer.h.{bid}.ln_mlp", # falcon40b
  85. "model.layers.{bid}.input_layernorm", # llama-hf
  86. "layers.{bid}.attention_norm", # llama-pth
  87. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  88. "model.layers.{bid}.ln1", # yi
  89. "h.{bid}.ln_1", # gpt2
  90. "transformer.h.{bid}.ln", # phi2
  91. "model.layers.layers.{bid}.norm", # plamo
  92. "model.layers.{bid}.attention_norm", # internlm2
  93. "model.layers.{bid}.norm", # mamba-qbert
  94. "backbone.layers.{bid}.norm", # mamba
  95. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  96. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  97. "encoder.layers.{bid}.input_layernorm", # chatglm
  98. "transformer.layers.{bid}.attn_norm", # openelm
  99. ),
  100. # Attention norm 2
  101. MODEL_TENSOR.ATTN_NORM_2: (
  102. "transformer.h.{bid}.ln_attn", # falcon40b
  103. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  104. ),
  105. # Attention query-key-value
  106. MODEL_TENSOR.ATTN_QKV: (
  107. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  108. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  109. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  110. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  111. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  112. "h.{bid}.self_attention.query_key_value", # bloom
  113. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  114. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  115. "h.{bid}.attn.c_attn", # gpt2
  116. "transformer.h.{bid}.mixer.Wqkv", # phi2
  117. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  118. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  119. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  120. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  121. ),
  122. # Attention query
  123. MODEL_TENSOR.ATTN_Q: (
  124. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  125. "layers.{bid}.attention.wq", # llama-pth
  126. "encoder.layer.{bid}.attention.self.query", # bert
  127. "transformer.h.{bid}.attn.q_proj", # gpt-j
  128. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  129. "model.layers.{bid}.attention.wq", # internlm2
  130. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  131. ),
  132. # Attention key
  133. MODEL_TENSOR.ATTN_K: (
  134. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  135. "layers.{bid}.attention.wk", # llama-pth
  136. "encoder.layer.{bid}.attention.self.key", # bert
  137. "transformer.h.{bid}.attn.k_proj", # gpt-j
  138. "transformer.h.{bid}.attn.k", # refact
  139. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  140. "model.layers.{bid}.attention.wk", # internlm2
  141. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  142. ),
  143. # Attention value
  144. MODEL_TENSOR.ATTN_V: (
  145. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  146. "layers.{bid}.attention.wv", # llama-pth
  147. "encoder.layer.{bid}.attention.self.value", # bert
  148. "transformer.h.{bid}.attn.v_proj", # gpt-j
  149. "transformer.h.{bid}.attn.v", # refact
  150. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  151. "model.layers.{bid}.attention.wv", # internlm2
  152. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  153. ),
  154. # Attention output
  155. MODEL_TENSOR.ATTN_OUT: (
  156. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  157. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  158. "transformer.blocks.{bid}.attn.out_proj", # mpt
  159. "transformer.h.{bid}.self_attention.dense", # falcon
  160. "h.{bid}.self_attention.dense", # bloom
  161. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  162. "layers.{bid}.attention.wo", # llama-pth
  163. "encoder.layer.{bid}.attention.output.dense", # bert
  164. "transformer.h.{bid}.attn.out_proj", # gpt-j
  165. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  166. "model.layers.{bid}.self_attn.dense", # persimmon
  167. "h.{bid}.attn.c_proj", # gpt2
  168. "transformer.h.{bid}.mixer.out_proj", # phi2
  169. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  170. "model.layers.{bid}.attention.wo", # internlm2
  171. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  172. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  173. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  174. "encoder.layers.{bid}.self_attention.dense", # chatglm
  175. "transformer.layers.{bid}.attn.out_proj", # openelm
  176. ),
  177. # Attention output norm
  178. MODEL_TENSOR.ATTN_OUT_NORM: (
  179. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  180. "encoder.layers.{bid}.norm1", # nomic-bert
  181. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  182. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  183. ),
  184. MODEL_TENSOR.ATTN_POST_NORM: (
  185. "model.layers.{bid}.post_attention_layernorm", # gemma2
  186. ),
  187. # Rotary embeddings
  188. MODEL_TENSOR.ATTN_ROT_EMBD: (
