llama.cpp 368 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #ifdef GGML_USE_CUBLAS
  7. # include "ggml-cuda.h"
  8. #elif defined(GGML_USE_CLBLAST)
  9. # include "ggml-opencl.h"
  10. #endif
  11. #ifdef GGML_USE_METAL
  12. # include "ggml-metal.h"
  13. #endif
  14. #ifdef GGML_USE_MPI
  15. # include "ggml-mpi.h"
  16. #endif
  17. #ifdef GGML_USE_K_QUANTS
  18. # ifndef QK_K
  19. # ifdef GGML_QKK_64
  20. # define QK_K 64
  21. # else
  22. # define QK_K 256
  23. # endif
  24. # endif
  25. #endif
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #endif
  32. #if defined(_POSIX_MEMLOCK_RANGE)
  33. #include <sys/resource.h>
  34. #endif
  35. #endif
  36. #endif
  37. #if defined(_WIN32)
  38. #define WIN32_LEAN_AND_MEAN
  39. #ifndef NOMINMAX
  40. #define NOMINMAX
  41. #endif
  42. #include <windows.h>
  43. #include <io.h>
  44. #include <stdio.h> // for _fseeki64
  45. #endif
  46. #include <algorithm>
  47. #include <array>
  48. #include <cassert>
  49. #include <cinttypes>
  50. #include <climits>
  51. #include <cstdarg>
  52. #include <cstddef>
  53. #include <cstdint>
  54. #include <cstdio>
  55. #include <cstring>
  56. #include <ctime>
  57. #include <fstream>
  58. #include <initializer_list>
  59. #include <map>
  60. #include <memory>
  61. #include <mutex>
  62. #include <numeric>
  63. #include <queue>
  64. #include <random>
  65. #include <regex>
  66. #include <sstream>
  67. #include <thread>
  68. #include <unordered_map>
  69. #include <set>
  70. #include <forward_list>
  71. #if defined(_MSC_VER)
  72. #pragma warning(disable: 4244 4267) // possible loss of data
  73. #endif
  74. #ifdef __GNUC__
  75. #ifdef __MINGW32__
  76. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  77. #else
  78. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  79. #endif
  80. #else
  81. #define LLAMA_ATTRIBUTE_FORMAT(...)
  82. #endif
  83. //
  84. // logging
  85. //
  86. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  87. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  88. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  89. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  90. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  91. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  92. //
  93. // helpers
  94. //
  95. static size_t utf8_len(char src) {
  96. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  97. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  98. return lookup[highbits];
  99. }
  100. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  101. std::string result;
  102. for (size_t pos = 0; ; pos += search.length()) {
  103. auto new_pos = s.find(search, pos);
  104. if (new_pos == std::string::npos) {
  105. result += s.substr(pos, s.size() - pos);
  106. break;
  107. }
  108. result += s.substr(pos, new_pos - pos) + replace;
  109. pos = new_pos;
  110. }
  111. s = std::move(result);
  112. }
  113. static bool is_float_close(float a, float b, float abs_tol) {
  114. // Check for non-negative tolerance
  115. if (abs_tol < 0.0) {
  116. throw std::invalid_argument("Tolerance must be non-negative");
  117. }
  118. // Exact equality check
  119. if (a == b) {
  120. return true;
  121. }
  122. // Check for infinities
  123. if (std::isinf(a) || std::isinf(b)) {
  124. return false;
  125. }
  126. // Regular comparison using the provided absolute tolerance
  127. return std::fabs(b - a) <= abs_tol;
  128. }
  129. #ifdef GGML_USE_CPU_HBM
  130. #include <hbwmalloc.h>
  131. #endif
  132. static void zeros(std::ofstream & file, size_t n) {
  133. char zero = 0;
  134. for (size_t i = 0; i < n; ++i) {
  135. file.write(&zero, 1);
  136. }
  137. }
  138. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  139. static std::string format(const char * fmt, ...) {
  140. va_list ap;
  141. va_list ap2;
  142. va_start(ap, fmt);
  143. va_copy(ap2, ap);
  144. int size = vsnprintf(NULL, 0, fmt, ap);
  145. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  146. std::vector<char> buf(size + 1);
  147. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  148. GGML_ASSERT(size2 == size);
  149. va_end(ap2);
  150. va_end(ap);
  151. return std::string(buf.data(), size);
  152. }
  153. //
  154. // gguf constants (sync with gguf.py)
  155. //
  156. enum llm_arch {
  157. LLM_ARCH_LLAMA,
  158. LLM_ARCH_FALCON,
  159. LLM_ARCH_BAICHUAN,
  160. LLM_ARCH_GPT2,
  161. LLM_ARCH_GPTJ,
  162. LLM_ARCH_GPTNEOX,
  163. LLM_ARCH_MPT,
  164. LLM_ARCH_STARCODER,
  165. LLM_ARCH_PERSIMMON,
  166. LLM_ARCH_REFACT,
  167. LLM_ARCH_BLOOM,
  168. LLM_ARCH_UNKNOWN,
  169. };
  170. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  171. { LLM_ARCH_LLAMA, "llama" },
  172. { LLM_ARCH_FALCON, "falcon" },
  173. { LLM_ARCH_GPT2, "gpt2" },
  174. { LLM_ARCH_GPTJ, "gptj" },
  175. { LLM_ARCH_GPTNEOX, "gptneox" },
  176. { LLM_ARCH_MPT, "mpt" },
  177. { LLM_ARCH_BAICHUAN, "baichuan" },
  178. { LLM_ARCH_STARCODER, "starcoder" },
  179. { LLM_ARCH_PERSIMMON, "persimmon" },
  180. { LLM_ARCH_REFACT, "refact" },
  181. { LLM_ARCH_BLOOM, "bloom" },
  182. };
  183. enum llm_kv {
  184. LLM_KV_GENERAL_ARCHITECTURE,
  185. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  186. LLM_KV_GENERAL_ALIGNMENT,
  187. LLM_KV_GENERAL_NAME,
  188. LLM_KV_GENERAL_AUTHOR,
  189. LLM_KV_GENERAL_URL,
  190. LLM_KV_GENERAL_DESCRIPTION,
  191. LLM_KV_GENERAL_LICENSE,
  192. LLM_KV_GENERAL_SOURCE_URL,
  193. LLM_KV_GENERAL_SOURCE_HF_REPO,
  194. LLM_KV_CONTEXT_LENGTH,
  195. LLM_KV_EMBEDDING_LENGTH,
  196. LLM_KV_BLOCK_COUNT,
  197. LLM_KV_FEED_FORWARD_LENGTH,
  198. LLM_KV_USE_PARALLEL_RESIDUAL,
  199. LLM_KV_TENSOR_DATA_LAYOUT,
  200. LLM_KV_ATTENTION_HEAD_COUNT,
  201. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  202. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  203. LLM_KV_ATTENTION_CLAMP_KQV,
  204. LLM_KV_ATTENTION_LAYERNORM_EPS,
  205. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  206. LLM_KV_ROPE_DIMENSION_COUNT,
  207. LLM_KV_ROPE_FREQ_BASE,
  208. LLM_KV_ROPE_SCALE_LINEAR,
  209. LLM_KV_TOKENIZER_MODEL,
  210. LLM_KV_TOKENIZER_LIST,
  211. LLM_KV_TOKENIZER_TOKEN_TYPE,
  212. LLM_KV_TOKENIZER_SCORES,
  213. LLM_KV_TOKENIZER_MERGES,
  214. LLM_KV_TOKENIZER_BOS_ID,
  215. LLM_KV_TOKENIZER_EOS_ID,
  216. LLM_KV_TOKENIZER_UNK_ID,
  217. LLM_KV_TOKENIZER_SEP_ID,
  218. LLM_KV_TOKENIZER_PAD_ID,
  219. LLM_KV_TOKENIZER_HF_JSON,
  220. LLM_KV_TOKENIZER_RWKV,
  221. };
  222. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  223. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  224. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  225. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  226. { LLM_KV_GENERAL_NAME, "general.name" },
  227. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  228. { LLM_KV_GENERAL_URL, "general.url" },
  229. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  230. { LLM_KV_GENERAL_LICENSE, "general.license" },
  231. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  232. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  233. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  234. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  235. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  236. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  237. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  238. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  239. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  240. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  241. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  242. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  243. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  244. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  245. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  246. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  247. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  248. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  249. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  250. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  251. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  252. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  253. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  254. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  255. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  256. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  257. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  258. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  259. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  260. };
  261. struct LLM_KV {
  262. LLM_KV(llm_arch arch) : arch(arch) {}
  263. llm_arch arch;
  264. std::string operator()(llm_kv kv) const {
  265. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  266. }
  267. };
  268. enum llm_tensor {
  269. LLM_TENSOR_TOKEN_EMBD,
  270. LLM_TENSOR_TOKEN_EMBD_NORM,
  271. LLM_TENSOR_POS_EMBD,
  272. LLM_TENSOR_OUTPUT,
  273. LLM_TENSOR_OUTPUT_NORM,
  274. LLM_TENSOR_ROPE_FREQS,
  275. LLM_TENSOR_ATTN_Q,
  276. LLM_TENSOR_ATTN_K,
  277. LLM_TENSOR_ATTN_V,
  278. LLM_TENSOR_ATTN_QKV,
  279. LLM_TENSOR_ATTN_OUT,
  280. LLM_TENSOR_ATTN_NORM,
  281. LLM_TENSOR_ATTN_NORM_2,
  282. LLM_TENSOR_ATTN_ROT_EMBD,
  283. LLM_TENSOR_FFN_GATE,
  284. LLM_TENSOR_FFN_DOWN,
  285. LLM_TENSOR_FFN_UP,
  286. LLM_TENSOR_FFN_NORM,
  287. LLM_TENSOR_ATTN_Q_NORM,
  288. LLM_TENSOR_ATTN_K_NORM,
  289. };
  290. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  291. {
  292. LLM_ARCH_LLAMA,
  293. {
  294. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  295. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  296. { LLM_TENSOR_OUTPUT, "output" },
  297. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  298. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  299. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  300. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  301. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  302. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  303. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  304. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  305. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  306. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  307. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  308. },
  309. },
  310. {
  311. LLM_ARCH_BAICHUAN,
  312. {
  313. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  314. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  315. { LLM_TENSOR_OUTPUT, "output" },
  316. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  317. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  318. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  319. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  320. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  321. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  322. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  323. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  324. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  325. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  326. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  327. },
  328. },
  329. {
  330. LLM_ARCH_FALCON,
  331. {
  332. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  333. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  334. { LLM_TENSOR_OUTPUT, "output" },
  335. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  336. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  337. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  338. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  339. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  340. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  341. },
  342. },
  343. {
  344. LLM_ARCH_GPT2,
  345. {
  346. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  347. },
  348. },
  349. {
  350. LLM_ARCH_GPTJ,
  351. {
  352. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  353. },
  354. },
  355. {
  356. LLM_ARCH_GPTNEOX,
  357. {
  358. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  359. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  360. { LLM_TENSOR_OUTPUT, "output" },
  361. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  362. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  363. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  364. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  365. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  366. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  367. },
  368. },
  369. {
  370. LLM_ARCH_PERSIMMON,
  371. {
  372. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  373. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  374. { LLM_TENSOR_OUTPUT, "output"},
  375. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  376. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  377. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  378. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  379. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  380. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  381. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  382. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  383. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  384. },
  385. },
  386. {
  387. LLM_ARCH_MPT,
  388. {
  389. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  390. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  391. { LLM_TENSOR_OUTPUT, "output" },
  392. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  393. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  394. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  395. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  396. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  397. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  398. },
  399. },
  400. {
  401. LLM_ARCH_STARCODER,
  402. {
  403. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  404. { LLM_TENSOR_POS_EMBD, "position_embd" },
  405. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  406. { LLM_TENSOR_OUTPUT, "output" },
  407. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  408. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  409. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  410. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  411. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  412. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  413. },
  414. },
  415. {
  416. LLM_ARCH_REFACT,
  417. {
  418. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  419. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  420. { LLM_TENSOR_OUTPUT, "output" },
  421. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  422. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  423. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  424. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  425. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  426. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  427. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  428. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  429. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  430. },
  431. },
  432. {
  433. LLM_ARCH_BLOOM,
  434. {
  435. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  436. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  437. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  438. { LLM_TENSOR_OUTPUT, "output" },
  439. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  440. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  441. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  442. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  443. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  444. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  445. },
  446. },
  447. {
  448. LLM_ARCH_UNKNOWN,
  449. {
  450. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  451. },
  452. },
  453. };
  454. static llm_arch llm_arch_from_string(const std::string & name) {
  455. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  456. if (kv.second == name) {
  457. return kv.first;
  458. }
  459. }
  460. return LLM_ARCH_UNKNOWN;
  461. }
  462. // helper to handle gguf constants
  463. // usage:
  464. //
  465. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  466. //
  467. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  468. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  469. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  470. //
  471. struct LLM_TN {
  472. LLM_TN(llm_arch arch) : arch(arch) {}
  473. llm_arch arch;
  474. std::string operator()(llm_tensor tensor) const {
  475. return LLM_TENSOR_NAMES[arch].at(tensor);
  476. }
  477. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  478. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  479. }
  480. std::string operator()(llm_tensor tensor, int bid) const {
  481. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  482. }
  483. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  484. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  485. }
  486. };
  487. //
  488. // gguf helpers
  489. //
  490. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  491. do { \
  492. const std::string skey(key); \
  493. const int kid = gguf_find_key(ctx, skey.c_str()); \
  494. if (kid >= 0) { \
  495. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  496. if (ktype != (type)) { \
  497. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  498. } \
  499. (dst) = func(ctx, kid); \
  500. } else if (req) { \
  501. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  502. } \
  503. } while (0)
  504. //
  505. // ggml helpers
  506. //
  507. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  508. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  509. if (plan.work_size > 0) {
  510. buf.resize(plan.work_size);
  511. plan.work_data = buf.data();
  512. }
  513. ggml_graph_compute(graph, &plan);
  514. }
  515. //
  516. // llama helpers
  517. //
  518. #ifdef GGML_USE_CUBLAS
  519. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  520. # define llama_host_free(data) ggml_cuda_host_free(data)
  521. #elif GGML_USE_METAL
  522. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  523. # define llama_host_free(data) ggml_metal_host_free(data)
  524. #elif GGML_USE_CPU_HBM
  525. # define llama_host_malloc(n) hbw_malloc(n)
  526. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  527. #else
  528. # define llama_host_malloc(n) malloc(n)
  529. # define llama_host_free(data) free(data)
  530. #endif
  531. #if defined(_WIN32)
  532. static std::string llama_format_win_err(DWORD err) {
  533. LPSTR buf;
  534. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  535. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  536. if (!size) {
  537. return "FormatMessageA failed";
  538. }
  539. std::string ret(buf, size);
  540. LocalFree(buf);
  541. return ret;
  542. }
  543. #endif
  544. struct llama_buffer {
  545. void * data = NULL;
  546. size_t size = 0;
  547. // fallback to malloc / free
  548. // useful in cases where CUDA can try to allocate PINNED memory
  549. bool fallback = false;
  550. void resize(size_t n) {
  551. llama_host_free(data);
  552. data = llama_host_malloc(n);
  553. if (!data) {
  554. fallback = true;
  555. data = malloc(n);
  556. } else {
  557. fallback = false;
  558. }
  559. GGML_ASSERT(data);
  560. size = n;
  561. }
  562. ~llama_buffer() {
  563. if (data) {
  564. if (fallback) { // NOLINT
  565. free(data);
  566. } else {
  567. llama_host_free(data);
  568. }
  569. }
  570. data = NULL;
  571. }
  572. };
  573. struct llama_file {
  574. // use FILE * so we don't have to re-open the file to mmap
  575. FILE * fp;
  576. size_t size;
  577. llama_file(const char * fname, const char * mode) {
  578. fp = std::fopen(fname, mode);
  579. if (fp == NULL) {
  580. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  581. }
  582. seek(0, SEEK_END);
  583. size = tell();
  584. seek(0, SEEK_SET);
  585. }
  586. size_t tell() const {
  587. #ifdef _WIN32
  588. __int64 ret = _ftelli64(fp);
  589. #else
  590. long ret = std::ftell(fp);
  591. #endif
  592. GGML_ASSERT(ret != -1); // this really shouldn't fail
  593. return (size_t) ret;
  594. }
  595. void seek(size_t offset, int whence) const {
  596. #ifdef _WIN32
  597. int ret = _fseeki64(fp, (__int64) offset, whence);
  598. #else
  599. int ret = std::fseek(fp, (long) offset, whence);
  600. #endif
  601. GGML_ASSERT(ret == 0); // same
  602. }
  603. void read_raw(void * ptr, size_t len) const {
  604. if (len == 0) {
  605. return;
  606. }
  607. errno = 0;
  608. std::size_t ret = std::fread(ptr, len, 1, fp);
  609. if (ferror(fp)) {
  610. throw std::runtime_error(format("read error: %s", strerror(errno)));
  611. }
  612. if (ret != 1) {
  613. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  614. }
  615. }
  616. uint32_t read_u32() const {
  617. uint32_t ret;
  618. read_raw(&ret, sizeof(ret));
  619. return ret;
  620. }
  621. void write_raw(const void * ptr, size_t len) const {
  622. if (len == 0) {
  623. return;
  624. }
  625. errno = 0;
  626. size_t ret = std::fwrite(ptr, len, 1, fp);
  627. if (ret != 1) {
  628. throw std::runtime_error(format("write error: %s", strerror(errno)));
  629. }
  630. }
  631. void write_u32(std::uint32_t val) const {
  632. write_raw(&val, sizeof(val));
  633. }
  634. ~llama_file() {
  635. if (fp) {
  636. std::fclose(fp);
  637. }
  638. }
  639. };
  640. struct llama_mmap {
  641. void * addr;
  642. size_t size;
  643. llama_mmap(const llama_mmap &) = delete;
  644. #ifdef _POSIX_MAPPED_FILES
  645. static constexpr bool SUPPORTED = true;
  646. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  647. size = file->size;
  648. int fd = fileno(file->fp);
  649. int flags = MAP_SHARED;
  650. // prefetch/readahead impairs performance on NUMA systems
  651. if (numa) { prefetch = 0; }
  652. #ifdef __linux__
  653. if (prefetch) { flags |= MAP_POPULATE; }
  654. #endif
  655. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  656. if (addr == MAP_FAILED) {
  657. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  658. }
  659. if (prefetch > 0) {
  660. // Advise the kernel to preload the mapped memory
  661. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  662. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  663. strerror(errno));
  664. }
  665. }
  666. if (numa) {
  667. // advise the kernel not to use readahead
  668. // (because the next page might not belong on the same node)
  669. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  670. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  671. strerror(errno));
  672. }
  673. }
  674. }
  675. ~llama_mmap() {
  676. munmap(addr, size);
  677. }
  678. #elif defined(_WIN32)
  679. static constexpr bool SUPPORTED = true;
  680. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  681. (void) numa;
  682. size = file->size;
  683. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  684. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  685. DWORD error = GetLastError();
  686. if (hMapping == NULL) {
  687. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  688. }
  689. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  690. error = GetLastError();
  691. CloseHandle(hMapping);
  692. if (addr == NULL) {
  693. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  694. }
  695. if (prefetch) {
  696. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  697. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  698. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  699. // may fail on pre-Windows 8 systems
  700. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  701. if (pPrefetchVirtualMemory) {
  702. // advise the kernel to preload the mapped memory
  703. WIN32_MEMORY_RANGE_ENTRY range;
  704. range.VirtualAddress = addr;
  705. range.NumberOfBytes = (SIZE_T)size;
  706. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  707. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  708. llama_format_win_err(GetLastError()).c_str());
  709. }
  710. }
  711. }
  712. }
  713. ~llama_mmap() {
  714. if (!UnmapViewOfFile(addr)) {
  715. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  716. llama_format_win_err(GetLastError()).c_str());
  717. }
  718. }
  719. #else
  720. static constexpr bool SUPPORTED = false;
  721. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  722. (void) file;
  723. (void) prefetch;
  724. (void) numa;
  725. throw std::runtime_error(std::string("mmap not supported"));
  726. }
  727. #endif
  728. };
  729. // Represents some region of memory being locked using mlock or VirtualLock;
  730. // will automatically unlock on destruction.
  731. struct llama_mlock {
  732. void * addr = NULL;
  733. size_t size = 0;
  734. bool failed_already = false;
  735. llama_mlock() {}
  736. llama_mlock(const llama_mlock &) = delete;
  737. ~llama_mlock() {
  738. if (size) {
  739. raw_unlock(addr, size);
  740. }
  741. }
  742. void init(void * ptr) {
  743. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  744. addr = ptr;
  745. }
  746. void grow_to(size_t target_size) {
  747. GGML_ASSERT(addr);
  748. if (failed_already) {
  749. return;
  750. }
  751. size_t granularity = lock_granularity();
  752. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  753. if (target_size > size) {
  754. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  755. size = target_size;
  756. } else {
  757. failed_already = true;
  758. }
  759. }
  760. }
  761. #ifdef _POSIX_MEMLOCK_RANGE
  762. static constexpr bool SUPPORTED = true;
  763. static size_t lock_granularity() {
  764. return (size_t) sysconf(_SC_PAGESIZE);
  765. }
  766. #ifdef __APPLE__
  767. #define MLOCK_SUGGESTION \
  768. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  769. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  770. #else
  771. #define MLOCK_SUGGESTION \
  772. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  773. #endif
  774. bool raw_lock(const void * addr, size_t size) const {
  775. if (!mlock(addr, size)) {
  776. return true;
  777. }
  778. char* errmsg = std::strerror(errno);
  779. bool suggest = (errno == ENOMEM);
  780. // Check if the resource limit is fine after all
  781. struct rlimit lock_limit;
  782. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  783. suggest = false;
  784. }
  785. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  786. suggest = false;
  787. }
  788. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  789. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  790. return false;
  791. }
  792. #undef MLOCK_SUGGESTION
  793. static void raw_unlock(void * addr, size_t size) {
  794. if (munlock(addr, size)) {
  795. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  796. }
  797. }
  798. #elif defined(_WIN32)
  799. static constexpr bool SUPPORTED = true;
  800. static size_t lock_granularity() {
  801. SYSTEM_INFO si;
  802. GetSystemInfo(&si);
  803. return (size_t) si.dwPageSize;
  804. }
  805. bool raw_lock(void * ptr, size_t len) const {
  806. for (int tries = 1; ; tries++) {
  807. if (VirtualLock(ptr, len)) {
  808. return true;
  809. }
  810. if (tries == 2) {
  811. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  812. len, size, llama_format_win_err(GetLastError()).c_str());
  813. return false;
  814. }
  815. // It failed but this was only the first try; increase the working
  816. // set size and try again.
  817. SIZE_T min_ws_size, max_ws_size;
  818. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  819. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  820. llama_format_win_err(GetLastError()).c_str());
  821. return false;
  822. }
  823. // Per MSDN: "The maximum number of pages that a process can lock
  824. // is equal to the number of pages in its minimum working set minus
  825. // a small overhead."
  826. // Hopefully a megabyte is enough overhead:
  827. size_t increment = len + 1048576;
  828. // The minimum must be <= the maximum, so we need to increase both:
  829. min_ws_size += increment;
  830. max_ws_size += increment;
  831. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  832. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  833. llama_format_win_err(GetLastError()).c_str());
  834. return false;
  835. }
  836. }
  837. }
  838. static void raw_unlock(void * ptr, size_t len) {
  839. if (!VirtualUnlock(ptr, len)) {
  840. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  841. llama_format_win_err(GetLastError()).c_str());
  842. }
  843. }
  844. #else
  845. static constexpr bool SUPPORTED = false;
  846. static size_t lock_granularity() {
  847. return (size_t) 65536;
  848. }
  849. bool raw_lock(const void * addr, size_t len) const {
  850. fprintf(stderr, "warning: mlock not supported on this system\n");
  851. return false;
  852. }
  853. static void raw_unlock(const void * addr, size_t len) {}
  854. #endif
  855. };
  856. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  857. static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  858. (void) tensor;
  859. }
  860. static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  861. std::vector<char> result(8, 0);
  862. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  863. if (n_tokens < 0) {
  864. result.resize(-n_tokens);
  865. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  866. GGML_ASSERT(check == -n_tokens);
  867. } else {
  868. result.resize(n_tokens);
  869. }
  870. return std::string(result.data(), result.size());
  871. }
  872. //
  873. // globals
  874. //
  875. struct llama_state {
  876. // We save the log callback globally
  877. ggml_log_callback log_callback = llama_log_callback_default;
  878. void * log_callback_user_data = nullptr;
  879. };
  880. static llama_state g_state;
  881. // available llama models
  882. enum e_model {
  883. MODEL_UNKNOWN,
  884. MODEL_1B,
  885. MODEL_3B,
  886. MODEL_7B,
  887. MODEL_8B,
  888. MODEL_13B,
  889. MODEL_15B,
  890. MODEL_30B,
  891. MODEL_34B,
  892. MODEL_40B,
  893. MODEL_65B,
  894. MODEL_70B,
  895. };
  896. static const size_t kB = 1024;
  897. static const size_t MB = 1024*kB;
  898. static const size_t GB = 1024*MB;
  899. struct llama_hparams {
  900. bool vocab_only;
  901. uint32_t n_vocab;
  902. uint32_t n_ctx_train; // context size the model was trained on
  903. uint32_t n_embd;
  904. uint32_t n_head;
  905. uint32_t n_head_kv;
  906. uint32_t n_layer;
  907. uint32_t n_rot;
  908. uint32_t n_ff;
  909. float f_norm_eps;
  910. float f_norm_rms_eps;
  911. float rope_freq_base_train;
  912. float rope_freq_scale_train;
  913. float f_clamp_kqv;
  914. float f_max_alibi_bias;
  915. bool operator!=(const llama_hparams & other) const {
  916. if (this->vocab_only != other.vocab_only) return true;
  917. if (this->n_vocab != other.n_vocab) return true;
  918. if (this->n_ctx_train != other.n_ctx_train) return true;
  919. if (this->n_embd != other.n_embd) return true;
  920. if (this->n_head != other.n_head) return true;
  921. if (this->n_head_kv != other.n_head_kv) return true;
  922. if (this->n_layer != other.n_layer) return true;
  923. if (this->n_rot != other.n_rot) return true;
  924. if (this->n_ff != other.n_ff) return true;
  925. const float EPSILON = 1e-9;
  926. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  927. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  928. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  929. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  930. return false;
  931. }
  932. uint32_t n_gqa() const {
  933. return n_head/n_head_kv;
  934. }
  935. uint32_t n_embd_head() const {
  936. return n_embd/n_head;
  937. }
  938. uint32_t n_embd_gqa() const {
  939. return n_embd/n_gqa();
  940. }
  941. };
  942. struct llama_cparams {
  943. uint32_t n_ctx; // context size used during inference
  944. uint32_t n_batch;
  945. uint32_t n_threads; // number of threads to use for generation
  946. uint32_t n_threads_batch; // number of threads to use for batch processing
  947. float rope_freq_base;
  948. float rope_freq_scale;
  949. bool mul_mat_q;
  950. };
  951. struct llama_layer {
  952. // normalization
  953. struct ggml_tensor * attn_norm;
  954. struct ggml_tensor * attn_norm_b;
  955. struct ggml_tensor * attn_norm_2;
  956. struct ggml_tensor * attn_norm_2_b;
  957. struct ggml_tensor * attn_q_norm;
  958. struct ggml_tensor * attn_q_norm_b;
  959. struct ggml_tensor * attn_k_norm;
  960. struct ggml_tensor * attn_k_norm_b;
  961. // attention
  962. struct ggml_tensor * wq;
  963. struct ggml_tensor * wk;
  964. struct ggml_tensor * wv;
  965. struct ggml_tensor * wo;
  966. struct ggml_tensor * wqkv;
  967. // attention bias
  968. struct ggml_tensor * bo;
  969. struct ggml_tensor * bqkv;
  970. // normalization
  971. struct ggml_tensor * ffn_norm;
  972. struct ggml_tensor * ffn_norm_b;
  973. // ff
  974. struct ggml_tensor * w1; // ffn_gate
  975. struct ggml_tensor * w2; // ffn_down
  976. struct ggml_tensor * w3; // ffn_up
  977. // ff bias
  978. struct ggml_tensor * b2; // ffn_down
  979. struct ggml_tensor * b3; // ffn_up
  980. };
  981. struct llama_kv_cell {
  982. llama_pos pos = -1;
  983. llama_pos delta = 0;
  984. std::set<llama_seq_id> seq_id;
  985. bool has_seq_id(const llama_seq_id & id) const {
  986. return seq_id.find(id) != seq_id.end();
  987. }
  988. };
  989. // ring-buffer of cached KV data
  990. struct llama_kv_cache {
  991. bool has_shift = false;
  992. // Note: The value of head isn't only used to optimize searching
  993. // for a free KV slot. llama_decode_internal also uses it, so it
  994. // cannot be freely changed after a slot has been allocated.
