llama.cpp 122 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #ifdef GGML_USE_K_QUANTS
  20. #ifndef QK_K
  21. #ifdef GGML_QKK_64
  22. #define QK_K 64
  23. #else
  24. #define QK_K 256
  25. #endif
  26. #endif
  27. #endif
  28. #include <array>
  29. #include <ctime>
  30. #include <cinttypes>
  31. #include <fstream>
  32. #include <random>
  33. #include <map>
  34. #include <unordered_map>
  35. #include <queue>
  36. #include <cassert>
  37. #include <cstring>
  38. #include <climits>
  39. #include <memory>
  40. #include <algorithm>
  41. #include <initializer_list>
  42. #include <thread>
  43. #include <atomic>
  44. #include <mutex>
  45. #include <sstream>
  46. #include <numeric>
  47. #if defined(_MSC_VER)
  48. #pragma warning(disable: 4244 4267) // possible loss of data
  49. #endif
  50. #define LLAMA_USE_SCRATCH
  51. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  52. // available llama models
  53. enum e_model {
  54. MODEL_UNKNOWN,
  55. MODEL_3B,
  56. MODEL_7B,
  57. MODEL_13B,
  58. MODEL_30B,
  59. MODEL_65B,
  60. };
  61. static const size_t kB = 1024;
  62. static const size_t MB = 1024*1024;
  63. // computed for n_ctx == 2048
  64. // TODO: dynamically determine these sizes
  65. // needs modifications in ggml
  66. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  67. void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  68. (void) tensor;
  69. }
  70. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  71. {
  72. static std::map<e_model, size_t> k_sizes = {
  73. { MODEL_3B, 256ull * MB },
  74. { MODEL_7B, 512ull * MB },
  75. { MODEL_13B, 512ull * MB },
  76. { MODEL_30B, 512ull * MB },
  77. { MODEL_65B, 1024ull * MB },
  78. };
  79. return k_sizes;
  80. }
  81. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  82. {
  83. static std::map<e_model, size_t> k_sizes = {
  84. { MODEL_3B, 256ull * MB },
  85. { MODEL_7B, 512ull * MB },
  86. { MODEL_13B, 512ull * MB },
  87. { MODEL_30B, 512ull * MB },
  88. { MODEL_65B, 1024ull * MB },
  89. };
  90. return k_sizes;
  91. }
  92. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  93. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  94. {
  95. static std::map<e_model, size_t> k_sizes = {
  96. { MODEL_3B, 682ull * MB },
  97. { MODEL_7B, 1026ull * MB },
  98. { MODEL_13B, 1608ull * MB },
  99. { MODEL_30B, 3124ull * MB },
  100. { MODEL_65B, 5120ull * MB },
  101. };
  102. return k_sizes;
  103. }
  104. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  105. // not actually needed if BLAS is disabled
  106. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  107. {
  108. static std::map<e_model, size_t> k_sizes = {
  109. { MODEL_3B, 512ull * MB },
  110. { MODEL_7B, 768ull * MB },
  111. { MODEL_13B, 1024ull * MB },
  112. { MODEL_30B, 1280ull * MB },
  113. { MODEL_65B, 1536ull * MB },
  114. };
  115. return k_sizes;
  116. }
  117. // amount of VRAM needed per batch size to hold temporary results
  118. // the values for 3b and 65b are not derived from testing but instead chosen conservatively
  119. static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
  120. {
  121. static std::map<e_model, size_t> k_sizes = {
  122. { MODEL_3B, 512ull * kB },
  123. { MODEL_7B, 512ull * kB },
  124. { MODEL_13B, 640ull * kB },
  125. { MODEL_30B, 768ull * kB },
  126. { MODEL_65B, 1536ull * kB },
  127. };
  128. return k_sizes;
  129. }
  130. // amount of VRAM needed per batch size and context to hold temporary results
  131. // the values for 3b and 65b are not derived from testing but instead chosen conservatively
  132. static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
  133. {
  134. static std::map<e_model, size_t> k_sizes = {
  135. { MODEL_3B, 128ull },
  136. { MODEL_7B, 128ull },
  137. { MODEL_13B, 160ull },
  138. { MODEL_30B, 208ull },
  139. { MODEL_65B, 416ull },
  140. };
  141. return k_sizes;
  142. }
  143. // default hparams (LLaMA 7B)
  144. struct llama_hparams {
  145. uint32_t n_vocab = 32000;
  146. uint32_t n_ctx = 512; // this is provided as user input?
  147. uint32_t n_embd = 4096;
  148. uint32_t n_mult = 256;
  149. uint32_t n_head = 32;
  150. uint32_t n_layer = 32;
  151. uint32_t n_rot = 64;
  152. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  153. bool operator!=(const llama_hparams & other) const {
  154. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  155. }
  156. };
  157. struct llama_layer {
  158. // normalization
  159. struct ggml_tensor * attention_norm;
  160. // attention
  161. struct ggml_tensor * wq;
  162. struct ggml_tensor * wk;
  163. struct ggml_tensor * wv;
  164. struct ggml_tensor * wo;
  165. // normalization
  166. struct ggml_tensor * ffn_norm;
  167. // ff
  168. struct ggml_tensor * w1;
  169. struct ggml_tensor * w2;
  170. struct ggml_tensor * w3;
  171. };
  172. struct llama_kv_cache {
  173. struct ggml_tensor * k;
  174. struct ggml_tensor * v;
  175. struct ggml_context * ctx = NULL;
  176. llama_ctx_buffer buf;
  177. int n; // number of tokens currently in the cache
  178. ~llama_kv_cache() {
  179. if (ctx) {
  180. ggml_free(ctx);
  181. }
  182. #ifdef GGML_USE_CUBLAS
  183. ggml_cuda_free_data(k);
  184. ggml_cuda_free_data(v);
  185. #endif // GGML_USE_CUBLAS
  186. }
  187. };
  188. struct llama_vocab {
  189. using id = int32_t;
  190. using token = std::string;
  191. struct token_score {
  192. token tok;
  193. float score;
  194. };
  195. std::unordered_map<token, id> token_to_id;
  196. std::vector<token_score> id_to_token;
  197. };
  198. struct llama_model {
  199. e_model type = MODEL_UNKNOWN;
  200. llama_hparams hparams;
  201. struct ggml_tensor * tok_embeddings;
  202. struct ggml_tensor * norm;
  203. struct ggml_tensor * output;
  204. std::vector<llama_layer> layers;
  205. int n_gpu_layers;
  206. // context
  207. struct ggml_context * ctx = NULL;
  208. // the model memory buffer
  209. llama_ctx_buffer buf;
  210. // model memory mapped file
  211. std::unique_ptr<llama_mmap> mapping;
  212. // objects representing data potentially being locked in memory
  213. llama_mlock mlock_buf;
  214. llama_mlock mlock_mmap;
  215. // for quantize-stats only
  216. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  217. int64_t t_load_us = 0;
  218. int64_t t_start_us = 0;
  219. llama_vocab vocab;
  220. ~llama_model() {
  221. if (ctx) {
  222. ggml_free(ctx);
  223. }
  224. #ifdef GGML_USE_CUBLAS
  225. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  226. ggml_cuda_free_data(tensors_by_name[i].second);
  227. }
  228. ggml_cuda_free_scratch();
  229. #elif defined(GGML_USE_CLBLAST)
  230. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  231. ggml_cl_free_data(tensors_by_name[i].second);
  232. }
  233. #endif
  234. }
  235. };
  236. struct llama_context {
  237. llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
  238. #ifdef GGML_USE_METAL
  239. ~llama_context() {
  240. if (ctx_metal) {
  241. ggml_metal_free(ctx_metal);
  242. }
  243. }
  244. #endif
  245. std::mt19937 rng;
  246. bool has_evaluated_once = false;
  247. int64_t t_sample_us = 0;
  248. int64_t t_eval_us = 0;
  249. int64_t t_p_eval_us = 0;
  250. int32_t n_sample = 0; // number of tokens sampled
  251. int32_t n_eval = 0; // number of eval calls
  252. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  253. const llama_model & model;
  254. const llama_vocab & vocab;
  255. bool model_owner = false;
  256. int64_t t_load_us;
  257. int64_t t_start_us;
  258. // key + value cache for the self attention
  259. struct llama_kv_cache kv_self;
  260. size_t mem_per_token = 0;
  261. // decode output (2-dimensional array: [n_tokens][n_vocab])
  262. std::vector<float> logits;
  263. bool logits_all = false;
  264. // input embedding (1-dimensional array: [n_embd])
  265. std::vector<float> embedding;
  266. // memory buffers used to evaluate the model
  267. // TODO: move in llama_state
  268. llama_ctx_buffer buf_compute;
  269. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  270. #ifdef GGML_USE_METAL
  271. ggml_metal_context * ctx_metal = NULL;
  272. #endif
  273. int buf_last = 0;
  274. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  275. void use_buf(struct ggml_context * ctx, int i) {
  276. #if defined(LLAMA_USE_SCRATCH)
  277. size_t last_size = 0;
  278. if (i == -1) {
  279. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  280. } else {
  281. auto & buf = buf_scratch[i];
  282. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  283. }
  284. if (buf_last >= 0) {
  285. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  286. }
  287. buf_last = i;
  288. #else
  289. (void) i;
  290. (void) ctx;
  291. #endif
  292. }
  293. size_t get_buf_max_mem(int i) const {
  294. #if defined(LLAMA_USE_SCRATCH)
  295. return buf_max_size[i];
  296. #else
  297. (void) i;
  298. return 0;
  299. #endif
  300. }
  301. };
  302. template <typename T>
  303. static T checked_mul(T a, T b) {
  304. T ret = a * b;
  305. if (a != 0 && ret / a != b) {
  306. throw std::runtime_error(format("overflow multiplying %llu * %llu",
  307. (unsigned long long) a, (unsigned long long) b));
  308. }
  309. return ret;
  310. }
  311. static size_t checked_div(size_t a, size_t b) {
  312. if (b == 0 || a % b != 0) {
  313. throw std::runtime_error(format("error dividing %zu / %zu", a, b));
  314. }
  315. return a / b;
  316. }
  317. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  318. char buf[256];
  319. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  320. for (size_t i = 1; i < ne.size(); i++) {
  321. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  322. }
  323. return buf;
  324. }
  325. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  326. size_t size = ggml_type_size(type);
  327. for (uint32_t dim : ne) {
  328. size = checked_mul<size_t>(size, dim);
  329. }
  330. return size / ggml_blck_size(type);
  331. }
  332. struct llama_load_tensor {
  333. std::string name;
  334. enum ggml_type type = GGML_TYPE_F32;
  335. std::vector<uint32_t> ne;
  336. size_t file_off;
  337. size_t size;
  338. struct ggml_tensor * ggml_tensor = NULL;
  339. uint8_t * data;
  340. };
  341. struct llama_load_tensors_map {
  342. // tensors is kept in a separate vector to preserve file order
  343. std::vector<llama_load_tensor> tensors;
  344. std::unordered_map<std::string, size_t> name_to_idx;
  345. };
  346. enum llama_file_version {
  347. LLAMA_FILE_VERSION_GGML,
  348. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  349. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  350. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  351. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  352. };
  353. struct llama_file_loader {
  354. llama_file file;
  355. llama_file_version file_version;
  356. llama_hparams hparams;
  357. llama_vocab vocab;
  358. llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
  359. : file(fname, "rb") {
  360. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  361. read_magic();
  362. read_hparams();
  363. read_vocab();
  364. read_tensor_metadata(tensors_map);
  365. }
  366. void read_magic() {
  367. uint32_t magic = file.read_u32();
  368. if (magic == LLAMA_FILE_MAGIC_GGML) {
  369. file_version = LLAMA_FILE_VERSION_GGML;
  370. return;
  371. }
  372. uint32_t version = file.read_u32();
  373. switch (magic) {
  374. case LLAMA_FILE_MAGIC_GGMF:
  375. switch (version) {
  376. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  377. }
  378. break;
  379. case LLAMA_FILE_MAGIC_GGJT:
  380. switch (version) {
  381. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  382. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  383. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  384. }
  385. }
  386. throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  387. magic, version));
  388. }
  389. void read_hparams() {
  390. hparams.n_vocab = file.read_u32();
  391. hparams.n_embd = file.read_u32();
  392. hparams.n_mult = file.read_u32();
  393. hparams.n_head = file.read_u32();
  394. hparams.n_layer = file.read_u32();
  395. hparams.n_rot = file.read_u32();
  396. hparams.ftype = (enum llama_ftype) file.read_u32();
  397. }
  398. void read_vocab() {
  399. vocab.id_to_token.resize(hparams.n_vocab);
  400. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  401. uint32_t len = file.read_u32();
  402. std::string word = file.read_string(len);
  403. float score = 0.0f;
  404. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  405. file.read_raw(&score, sizeof(score));
  406. }
  407. vocab.token_to_id[word] = i;
  408. auto & tok_score = vocab.id_to_token[i];
  409. tok_score.tok = std::move(word);
  410. tok_score.score = score;
  411. }
  412. }
  413. void read_tensor_metadata(llama_load_tensors_map & tensors_map) {
  414. while (file.tell() < file.size) {
  415. llama_load_tensor tensor;
  416. uint32_t n_dims = file.read_u32();
  417. uint32_t name_len = file.read_u32();
  418. tensor.type = (enum ggml_type) file.read_u32();
  419. tensor.ne.resize(n_dims);
  420. file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims);
  421. std::string name = file.read_string(name_len);
  422. if (n_dims < 1 || n_dims > 2) {
  423. throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
  424. }
  425. switch (tensor.type) {
  426. case GGML_TYPE_F32:
  427. case GGML_TYPE_F16:
  428. case GGML_TYPE_Q4_0:
  429. case GGML_TYPE_Q4_1:
  430. case GGML_TYPE_Q5_0:
  431. case GGML_TYPE_Q5_1:
  432. case GGML_TYPE_Q8_0:
  433. case GGML_TYPE_Q2_K:
  434. case GGML_TYPE_Q3_K:
  435. case GGML_TYPE_Q4_K:
  436. case GGML_TYPE_Q5_K:
  437. case GGML_TYPE_Q6_K:
  438. break;
  439. default: {
  440. throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type));
  441. }
  442. }
  443. // skip to the next multiple of 32 bytes
  444. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  445. tensor.file_off = file.tell();
  446. tensor.name = name;
  447. tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type);
  448. file.seek(tensor.size, SEEK_CUR);
  449. tensors_map.tensors.push_back(tensor);