  189. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  190. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  191. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  192. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  193. ),
  194. # Feed-forward norm
  195. MODEL_TENSOR.FFN_NORM: (
  196. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  197. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
  198. "h.{bid}.post_attention_layernorm", # bloom
  199. "transformer.blocks.{bid}.norm_2", # mpt
  200. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  201. "layers.{bid}.ffn_norm", # llama-pth
  202. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  203. "model.layers.{bid}.ln2", # yi
  204. "h.{bid}.ln_2", # gpt2
  205. "model.layers.{bid}.ffn_norm", # internlm2
  206. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  207. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  208. "transformer.layers.{bid}.ffn_norm", # openelm
  209. ),
  210. # Post feed-forward norm
  211. MODEL_TENSOR.FFN_PRE_NORM: (
  212. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  213. ),
  214. # Post feed-forward norm
  215. MODEL_TENSOR.FFN_POST_NORM: (
  216. "model.layers.{bid}.post_feedforward_layernorm", # gemma2
  217. ),
  218. MODEL_TENSOR.FFN_GATE_INP: (
  219. "layers.{bid}.feed_forward.gate", # mixtral
  220. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  221. "model.layers.{bid}.mlp.gate", # qwen2moe
  222. "transformer.decoder_layer.{bid}.router", # Grok
  223. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  224. ),
  225. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  226. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  227. ),
  228. # Feed-forward up
  229. MODEL_TENSOR.FFN_UP: (
  230. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  231. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  232. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  233. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  234. "h.{bid}.mlp.dense_h_to_4h", # bloom
  235. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  236. "layers.{bid}.feed_forward.w3", # llama-pth
  237. "encoder.layer.{bid}.intermediate.dense", # bert
  238. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  239. "transformer.h.{bid}.mlp.linear_3", # refact
  240. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  241. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  242. "transformer.h.{bid}.mlp.w1", # qwen
  243. "h.{bid}.mlp.c_fc", # gpt2
  244. "transformer.h.{bid}.mlp.fc1", # phi2
  245. "model.layers.{bid}.mlp.fc1", # phi2
  246. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  247. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  248. "model.layers.{bid}.feed_forward.w3", # internlm2
  249. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  250. "model.layers.{bid}.mlp.c_fc", # starcoder2
  251. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  252. "model.layers.{bid}.residual_mlp.w3", # arctic
  253. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  254. ),
  255. MODEL_TENSOR.FFN_UP_EXP: (
  256. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  257. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  258. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  259. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  260. ),
  261. MODEL_TENSOR.FFN_UP_SHEXP: (
  262. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  263. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  264. ),
  265. # AWQ-activation gate
  266. MODEL_TENSOR.FFN_ACT: (
  267. "transformer.blocks.{bid}.ffn.act", # mpt
  268. ),
  269. # Feed-forward gate
  270. MODEL_TENSOR.FFN_GATE: (
  271. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  272. "layers.{bid}.feed_forward.w1", # llama-pth
  273. "transformer.h.{bid}.mlp.w2", # qwen
  274. "transformer.h.{bid}.mlp.c_fc2", # jais
  275. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  276. "model.layers.{bid}.feed_forward.w1", # internlm2
  277. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  278. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  279. "transformer.h.{bid}.mlp.linear_1", # refact
  280. "model.layers.{bid}.residual_mlp.w1", # arctic
  281. ),
  282. MODEL_TENSOR.FFN_GATE_EXP: (
  283. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  284. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  285. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  286. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  287. ),
  288. MODEL_TENSOR.FFN_GATE_SHEXP: (
  289. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  290. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  291. ),
  292. # Feed-forward down
  293. MODEL_TENSOR.FFN_DOWN: (
  294. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  295. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  296. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  297. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  298. "h.{bid}.mlp.dense_4h_to_h", # bloom