  995. uint32_t head = 0;
  996. uint32_t size = 0;
  997. // computed before each graph build
  998. uint32_t n = 0;
  999. std::vector<llama_kv_cell> cells;
  1000. struct ggml_tensor * k = NULL;
  1001. struct ggml_tensor * v = NULL;
  1002. struct ggml_context * ctx = NULL;
  1003. llama_buffer buf;
  1004. ~llama_kv_cache() {
  1005. if (ctx) {
  1006. ggml_free(ctx);
  1007. }
  1008. #ifdef GGML_USE_CUBLAS
  1009. ggml_cuda_free_data(k);
  1010. ggml_cuda_free_data(v);
  1011. #endif // GGML_USE_CUBLAS
  1012. }
  1013. };
  1014. struct llama_vocab {
  1015. using id = int32_t;
  1016. using token = std::string;
  1017. using ttype = llama_token_type;
  1018. struct token_data {
  1019. token text;
  1020. float score;
  1021. ttype type;
  1022. };
  1023. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1024. std::unordered_map<token, id> token_to_id;
  1025. std::vector<token_data> id_to_token;
  1026. std::unordered_map<token, id> special_tokens_cache;
  1027. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1028. // default LLaMA special tokens
  1029. id special_bos_id = 1;
  1030. id special_eos_id = 2;
  1031. id special_unk_id = 0;
  1032. id special_sep_id = -1;
  1033. id special_pad_id = -1;
  1034. id linefeed_id = 13;
  1035. id special_prefix_id = 32007;
  1036. id special_middle_id = 32009;
  1037. id special_suffix_id = 32008;
  1038. id special_eot_id = 32010;
  1039. int find_bpe_rank(std::string token_left, std::string token_right) const {
  1040. replace_all(token_left, " ", "\u0120");
  1041. replace_all(token_left, "\n", "\u010A");
  1042. replace_all(token_right, " ", "\u0120");
  1043. replace_all(token_right, "\n", "\u010A");
  1044. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1045. if (it == bpe_ranks.end()) {
  1046. return -1;
  1047. }
  1048. return it->second;
  1049. }
  1050. };
  1051. struct llama_model {
  1052. e_model type = MODEL_UNKNOWN;
  1053. llm_arch arch = LLM_ARCH_UNKNOWN;
  1054. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1055. std::string name = "n/a";
  1056. llama_hparams hparams = {};
  1057. llama_vocab vocab;
  1058. struct ggml_tensor * tok_embeddings;
  1059. struct ggml_tensor * pos_embeddings;
  1060. struct ggml_tensor * tok_norm;
  1061. struct ggml_tensor * tok_norm_b;
  1062. struct ggml_tensor * output_norm;
  1063. struct ggml_tensor * output_norm_b;
  1064. struct ggml_tensor * output;
  1065. std::vector<llama_layer> layers;
  1066. int n_gpu_layers;
  1067. // context
  1068. struct ggml_context * ctx = NULL;
  1069. // the model memory buffer
  1070. llama_buffer buf;
  1071. // model memory mapped file
  1072. std::unique_ptr<llama_mmap> mapping;
  1073. // objects representing data potentially being locked in memory
  1074. llama_mlock mlock_buf;
  1075. llama_mlock mlock_mmap;
  1076. // for quantize-stats only
  1077. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1078. int64_t t_load_us = 0;
  1079. int64_t t_start_us = 0;
  1080. ~llama_model() {
  1081. if (ctx) {
  1082. ggml_free(ctx);
  1083. }
  1084. #ifdef GGML_USE_CUBLAS
  1085. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1086. ggml_cuda_free_data(tensors_by_name[i].second);
  1087. }
  1088. ggml_cuda_free_scratch();
  1089. #elif defined(GGML_USE_CLBLAST)
  1090. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1091. ggml_cl_free_data(tensors_by_name[i].second);
  1092. }
  1093. #endif
  1094. }
  1095. };
  1096. struct llama_context {
  1097. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1098. ~llama_context() {
  1099. #ifdef GGML_USE_METAL
  1100. if (ctx_metal) {
  1101. ggml_metal_free(ctx_metal);
  1102. }
  1103. #endif
  1104. if (alloc) {
  1105. ggml_allocr_free(alloc);
  1106. }
  1107. }
  1108. llama_cparams cparams;
  1109. const llama_model & model;
  1110. // key + value cache for the self attention
  1111. struct llama_kv_cache kv_self;
  1112. std::mt19937 rng;
  1113. bool has_evaluated_once = false;
  1114. int64_t t_start_us;
  1115. int64_t t_load_us;
  1116. int64_t t_sample_us = 0;
  1117. int64_t t_p_eval_us = 0;
  1118. int64_t t_eval_us = 0;
  1119. int32_t n_sample = 0; // number of tokens sampled
  1120. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1121. int32_t n_eval = 0; // number of eval calls
  1122. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1123. std::vector<float> logits;
  1124. bool logits_all = false;
  1125. // input embedding (1-dimensional array: [n_embd])
  1126. std::vector<float> embedding;
  1127. // reusable buffer for `struct ggml_graph_plan.work_data`
  1128. std::vector<uint8_t> work_buffer;
  1129. // memory buffers used to evaluate the model
  1130. llama_buffer buf_compute;
  1131. llama_buffer buf_alloc;
  1132. ggml_allocr * alloc = NULL;
  1133. #ifdef GGML_USE_METAL
  1134. ggml_metal_context * ctx_metal = NULL;
  1135. #endif
  1136. #ifdef GGML_USE_MPI
  1137. ggml_mpi_context * ctx_mpi = NULL;
  1138. #endif
  1139. };
  1140. //
  1141. // kv cache helpers
  1142. //
  1143. static bool llama_kv_cache_init(
  1144. const struct llama_hparams & hparams,
  1145. struct llama_kv_cache & cache,
  1146. ggml_type wtype,
  1147. uint32_t n_ctx,
  1148. int n_gpu_layers) {
  1149. const uint32_t n_embd = hparams.n_embd_gqa();
  1150. const uint32_t n_layer = hparams.n_layer;
  1151. const int64_t n_mem = n_layer*n_ctx;
  1152. const int64_t n_elements = n_embd*n_mem;
  1153. cache.has_shift = false;
  1154. cache.head = 0;
  1155. cache.size = n_ctx;
  1156. cache.cells.clear();
  1157. cache.cells.resize(n_ctx);
  1158. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
  1159. memset(cache.buf.data, 0, cache.buf.size);
  1160. struct ggml_init_params params;
  1161. params.mem_size = cache.buf.size;
  1162. params.mem_buffer = cache.buf.data;
  1163. params.no_alloc = false;
  1164. cache.ctx = ggml_init(params);
  1165. if (!cache.ctx) {
  1166. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1167. return false;
  1168. }
  1169. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1170. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1171. ggml_set_name(cache.k, "cache_k");
  1172. ggml_set_name(cache.v, "cache_v");
  1173. (void) n_gpu_layers;
  1174. #ifdef GGML_USE_CUBLAS
  1175. size_t vram_kv_cache = 0;
  1176. if (n_gpu_layers > (int)n_layer + 1) {
  1177. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1178. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1179. vram_kv_cache += ggml_nbytes(cache.v);
  1180. }
  1181. if (n_gpu_layers > (int)n_layer + 2) {
  1182. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1183. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1184. vram_kv_cache += ggml_nbytes(cache.k);
  1185. }
  1186. if (vram_kv_cache > 0) {
  1187. LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
  1188. }
  1189. #endif // GGML_USE_CUBLAS
  1190. return true;
  1191. }
  1192. // find an empty slot of size "n_tokens" in the cache
  1193. // updates the cache head
  1194. // Note: On success, it's important that cache.head points
  1195. // to the first cell of the slot.
  1196. static bool llama_kv_cache_find_slot(
  1197. struct llama_kv_cache & cache,
  1198. const struct llama_batch & batch) {
  1199. const uint32_t n_ctx = cache.size;
  1200. const uint32_t n_tokens = batch.n_tokens;
  1201. if (n_tokens > n_ctx) {
  1202. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1203. return false;
  1204. }
  1205. uint32_t n_tested = 0;
  1206. while (true) {
  1207. if (cache.head + n_tokens > n_ctx) {
  1208. n_tested += n_ctx - cache.head;
  1209. cache.head = 0;
  1210. continue;
  1211. }
  1212. bool found = true;
  1213. for (uint32_t i = 0; i < n_tokens; i++) {
  1214. if (cache.cells[cache.head + i].pos >= 0) {
  1215. found = false;
  1216. cache.head += i + 1;
  1217. n_tested += i + 1;
  1218. break;
  1219. }
  1220. }
  1221. if (found) {
  1222. break;
  1223. }
  1224. if (n_tested >= n_ctx) {
  1225. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1226. return false;
  1227. }
  1228. }
  1229. for (uint32_t i = 0; i < n_tokens; i++) {
  1230. cache.cells[cache.head + i].pos = batch.pos[i];
  1231. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  1232. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  1233. }
  1234. }
  1235. return true;
  1236. }
  1237. // find how many cells are currently in use
  1238. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1239. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1240. if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
  1241. return i + 1;
  1242. }
  1243. }
  1244. return 0;
  1245. }
  1246. static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
  1247. if (c0 < 0) c0 = 0;
  1248. if (c1 < 0) c1 = cache.size;
  1249. for (int32_t i = c0; i < c1; ++i) {
  1250. cache.cells[i].pos = -1;
  1251. cache.cells[i].seq_id.clear();
  1252. }
  1253. // Searching for a free slot can start here since we know it will be empty.
  1254. cache.head = uint32_t(c0);
  1255. }
  1256. static void llama_kv_cache_seq_rm(
  1257. struct llama_kv_cache & cache,
  1258. llama_seq_id seq_id,
  1259. llama_pos p0,
  1260. llama_pos p1) {
  1261. uint32_t new_head = cache.size;
  1262. if (p0 < 0) p0 = 0;
  1263. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1264. for (uint32_t i = 0; i < cache.size; ++i) {
  1265. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1266. cache.cells[i].seq_id.erase(seq_id);
  1267. if (cache.cells[i].seq_id.empty()) {
  1268. cache.cells[i].pos = -1;
  1269. if (new_head == cache.size) new_head = i;
  1270. }
  1271. }
  1272. }
  1273. // If we freed up a slot, set head to it so searching can start there.
  1274. if (new_head != cache.size) cache.head = new_head;
  1275. }
  1276. static void llama_kv_cache_seq_cp(
  1277. struct llama_kv_cache & cache,
  1278. llama_seq_id seq_id_src,
  1279. llama_seq_id seq_id_dst,
  1280. llama_pos p0,
  1281. llama_pos p1) {
  1282. if (p0 < 0) p0 = 0;
  1283. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1284. cache.head = 0;
  1285. for (uint32_t i = 0; i < cache.size; ++i) {
  1286. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1287. cache.cells[i].seq_id.insert(seq_id_dst);
  1288. }
  1289. }
  1290. }
  1291. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1292. uint32_t new_head = cache.size;
  1293. for (uint32_t i = 0; i < cache.size; ++i) {
  1294. if (!cache.cells[i].has_seq_id(seq_id)) {
  1295. cache.cells[i].pos = -1;
  1296. cache.cells[i].seq_id.clear();
  1297. if (new_head == cache.size) new_head = i;
  1298. } else {
  1299. cache.cells[i].seq_id.clear();
  1300. cache.cells[i].seq_id.insert(seq_id);
  1301. }
  1302. }
  1303. // If we freed up a slot, set head to it so searching can start there.
  1304. if (new_head != cache.size) cache.head = new_head;
  1305. }
  1306. static void llama_kv_cache_seq_shift(
  1307. struct llama_kv_cache & cache,
  1308. llama_seq_id seq_id,
  1309. llama_pos p0,
  1310. llama_pos p1,
  1311. llama_pos delta) {
  1312. uint32_t new_head = cache.size;
  1313. if (p0 < 0) p0 = 0;
  1314. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1315. for (uint32_t i = 0; i < cache.size; ++i) {
  1316. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1317. cache.cells[i].pos += delta;
  1318. if (cache.cells[i].pos < 0) {
  1319. cache.cells[i].pos = -1;
  1320. cache.cells[i].seq_id.clear();
  1321. if (new_head == cache.size) new_head = i;
  1322. } else {
  1323. cache.has_shift = true;
  1324. cache.cells[i].delta = delta;
  1325. }
  1326. }
  1327. }
  1328. // If we freed up a slot, set head to it so searching can start there.
  1329. // Otherwise we just start the next search from the beginning.
  1330. cache.head = new_head != cache.size ? new_head : 0;
  1331. }
  1332. //
  1333. // model loading and saving
  1334. //
  1335. enum llama_fver {
  1336. GGUF_FILE_VERSION_V1 = 1,
  1337. GGUF_FILE_VERSION_V2 = 2,
  1338. };
  1339. static const char * llama_file_version_name(llama_fver version) {
  1340. switch (version) {
  1341. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1342. case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
  1343. }
  1344. return "unknown";
  1345. }
  1346. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1347. char buf[256];
  1348. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1349. for (size_t i = 1; i < ne.size(); i++) {
  1350. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1351. }
  1352. return buf;
  1353. }
  1354. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1355. char buf[256];
  1356. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1357. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1358. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1359. }
  1360. return buf;
  1361. }
  1362. struct llama_model_loader {
  1363. int n_kv = 0;
  1364. int n_tensors = 0;
  1365. int n_created = 0;
  1366. int64_t n_elements = 0;
  1367. size_t n_bytes = 0;
  1368. bool use_mmap = false;
  1369. llama_file file;
  1370. llama_ftype ftype;
  1371. llama_fver fver;
  1372. std::unique_ptr<llama_mmap> mapping;
  1373. struct gguf_context * ctx_gguf = NULL;
  1374. struct ggml_context * ctx_meta = NULL;
  1375. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1376. struct gguf_init_params params = {
  1377. /*.no_alloc = */ true,
  1378. /*.ctx = */ &ctx_meta,
  1379. };
  1380. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1381. if (!ctx_gguf) {
  1382. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1383. }
  1384. n_kv = gguf_get_n_kv(ctx_gguf);
  1385. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1386. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1387. for (int i = 0; i < n_tensors; i++) {
  1388. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1389. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1390. n_elements += ggml_nelements(t);
  1391. n_bytes += ggml_nbytes(t);
  1392. }
  1393. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1394. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1395. // determine file type based on the number of tensors for each quantization and print meta data
  1396. // TODO: make optional
  1397. {
  1398. std::map<enum ggml_type, uint32_t> n_type;
  1399. uint32_t n_type_max = 0;
  1400. enum ggml_type type_max = GGML_TYPE_F32;
  1401. for (int i = 0; i < n_tensors; i++) {
  1402. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1403. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1404. n_type[meta->type]++;
  1405. if (n_type_max < n_type[meta->type]) {
  1406. n_type_max = n_type[meta->type];
  1407. type_max = meta->type;
  1408. }
  1409. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1410. }
  1411. switch (type_max) {
  1412. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1413. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1414. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1415. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1416. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1417. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1418. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1419. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1420. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1421. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1422. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1423. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1424. default:
  1425. {
  1426. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1427. ftype = LLAMA_FTYPE_ALL_F32;
  1428. } break;
  1429. }
  1430. // this is a way to mark that we have "guessed" the file type
  1431. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1432. {
  1433. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1434. if (kid >= 0) {
  1435. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1436. }
  1437. }
  1438. for (int i = 0; i < n_kv; i++) {
  1439. const char * name = gguf_get_key(ctx_gguf, i);
  1440. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1441. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1442. }
  1443. // print type counts
  1444. for (auto & kv : n_type) {
  1445. if (kv.second == 0) {
  1446. continue;
  1447. }
  1448. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1449. }
  1450. }
  1451. if (!llama_mmap::SUPPORTED) {
  1452. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1453. use_mmap = false;
  1454. }
  1455. this->use_mmap = use_mmap;
  1456. }
  1457. ~llama_model_loader() {
  1458. if (ctx_gguf) {
  1459. gguf_free(ctx_gguf);
  1460. }
  1461. if (ctx_meta) {
  1462. ggml_free(ctx_meta);
  1463. }
  1464. }
  1465. std::string get_arch_name() const {
  1466. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1467. std::string arch_name;
  1468. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1469. return arch_name;
  1470. }
  1471. enum llm_arch get_arch() const {
  1472. const std::string arch_name = get_arch_name();
  1473. return llm_arch_from_string(arch_name);
  1474. }
  1475. const char * get_tensor_name(int i) const {
  1476. return gguf_get_tensor_name(ctx_gguf, i);
  1477. }
  1478. struct ggml_tensor * get_tensor_meta(int i) const {
  1479. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1480. }
  1481. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1482. ctx_size_p = 0;
  1483. mmapped_size_p = 0;
  1484. for (int i = 0; i < n_tensors; i++) {
  1485. struct ggml_tensor * meta = get_tensor_meta(i);
  1486. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1487. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1488. }
  1489. }
  1490. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) {
  1491. if (backend != GGML_BACKEND_CPU) {
  1492. ggml_set_no_alloc(ctx, true);
  1493. }
  1494. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1495. tensor->backend = backend; // TODO: ggml_set_backend
  1496. ggml_set_name(tensor, ggml_get_name(meta));
  1497. if (backend != GGML_BACKEND_CPU) {
  1498. ggml_set_no_alloc(ctx, use_mmap);
  1499. }
  1500. n_created++;
  1501. return tensor;
  1502. }
  1503. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
  1504. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1505. if (cur == NULL) {
  1506. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1507. }
  1508. {
  1509. bool is_ok = true;
  1510. for (size_t i = 0; i < ne.size(); ++i) {
  1511. if (ne[i] != cur->ne[i]) {
  1512. is_ok = false;
  1513. break;
  1514. }
  1515. }
  1516. if (!is_ok) {
  1517. throw std::runtime_error(
  1518. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1519. __func__, name.c_str(),
  1520. llama_format_tensor_shape(ne).c_str(),
  1521. llama_format_tensor_shape(cur).c_str()));
  1522. }
  1523. }
  1524. return create_tensor_for(ctx, cur, backend);
  1525. }
  1526. void done_getting_tensors() const {
  1527. if (n_created != n_tensors) {
  1528. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1529. }
  1530. }
  1531. size_t file_offset(const char * name) const {
  1532. const int idx = gguf_find_tensor(ctx_gguf, name);
  1533. if (idx < 0) {
  1534. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1535. }
  1536. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1537. }
  1538. void load_data_for(struct ggml_tensor * cur) const {
  1539. const size_t offs = file_offset(ggml_get_name(cur));
  1540. if (use_mmap) {
  1541. cur->data = (uint8_t *) mapping->addr + offs;
  1542. } else {
  1543. file.seek(offs, SEEK_SET);
  1544. file.read_raw(cur->data, ggml_nbytes(cur));
  1545. }
  1546. }
  1547. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1548. size_t size_data = 0;
  1549. size_t size_lock = 0;
  1550. size_t size_pref = 0; // prefetch
  1551. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1552. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1553. size_data += ggml_nbytes(cur);
  1554. if (cur->backend == GGML_BACKEND_CPU) {
  1555. size_pref += ggml_nbytes(cur);
  1556. }
  1557. }
  1558. if (use_mmap) {
  1559. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1560. if (lmlock) {
  1561. lmlock->init(mapping->addr);
  1562. }
  1563. }
  1564. size_t done_size = 0;
  1565. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1566. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1567. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1568. if (progress_callback) {
  1569. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1570. }
  1571. // allocate temp buffer if not using mmap
  1572. if (!use_mmap && cur->data == NULL) {
  1573. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1574. #ifdef GGML_USE_CPU_HBM
  1575. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1576. #else
  1577. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1578. #endif
  1579. }
  1580. load_data_for(cur);
  1581. switch (cur->backend) {
  1582. case GGML_BACKEND_CPU:
  1583. if (use_mmap && lmlock) {
  1584. size_lock += ggml_nbytes(cur);
  1585. lmlock->grow_to(size_lock);
  1586. }
  1587. break;
  1588. #ifdef GGML_USE_CUBLAS
  1589. case GGML_BACKEND_GPU:
  1590. case GGML_BACKEND_GPU_SPLIT:
  1591. // old code:
  1592. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1593. // TODO: test if this works !!
  1594. ggml_cuda_transform_tensor(cur->data, cur);
  1595. if (!use_mmap) {
  1596. free(cur->data);
  1597. }
  1598. break;
  1599. #elif defined(GGML_USE_CLBLAST)
  1600. case GGML_BACKEND_GPU:
  1601. ggml_cl_transform_tensor(cur->data, cur);
  1602. if (!use_mmap) {
  1603. free(cur->data);
  1604. }
  1605. break;
  1606. #endif
  1607. default:
  1608. continue;
  1609. }
  1610. done_size += ggml_nbytes(cur);
  1611. }
  1612. }
  1613. };
  1614. //
  1615. // load LLaMA models
  1616. //
  1617. static std::string llama_model_arch_name(llm_arch arch) {
  1618. auto it = LLM_ARCH_NAMES.find(arch);
  1619. if (it == LLM_ARCH_NAMES.end()) {
  1620. return "unknown";
  1621. }
  1622. return it->second;
  1623. }
  1624. static std::string llama_model_ftype_name(llama_ftype ftype) {
  1625. if (ftype & LLAMA_FTYPE_GUESSED) {
  1626. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1627. }
  1628. switch (ftype) {
  1629. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1630. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1631. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1632. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1633. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1634. return "mostly Q4_1, some F16";
  1635. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1636. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1637. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1638. // K-quants
  1639. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1640. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1641. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1642. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1643. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1644. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1645. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1646. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1647. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1648. default: return "unknown, may not work";
  1649. }
  1650. }
  1651. static const char * llama_model_type_name(e_model type) {
  1652. switch (type) {
  1653. case MODEL_1B: return "1B";
  1654. case MODEL_3B: return "3B";
  1655. case MODEL_7B: return "7B";
  1656. case MODEL_8B: return "8B";
  1657. case MODEL_13B: return "13B";
  1658. case MODEL_15B: return "15B";
  1659. case MODEL_30B: return "30B";
  1660. case MODEL_34B: return "34B";
  1661. case MODEL_40B: return "40B";
  1662. case MODEL_65B: return "65B";
  1663. case MODEL_70B: return "70B";
  1664. default: return "?B";
  1665. }
  1666. }
  1667. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1668. model.arch = ml.get_arch();
  1669. if (model.arch == LLM_ARCH_UNKNOWN) {
  1670. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1671. }
  1672. }
  1673. static void llm_load_hparams(
  1674. llama_model_loader & ml,
  1675. llama_model & model) {
  1676. struct gguf_context * ctx = ml.ctx_gguf;
  1677. const auto kv = LLM_KV(model.arch);
  1678. auto & hparams = model.hparams;
  1679. // get general kv
  1680. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1681. // get hparams kv
  1682. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1683. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1684. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1685. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1686. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1687. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1688. // n_head_kv is optional, default to n_head
  1689. hparams.n_head_kv = hparams.n_head;
  1690. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1691. // rope_freq_base (optional)
  1692. hparams.rope_freq_base_train = 10000.0f;
  1693. GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1694. // rope_freq_scale (inverse of the kv) is optional
  1695. float ropescale = 1.0f;
  1696. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1697. hparams.rope_freq_scale_train = 1.0f/ropescale;
  1698. // sanity check for n_rot (optional)
  1699. {
  1700. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1701. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1702. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1703. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1704. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1705. }
  1706. }
  1707. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1708. // gpt-j n_rot = rotary_dim
  1709. }
  1710. // arch-specific KVs
  1711. switch (model.arch) {
  1712. case LLM_ARCH_LLAMA:
  1713. {
  1714. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1715. switch (hparams.n_layer) {
  1716. case 26: model.type = e_model::MODEL_3B; break;
  1717. case 32: model.type = e_model::MODEL_7B; break;
  1718. case 40: model.type = e_model::MODEL_13B; break;
  1719. case 48: model.type = e_model::MODEL_34B; break;
  1720. case 60: model.type = e_model::MODEL_30B; break;
  1721. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1722. default: model.type = e_model::MODEL_UNKNOWN;
  1723. }
  1724. } break;
  1725. case LLM_ARCH_FALCON:
  1726. {
  1727. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1728. switch (hparams.n_layer) {
  1729. case 32: model.type = e_model::MODEL_7B; break;
  1730. case 60: model.type = e_model::MODEL_40B; break;
  1731. default: model.type = e_model::MODEL_UNKNOWN;
  1732. }
  1733. } break;
  1734. case LLM_ARCH_BAICHUAN:
  1735. {
  1736. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1737. switch (hparams.n_layer) {
  1738. case 32: model.type = e_model::MODEL_7B; break;
  1739. case 40: model.type = e_model::MODEL_13B; break;
  1740. default: model.type = e_model::MODEL_UNKNOWN;
  1741. }
  1742. } break;
  1743. case LLM_ARCH_STARCODER:
  1744. {
  1745. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1746. switch (hparams.n_layer) {
  1747. case 24: model.type = e_model::MODEL_1B; break;
  1748. case 36: model.type = e_model::MODEL_3B; break;
  1749. case 42: model.type = e_model::MODEL_7B; break;
  1750. case 40: model.type = e_model::MODEL_15B; break;
  1751. default: model.type = e_model::MODEL_UNKNOWN;
  1752. }
  1753. } break;
  1754. case LLM_ARCH_PERSIMMON:
  1755. {
  1756. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1757. switch (hparams.n_layer) {
  1758. case 36: model.type = e_model::MODEL_8B; break;
  1759. default: model.type = e_model::MODEL_UNKNOWN;
  1760. }
  1761. } break;
  1762. case LLM_ARCH_REFACT:
  1763. {
  1764. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1765. switch (hparams.n_layer) {
  1766. case 32: model.type = e_model::MODEL_1B; break;
  1767. default: model.type = e_model::MODEL_UNKNOWN;
  1768. }
  1769. } break;
  1770. case LLM_ARCH_BLOOM:
  1771. {
  1772. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1773. switch (hparams.n_layer) {
  1774. case 24: model.type = e_model::MODEL_1B; break;
  1775. case 30:
  1776. switch (hparams.n_embd) {
  1777. case 2560: model.type = e_model::MODEL_3B; break;
  1778. case 4096: model.type = e_model::MODEL_7B; break;
  1779. } break;
  1780. }
  1781. } break;
  1782. case LLM_ARCH_MPT:
  1783. {
  1784. hparams.f_clamp_kqv = 0.0f;
  1785. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1786. GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
  1787. GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
  1788. switch (hparams.n_layer) {
  1789. case 32: model.type = e_model::MODEL_7B; break;
  1790. case 48: model.type = e_model::MODEL_30B; break;
  1791. default: model.type = e_model::MODEL_UNKNOWN;
  1792. }
  1793. } break;
  1794. default: (void)0;
  1795. }
  1796. model.ftype = ml.ftype;
  1797. }
  1798. // TODO: This should probably be in llama.h
  1799. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  1800. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1801. static void llm_load_vocab(
  1802. llama_model_loader & ml,
  1803. llama_model & model) {
  1804. auto & vocab = model.vocab;
  1805. struct gguf_context * ctx = ml.ctx_gguf;
  1806. const auto kv = LLM_KV(model.arch);
  1807. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1808. if (token_idx == -1) {
  1809. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1810. }
  1811. const float * scores = nullptr;
  1812. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1813. if (score_idx != -1) {
  1814. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1815. }
  1816. const int * toktypes = nullptr;
  1817. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1818. if (toktype_idx != -1) {
  1819. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1820. }
  1821. // determine vocab type
  1822. {
  1823. std::string tokenizer_name;
  1824. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1825. if (tokenizer_name == "llama") {
  1826. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1827. // default special tokens
  1828. vocab.special_bos_id = 1;
  1829. vocab.special_eos_id = 2;
  1830. vocab.special_unk_id = 0;
  1831. vocab.special_sep_id = -1;
  1832. vocab.special_pad_id = -1;
  1833. } else if (tokenizer_name == "gpt2") {
  1834. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1835. // read bpe merges and populate bpe ranks
  1836. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1837. if (merges_keyidx == -1) {
  1838. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1839. }
  1840. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1841. for (int i = 0; i < n_merges; i++) {
  1842. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1843. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1844. std::string first;
  1845. std::string second;
  1846. const size_t pos = word.find(' ', 1);
  1847. if (pos != std::string::npos) {
  1848. first = word.substr(0, pos);
  1849. second = word.substr(pos + 1);
  1850. }
  1851. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1852. }
  1853. // default special tokens
  1854. vocab.special_bos_id = 11;
  1855. vocab.special_eos_id = 11;
  1856. vocab.special_unk_id = -1;
  1857. vocab.special_sep_id = -1;
  1858. vocab.special_pad_id = -1;
  1859. } else {
  1860. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1861. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1862. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1863. }
  1864. }
  1865. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1866. vocab.id_to_token.resize(n_vocab);
  1867. for (uint32_t i = 0; i < n_vocab; i++) {
  1868. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1869. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1870. vocab.token_to_id[word] = i;
  1871. auto & token_data = vocab.id_to_token[i];
  1872. token_data.text = std::move(word);
  1873. token_data.score = scores ? scores[i] : 0.0f;
  1874. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  1875. }
  1876. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  1877. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1878. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1879. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1880. } else {
  1881. vocab.linefeed_id = llama_tokenize_internal(vocab, "\u010A", false)[0];
  1882. }
  1883. // special tokens
  1884. GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  1885. GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  1886. GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  1887. GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  1888. GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  1889. // build special tokens cache
  1890. {
  1891. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  1892. // and will always be correctly labeled in 'added_tokens.json' etc.
  1893. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  1894. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  1895. // are special tokens.
  1896. // From testing, this appears to corelate 1:1 with special tokens.
  1897. //
  1898. // Counting special tokens and verifying in only one direction
  1899. // is sufficient to detect difference in those two sets.