  450. tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
  451. }
  452. }
  453. };
  454. struct llama_file_saver {
  455. llama_file file;
  456. llama_file_loader * any_file_loader;
  457. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  458. : file(fname, "wb"), any_file_loader(any_file_loader) {
  459. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  460. write_magic();
  461. write_hparams(new_ftype);
  462. write_vocab();
  463. }
  464. void write_magic() {
  465. file.write_u32(LLAMA_FILE_MAGIC); // magic
  466. file.write_u32(LLAMA_FILE_VERSION); // version
  467. }
  468. void write_hparams(enum llama_ftype new_ftype) {
  469. const llama_hparams & hparams = any_file_loader->hparams;
  470. file.write_u32(hparams.n_vocab);
  471. file.write_u32(hparams.n_embd);
  472. file.write_u32(hparams.n_mult);
  473. file.write_u32(hparams.n_head);
  474. file.write_u32(hparams.n_layer);
  475. file.write_u32(hparams.n_rot);
  476. file.write_u32(new_ftype);
  477. }
  478. void write_vocab() {
  479. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  480. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  481. }
  482. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  483. for (uint32_t i = 0; i < n_vocab; i++) {
  484. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  485. file.write_u32((uint32_t) token_score.tok.size());
  486. file.write_raw(token_score.tok.data(), token_score.tok.size());
  487. file.write_raw(&token_score.score, sizeof(token_score.score));
  488. }
  489. }
  490. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  491. switch (new_type) {
  492. case GGML_TYPE_F32:
  493. case GGML_TYPE_F16:
  494. case GGML_TYPE_Q4_0:
  495. case GGML_TYPE_Q4_1:
  496. case GGML_TYPE_Q5_0:
  497. case GGML_TYPE_Q5_1:
  498. case GGML_TYPE_Q8_0:
  499. case GGML_TYPE_Q2_K:
  500. case GGML_TYPE_Q3_K:
  501. case GGML_TYPE_Q4_K:
  502. case GGML_TYPE_Q5_K:
  503. case GGML_TYPE_Q6_K:
  504. break;
  505. default: LLAMA_ASSERT(false);
  506. }
  507. file.write_u32((uint32_t) tensor.ne.size());
  508. file.write_u32((uint32_t) tensor.name.size());
  509. file.write_u32(new_type);
  510. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  511. file.write_raw(tensor.name.data(), tensor.name.size());
  512. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  513. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  514. file.write_raw(new_data, new_size);
  515. }
  516. };
  517. struct llama_model_loader {
  518. std::unique_ptr<llama_file_loader> file_loader;
  519. llama_load_tensors_map tensors_map;
  520. bool use_mmap;
  521. size_t num_ggml_tensors_created = 0;
  522. struct ggml_context * ggml_ctx = NULL;
  523. std::unique_ptr<llama_mmap> mapping;
  524. llama_model_loader(const std::string & fname_base, bool use_mmap) {
  525. file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
  526. if (!llama_mmap::SUPPORTED) {
  527. use_mmap = false;
  528. }
  529. this->use_mmap = use_mmap;
  530. }
  531. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  532. *ctx_size_p = *mmapped_size_p = 0;
  533. for (const llama_load_tensor & lt : tensors_map.tensors) {
  534. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  535. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  536. }
  537. }
  538. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  539. auto it = tensors_map.name_to_idx.find(name);
  540. if (it == tensors_map.name_to_idx.end()) {
  541. throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
  542. }
  543. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  544. if (lt.ne != ne) {
  545. throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  546. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
  547. }
  548. return get_tensor_for(lt, backend);
  549. }
  550. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  551. struct ggml_tensor * tensor;
  552. if (backend != GGML_BACKEND_CPU) {
  553. ggml_set_no_alloc(ggml_ctx, true);
  554. }
  555. if (lt.ne.size() == 2) {
  556. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  557. } else {
  558. LLAMA_ASSERT(lt.ne.size() == 1);
  559. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  560. }
  561. ggml_set_name(tensor, lt.name.c_str());
  562. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  563. if (backend != GGML_BACKEND_CPU) {
  564. ggml_set_no_alloc(ggml_ctx, use_mmap);
  565. }
  566. tensor->backend = backend;
  567. lt.ggml_tensor = tensor;
  568. num_ggml_tensors_created++;
  569. return tensor;
  570. }
  571. void done_getting_tensors() const {
  572. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  573. throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
  574. }
  575. }
  576. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  577. size_t data_size = 0;
  578. size_t prefetch_size = 0;
  579. size_t lock_size = 0;
  580. for (const llama_load_tensor & lt : tensors_map.tensors) {
  581. data_size += lt.size;
  582. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  583. prefetch_size += lt.size;
  584. }
  585. }
  586. if (use_mmap) {
  587. mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa()));
  588. if (lmlock) {
  589. lmlock->init(mapping->addr);
  590. }
  591. }
  592. size_t done_size = 0;
  593. for (llama_load_tensor & lt : tensors_map.tensors) {
  594. if (progress_callback) {
  595. progress_callback((float) done_size / data_size, progress_callback_user_data);
  596. }
  597. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  598. lt.data = (uint8_t *) lt.ggml_tensor->data;
  599. // allocate temp buffer if not using mmap
  600. if (!use_mmap && lt.data == NULL) {
  601. GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
  602. lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
  603. }
  604. load_data_for(lt);
  605. switch(lt.ggml_tensor->backend) {
  606. case GGML_BACKEND_CPU:
  607. lt.ggml_tensor->data = lt.data;
  608. if (use_mmap && lmlock) {
  609. lock_size += lt.size;
  610. lmlock->grow_to(lock_size);
  611. }
  612. break;
  613. #if defined(GGML_USE_CUBLAS)
  614. case GGML_BACKEND_GPU:
  615. case GGML_BACKEND_GPU_SPLIT:
  616. ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  617. if (!use_mmap) {
  618. free(lt.data);
  619. }
  620. break;
  621. #elif defined(GGML_USE_CLBLAST)
  622. case GGML_BACKEND_GPU:
  623. ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
  624. if (!use_mmap) {
  625. free(lt.data);
  626. }
  627. break;
  628. #endif
  629. default:
  630. continue;
  631. }
  632. done_size += lt.size;
  633. }
  634. }
  635. void load_data_for(llama_load_tensor & lt) {
  636. if (use_mmap) {
  637. lt.data = (uint8_t *) mapping->addr + lt.file_off;
  638. } else {
  639. llama_file & file = file_loader->file;
  640. file.seek(lt.file_off, SEEK_SET);
  641. file.read_raw(lt.data, lt.size);
  642. }
  643. if (0) {
  644. print_checksum(lt);
  645. }
  646. }
  647. static void print_checksum(llama_load_tensor & lt) {
  648. uint32_t sum = 0;
  649. for (size_t i = 0; i < lt.size; i++) {
  650. uint8_t byte = lt.data[i];
  651. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  652. }
  653. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  654. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  655. }
  656. };
  657. //
  658. // kv cache
  659. //
  660. static bool kv_cache_init(
  661. const struct llama_hparams & hparams,
  662. struct llama_kv_cache & cache,
  663. ggml_type wtype,
  664. int n_ctx,
  665. int n_gpu_layers) {
  666. const int n_embd = hparams.n_embd;
  667. const int n_layer = hparams.n_layer;
  668. const int64_t n_mem = n_layer*n_ctx;
  669. const int64_t n_elements = n_embd*n_mem;
  670. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  671. cache.n = 0;
  672. struct ggml_init_params params;
  673. params.mem_size = cache.buf.size;
  674. params.mem_buffer = cache.buf.addr;
  675. params.no_alloc = false;
  676. cache.ctx = ggml_init(params);
  677. if (!cache.ctx) {
  678. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  679. return false;
  680. }
  681. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  682. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  683. ggml_set_name(cache.k, "cache_k");
  684. ggml_set_name(cache.v, "cache_v");
  685. (void) n_gpu_layers;
  686. #ifdef GGML_USE_CUBLAS
  687. if (n_gpu_layers > n_layer + 1) {
  688. ggml_cuda_assign_buffers_no_scratch(cache.v);
  689. }
  690. if (n_gpu_layers > n_layer + 2) {
  691. ggml_cuda_assign_buffers_no_scratch(cache.k);
  692. }
  693. #endif // GGML_USE_CUBLAS
  694. return true;
  695. }
  696. struct llama_context_params llama_context_default_params() {
  697. struct llama_context_params result = {
  698. /*.seed =*/ LLAMA_DEFAULT_SEED,
  699. /*.n_ctx =*/ 512,
  700. /*.n_batch =*/ 512,
  701. /*.gpu_layers =*/ 0,
  702. /*.main_gpu =*/ 0,
  703. /*.tensor_split =*/ {0},
  704. /*.progress_callback =*/ nullptr,
  705. /*.progress_callback_user_data =*/ nullptr,
  706. /*.low_vram =*/ false,
  707. /*.f16_kv =*/ true,
  708. /*.logits_all =*/ false,
  709. /*.vocab_only =*/ false,
  710. /*.use_mmap =*/ true,
  711. /*.use_mlock =*/ false,
  712. /*.embedding =*/ false,
  713. };
  714. return result;
  715. }
  716. struct llama_model_quantize_params llama_model_quantize_default_params() {
  717. struct llama_model_quantize_params result = {
  718. /*.nthread =*/ 0,
  719. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  720. /*.allow_requantize =*/ false,
  721. /*.quantize_output_tensor =*/ true,
  722. };
  723. return result;
  724. }
  725. bool llama_mmap_supported() {
  726. return llama_mmap::SUPPORTED;
  727. }
  728. bool llama_mlock_supported() {
  729. return llama_mlock::SUPPORTED;
  730. }
  731. void llama_init_backend(bool numa) {
  732. ggml_time_init();
  733. // needed to initialize f16 tables
  734. {
  735. struct ggml_init_params params = { 0, NULL, false };
  736. struct ggml_context * ctx = ggml_init(params);
  737. ggml_free(ctx);
  738. }
  739. if (numa) {
  740. ggml_numa_init();
  741. }
  742. }
  743. int64_t llama_time_us() {
  744. return ggml_time_us();
  745. }
  746. //
  747. // model loading
  748. //
  749. static const char *llama_file_version_name(llama_file_version version) {
  750. switch (version) {
  751. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  752. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  753. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  754. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  755. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  756. }
  757. return "unknown";
  758. }
  759. static const char *llama_ftype_name(enum llama_ftype ftype) {
  760. switch (ftype) {
  761. case LLAMA_FTYPE_ALL_F32: return "all F32";
  762. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  763. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  764. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  765. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  766. return "mostly Q4_1, some F16";
  767. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  768. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  769. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  770. // K-quants
  771. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  772. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  773. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  774. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  775. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  776. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  777. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  778. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  779. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  780. default: return "unknown, may not work";
  781. }
  782. }
  783. static const char *llama_model_type_name(e_model type) {
  784. switch (type) {
  785. case MODEL_3B: return "3B";
  786. case MODEL_7B: return "7B";
  787. case MODEL_13B: return "13B";
  788. case MODEL_30B: return "30B";
  789. case MODEL_65B: return "65B";
  790. default: LLAMA_ASSERT(false);
  791. }
  792. }
  793. static void llama_model_load_internal(
  794. const std::string & fname,
  795. llama_model & model,
  796. llama_vocab & vocab,
  797. int n_ctx,
  798. int n_batch,
  799. int n_gpu_layers,
  800. int main_gpu,
  801. const float * tensor_split,
  802. bool low_vram,
  803. ggml_type memory_type,
  804. bool use_mmap,
  805. bool use_mlock,
  806. bool vocab_only,
  807. llama_progress_callback progress_callback,
  808. void * progress_callback_user_data) {
  809. model.t_start_us = ggml_time_us();
  810. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
  811. vocab = std::move(ml->file_loader->vocab);
  812. model.hparams = ml->file_loader->hparams;
  813. model.n_gpu_layers = n_gpu_layers;
  814. llama_file_version file_version = ml->file_loader->file_version;
  815. auto & hparams = model.hparams;
  816. {
  817. switch (hparams.n_layer) {
  818. case 26: model.type = e_model::MODEL_3B; break;
  819. case 32: model.type = e_model::MODEL_7B; break;
  820. case 40: model.type = e_model::MODEL_13B; break;
  821. case 60: model.type = e_model::MODEL_30B; break;
  822. case 80: model.type = e_model::MODEL_65B; break;
  823. default:
  824. {
  825. if (hparams.n_layer < 32) {
  826. model.type = e_model::MODEL_7B;
  827. }
  828. } break;
  829. }
  830. hparams.n_ctx = n_ctx;
  831. }
  832. const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  833. {
  834. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  835. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  836. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  837. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  838. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  839. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  840. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  841. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  842. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  843. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  844. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  845. }