  299. "model.layers.{bid}.mlp.down_proj", # llama-hf
  300. "layers.{bid}.feed_forward.w2", # llama-pth
  301. "encoder.layer.{bid}.output.dense", # bert
  302. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  303. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  304. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  305. "h.{bid}.mlp.c_proj", # gpt2
  306. "transformer.h.{bid}.mlp.fc2", # phi2
  307. "model.layers.{bid}.mlp.fc2", # phi2
  308. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  309. "model.layers.{bid}.feed_forward.w2", # internlm2
  310. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  311. "model.layers.{bid}.mlp.c_proj", # starcoder2
  312. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  313. "transformer.layers.{bid}.ffn.proj_2", # openelm
  314. "model.layers.{bid}.residual_mlp.w2", # arctic
  315. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  316. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  317. ),
  318. MODEL_TENSOR.FFN_DOWN_EXP: (
  319. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  320. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  321. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  322. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  323. ),
  324. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  325. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  326. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  327. ),
  328. MODEL_TENSOR.ATTN_Q_NORM: (
  329. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  330. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  331. "model.layers.{bid}.self_attn.q_norm", # cohere
  332. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  333. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  334. "transformer.layers.{bid}.attn.q_norm", # openelm
  335. ),
  336. MODEL_TENSOR.ATTN_K_NORM: (
  337. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  338. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  339. "model.layers.{bid}.self_attn.k_norm", # cohere
  340. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  341. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  342. "transformer.layers.{bid}.attn.k_norm", # openelm
  343. ),
  344. MODEL_TENSOR.ROPE_FREQS: (
  345. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  346. ),
  347. MODEL_TENSOR.LAYER_OUT_NORM: (
  348. "encoder.layer.{bid}.output.LayerNorm", # bert
  349. "encoder.layers.{bid}.norm2", # nomic-bert
  350. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  351. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  352. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  353. ),
  354. MODEL_TENSOR.SSM_IN: (
  355. "model.layers.{bid}.in_proj",
  356. "backbone.layers.{bid}.mixer.in_proj",
  357. ),
  358. MODEL_TENSOR.SSM_CONV1D: (
  359. "model.layers.{bid}.conv1d",
  360. "backbone.layers.{bid}.mixer.conv1d",
  361. ),
  362. MODEL_TENSOR.SSM_X: (
  363. "model.layers.{bid}.x_proj",
  364. "backbone.layers.{bid}.mixer.x_proj",
  365. ),
  366. MODEL_TENSOR.SSM_DT: (
  367. "model.layers.{bid}.dt_proj",
  368. "backbone.layers.{bid}.mixer.dt_proj",
  369. ),
  370. MODEL_TENSOR.SSM_A: (
  371. "model.layers.{bid}.A_log",
  372. "backbone.layers.{bid}.mixer.A_log",
  373. ),
  374. MODEL_TENSOR.SSM_D: (
  375. "model.layers.{bid}.D",
  376. "backbone.layers.{bid}.mixer.D",
  377. ),
  378. MODEL_TENSOR.SSM_OUT: (
  379. "model.layers.{bid}.out_proj",
  380. "backbone.layers.{bid}.mixer.out_proj",
  381. ),
  382. MODEL_TENSOR.ATTN_Q_A: (
  383. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  384. ),
  385. MODEL_TENSOR.ATTN_Q_B: (
  386. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  387. ),
  388. MODEL_TENSOR.ATTN_KV_A_MQA: (
  389. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  390. ),
  391. MODEL_TENSOR.ATTN_KV_B: (
  392. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  393. ),
  394. MODEL_TENSOR.ATTN_Q_A_NORM: (
  395. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  396. ),
  397. MODEL_TENSOR.ATTN_KV_A_NORM: (
  398. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  399. ),
  400. MODEL_TENSOR.ATTN_SUB_NORM: (
  401. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  402. ),
  403. MODEL_TENSOR.FFN_SUB_NORM: (
  404. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  405. ),
  406. MODEL_TENSOR.DEC_ATTN_NORM: (
  407. "decoder.block.{bid}.layer.0.layer_norm", # t5
  408. ),
  409. MODEL_TENSOR.DEC_ATTN_Q: (
  410. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  411. ),
  412. MODEL_TENSOR.DEC_ATTN_K: (
  413. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  414. ),
  415. MODEL_TENSOR.DEC_ATTN_V: (
  416. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  417. ),
  418. MODEL_TENSOR.DEC_ATTN_OUT: (
  419. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  420. ),
  421. MODEL_TENSOR.DEC_ATTN_REL_B: (
  422. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  423. ),