  1900. //
  1901. uint32_t special_tokens_count_by_type = 0;
  1902. uint32_t special_tokens_count_from_verification = 0;
  1903. bool special_tokens_definition_mismatch = false;
  1904. for (const auto & t : vocab.token_to_id) {
  1905. const auto & token = t.first;
  1906. const auto & id = t.second;
  1907. // Count all non-normal tokens in the vocab while iterating
  1908. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  1909. special_tokens_count_by_type++;
  1910. }
  1911. // Skip single character tokens
  1912. if (token.length() > 1) {
  1913. bool is_tokenizable = false;
  1914. // Split token string representation in two, in all possible ways
  1915. // and check if both halves can be matched to a valid token
  1916. for (unsigned i = 1; i < token.length();) {
  1917. const auto left = token.substr(0, i);
  1918. const auto right = token.substr(i);
  1919. // check if we didnt partition in the middle of a utf sequence
  1920. auto utf = utf8_len(left.at(left.length() - 1));
  1921. if (utf == 1) {
  1922. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  1923. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  1924. is_tokenizable = true;
  1925. break;
  1926. }
  1927. i++;
  1928. } else {
  1929. // skip over the rest of multibyte utf sequence
  1930. i += utf - 1;
  1931. }
  1932. }
  1933. if (!is_tokenizable) {
  1934. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  1935. // it's faster to re-filter them here, since there are way less candidates now
  1936. // Calculate a total "utf" length of a token string representation
  1937. size_t utf8_str_len = 0;
  1938. for (unsigned i = 0; i < token.length();) {
  1939. utf8_str_len++;
  1940. i += utf8_len(token.at(i));
  1941. }
  1942. // And skip the ones which are one character
  1943. if (utf8_str_len > 1) {
  1944. // At this point what we have left are special tokens only
  1945. vocab.special_tokens_cache[token] = id;
  1946. // Count manually found special tokens
  1947. special_tokens_count_from_verification++;
  1948. // If this manually found special token is not marked as such, flag a mismatch
  1949. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  1950. special_tokens_definition_mismatch = true;
  1951. }
  1952. }
  1953. }
  1954. }
  1955. }
  1956. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  1957. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  1958. __func__,
  1959. special_tokens_count_from_verification, vocab.id_to_token.size(),
  1960. special_tokens_count_by_type, vocab.id_to_token.size()
  1961. );
  1962. } else {
  1963. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  1964. __func__,
  1965. special_tokens_count_from_verification, vocab.id_to_token.size()
  1966. );
  1967. }
  1968. }
  1969. }
  1970. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  1971. const auto & hparams = model.hparams;
  1972. const auto & vocab = model.vocab;
  1973. // hparams
  1974. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  1975. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  1976. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  1977. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  1978. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  1979. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  1980. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  1981. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  1982. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  1983. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  1984. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  1985. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  1986. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  1987. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  1988. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  1989. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  1990. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  1991. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  1992. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  1993. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  1994. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  1995. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  1996. if (ml.n_bytes < GB) {
  1997. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  1998. } else {
  1999. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2000. }
  2001. // general kv
  2002. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  2003. // special tokens
  2004. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  2005. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  2006. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  2007. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  2008. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  2009. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  2010. }
  2011. static void llm_load_tensors(
  2012. llama_model_loader & ml,
  2013. llama_model & model,
  2014. int n_gpu_layers,
  2015. int main_gpu,
  2016. const float * tensor_split,
  2017. bool use_mlock,
  2018. llama_progress_callback progress_callback,
  2019. void * progress_callback_user_data) {
  2020. model.t_start_us = ggml_time_us();
  2021. auto & ctx = model.ctx;
  2022. auto & hparams = model.hparams;
  2023. model.n_gpu_layers = n_gpu_layers;
  2024. size_t ctx_size;
  2025. size_t mmapped_size;
  2026. ml.calc_sizes(ctx_size, mmapped_size);
  2027. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  2028. // create the ggml context
  2029. {
  2030. model.buf.resize(ctx_size);
  2031. if (use_mlock) {
  2032. model.mlock_buf.init (model.buf.data);
  2033. model.mlock_buf.grow_to(model.buf.size);
  2034. }
  2035. struct ggml_init_params params = {
  2036. /*.mem_size =*/ model.buf.size,
  2037. /*.mem_buffer =*/ model.buf.data,
  2038. /*.no_alloc =*/ ml.use_mmap,
  2039. };
  2040. model.ctx = ggml_init(params);
  2041. if (!model.ctx) {
  2042. throw std::runtime_error(format("ggml_init() failed"));
  2043. }
  2044. }
  2045. (void) main_gpu;
  2046. #ifdef GGML_USE_CUBLAS
  2047. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  2048. ggml_cuda_set_main_device(main_gpu);
  2049. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2050. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  2051. #elif defined(GGML_USE_CLBLAST)
  2052. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  2053. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2054. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  2055. #else
  2056. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  2057. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  2058. #endif
  2059. // prepare memory for the weights
  2060. size_t vram_weights = 0;
  2061. {
  2062. const int64_t n_embd = hparams.n_embd;
  2063. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2064. const int64_t n_layer = hparams.n_layer;
  2065. const int64_t n_vocab = hparams.n_vocab;
  2066. const auto tn = LLM_TN(model.arch);
  2067. switch (model.arch) {
  2068. case LLM_ARCH_LLAMA:
  2069. case LLM_ARCH_REFACT:
  2070. {
  2071. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2072. // output
  2073. {
  2074. ggml_backend_type backend_norm;
  2075. ggml_backend_type backend_output;
  2076. if (n_gpu_layers > int(n_layer)) {
  2077. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2078. // on Windows however this is detrimental unless everything is on the GPU
  2079. #ifndef _WIN32
  2080. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2081. #else
  2082. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2083. #endif // _WIN32
  2084. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2085. } else {
  2086. backend_norm = GGML_BACKEND_CPU;
  2087. backend_output = GGML_BACKEND_CPU;
  2088. }
  2089. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2090. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2091. if (backend_norm == GGML_BACKEND_GPU) {
  2092. vram_weights += ggml_nbytes(model.output_norm);
  2093. }
  2094. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2095. vram_weights += ggml_nbytes(model.output);
  2096. }
  2097. }
  2098. const uint32_t n_ff = hparams.n_ff;
  2099. const int i_gpu_start = n_layer - n_gpu_layers;
  2100. model.layers.resize(n_layer);
  2101. for (uint32_t i = 0; i < n_layer; ++i) {
  2102. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2103. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2104. auto & layer = model.layers[i];
  2105. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2106. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2107. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2108. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2109. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2110. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2111. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2112. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2113. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2114. if (backend == GGML_BACKEND_GPU) {
  2115. vram_weights +=
  2116. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2117. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2118. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2119. }
  2120. }
  2121. } break;
  2122. case LLM_ARCH_BAICHUAN:
  2123. {
  2124. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2125. {
  2126. ggml_backend_type backend_norm;
  2127. ggml_backend_type backend_output;
  2128. if (n_gpu_layers > int(n_layer)) {
  2129. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2130. // on Windows however this is detrimental unless everything is on the GPU
  2131. #ifndef _WIN32
  2132. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2133. #else
  2134. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2135. #endif // _WIN32
  2136. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2137. } else {
  2138. backend_norm = GGML_BACKEND_CPU;
  2139. backend_output = GGML_BACKEND_CPU;
  2140. }
  2141. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2142. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2143. if (backend_norm == GGML_BACKEND_GPU) {
  2144. vram_weights += ggml_nbytes(model.output_norm);
  2145. }
  2146. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2147. vram_weights += ggml_nbytes(model.output);
  2148. }
  2149. }
  2150. const uint32_t n_ff = hparams.n_ff;
  2151. const int i_gpu_start = n_layer - n_gpu_layers;
  2152. model.layers.resize(n_layer);
  2153. for (uint32_t i = 0; i < n_layer; ++i) {
  2154. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2155. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2156. auto & layer = model.layers[i];
  2157. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2158. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2159. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2160. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2161. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2162. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2163. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2164. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2165. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2166. if (backend == GGML_BACKEND_GPU) {
  2167. vram_weights +=
  2168. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2169. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2170. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2171. }
  2172. }
  2173. } break;
  2174. case LLM_ARCH_FALCON:
  2175. {
  2176. // TODO: CPU-only for now
  2177. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2178. // output
  2179. {
  2180. ggml_backend_type backend_norm;
  2181. ggml_backend_type backend_output;
  2182. if (n_gpu_layers > int(n_layer)) {
  2183. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2184. // on Windows however this is detrimental unless everything is on the GPU
  2185. #ifndef _WIN32
  2186. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2187. #else
  2188. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2189. #endif // _WIN32
  2190. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2191. } else {
  2192. backend_norm = GGML_BACKEND_CPU;
  2193. backend_output = GGML_BACKEND_CPU;
  2194. }
  2195. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2196. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2197. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2198. if (backend_norm == GGML_BACKEND_GPU) {
  2199. vram_weights += ggml_nbytes(model.output_norm);
  2200. vram_weights += ggml_nbytes(model.output_norm_b);
  2201. }
  2202. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2203. vram_weights += ggml_nbytes(model.output);
  2204. }
  2205. }
  2206. const uint32_t n_ff = hparams.n_ff;
  2207. const int i_gpu_start = n_layer - n_gpu_layers;
  2208. model.layers.resize(n_layer);
  2209. for (uint32_t i = 0; i < n_layer; ++i) {
  2210. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2211. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2212. auto & layer = model.layers[i];
  2213. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2214. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2215. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  2216. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  2217. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  2218. if (backend == GGML_BACKEND_GPU) {
  2219. vram_weights += ggml_nbytes(layer.attn_norm_2);
  2220. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  2221. }
  2222. }
  2223. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2224. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2225. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2226. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2227. if (backend == GGML_BACKEND_GPU) {
  2228. vram_weights +=
  2229. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2230. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  2231. ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2232. }
  2233. }
  2234. } break;
  2235. case LLM_ARCH_STARCODER:
  2236. {
  2237. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2238. model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  2239. // output
  2240. {
  2241. ggml_backend_type backend_norm;
  2242. ggml_backend_type backend_output;
  2243. if (n_gpu_layers > int(n_layer)) {
  2244. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2245. // on Windows however this is detrimental unless everything is on the GPU
  2246. #ifndef _WIN32
  2247. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2248. #else
  2249. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2250. #endif // _WIN32
  2251. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2252. } else {
  2253. backend_norm = GGML_BACKEND_CPU;
  2254. backend_output = GGML_BACKEND_CPU;
  2255. }
  2256. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2257. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2258. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2259. if (backend_norm == GGML_BACKEND_GPU) {
  2260. vram_weights += ggml_nbytes(model.output_norm);
  2261. vram_weights += ggml_nbytes(model.output_norm_b);
  2262. }
  2263. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2264. vram_weights += ggml_nbytes(model.output);
  2265. }
  2266. }
  2267. const uint32_t n_ff = hparams.n_ff;
  2268. const int i_gpu_start = n_layer - n_gpu_layers;
  2269. model.layers.resize(n_layer);
  2270. for (uint32_t i = 0; i < n_layer; ++i) {
  2271. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2272. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2273. auto & layer = model.layers[i];
  2274. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2275. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2276. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2277. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2278. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2279. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2280. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2281. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2282. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2283. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2284. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2285. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2286. if (backend == GGML_BACKEND_GPU) {
  2287. vram_weights +=
  2288. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2289. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2290. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2291. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2292. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
  2293. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
  2294. }
  2295. }
  2296. } break;
  2297. case LLM_ARCH_PERSIMMON:
  2298. {
  2299. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2300. {
  2301. ggml_backend_type backend_norm;
  2302. ggml_backend_type backend_output;
  2303. if (n_gpu_layers > int(n_layer)) {
  2304. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2305. // on Windows however this is detrimental unless everything is on the GPU
  2306. #ifndef _WIN32
  2307. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2308. #else
  2309. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2310. #endif // _WIN32
  2311. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2312. } else {
  2313. backend_norm = GGML_BACKEND_CPU;
  2314. backend_output = GGML_BACKEND_CPU;
  2315. }
  2316. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2317. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2318. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2319. if (backend_norm == GGML_BACKEND_GPU) {
  2320. vram_weights += ggml_nbytes(model.output_norm);
  2321. vram_weights += ggml_nbytes(model.output_norm_b);
  2322. }
  2323. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2324. vram_weights += ggml_nbytes(model.output);
  2325. }
  2326. }
  2327. const uint32_t n_ff = hparams.n_ff;
  2328. const int i_gpu_start = n_layer - n_gpu_layers;
  2329. model.layers.resize(n_layer);
  2330. for (uint32_t i = 0; i < n_layer; ++i) {
  2331. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2332. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT;
  2333. auto & layer = model.layers[i];
  2334. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2335. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2336. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2337. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2338. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2339. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2340. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2341. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2342. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2343. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2344. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2345. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2346. layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend);
  2347. layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend);
  2348. layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend);
  2349. layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend);
  2350. }
  2351. } break;
  2352. case LLM_ARCH_BLOOM:
  2353. {
  2354. // TODO: CPU-only for now
  2355. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2356. model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU);
  2357. model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU);
  2358. // output
  2359. {
  2360. ggml_backend_type backend_norm;
  2361. ggml_backend_type backend_output;
  2362. if (n_gpu_layers > int(n_layer)) {
  2363. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2364. // on Windows however this is detrimental unless everything is on the GPU
  2365. #ifndef _WIN32
  2366. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2367. #else
  2368. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2369. #endif // _WIN32
  2370. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2371. } else {
  2372. backend_norm = GGML_BACKEND_CPU;
  2373. backend_output = GGML_BACKEND_CPU;
  2374. }
  2375. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2376. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2377. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2378. if (backend_norm == GGML_BACKEND_GPU) {
  2379. vram_weights += ggml_nbytes(model.output_norm);
  2380. vram_weights += ggml_nbytes(model.output_norm_b);
  2381. }
  2382. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2383. vram_weights += ggml_nbytes(model.output);
  2384. }
  2385. }
  2386. const uint32_t n_ff = hparams.n_ff;
  2387. const int i_gpu_start = n_layer - n_gpu_layers;
  2388. model.layers.resize(n_layer);
  2389. for (uint32_t i = 0; i < n_layer; ++i) {
  2390. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2391. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2392. auto & layer = model.layers[i];
  2393. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2394. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2395. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2396. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2397. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2398. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2399. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2400. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2401. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2402. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2403. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2404. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2405. if (backend == GGML_BACKEND_GPU) {
  2406. vram_weights +=
  2407. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2408. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2409. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2410. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2411. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) +
  2412. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2);
  2413. }
  2414. }
  2415. } break;
  2416. case LLM_ARCH_MPT:
  2417. {
  2418. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2419. // output
  2420. {
  2421. ggml_backend_type backend_norm;
  2422. ggml_backend_type backend_output;
  2423. if (n_gpu_layers > int(n_layer)) {
  2424. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2425. // on Windows however this is detrimental unless everything is on the GPU
  2426. #ifndef _WIN32
  2427. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2428. #else
  2429. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2430. #endif // _WIN32
  2431. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2432. } else {
  2433. backend_norm = GGML_BACKEND_CPU;
  2434. backend_output = GGML_BACKEND_CPU;
  2435. }
  2436. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2437. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2438. if (backend_norm == GGML_BACKEND_GPU) {
  2439. vram_weights += ggml_nbytes(model.output_norm);
  2440. }
  2441. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2442. vram_weights += ggml_nbytes(model.output);
  2443. }
  2444. }
  2445. const uint32_t n_ff = hparams.n_ff;
  2446. const int i_gpu_start = n_layer - n_gpu_layers;
  2447. model.layers.resize(n_layer);
  2448. for (uint32_t i = 0; i < n_layer; ++i) {
  2449. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2450. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2451. auto & layer = model.layers[i];
  2452. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2453. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2454. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2455. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2456. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2457. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2458. if (backend == GGML_BACKEND_GPU) {
  2459. vram_weights +=
  2460. ggml_nbytes(layer.attn_norm) +
  2461. ggml_nbytes(layer.wqkv) +
  2462. ggml_nbytes(layer.wo) +
  2463. ggml_nbytes(layer.ffn_norm) +
  2464. ggml_nbytes(layer.w2) +
  2465. ggml_nbytes(layer.w3);
  2466. }
  2467. }
  2468. } break;
  2469. default:
  2470. throw std::runtime_error("unknown architecture");
  2471. }
  2472. }
  2473. ml.done_getting_tensors();
  2474. // print memory requirements
  2475. {
  2476. // this is the total memory required to run the inference
  2477. size_t mem_required =
  2478. ctx_size +
  2479. mmapped_size - vram_weights; // weights in VRAM not in memory
  2480. LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
  2481. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2482. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2483. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2484. if (n_gpu_layers > (int) hparams.n_layer) {
  2485. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  2486. }
  2487. #ifdef GGML_USE_CUBLAS
  2488. const int max_backend_supported_layers = hparams.n_layer + 3;
  2489. const int max_offloadable_layers = hparams.n_layer + 3;
  2490. #elif defined(GGML_USE_CLBLAST)
  2491. const int max_backend_supported_layers = hparams.n_layer + 1;
  2492. const int max_offloadable_layers = hparams.n_layer + 1;
  2493. #endif // GGML_USE_CUBLAS
  2494. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2495. LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
  2496. #else
  2497. (void) n_gpu_layers;
  2498. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2499. }
  2500. // populate `tensors_by_name`
  2501. for (int i = 0; i < ml.n_tensors; ++i) {
  2502. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  2503. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2504. }
  2505. (void) tensor_split;
  2506. #ifdef GGML_USE_CUBLAS
  2507. {
  2508. ggml_cuda_set_tensor_split(tensor_split);
  2509. }
  2510. #endif
  2511. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  2512. if (progress_callback) {
  2513. progress_callback(1.0f, progress_callback_user_data);
  2514. }
  2515. model.mapping = std::move(ml.mapping);
  2516. // loading time will be recalculate after the first eval, so
  2517. // we take page faults deferred by mmap() into consideration
  2518. model.t_load_us = ggml_time_us() - model.t_start_us;
  2519. }
  2520. static bool llama_model_load(
  2521. const std::string & fname,
  2522. llama_model & model,
  2523. int n_gpu_layers,
  2524. int main_gpu,
  2525. const float * tensor_split,
  2526. bool use_mmap,
  2527. bool use_mlock,
  2528. bool vocab_only,
  2529. llama_progress_callback progress_callback,
  2530. void *progress_callback_user_data) {
  2531. try {
  2532. llama_model_loader ml(fname, use_mmap);
  2533. model.hparams.vocab_only = vocab_only;
  2534. llm_load_arch (ml, model);
  2535. llm_load_hparams(ml, model);
  2536. llm_load_vocab (ml, model);
  2537. llm_load_print_meta(ml, model);
  2538. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  2539. throw std::runtime_error("vocab size mismatch");
  2540. }
  2541. if (vocab_only) {
  2542. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2543. return true;
  2544. }
  2545. llm_load_tensors(
  2546. ml, model, n_gpu_layers,
  2547. main_gpu, tensor_split,
  2548. use_mlock, progress_callback, progress_callback_user_data);
  2549. } catch (const std::exception & err) {
  2550. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2551. return false;
  2552. }
  2553. return true;
  2554. }
  2555. static struct ggml_cgraph * llm_build_llama(
  2556. llama_context & lctx,
  2557. const llama_batch & batch) {
  2558. const auto & model = lctx.model;
  2559. const auto & hparams = model.hparams;
  2560. const auto & cparams = lctx.cparams;
  2561. const auto & kv_self = lctx.kv_self;
  2562. GGML_ASSERT(!!kv_self.ctx);
  2563. const int64_t n_embd = hparams.n_embd;
  2564. const int64_t n_layer = hparams.n_layer;
  2565. const int64_t n_ctx = cparams.n_ctx;
  2566. const int64_t n_head = hparams.n_head;
  2567. const int64_t n_head_kv = hparams.n_head_kv;
  2568. const int64_t n_embd_head = hparams.n_embd_head();
  2569. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2570. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2571. const float freq_base = cparams.rope_freq_base;
  2572. const float freq_scale = cparams.rope_freq_scale;
  2573. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2574. const int n_gpu_layers = model.n_gpu_layers;
  2575. const int32_t n_tokens = batch.n_tokens;
  2576. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2577. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2578. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2579. //printf("n_kv = %d\n", n_kv);
  2580. auto & buf_compute = lctx.buf_compute;
  2581. struct ggml_init_params params = {
  2582. /*.mem_size =*/ buf_compute.size,
  2583. /*.mem_buffer =*/ buf_compute.data,
  2584. /*.no_alloc =*/ true,
  2585. };
  2586. struct ggml_context * ctx0 = ggml_init(params);
  2587. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2588. struct ggml_tensor * cur;
  2589. struct ggml_tensor * inpL;
  2590. if (batch.token) {
  2591. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2592. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2593. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2594. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2595. }
  2596. ggml_set_name(inp_tokens, "inp_tokens");
  2597. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2598. } else {
  2599. #ifdef GGML_USE_MPI
  2600. GGML_ASSERT(false && "not implemented");
  2601. #endif
  2602. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2603. ggml_allocr_alloc(lctx.alloc, inpL);
  2604. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2605. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2606. }
  2607. }
  2608. const int i_gpu_start = n_layer - n_gpu_layers;
  2609. (void) i_gpu_start;
  2610. // offload functions set the tensor output backend to GPU
  2611. // tensors are GPU-accelerated if any input or the output has been offloaded
  2612. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2613. offload_func_t offload_func_kq = llama_nop;
  2614. offload_func_t offload_func_v = llama_nop;
  2615. #ifdef GGML_USE_CUBLAS
  2616. if (n_gpu_layers > n_layer) {
  2617. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2618. }
  2619. if (n_gpu_layers > n_layer + 1) {
  2620. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2621. }
  2622. if (n_gpu_layers > n_layer + 2) {
  2623. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2624. }
  2625. #endif // GGML_USE_CUBLAS
  2626. // KQ_scale
  2627. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2628. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2629. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2630. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2631. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  2632. }
  2633. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2634. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2635. offload_func_kq(KQ_mask);
  2636. ggml_set_name(KQ_mask, "KQ_mask");
  2637. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2638. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2639. float * data = (float *) KQ_mask->data;
  2640. memset(data, 0, ggml_nbytes(KQ_mask));
  2641. for (int h = 0; h < 1; ++h) {
  2642. for (int j = 0; j < n_tokens; ++j) {
  2643. const llama_pos pos = batch.pos[j];
  2644. const llama_seq_id seq_id = batch.seq_id[j][0];
  2645. for (int i = 0; i < n_kv; ++i) {
  2646. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2647. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2648. }
  2649. }
  2650. }
  2651. }
  2652. }
  2653. // KQ_pos - contains the positions
  2654. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2655. offload_func_kq(KQ_pos);
  2656. ggml_set_name(KQ_pos, "KQ_pos");
  2657. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2658. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2659. int * data = (int *) KQ_pos->data;
  2660. for (int i = 0; i < n_tokens; ++i) {
  2661. data[i] = batch.pos[i];
  2662. }
  2663. }
  2664. // shift the entire K-cache if needed
  2665. if (do_rope_shift) {
  2666. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  2667. offload_func_kq(K_shift);
  2668. ggml_set_name(K_shift, "K_shift");
  2669. ggml_allocr_alloc(lctx.alloc, K_shift);
  2670. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2671. int * data = (int *) K_shift->data;
  2672. for (int i = 0; i < n_ctx; ++i) {
  2673. data[i] = kv_self.cells[i].delta;
  2674. }
  2675. }
  2676. for (int il = 0; il < n_layer; ++il) {
  2677. struct ggml_tensor * tmp =
  2678. ggml_rope_custom_inplace(ctx0,
  2679. ggml_view_3d(ctx0, kv_self.k,
  2680. n_embd_head, n_head_kv, n_ctx,
  2681. ggml_element_size(kv_self.k)*n_embd_head,
  2682. ggml_element_size(kv_self.k)*n_embd_gqa,
  2683. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  2684. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  2685. offload_func_kq(tmp);
  2686. ggml_build_forward_expand(gf, tmp);
  2687. }
  2688. }
  2689. for (int il = 0; il < n_layer; ++il) {
  2690. ggml_format_name(inpL, "layer_inp_%d", il);
  2691. offload_func_t offload_func = llama_nop;
  2692. #ifdef GGML_USE_CUBLAS
  2693. if (il >= i_gpu_start) {
  2694. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2695. }
  2696. #endif // GGML_USE_CUBLAS
  2697. struct ggml_tensor * inpSA = inpL;
  2698. // norm
  2699. {
  2700. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2701. offload_func(cur);
  2702. ggml_set_name(cur, "rms_norm_0");
  2703. // cur = cur*attn_norm(broadcasted)
  2704. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2705. offload_func(cur);
  2706. ggml_set_name(cur, "attention_norm_0");
  2707. }
  2708. // self-attention
  2709. {
  2710. // compute Q and K and RoPE them
  2711. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2712. offload_func_kq(tmpk);
  2713. ggml_set_name(tmpk, "tmpk");
  2714. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2715. offload_func_kq(tmpq);
  2716. ggml_set_name(tmpq, "tmpq");
  2717. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2718. offload_func_kq(Kcur);
  2719. ggml_set_name(Kcur, "Kcur");
  2720. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2721. offload_func_kq(Qcur);
  2722. ggml_set_name(Qcur, "Qcur");
  2723. // store key and value to memory
  2724. {
  2725. // compute the transposed [n_tokens, n_embd] V matrix
  2726. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2727. offload_func_v(tmpv);
  2728. ggml_set_name(tmpv, "tmpv");
  2729. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  2730. offload_func_v(Vcur);
  2731. ggml_set_name(Vcur, "Vcur");
  2732. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2733. offload_func_kq(k);
  2734. ggml_set_name(k, "k");
  2735. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  2736. ( n_ctx)*ggml_element_size(kv_self.v),
  2737. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  2738. offload_func_v(v);
  2739. ggml_set_name(v, "v");
  2740. // important: storing RoPE-ed version of K in the KV cache!
  2741. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2742. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2743. }
  2744. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2745. offload_func_kq(Q);
  2746. ggml_set_name(Q, "Q");
  2747. struct ggml_tensor * K =
  2748. ggml_view_3d(ctx0, kv_self.k,
  2749. n_embd_head, n_kv, n_head_kv,
  2750. ggml_element_size(kv_self.k)*n_embd_gqa,
  2751. ggml_element_size(kv_self.k)*n_embd_head,
  2752. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2753. offload_func_kq(K);
  2754. ggml_set_name(K, "K");
  2755. // K * Q
  2756. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2757. offload_func_kq(KQ);
  2758. ggml_set_name(KQ, "KQ");
  2759. // KQ_scaled = KQ / sqrt(n_embd_head)
  2760. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  2761. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  2762. offload_func_kq(KQ_scaled);
  2763. ggml_set_name(KQ_scaled, "KQ_scaled");
  2764. // KQ_masked = mask_past(KQ_scaled)
  2765. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  2766. offload_func_kq(KQ_masked);
  2767. ggml_set_name(KQ_masked, "KQ_masked");
  2768. // KQ = soft_max(KQ_masked)
  2769. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  2770. offload_func_v(KQ_soft_max);
  2771. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2772. // split cached V into n_head heads
  2773. struct ggml_tensor * V =
  2774. ggml_view_3d(ctx0, kv_self.v,
  2775. n_kv, n_embd_head, n_head_kv,
  2776. ggml_element_size(kv_self.v)*n_ctx,
  2777. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2778. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2779. offload_func_v(V);
  2780. ggml_set_name(V, "V");
  2781. #if 1
  2782. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2783. offload_func_v(KQV);
  2784. ggml_set_name(KQV, "KQV");
  2785. #else
  2786. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2787. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2788. // is there a better way?