  846. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  847. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  848. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  849. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  850. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
  851. }
  852. }
  853. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  854. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  855. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  856. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  857. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
  858. }
  859. }
  860. if (vocab_only) {
  861. return;
  862. }
  863. auto & ctx = model.ctx;
  864. size_t ctx_size;
  865. size_t mmapped_size;
  866. ml->calc_sizes(&ctx_size, &mmapped_size);
  867. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  868. // create the ggml context
  869. {
  870. model.buf.resize(ctx_size);
  871. if (use_mlock) {
  872. model.mlock_buf.init(model.buf.addr);
  873. model.mlock_buf.grow_to(model.buf.size);
  874. }
  875. struct ggml_init_params params = {
  876. /*.mem_size =*/ model.buf.size,
  877. /*.mem_buffer =*/ model.buf.addr,
  878. /*.no_alloc =*/ ml->use_mmap,
  879. };
  880. model.ctx = ggml_init(params);
  881. if (!model.ctx) {
  882. throw std::runtime_error(format("ggml_init() failed"));
  883. }
  884. }
  885. (void) main_gpu;
  886. #if defined(GGML_USE_CUBLAS)
  887. fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
  888. ggml_cuda_set_main_device(main_gpu);
  889. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  890. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  891. #elif defined(GGML_USE_CLBLAST)
  892. fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
  893. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  894. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  895. #else
  896. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  897. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  898. #endif
  899. // prepare memory for the weights
  900. size_t vram_weights = 0;
  901. size_t vram_scratch = 0;
  902. {
  903. const uint32_t n_embd = hparams.n_embd;
  904. const uint32_t n_layer = hparams.n_layer;
  905. const uint32_t n_vocab = hparams.n_vocab;
  906. ml->ggml_ctx = ctx;
  907. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  908. // "output" tensor
  909. {
  910. ggml_backend backend_norm;
  911. ggml_backend backend_output;
  912. if (n_gpu_layers > int(n_layer)) { // NOLINT
  913. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  914. // on Windows however this is detrimental unless everything is on the GPU
  915. #ifndef _WIN32
  916. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  917. #else
  918. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  919. #endif // _WIN32
  920. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  921. } else {
  922. backend_norm = GGML_BACKEND_CPU;
  923. backend_output = GGML_BACKEND_CPU;
  924. }
  925. model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
  926. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  927. if (backend_norm == GGML_BACKEND_GPU) {
  928. vram_weights += ggml_nbytes(model.norm);
  929. }
  930. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  931. vram_weights += ggml_nbytes(model.output);
  932. }
  933. }
  934. const int i_gpu_start = n_layer - n_gpu_layers;
  935. model.layers.resize(n_layer);
  936. for (uint32_t i = 0; i < n_layer; ++i) {
  937. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  938. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  939. auto & layer = model.layers[i];
  940. std::string layers_i = "layers." + std::to_string(i);
  941. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  942. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
  943. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
  944. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
  945. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
  946. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  947. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
  948. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
  949. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
  950. if (backend == GGML_BACKEND_GPU) {
  951. vram_weights +=
  952. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  953. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  954. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  955. }
  956. }
  957. }
  958. ml->done_getting_tensors();
  959. // print memory requirements
  960. {
  961. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  962. // this is the total memory required to run the inference
  963. const size_t mem_required =
  964. ctx_size +
  965. mmapped_size - vram_weights + // weights in VRAM not in memory
  966. MEM_REQ_SCRATCH0().at(model.type) +
  967. MEM_REQ_SCRATCH1().at(model.type) +
  968. MEM_REQ_EVAL().at (model.type);
  969. // this is the memory required by one llama_state
  970. const size_t mem_required_state =
  971. scale*MEM_REQ_KV_SELF().at(model.type);
  972. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  973. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  974. (void) vram_scratch;
  975. (void) n_batch;
  976. #ifdef GGML_USE_CUBLAS
  977. if (low_vram) {
  978. fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  979. ggml_cuda_set_scratch_size(0); // disable scratch
  980. } else {
  981. const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
  982. const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
  983. vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
  984. ggml_cuda_set_scratch_size(vram_scratch);
  985. if (n_gpu_layers > 0) {
  986. fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
  987. __func__, vram_scratch_base / kB, vram_scratch_per_context,
  988. (vram_scratch + MB - 1) / MB); // round up
  989. }
  990. }
  991. #endif // GGML_USE_CUBLAS
  992. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  993. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  994. fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  995. if (n_gpu_layers > (int) hparams.n_layer) {
  996. fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
  997. }
  998. size_t vram_kv_cache = 0;
  999. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1000. if (low_vram) {
  1001. fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1002. } else {
  1003. fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
  1004. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1005. }
  1006. }
  1007. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1008. if (low_vram) {
  1009. fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1010. } else {
  1011. fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
  1012. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1013. }
  1014. }
  1015. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1016. fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
  1017. __func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3);
  1018. fprintf(stderr, "%s: total VRAM used: %zu MB\n",
  1019. __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
  1020. #else
  1021. (void) n_gpu_layers;
  1022. #endif
  1023. }
  1024. // populate `tensors_by_name`
  1025. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1026. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  1027. }
  1028. (void) tensor_split;
  1029. #if defined(GGML_USE_CUBLAS)
  1030. {
  1031. ggml_cuda_set_tensor_split(tensor_split);
  1032. }
  1033. #endif
  1034. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  1035. if (progress_callback) {
  1036. progress_callback(1.0f, progress_callback_user_data);
  1037. }
  1038. model.mapping = std::move(ml->mapping);
  1039. // loading time will be recalculate after the first eval, so
  1040. // we take page faults deferred by mmap() into consideration
  1041. model.t_load_us = ggml_time_us() - model.t_start_us;
  1042. }
  1043. static bool llama_model_load(
  1044. const std::string & fname,
  1045. llama_model & model,
  1046. llama_vocab & vocab,
  1047. int n_ctx,
  1048. int n_batch,
  1049. int n_gpu_layers,
  1050. int main_gpu,
  1051. float * tensor_split,
  1052. bool low_vram,
  1053. ggml_type memory_type,
  1054. bool use_mmap,
  1055. bool use_mlock,
  1056. bool vocab_only,
  1057. llama_progress_callback progress_callback,
  1058. void *progress_callback_user_data) {
  1059. try {
  1060. llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
  1061. use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
  1062. return true;
  1063. } catch (const std::exception & err) {
  1064. fprintf(stderr, "error loading model: %s\n", err.what());
  1065. return false;
  1066. }
  1067. }
  1068. // evaluate the transformer
  1069. //
  1070. // - lctx: llama context
  1071. // - tokens: new batch of tokens to process
  1072. // - embd embeddings input
  1073. // - n_tokens number of tokens
  1074. // - n_past: the context size so far
  1075. // - n_threads: number of threads to use
  1076. //
  1077. static bool llama_eval_internal(
  1078. llama_context & lctx,
  1079. const llama_token * tokens,
  1080. const float * embd,
  1081. const int n_tokens,
  1082. const int n_past,
  1083. const int n_threads,
  1084. const char * cgraph_fname) {
  1085. LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
  1086. // enforce that the first token is BOS
  1087. if (tokens && n_past == 0 && tokens[0] != llama_token_bos()) {
  1088. fprintf(stderr, "%s: first token must be BOS\n", __func__);
  1089. return false;
  1090. }
  1091. const int64_t t_start_us = ggml_time_us();
  1092. const int N = n_tokens;
  1093. const auto & model = lctx.model;
  1094. const auto & hparams = model.hparams;
  1095. const auto & kv_self = lctx.kv_self;
  1096. LLAMA_ASSERT(!!kv_self.ctx);
  1097. const int n_embd = hparams.n_embd;
  1098. const int n_layer = hparams.n_layer;
  1099. const int n_ctx = hparams.n_ctx;
  1100. const int n_head = hparams.n_head;
  1101. const int n_vocab = hparams.n_vocab;
  1102. const int n_rot = hparams.n_embd/hparams.n_head;
  1103. const int n_gpu_layers = model.n_gpu_layers;
  1104. auto & mem_per_token = lctx.mem_per_token;
  1105. auto & buf_compute = lctx.buf_compute;
  1106. struct ggml_init_params params = {
  1107. /*.mem_size =*/ buf_compute.size,
  1108. /*.mem_buffer =*/ buf_compute.addr,
  1109. /*.no_alloc =*/ false,
  1110. };
  1111. struct ggml_context * ctx0 = ggml_init(params);
  1112. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1113. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1114. ggml_cgraph gf = {};
  1115. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1116. struct ggml_tensor * cur;
  1117. struct ggml_tensor * inpL;
  1118. if (tokens) {
  1119. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1120. ggml_set_name(embd, "embd");
  1121. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  1122. inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  1123. } else {
  1124. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  1125. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  1126. }
  1127. const int i_gpu_start = n_layer - n_gpu_layers;
  1128. (void) i_gpu_start;
  1129. // offload functions set the tensor output backend to GPU
  1130. // tensors are GPU-accelerated if any input or the output has been offloaded
  1131. //
  1132. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  1133. // in that case ggml_cuda_assign_buffers has no effect
  1134. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  1135. offload_func_t offload_func_kq = llama_nop;
  1136. offload_func_t offload_func_v = llama_nop;
  1137. #ifdef GGML_USE_CUBLAS
  1138. if (n_gpu_layers > n_layer) {
  1139. offload_func_nr = ggml_cuda_assign_buffers;
  1140. }
  1141. if (n_gpu_layers > n_layer + 1) {
  1142. offload_func_v = ggml_cuda_assign_buffers;
  1143. }
  1144. if (n_gpu_layers > n_layer + 2) {
  1145. offload_func_kq = ggml_cuda_assign_buffers;
  1146. }
  1147. #endif // GGML_USE_CUBLAS
  1148. for (int il = 0; il < n_layer; ++il) {
  1149. offload_func_t offload_func = llama_nop;
  1150. #ifdef GGML_USE_CUBLAS
  1151. if (il >= i_gpu_start) {
  1152. offload_func = ggml_cuda_assign_buffers;
  1153. }
  1154. #endif // GGML_USE_CUBLAS
  1155. struct ggml_tensor * inpSA = inpL;
  1156. lctx.use_buf(ctx0, 0);
  1157. // norm
  1158. {
  1159. cur = ggml_rms_norm(ctx0, inpL);
  1160. offload_func(cur);
  1161. ggml_set_name(cur, "rms_norm_0");
  1162. // cur = cur*attention_norm(broadcasted)
  1163. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1164. offload_func(cur);
  1165. ggml_set_name(cur, "attention_norm_0");
  1166. }
  1167. // self-attention
  1168. {
  1169. // compute Q and K and RoPE them
  1170. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  1171. offload_func_kq(tmpk);
  1172. ggml_set_name(tmpk, "tmpk");
  1173. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  1174. offload_func_kq(tmpq);
  1175. ggml_set_name(tmpq, "tmpq");
  1176. struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
  1177. offload_func_kq(Kcur);
  1178. ggml_set_name(Kcur, "Kcur");
  1179. struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
  1180. offload_func_kq(Qcur);
  1181. ggml_set_name(Qcur, "Qcur");
  1182. // store key and value to memory
  1183. {
  1184. // compute the transposed [N, n_embd] V matrix
  1185. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  1186. offload_func_v(tmpv);
  1187. ggml_set_name(tmpv, "tmpv");
  1188. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
  1189. offload_func_v(Vcur);
  1190. ggml_set_name(Vcur, "Vcur");
  1191. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1192. offload_func_kq(k);
  1193. ggml_set_name(k, "k");
  1194. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1195. ( n_ctx)*ggml_element_size(kv_self.v),
  1196. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1197. offload_func_v(v);
  1198. ggml_set_name(v, "v");
  1199. // important: storing RoPE-ed version of K in the KV cache!
