| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- #pragma once
- #include "ggml.h"
- #include "ggml-backend.h"
- #ifdef __cplusplus
- extern "C" {
- #endif
- // Scheduling priorities
- enum ggml_sched_priority {
- GGML_SCHED_PRIO_NORMAL,
- GGML_SCHED_PRIO_MEDIUM,
- GGML_SCHED_PRIO_HIGH,
- GGML_SCHED_PRIO_REALTIME
- };
- // Threadpool params
- // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
- struct ggml_threadpool_params {
- bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
- int n_threads; // number of threads
- enum ggml_sched_priority prio; // thread priority
- uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
- bool strict_cpu; // strict cpu placement
- bool paused; // start in paused state
- };
- struct ggml_threadpool; // forward declaration, see ggml.c
- typedef struct ggml_threadpool * ggml_threadpool_t;
- // the compute plan that needs to be prepared for ggml_graph_compute()
- // since https://github.com/ggerganov/ggml/issues/287
- struct ggml_cplan {
- size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
- uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
- int n_threads;
- struct ggml_threadpool * threadpool;
- // abort ggml_graph_compute when true
- ggml_abort_callback abort_callback;
- void * abort_callback_data;
- };
- // numa strategies
- enum ggml_numa_strategy {
- GGML_NUMA_STRATEGY_DISABLED = 0,
- GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
- GGML_NUMA_STRATEGY_ISOLATE = 2,
- GGML_NUMA_STRATEGY_NUMACTL = 3,
- GGML_NUMA_STRATEGY_MIRROR = 4,
- GGML_NUMA_STRATEGY_COUNT
- };
- GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
- GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
- GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
- GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
- GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
- GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
- GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
- GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
- GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
- GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
- GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
- GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
- GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
- GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
- GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
- GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
- GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
- GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
- GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
- GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
- GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
- GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
- // ggml_graph_plan() has to be called before ggml_graph_compute()
- // when plan.work_size > 0, caller must allocate memory for plan.work_data
- GGML_API struct ggml_cplan ggml_graph_plan(
- const struct ggml_cgraph * cgraph,
- int n_threads, /* = GGML_DEFAULT_N_THREADS */
- struct ggml_threadpool * threadpool /* = NULL */ );
- GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
- // same as ggml_graph_compute() but the work data is allocated as a part of the context
- // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
- GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
- // TODO: move to backend interface
- GGML_API int ggml_cpu_has_neon (void);
- GGML_API int ggml_cpu_has_sve (void);
- GGML_API int ggml_cpu_has_matmul_int8(void);
- // get the sve vector length in bytes
- GGML_API int ggml_cpu_get_sve_cnt(void);
- // Internal types and functions exposed for tests and benchmarks
- typedef void (*ggml_from_float_to_mat_t)
- (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
- typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
- const void * GGML_RESTRICT y, size_t by, int nrc);
- typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
- const void * GGML_RESTRICT y, int nr, int nc);
- typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
- const void * GGML_RESTRICT y, int nr, int nc);
- struct ggml_type_traits_cpu {
- ggml_from_float_to_mat_t from_float_to_mat;
- ggml_vec_dot_t vec_dot;
- enum ggml_type vec_dot_type;
- int64_t nrows; // number of rows to process simultaneously
- int64_t ncols; // number of columns to process simultaneously
- ggml_gemv_t gemv;
- ggml_gemm_t gemm;
- };
- GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
- GGML_API void ggml_cpu_init(void);
- //
- // CPU backend
- //
- GGML_API ggml_backend_t ggml_backend_cpu_init(void);
- GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
- GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
- GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
- GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
- GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
- #ifdef GGML_USE_CPU_HBM
- GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
- #endif
- #ifdef __cplusplus
- }
- #endif
|