  2789. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  2790. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2791. #endif
  2792. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2793. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2794. offload_func_v(KQV_merged);
  2795. ggml_set_name(KQV_merged, "KQV_merged");
  2796. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  2797. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  2798. offload_func_v(cur);
  2799. ggml_set_name(cur, "KQV_merged_contiguous");
  2800. // projection (no bias)
  2801. cur = ggml_mul_mat(ctx0,
  2802. model.layers[il].wo,
  2803. cur);
  2804. offload_func(cur);
  2805. ggml_set_name(cur, "result_wo");
  2806. }
  2807. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2808. offload_func(inpFF);
  2809. ggml_set_name(inpFF, "inpFF");
  2810. // feed-forward network
  2811. {
  2812. // norm
  2813. {
  2814. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2815. offload_func(cur);
  2816. ggml_set_name(cur, "rms_norm_1");
  2817. // cur = cur*ffn_norm(broadcasted)
  2818. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2819. offload_func(cur);
  2820. ggml_set_name(cur, "ffn_norm");
  2821. }
  2822. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2823. model.layers[il].w3,
  2824. cur);
  2825. offload_func(tmp);
  2826. ggml_set_name(tmp, "result_w3");
  2827. cur = ggml_mul_mat(ctx0,
  2828. model.layers[il].w1,
  2829. cur);
  2830. offload_func(cur);
  2831. ggml_set_name(cur, "result_w1");
  2832. // SILU activation
  2833. cur = ggml_silu(ctx0, cur);
  2834. offload_func(cur);
  2835. ggml_set_name(cur, "silu");
  2836. cur = ggml_mul(ctx0, cur, tmp);
  2837. offload_func(cur);
  2838. ggml_set_name(cur, "silu_x_result_w3");
  2839. cur = ggml_mul_mat(ctx0,
  2840. model.layers[il].w2,
  2841. cur);
  2842. offload_func(cur);
  2843. ggml_set_name(cur, "result_w2");
  2844. }
  2845. cur = ggml_add(ctx0, cur, inpFF);
  2846. offload_func(cur);
  2847. ggml_set_name(cur, "inpFF_+_result_w2");
  2848. // input for next layer
  2849. inpL = cur;
  2850. }
  2851. cur = inpL;
  2852. // norm
  2853. {
  2854. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2855. offload_func_nr(cur);
  2856. ggml_set_name(cur, "rms_norm_2");
  2857. // cur = cur*norm(broadcasted)
  2858. cur = ggml_mul(ctx0, cur, model.output_norm);
  2859. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2860. ggml_set_name(cur, "result_norm");
  2861. }
  2862. // lm_head
  2863. cur = ggml_mul_mat(ctx0, model.output, cur);
  2864. ggml_set_name(cur, "result_output");
  2865. ggml_build_forward_expand(gf, cur);
  2866. ggml_free(ctx0);
  2867. return gf;
  2868. }
  2869. static struct ggml_cgraph * llm_build_baichaun(
  2870. llama_context & lctx,
  2871. const llama_batch & batch) {
  2872. const auto & model = lctx.model;
  2873. const auto & hparams = model.hparams;
  2874. const auto & cparams = lctx.cparams;
  2875. const auto & kv_self = lctx.kv_self;
  2876. GGML_ASSERT(!!kv_self.ctx);
  2877. const int64_t n_embd = hparams.n_embd;
  2878. const int64_t n_layer = hparams.n_layer;
  2879. const int64_t n_ctx = cparams.n_ctx;
  2880. const int64_t n_head = hparams.n_head;
  2881. const int64_t n_head_kv = hparams.n_head_kv;
  2882. const int64_t n_embd_head = hparams.n_embd_head();
  2883. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2884. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2885. const float freq_base = cparams.rope_freq_base;
  2886. const float freq_scale = cparams.rope_freq_scale;
  2887. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2888. const int n_gpu_layers = model.n_gpu_layers;
  2889. const int32_t n_tokens = batch.n_tokens;
  2890. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2891. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2892. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2893. auto & buf_compute = lctx.buf_compute;
  2894. struct ggml_init_params params = {
  2895. /*.mem_size =*/ buf_compute.size,
  2896. /*.mem_buffer =*/ buf_compute.data,
  2897. /*.no_alloc =*/ true,
  2898. };
  2899. struct ggml_context * ctx0 = ggml_init(params);
  2900. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2901. struct ggml_tensor * cur;
  2902. struct ggml_tensor * inpL;
  2903. if (batch.token) {
  2904. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2905. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2906. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2907. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2908. }
  2909. ggml_set_name(inp_tokens, "inp_tokens");
  2910. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2911. } else {
  2912. #ifdef GGML_USE_MPI
  2913. GGML_ASSERT(false && "not implemented");
  2914. #endif
  2915. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2916. ggml_allocr_alloc(lctx.alloc, inpL);
  2917. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2918. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2919. }
  2920. }
  2921. const int i_gpu_start = n_layer - n_gpu_layers;
  2922. (void) i_gpu_start;
  2923. // offload functions set the tensor output backend to GPU
  2924. // tensors are GPU-accelerated if any input or the output has been offloaded
  2925. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2926. offload_func_t offload_func_kq = llama_nop;
  2927. offload_func_t offload_func_v = llama_nop;
  2928. #ifdef GGML_USE_CUBLAS
  2929. if (n_gpu_layers > n_layer) {
  2930. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2931. }
  2932. if (n_gpu_layers > n_layer + 1) {
  2933. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2934. }
  2935. if (n_gpu_layers > n_layer + 2) {
  2936. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2937. }
  2938. #endif // GGML_USE_CUBLAS
  2939. // KQ_scale
  2940. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2941. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2942. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2943. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2944. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2945. }
  2946. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2947. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2948. offload_func_kq(KQ_mask);
  2949. ggml_set_name(KQ_mask, "KQ_mask");
  2950. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2951. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2952. float * data = (float *) KQ_mask->data;
  2953. memset(data, 0, ggml_nbytes(KQ_mask));
  2954. for (int h = 0; h < 1; ++h) {
  2955. for (int j = 0; j < n_tokens; ++j) {
  2956. const llama_pos pos = batch.pos[j];
  2957. const llama_seq_id seq_id = batch.seq_id[j][0];
  2958. for (int i = 0; i < n_kv; ++i) {
  2959. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2960. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2961. }
  2962. }
  2963. }
  2964. }
  2965. }
  2966. // KQ_pos - contains the positions
  2967. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2968. offload_func_kq(KQ_pos);
  2969. ggml_set_name(KQ_pos, "KQ_pos");
  2970. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2971. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2972. int * data = (int *) KQ_pos->data;
  2973. for (int i = 0; i < n_tokens; ++i) {
  2974. data[i] = batch.pos[i];
  2975. }
  2976. }
  2977. // shift the entire K-cache if needed
  2978. if (do_rope_shift) {
  2979. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  2980. offload_func_kq(K_shift);
  2981. ggml_set_name(K_shift, "K_shift");
  2982. ggml_allocr_alloc(lctx.alloc, K_shift);
  2983. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2984. int * data = (int *) K_shift->data;
  2985. for (int i = 0; i < n_ctx; ++i) {
  2986. data[i] = kv_self.cells[i].delta;
  2987. }
  2988. }
  2989. for (int il = 0; il < n_layer; ++il) {
  2990. struct ggml_tensor * tmp =
  2991. ggml_rope_custom_inplace(ctx0,
  2992. ggml_view_3d(ctx0, kv_self.k,
  2993. n_embd_head, n_head_kv, n_ctx,
  2994. ggml_element_size(kv_self.k)*n_embd_head,
  2995. ggml_element_size(kv_self.k)*n_embd_gqa,
  2996. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  2997. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  2998. offload_func_kq(tmp);
  2999. ggml_build_forward_expand(gf, tmp);
  3000. }
  3001. }
  3002. for (int il = 0; il < n_layer; ++il) {
  3003. ggml_format_name(inpL, "layer_inp_%d", il);
  3004. offload_func_t offload_func = llama_nop;
  3005. #ifdef GGML_USE_CUBLAS
  3006. if (il >= i_gpu_start) {
  3007. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3008. }
  3009. #endif // GGML_USE_CUBLAS
  3010. struct ggml_tensor * inpSA = inpL;
  3011. // norm
  3012. {
  3013. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3014. offload_func(cur);
  3015. ggml_set_name(cur, "rms_norm_0");
  3016. // cur = cur*attn_norm(broadcasted)
  3017. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3018. offload_func(cur);
  3019. ggml_set_name(cur, "attention_norm_0");
  3020. }
  3021. // self-attention
  3022. {
  3023. // compute Q and K and RoPE them
  3024. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3025. offload_func_kq(tmpk);
  3026. ggml_set_name(tmpk, "tmpk");
  3027. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3028. offload_func_kq(tmpq);
  3029. ggml_set_name(tmpq, "tmpq");
  3030. struct ggml_tensor * Kcur;
  3031. struct ggml_tensor * Qcur;
  3032. switch (model.type) {
  3033. case MODEL_7B:
  3034. Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  3035. Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  3036. break;
  3037. case MODEL_13B:
  3038. Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens);
  3039. Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens);
  3040. break;
  3041. default:
  3042. GGML_ASSERT(false);
  3043. }
  3044. offload_func_kq(Kcur);
  3045. ggml_set_name(Kcur, "Kcur");
  3046. offload_func_kq(Qcur);
  3047. ggml_set_name(Qcur, "Qcur");
  3048. // store key and value to memory
  3049. {
  3050. // compute the transposed [n_tokens, n_embd] V matrix
  3051. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3052. offload_func_v(tmpv);
  3053. ggml_set_name(tmpv, "tmpv");
  3054. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3055. offload_func_v(Vcur);
  3056. ggml_set_name(Vcur, "Vcur");
  3057. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3058. offload_func_kq(k);
  3059. ggml_set_name(k, "k");
  3060. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3061. ( n_ctx)*ggml_element_size(kv_self.v),
  3062. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3063. offload_func_v(v);
  3064. ggml_set_name(v, "v");
  3065. // important: storing RoPE-ed version of K in the KV cache!
  3066. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3067. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3068. }
  3069. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3070. offload_func_kq(Q);
  3071. ggml_set_name(Q, "Q");
  3072. struct ggml_tensor * K =
  3073. ggml_view_3d(ctx0, kv_self.k,
  3074. n_embd_head, n_kv, n_head_kv,
  3075. ggml_element_size(kv_self.k)*n_embd_gqa,
  3076. ggml_element_size(kv_self.k)*n_embd_head,
  3077. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3078. offload_func_kq(K);
  3079. ggml_set_name(K, "K");
  3080. // K * Q
  3081. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3082. offload_func_kq(KQ);
  3083. ggml_set_name(KQ, "KQ");
  3084. // KQ_scaled = KQ / sqrt(n_embd_head)
  3085. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3086. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3087. offload_func_kq(KQ_scaled);
  3088. ggml_set_name(KQ_scaled, "KQ_scaled");
  3089. struct ggml_tensor * KQ_masked;
  3090. struct ggml_tensor * KQ_scaled_alibi;
  3091. switch (model.type) {
  3092. case MODEL_7B:
  3093. KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3094. break;
  3095. case MODEL_13B:
  3096. // TODO: replace with ggml_add()
  3097. KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3098. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3099. KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3100. break;
  3101. default:
  3102. GGML_ASSERT(false);
  3103. }
  3104. // KQ = soft_max(KQ_masked)
  3105. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3106. offload_func_v(KQ_soft_max);
  3107. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3108. // split cached V into n_head heads
  3109. struct ggml_tensor * V =
  3110. ggml_view_3d(ctx0, kv_self.v,
  3111. n_kv, n_embd_head, n_head_kv,
  3112. ggml_element_size(kv_self.v)*n_ctx,
  3113. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3114. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3115. offload_func_v(V);
  3116. ggml_set_name(V, "V");
  3117. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3118. offload_func_v(KQV);
  3119. ggml_set_name(KQV, "KQV");
  3120. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3121. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3122. offload_func_v(KQV_merged);
  3123. ggml_set_name(KQV_merged, "KQV_merged");
  3124. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3125. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3126. offload_func_v(cur);
  3127. ggml_set_name(cur, "KQV_merged_contiguous");
  3128. // projection (no bias)
  3129. cur = ggml_mul_mat(ctx0,
  3130. model.layers[il].wo,
  3131. cur);
  3132. offload_func(cur);
  3133. ggml_set_name(cur, "result_wo");
  3134. }
  3135. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3136. offload_func(inpFF);
  3137. ggml_set_name(inpFF, "inpFF");
  3138. // feed-forward network
  3139. {
  3140. // norm
  3141. {
  3142. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3143. offload_func(cur);
  3144. ggml_set_name(cur, "rms_norm_1");
  3145. // cur = cur*ffn_norm(broadcasted)
  3146. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3147. offload_func(cur);
  3148. ggml_set_name(cur, "ffn_norm");
  3149. }
  3150. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3151. model.layers[il].w3,
  3152. cur);
  3153. offload_func(tmp);
  3154. ggml_set_name(tmp, "result_w3");
  3155. cur = ggml_mul_mat(ctx0,
  3156. model.layers[il].w1,
  3157. cur);
  3158. offload_func(cur);
  3159. ggml_set_name(cur, "result_w1");
  3160. // SILU activation
  3161. cur = ggml_silu(ctx0, cur);
  3162. offload_func(cur);
  3163. ggml_set_name(cur, "silu");
  3164. cur = ggml_mul(ctx0, cur, tmp);
  3165. offload_func(cur);
  3166. ggml_set_name(cur, "silu_x_result_w3");
  3167. cur = ggml_mul_mat(ctx0,
  3168. model.layers[il].w2,
  3169. cur);
  3170. offload_func(cur);
  3171. ggml_set_name(cur, "result_w2");
  3172. }
  3173. cur = ggml_add(ctx0, cur, inpFF);
  3174. offload_func(cur);
  3175. ggml_set_name(cur, "inpFF_+_result_w2");
  3176. // input for next layer
  3177. inpL = cur;
  3178. }
  3179. cur = inpL;
  3180. // norm
  3181. {
  3182. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3183. offload_func_nr(cur);
  3184. ggml_set_name(cur, "rms_norm_2");
  3185. // cur = cur*norm(broadcasted)
  3186. cur = ggml_mul(ctx0, cur, model.output_norm);
  3187. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3188. ggml_set_name(cur, "result_norm");
  3189. }
  3190. // lm_head
  3191. cur = ggml_mul_mat(ctx0, model.output, cur);
  3192. ggml_set_name(cur, "result_output");
  3193. ggml_build_forward_expand(gf, cur);
  3194. ggml_free(ctx0);
  3195. return gf;
  3196. }
  3197. static struct ggml_cgraph * llm_build_refact(
  3198. llama_context & lctx,
  3199. const llama_batch & batch) {
  3200. const auto & model = lctx.model;
  3201. const auto & hparams = model.hparams;
  3202. const auto & cparams = lctx.cparams;
  3203. const auto & kv_self = lctx.kv_self;
  3204. GGML_ASSERT(!!kv_self.ctx);
  3205. const int64_t n_embd = hparams.n_embd;
  3206. const int64_t n_layer = hparams.n_layer;
  3207. const int64_t n_ctx = cparams.n_ctx;
  3208. const int64_t n_head = hparams.n_head;
  3209. const int64_t n_head_kv = hparams.n_head_kv;
  3210. const int64_t n_embd_head = hparams.n_embd_head();
  3211. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3212. const float norm_rms_eps = hparams.f_norm_rms_eps;
  3213. const int n_gpu_layers = model.n_gpu_layers;
  3214. const int32_t n_tokens = batch.n_tokens;
  3215. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3216. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3217. // printf("n_kv = %d\n", n_kv);
  3218. auto & buf_compute = lctx.buf_compute;
  3219. struct ggml_init_params params = {
  3220. /*.mem_size =*/ buf_compute.size,
  3221. /*.mem_buffer =*/ buf_compute.data,
  3222. /*.no_alloc =*/ true,
  3223. };
  3224. struct ggml_context * ctx0 = ggml_init(params);
  3225. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3226. struct ggml_tensor * cur;
  3227. struct ggml_tensor * inpL;
  3228. if (batch.token) {
  3229. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3230. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3231. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3232. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3233. }
  3234. ggml_set_name(inp_tokens, "inp_tokens");
  3235. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3236. } else {
  3237. #ifdef GGML_USE_MPI
  3238. GGML_ASSERT(false && "not implemented");
  3239. #endif
  3240. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3241. ggml_allocr_alloc(lctx.alloc, inpL);
  3242. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3243. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3244. }
  3245. }
  3246. const int i_gpu_start = n_layer - n_gpu_layers;
  3247. (void) i_gpu_start;
  3248. // offload functions set the tensor output backend to GPU
  3249. // tensors are GPU-accelerated if any input or the output has been offloaded
  3250. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3251. offload_func_t offload_func_kq = llama_nop;
  3252. offload_func_t offload_func_v = llama_nop;
  3253. #ifdef GGML_USE_CUBLAS
  3254. if (n_gpu_layers > n_layer) {
  3255. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3256. }
  3257. if (n_gpu_layers > n_layer + 1) {
  3258. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3259. }
  3260. if (n_gpu_layers > n_layer + 2) {
  3261. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3262. }
  3263. #endif // GGML_USE_CUBLAS
  3264. // KQ_scale
  3265. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3266. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3267. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3268. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3269. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  3270. }
  3271. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3272. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3273. offload_func_kq(KQ_mask);
  3274. ggml_set_name(KQ_mask, "KQ_mask");
  3275. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3276. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3277. float * data = (float *) KQ_mask->data;
  3278. memset(data, 0, ggml_nbytes(KQ_mask));
  3279. for (int h = 0; h < 1; ++h) {
  3280. for (int j = 0; j < n_tokens; ++j) {
  3281. const llama_pos pos = batch.pos[j];
  3282. const llama_seq_id seq_id = batch.seq_id[j][0];
  3283. for (int i = 0; i < n_kv; ++i) {
  3284. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3285. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3286. }
  3287. }
  3288. }
  3289. }
  3290. }
  3291. for (int il = 0; il < n_layer; ++il) {
  3292. ggml_format_name(inpL, "layer_inp_%d", il);
  3293. offload_func_t offload_func = llama_nop;
  3294. #ifdef GGML_USE_CUBLAS
  3295. if (il >= i_gpu_start) {
  3296. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3297. }
  3298. #endif // GGML_USE_CUBLAS
  3299. struct ggml_tensor * inpSA = inpL;
  3300. // norm
  3301. {
  3302. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3303. offload_func(cur);
  3304. ggml_set_name(cur, "rms_norm_0");
  3305. // cur = cur*attn_norm(broadcasted)
  3306. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3307. offload_func(cur);
  3308. ggml_set_name(cur, "attention_norm_0");
  3309. }
  3310. // self-attention
  3311. {
  3312. // compute Q and K
  3313. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3314. offload_func_kq(tmpk);
  3315. ggml_set_name(tmpk, "tmpk");
  3316. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3317. offload_func_kq(tmpq);
  3318. ggml_set_name(tmpq, "tmpq");
  3319. struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
  3320. offload_func_kq(Kcur);
  3321. ggml_set_name(Kcur, "Kcur");
  3322. struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
  3323. offload_func_kq(Qcur);
  3324. ggml_set_name(Qcur, "Qcur");
  3325. // store key and value to memory
  3326. {
  3327. // compute the transposed [n_tokens, n_embd] V matrix
  3328. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3329. offload_func_v(tmpv);
  3330. ggml_set_name(tmpv, "tmpv");
  3331. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3332. offload_func_v(Vcur);
  3333. ggml_set_name(Vcur, "Vcur");
  3334. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3335. offload_func_kq(k);
  3336. ggml_set_name(k, "k");
  3337. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3338. ( n_ctx)*ggml_element_size(kv_self.v),
  3339. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3340. offload_func_v(v);
  3341. ggml_set_name(v, "v");
  3342. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3343. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3344. }
  3345. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3346. offload_func_kq(Q);
  3347. ggml_set_name(Q, "Q");
  3348. struct ggml_tensor * K =
  3349. ggml_view_3d(ctx0, kv_self.k,
  3350. n_embd_head, n_kv, n_head_kv,
  3351. ggml_element_size(kv_self.k)*n_embd_gqa,
  3352. ggml_element_size(kv_self.k)*n_embd_head,
  3353. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3354. offload_func_kq(K);
  3355. ggml_set_name(K, "K");
  3356. // K * Q
  3357. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3358. offload_func_kq(KQ);
  3359. ggml_set_name(KQ, "KQ");
  3360. // KQ_scaled = KQ / sqrt(n_embd_head)
  3361. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  3362. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3363. offload_func_kq(KQ_scaled);
  3364. ggml_set_name(KQ_scaled, "KQ_scaled");
  3365. // KQ_masked = mask_past(KQ_scaled)
  3366. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3367. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3368. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3369. offload_func_kq(KQ_masked);
  3370. ggml_set_name(KQ_masked, "KQ_masked");
  3371. // KQ = soft_max(KQ_masked)
  3372. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3373. offload_func_v(KQ_soft_max);
  3374. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3375. // split cached V into n_head heads
  3376. struct ggml_tensor * V =
  3377. ggml_view_3d(ctx0, kv_self.v,
  3378. n_kv, n_embd_head, n_head_kv,
  3379. ggml_element_size(kv_self.v)*n_ctx,
  3380. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3381. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3382. offload_func_v(V);
  3383. ggml_set_name(V, "V");
  3384. #if 1
  3385. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3386. offload_func_v(KQV);
  3387. ggml_set_name(KQV, "KQV");
  3388. #else
  3389. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  3390. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  3391. // is there a better way?
  3392. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  3393. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  3394. #endif
  3395. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3396. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3397. offload_func_v(KQV_merged);
  3398. ggml_set_name(KQV_merged, "KQV_merged");
  3399. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3400. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3401. offload_func_v(cur);
  3402. ggml_set_name(cur, "KQV_merged_contiguous");
  3403. // projection (no bias)
  3404. cur = ggml_mul_mat(ctx0,
  3405. model.layers[il].wo,
  3406. cur);
  3407. offload_func(cur);
  3408. ggml_set_name(cur, "result_wo");
  3409. }
  3410. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3411. offload_func(inpFF);
  3412. ggml_set_name(inpFF, "inpFF");
  3413. // feed-forward network
  3414. {
  3415. // norm
  3416. {
  3417. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3418. offload_func(cur);
  3419. ggml_set_name(cur, "rms_norm_1");
  3420. // cur = cur*ffn_norm(broadcasted)
  3421. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3422. offload_func(cur);
  3423. ggml_set_name(cur, "ffn_norm");
  3424. }
  3425. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3426. model.layers[il].w3,
  3427. cur);
  3428. offload_func(tmp);
  3429. ggml_set_name(tmp, "result_w3");
  3430. cur = ggml_mul_mat(ctx0,
  3431. model.layers[il].w1,
  3432. cur);
  3433. offload_func(cur);
  3434. ggml_set_name(cur, "result_w1");
  3435. // SILU activation
  3436. cur = ggml_silu(ctx0, cur);
  3437. offload_func(cur);
  3438. ggml_set_name(cur, "silu");
  3439. cur = ggml_mul(ctx0, cur, tmp);
  3440. offload_func(cur);
  3441. ggml_set_name(cur, "silu_x_result_w3");
  3442. cur = ggml_mul_mat(ctx0,
  3443. model.layers[il].w2,
  3444. cur);
  3445. offload_func(cur);
  3446. ggml_set_name(cur, "result_w2");
  3447. }
  3448. cur = ggml_add(ctx0, cur, inpFF);
  3449. offload_func(cur);
  3450. ggml_set_name(cur, "inpFF_+_result_w2");
  3451. // input for next layer
  3452. inpL = cur;
  3453. }
  3454. cur = inpL;
  3455. // norm
  3456. {
  3457. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3458. offload_func_nr(cur);
  3459. ggml_set_name(cur, "rms_norm_2");
  3460. // cur = cur*norm(broadcasted)
  3461. cur = ggml_mul(ctx0, cur, model.output_norm);
  3462. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3463. ggml_set_name(cur, "result_norm");
  3464. }
  3465. // lm_head
  3466. cur = ggml_mul_mat(ctx0, model.output, cur);
  3467. ggml_set_name(cur, "result_output");
  3468. ggml_build_forward_expand(gf, cur);
  3469. ggml_free(ctx0);
  3470. return gf;
  3471. }
  3472. static struct ggml_cgraph * llm_build_falcon(
  3473. llama_context & lctx,
  3474. const llama_batch & batch) {
  3475. const auto & model = lctx.model;
  3476. const auto & hparams = model.hparams;
  3477. const auto & cparams = lctx.cparams;
  3478. const auto & kv_self = lctx.kv_self;
  3479. GGML_ASSERT(!!kv_self.ctx);
  3480. const int64_t n_embd = hparams.n_embd;
  3481. const int64_t n_layer = hparams.n_layer;
  3482. const int64_t n_ctx = cparams.n_ctx;
  3483. const int64_t n_head = hparams.n_head;
  3484. const int64_t n_head_kv = hparams.n_head_kv;
  3485. const int64_t n_embd_head = hparams.n_embd_head();
  3486. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3487. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3488. const float freq_base = cparams.rope_freq_base;
  3489. const float freq_scale = cparams.rope_freq_scale;
  3490. const float norm_eps = hparams.f_norm_eps;
  3491. const int n_gpu_layers = model.n_gpu_layers;
  3492. const int32_t n_tokens = batch.n_tokens;
  3493. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3494. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3495. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  3496. //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
  3497. // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
  3498. auto & buf_compute = lctx.buf_compute;
  3499. struct ggml_init_params params = {
  3500. /*.mem_size =*/ buf_compute.size,
  3501. /*.mem_buffer =*/ buf_compute.data,
  3502. /*.no_alloc =*/ true,
  3503. };
  3504. struct ggml_context * ctx0 = ggml_init(params);
  3505. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3506. struct ggml_tensor * cur;
  3507. struct ggml_tensor * inpL;
  3508. if (batch.token) {
  3509. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3510. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3511. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3512. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3513. }
  3514. ggml_set_name(inp_tokens, "inp_tokens");
  3515. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3516. } else {
  3517. #ifdef GGML_USE_MPI
  3518. GGML_ASSERT(false && "not implemented");
  3519. #endif
  3520. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3521. ggml_allocr_alloc(lctx.alloc, inpL);
  3522. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3523. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3524. }
  3525. }
  3526. const int i_gpu_start = n_layer - n_gpu_layers;
  3527. (void) i_gpu_start;
  3528. // offload functions set the tensor output backend to GPU
  3529. // tensors are GPU-accelerated if any input or the output has been offloaded
  3530. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3531. offload_func_t offload_func_kq = llama_nop;
  3532. offload_func_t offload_func_v = llama_nop;
  3533. #ifdef GGML_USE_CUBLAS
  3534. if (n_gpu_layers > n_layer) {
  3535. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3536. }
  3537. if (n_gpu_layers > n_layer + 1) {
  3538. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3539. }
  3540. if (n_gpu_layers > n_layer + 2) {
  3541. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3542. }
  3543. #endif // GGML_USE_CUBLAS
  3544. // KQ_scale
  3545. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3546. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3547. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3548. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3549. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3550. }
  3551. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3552. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3553. offload_func_kq(KQ_mask);
  3554. ggml_set_name(KQ_mask, "KQ_mask");
  3555. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3556. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3557. float * data = (float *) KQ_mask->data;
  3558. memset(data, 0, ggml_nbytes(KQ_mask));
  3559. for (int h = 0; h < 1; ++h) {
  3560. for (int j = 0; j < n_tokens; ++j) {
  3561. const llama_pos pos = batch.pos[j];
  3562. const llama_seq_id seq_id = batch.seq_id[j][0];
  3563. for (int i = 0; i < n_kv; ++i) {
  3564. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3565. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3566. }
  3567. }
  3568. }
  3569. }
  3570. }
  3571. // KQ_pos - contains the positions
  3572. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3573. offload_func_kq(KQ_pos);
  3574. ggml_set_name(KQ_pos, "KQ_pos");
  3575. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  3576. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3577. int * data = (int *) KQ_pos->data;
  3578. for (int i = 0; i < n_tokens; ++i) {
  3579. data[i] = batch.pos[i];
  3580. }
  3581. }
  3582. // shift the entire K-cache if needed
  3583. if (do_rope_shift) {
  3584. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3585. offload_func_kq(K_shift);
  3586. ggml_set_name(K_shift, "K_shift");
  3587. ggml_allocr_alloc(lctx.alloc, K_shift);
  3588. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3589. int * data = (int *) K_shift->data;
  3590. for (int i = 0; i < n_ctx; ++i) {
  3591. data[i] = kv_self.cells[i].delta;
  3592. }
  3593. }
  3594. for (int il = 0; il < n_layer; ++il) {
  3595. struct ggml_tensor * tmp =
  3596. ggml_rope_custom_inplace(ctx0,
  3597. ggml_view_3d(ctx0, kv_self.k,
  3598. n_embd_head, n_head_kv, n_ctx,
  3599. ggml_element_size(kv_self.k)*n_embd_head,
  3600. ggml_element_size(kv_self.k)*n_embd_gqa,
  3601. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  3602. K_shift, n_embd_head, 2, 0, freq_base, freq_scale);
  3603. offload_func_kq(tmp);
  3604. ggml_build_forward_expand(gf, tmp);
  3605. }
  3606. }
  3607. for (int il = 0; il < n_layer; ++il) {
  3608. struct ggml_tensor * attn_norm;
  3609. offload_func_t offload_func = llama_nop;
  3610. #ifdef GGML_USE_CUBLAS
  3611. if (il >= i_gpu_start) {
  3612. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3613. }
  3614. #endif // GGML_USE_CUBLAS
  3615. // self-attention
  3616. // TODO: refactor into common function (shared with LLaMA)
  3617. {
  3618. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  3619. offload_func(attn_norm);
  3620. attn_norm = ggml_add(ctx0,
  3621. ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
  3622. model.layers[il].attn_norm_b);
  3623. offload_func(attn_norm->src[0]);
  3624. offload_func(attn_norm);
  3625. if (model.layers[il].attn_norm_2) { // Falcon-40B
  3626. cur = ggml_norm(ctx0, inpL, norm_eps);
  3627. offload_func(cur);
  3628. cur = ggml_add(ctx0,
  3629. ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
  3630. model.layers[il].attn_norm_2_b);
  3631. offload_func(cur->src[0]);
  3632. offload_func(cur);
  3633. } else { // Falcon 7B
  3634. cur = attn_norm;
  3635. }
  3636. // compute QKV
  3637. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3638. offload_func_kq(cur);
  3639. // Note that the strides for Kcur, Vcur are set up so that the
  3640. // resulting views are misaligned with the tensor's storage
  3641. // (by applying the K/V offset we shift the tensor's original
  3642. // view to stick out behind the viewed QKV tensor's allocated
  3643. // memory, so to say). This is ok because no actual accesses
  3644. // happen to that out-of-range memory, but it can require some
  3645. // trickery when trying to accurately dump these views for
  3646. // debugging.