  1200. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1201. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1202. }
  1203. struct ggml_tensor * Q =
  1204. ggml_permute(ctx0,
  1205. Qcur,
  1206. 0, 2, 1, 3);
  1207. offload_func_kq(Q);
  1208. ggml_set_name(Q, "Q");
  1209. struct ggml_tensor * K =
  1210. ggml_permute(ctx0,
  1211. ggml_reshape_3d(ctx0,
  1212. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1213. n_embd/n_head, n_head, n_past + N),
  1214. 0, 2, 1, 3);
  1215. offload_func_kq(K);
  1216. ggml_set_name(K, "K");
  1217. // K * Q
  1218. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1219. offload_func_kq(KQ);
  1220. ggml_set_name(KQ, "KQ");
  1221. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1222. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1223. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1224. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1225. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1226. offload_func_kq(KQ_scaled);
  1227. ggml_set_name(KQ_scaled, "KQ_scaled");
  1228. // KQ_masked = mask_past(KQ_scaled)
  1229. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1230. offload_func_kq(KQ_masked);
  1231. ggml_set_name(KQ_masked, "KQ_masked");
  1232. // KQ = soft_max(KQ_masked)
  1233. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1234. offload_func_v(KQ_soft_max);
  1235. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1236. // split cached V into n_head heads
  1237. struct ggml_tensor * V =
  1238. ggml_view_3d(ctx0, kv_self.v,
  1239. n_past + N, n_embd/n_head, n_head,
  1240. n_ctx*ggml_element_size(kv_self.v),
  1241. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1242. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1243. offload_func_v(V);
  1244. ggml_set_name(V, "V");
  1245. #if 1
  1246. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1247. offload_func_v(KQV);
  1248. ggml_set_name(KQV, "KQV");
  1249. #else
  1250. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1251. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1252. // is there a better way?
  1253. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1254. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1255. #endif
  1256. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1257. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1258. offload_func_v(KQV_merged);
  1259. ggml_set_name(KQV_merged, "KQV_merged");
  1260. // cur = KQV_merged.contiguous().view(n_embd, N)
  1261. cur = ggml_cpy(ctx0,
  1262. KQV_merged,
  1263. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1264. offload_func_v(cur);
  1265. ggml_set_name(cur, "KQV_merged_contiguous");
  1266. // projection (no bias)
  1267. cur = ggml_mul_mat(ctx0,
  1268. model.layers[il].wo,
  1269. cur);
  1270. offload_func(cur);
  1271. ggml_set_name(cur, "result_wo");
  1272. }
  1273. lctx.use_buf(ctx0, 1);
  1274. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1275. offload_func(inpFF);
  1276. ggml_set_name(inpFF, "inpFF");
  1277. // feed-forward network
  1278. {
  1279. // norm
  1280. {
  1281. cur = ggml_rms_norm(ctx0, inpFF);
  1282. offload_func(cur);
  1283. ggml_set_name(cur, "rms_norm_1");
  1284. // cur = cur*ffn_norm(broadcasted)
  1285. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1286. offload_func(cur);
  1287. ggml_set_name(cur, "ffn_norm");
  1288. }
  1289. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1290. model.layers[il].w3,
  1291. cur);
  1292. offload_func(tmp);
  1293. ggml_set_name(tmp, "result_w3");
  1294. cur = ggml_mul_mat(ctx0,
  1295. model.layers[il].w1,
  1296. cur);
  1297. offload_func(cur);
  1298. ggml_set_name(cur, "result_w1");
  1299. // SILU activation
  1300. cur = ggml_silu(ctx0, cur);
  1301. offload_func(cur);
  1302. ggml_set_name(cur, "silu");
  1303. cur = ggml_mul(ctx0, cur, tmp);
  1304. offload_func(cur);
  1305. ggml_set_name(cur, "silu_x_result_w3");
  1306. cur = ggml_mul_mat(ctx0,
  1307. model.layers[il].w2,
  1308. cur);
  1309. offload_func(cur);
  1310. ggml_set_name(cur, "result_w2");
  1311. }
  1312. cur = ggml_add(ctx0, cur, inpFF);
  1313. offload_func(cur);
  1314. ggml_set_name(cur, "inpFF_+_result_w2");
  1315. // input for next layer
  1316. inpL = cur;
  1317. }
  1318. lctx.use_buf(ctx0, 0);
  1319. // used at the end to optionally extract the embeddings
  1320. struct ggml_tensor * embeddings = NULL;
  1321. // norm
  1322. {
  1323. cur = ggml_rms_norm(ctx0, inpL);
  1324. offload_func_nr(cur);
  1325. ggml_set_name(cur, "rms_norm_2");
  1326. // cur = cur*norm(broadcasted)
  1327. cur = ggml_mul(ctx0, cur, model.norm);
  1328. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  1329. ggml_set_name(cur, "result_norm");
  1330. embeddings = cur;
  1331. }
  1332. // lm_head
  1333. cur = ggml_mul_mat(ctx0, model.output, cur);
  1334. ggml_set_name(cur, "result_output");
  1335. lctx.use_buf(ctx0, -1);
  1336. // logits -> probs
  1337. //cur = ggml_soft_max_inplace(ctx0, cur);
  1338. // run the computation
  1339. ggml_build_forward_expand(&gf, cur);
  1340. #ifdef GGML_USE_METAL
  1341. if (lctx.ctx_metal && N == 1) {
  1342. ggml_metal_graph_compute(lctx.ctx_metal, &gf);
  1343. ggml_metal_get_tensor (lctx.ctx_metal, cur);
  1344. } else {
  1345. // IMPORTANT:
  1346. // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
  1347. // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
  1348. // coprocessor.
  1349. //
  1350. // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
  1351. // But for now, we have focused only on Matrix x Vector Metal multiplication.
  1352. //
  1353. // TODO: avoid these syncs via shared memory (ref #1696)
  1354. //
  1355. if (lctx.ctx_metal) {
  1356. // We need to sync the GPU KV cache with the CPU KV cache
  1357. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
  1358. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
  1359. }
  1360. ggml_graph_compute(ctx0, &gf);
  1361. }
  1362. #else
  1363. ggml_graph_compute(ctx0, &gf);
  1364. #endif
  1365. if (cgraph_fname) {
  1366. ggml_graph_export(&gf, cgraph_fname);
  1367. }
  1368. #ifdef GGML_PERF
  1369. // print timing information per ggml operation (for debugging purposes)
  1370. // requires GGML_PERF to be defined
  1371. ggml_graph_print(&gf);
  1372. #endif
  1373. // plot the computation graph in dot format (for debugging purposes)
  1374. //if (n_past%100 == 0) {
  1375. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1376. //}
  1377. //embd_w.resize(n_vocab*N);
  1378. //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1379. // update kv token count
  1380. lctx.kv_self.n = n_past + N;
  1381. // extract logits
  1382. {
  1383. auto & logits_out = lctx.logits;
  1384. if (lctx.logits_all) {
  1385. logits_out.resize(n_vocab * N);
  1386. memcpy(logits_out.data(), (float *) ggml_get_data(cur), sizeof(float)*n_vocab*N);
  1387. } else {
  1388. // return result for just the last token
  1389. logits_out.resize(n_vocab);
  1390. memcpy(logits_out.data(), (float *) ggml_get_data(cur) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1391. }
  1392. }
  1393. // extract embeddings
  1394. if (!lctx.embedding.empty()) {
  1395. auto & embedding_out = lctx.embedding;
  1396. embedding_out.resize(n_embd);
  1397. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1398. }
  1399. if (mem_per_token == 0) {
  1400. mem_per_token = ggml_used_mem(ctx0)/N;
  1401. }
  1402. #if 0
  1403. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1404. ggml_used_mem(ctx0)/1024.0/1024.0,
  1405. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1406. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1407. #endif
  1408. ggml_free(ctx0);
  1409. // measure the performance only for the single-token evals
  1410. if (N == 1) {
  1411. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1412. lctx.n_eval++;
  1413. }
  1414. else if (N > 1) {
  1415. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1416. lctx.n_p_eval += N;
  1417. }
  1418. return true;
  1419. }
  1420. //
  1421. // tokenizer
  1422. //
  1423. static size_t utf8_len(char src) {
  1424. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1425. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1426. return lookup[highbits];
  1427. }
  1428. struct llama_sp_symbol {
  1429. using index = int;
  1430. index prev;
  1431. index next;
  1432. const char * text;
  1433. size_t n;
  1434. };
  1435. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1436. struct llama_sp_bigram {
  1437. struct comparator {
  1438. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1439. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1440. }
  1441. };
  1442. using queue_storage = std::vector<llama_sp_bigram>;
  1443. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1444. llama_sp_symbol::index left;
  1445. llama_sp_symbol::index right;
  1446. float score;
  1447. size_t size;
  1448. };
  1449. // original implementation:
  1450. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1451. struct llama_tokenizer {
  1452. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1453. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1454. // split string into utf8 chars
  1455. int index = 0;
  1456. size_t offs = 0;
  1457. while (offs < text.size()) {
  1458. llama_sp_symbol sym;
  1459. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1460. sym.text = text.c_str() + offs;
  1461. sym.n = char_len;
  1462. offs += char_len;
  1463. sym.prev = index - 1;
  1464. sym.next = offs == text.size() ? -1 : index + 1;
  1465. index++;
  1466. symbols_.emplace_back(sym);
  1467. }
  1468. // seed the work queue with all possible 2-character tokens.