  424. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  425. "decoder.block.{bid}.layer.1.layer_norm", # t5
  426. ),
  427. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  428. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  429. ),
  430. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  431. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  432. ),
  433. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  434. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  435. ),
  436. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  437. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  438. ),
  439. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  440. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  441. ),
  442. MODEL_TENSOR.DEC_FFN_NORM: (
  443. "decoder.block.{bid}.layer.2.layer_norm", # t5
  444. ),
  445. MODEL_TENSOR.DEC_FFN_GATE: (
  446. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  447. ),
  448. MODEL_TENSOR.DEC_FFN_UP: (
  449. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  450. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  451. ),
  452. MODEL_TENSOR.DEC_FFN_DOWN: (
  453. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  454. ),
  455. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  456. "decoder.final_layer_norm", # t5
  457. ),
  458. MODEL_TENSOR.ENC_ATTN_NORM: (
  459. "encoder.block.{bid}.layer.0.layer_norm", # t5
  460. ),
  461. MODEL_TENSOR.ENC_ATTN_Q: (
  462. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  463. ),
  464. MODEL_TENSOR.ENC_ATTN_K: (
  465. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  466. ),
  467. MODEL_TENSOR.ENC_ATTN_V: (
  468. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  469. ),
  470. MODEL_TENSOR.ENC_ATTN_OUT: (
  471. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  472. ),
  473. MODEL_TENSOR.ENC_ATTN_REL_B: (
  474. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  475. ),
  476. MODEL_TENSOR.ENC_FFN_NORM: (
  477. "encoder.block.{bid}.layer.1.layer_norm", # t5
  478. ),
  479. MODEL_TENSOR.ENC_FFN_GATE: (
  480. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  481. ),
  482. MODEL_TENSOR.ENC_FFN_UP: (
  483. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  484. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  485. ),
  486. MODEL_TENSOR.ENC_FFN_DOWN: (
  487. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  488. ),
  489. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  490. "encoder.final_layer_norm", # t5
  491. ),
  492. }
  493. # architecture-specific block mappings
  494. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  495. MODEL_ARCH.ARCTIC: {
  496. MODEL_TENSOR.FFN_NORM: (
  497. "model.layers.{bid}.residual_layernorm",
  498. ),
  499. MODEL_TENSOR.FFN_NORM_EXP: (
  500. "model.layers.{bid}.post_attention_layernorm",
  501. ),
  502. },
  503. }
  504. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  505. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  506. self.mapping = {}
  507. for tensor, keys in self.mappings_cfg.items():
  508. if tensor not in MODEL_TENSORS[arch]:
  509. continue
  510. tensor_name = TENSOR_NAMES[tensor]
  511. self.mapping[tensor_name] = (tensor, tensor_name)
  512. for key in keys:
  513. self.mapping[key] = (tensor, tensor_name)
  514. if arch in self.arch_block_mappings_cfg:
  515. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  516. for bid in range(n_blocks):
  517. for tensor, keys in self.block_mappings_cfg.items():
  518. if tensor not in MODEL_TENSORS[arch]:
  519. continue
  520. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  521. self.mapping[tensor_name] = (tensor, tensor_name)
  522. for key in keys:
  523. key = key.format(bid = bid)
  524. self.mapping[key] = (tensor, tensor_name)
  525. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  526. result = self.mapping.get(key)
  527. if result is not None:
  528. return result
  529. for suffix in try_suffixes:
  530. if key.endswith(suffix):
  531. result = self.mapping.get(key[:-len(suffix)])
  532. if result is not None:
  533. return result[0], result[1] + suffix
  534. return None
  535. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  536. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  537. if result is None:
  538. return None
  539. return result[1]
  540. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  541. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  542. if result is None:
  543. return None
  544. return result[0]
  545. def __getitem__(self, key: str) -> str:
  546. try:
  547. return self.mapping[key][1]
  548. except KeyError:
  549. raise KeyError(key)
  550. def __contains__(self, key: str) -> bool:
  551. return key in self.mapping
  552. def __repr__(self) -> str:
  553. return repr(self.mapping)
  554. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  555. return TensorNameMap(arch, n_blocks)