  3647. const size_t wsize = ggml_type_size(cur->type);
  3648. // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
  3649. // non-contiguous views is added for the rope operator
  3650. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
  3651. ctx0, cur, n_embd_head, n_head, n_tokens,
  3652. wsize * n_embd_head,
  3653. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3654. 0));
  3655. offload_func_kq(tmpq);
  3656. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
  3657. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3658. wsize * n_embd_head,
  3659. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3660. wsize * n_embd_head * n_head));
  3661. offload_func_kq(tmpk);
  3662. struct ggml_tensor * tmpv = ggml_view_3d(
  3663. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3664. wsize * n_embd_head,
  3665. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3666. wsize * n_embd_head * (n_head + n_head_kv));
  3667. offload_func_v(tmpv);
  3668. // using mode = 2 for neox mode
  3669. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3670. offload_func_kq(Qcur);
  3671. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3672. offload_func_kq(Kcur);
  3673. {
  3674. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3675. offload_func_v(Vcur);
  3676. offload_func_v(Vcur->src[0]->src[0]);
  3677. ggml_set_name(Vcur, "Vcur");
  3678. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3679. offload_func_kq(k);
  3680. ggml_set_name(k, "k");
  3681. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3682. ( n_ctx)*ggml_element_size(kv_self.v),
  3683. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3684. offload_func_v(v);
  3685. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3686. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3687. }
  3688. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3689. offload_func_kq(Q);
  3690. ggml_set_name(Q, "Q");
  3691. struct ggml_tensor * K =
  3692. ggml_view_3d(ctx0, kv_self.k,
  3693. n_embd_head, n_kv, n_head_kv,
  3694. ggml_element_size(kv_self.k)*n_embd_gqa,
  3695. ggml_element_size(kv_self.k)*n_embd_head,
  3696. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3697. offload_func_kq(K);
  3698. ggml_set_name(K, "K");
  3699. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3700. offload_func_kq(KQ);
  3701. ggml_set_name(KQ, "KQ");
  3702. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3703. offload_func_kq(KQ_scaled);
  3704. ggml_set_name(KQ_scaled, "KQ_scaled");
  3705. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3706. offload_func_kq(KQ_masked);
  3707. ggml_set_name(KQ_masked, "KQ_masked");
  3708. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3709. offload_func_v(KQ_soft_max);
  3710. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3711. struct ggml_tensor * V =
  3712. ggml_view_3d(ctx0, kv_self.v,
  3713. n_kv, n_embd_head, n_head_kv,
  3714. ggml_element_size(kv_self.v)*n_ctx,
  3715. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3716. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3717. offload_func_v(V);
  3718. ggml_set_name(V, "V");
  3719. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3720. offload_func_v(KQV);
  3721. ggml_set_name(KQV, "KQV");
  3722. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3723. offload_func_v(KQV_merged);
  3724. ggml_set_name(KQV_merged, "KQV_merged");
  3725. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3726. offload_func_v(cur);
  3727. ggml_set_name(cur, "KQV_merged_contiguous");
  3728. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  3729. offload_func(cur);
  3730. ggml_set_name(cur, "result_wo");
  3731. }
  3732. struct ggml_tensor * attn_out = cur;
  3733. // feed forward
  3734. {
  3735. struct ggml_tensor * inpFF = attn_norm;
  3736. cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
  3737. offload_func(cur);
  3738. cur = ggml_gelu(ctx0, cur);
  3739. offload_func(cur);
  3740. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  3741. offload_func(cur);
  3742. }
  3743. cur = ggml_add(ctx0, cur, attn_out);
  3744. offload_func(cur);
  3745. cur = ggml_add(ctx0, cur, inpL);
  3746. offload_func(cur);
  3747. // input for next layer
  3748. inpL = cur;
  3749. }
  3750. cur = inpL;
  3751. // norm
  3752. {
  3753. cur = ggml_norm(ctx0, cur, norm_eps);
  3754. offload_func_nr(cur);
  3755. cur = ggml_add(ctx0,
  3756. ggml_mul(ctx0, cur, model.output_norm),
  3757. model.output_norm_b);
  3758. ggml_set_name(cur, "result_norm");
  3759. }
  3760. cur = ggml_mul_mat(ctx0, model.output, cur);
  3761. ggml_set_name(cur, "result_output");
  3762. ggml_build_forward_expand(gf, cur);
  3763. ggml_free(ctx0);
  3764. return gf;
  3765. }
  3766. static struct ggml_cgraph * llm_build_starcoder(
  3767. llama_context & lctx,
  3768. const llama_batch & batch) {
  3769. const auto & model = lctx.model;
  3770. const auto & hparams = model.hparams;
  3771. const auto & cparams = lctx.cparams;
  3772. const auto & kv_self = lctx.kv_self;
  3773. GGML_ASSERT(!!kv_self.ctx);
  3774. const int64_t n_embd = hparams.n_embd;
  3775. const int64_t n_layer = hparams.n_layer;
  3776. const int64_t n_ctx = cparams.n_ctx;
  3777. const int64_t n_head = hparams.n_head;
  3778. const int64_t n_head_kv = hparams.n_head_kv;
  3779. const int64_t n_embd_head = hparams.n_embd_head();
  3780. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3781. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3782. const float norm_eps = hparams.f_norm_eps;
  3783. const int32_t n_tokens = batch.n_tokens;
  3784. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3785. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3786. auto & buf_compute = lctx.buf_compute;
  3787. struct ggml_init_params params = {
  3788. /*.mem_size =*/ buf_compute.size,
  3789. /*.mem_buffer =*/ buf_compute.data,
  3790. /*.no_alloc =*/ true,
  3791. };
  3792. struct ggml_context * ctx0 = ggml_init(params);
  3793. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3794. struct ggml_tensor * cur;
  3795. struct ggml_tensor * token;
  3796. struct ggml_tensor * position;
  3797. struct ggml_tensor * inpL;
  3798. if (batch.token) {
  3799. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3800. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3801. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3802. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3803. }
  3804. ggml_set_name(inp_tokens, "inp_tokens");
  3805. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3806. } else {
  3807. #ifdef GGML_USE_MPI
  3808. GGML_ASSERT(false && "not implemented");
  3809. #endif
  3810. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3811. ggml_allocr_alloc(lctx.alloc, token);
  3812. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3813. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  3814. }
  3815. }
  3816. {
  3817. // Compute position embeddings.
  3818. struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3819. ggml_allocr_alloc(lctx.alloc, inp_positions);
  3820. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3821. for (int i = 0; i < n_tokens; ++i) {
  3822. ((int32_t *) inp_positions->data)[i] = batch.pos[i];
  3823. }
  3824. }
  3825. ggml_set_name(inp_positions, "inp_positions");
  3826. position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
  3827. }
  3828. // KQ_scale
  3829. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3830. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3831. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3832. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3833. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3834. }
  3835. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3836. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3837. ggml_set_name(KQ_mask, "KQ_mask");
  3838. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3839. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3840. float * data = (float *) KQ_mask->data;
  3841. memset(data, 0, ggml_nbytes(KQ_mask));
  3842. for (int h = 0; h < 1; ++h) {
  3843. for (int j = 0; j < n_tokens; ++j) {
  3844. const llama_pos pos = batch.pos[j];
  3845. const llama_seq_id seq_id = batch.seq_id[j][0];
  3846. for (int i = 0; i < n_kv; ++i) {
  3847. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3848. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3849. }
  3850. }
  3851. }
  3852. }
  3853. }
  3854. inpL = ggml_add(ctx0, token, position);
  3855. ggml_set_name(inpL, "inpL");
  3856. for (int il = 0; il < n_layer; ++il) {
  3857. {
  3858. // Norm
  3859. cur = ggml_norm(ctx0, inpL, norm_eps);
  3860. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  3861. }
  3862. {
  3863. // Self Attention
  3864. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  3865. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  3866. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  3867. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  3868. struct ggml_tensor * Qcur = tmpq;
  3869. struct ggml_tensor * Kcur = tmpk;
  3870. {
  3871. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3872. ggml_set_name(Vcur, "Vcur");
  3873. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3874. ggml_set_name(k, "k");
  3875. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3876. ( n_ctx)*ggml_element_size(kv_self.v),
  3877. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3878. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3879. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3880. }
  3881. struct ggml_tensor * Q =
  3882. ggml_permute(ctx0,
  3883. ggml_cpy(ctx0,
  3884. Qcur,
  3885. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  3886. 0, 2, 1, 3);
  3887. ggml_set_name(Q, "Q");
  3888. struct ggml_tensor * K =
  3889. ggml_view_3d(ctx0, kv_self.k,
  3890. n_embd_head, n_kv, n_head_kv,
  3891. ggml_element_size(kv_self.k)*n_embd_gqa,
  3892. ggml_element_size(kv_self.k)*n_embd_head,
  3893. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3894. ggml_set_name(K, "K");
  3895. // K * Q
  3896. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3897. ggml_set_name(KQ, "KQ");
  3898. // KQ_scaled = KQ / sqrt(n_embd_head)
  3899. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3900. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  3901. ggml_set_name(KQ_scaled, "KQ_scaled");
  3902. // KQ_masked = mask_past(KQ_scaled)
  3903. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3904. ggml_set_name(KQ_masked, "KQ_masked");
  3905. // KQ = soft_max(KQ_masked)
  3906. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  3907. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3908. // split cached V into n_head heads
  3909. struct ggml_tensor * V =
  3910. ggml_view_3d(ctx0, kv_self.v,
  3911. n_kv, n_embd_head, n_head_kv,
  3912. ggml_element_size(kv_self.v)*n_ctx,
  3913. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3914. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3915. ggml_set_name(V, "V");
  3916. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3917. ggml_set_name(KQV, "KQV");
  3918. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3919. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3920. ggml_set_name(KQV_merged, "KQV_merged");
  3921. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3922. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3923. ggml_set_name(cur, "KQV_merged_contiguous");
  3924. }
  3925. // Projection
  3926. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  3927. // Add the input
  3928. cur = ggml_add(ctx0, cur, inpL);
  3929. struct ggml_tensor * inpFF = cur;
  3930. // FF
  3931. {
  3932. // Norm
  3933. {
  3934. cur = ggml_norm(ctx0, inpFF, norm_eps);
  3935. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  3936. }
  3937. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  3938. // GELU activation
  3939. cur = ggml_gelu(ctx0, cur);
  3940. // Projection
  3941. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  3942. }
  3943. inpL = ggml_add(ctx0, cur, inpFF);
  3944. }
  3945. // Output Norm
  3946. {
  3947. cur = ggml_norm(ctx0, inpL, norm_eps);
  3948. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  3949. }
  3950. ggml_set_name(cur, "result_norm");
  3951. cur = ggml_mul_mat(ctx0, model.output, cur);
  3952. ggml_set_name(cur, "result_output");
  3953. ggml_build_forward_expand(gf, cur);
  3954. ggml_free(ctx0);
  3955. return gf;
  3956. }
  3957. static struct ggml_cgraph * llm_build_persimmon(
  3958. llama_context & lctx,
  3959. const llama_batch & batch) {
  3960. const auto & model = lctx.model;
  3961. const auto & hparams = model.hparams;
  3962. const auto & kv_self = lctx.kv_self;
  3963. GGML_ASSERT(!!kv_self.ctx);
  3964. const auto & cparams = lctx.cparams;
  3965. const int64_t n_embd = hparams.n_embd;
  3966. const int64_t n_layer = hparams.n_layer;
  3967. const int64_t n_ctx = cparams.n_ctx;
  3968. const int64_t n_head_kv = hparams.n_head_kv;
  3969. const int64_t n_head = hparams.n_head;
  3970. const int64_t n_embd_head = hparams.n_embd_head();
  3971. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3972. const size_t n_rot = n_embd_head / 2;
  3973. const float freq_base = cparams.rope_freq_base;
  3974. const float freq_scale = cparams.rope_freq_scale;
  3975. const float norm_eps = hparams.f_norm_eps;
  3976. const int n_gpu_layers = model.n_gpu_layers;
  3977. const int32_t n_tokens = batch.n_tokens;
  3978. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3979. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3980. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  3981. auto & buf_compute = lctx.buf_compute;
  3982. struct ggml_init_params params = {
  3983. /*.mem_size =*/ buf_compute.size,
  3984. /*.mem_buffer =*/ buf_compute.data,
  3985. /*.no_alloc =*/ true,
  3986. };
  3987. struct ggml_context * ctx0 = ggml_init(params);
  3988. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3989. struct ggml_tensor * cur;
  3990. struct ggml_tensor * inpL;
  3991. if (batch.token) {
  3992. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3993. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3994. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3995. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3996. }
  3997. ggml_set_name(inp_tokens, "inp_tokens");
  3998. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3999. } else {
  4000. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4001. ggml_allocr_alloc(lctx.alloc, inpL);
  4002. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4003. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4004. }
  4005. }
  4006. const int i_gpu_start = n_layer - n_gpu_layers;
  4007. (void) i_gpu_start;
  4008. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4009. offload_func_t offload_func_kq = llama_nop;
  4010. offload_func_t offload_func_v = llama_nop;
  4011. // KQ_scale
  4012. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4013. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4014. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4015. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  4016. }
  4017. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4018. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4019. offload_func_kq(KQ_mask);
  4020. ggml_set_name(KQ_mask, "KQ_mask");
  4021. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4022. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4023. float * data = (float *) KQ_mask->data;
  4024. memset(data, 0, ggml_nbytes(KQ_mask));
  4025. for (int h = 0; h < 1; ++h) {
  4026. for (int j = 0; j < n_tokens; ++j) {
  4027. const llama_pos pos = batch.pos[j];
  4028. const llama_seq_id seq_id = batch.seq_id[j][0];
  4029. for (int i = 0; i < n_kv; ++i) {
  4030. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4031. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4032. }
  4033. }
  4034. }
  4035. }
  4036. }
  4037. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4038. offload_func_kq(KQ_pos);
  4039. ggml_set_name(KQ_pos, "KQ_pos");
  4040. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  4041. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4042. int * data = (int *) KQ_pos->data;
  4043. for (int i = 0; i < n_tokens; ++i) {
  4044. data[i] = batch.pos[i];
  4045. }
  4046. }
  4047. if (do_rope_shift) {
  4048. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  4049. offload_func_kq(K_shift);
  4050. ggml_set_name(K_shift, "K_shift");
  4051. ggml_allocr_alloc(lctx.alloc, K_shift);
  4052. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4053. int * data = (int *) K_shift->data;
  4054. for (int i = 0; i < n_ctx; ++i) {
  4055. data[i] = kv_self.cells[i].delta;
  4056. }
  4057. }
  4058. for (int il = 0; il < n_layer; ++il) {
  4059. struct ggml_tensor * tmp =
  4060. // we rotate only the first n_rot dimensions.
  4061. ggml_rope_custom_inplace(ctx0,
  4062. ggml_view_3d(ctx0, kv_self.k,
  4063. n_rot, n_head, n_ctx,
  4064. ggml_element_size(kv_self.k)*n_embd_gqa,
  4065. ggml_element_size(kv_self.k)*n_embd_head,
  4066. ggml_element_size(kv_self.k)*(n_embd_head*n_ctx*il)
  4067. ),
  4068. K_shift, n_rot, 2, 0, freq_base, freq_scale);
  4069. offload_func_kq(tmp);
  4070. ggml_build_forward_expand(gf, tmp);
  4071. }
  4072. }
  4073. for (int il=0; il < n_layer; ++il) {
  4074. struct ggml_tensor * residual = inpL;
  4075. offload_func_t offload_func = llama_nop;
  4076. {
  4077. cur = ggml_norm(ctx0, inpL, norm_eps);
  4078. offload_func(cur);
  4079. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  4080. offload_func(cur);
  4081. cur = ggml_add(ctx0, cur, model.layers[il].attn_norm_b);
  4082. offload_func(cur);
  4083. ggml_format_name(cur, "input_layernorm_%d", il);
  4084. }
  4085. // self attention
  4086. {
  4087. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4088. offload_func_kq(cur);
  4089. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4090. offload_func_kq(cur);
  4091. // split qkv
  4092. GGML_ASSERT(n_head_kv == n_head);
  4093. ggml_set_name(cur, format("qkv_%d", il).c_str());
  4094. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  4095. offload_func_kq(tmpqkv);
  4096. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  4097. offload_func_kq(tmpqkv_perm);
  4098. ggml_format_name(tmpqkv_perm, "tmpqkv_perm_%d", il);
  4099. struct ggml_tensor * tmpq = ggml_view_3d(
  4100. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4101. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4102. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4103. 0
  4104. );
  4105. offload_func_kq(tmpq);
  4106. struct ggml_tensor * tmpk = ggml_view_3d(
  4107. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4108. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4109. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4110. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  4111. );
  4112. offload_func_kq(tmpk);
  4113. // Q/K Layernorm
  4114. tmpq = ggml_norm(ctx0, tmpq, norm_eps);
  4115. offload_func_kq(tmpq);
  4116. tmpq = ggml_mul(ctx0, tmpq, model.layers[il].attn_q_norm);
  4117. offload_func_kq(tmpq);
  4118. tmpq = ggml_add(ctx0, tmpq, model.layers[il].attn_q_norm_b);
  4119. offload_func_kq(tmpq);
  4120. tmpk = ggml_norm(ctx0, tmpk, norm_eps);
  4121. offload_func_v(tmpk);
  4122. tmpk = ggml_mul(ctx0, tmpk, model.layers[il].attn_k_norm);
  4123. offload_func_v(tmpk);
  4124. tmpk = ggml_add(ctx0, tmpk, model.layers[il].attn_k_norm_b);
  4125. offload_func_v(tmpk);
  4126. // RoPE the first n_rot of q/k, pass the other half, and concat.
  4127. struct ggml_tensor * qrot = ggml_view_3d(
  4128. ctx0, tmpq, n_rot, n_head, n_tokens,
  4129. ggml_element_size(tmpq) * n_embd_head,
  4130. ggml_element_size(tmpq) * n_embd_head * n_head,
  4131. 0
  4132. );
  4133. offload_func_kq(qrot);
  4134. ggml_format_name(qrot, "qrot_%d", il);
  4135. struct ggml_tensor * krot = ggml_view_3d(
  4136. ctx0, tmpk, n_rot, n_head, n_tokens,
  4137. ggml_element_size(tmpk) * n_embd_head,
  4138. ggml_element_size(tmpk) * n_embd_head * n_head,
  4139. 0
  4140. );
  4141. offload_func_kq(krot);
  4142. ggml_format_name(krot, "krot_%d", il);
  4143. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  4144. struct ggml_tensor * qpass = ggml_view_3d(
  4145. ctx0, tmpq, n_rot, n_head, n_tokens,
  4146. ggml_element_size(tmpq) * n_embd_head,
  4147. ggml_element_size(tmpq) * n_embd_head * n_head,
  4148. ggml_element_size(tmpq) * n_rot
  4149. );
  4150. offload_func_kq(qpass);
  4151. ggml_format_name(qpass, "qpass_%d", il);
  4152. struct ggml_tensor * kpass = ggml_view_3d(
  4153. ctx0, tmpk, n_rot, n_head, n_tokens,
  4154. ggml_element_size(tmpk) * n_embd_head,
  4155. ggml_element_size(tmpk) * n_embd_head * n_head,
  4156. ggml_element_size(tmpk) * n_rot
  4157. );
  4158. offload_func_kq(kpass);
  4159. ggml_format_name(kpass, "kpass_%d", il);
  4160. struct ggml_tensor * qrotated = ggml_rope_custom(
  4161. ctx0, qrot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4162. );
  4163. offload_func_kq(qrotated);
  4164. struct ggml_tensor * krotated = ggml_rope_custom(
  4165. ctx0, krot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4166. );
  4167. offload_func_kq(krotated);
  4168. // ggml currently only supports concatenation on dim=2
  4169. // so we need to permute qrot, qpass, concat, then permute back.
  4170. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  4171. offload_func_kq(qrotated);
  4172. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  4173. offload_func_kq(krotated);
  4174. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  4175. offload_func_kq(qpass);
  4176. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  4177. offload_func_kq(kpass);
  4178. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  4179. offload_func_kq(Qcur);
  4180. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  4181. offload_func_kq(Kcur);
  4182. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3));
  4183. offload_func_kq(Q);
  4184. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  4185. offload_func_kq(Kcur);
  4186. {
  4187. struct ggml_tensor * tmpv = ggml_view_3d(
  4188. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4189. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4190. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4191. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  4192. );
  4193. offload_func_v(tmpv);
  4194. // store K, V in cache
  4195. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  4196. offload_func_v(Vcur);
  4197. ggml_set_name(Vcur, "Vcur");
  4198. struct ggml_tensor * k = ggml_view_1d(
  4199. ctx0, kv_self.k, n_tokens*n_embd_gqa,
  4200. (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)
  4201. );
  4202. offload_func_kq(k);
  4203. ggml_set_name(k, "k");
  4204. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4205. ( n_ctx)*ggml_element_size(kv_self.v),
  4206. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4207. offload_func_v(v);
  4208. ggml_set_name(v, "v");
  4209. // important: storing RoPE-ed version of K in the KV cache!
  4210. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4211. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4212. }
  4213. struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k,
  4214. n_embd_head, n_kv, n_head_kv,
  4215. ggml_element_size(kv_self.k)*n_embd_gqa,
  4216. ggml_element_size(kv_self.k)*n_embd_head,
  4217. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4218. offload_func_kq(K);
  4219. ggml_format_name(K, "K_%d", il);
  4220. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4221. offload_func_kq(KQ);
  4222. ggml_set_name(KQ, "KQ");
  4223. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4224. offload_func_kq(KQ_scaled);
  4225. ggml_set_name(KQ_scaled, "KQ_scaled");
  4226. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  4227. offload_func_kq(KQ_masked);
  4228. ggml_set_name(KQ_masked, "KQ_masked");
  4229. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4230. offload_func_kq(KQ_soft_max);
  4231. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4232. struct ggml_tensor * V =
  4233. ggml_view_3d(ctx0, kv_self.v,
  4234. n_kv, n_embd_head, n_head_kv,
  4235. ggml_element_size(kv_self.v)*n_ctx,
  4236. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4237. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4238. offload_func_v(V);
  4239. ggml_set_name(V, "V");
  4240. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4241. offload_func_v(KQV);
  4242. ggml_set_name(KQV, "KQV");
  4243. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4244. offload_func_v(KQV_merged);
  4245. ggml_set_name(KQV_merged, "KQV_merged");
  4246. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4247. offload_func_v(cur);
  4248. ggml_set_name(cur, "KQV_merged_contiguous");
  4249. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4250. offload_func(cur);
  4251. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  4252. offload_func(cur);
  4253. ggml_set_name(cur, "result_wo");
  4254. }
  4255. struct ggml_tensor * inpFF = ggml_add(ctx0, residual, cur);
  4256. offload_func(inpFF);
  4257. ggml_set_name(inpFF, "inpFF");
  4258. {
  4259. // MLP
  4260. {
  4261. // Norm
  4262. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4263. offload_func(cur);
  4264. cur = ggml_add(ctx0,
  4265. ggml_mul(ctx0, cur, model.layers[il].ffn_norm),
  4266. model.layers[il].ffn_norm_b
  4267. );
  4268. ggml_set_name(cur, "ffn_norm");
  4269. offload_func(cur);
  4270. }
  4271. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4272. offload_func(cur);
  4273. cur = ggml_add(ctx0, cur, model.layers[il].b3);
  4274. offload_func(cur);
  4275. ggml_set_name(cur, "result_ffn_up");
  4276. cur = ggml_sqr(ctx0, ggml_relu(ctx0, cur));
  4277. ggml_set_name(cur, "result_ffn_act");
  4278. offload_func(cur);
  4279. offload_func(cur->src[0]);
  4280. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4281. offload_func(cur);
  4282. cur = ggml_add(ctx0,
  4283. cur,
  4284. model.layers[il].b2);
  4285. offload_func(cur);
  4286. ggml_set_name(cur, "outFF");
  4287. }
  4288. cur = ggml_add(ctx0, cur, inpFF);
  4289. offload_func(cur);
  4290. ggml_set_name(cur, "inpFF_+_outFF");
  4291. inpL = cur;
  4292. }
  4293. cur = inpL;
  4294. {
  4295. cur = ggml_norm(ctx0, cur, norm_eps);
  4296. offload_func_nr(cur);
  4297. cur = ggml_mul(ctx0, cur, model.output_norm);
  4298. offload_func_nr(cur);
  4299. cur = ggml_add(ctx0, cur, model.output_norm_b);
  4300. // offload_func_nr(cur);
  4301. ggml_set_name(cur, "result_norm");
  4302. }
  4303. cur = ggml_mul_mat(ctx0, model.output, cur);
  4304. ggml_set_name(cur, "result_output");
  4305. ggml_build_forward_expand(gf, cur);
  4306. ggml_free(ctx0);
  4307. return gf;
  4308. }
  4309. static struct ggml_cgraph * llm_build_bloom(
  4310. llama_context & lctx,
  4311. const llama_batch & batch) {
  4312. const auto & model = lctx.model;
  4313. const auto & hparams = model.hparams;
  4314. const auto & cparams = lctx.cparams;
  4315. const auto & kv_self = lctx.kv_self;
  4316. GGML_ASSERT(!!kv_self.ctx);
  4317. const int64_t n_embd = hparams.n_embd;
  4318. const int64_t n_layer = hparams.n_layer;
  4319. const int64_t n_ctx = cparams.n_ctx;
  4320. const int64_t n_head = hparams.n_head;
  4321. const int64_t n_head_kv = hparams.n_head_kv;
  4322. const int64_t n_embd_head = hparams.n_embd_head();
  4323. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4324. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4325. const float norm_eps = hparams.f_norm_eps;
  4326. const int32_t n_tokens = batch.n_tokens;
  4327. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4328. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4329. auto & buf_compute = lctx.buf_compute;
  4330. struct ggml_init_params params = {
  4331. /*.mem_size =*/ buf_compute.size,
  4332. /*.mem_buffer =*/ buf_compute.data,
  4333. /*.no_alloc =*/ false,
  4334. };
  4335. params.no_alloc = true;
  4336. struct ggml_context * ctx0 = ggml_init(params);
  4337. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4338. struct ggml_tensor * cur;
  4339. struct ggml_tensor * token;
  4340. struct ggml_tensor * inpL;
  4341. if (batch.token) {
  4342. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4343. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4344. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4345. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4346. }
  4347. ggml_set_name(inp_tokens, "inp_tokens");
  4348. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4349. } else {
  4350. #ifdef GGML_USE_MPI
  4351. GGML_ASSERT(false && "not implemented");
  4352. #endif
  4353. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4354. ggml_allocr_alloc(lctx.alloc, token);
  4355. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4356. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  4357. }
  4358. }
  4359. // KQ_scale
  4360. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4361. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4362. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4363. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4364. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4365. }
  4366. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4367. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4368. ggml_set_name(KQ_mask, "KQ_mask");
  4369. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4370. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4371. float * data = (float *) KQ_mask->data;