  1469. for (size_t i = 1; i < symbols_.size(); ++i) {
  1470. try_add_bigram(i - 1, i);
  1471. }
  1472. // keep substituting the highest frequency pairs for as long as we can.
  1473. while (!work_queue_.empty()) {
  1474. auto bigram = work_queue_.top();
  1475. work_queue_.pop();
  1476. auto & left_sym = symbols_[bigram.left];
  1477. auto & right_sym = symbols_[bigram.right];
  1478. // if one of the symbols already got merged, skip it.
  1479. if (left_sym.n == 0 || right_sym.n == 0 ||
  1480. left_sym.n + right_sym.n != bigram.size) {
  1481. continue;
  1482. }
  1483. // merge the right sym into the left one
  1484. left_sym.n += right_sym.n;
  1485. right_sym.n = 0;
  1486. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1487. // remove the right sym from the chain
  1488. left_sym.next = right_sym.next;
  1489. if (right_sym.next >= 0) {
  1490. symbols_[right_sym.next].prev = bigram.left;
  1491. }
  1492. // find more substitutions
  1493. try_add_bigram(left_sym.prev, bigram.left);
  1494. try_add_bigram(bigram.left, left_sym.next);
  1495. }
  1496. for (int i = 0; i != -1; i = symbols_[i].next) {
  1497. auto & symbol = symbols_[i];
  1498. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1499. if (token == vocab_.token_to_id.end()) {
  1500. // output any symbols that did not form tokens as bytes.
  1501. for (int j = 0; j < (int) symbol.n; ++j) {
  1502. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1503. output.push_back(token_id);
  1504. }
  1505. } else {
  1506. output.push_back((*token).second);
  1507. }
  1508. }
  1509. }
  1510. private:
  1511. void try_add_bigram(int left, int right) {
  1512. if (left == -1 || right == -1) {
  1513. return;
  1514. }
  1515. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1516. auto token = vocab_.token_to_id.find(text);
  1517. if (token == vocab_.token_to_id.end()) {
  1518. return;
  1519. }
  1520. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1521. return;
  1522. }
  1523. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1524. llama_sp_bigram bigram;
  1525. bigram.left = left;
  1526. bigram.right = right;
  1527. bigram.score = tok_score.score;
  1528. bigram.size = text.size();
  1529. work_queue_.push(bigram);
  1530. }
  1531. const llama_vocab & vocab_;
  1532. std::vector<llama_sp_symbol> symbols_;
  1533. llama_sp_bigram::queue work_queue_;
  1534. };
  1535. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1536. llama_tokenizer tokenizer(vocab);
  1537. std::vector<llama_vocab::id> output;
  1538. if (text.empty()) {
  1539. return output;
  1540. }
  1541. if (bos) {
  1542. output.push_back(llama_token_bos());
  1543. }
  1544. tokenizer.tokenize(text, output);
  1545. return output;
  1546. }
  1547. //
  1548. // sampling
  1549. //
  1550. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1551. assert(candidates->size > 0);
  1552. const int64_t t_start_sample_us = ggml_time_us();
  1553. // Sort the logits in descending order
  1554. if (!candidates->sorted) {
  1555. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1556. return a.logit > b.logit;
  1557. });
  1558. candidates->sorted = true;
  1559. }
  1560. float max_l = candidates->data[0].logit;
  1561. float cum_sum = 0.0f;
  1562. for (size_t i = 0; i < candidates->size; ++i) {
  1563. float p = expf(candidates->data[i].logit - max_l);
  1564. candidates->data[i].p = p;
  1565. cum_sum += p;
  1566. }
  1567. for (size_t i = 0; i < candidates->size; ++i) {
  1568. candidates->data[i].p /= cum_sum;
  1569. }
  1570. if (ctx) {
  1571. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1572. }
  1573. }
  1574. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1575. const int64_t t_start_sample_us = ggml_time_us();
  1576. k = std::max(k, (int) min_keep);
  1577. k = std::min(k, (int) candidates->size);
  1578. // Sort scores in descending order
  1579. if (!candidates->sorted) {
  1580. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1581. return a.logit > b.logit;
  1582. };
  1583. if (k == (int) candidates->size) {
  1584. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1585. } else {
  1586. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1587. }
  1588. candidates->sorted = true;
  1589. }
  1590. candidates->size = k;
  1591. if (ctx) {
  1592. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1593. }
  1594. }
  1595. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1596. if (p >= 1.0f) {
  1597. return;
  1598. }
  1599. const int64_t t_start_sample_us = ggml_time_us();
  1600. llama_sample_softmax(ctx, candidates);
  1601. // Compute the cumulative probabilities
  1602. float cum_sum = 0.0f;
  1603. size_t last_idx = candidates->size;
  1604. for (size_t i = 0; i < candidates->size; ++i) {
  1605. cum_sum += candidates->data[i].p;
  1606. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  1607. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  1608. if (cum_sum >= p && i + 1 >= min_keep) {
  1609. last_idx = i + 1;
  1610. break;
  1611. }
  1612. }
  1613. // Resize the output vector to keep only the top-p tokens
  1614. candidates->size = last_idx;
  1615. if (ctx) {
  1616. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1617. }
  1618. }
  1619. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1620. if (z >= 1.0f || candidates->size <= 2) {
  1621. return;
  1622. }
  1623. const int64_t t_start_sample_us = ggml_time_us();
  1624. llama_sample_softmax(nullptr, candidates);
  1625. // Compute the first and second derivatives
  1626. std::vector<float> first_derivatives(candidates->size - 1);
  1627. std::vector<float> second_derivatives(candidates->size - 2);
  1628. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1629. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1630. }
  1631. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1632. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1633. }
  1634. // Calculate absolute value of second derivatives
  1635. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1636. second_derivatives[i] = abs(second_derivatives[i]);
  1637. }
  1638. // Normalize the second derivatives
  1639. float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1640. for (float & value : second_derivatives) {
  1641. value /= second_derivatives_sum;
  1642. }
  1643. float cum_sum = 0.0f;
  1644. size_t last_idx = candidates->size;
  1645. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1646. cum_sum += second_derivatives[i];
  1647. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1648. if (cum_sum > z && i >= min_keep) {
  1649. last_idx = i;
  1650. break;
  1651. }
  1652. }
  1653. // Resize the output vector to keep only the tokens above the tail location
  1654. candidates->size = last_idx;
  1655. if (ctx) {
  1656. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1657. }
  1658. }
  1659. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1660. // Reference implementation:
  1661. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1662. if (p >= 1.0f) {
  1663. return;
  1664. }
  1665. const int64_t t_start_sample_us = ggml_time_us();
  1666. // Compute the softmax of logits and calculate entropy
  1667. llama_sample_softmax(nullptr, candidates);
  1668. float entropy = 0.0f;
  1669. for (size_t i = 0; i < candidates->size; ++i) {
  1670. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1671. }
  1672. // Compute the absolute difference between negative log probability and entropy for each candidate
  1673. std::vector<float> shifted_scores;
  1674. for (size_t i = 0; i < candidates->size; ++i) {
  1675. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1676. shifted_scores.push_back(shifted_score);
  1677. }
  1678. // Sort tokens based on the shifted_scores and their corresponding indices
  1679. std::vector<size_t> indices(candidates->size);
  1680. std::iota(indices.begin(), indices.end(), 0);
  1681. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1682. return shifted_scores[a] < shifted_scores[b];
  1683. });
  1684. // Compute the cumulative probabilities
  1685. float cum_sum = 0.0f;
  1686. size_t last_idx = indices.size();
  1687. for (size_t i = 0; i < indices.size(); ++i) {
  1688. size_t idx = indices[i];
  1689. cum_sum += candidates->data[idx].p;
  1690. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1691. if (cum_sum > p && i >= min_keep - 1) {
  1692. last_idx = i + 1;
  1693. break;
  1694. }
  1695. }
  1696. // Resize the output vector to keep only the locally typical tokens
  1697. std::vector<llama_token_data> new_candidates;
  1698. for (size_t i = 0; i < last_idx; ++i) {
  1699. size_t idx = indices[i];
  1700. new_candidates.push_back(candidates->data[idx]);
  1701. }
  1702. // Replace the data in candidates with the new_candidates data
  1703. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1704. candidates->size = new_candidates.size();
  1705. if (ctx) {
  1706. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1707. }
  1708. }
  1709. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1710. const int64_t t_start_sample_us = ggml_time_us();
  1711. for (size_t i = 0; i < candidates_p->size; ++i) {
  1712. candidates_p->data[i].logit /= temp;
  1713. }
  1714. if (ctx) {
  1715. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1716. }
  1717. }
  1718. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1719. if (last_tokens_size == 0 || penalty == 1.0f) {
  1720. return;
  1721. }
  1722. const int64_t t_start_sample_us = ggml_time_us();
  1723. for (size_t i = 0; i < candidates->size; ++i) {
  1724. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1725. if (token_iter == last_tokens + last_tokens_size) {
  1726. continue;
  1727. }
  1728. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1729. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1730. if (candidates->data[i].logit <= 0) {
  1731. candidates->data[i].logit *= penalty;
  1732. } else {
  1733. candidates->data[i].logit /= penalty;
  1734. }
  1735. }
  1736. candidates->sorted = false;
  1737. if (ctx) {
  1738. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1739. }
  1740. }
  1741. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1742. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1743. return;
  1744. }
  1745. const int64_t t_start_sample_us = ggml_time_us();
  1746. // Create a frequency map to count occurrences of each token in last_tokens
  1747. std::unordered_map<llama_token, int> token_count;
  1748. for (size_t i = 0; i < last_tokens_size; ++i) {
  1749. token_count[last_tokens_p[i]]++;
  1750. }
  1751. // Apply frequency and presence penalties to the candidates
  1752. for (size_t i = 0; i < candidates->size; ++i) {
  1753. auto token_iter = token_count.find(candidates->data[i].id);
  1754. if (token_iter == token_count.end()) {
  1755. continue;
  1756. }
  1757. int count = token_iter->second;
  1758. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1759. }
  1760. candidates->sorted = false;
  1761. if (ctx) {
  1762. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1763. }
  1764. }
  1765. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1766. assert(ctx);
  1767. auto N = float(llama_n_vocab(ctx));
  1768. int64_t t_start_sample_us;
  1769. t_start_sample_us = ggml_time_us();
  1770. llama_sample_softmax(nullptr, candidates);
  1771. // Estimate s_hat using the most probable m tokens
  1772. float s_hat = 0.0;
  1773. float sum_ti_bi = 0.0;
  1774. float sum_ti_sq = 0.0;
  1775. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1776. float t_i = logf(float(i + 2) / float(i + 1));
  1777. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1778. sum_ti_bi += t_i * b_i;
  1779. sum_ti_sq += t_i * t_i;
  1780. }
  1781. s_hat = sum_ti_bi / sum_ti_sq;
  1782. // Compute k from the estimated s_hat and target surprise value
  1783. float epsilon_hat = s_hat - 1;
  1784. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1785. // Sample the next word X using top-k sampling
  1786. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1787. if (ctx) {
  1788. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1789. }
  1790. llama_token X = llama_sample_token(ctx, candidates);
  1791. t_start_sample_us = ggml_time_us();
  1792. // Compute error as the difference between observed surprise and target surprise value
  1793. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1794. return candidate.id == X;
  1795. }));
  1796. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1797. float e = observed_surprise - tau;
  1798. // Update mu using the learning rate and error
  1799. *mu = *mu - eta * e;
  1800. if (ctx) {
  1801. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1802. ctx->n_sample++;
  1803. }
  1804. return X;
  1805. }
  1806. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1807. assert(ctx);
  1808. int64_t t_start_sample_us;
  1809. t_start_sample_us = ggml_time_us();
  1810. llama_sample_softmax(ctx, candidates);
  1811. // Truncate the words with surprise values greater than mu
  1812. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1813. return -log2f(candidate.p) > *mu;
  1814. }));
  1815. if (candidates->size == 0) {
  1816. candidates->size = 1;
  1817. }
  1818. // Normalize the probabilities of the remaining words
  1819. llama_sample_softmax(ctx, candidates);
  1820. // Sample the next word X from the remaining words
  1821. if (ctx) {
  1822. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1823. }
  1824. llama_token X = llama_sample_token(ctx, candidates);
  1825. t_start_sample_us = ggml_time_us();
  1826. // Compute error as the difference between observed surprise and target surprise value
  1827. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1828. return candidate.id == X;
  1829. }));
  1830. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1831. float e = observed_surprise - tau;