  4372. memset(data, 0, ggml_nbytes(KQ_mask));
  4373. for (int h = 0; h < 1; ++h) {
  4374. for (int j = 0; j < n_tokens; ++j) {
  4375. const llama_pos pos = batch.pos[j];
  4376. const llama_seq_id seq_id = batch.seq_id[j][0];
  4377. for (int i = 0; i < n_kv; ++i) {
  4378. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4379. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4380. }
  4381. }
  4382. }
  4383. }
  4384. }
  4385. // norm
  4386. {
  4387. inpL = ggml_norm(ctx0, token, norm_eps);
  4388. inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b);
  4389. }
  4390. ggml_set_name(inpL, "inpL");
  4391. for (int il = 0; il < n_layer; ++il) {
  4392. {
  4393. // Norm
  4394. cur = ggml_norm(ctx0, inpL, norm_eps);
  4395. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  4396. }
  4397. {
  4398. // Self Attention
  4399. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  4400. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  4401. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  4402. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  4403. struct ggml_tensor * Qcur = tmpq;
  4404. struct ggml_tensor * Kcur = tmpk;
  4405. // store key and value to memory
  4406. {
  4407. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4408. ggml_set_name(Vcur, "Vcur");
  4409. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4410. ggml_set_name(k, "k");
  4411. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4412. ( n_ctx)*ggml_element_size(kv_self.v),
  4413. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4414. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4415. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4416. }
  4417. struct ggml_tensor * Q =
  4418. ggml_permute(ctx0,
  4419. ggml_cpy(ctx0,
  4420. Qcur,
  4421. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  4422. 0, 2, 1, 3);
  4423. ggml_set_name(Q, "Q");
  4424. struct ggml_tensor * K =
  4425. ggml_view_3d(ctx0, kv_self.k,
  4426. n_embd_head, n_kv, n_head_kv,
  4427. ggml_element_size(kv_self.k)*n_embd_gqa,
  4428. ggml_element_size(kv_self.k)*n_embd_head,
  4429. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4430. ggml_set_name(K, "K");
  4431. // K * Q
  4432. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4433. ggml_set_name(KQ, "KQ");
  4434. // KQ_scaled = KQ / sqrt(n_embd_head)
  4435. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  4436. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  4437. ggml_set_name(KQ_scaled, "KQ_scaled");
  4438. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8);
  4439. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4440. // KQ_masked = mask_past(KQ_scaled)
  4441. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4442. ggml_set_name(KQ_masked, "KQ_masked");
  4443. // KQ = soft_max(KQ_masked)
  4444. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4445. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4446. // split cached V into n_head heads
  4447. struct ggml_tensor * V =
  4448. ggml_view_3d(ctx0, kv_self.v,
  4449. n_kv, n_embd_head, n_head_kv,
  4450. ggml_element_size(kv_self.v)*n_ctx,
  4451. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4452. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4453. ggml_set_name(V, "V");
  4454. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4455. ggml_set_name(KQV, "KQV");
  4456. // KQV_merged = KQV.permute(0, 2, 1, 3)
  4457. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4458. ggml_set_name(KQV_merged, "KQV_merged");
  4459. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  4460. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4461. ggml_set_name(cur, "KQV_merged_contiguous");
  4462. }
  4463. // Projection
  4464. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  4465. // Add the input
  4466. cur = ggml_add(ctx0, cur, inpL);
  4467. struct ggml_tensor * inpFF = cur;
  4468. // FF
  4469. {
  4470. // Norm
  4471. {
  4472. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4473. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  4474. }
  4475. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  4476. // GELU activation
  4477. cur = ggml_gelu(ctx0, cur);
  4478. // Projection
  4479. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  4480. }
  4481. inpL = ggml_add(ctx0, cur, inpFF);
  4482. }
  4483. // Output Norm
  4484. {
  4485. cur = ggml_norm(ctx0, inpL, norm_eps);
  4486. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  4487. }
  4488. ggml_set_name(cur, "result_norm");
  4489. cur = ggml_mul_mat(ctx0, model.output, cur);
  4490. ggml_set_name(cur, "result_output");
  4491. ggml_build_forward_expand(gf, cur);
  4492. ggml_free(ctx0);
  4493. return gf;
  4494. }
  4495. static struct ggml_cgraph * llm_build_mpt(
  4496. llama_context & lctx,
  4497. const llama_batch & batch) {
  4498. const auto & model = lctx.model;
  4499. const auto & hparams = model.hparams;
  4500. const auto & cparams = lctx.cparams;
  4501. const auto & kv_self = lctx.kv_self;
  4502. GGML_ASSERT(!!kv_self.ctx);
  4503. const int64_t n_embd = hparams.n_embd;
  4504. const int64_t n_layer = hparams.n_layer;
  4505. const int64_t n_ctx = cparams.n_ctx;
  4506. const int64_t n_head = hparams.n_head;
  4507. const int64_t n_head_kv = hparams.n_head_kv;
  4508. const int64_t n_embd_head = hparams.n_embd_head();
  4509. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4510. const float norm_eps = hparams.f_norm_eps;
  4511. const float clamp_kqv = hparams.f_clamp_kqv;
  4512. const float max_alibi_bias = hparams.f_max_alibi_bias;
  4513. const int n_gpu_layers = model.n_gpu_layers;
  4514. const int32_t n_tokens = batch.n_tokens;
  4515. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4516. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4517. auto & buf_compute = lctx.buf_compute;
  4518. struct ggml_init_params params = {
  4519. /*.mem_size =*/ buf_compute.size,
  4520. /*.mem_buffer =*/ buf_compute.data,
  4521. /*.no_alloc =*/ false,
  4522. };
  4523. params.no_alloc = true;
  4524. struct ggml_context * ctx0 = ggml_init(params);
  4525. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4526. struct ggml_tensor * cur;
  4527. struct ggml_tensor * inpL;
  4528. //int warmup = 0;
  4529. if (batch.token) {
  4530. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4531. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4532. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4533. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4534. //warmup = ((uint32_t*) inp_tokens->data)[0] == 0;
  4535. }
  4536. ggml_set_name(inp_tokens, "inp_tokens");
  4537. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4538. } else {
  4539. #ifdef GGML_USE_MPI
  4540. GGML_ASSERT(false && "not implemented");
  4541. #endif
  4542. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4543. ggml_allocr_alloc(lctx.alloc, inpL);
  4544. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4545. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4546. }
  4547. }
  4548. const int i_gpu_start = n_layer - n_gpu_layers;
  4549. (void) i_gpu_start;
  4550. // offload functions set the tensor output backend to GPU
  4551. // tensors are GPU-accelerated if any input or the output has been offloaded
  4552. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4553. offload_func_t offload_func_kq = llama_nop;
  4554. offload_func_t offload_func_v = llama_nop;
  4555. #ifdef GGML_USE_CUBLAS
  4556. if (n_gpu_layers > n_layer) {
  4557. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  4558. }
  4559. if (n_gpu_layers > n_layer + 1) {
  4560. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  4561. }
  4562. if (n_gpu_layers > n_layer + 2) {
  4563. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  4564. }
  4565. #endif // GGML_USE_CUBLAS
  4566. // KQ_scale
  4567. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4568. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4569. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4570. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4571. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4572. }
  4573. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4574. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4575. offload_func_kq(KQ_mask);
  4576. ggml_set_name(KQ_mask, "KQ_mask");
  4577. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4578. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4579. float * data = (float *) KQ_mask->data;
  4580. memset(data, 0, ggml_nbytes(KQ_mask));
  4581. for (int h = 0; h < 1; ++h) {
  4582. for (int j = 0; j < n_tokens; ++j) {
  4583. const llama_pos pos = batch.pos[j];
  4584. const llama_seq_id seq_id = batch.seq_id[j][0];
  4585. for (int i = 0; i < n_kv; ++i) {
  4586. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4587. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4588. }
  4589. }
  4590. }
  4591. }
  4592. }
  4593. for (int il = 0; il < n_layer; ++il) {
  4594. struct ggml_tensor * attn_norm;
  4595. offload_func_t offload_func = llama_nop;
  4596. #ifdef GGML_USE_CUBLAS
  4597. if (il >= i_gpu_start) {
  4598. offload_func = ggml_cuda_assign_buffers_no_alloc;
  4599. }
  4600. #endif // GGML_USE_CUBLAS
  4601. // self-attention
  4602. // TODO: refactor into common function (shared with LLaMA)
  4603. {
  4604. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  4605. offload_func(attn_norm);
  4606. attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm);
  4607. offload_func(attn_norm);
  4608. if (1) {
  4609. cur = attn_norm;
  4610. }
  4611. // compute QKV
  4612. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4613. offload_func_kq(cur);
  4614. if (clamp_kqv > 0.0f) {
  4615. cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv);
  4616. offload_func_kq(cur);
  4617. }
  4618. const size_t wsize = ggml_type_size(cur->type);
  4619. struct ggml_tensor * Qcur = ggml_view_3d(
  4620. ctx0, cur, n_embd_head, n_head, n_tokens,
  4621. wsize * n_embd_head,
  4622. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4623. 0);
  4624. offload_func_kq(Qcur);
  4625. struct ggml_tensor * Kcur = ggml_view_3d(
  4626. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4627. wsize * n_embd_head,
  4628. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4629. wsize * n_embd_head * n_head);
  4630. offload_func_kq(Kcur);
  4631. struct ggml_tensor * tmpv = ggml_view_3d(
  4632. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4633. wsize * n_embd_head,
  4634. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4635. wsize * n_embd_head * (n_head + n_head_kv));
  4636. offload_func_kq(Kcur);
  4637. ggml_set_name(Qcur, "Qcur");
  4638. ggml_set_name(Kcur, "Kcur");
  4639. {
  4640. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4641. offload_func_v(Vcur);
  4642. offload_func_v(Vcur->src[0]->src[0]);
  4643. ggml_set_name(Vcur, "Vcur");
  4644. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4645. offload_func_kq(k);
  4646. ggml_set_name(k, "k");
  4647. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4648. ( n_ctx)*ggml_element_size(kv_self.v),
  4649. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4650. offload_func_v(v);
  4651. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4652. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4653. }
  4654. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  4655. offload_func_kq(Q);
  4656. ggml_set_name(Q, "Q");
  4657. struct ggml_tensor * K =
  4658. ggml_view_3d(ctx0, kv_self.k,
  4659. n_embd_head, n_kv, n_head_kv,
  4660. ggml_element_size(kv_self.k)*n_embd_gqa,
  4661. ggml_element_size(kv_self.k)*n_embd_head,
  4662. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4663. offload_func_kq(K);
  4664. ggml_set_name(K, "K");
  4665. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4666. offload_func_kq(KQ);
  4667. ggml_set_name(KQ, "KQ");
  4668. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4669. offload_func_kq(KQ_scaled);
  4670. ggml_set_name(KQ_scaled, "KQ_scaled");
  4671. // TODO: replace with ggml_add()
  4672. struct ggml_tensor * KQ_scaled_alibi =
  4673. ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias);
  4674. offload_func_kq(KQ_scaled_alibi);
  4675. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4676. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4677. offload_func_kq(KQ_masked);
  4678. ggml_set_name(KQ_masked, "KQ_masked");
  4679. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  4680. offload_func_v(KQ_soft_max);
  4681. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4682. struct ggml_tensor * V =
  4683. ggml_view_3d(ctx0, kv_self.v,
  4684. n_kv, n_embd_head, n_head_kv,
  4685. ggml_element_size(kv_self.v)*n_ctx,
  4686. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4687. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4688. offload_func_v(V);
  4689. ggml_set_name(V, "V");
  4690. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4691. offload_func_v(KQV);
  4692. ggml_set_name(KQV, "KQV");
  4693. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4694. offload_func_v(KQV_merged);
  4695. ggml_set_name(KQV_merged, "KQV_merged");
  4696. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4697. offload_func_v(cur);
  4698. ggml_set_name(cur, "KQV_merged_contiguous");
  4699. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4700. offload_func(cur);
  4701. ggml_set_name(cur, "result_wo");
  4702. }
  4703. // Add the input
  4704. cur = ggml_add(ctx0, cur, inpL);
  4705. offload_func(cur);
  4706. struct ggml_tensor * attn_out = cur;
  4707. // feed forward
  4708. {
  4709. // Norm
  4710. {
  4711. cur = ggml_norm(ctx0, attn_out, norm_eps);
  4712. offload_func(cur);
  4713. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  4714. offload_func(cur);
  4715. }
  4716. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4717. offload_func(cur);
  4718. cur = ggml_gelu(ctx0, cur);
  4719. offload_func(cur);
  4720. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4721. offload_func(cur);
  4722. }
  4723. cur = ggml_add(ctx0, cur, attn_out);
  4724. offload_func(cur);
  4725. // input for next layer
  4726. inpL = cur;
  4727. }
  4728. cur = inpL;
  4729. // norm
  4730. {
  4731. cur = ggml_norm(ctx0, cur, norm_eps);
  4732. offload_func_nr(cur);
  4733. cur = ggml_mul(ctx0, cur, model.output_norm);
  4734. ggml_set_name(cur, "result_norm");
  4735. }
  4736. cur = ggml_mul_mat(ctx0, model.output, cur);
  4737. ggml_set_name(cur, "result_output");
  4738. ggml_build_forward_expand(gf, cur);
  4739. ggml_free(ctx0);
  4740. return gf;
  4741. }
  4742. static struct ggml_cgraph * llama_build_graph(
  4743. llama_context & lctx,
  4744. const llama_batch & batch) {
  4745. const auto & model = lctx.model;
  4746. struct ggml_cgraph * result = NULL;
  4747. switch (model.arch) {
  4748. case LLM_ARCH_LLAMA:
  4749. {
  4750. result = llm_build_llama(lctx, batch);
  4751. } break;
  4752. case LLM_ARCH_BAICHUAN:
  4753. {
  4754. result = llm_build_baichaun(lctx, batch);
  4755. } break;
  4756. case LLM_ARCH_FALCON:
  4757. {
  4758. result = llm_build_falcon(lctx, batch);
  4759. } break;
  4760. case LLM_ARCH_STARCODER:
  4761. {
  4762. result = llm_build_starcoder(lctx, batch);
  4763. } break;
  4764. case LLM_ARCH_PERSIMMON:
  4765. {
  4766. result = llm_build_persimmon(lctx, batch);
  4767. } break;
  4768. case LLM_ARCH_REFACT:
  4769. {
  4770. result = llm_build_refact(lctx, batch);
  4771. } break;
  4772. case LLM_ARCH_BLOOM:
  4773. {
  4774. result = llm_build_bloom(lctx, batch);
  4775. } break;
  4776. case LLM_ARCH_MPT:
  4777. {
  4778. result = llm_build_mpt(lctx, batch);
  4779. } break;
  4780. default:
  4781. GGML_ASSERT(false);
  4782. }
  4783. return result;
  4784. }
  4785. // decode a batch of tokens by evaluating the transformer
  4786. //
  4787. // - lctx: llama context
  4788. // - batch: batch to evaluate
  4789. //
  4790. // return 0 on success
  4791. // return positive int on warning
  4792. // return negative int on error
  4793. //
  4794. static int llama_decode_internal(
  4795. llama_context & lctx,
  4796. llama_batch batch) {
  4797. const uint32_t n_tokens = batch.n_tokens;
  4798. if (n_tokens == 0) {
  4799. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  4800. return -1;
  4801. }
  4802. const auto & model = lctx.model;
  4803. const auto & hparams = model.hparams;
  4804. const auto & cparams = lctx.cparams;
  4805. const auto n_batch = cparams.n_batch;
  4806. GGML_ASSERT(n_tokens <= n_batch);
  4807. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  4808. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  4809. const int64_t t_start_us = ggml_time_us();
  4810. #ifdef GGML_USE_MPI
  4811. // TODO: needs fix after #3228
  4812. GGML_ASSERT(false && "not implemented");
  4813. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  4814. #endif
  4815. GGML_ASSERT(n_threads > 0);
  4816. auto & kv_self = lctx.kv_self;
  4817. GGML_ASSERT(!!kv_self.ctx);
  4818. const int64_t n_embd = hparams.n_embd;
  4819. const int64_t n_vocab = hparams.n_vocab;
  4820. // helpers for smoother batch API transistion
  4821. // after deprecating the llama_eval calls, these will be removed
  4822. std::vector<llama_pos> pos;
  4823. std::vector<int32_t> n_seq_id;
  4824. std::vector<llama_seq_id *> seq_id_arr;
  4825. std::vector<std::vector<llama_seq_id>> seq_id;
  4826. if (batch.pos == nullptr) {
  4827. pos.resize(n_tokens);
  4828. for (uint32_t i = 0; i < n_tokens; i++) {
  4829. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  4830. }
  4831. batch.pos = pos.data();
  4832. }
  4833. if (batch.seq_id == nullptr) {
  4834. n_seq_id.resize(n_tokens);
  4835. seq_id.resize(n_tokens);
  4836. seq_id_arr.resize(n_tokens);
  4837. for (uint32_t i = 0; i < n_tokens; i++) {
  4838. n_seq_id[i] = 1;
  4839. seq_id[i].resize(1);
  4840. seq_id[i][0] = batch.all_seq_id;
  4841. seq_id_arr[i] = seq_id[i].data();
  4842. }
  4843. batch.n_seq_id = n_seq_id.data();
  4844. batch.seq_id = seq_id_arr.data();
  4845. }
  4846. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  4847. return 1;
  4848. }
  4849. // a heuristic, to avoid attending the full cache if it is not yet utilized
  4850. // after enough generations, the benefit from this heuristic disappears
  4851. // if we start defragmenting the cache, the benefit from this will be more important
  4852. //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
  4853. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
  4854. //printf("kv_self.n = %d\n", kv_self.n);
  4855. ggml_allocr_reset(lctx.alloc);
  4856. ggml_cgraph * gf = llama_build_graph(lctx, batch);
  4857. ggml_allocr_alloc_graph(lctx.alloc, gf);
  4858. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  4859. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  4860. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  4861. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  4862. #ifdef GGML_USE_CUBLAS
  4863. for (int i = 0; i < gf->n_leafs; i++) {
  4864. ggml_tensor * node = gf->leafs[i];
  4865. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4866. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4867. ggml_cuda_copy_to_device(node);
  4868. }
  4869. }
  4870. for (int i = 0; i < gf->n_nodes; i++) {
  4871. ggml_tensor * node = gf->nodes[i];
  4872. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4873. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4874. }
  4875. }
  4876. ggml_cuda_set_mul_mat_q(cparams.mul_mat_q);
  4877. // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed
  4878. if (!lctx.embedding.empty()) {
  4879. embeddings->backend = GGML_BACKEND_CPU;
  4880. }
  4881. res->backend = GGML_BACKEND_CPU;
  4882. #endif
  4883. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  4884. // for big prompts, if BLAS is enabled, it is better to use only one thread
  4885. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  4886. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  4887. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  4888. // with the BLAS calls. need a better solution
  4889. if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  4890. n_threads = std::min(4, n_threads);
  4891. }
  4892. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  4893. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
  4894. model.arch == LLM_ARCH_BAICHUAN ||
  4895. model.arch == LLM_ARCH_FALCON ||
  4896. model.arch == LLM_ARCH_REFACT ||
  4897. model.arch == LLM_ARCH_MPT;
  4898. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  4899. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  4900. n_threads = 1;
  4901. }
  4902. #if GGML_USE_MPI
  4903. const int64_t n_layer = hparams.n_layer;
  4904. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  4905. #endif
  4906. #ifdef GGML_USE_METAL
  4907. if (lctx.ctx_metal) {
  4908. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  4909. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  4910. } else {
  4911. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4912. }
  4913. #else
  4914. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4915. #endif
  4916. #if GGML_USE_MPI
  4917. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  4918. #endif
  4919. // update the kv ring buffer
  4920. lctx.kv_self.has_shift = false;
  4921. lctx.kv_self.head += n_tokens;
  4922. // Ensure kv cache head points to a valid index.
  4923. if (lctx.kv_self.head >= lctx.kv_self.size) {
  4924. lctx.kv_self.head = 0;
  4925. }
  4926. #ifdef GGML_PERF
  4927. // print timing information per ggml operation (for debugging purposes)
  4928. // requires GGML_PERF to be defined
  4929. ggml_graph_print(gf);
  4930. #endif
  4931. // plot the computation graph in dot format (for debugging purposes)
  4932. //if (n_past%100 == 0) {
  4933. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  4934. //}
  4935. // extract logits
  4936. {
  4937. auto & logits_out = lctx.logits;
  4938. if (batch.logits) {
  4939. logits_out.resize(n_vocab * n_tokens);
  4940. for (uint32_t i = 0; i < n_tokens; i++) {
  4941. if (batch.logits[i] == 0) {
  4942. continue;
  4943. }
  4944. memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
  4945. }
  4946. } else if (lctx.logits_all) {
  4947. logits_out.resize(n_vocab * n_tokens);
  4948. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
  4949. } else {
  4950. logits_out.resize(n_vocab);
  4951. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
  4952. }
  4953. }
  4954. // extract embeddings
  4955. if (!lctx.embedding.empty()) {
  4956. auto & embedding_out = lctx.embedding;
  4957. embedding_out.resize(n_embd);
  4958. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
  4959. }
  4960. // measure the performance only for the single-token evals
  4961. if (n_tokens == 1) {
  4962. lctx.t_eval_us += ggml_time_us() - t_start_us;
  4963. lctx.n_eval++;
  4964. }
  4965. else if (n_tokens > 1) {
  4966. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  4967. lctx.n_p_eval += n_tokens;
  4968. }
  4969. // get a more accurate load time, upon first eval
  4970. // TODO: fix this
  4971. if (!lctx.has_evaluated_once) {
  4972. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  4973. lctx.has_evaluated_once = true;
  4974. }
  4975. return 0;
  4976. }
  4977. //
  4978. // tokenizer
  4979. //
  4980. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  4981. return vocab.type;
  4982. }
  4983. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  4984. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  4985. }
  4986. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  4987. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  4988. }
  4989. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  4990. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  4991. }
  4992. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  4993. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  4994. }
  4995. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  4996. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  4997. }
  4998. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  4999. GGML_ASSERT(llama_is_byte_token(vocab, id));
  5000. const auto& token_data = vocab.id_to_token.at(id);
  5001. switch (llama_vocab_get_type(vocab)) {
  5002. case LLAMA_VOCAB_TYPE_SPM: {
  5003. auto buf = token_data.text.substr(3, 2);
  5004. return strtol(buf.c_str(), NULL, 16);
  5005. }
  5006. case LLAMA_VOCAB_TYPE_BPE: {
  5007. GGML_ASSERT(false);
  5008. return unicode_to_bytes_bpe(token_data.text);
  5009. }
  5010. default:
  5011. GGML_ASSERT(false);
  5012. }
  5013. }
  5014. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  5015. switch (llama_vocab_get_type(vocab)) {
  5016. case LLAMA_VOCAB_TYPE_SPM: {
  5017. char buf[7];
  5018. int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
  5019. GGML_ASSERT(0 <= result && result < 7);
  5020. return vocab.token_to_id.at(buf);
  5021. }
  5022. case LLAMA_VOCAB_TYPE_BPE: {
  5023. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  5024. }
  5025. default:
  5026. GGML_ASSERT(false);
  5027. }
  5028. }
  5029. static void llama_escape_whitespace(std::string & text) {
  5030. replace_all(text, " ", "\xe2\x96\x81");
  5031. }
  5032. static void llama_unescape_whitespace(std::string & word) {
  5033. replace_all(word, "\xe2\x96\x81", " ");
  5034. }
  5035. struct llm_symbol {
  5036. using index = int;
  5037. index prev;
  5038. index next;
  5039. const char * text;
  5040. size_t n;
  5041. };
  5042. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  5043. // SPM tokenizer
  5044. // original implementation:
  5045. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  5046. struct llm_bigram_spm {
  5047. struct comparator {
  5048. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  5049. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  5050. }
  5051. };
  5052. using queue_storage = std::vector<llm_bigram_spm>;
  5053. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  5054. llm_symbol::index left;
  5055. llm_symbol::index right;
  5056. float score;
  5057. size_t size;
  5058. };
  5059. struct llm_tokenizer_spm {
  5060. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  5061. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5062. // split string into utf8 chars
  5063. int index = 0;
  5064. size_t offs = 0;
  5065. while (offs < text.size()) {
  5066. llm_symbol sym;
  5067. size_t len = utf8_len(text[offs]);
  5068. sym.text = text.c_str() + offs;
  5069. sym.n = std::min(len, text.size() - offs);
  5070. offs += sym.n;
  5071. sym.prev = index - 1;
  5072. sym.next = offs == text.size() ? -1 : index + 1;
  5073. index++;
  5074. symbols.emplace_back(sym);
  5075. }
  5076. // seed the work queue with all possible 2-character tokens.
  5077. for (size_t i = 1; i < symbols.size(); ++i) {
  5078. try_add_bigram(i - 1, i);
  5079. }
  5080. // keep substituting the highest frequency pairs for as long as we can.
  5081. while (!work_queue.empty()) {
  5082. auto bigram = work_queue.top();
  5083. work_queue.pop();
  5084. auto & left_sym = symbols[bigram.left];
  5085. auto & right_sym = symbols[bigram.right];
  5086. // if one of the symbols already got merged, skip it.
  5087. if (left_sym.n == 0 || right_sym.n == 0 ||
  5088. left_sym.n + right_sym.n != bigram.size) {
  5089. continue;
  5090. }
  5091. // merge the right sym into the left one
  5092. left_sym.n += right_sym.n;
  5093. right_sym.n = 0;
  5094. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  5095. // remove the right sym from the chain
  5096. left_sym.next = right_sym.next;
  5097. if (right_sym.next >= 0) {
  5098. symbols[right_sym.next].prev = bigram.left;
  5099. }
  5100. // find more substitutions
  5101. try_add_bigram(left_sym.prev, bigram.left);
  5102. try_add_bigram(bigram.left, left_sym.next);
  5103. }
  5104. for (int i = 0; i != -1; i = symbols[i].next) {
  5105. auto & symbol = symbols[i];
  5106. resegment(symbol, output);
  5107. }
  5108. }
  5109. private:
  5110. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  5111. auto text = std::string(symbol.text, symbol.n);
  5112. auto token = vocab.token_to_id.find(text);
  5113. // Do we need to support is_unused?
  5114. if (token != vocab.token_to_id.end()) {
  5115. output.push_back((*token).second);
  5116. return;
  5117. }
  5118. const auto p = rev_merge.find(text);
  5119. if (p == rev_merge.end()) {
  5120. // output any symbols that did not form tokens as bytes.
  5121. for (int j = 0; j < (int)symbol.n; ++j) {
  5122. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  5123. output.push_back(token_id);
  5124. }
  5125. return;
  5126. }
  5127. resegment(symbols[p->second.first], output);
  5128. resegment(symbols[p->second.second], output);
  5129. }
  5130. void try_add_bigram(int left, int right) {
  5131. if (left == -1 || right == -1) {
  5132. return;
  5133. }
  5134. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  5135. auto token = vocab.token_to_id.find(text);
  5136. if (token == vocab.token_to_id.end()) {
  5137. return;
  5138. }
  5139. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  5140. return;
  5141. }
  5142. const auto & tok_data = vocab.id_to_token[(*token).second];
  5143. llm_bigram_spm bigram;
  5144. bigram.left = left;
  5145. bigram.right = right;
  5146. bigram.score = tok_data.score;
  5147. bigram.size = text.size();
  5148. work_queue.push(bigram);
  5149. // Do we need to support is_unused?