  1832. // Update mu using the learning rate and error
  1833. *mu = *mu - eta * e;
  1834. if (ctx) {
  1835. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1836. }
  1837. return X;
  1838. }
  1839. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1840. const int64_t t_start_sample_us = ggml_time_us();
  1841. // Find max element
  1842. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1843. return a.logit < b.logit;
  1844. });
  1845. llama_token result = max_iter->id;
  1846. if (ctx) {
  1847. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1848. ctx->n_sample++;
  1849. }
  1850. return result;
  1851. }
  1852. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1853. assert(ctx);
  1854. const int64_t t_start_sample_us = ggml_time_us();
  1855. llama_sample_softmax(nullptr, candidates);
  1856. std::vector<float> probs;
  1857. probs.reserve(candidates->size);
  1858. for (size_t i = 0; i < candidates->size; ++i) {
  1859. probs.push_back(candidates->data[i].p);
  1860. }
  1861. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1862. auto & rng = ctx->rng;
  1863. int idx = dist(rng);
  1864. llama_token result = candidates->data[idx].id;
  1865. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1866. ctx->n_sample++;
  1867. return result;
  1868. }
  1869. //
  1870. // quantization
  1871. //
  1872. static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
  1873. if (output.size < nelements * sizeof(float)) {
  1874. output.resize(nelements * sizeof(float));
  1875. }
  1876. float * f32_output = (float *) output.addr;
  1877. quantize_fns_t qtype;
  1878. if (ggml_is_quantized(tensor.type)) {
  1879. qtype = ggml_internal_get_quantize_fn(tensor.type);
  1880. if (qtype.dequantize_row_q == NULL) {
  1881. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
  1882. }
  1883. } else if (tensor.type != GGML_TYPE_F16) {
  1884. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
  1885. }
  1886. if (nthread < 2) {
  1887. if (tensor.type == GGML_TYPE_F16) {
  1888. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
  1889. } else if (ggml_is_quantized(tensor.type)) {
  1890. qtype.dequantize_row_q(tensor.data, f32_output, nelements);
  1891. } else {
  1892. LLAMA_ASSERT(false); // unreachable
  1893. }
  1894. return;
  1895. }
  1896. auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
  1897. auto block_size_bytes = ggml_type_size(tensor.type);
  1898. LLAMA_ASSERT(nelements % block_size == 0);
  1899. auto nblocks = nelements / block_size;
  1900. auto blocks_per_thread = nblocks / nthread;
  1901. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  1902. std::vector<std::thread> workers;
  1903. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  1904. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  1905. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  1906. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  1907. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  1908. if (typ == GGML_TYPE_F16) {
  1909. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  1910. } else {
  1911. qtype.dequantize_row_q(inbuf, outbuf, nels);
  1912. }
  1913. };
  1914. workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
  1915. in_buff_offs += thr_block_bytes;
  1916. out_buff_offs += thr_elems;
  1917. }
  1918. for (auto & worker : workers) {
  1919. worker.join();
  1920. }
  1921. }
  1922. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  1923. ggml_type quantized_type;
  1924. llama_ftype ftype = params->ftype;
  1925. int nthread = params->nthread;
  1926. switch (params->ftype) {
  1927. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  1928. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  1929. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  1930. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  1931. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  1932. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  1933. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  1934. #ifdef GGML_USE_K_QUANTS
  1935. // K-quants
  1936. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  1937. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  1938. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  1939. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  1940. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  1941. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  1942. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  1943. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  1944. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  1945. #endif
  1946. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  1947. }
  1948. if (nthread <= 0) {
  1949. nthread = std::thread::hardware_concurrency();
  1950. }
  1951. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
  1952. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
  1953. #ifdef GGML_USE_K_QUANTS
  1954. int n_attention_wv = 0;
  1955. int n_feed_forward_w2 = 0;
  1956. for (auto& tensor : model_loader->tensors_map.tensors) {
  1957. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  1958. ++n_attention_wv;
  1959. }
  1960. else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  1961. ++n_feed_forward_w2;
  1962. }
  1963. }
  1964. int i_attention_wv = 0;
  1965. int i_feed_forward_w2 = 0;
  1966. #endif
  1967. size_t total_size_org = 0;
  1968. size_t total_size_new = 0;
  1969. std::vector<int64_t> hist_all(1 << 4, 0);
  1970. std::vector<std::thread> workers;
  1971. std::mutex mutex;
  1972. auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
  1973. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  1974. };
  1975. size_t idx = 0;
  1976. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  1977. llama_buffer read_data;
  1978. read_data.resize(tensor.size);
  1979. tensor.data = read_data.addr;
  1980. model_loader->load_data_for(tensor);
  1981. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  1982. ++idx, model_loader->tensors_map.tensors.size(),
  1983. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  1984. ggml_type_name(tensor.type));
  1985. // This used to be a regex, but <regex> has an extreme cost to compile times.
  1986. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  1987. // quantize only 2D tensors
  1988. quantize &= (tensor.ne.size() == 2);
  1989. quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
  1990. quantize &= quantized_type != tensor.type;
  1991. enum ggml_type new_type;
  1992. void * new_data;
  1993. size_t new_size;
  1994. llama_buffer work;
  1995. if (!quantize) {
  1996. new_type = tensor.type;
  1997. new_data = tensor.data;
  1998. new_size = tensor.size;
  1999. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  2000. } else {
  2001. new_type = quantized_type;
  2002. #ifdef GGML_USE_K_QUANTS
  2003. if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
  2004. quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
  2005. int nx = tensor.ne.at(0);
  2006. int ny = tensor.ne.at(1);
  2007. if (nx % QK_K != 0 || ny % QK_K != 0) {
  2008. fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K);
  2009. fprintf(stderr, "This is required to be able to use k-quants for now!\n");
  2010. fprintf(stderr, "========================================================================================\n\n");
  2011. throw std::runtime_error("Unsupported tensor size encountered\n");
  2012. }
  2013. }
  2014. if (tensor.name == "output.weight") {
  2015. int nx = tensor.ne.at(0);
  2016. int ny = tensor.ne.at(1);
  2017. if (nx % QK_K == 0 && ny % QK_K == 0) {
  2018. new_type = GGML_TYPE_Q6_K;
  2019. }
  2020. } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2021. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2022. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2023. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2024. use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  2025. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  2026. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  2027. ++i_attention_wv;
  2028. } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2029. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2030. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2031. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2032. use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  2033. //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
  2034. ++i_feed_forward_w2;
  2035. } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
  2036. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2037. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2038. }
  2039. #endif
  2040. float * f32_data;
  2041. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  2042. llama_buffer f32_conv_buf;
  2043. if (tensor.type == GGML_TYPE_F32) {
  2044. f32_data = (float *) tensor.data;
  2045. } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
  2046. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
  2047. } else {
  2048. llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
  2049. f32_data = (float *) f32_conv_buf.addr;
  2050. }
  2051. printf("quantizing .. ");
  2052. fflush(stdout);
  2053. work.resize(nelements * 4); // upper bound on size
  2054. new_data = work.addr;
  2055. std::vector<int64_t> hist_cur(1 << 4, 0);
  2056. int chunk_size = 32 * 512;
  2057. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  2058. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  2059. if (nthread_use < 2) {
  2060. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  2061. } else {
  2062. size_t counter = 0;
  2063. new_size = 0;
  2064. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  2065. std::vector<int64_t> local_hist;
  2066. size_t local_size = 0;
  2067. while (true) {
  2068. std::unique_lock<std::mutex> lock(mutex);
  2069. size_t first = counter; counter += chunk_size;
  2070. if (first >= nelements) {
  2071. if (!local_hist.empty()) {
  2072. for (int j=0; j<int(local_hist.size()); ++j) {
  2073. hist_cur[j] += local_hist[j];
  2074. }
  2075. new_size += local_size;
  2076. }
  2077. break;
  2078. }
  2079. lock.unlock();
  2080. size_t last = std::min(nelements, first + chunk_size);
  2081. if (local_hist.empty()) {
  2082. local_hist.resize(hist_cur.size(), 0);
  2083. }
  2084. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  2085. }
  2086. };
  2087. if ((int) workers.size() < nthread_use - 1) {
  2088. workers.resize(nthread_use - 1);
  2089. }
  2090. for (int it = 0; it < nthread_use - 1; ++it) {
  2091. workers[it] = std::thread(compute);
  2092. }
  2093. compute();
  2094. for (int it = 0; it < nthread_use - 1; ++it) {
  2095. workers[it].join();
  2096. }
  2097. }
  2098. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  2099. int64_t tot_count = 0;
  2100. for (size_t i = 0; i < hist_cur.size(); i++) {
  2101. hist_all[i] += hist_cur[i];
  2102. tot_count += hist_cur[i];
  2103. }
  2104. if (tot_count > 0) {
  2105. for (size_t i = 0; i < hist_cur.size(); i++) {
  2106. printf("%5.3f ", hist_cur[i] / float(nelements));
  2107. }
  2108. }
  2109. printf("\n");
  2110. }
  2111. total_size_org += tensor.size;
  2112. total_size_new += new_size;
  2113. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  2114. }
  2115. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  2116. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  2117. {
  2118. int64_t sum_all = 0;
  2119. for (size_t i = 0; i < hist_all.size(); i++) {
  2120. sum_all += hist_all[i];
  2121. }
  2122. if (sum_all > 0) {
  2123. printf("%s: hist: ", __func__);
  2124. for (size_t i = 0; i < hist_all.size(); i++) {
  2125. printf("%5.3f ", hist_all[i] / float(sum_all));
  2126. }
  2127. printf("\n");
  2128. }
  2129. }
  2130. }
  2131. //
  2132. // interface implementation
  2133. //
  2134. struct llama_model * llama_load_model_from_file(
  2135. const char * path_model,
  2136. struct llama_context_params params) {
  2137. ggml_time_init();
  2138. llama_model * model = new llama_model;
  2139. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2140. if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
  2141. params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
  2142. params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
  2143. delete model;
  2144. fprintf(stderr, "%s: failed to load model\n", __func__);
  2145. return nullptr;
  2146. }
  2147. return model;
  2148. }
  2149. void llama_free_model(struct llama_model * model) {
  2150. delete model;
  2151. }
  2152. struct llama_context * llama_new_context_with_model(
  2153. struct llama_model * model,
  2154. struct llama_context_params params) {
  2155. if (!model) {
  2156. return nullptr;
  2157. }
  2158. llama_context * ctx = new llama_context(*model, model->vocab);
  2159. if (params.seed == LLAMA_DEFAULT_SEED) {
  2160. params.seed = time(NULL);
  2161. }
  2162. unsigned cur_percentage = 0;
  2163. if (params.progress_callback == NULL) {
  2164. params.progress_callback_user_data = &cur_percentage;
  2165. params.progress_callback = [](float progress, void * ctx) {
  2166. unsigned * cur_percentage_p = (unsigned *) ctx;
  2167. unsigned percentage = (unsigned) (100 * progress);
  2168. while (percentage > *cur_percentage_p) {
  2169. *cur_percentage_p = percentage;
  2170. fprintf(stderr, ".");
  2171. fflush(stderr);
  2172. if (percentage >= 100) {
  2173. fprintf(stderr, "\n");
  2174. }
  2175. }
  2176. };
  2177. }
  2178. ctx->rng = std::mt19937(params.seed);
  2179. ctx->logits_all = params.logits_all;
  2180. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2181. // reserve memory for context buffers
  2182. if (!params.vocab_only) {