  5150. rev_merge[text] = std::make_pair(left, right);
  5151. }
  5152. const llama_vocab & vocab;
  5153. std::vector<llm_symbol> symbols;
  5154. llm_bigram_spm::queue work_queue;
  5155. std::map<std::string, std::pair<int, int>> rev_merge;
  5156. };
  5157. // BPE tokenizer
  5158. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  5159. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  5160. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  5161. struct llm_bigram_bpe {
  5162. struct comparator {
  5163. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  5164. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  5165. }
  5166. };
  5167. using queue_storage = std::vector<llm_bigram_bpe>;
  5168. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  5169. llm_symbol::index left;
  5170. llm_symbol::index right;
  5171. std::string text;
  5172. int rank;
  5173. size_t size;
  5174. };
  5175. struct llm_tokenizer_bpe {
  5176. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  5177. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5178. int final_prev_index = -1;
  5179. auto word_collection = bpe_gpt2_preprocess(text);
  5180. symbols_final.clear();
  5181. for (auto & word : word_collection) {
  5182. work_queue = llm_bigram_bpe::queue();
  5183. symbols.clear();
  5184. int index = 0;
  5185. size_t offset = 0;
  5186. while (offset < word.size()) {
  5187. llm_symbol sym;
  5188. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  5189. sym.text = word.c_str() + offset;
  5190. sym.n = char_len;
  5191. offset += sym.n;
  5192. sym.prev = index - 1;
  5193. sym.next = offset == word.size() ? -1 : index + 1;
  5194. index++;
  5195. symbols.emplace_back(sym);
  5196. }
  5197. for (size_t i = 1; i < symbols.size(); ++i) {
  5198. add_new_bigram(i - 1, i);
  5199. }
  5200. // build token(s)
  5201. while (!work_queue.empty()) {
  5202. auto bigram = work_queue.top();
  5203. work_queue.pop();
  5204. auto & left_symbol = symbols[bigram.left];
  5205. auto & right_symbol = symbols[bigram.right];
  5206. if (left_symbol.n == 0 || right_symbol.n == 0) {
  5207. continue;
  5208. }
  5209. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  5210. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  5211. if (left_token + right_token != bigram.text) {
  5212. continue; // Skip this bigram if it's outdated
  5213. }
  5214. // merge the right sym into the left one
  5215. left_symbol.n += right_symbol.n;
  5216. right_symbol.n = 0;
  5217. // remove the right sym from the chain
  5218. left_symbol.next = right_symbol.next;
  5219. if (right_symbol.next >= 0) {
  5220. symbols[right_symbol.next].prev = bigram.left;
  5221. }
  5222. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  5223. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  5224. }
  5225. // add the fnished tokens to the final list keeping correct order for next and prev
  5226. for (auto & sym : symbols) {
  5227. if (sym.n > 0) {
  5228. sym.prev = final_prev_index;
  5229. sym.next = -1;
  5230. if (final_prev_index != -1) {
  5231. symbols_final[final_prev_index].next = symbols_final.size();
  5232. }
  5233. symbols_final.emplace_back(sym);
  5234. final_prev_index = symbols_final.size() - 1;
  5235. }
  5236. }
  5237. }
  5238. symbols = symbols_final;
  5239. if (!symbols.empty()) {
  5240. for (int i = 0; i != -1; i = symbols[i].next) {
  5241. auto & symbol = symbols[i];
  5242. if (symbol.n == 0) {
  5243. continue;
  5244. }
  5245. const std::string str = std::string(symbol.text, symbol.n);
  5246. const auto token = vocab.token_to_id.find(str);
  5247. if (token == vocab.token_to_id.end()) {
  5248. for (auto j = str.begin(); j != str.end(); ++j) {
  5249. std::string byte_str(1, *j);
  5250. auto token_multibyte = vocab.token_to_id.find(byte_str);
  5251. if (token_multibyte == vocab.token_to_id.end()) {
  5252. throw std::runtime_error("ERROR: byte not found in vocab");
  5253. }
  5254. output.push_back((*token_multibyte).second);
  5255. }
  5256. } else {
  5257. output.push_back((*token).second);
  5258. }
  5259. }
  5260. }
  5261. }
  5262. private:
  5263. void add_new_bigram(int left, int right) {
  5264. if (left == -1 || right == -1) {
  5265. return;
  5266. }
  5267. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  5268. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  5269. int rank_found = -1;
  5270. rank_found = vocab.find_bpe_rank(left_token, right_token);
  5271. if (rank_found < 0) {
  5272. return;
  5273. }
  5274. llm_bigram_bpe bigram;
  5275. bigram.left = left;
  5276. bigram.right = right;
  5277. bigram.text = left_token + right_token;
  5278. bigram.size = left_token.size() + right_token.size();
  5279. bigram.rank = rank_found;
  5280. work_queue.push(bigram);
  5281. }
  5282. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  5283. std::vector<std::string> bpe_words;
  5284. std::vector<std::string> bpe_encoded_words;
  5285. std::string token = "";
  5286. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  5287. bool collecting_numeric = false;
  5288. bool collecting_letter = false;
  5289. bool collecting_special = false;
  5290. bool collecting_whitespace_lookahead = false;
  5291. bool collecting = false;
  5292. std::vector<std::string> text_utf;
  5293. text_utf.reserve(text.size());
  5294. bpe_words.reserve(text.size());
  5295. bpe_encoded_words.reserve(text.size());
  5296. auto cps = codepoints_from_utf8(text);
  5297. for (size_t i = 0; i < cps.size(); ++i)
  5298. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  5299. for (int i = 0; i < (int)text_utf.size(); i++) {
  5300. const std::string & utf_char = text_utf[i];
  5301. bool split_condition = false;
  5302. int bytes_remain = text_utf.size() - i;
  5303. // forward backward lookups
  5304. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  5305. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  5306. // handling contractions
  5307. if (!split_condition && bytes_remain >= 2) {
  5308. // 's|'t|'m|'d
  5309. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  5310. split_condition = true;
  5311. }
  5312. if (split_condition) {
  5313. if (token.size()) {
  5314. bpe_words.emplace_back(token); // push previous content as token
  5315. }
  5316. token = utf_char + utf_char_next;
  5317. bpe_words.emplace_back(token);
  5318. token = "";
  5319. i++;
  5320. continue;
  5321. }
  5322. }
  5323. if (!split_condition && bytes_remain >= 3) {
  5324. // 're|'ve|'ll
  5325. if (utf_char == "\'" && (
  5326. (utf_char_next == "r" && utf_char_next_next == "e") ||
  5327. (utf_char_next == "v" && utf_char_next_next == "e") ||
  5328. (utf_char_next == "l" && utf_char_next_next == "l"))
  5329. ) {
  5330. split_condition = true;
  5331. }
  5332. if (split_condition) {
  5333. // current token + next token can be defined
  5334. if (token.size()) {
  5335. bpe_words.emplace_back(token); // push previous content as token
  5336. }
  5337. token = utf_char + utf_char_next + utf_char_next_next;
  5338. bpe_words.emplace_back(token); // the contraction
  5339. token = "";
  5340. i += 2;
  5341. continue;
  5342. }
  5343. }
  5344. if (!split_condition && !collecting) {
  5345. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  5346. collecting_letter = true;
  5347. collecting = true;
  5348. }
  5349. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5350. collecting_numeric = true;
  5351. collecting = true;
  5352. }
  5353. else if (
  5354. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  5355. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  5356. ) {
  5357. collecting_special = true;
  5358. collecting = true;
  5359. }
  5360. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  5361. collecting_whitespace_lookahead = true;
  5362. collecting = true;
  5363. }
  5364. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  5365. split_condition = true;
  5366. }
  5367. }
  5368. else if (!split_condition && collecting) {
  5369. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  5370. split_condition = true;
  5371. }
  5372. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  5373. split_condition = true;
  5374. }
  5375. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  5376. split_condition = true;
  5377. }
  5378. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5379. split_condition = true;
  5380. }
  5381. }
  5382. if (utf_char_next == "") {
  5383. split_condition = true; // final
  5384. token += utf_char;
  5385. }
  5386. if (split_condition) {
  5387. if (token.size()) {
  5388. bpe_words.emplace_back(token);
  5389. }
  5390. token = utf_char;
  5391. collecting = false;
  5392. collecting_letter = false;
  5393. collecting_numeric = false;
  5394. collecting_special = false;
  5395. collecting_whitespace_lookahead = false;
  5396. }
  5397. else {
  5398. token += utf_char;
  5399. }
  5400. }
  5401. for (std::string & word : bpe_words) {
  5402. std::string encoded_token = "";
  5403. for (char & c : word) {
  5404. encoded_token += bytes_to_unicode_bpe(c);
  5405. }
  5406. bpe_encoded_words.emplace_back(encoded_token);
  5407. }
  5408. return bpe_encoded_words;
  5409. }
  5410. const llama_vocab & vocab;
  5411. std::vector<llm_symbol> symbols;
  5412. std::vector<llm_symbol> symbols_final;
  5413. llm_bigram_bpe::queue work_queue;
  5414. };
  5415. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
  5416. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  5417. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  5418. } FRAGMENT_BUFFER_VARIANT_TYPE;
  5419. struct fragment_buffer_variant{
  5420. fragment_buffer_variant(llama_vocab::id _token)
  5421. :
  5422. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  5423. token(_token),
  5424. raw_text(_dummy),
  5425. offset(0),
  5426. length(0){}
  5427. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  5428. :
  5429. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  5430. token((llama_vocab::id)-1),
  5431. raw_text(_raw_text),
  5432. offset(_offset),
  5433. length(_length){
  5434. GGML_ASSERT( _offset >= 0 );
  5435. GGML_ASSERT( _length >= 1 );
  5436. GGML_ASSERT( offset + length <= raw_text.length() );
  5437. }
  5438. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  5439. const llama_vocab::id token;
  5440. const std::string _dummy;
  5441. const std::string & raw_text;
  5442. const uint64_t offset;
  5443. const uint64_t length;
  5444. };
  5445. // #define PRETOKENIZERDEBUG
  5446. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
  5447. {
  5448. // for each special token
  5449. for (const auto & st: vocab.special_tokens_cache) {
  5450. const auto & special_token = st.first;
  5451. const auto & special_id = st.second;
  5452. // for each text fragment
  5453. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  5454. while (it != buffer.end()) {
  5455. auto & fragment = (*it);
  5456. // if a fragment is text ( not yet processed )
  5457. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  5458. auto * raw_text = &(fragment.raw_text);
  5459. auto raw_text_base_offset = fragment.offset;
  5460. auto raw_text_base_length = fragment.length;
  5461. // loop over the text
  5462. while (true) {
  5463. // find the first occurence of a given special token in this fragment
  5464. // passing offset argument only limit the "search area" but match coordinates
  5465. // are still relative to the source full raw_text
  5466. auto match = raw_text->find(special_token, raw_text_base_offset);
  5467. // no occurences found, stop processing this fragment for a given special token
  5468. if (match == std::string::npos) break;
  5469. // check if match is within bounds of offset <-> length
  5470. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  5471. #ifdef PRETOKENIZERDEBUG
  5472. fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5473. #endif
  5474. auto source = std::distance(buffer.begin(), it);
  5475. // if match is further than base offset
  5476. // then we have some text to the left of it
  5477. if (match > raw_text_base_offset) {
  5478. // left
  5479. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  5480. const int64_t left_reminder_length = match - raw_text_base_offset;
  5481. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  5482. #ifdef PRETOKENIZERDEBUG
  5483. fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  5484. #endif
  5485. it++;
  5486. }
  5487. // special token
  5488. buffer.emplace_after(it, special_id);
  5489. it++;
  5490. // right
  5491. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  5492. const int64_t right_reminder_offset = match + special_token.length();
  5493. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  5494. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  5495. #ifdef PRETOKENIZERDEBUG
  5496. fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  5497. #endif
  5498. it++;
  5499. if (source == 0) {
  5500. buffer.erase_after(buffer.before_begin());
  5501. } else {
  5502. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5503. }
  5504. // repeat for the right side
  5505. raw_text_base_offset = right_reminder_offset;
  5506. raw_text_base_length = right_reminder_length;
  5507. #ifdef PRETOKENIZERDEBUG
  5508. fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5509. #endif
  5510. } else {
  5511. if (source == 0) {
  5512. buffer.erase_after(buffer.before_begin());
  5513. } else {
  5514. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5515. }
  5516. break;
  5517. }
  5518. }
  5519. }
  5520. it++;
  5521. }
  5522. }
  5523. }
  5524. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  5525. std::vector<llama_vocab::id> output;
  5526. // OG tokenizer behavior:
  5527. //
  5528. // tokenizer.encode('', add_bos=True) returns [1]
  5529. // tokenizer.encode('', add_bos=False) returns []
  5530. if (bos && vocab.special_bos_id != -1) {
  5531. output.push_back(vocab.special_bos_id);
  5532. }
  5533. if (raw_text.empty()) {
  5534. return output;
  5535. }
  5536. std::forward_list<fragment_buffer_variant> fragment_buffer;
  5537. fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
  5538. if (special) tokenizer_st_partition( vocab, fragment_buffer );
  5539. switch (vocab.type) {
  5540. case LLAMA_VOCAB_TYPE_SPM:
  5541. {
  5542. for (const auto & fragment: fragment_buffer)
  5543. {
  5544. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5545. {
  5546. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  5547. // TODO: It's likely possible to get rid of this string copy entirely
  5548. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  5549. // and passing 'add space prefix' as bool argument
  5550. //
  5551. auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
  5552. #ifdef PRETOKENIZERDEBUG
  5553. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5554. #endif
  5555. llm_tokenizer_spm tokenizer(vocab);
  5556. llama_escape_whitespace(raw_text);
  5557. tokenizer.tokenize(raw_text, output);
  5558. }
  5559. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5560. {
  5561. output.push_back(fragment.token);
  5562. }
  5563. }
  5564. } break;
  5565. case LLAMA_VOCAB_TYPE_BPE:
  5566. {
  5567. for (const auto & fragment: fragment_buffer)
  5568. {
  5569. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5570. {
  5571. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  5572. #ifdef PRETOKENIZERDEBUG
  5573. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5574. #endif
  5575. llm_tokenizer_bpe tokenizer(vocab);
  5576. tokenizer.tokenize(raw_text, output);
  5577. }
  5578. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5579. {
  5580. output.push_back(fragment.token);
  5581. }
  5582. }
  5583. } break;
  5584. }
  5585. return output;
  5586. }
  5587. //
  5588. // grammar - internal
  5589. //
  5590. struct llama_partial_utf8 {
  5591. uint32_t value; // bit value so far (unshifted)
  5592. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  5593. };
  5594. struct llama_grammar {
  5595. const std::vector<std::vector<llama_grammar_element>> rules;
  5596. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5597. // buffer for partially generated UTF-8 sequence from accepted tokens
  5598. llama_partial_utf8 partial_utf8;
  5599. };
  5600. struct llama_grammar_candidate {
  5601. size_t index;
  5602. const uint32_t * code_points;
  5603. llama_partial_utf8 partial_utf8;
  5604. };
  5605. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  5606. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  5607. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  5608. const char * src,
  5609. llama_partial_utf8 partial_start) {
  5610. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  5611. const char * pos = src;
  5612. std::vector<uint32_t> code_points;
  5613. uint32_t value = partial_start.value;
  5614. int n_remain = partial_start.n_remain;
  5615. // continue previous decode, if applicable
  5616. while (*pos != 0 && n_remain > 0) {
  5617. uint8_t next_byte = static_cast<uint8_t>(*pos);
  5618. if ((next_byte >> 6) != 2) {
  5619. // invalid sequence, abort
  5620. code_points.push_back(0);
  5621. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  5622. }
  5623. value = (value << 6) + (next_byte & 0x3F);
  5624. ++pos;
  5625. --n_remain;
  5626. }
  5627. if (partial_start.n_remain > 0 && n_remain == 0) {
  5628. code_points.push_back(value);
  5629. }
  5630. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  5631. while (*pos != 0) {
  5632. uint8_t first_byte = static_cast<uint8_t>(*pos);
  5633. uint8_t highbits = first_byte >> 4;
  5634. n_remain = lookup[highbits] - 1;
  5635. if (n_remain < 0) {
  5636. // invalid sequence, abort
  5637. code_points.clear();
  5638. code_points.push_back(0);
  5639. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  5640. }
  5641. uint8_t mask = (1 << (7 - n_remain)) - 1;
  5642. value = first_byte & mask;
  5643. ++pos;
  5644. while (*pos != 0 && n_remain > 0) {
  5645. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  5646. ++pos;
  5647. --n_remain;
  5648. }
  5649. if (n_remain == 0) {
  5650. code_points.push_back(value);
  5651. }
  5652. }
  5653. code_points.push_back(0);
  5654. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  5655. }
  5656. // returns true iff pos points to the end of one of the definitions of a rule
  5657. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  5658. switch (pos->type) {
  5659. case LLAMA_GRETYPE_END: return true; // NOLINT
  5660. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  5661. default: return false;
  5662. }
  5663. }
  5664. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  5665. // asserts that pos is pointing to a char range element
  5666. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  5667. const llama_grammar_element * pos,
  5668. const uint32_t chr) {
  5669. bool found = false;
  5670. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5671. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  5672. do {
  5673. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5674. // inclusive range, e.g. [a-z]
  5675. found = found || (pos->value <= chr && chr <= pos[1].value);
  5676. pos += 2;
  5677. } else {
  5678. // exact char match, e.g. [a] or "a"
  5679. found = found || pos->value == chr;
  5680. pos += 1;
  5681. }
  5682. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5683. return std::make_pair(found == is_positive_char, pos);
  5684. }
  5685. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  5686. // range at pos (regular or inverse range)
  5687. // asserts that pos is pointing to a char range element
  5688. static bool llama_grammar_match_partial_char(
  5689. const llama_grammar_element * pos,
  5690. const llama_partial_utf8 partial_utf8) {
  5691. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5692. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  5693. uint32_t partial_value = partial_utf8.value;
  5694. int n_remain = partial_utf8.n_remain;
  5695. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  5696. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  5697. return false;
  5698. }
  5699. // range of possible code points this partial UTF-8 sequence could complete to
  5700. uint32_t low = partial_value << (n_remain * 6);
  5701. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  5702. if (low == 0) {
  5703. if (n_remain == 2) {
  5704. low = 1 << 11;
  5705. } else if (n_remain == 3) {
  5706. low = 1 << 16;
  5707. }
  5708. }
  5709. do {
  5710. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5711. // inclusive range, e.g. [a-z]
  5712. if (pos->value <= high && low <= pos[1].value) {
  5713. return is_positive_char;
  5714. }
  5715. pos += 2;
  5716. } else {
  5717. // exact char match, e.g. [a] or "a"
  5718. if (low <= pos->value && pos->value <= high) {
  5719. return is_positive_char;
  5720. }
  5721. pos += 1;
  5722. }
  5723. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5724. return !is_positive_char;
  5725. }
  5726. // transforms a grammar pushdown stack into N possible stacks, all ending
  5727. // at a character range (terminal element)
  5728. static void llama_grammar_advance_stack(
  5729. const std::vector<std::vector<llama_grammar_element>> & rules,
  5730. const std::vector<const llama_grammar_element *> & stack,
  5731. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  5732. if (stack.empty()) {
  5733. new_stacks.emplace_back(stack);
  5734. return;
  5735. }
  5736. const llama_grammar_element * pos = stack.back();
  5737. switch (pos->type) {
  5738. case LLAMA_GRETYPE_RULE_REF: {
  5739. const size_t rule_id = static_cast<size_t>(pos->value);
  5740. const llama_grammar_element * subpos = rules[rule_id].data();
  5741. do {
  5742. // init new stack without the top (pos)
  5743. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5744. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  5745. // if this rule ref is followed by another element, add that to stack
  5746. new_stack.push_back(pos + 1);
  5747. }
  5748. if (!llama_grammar_is_end_of_sequence(subpos)) {
  5749. // if alternate is nonempty, add to stack
  5750. new_stack.push_back(subpos);
  5751. }
  5752. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5753. while (!llama_grammar_is_end_of_sequence(subpos)) {
  5754. // scan to end of alternate def
  5755. subpos++;
  5756. }
  5757. if (subpos->type == LLAMA_GRETYPE_ALT) {
  5758. // there's another alternate def of this rule to process
  5759. subpos++;
  5760. } else {
  5761. break;
  5762. }
  5763. } while (true);
  5764. break;
  5765. }
  5766. case LLAMA_GRETYPE_CHAR:
  5767. case LLAMA_GRETYPE_CHAR_NOT:
  5768. new_stacks.emplace_back(stack);
  5769. break;
  5770. default:
  5771. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  5772. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  5773. // those
  5774. GGML_ASSERT(false);
  5775. }
  5776. }
  5777. // takes a set of possible pushdown stacks on a grammar, which are required to
  5778. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  5779. // produces the N possible stacks if the given char is accepted at those
  5780. // positions
  5781. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  5782. const std::vector<std::vector<llama_grammar_element>> & rules,
  5783. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5784. const uint32_t chr) {
  5785. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  5786. for (const auto & stack : stacks) {
  5787. if (stack.empty()) {
  5788. continue;
  5789. }
  5790. auto match = llama_grammar_match_char(stack.back(), chr);
  5791. if (match.first) {
  5792. const llama_grammar_element * pos = match.second;
  5793. // update top of stack to next element, if any
  5794. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5795. if (!llama_grammar_is_end_of_sequence(pos)) {
  5796. new_stack.push_back(pos);
  5797. }
  5798. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5799. }
  5800. }
  5801. return new_stacks;
  5802. }
  5803. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5804. const std::vector<std::vector<llama_grammar_element>> & rules,
  5805. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5806. const std::vector<llama_grammar_candidate> & candidates);
  5807. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  5808. const std::vector<std::vector<llama_grammar_element>> & rules,
  5809. const std::vector<const llama_grammar_element *> & stack,
  5810. const std::vector<llama_grammar_candidate> & candidates) {
  5811. std::vector<llama_grammar_candidate> rejects;
  5812. if (stack.empty()) {
  5813. for (const auto & tok : candidates) {
  5814. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  5815. rejects.push_back(tok);
  5816. }
  5817. }
  5818. return rejects;
  5819. }
  5820. const llama_grammar_element * stack_pos = stack.back();
  5821. std::vector<llama_grammar_candidate> next_candidates;
  5822. for (const auto & tok : candidates) {
  5823. if (*tok.code_points == 0) {
  5824. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  5825. // that cannot satisfy this position in grammar
  5826. if (tok.partial_utf8.n_remain != 0 &&
  5827. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  5828. rejects.push_back(tok);
  5829. }
  5830. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  5831. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  5832. } else {
  5833. rejects.push_back(tok);
  5834. }
  5835. }
  5836. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  5837. // update top of stack to next element, if any
  5838. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  5839. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  5840. stack_after.push_back(stack_pos_after);
  5841. }
  5842. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  5843. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  5844. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  5845. for (const auto & tok : next_rejects) {
  5846. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  5847. }
  5848. return rejects;
  5849. }
  5850. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5851. const std::vector<std::vector<llama_grammar_element>> & rules,
  5852. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5853. const std::vector<llama_grammar_candidate> & candidates) {
  5854. GGML_ASSERT(!stacks.empty()); // REVIEW
  5855. if (candidates.empty()) {
  5856. return std::vector<llama_grammar_candidate>();
  5857. }
  5858. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  5859. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  5860. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  5861. }
  5862. return rejects;
  5863. }
  5864. //
  5865. // grammar - external
  5866. //
  5867. struct llama_grammar * llama_grammar_init(
  5868. const llama_grammar_element ** rules,
  5869. size_t n_rules,
  5870. size_t start_rule_index) {
  5871. const llama_grammar_element * pos;
  5872. // copy rule definitions into vectors
  5873. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  5874. for (size_t i = 0; i < n_rules; i++) {
  5875. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  5876. vec_rules[i].push_back(*pos);
  5877. }
  5878. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  5879. }
  5880. // loop over alternates of start rule to build initial stacks
  5881. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5882. pos = rules[start_rule_index];
  5883. do {
  5884. std::vector<const llama_grammar_element *> stack;
  5885. if (!llama_grammar_is_end_of_sequence(pos)) {
  5886. // if alternate is nonempty, add to stack
  5887. stack.push_back(pos);
  5888. }
  5889. llama_grammar_advance_stack(vec_rules, stack, stacks);
  5890. while (!llama_grammar_is_end_of_sequence(pos)) {
  5891. // scan to end of alternate def
  5892. pos++;
  5893. }
  5894. if (pos->type == LLAMA_GRETYPE_ALT) {
  5895. // there's another alternate def of this rule to process
  5896. pos++;
  5897. } else {
  5898. break;
  5899. }
  5900. } while (true);
  5901. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  5902. }
  5903. void llama_grammar_free(struct llama_grammar * grammar) {
  5904. delete grammar;
  5905. }
  5906. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  5907. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  5908. // redirect elements in stacks to point to new rules
  5909. for (size_t is = 0; is < result->stacks.size(); is++) {
  5910. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  5911. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  5912. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  5913. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  5914. result->stacks[is][ie] = &result->rules[ir0][ir1];
  5915. }
  5916. }
  5917. }
  5918. }
  5919. }
  5920. return result;
  5921. }
  5922. //
  5923. // sampling
  5924. //
  5925. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5926. if (seed == LLAMA_DEFAULT_SEED) {
  5927. seed = time(NULL);
  5928. }
  5929. ctx->rng.seed(seed);
  5930. }
  5931. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  5932. GGML_ASSERT(candidates->size > 0);
  5933. const int64_t t_start_sample_us = ggml_time_us();
  5934. // Sort the logits in descending order
  5935. if (!candidates->sorted) {
  5936. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5937. return a.logit > b.logit;
  5938. });
  5939. candidates->sorted = true;
  5940. }
  5941. float max_l = candidates->data[0].logit;
  5942. float cum_sum = 0.0f;
  5943. for (size_t i = 0; i < candidates->size; ++i) {
  5944. float p = expf(candidates->data[i].logit - max_l);
  5945. candidates->data[i].p = p;
  5946. cum_sum += p;
  5947. }
  5948. for (size_t i = 0; i < candidates->size; ++i) {
  5949. candidates->data[i].p /= cum_sum;
  5950. }
  5951. if (ctx) {
  5952. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5953. }
  5954. }
  5955. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  5956. const int64_t t_start_sample_us = ggml_time_us();
  5957. k = std::max(k, (int) min_keep);
  5958. k = std::min(k, (int) candidates->size);
  5959. // Sort scores in descending order
  5960. if (!candidates->sorted) {
  5961. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  5962. return a.logit > b.logit;
  5963. };
  5964. if (k == (int) candidates->size) {
  5965. std::sort(candidates->data, candidates->data + candidates->size, comp);
  5966. } else {
  5967. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  5968. }
  5969. candidates->sorted = true;
  5970. }
  5971. candidates->size = k;
  5972. if (ctx) {
  5973. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5974. }
  5975. }
  5976. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5977. if (p >= 1.0f) {
  5978. return;
  5979. }
  5980. llama_sample_softmax(ctx, candidates);
  5981. const int64_t t_start_sample_us = ggml_time_us();
  5982. // Compute the cumulative probabilities
  5983. float cum_sum = 0.0f;
  5984. size_t last_idx = candidates->size;
  5985. for (size_t i = 0; i < candidates->size; ++i) {
  5986. cum_sum += candidates->data[i].p;
  5987. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  5988. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  5989. if (cum_sum >= p && i + 1 >= min_keep) {
  5990. last_idx = i + 1;
  5991. break;
  5992. }
  5993. }
  5994. // Resize the output vector to keep only the top-p tokens
  5995. candidates->size = last_idx;
  5996. if (ctx) {
  5997. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5998. }
  5999. }
  6000. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  6001. if (z >= 1.0f || candidates->size <= 2) {
  6002. return;
  6003. }
  6004. llama_sample_softmax(nullptr, candidates);
  6005. const int64_t t_start_sample_us = ggml_time_us();
  6006. // Compute the first and second derivatives
  6007. std::vector<float> first_derivatives(candidates->size - 1);
  6008. std::vector<float> second_derivatives(candidates->size - 2);
  6009. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  6010. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  6011. }
  6012. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6013. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  6014. }
  6015. // Calculate absolute value of second derivatives
  6016. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6017. second_derivatives[i] = std::abs(second_derivatives[i]);
  6018. }
  6019. // Normalize the second derivatives
  6020. {
  6021. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  6022. if (second_derivatives_sum > 1e-6f) {
  6023. for (float & value : second_derivatives) {
  6024. value /= second_derivatives_sum;
  6025. }
  6026. } else {
  6027. for (float & value : second_derivatives) {
  6028. value = 1.0f / second_derivatives.size();
  6029. }
  6030. }
  6031. }
  6032. float cum_sum = 0.0f;
  6033. size_t last_idx = candidates->size;
  6034. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6035. cum_sum += second_derivatives[i];
  6036. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  6037. if (cum_sum > z && i >= min_keep) {
  6038. last_idx = i;
  6039. break;
  6040. }
  6041. }
  6042. // Resize the output vector to keep only the tokens above the tail location
  6043. candidates->size = last_idx;
  6044. if (ctx) {
  6045. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6046. }
  6047. }
  6048. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  6049. // Reference implementation:
  6050. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  6051. if (p >= 1.0f) {
  6052. return;
  6053. }
  6054. // Compute the softmax of logits and calculate entropy
  6055. llama_sample_softmax(nullptr, candidates);
  6056. const int64_t t_start_sample_us = ggml_time_us();
  6057. float entropy = 0.0f;
  6058. for (size_t i = 0; i < candidates->size; ++i) {
  6059. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  6060. }
  6061. // Compute the absolute difference between negative log probability and entropy for each candidate
  6062. std::vector<float> shifted_scores;
  6063. for (size_t i = 0; i < candidates->size; ++i) {
  6064. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  6065. shifted_scores.push_back(shifted_score);
  6066. }
  6067. // Sort tokens based on the shifted_scores and their corresponding indices
  6068. std::vector<size_t> indices(candidates->size);
  6069. std::iota(indices.begin(), indices.end(), 0);
  6070. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  6071. return shifted_scores[a] < shifted_scores[b];
  6072. });
  6073. // Compute the cumulative probabilities
  6074. float cum_sum = 0.0f;
  6075. size_t last_idx = indices.size();
  6076. for (size_t i = 0; i < indices.size(); ++i) {
  6077. size_t idx = indices[i];
  6078. cum_sum += candidates->data[idx].p;
  6079. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  6080. if (cum_sum > p && i >= min_keep - 1) {
  6081. last_idx = i + 1;
  6082. break;
  6083. }
  6084. }
  6085. // Resize the output vector to keep only the locally typical tokens
  6086. std::vector<llama_token_data> new_candidates;
  6087. for (size_t i = 0; i < last_idx; ++i) {
  6088. size_t idx = indices[i];
  6089. new_candidates.push_back(candidates->data[idx]);
  6090. }
  6091. // Replace the data in candidates with the new_candidates data
  6092. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  6093. candidates->size = new_candidates.size();
  6094. if (ctx) {
  6095. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6096. }
  6097. }
  6098. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  6099. const int64_t t_start_sample_us = ggml_time_us();
  6100. for (size_t i = 0; i < candidates_p->size; ++i) {
  6101. candidates_p->data[i].logit /= temp;
  6102. }
  6103. if (ctx) {
  6104. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6105. }
  6106. }
  6107. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  6108. llama_sample_temp(ctx, candidates_p, temp);
  6109. }
  6110. void llama_sample_repetition_penalties(
  6111. struct llama_context * ctx,
  6112. llama_token_data_array * candidates,
  6113. const llama_token * last_tokens,
  6114. size_t penalty_last_n,
  6115. float penalty_repeat,
  6116. float penalty_freq,
  6117. float penalty_present) {
  6118. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  6119. return;
  6120. }
  6121. const int64_t t_start_sample_us = ggml_time_us();
  6122. // Create a frequency map to count occurrences of each token in last_tokens
  6123. std::unordered_map<llama_token, int> token_count;
  6124. for (size_t i = 0; i < penalty_last_n; ++i) {
  6125. token_count[last_tokens[i]]++;
  6126. }
  6127. // Apply frequency and presence penalties to the candidates
  6128. for (size_t i = 0; i < candidates->size; ++i) {
  6129. const auto token_iter = token_count.find(candidates->data[i].id);
  6130. if (token_iter == token_count.end()) {
  6131. continue;
  6132. }
  6133. const int count = token_iter->second;
  6134. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  6135. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  6136. if (candidates->data[i].logit <= 0) {
  6137. candidates->data[i].logit *= penalty_repeat;
  6138. } else {
  6139. candidates->data[i].logit /= penalty_repeat;
  6140. }
  6141. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  6142. }
  6143. candidates->sorted = false;
  6144. if (ctx) {
  6145. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6146. }
  6147. }
  6148. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  6149. GGML_ASSERT(ctx);
  6150. const int64_t t_start_sample_us = ggml_time_us();
  6151. bool allow_eos = false;
  6152. for (const auto & stack : grammar->stacks) {
  6153. if (stack.empty()) {
  6154. allow_eos = true;
  6155. break;
  6156. }
  6157. }
  6158. const llama_token eos = llama_token_eos(ctx);
  6159. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  6160. std::vector<llama_grammar_candidate> candidates_grammar;
  6161. for (size_t i = 0; i < candidates->size; ++i) {
  6162. const llama_token id = candidates->data[i].id;
  6163. const std::string piece = llama_token_to_str(ctx, id);
  6164. if (id == eos) {
  6165. if (!allow_eos) {
  6166. candidates->data[i].logit = -INFINITY;
  6167. }
  6168. } else if (piece.empty() || piece[0] == 0) {
  6169. candidates->data[i].logit = -INFINITY;
  6170. } else {
  6171. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  6172. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  6173. }
  6174. }
  6175. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  6176. for (const auto & reject : rejects) {
  6177. candidates->data[reject.index].logit = -INFINITY;
  6178. }
  6179. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6180. }
  6181. static void llama_log_softmax(float * array, size_t size) {
  6182. float max_l = *std::max_element(array, array + size);
  6183. float sum = 0.f;
  6184. for (size_t i = 0; i < size; ++i) {
  6185. float p = expf(array[i] - max_l);
  6186. sum += p;
  6187. array[i] = p;
  6188. }
  6189. for (size_t i = 0; i < size; ++i) {
  6190. array[i] = logf(array[i] / sum);
  6191. }
  6192. }
  6193. void llama_sample_classifier_free_guidance(
  6194. struct llama_context * ctx,
  6195. llama_token_data_array * candidates,
  6196. struct llama_context * guidance_ctx,
  6197. float scale) {
  6198. int64_t t_start_sample_us = ggml_time_us();
  6199. GGML_ASSERT(ctx);
  6200. auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  6201. GGML_ASSERT(n_vocab == (int)candidates->size);
  6202. GGML_ASSERT(!candidates->sorted);
  6203. std::vector<float> logits_base;
  6204. logits_base.reserve(candidates->size);
  6205. for (size_t i = 0; i < candidates->size; ++i) {
  6206. logits_base.push_back(candidates->data[i].logit);
  6207. }
  6208. llama_log_softmax(logits_base.data(), candidates->size);
  6209. float* logits_guidance = llama_get_logits(guidance_ctx);
  6210. llama_log_softmax(logits_guidance, n_vocab);
  6211. for (int i = 0; i < n_vocab; ++i) {
  6212. float logit_guidance = logits_guidance[i];
  6213. float logit_base = logits_base[i];
  6214. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  6215. }
  6216. if (ctx) {
  6217. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6218. }
  6219. }
  6220. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  6221. GGML_ASSERT(ctx);
  6222. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  6223. int64_t t_start_sample_us;
  6224. t_start_sample_us = ggml_time_us();
  6225. llama_sample_softmax(nullptr, candidates);
  6226. // Estimate s_hat using the most probable m tokens
  6227. float s_hat = 0.0;
  6228. float sum_ti_bi = 0.0;
  6229. float sum_ti_sq = 0.0;
  6230. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  6231. float t_i = logf(float(i + 2) / float(i + 1));
  6232. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  6233. sum_ti_bi += t_i * b_i;
  6234. sum_ti_sq += t_i * t_i;
  6235. }
  6236. s_hat = sum_ti_bi / sum_ti_sq;
  6237. // Compute k from the estimated s_hat and target surprise value
  6238. float epsilon_hat = s_hat - 1;
  6239. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  6240. // Sample the next word X using top-k sampling
  6241. llama_sample_top_k(nullptr, candidates, int(k), 1);
  6242. if (ctx) {
  6243. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6244. }
  6245. llama_token X = llama_sample_token(ctx, candidates);
  6246. t_start_sample_us = ggml_time_us();
  6247. // Compute error as the difference between observed surprise and target surprise value
  6248. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6249. return candidate.id == X;
  6250. }));
  6251. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6252. float e = observed_surprise - tau;
  6253. // Update mu using the learning rate and error
  6254. *mu = *mu - eta * e;
  6255. if (ctx) {
  6256. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6257. }
  6258. return X;
  6259. }
  6260. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  6261. int64_t t_start_sample_us;
  6262. t_start_sample_us = ggml_time_us();
  6263. llama_sample_softmax(ctx, candidates);
  6264. // Truncate the words with surprise values greater than mu
  6265. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6266. return -log2f(candidate.p) > *mu;
  6267. }));
  6268. if (candidates->size == 0) {
  6269. candidates->size = 1;
  6270. }
  6271. if (ctx) {
  6272. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6273. }
  6274. // Normalize the probabilities of the remaining words
  6275. llama_sample_softmax(ctx, candidates);
  6276. // Sample the next word X from the remaining words
  6277. llama_token X = llama_sample_token(ctx, candidates);
  6278. t_start_sample_us = ggml_time_us();
  6279. // Compute error as the difference between observed surprise and target surprise value
  6280. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6281. return candidate.id == X;
  6282. }));
  6283. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6284. float e = observed_surprise - tau;
  6285. // Update mu using the learning rate and error
  6286. *mu = *mu - eta * e;
  6287. if (ctx) {
  6288. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6289. }
  6290. return X;
  6291. }
  6292. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  6293. const int64_t t_start_sample_us = ggml_time_us();
  6294. // Find max element
  6295. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  6296. return a.logit < b.logit;
  6297. });
  6298. llama_token result = max_iter->id;
  6299. if (ctx) {
  6300. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6301. ctx->n_sample++;
  6302. }
  6303. return result;
  6304. }
  6305. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  6306. GGML_ASSERT(ctx);
  6307. const int64_t t_start_sample_us = ggml_time_us();
  6308. llama_sample_softmax(nullptr, candidates);
  6309. std::vector<float> probs;
  6310. probs.reserve(candidates->size);
  6311. for (size_t i = 0; i < candidates->size; ++i) {
  6312. probs.push_back(candidates->data[i].p);
  6313. }
  6314. std::discrete_distribution<> dist(probs.begin(), probs.end());
  6315. auto & rng = ctx->rng;
  6316. int idx = dist(rng);
  6317. llama_token result = candidates->data[idx].id;
  6318. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6319. ctx->n_sample++;
  6320. return result;
  6321. }
  6322. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  6323. const int64_t t_start_sample_us = ggml_time_us();
  6324. if (token == llama_token_eos(ctx)) {
  6325. for (const auto & stack : grammar->stacks) {
  6326. if (stack.empty()) {
  6327. return;
  6328. }
  6329. }
  6330. GGML_ASSERT(false);
  6331. }
  6332. const std::string piece = llama_token_to_str(ctx, token);
  6333. // Note terminating 0 in decoded string
  6334. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  6335. const auto & code_points = decoded.first;
  6336. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  6337. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  6338. }
  6339. grammar->partial_utf8 = decoded.second;
  6340. GGML_ASSERT(!grammar->stacks.empty());
  6341. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6342. }
  6343. //
  6344. // Beam search
  6345. //
  6346. struct llama_beam {
  6347. std::vector<llama_token> tokens;
  6348. float p; // Cumulative beam probability (renormalized relative to all beams)
  6349. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  6350. // Sort beams by probability. In case of ties, prefer beams at eob.