  2183. if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  2184. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  2185. llama_free(ctx);
  2186. return nullptr;
  2187. }
  2188. {
  2189. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  2190. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  2191. }
  2192. const auto & hparams = ctx->model.hparams;
  2193. // resized during inference
  2194. if (params.logits_all) {
  2195. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  2196. } else {
  2197. ctx->logits.reserve(hparams.n_vocab);
  2198. }
  2199. if (params.embedding){
  2200. ctx->embedding.resize(hparams.n_embd);
  2201. }
  2202. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  2203. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  2204. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  2205. }
  2206. #ifdef GGML_USE_METAL
  2207. if (params.n_gpu_layers > 0) {
  2208. // this allocates all Metal resources and memory buffers
  2209. ctx->ctx_metal = ggml_metal_init();
  2210. void * data_ptr = NULL;
  2211. size_t data_size = 0;
  2212. if (params.use_mmap) {
  2213. data_ptr = ctx->model.mapping->addr;
  2214. data_size = ctx->model.mapping->size;
  2215. } else {
  2216. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  2217. data_size = ggml_get_mem_size (ctx->model.ctx);
  2218. }
  2219. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  2220. printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  2221. #define LLAMA_METAL_CHECK_BUF(result) \
  2222. if (!(result)) { \
  2223. fprintf(stderr, "%s: failed to add buffer\n", __func__); \
  2224. llama_free(ctx); \
  2225. return NULL; \
  2226. }
  2227. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  2228. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
  2229. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
  2230. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
  2231. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
  2232. #undef LLAMA_METAL_CHECK_BUF
  2233. }
  2234. #endif
  2235. return ctx;
  2236. }
  2237. struct llama_context * llama_init_from_file(
  2238. const char * path_model,
  2239. struct llama_context_params params) {
  2240. struct llama_model * model = llama_load_model_from_file(path_model, params);
  2241. if (!model) {
  2242. return nullptr;
  2243. }
  2244. struct llama_context * ctx = llama_new_context_with_model(model, params);
  2245. ctx->model_owner = true;
  2246. return ctx;
  2247. }
  2248. void llama_free(struct llama_context * ctx) {
  2249. if (ctx->model_owner) {
  2250. delete &ctx->model;
  2251. }
  2252. delete ctx;
  2253. }
  2254. int llama_model_quantize(
  2255. const char * fname_inp,
  2256. const char * fname_out,
  2257. const llama_model_quantize_params *params) {
  2258. try {
  2259. llama_model_quantize_internal(fname_inp, fname_out, params);
  2260. return 0;
  2261. } catch (const std::exception & err) {
  2262. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
  2263. return 1;
  2264. }
  2265. }
  2266. int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
  2267. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  2268. const int64_t t_start_lora_us = ggml_time_us();
  2269. auto fin = std::ifstream(path_lora, std::ios::binary);
  2270. if (!fin) {
  2271. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  2272. return 1;
  2273. }
  2274. // verify magic and version
  2275. {
  2276. uint32_t magic;
  2277. fin.read((char *) &magic, sizeof(magic));
  2278. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  2279. fprintf(stderr, "%s: bad file magic\n", __func__);
  2280. return 1;
  2281. }
  2282. uint32_t format_version;
  2283. fin.read((char *) &format_version, sizeof(format_version));
  2284. if (format_version != 1) {
  2285. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  2286. return 1;
  2287. }
  2288. }
  2289. int32_t lora_r;
  2290. int32_t lora_alpha;
  2291. fin.read((char *) &lora_r, sizeof(lora_r));
  2292. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  2293. float scaling = (float)lora_alpha / (float)lora_r;
  2294. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  2295. // create a temporary ggml context to store the lora tensors
  2296. // todo: calculate size from biggest possible tensor
  2297. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  2298. struct ggml_init_params params;
  2299. params.mem_size = lora_buf.size();
  2300. params.mem_buffer = lora_buf.data();
  2301. params.no_alloc = false;
  2302. ggml_context * lora_ctx = ggml_init(params);
  2303. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  2304. // create a name -> tensor map of the model to accelerate lookups
  2305. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  2306. for (const auto & kv: model.tensors_by_name) {
  2307. model_tensors.insert(kv);
  2308. }
  2309. // load base model
  2310. std::unique_ptr<llama_model_loader> model_loader;
  2311. ggml_context * base_ctx = NULL;
  2312. llama_buffer base_buf;
  2313. if (path_base_model) {
  2314. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  2315. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  2316. size_t ctx_size;
  2317. size_t mmapped_size;
  2318. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  2319. base_buf.resize(ctx_size);
  2320. ggml_init_params base_params;
  2321. base_params.mem_size = base_buf.size;
  2322. base_params.mem_buffer = base_buf.addr;
  2323. base_params.no_alloc = model_loader->use_mmap;
  2324. base_ctx = ggml_init(base_params);
  2325. model_loader->ggml_ctx = base_ctx;
  2326. // maybe this should in llama_model_loader
  2327. if (model_loader->use_mmap) {
  2328. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa()));
  2329. }
  2330. }
  2331. // read tensors and apply
  2332. bool warned = false;
  2333. int n_tensors = 0;
  2334. while (true) {
  2335. int32_t n_dims;
  2336. int32_t length;
  2337. int32_t ftype;
  2338. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  2339. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  2340. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  2341. if (fin.eof()) {
  2342. break;
  2343. }
  2344. int32_t ne[2] = { 1, 1 };
  2345. for (int i = 0; i < n_dims; ++i) {
  2346. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  2347. }
  2348. std::string name;
  2349. {
  2350. char buf[1024];
  2351. fin.read(buf, length);
  2352. name = std::string(buf, length);
  2353. }
  2354. // check for lora suffix and get the type of tensor
  2355. const std::string lora_suffix = ".lora";
  2356. size_t pos = name.rfind(lora_suffix);
  2357. if (pos == std::string::npos) {
  2358. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2359. return 1;
  2360. }
  2361. std::string lora_type = name.substr(pos + lora_suffix.length());
  2362. std::string base_name = name;
  2363. base_name.erase(pos);
  2364. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2365. if (model_tensors.find(base_name) == model_tensors.end()) {
  2366. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2367. return 1;
  2368. }
  2369. // create ggml tensor
  2370. ggml_type wtype;
  2371. switch (ftype) {
  2372. case 0: wtype = GGML_TYPE_F32; break;
  2373. case 1: wtype = GGML_TYPE_F16; break;
  2374. default:
  2375. {
  2376. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2377. __func__, ftype);
  2378. return false;
  2379. }
  2380. }
  2381. ggml_tensor * lora_tensor;
  2382. if (n_dims == 2) {
  2383. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2384. }
  2385. else {
  2386. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2387. return 1;
  2388. }
  2389. ggml_set_name(lora_tensor, "lora_tensor");
  2390. // load tensor data
  2391. size_t offset = fin.tellg();
  2392. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2393. offset = (offset + 31) & -32;
  2394. fin.seekg(offset);
  2395. fin.read((char*)lora_tensor->data, tensor_data_size);
  2396. lora_tensors[name] = lora_tensor;
  2397. // check if we have both A and B tensors and apply
  2398. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2399. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2400. ggml_tensor * dest_t = model_tensors[base_name];
  2401. offload_func_t offload_func = llama_nop;
  2402. offload_func_t offload_func_force_inplace = llama_nop;
  2403. #ifdef GGML_USE_CUBLAS
  2404. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  2405. if (dest_t->type != GGML_TYPE_F16) {
  2406. throw std::runtime_error(format(
  2407. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  2408. }
  2409. offload_func = ggml_cuda_assign_buffers;
  2410. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  2411. }
  2412. #endif // GGML_USE_CUBLAS
  2413. ggml_tensor * base_t;
  2414. if (model_loader) {
  2415. // load from base model
  2416. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2417. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2418. return 1;
  2419. }
  2420. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2421. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2422. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2423. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2424. model_loader->load_data_for(lt);
  2425. lt.ggml_tensor->data = lt.data;
  2426. }
  2427. else {
  2428. base_t = dest_t;
  2429. }
  2430. if (ggml_is_quantized(base_t->type)) {
  2431. if (!warned) {
  2432. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2433. "use a f16 or f32 base model with --lora-base\n", __func__);
  2434. warned = true;
  2435. }
  2436. }
  2437. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2438. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  2439. ggml_set_name(loraA, "loraA");
  2440. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2441. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  2442. ggml_set_name(loraB, "loraB");
  2443. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2444. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2445. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2446. return 1;
  2447. }
  2448. // w = w + BA*s
  2449. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2450. offload_func(BA);
  2451. ggml_set_name(BA, "BA");
  2452. if (scaling != 1.0f) {
  2453. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2454. ggml_set_name(scale_tensor, "scale_tensor");
  2455. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2456. offload_func(BA);
  2457. ggml_set_name(BA, "BA_scaled");
  2458. }
  2459. ggml_tensor * r;
  2460. if (base_t == dest_t) {
  2461. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2462. offload_func_force_inplace(r);
  2463. ggml_set_name(r, "r_add_inplace");
  2464. }
  2465. else {
  2466. r = ggml_add(lora_ctx, base_t, BA);
  2467. offload_func(r);
  2468. ggml_set_name(r, "r_add");
  2469. r = ggml_cpy(lora_ctx, r, dest_t);
  2470. offload_func(r);
  2471. ggml_set_name(r, "r_cpy");
  2472. }
  2473. struct ggml_cgraph gf = ggml_build_forward(r);
  2474. gf.n_threads = n_threads;
  2475. ggml_graph_compute(lora_ctx, &gf);
  2476. // we won't need these tensors again, reset the context to save memory
  2477. ggml_free(lora_ctx);
  2478. lora_ctx = ggml_init(params);
  2479. lora_tensors.clear();
  2480. n_tensors++;
  2481. if (n_tensors % 4 == 0) {
  2482. fprintf(stderr, ".");
  2483. }
  2484. }
  2485. }
  2486. // TODO: this should be in a destructor, it will leak on failure
  2487. ggml_free(lora_ctx);
  2488. if (base_ctx) {
  2489. ggml_free(base_ctx);
  2490. }
  2491. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2492. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2493. return 0;
  2494. }
  2495. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2496. try {
  2497. return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
  2498. } catch (const std::exception & err) {
  2499. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2500. return 1;
  2501. }
  2502. }
  2503. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
  2504. try {
  2505. return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
  2506. } catch (const std::exception & err) {
  2507. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2508. return 1;
  2509. }
  2510. }
  2511. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2512. return ctx->kv_self.n;
  2513. }
  2514. #define LLAMA_MAX_RNG_STATE (64*1024)
  2515. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  2516. if (seed == LLAMA_DEFAULT_SEED) {
  2517. seed = time(NULL);
  2518. }
  2519. ctx->rng.seed(seed);
  2520. }
  2521. // Returns the *maximum* size of the state
  2522. size_t llama_get_state_size(const struct llama_context * ctx) {
  2523. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2524. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2525. const size_t s_rng_size = sizeof(size_t);
  2526. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2527. const size_t s_logits_capacity = sizeof(size_t);
  2528. const size_t s_logits_size = sizeof(size_t);
  2529. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2530. const size_t s_embedding_size = sizeof(size_t);
  2531. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2532. const size_t s_kv_size = sizeof(size_t);
  2533. const size_t s_kv_ntok = sizeof(int);
  2534. const size_t s_kv = ctx->kv_self.buf.size;
  2535. const size_t s_total = (
  2536. + s_rng_size
  2537. + s_rng
  2538. + s_logits_capacity
  2539. + s_logits_size
  2540. + s_logits
  2541. + s_embedding_size
  2542. + s_embedding
  2543. + s_kv_size
  2544. + s_kv_ntok
  2545. + s_kv
  2546. );
  2547. return s_total;
  2548. }
  2549. // Copies the state to the specified destination address
  2550. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2551. uint8_t * out = dst;
  2552. // copy rng
  2553. {
  2554. std::stringstream rng_ss;
  2555. rng_ss << ctx->rng;
  2556. const size_t rng_size = rng_ss.str().size();
  2557. char rng_buf[LLAMA_MAX_RNG_STATE];
  2558. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2559. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2560. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2561. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2562. }
  2563. // copy logits
  2564. {
  2565. const size_t logits_cap = ctx->logits.capacity();
  2566. const size_t logits_size = ctx->logits.size();
  2567. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2568. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2569. if (logits_size) {
  2570. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2571. }
  2572. out += logits_cap * sizeof(float);
  2573. }
  2574. // copy embeddings
  2575. {
  2576. const size_t embedding_size = ctx->embedding.size();
  2577. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2578. if (embedding_size) {
  2579. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2580. out += embedding_size * sizeof(float);
  2581. }
  2582. }
  2583. // copy kv cache
  2584. {
  2585. const auto & kv_self = ctx->kv_self;
  2586. const auto & hparams = ctx->model.hparams;
  2587. const int n_layer = hparams.n_layer;
  2588. const int n_embd = hparams.n_embd;
  2589. const int n_ctx = hparams.n_ctx;
  2590. const size_t kv_size = kv_self.buf.size;
  2591. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2592. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2593. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2594. if (kv_size) {
  2595. const size_t elt_size = ggml_element_size(kv_self.k);
  2596. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  2597. ggml_cgraph gf{};
  2598. gf.n_threads = 1;
  2599. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2600. kout3d->data = out;
  2601. out += ggml_nbytes(kout3d);
  2602. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2603. vout3d->data = out;
  2604. out += ggml_nbytes(vout3d);
  2605. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2606. n_embd, kv_ntok, n_layer,
  2607. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2608. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2609. kv_ntok, n_embd, n_layer,
  2610. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2611. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2612. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2613. ggml_graph_compute(cpy_ctx, &gf);
  2614. ggml_free(cpy_ctx);
  2615. }
  2616. }
  2617. const size_t written = out - dst;
  2618. const size_t max_size = llama_get_state_size(ctx);
  2619. LLAMA_ASSERT(written <= max_size);
  2620. return written;
  2621. }
  2622. // Sets the state reading from the specified source address
  2623. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2624. uint8_t * inp = src;
  2625. // set rng
  2626. {
  2627. size_t rng_size;
  2628. char rng_buf[LLAMA_MAX_RNG_STATE];
  2629. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2630. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2631. std::stringstream rng_ss;
  2632. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2633. rng_ss >> ctx->rng;
  2634. LLAMA_ASSERT(rng_ss.fail() == false);
  2635. }
  2636. // set logits
  2637. {
  2638. size_t logits_cap;
  2639. size_t logits_size;
  2640. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2641. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2642. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2643. if (logits_size) {
  2644. ctx->logits.resize(logits_size);
  2645. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2646. }
  2647. inp += logits_cap * sizeof(float);
  2648. }
  2649. // set embeddings
  2650. {
  2651. size_t embedding_size;
  2652. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2653. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2654. if (embedding_size) {
  2655. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2656. inp += embedding_size * sizeof(float);
  2657. }
  2658. }
  2659. // set kv cache
  2660. {
  2661. const auto & kv_self = ctx->kv_self;
  2662. const auto & hparams = ctx->model.hparams;
  2663. const int n_layer = hparams.n_layer;
  2664. const int n_embd = hparams.n_embd;
  2665. const int n_ctx = hparams.n_ctx;
  2666. size_t kv_size;
  2667. int kv_ntok;
  2668. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2669. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2670. if (kv_size) {
  2671. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2672. const size_t elt_size = ggml_element_size(kv_self.k);
  2673. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  2674. ggml_cgraph gf{};
  2675. gf.n_threads = 1;
  2676. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2677. kin3d->data = (void *) inp;
  2678. inp += ggml_nbytes(kin3d);
  2679. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2680. vin3d->data = (void *) inp;
  2681. inp += ggml_nbytes(vin3d);
  2682. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2683. n_embd, kv_ntok, n_layer,
  2684. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2685. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2686. kv_ntok, n_embd, n_layer,
  2687. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2688. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2689. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2690. ggml_graph_compute(cpy_ctx, &gf);
  2691. ggml_free(cpy_ctx);
  2692. }
  2693. ctx->kv_self.n = kv_ntok;
  2694. }
  2695. const size_t nread = inp - src;
  2696. const size_t max_size = llama_get_state_size(ctx);
  2697. LLAMA_ASSERT(nread <= max_size);
  2698. return nread;
  2699. }
  2700. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2701. llama_file file(path_session, "rb");
  2702. // sanity checks
  2703. {
  2704. const uint32_t magic = file.read_u32();
  2705. const uint32_t version = file.read_u32();
  2706. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2707. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2708. return false;
  2709. }
  2710. llama_hparams session_hparams;
  2711. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2712. if (session_hparams != ctx->model.hparams) {
  2713. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2714. return false;
  2715. }
  2716. }
  2717. // load the prompt
  2718. {
  2719. const uint32_t n_token_count = file.read_u32();
  2720. if (n_token_count > n_token_capacity) {
  2721. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2722. return false;
  2723. }
  2724. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2725. *n_token_count_out = n_token_count;
  2726. }
  2727. // restore the context state
  2728. {
  2729. const size_t n_state_size_cur = file.size - file.tell();
  2730. const size_t n_state_size_max = llama_get_state_size(ctx);
  2731. if (n_state_size_cur > n_state_size_max) {
  2732. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2733. return false;
  2734. }
  2735. std::vector<uint8_t> state_data(n_state_size_max);
  2736. file.read_raw(state_data.data(), n_state_size_cur);
  2737. llama_set_state_data(ctx, state_data.data());
  2738. }
  2739. return true;
  2740. }
  2741. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2742. try {
  2743. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  2744. } catch (const std::exception & err) {
  2745. fprintf(stderr, "error loading session file: %s\n", err.what());
  2746. return false;
  2747. }
  2748. }
  2749. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2750. llama_file file(path_session, "wb");
  2751. file.write_u32(LLAMA_SESSION_MAGIC);
  2752. file.write_u32(LLAMA_SESSION_VERSION);
  2753. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2754. // save the prompt
  2755. file.write_u32((uint32_t) n_token_count);
  2756. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2757. // save the context state
  2758. {
  2759. const size_t n_state_size_max = llama_get_state_size(ctx);
  2760. std::vector<uint8_t> state_data(n_state_size_max);
  2761. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2762. file.write_raw(state_data.data(), n_state_size_cur);
  2763. }
  2764. return true;
  2765. }
  2766. int llama_eval(
  2767. struct llama_context * ctx,
  2768. const llama_token * tokens,
  2769. int n_tokens,
  2770. int n_past,
  2771. int n_threads) {
  2772. if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
  2773. fprintf(stderr, "%s: failed to eval\n", __func__);
  2774. return 1;
  2775. }
  2776. // get a more accurate load time, upon first eval
  2777. // TODO: fix this
  2778. if (!ctx->has_evaluated_once) {
  2779. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2780. ctx->has_evaluated_once = true;
  2781. }
  2782. return 0;
  2783. }
  2784. int llama_eval_embd(
  2785. struct llama_context * ctx,
  2786. const float * embd,
  2787. int n_tokens,
  2788. int n_past,
  2789. int n_threads) {
  2790. if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
  2791. fprintf(stderr, "%s: failed to eval\n", __func__);
  2792. return 1;
  2793. }
  2794. // get a more accurate load time, upon first eval
  2795. // TODO: fix this
  2796. if (!ctx->has_evaluated_once) {
  2797. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2798. ctx->has_evaluated_once = true;
  2799. }
  2800. return 0;
  2801. }
  2802. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  2803. const int n_batch = 1;
  2804. const int n_ctx = 512 - n_batch;
  2805. const std::vector<llama_token> tmp(n_batch, llama_token_bos());
  2806. if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
  2807. fprintf(stderr, "%s: failed to eval\n", __func__);
  2808. return 1;
  2809. }
  2810. return 0;
  2811. }
  2812. int llama_tokenize(
  2813. struct llama_context * ctx,
  2814. const char * text,
  2815. llama_token * tokens,
  2816. int n_max_tokens,
  2817. bool add_bos) {
  2818. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  2819. if (n_max_tokens < (int) res.size()) {
  2820. fprintf(stderr, "%s: too many tokens\n", __func__);
  2821. return -((int) res.size());
  2822. }
  2823. for (size_t i = 0; i < res.size(); i++) {
  2824. tokens[i] = res[i];
  2825. }
  2826. return res.size();
  2827. }
  2828. int llama_n_vocab(const struct llama_context * ctx) {
  2829. return ctx->vocab.id_to_token.size();
  2830. }
  2831. int llama_n_ctx(const struct llama_context * ctx) {
  2832. return ctx->model.hparams.n_ctx;
  2833. }
  2834. int llama_n_embd(const struct llama_context * ctx) {
  2835. return ctx->model.hparams.n_embd;
  2836. }
  2837. int llama_get_vocab(
  2838. const struct llama_context * ctx,
  2839. const char * * strings,
  2840. float * scores,
  2841. int capacity) {
  2842. int n = std::min(capacity, (int) ctx->vocab.id_to_token.size());
  2843. for (int i = 0; i<n; ++i) {
  2844. strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
  2845. scores[i] = ctx->vocab.id_to_token[i].score;
  2846. }
  2847. return n;
  2848. }
  2849. float * llama_get_logits(struct llama_context * ctx) {
  2850. return ctx->logits.data();
  2851. }
  2852. float * llama_get_embeddings(struct llama_context * ctx) {
  2853. return ctx->embedding.data();
  2854. }
  2855. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  2856. if (token >= llama_n_vocab(ctx)) {
  2857. return nullptr;
  2858. }
  2859. return ctx->vocab.id_to_token[token].tok.c_str();
  2860. }
  2861. llama_token llama_token_bos() {
  2862. return 1;
  2863. }
  2864. llama_token llama_token_eos() {
  2865. return 2;
  2866. }
  2867. llama_token llama_token_nl() {
  2868. return 13;
  2869. }
  2870. void llama_print_timings(struct llama_context * ctx) {
  2871. const int64_t t_end_us = ggml_time_us();
  2872. const int32_t n_sample = std::max(1, ctx->n_sample);
  2873. const int32_t n_eval = std::max(1, ctx->n_eval);
  2874. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  2875. fprintf(stderr, "\n");
  2876. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  2877. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  2878. __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample, 1e6 / ctx->t_sample_us * n_sample);
  2879. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  2880. __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval, 1e6 / ctx->t_p_eval_us * n_p_eval);
  2881. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  2882. __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval, 1e6 / ctx->t_eval_us * n_eval);
  2883. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  2884. }
  2885. void llama_reset_timings(struct llama_context * ctx) {
  2886. ctx->t_start_us = ggml_time_us();
  2887. ctx->t_sample_us = ctx->n_sample = 0;
  2888. ctx->t_eval_us = ctx->n_eval = 0;
  2889. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  2890. }
  2891. const char * llama_print_system_info(void) {
  2892. static std::string s;
  2893. s = "";
  2894. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  2895. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  2896. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  2897. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  2898. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  2899. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  2900. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  2901. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  2902. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  2903. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  2904. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  2905. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  2906. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  2907. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  2908. return s.c_str();
  2909. }
  2910. // For internal test use
  2911. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  2912. return ctx->model.tensors_by_name;
  2913. }