  6351. bool operator<(const llama_beam & rhs) const {
  6352. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  6353. }
  6354. // Shift off first n tokens and discard them.
  6355. void shift_tokens(const size_t n) {
  6356. if (n) {
  6357. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  6358. tokens.resize(tokens.size() - n);
  6359. }
  6360. }
  6361. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  6362. };
  6363. // A struct for calculating logit-related info.
  6364. struct llama_logit_info {
  6365. const float * const logits;
  6366. const int n_vocab;
  6367. const float max_l;
  6368. const float normalizer;
  6369. struct sum_exp {
  6370. float max_l;
  6371. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  6372. };
  6373. llama_logit_info(llama_context * ctx)
  6374. : logits(llama_get_logits(ctx))
  6375. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  6376. , max_l(*std::max_element(logits, logits + n_vocab))
  6377. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  6378. { }
  6379. llama_token_data get_token_data(const llama_token token_id) const {
  6380. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  6381. return {token_id, logits[token_id], p};
  6382. }
  6383. // Return top k token_data by logit.
  6384. std::vector<llama_token_data> top_k(size_t k) {
  6385. std::vector<llama_token_data> min_heap; // min-heap by logit
  6386. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  6387. min_heap.reserve(k_min);
  6388. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  6389. min_heap.push_back(get_token_data(token_id));
  6390. }
  6391. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  6392. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  6393. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  6394. if (min_heap.front().logit < logits[token_id]) {
  6395. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  6396. min_heap.back().id = token_id;
  6397. min_heap.back().logit = logits[token_id];
  6398. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  6399. }
  6400. }
  6401. return min_heap;
  6402. }
  6403. float probability_from_logit(float logit) const {
  6404. return normalizer * std::exp(logit - max_l);
  6405. }
  6406. };
  6407. struct llama_beam_search_data {
  6408. llama_context * ctx;
  6409. size_t n_beams;
  6410. int n_past;
  6411. int n_predict;
  6412. std::vector<llama_beam> beams;
  6413. std::vector<llama_beam> next_beams;
  6414. // Re-calculated on each loop iteration
  6415. size_t common_prefix_length;
  6416. // Used to communicate to/from callback on beams state.
  6417. std::vector<llama_beam_view> beam_views;
  6418. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  6419. : ctx(ctx)
  6420. , n_beams(n_beams)
  6421. , n_past(n_past)
  6422. , n_predict(n_predict)
  6423. , beam_views(n_beams) {
  6424. beams.reserve(n_beams);
  6425. next_beams.reserve(n_beams);
  6426. }
  6427. // Collapse beams to a single beam given by index.
  6428. void collapse_beams(const size_t beam_idx) {
  6429. if (0u < beam_idx) {
  6430. std::swap(beams[0], beams[beam_idx]);
  6431. }
  6432. beams.resize(1);
  6433. }
  6434. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  6435. // The repetative patterns below reflect the 2 stages of heaps:
  6436. // * Gather elements until the vector is full, then call std::make_heap() on it.
  6437. // * If the heap is full and a new element is found that should be included, pop the
  6438. // least element to the back(), replace it with the new, then push it into the heap.
  6439. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  6440. // Min-heaps use a greater-than comparator.
  6441. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  6442. if (beam.eob) {
  6443. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  6444. if (next_beams.size() < n_beams) {
  6445. next_beams.push_back(std::move(beam));
  6446. if (next_beams.size() == n_beams) {
  6447. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6448. }
  6449. } else if (next_beams.front().p < beam.p) {
  6450. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6451. next_beams.back() = std::move(beam);
  6452. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6453. }
  6454. } else {
  6455. // beam is not at end-of-sentence, so branch with next top_k tokens.
  6456. if (!beam.tokens.empty()) {
  6457. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  6458. }
  6459. llama_logit_info logit_info(ctx);
  6460. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  6461. size_t i=0;
  6462. if (next_beams.size() < n_beams) {
  6463. for (; next_beams.size() < n_beams ; ++i) {
  6464. llama_beam next_beam = beam;
  6465. next_beam.tokens.push_back(next_tokens[i].id);
  6466. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6467. next_beams.push_back(std::move(next_beam));
  6468. }
  6469. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6470. } else {
  6471. for (; next_beams.front().p == 0.0f ; ++i) {
  6472. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6473. next_beams.back() = beam;
  6474. next_beams.back().tokens.push_back(next_tokens[i].id);
  6475. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6476. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6477. }
  6478. }
  6479. for (; i < n_beams ; ++i) {
  6480. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  6481. if (next_beams.front().p < next_p) {
  6482. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6483. next_beams.back() = beam;
  6484. next_beams.back().tokens.push_back(next_tokens[i].id);
  6485. next_beams.back().p = next_p;
  6486. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6487. }
  6488. }
  6489. }
  6490. }
  6491. // Find common_prefix_length based on beams.
  6492. // Requires beams is not empty.
  6493. size_t find_common_prefix_length() {
  6494. size_t common_prefix_length = beams[0].tokens.size();
  6495. for (size_t i = 1 ; i < beams.size() ; ++i) {
  6496. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  6497. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  6498. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  6499. common_prefix_length = j;
  6500. break;
  6501. }
  6502. }
  6503. }
  6504. return common_prefix_length;
  6505. }
  6506. // Construct beams_state to send back to caller via the callback function.
  6507. // Side effect: set common_prefix_length = find_common_prefix_length();
  6508. llama_beams_state get_beams_state(const bool last_call) {
  6509. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6510. beam_views[i] = beams[i].view();
  6511. }
  6512. common_prefix_length = find_common_prefix_length();
  6513. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  6514. }
  6515. // Loop:
  6516. // * while i < n_predict, AND
  6517. // * any of the beams have not yet reached end-of-beam (eob), AND
  6518. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  6519. // (since all other beam probabilities can only decrease)
  6520. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  6521. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  6522. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  6523. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  6524. !beams[top_beam_index()].eob ; ++i) {
  6525. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  6526. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  6527. if (common_prefix_length) {
  6528. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  6529. n_past += common_prefix_length;
  6530. }
  6531. // Zero-out next_beam probabilities to place them last in following min-heap.
  6532. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  6533. for (llama_beam & beam : beams) {
  6534. beam.shift_tokens(common_prefix_length);
  6535. fill_next_beams_by_top_probabilities(beam);
  6536. }
  6537. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  6538. beams.swap(next_beams);
  6539. renormalize_beam_probabilities(beams);
  6540. }
  6541. collapse_beams(top_beam_index());
  6542. callback(callback_data, get_beams_state(true));
  6543. }
  6544. // As beams grow, the cumulative probabilities decrease.
  6545. // Renormalize them to avoid floating point underflow.
  6546. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  6547. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  6548. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  6549. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  6550. }
  6551. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  6552. size_t top_beam_index() {
  6553. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  6554. }
  6555. // Copy (p,eob) for each beam which may have been changed by the callback.
  6556. void update_beams_from_beam_views() {
  6557. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6558. beams[i].p = beam_views[i].p;
  6559. beams[i].eob = beam_views[i].eob;
  6560. }
  6561. }
  6562. };
  6563. void llama_beam_search(llama_context * ctx,
  6564. llama_beam_search_callback_fn_t callback, void * callback_data,
  6565. size_t n_beams, int n_past, int n_predict) {
  6566. assert(ctx);
  6567. const int64_t t_start_sample_us = ggml_time_us();
  6568. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  6569. beam_search_data.loop(callback, callback_data);
  6570. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6571. ctx->n_sample++;
  6572. }
  6573. //
  6574. // quantization
  6575. //
  6576. template <typename T>
  6577. struct no_init {
  6578. T value;
  6579. no_init() { /* do nothing */ }
  6580. };
  6581. static void llama_convert_tensor_internal(
  6582. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  6583. const size_t nelements, const int nthread
  6584. ) {
  6585. if (output.size() < nelements) {
  6586. output.resize(nelements);
  6587. }
  6588. float * f32_output = (float *) output.data();
  6589. ggml_type_traits_t qtype;
  6590. if (ggml_is_quantized(tensor->type)) {
  6591. qtype = ggml_internal_get_type_traits(tensor->type);
  6592. if (qtype.to_float == NULL) {
  6593. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  6594. }
  6595. } else if (tensor->type != GGML_TYPE_F16) {
  6596. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  6597. }
  6598. if (nthread < 2) {
  6599. if (tensor->type == GGML_TYPE_F16) {
  6600. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  6601. } else if (ggml_is_quantized(tensor->type)) {
  6602. qtype.to_float(tensor->data, f32_output, nelements);
  6603. } else {
  6604. GGML_ASSERT(false); // unreachable
  6605. }
  6606. return;
  6607. }
  6608. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  6609. auto block_size_bytes = ggml_type_size(tensor->type);
  6610. GGML_ASSERT(nelements % block_size == 0);
  6611. auto nblocks = nelements / block_size;
  6612. auto blocks_per_thread = nblocks / nthread;
  6613. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  6614. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  6615. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  6616. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  6617. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  6618. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  6619. if (typ == GGML_TYPE_F16) {
  6620. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  6621. } else {
  6622. qtype.to_float(inbuf, outbuf, nels);
  6623. }
  6624. };
  6625. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  6626. in_buff_offs += thr_block_bytes;
  6627. out_buff_offs += thr_elems;
  6628. }
  6629. for (auto & w : workers) { w.join(); }
  6630. workers.clear();
  6631. }
  6632. #ifdef GGML_USE_K_QUANTS
  6633. static ggml_type get_k_quant_type(
  6634. ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
  6635. int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
  6636. ) {
  6637. const std::string name = ggml_get_name(tensor);
  6638. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6639. const auto tn = LLM_TN(model.arch);
  6640. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  6641. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  6642. };
  6643. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6644. int nx = tensor->ne[0];
  6645. if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  6646. new_type = GGML_TYPE_Q8_0;
  6647. }
  6648. else if (new_type != GGML_TYPE_Q8_0) {
  6649. new_type = GGML_TYPE_Q6_K;
  6650. }
  6651. } else if (name.find("attn_v.weight") != std::string::npos) {
  6652. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6653. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6654. new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6655. }
  6656. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6657. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  6658. use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  6659. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  6660. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  6661. (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  6662. if (model.type == MODEL_70B) {
  6663. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  6664. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  6665. // nearly negligible increase in model size by quantizing this tensor with more bits:
  6666. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  6667. }
  6668. ++*i_attention_wv;
  6669. } else if (name.find("ffn_down.weight") != std::string::npos) {
  6670. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6671. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6672. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  6673. : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
  6674. : GGML_TYPE_Q3_K;
  6675. }
  6676. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  6677. new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  6678. }
  6679. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  6680. if (model.arch == LLM_ARCH_FALCON) {
  6681. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  6682. use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6683. } else {
  6684. if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6685. }
  6686. }
  6687. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6688. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
  6689. new_type = GGML_TYPE_Q5_K;
  6690. }
  6691. ++*i_feed_forward_w2;
  6692. } else if (name.find("attn_output.weight") != std::string::npos) {
  6693. if (model.arch != LLM_ARCH_FALCON) {
  6694. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  6695. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  6696. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6697. } else {
  6698. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6699. }
  6700. }
  6701. else if (name.find("attn_qkv.weight") != std::string::npos) {
  6702. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6703. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  6704. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  6705. }
  6706. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  6707. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6708. }
  6709. // This can be used to reduce the size of the Q5_K_S model.
  6710. // The associated PPL increase is fully in line with the size reduction
  6711. //else {
  6712. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  6713. //}
  6714. bool convert_incompatible_tensor = false;
  6715. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  6716. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  6717. int nx = tensor->ne[0];
  6718. int ny = tensor->ne[1];
  6719. if (nx % QK_K != 0) {
  6720. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
  6721. convert_incompatible_tensor = true;
  6722. }
  6723. }
  6724. if (convert_incompatible_tensor) {
  6725. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6726. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  6727. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
  6728. } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  6729. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  6730. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
  6731. } else {
  6732. throw std::runtime_error("Unsupported tensor size encountered\n");
  6733. }
  6734. }
  6735. return new_type;
  6736. }
  6737. #endif
  6738. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  6739. ggml_type quantized_type;
  6740. llama_ftype ftype = params->ftype;
  6741. switch (params->ftype) {
  6742. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  6743. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  6744. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  6745. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  6746. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  6747. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  6748. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  6749. #ifdef GGML_USE_K_QUANTS
  6750. // K-quants
  6751. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  6752. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  6753. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  6754. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  6755. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  6756. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  6757. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  6758. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  6759. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  6760. #endif
  6761. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  6762. }
  6763. int nthread = params->nthread;
  6764. if (nthread <= 0) {
  6765. nthread = std::thread::hardware_concurrency();
  6766. }
  6767. // mmap consistently increases speed Linux, and also increases speed on Windows with
  6768. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  6769. #if defined(__linux__) || defined(_WIN32)
  6770. constexpr bool use_mmap = true;
  6771. #else
  6772. constexpr bool use_mmap = false;
  6773. #endif
  6774. llama_model_loader ml(fname_inp, use_mmap);
  6775. if (ml.use_mmap) {
  6776. ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
  6777. }
  6778. llama_model model;
  6779. llm_load_arch(ml, model);
  6780. llm_load_hparams(ml, model);
  6781. if (params->only_copy) {
  6782. ftype = model.ftype;
  6783. }
  6784. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  6785. struct gguf_context * ctx_out = gguf_init_empty();
  6786. // copy the KV pairs from the input file
  6787. gguf_set_kv (ctx_out, ml.ctx_gguf);
  6788. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  6789. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  6790. #ifdef GGML_USE_K_QUANTS
  6791. int n_attention_wv = 0;
  6792. int n_feed_forward_w2 = 0;
  6793. for (int i = 0; i < ml.n_tensors; ++i) {
  6794. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6795. const std::string name = ggml_get_name(meta);
  6796. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6797. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  6798. ++n_attention_wv;
  6799. }
  6800. else if (name.find("ffn_down.weight") != std::string::npos) {
  6801. ++n_feed_forward_w2;
  6802. }
  6803. }
  6804. if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
  6805. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  6806. __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
  6807. }
  6808. int i_attention_wv = 0;
  6809. int i_feed_forward_w2 = 0;
  6810. #endif
  6811. size_t total_size_org = 0;
  6812. size_t total_size_new = 0;
  6813. std::vector<int64_t> hist_all(1 << 4, 0);
  6814. std::vector<std::thread> workers;
  6815. workers.reserve(nthread);
  6816. std::mutex mutex;
  6817. int idx = 0;
  6818. std::vector<no_init<uint8_t>> read_data;
  6819. std::vector<no_init<uint8_t>> work;
  6820. std::vector<no_init<float>> f32_conv_buf;
  6821. // populate the original tensors so we get an initial meta data
  6822. for (int i = 0; i < ml.n_tensors; ++i) {
  6823. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6824. gguf_add_tensor(ctx_out, meta);
  6825. }
  6826. std::ofstream fout(fname_out, std::ios::binary);
  6827. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  6828. const size_t meta_size = gguf_get_meta_size(ctx_out);
  6829. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  6830. // placeholder for the meta data
  6831. ::zeros(fout, meta_size);
  6832. for (int i = 0; i < ml.n_tensors; ++i) {
  6833. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  6834. const std::string name = ggml_get_name(tensor);
  6835. if (!ml.use_mmap) {
  6836. if (read_data.size() < ggml_nbytes(tensor)) {
  6837. read_data.resize(ggml_nbytes(tensor));
  6838. }
  6839. tensor->data = read_data.data();
  6840. }
  6841. ml.load_data_for(tensor);
  6842. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  6843. ++idx, ml.n_tensors,
  6844. ggml_get_name(tensor),
  6845. llama_format_tensor_shape(tensor).c_str(),
  6846. ggml_type_name(tensor->type));
  6847. // This used to be a regex, but <regex> has an extreme cost to compile times.
  6848. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  6849. // quantize only 2D tensors
  6850. quantize &= (tensor->n_dims == 2);
  6851. quantize &= params->quantize_output_tensor || name != "output.weight";
  6852. quantize &= !params->only_copy;
  6853. enum ggml_type new_type;
  6854. void * new_data;
  6855. size_t new_size;
  6856. if (quantize) {
  6857. new_type = quantized_type;
  6858. #ifdef GGML_USE_K_QUANTS
  6859. new_type = get_k_quant_type(
  6860. new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
  6861. );
  6862. #endif
  6863. // If we've decided to quantize to the same type the tensor is already
  6864. // in then there's nothing to do.
  6865. quantize = tensor->type != new_type;
  6866. }
  6867. if (!quantize) {
  6868. new_type = tensor->type;
  6869. new_data = tensor->data;
  6870. new_size = ggml_nbytes(tensor);
  6871. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  6872. } else {
  6873. const size_t nelements = ggml_nelements(tensor);
  6874. float * f32_data;
  6875. if (tensor->type == GGML_TYPE_F32) {
  6876. f32_data = (float *) tensor->data;
  6877. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  6878. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  6879. } else {
  6880. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  6881. f32_data = (float *) f32_conv_buf.data();
  6882. }
  6883. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  6884. fflush(stdout);
  6885. if (work.size() < nelements * 4) {
  6886. work.resize(nelements * 4); // upper bound on size
  6887. }
  6888. new_data = work.data();
  6889. std::array<int64_t, 1 << 4> hist_cur = {};
  6890. static const int chunk_size = 32 * 512;
  6891. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  6892. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  6893. if (nthread_use < 2) {
  6894. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  6895. } else {
  6896. size_t counter = 0;
  6897. new_size = 0;
  6898. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  6899. std::array<int64_t, 1 << 4> local_hist = {};
  6900. size_t local_size = 0;
  6901. while (true) {
  6902. std::unique_lock<std::mutex> lock(mutex);
  6903. size_t first = counter; counter += chunk_size;
  6904. if (first >= nelements) {
  6905. if (local_size > 0) {
  6906. for (int j=0; j<int(local_hist.size()); ++j) {
  6907. hist_cur[j] += local_hist[j];
  6908. }
  6909. new_size += local_size;
  6910. }
  6911. break;
  6912. }
  6913. lock.unlock();
  6914. size_t last = std::min(nelements, first + chunk_size);
  6915. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  6916. }
  6917. };
  6918. for (int it = 0; it < nthread_use - 1; ++it) {
  6919. workers.emplace_back(compute);
  6920. }
  6921. compute();
  6922. for (auto & w : workers) { w.join(); }
  6923. workers.clear();
  6924. }
  6925. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  6926. int64_t tot_count = 0;
  6927. for (size_t i = 0; i < hist_cur.size(); i++) {
  6928. hist_all[i] += hist_cur[i];
  6929. tot_count += hist_cur[i];
  6930. }
  6931. if (tot_count > 0) {
  6932. for (size_t i = 0; i < hist_cur.size(); i++) {
  6933. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  6934. }
  6935. }
  6936. LLAMA_LOG_INFO("\n");
  6937. }
  6938. total_size_org += ggml_nbytes(tensor);
  6939. total_size_new += new_size;
  6940. // update the gguf meta data as we go
  6941. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  6942. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  6943. // write tensor data + padding
  6944. fout.write((const char *) new_data, new_size);
  6945. zeros(fout, GGML_PAD(new_size, align) - new_size);
  6946. }
  6947. // go back to beginning of file and write the updated meta data
  6948. {
  6949. fout.seekp(0);
  6950. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  6951. gguf_get_meta_data(ctx_out, data.data());
  6952. fout.write((const char *) data.data(), data.size());
  6953. }
  6954. fout.close();
  6955. gguf_free(ctx_out);
  6956. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  6957. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  6958. // print histogram for all tensors
  6959. {
  6960. int64_t sum_all = 0;
  6961. for (size_t i = 0; i < hist_all.size(); i++) {
  6962. sum_all += hist_all[i];
  6963. }
  6964. if (sum_all > 0) {
  6965. LLAMA_LOG_INFO("%s: hist: ", __func__);
  6966. for (size_t i = 0; i < hist_all.size(); i++) {
  6967. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  6968. }
  6969. LLAMA_LOG_INFO("\n");
  6970. }
  6971. }
  6972. }
  6973. static int llama_apply_lora_from_file_internal(
  6974. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  6975. ) {
  6976. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  6977. const int64_t t_start_lora_us = ggml_time_us();
  6978. auto fin = std::ifstream(path_lora, std::ios::binary);
  6979. if (!fin) {
  6980. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  6981. return 1;
  6982. }
  6983. // verify magic and version
  6984. {
  6985. uint32_t magic;
  6986. fin.read((char *) &magic, sizeof(magic));
  6987. uint32_t format_version;
  6988. fin.read((char *) &format_version, sizeof(format_version));
  6989. if (format_version != 1) {
  6990. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  6991. return 1;
  6992. }
  6993. }
  6994. int32_t lora_r;
  6995. int32_t lora_alpha;
  6996. fin.read((char *) &lora_r, sizeof(lora_r));
  6997. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  6998. float scaling = scale * (float)lora_alpha / (float)lora_r;
  6999. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  7000. // create a temporary ggml context to store the lora tensors
  7001. // todo: calculate size from biggest possible tensor
  7002. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  7003. struct ggml_init_params params;
  7004. params.mem_size = lora_buf.size();
  7005. params.mem_buffer = lora_buf.data();
  7006. params.no_alloc = false;
  7007. ggml_context * lora_ctx = ggml_init(params);
  7008. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  7009. // create a name -> tensor map of the model to accelerate lookups
  7010. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  7011. for (const auto & kv : model.tensors_by_name) {
  7012. model_tensors.insert(kv);
  7013. }
  7014. // load base model
  7015. std::unique_ptr<llama_model_loader> ml;
  7016. ggml_context * base_ctx = NULL;
  7017. std::vector<uint8_t> base_buf;
  7018. if (path_base_model) {
  7019. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  7020. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  7021. size_t ctx_size;
  7022. size_t mmapped_size;
  7023. ml->calc_sizes(ctx_size, mmapped_size);
  7024. base_buf.resize(ctx_size);
  7025. ggml_init_params base_params;
  7026. base_params.mem_size = base_buf.size();
  7027. base_params.mem_buffer = base_buf.data();
  7028. base_params.no_alloc = ml->use_mmap;
  7029. base_ctx = ggml_init(base_params);
  7030. // maybe this should in llama_model_loader
  7031. if (ml->use_mmap) {
  7032. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  7033. }
  7034. }
  7035. // read tensors and apply
  7036. bool warned = false;
  7037. int n_tensors = 0;
  7038. std::vector<uint8_t> work_buffer;
  7039. while (true) {
  7040. int32_t n_dims;
  7041. int32_t length;
  7042. int32_t ftype;
  7043. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  7044. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  7045. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  7046. if (fin.eof()) {
  7047. break;
  7048. }
  7049. int32_t ne[2] = { 1, 1 };
  7050. for (int i = 0; i < n_dims; ++i) {
  7051. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  7052. }
  7053. std::string name;
  7054. {
  7055. char buf[1024];
  7056. fin.read(buf, length);
  7057. name = std::string(buf, length);
  7058. }
  7059. // check for lora suffix and get the type of tensor
  7060. const std::string lora_suffix = ".lora";
  7061. size_t pos = name.rfind(lora_suffix);
  7062. if (pos == std::string::npos) {
  7063. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  7064. return 1;
  7065. }
  7066. std::string lora_type = name.substr(pos + lora_suffix.length());
  7067. std::string base_name = name;
  7068. base_name.erase(pos);
  7069. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  7070. if (model_tensors.find(base_name) == model_tensors.end()) {
  7071. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  7072. return 1;
  7073. }
  7074. // create ggml tensor
  7075. ggml_type wtype;
  7076. switch (ftype) {
  7077. case 0: wtype = GGML_TYPE_F32; break;
  7078. case 1: wtype = GGML_TYPE_F16; break;
  7079. default:
  7080. {
  7081. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  7082. __func__, ftype);
  7083. return false;
  7084. }
  7085. }
  7086. ggml_tensor * lora_tensor;
  7087. if (n_dims == 2) {
  7088. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  7089. }
  7090. else {
  7091. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  7092. return 1;
  7093. }
  7094. ggml_set_name(lora_tensor, "lora_tensor");
  7095. // load tensor data
  7096. size_t offset = fin.tellg();
  7097. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  7098. offset = (offset + 31) & -32;
  7099. fin.seekg(offset);
  7100. fin.read((char*)lora_tensor->data, tensor_data_size);
  7101. lora_tensors[name] = lora_tensor;
  7102. // check if we have both A and B tensors and apply
  7103. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  7104. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  7105. ggml_tensor * dest_t = model_tensors[base_name];
  7106. offload_func_t offload_func = llama_nop;
  7107. offload_func_t offload_func_force_inplace = llama_nop;
  7108. #ifdef GGML_USE_CUBLAS
  7109. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  7110. if (dest_t->type != GGML_TYPE_F16) {
  7111. throw std::runtime_error(format(
  7112. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  7113. }
  7114. offload_func = ggml_cuda_assign_buffers;
  7115. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  7116. }
  7117. #endif // GGML_USE_CUBLAS
  7118. ggml_tensor * base_t;
  7119. if (ml) {
  7120. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  7121. // load from base model
  7122. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  7123. // TODO: throw
  7124. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  7125. return 1;
  7126. }
  7127. // TODO: not tested!! maybe not working!
  7128. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  7129. ml->load_data_for(base_t);
  7130. } else {
  7131. base_t = dest_t;
  7132. }
  7133. if (ggml_is_quantized(base_t->type)) {
  7134. if (!warned) {
  7135. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  7136. "use a f16 or f32 base model with --lora-base\n", __func__);
  7137. warned = true;
  7138. }
  7139. }
  7140. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  7141. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  7142. ggml_set_name(loraA, "loraA");
  7143. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  7144. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  7145. ggml_set_name(loraB, "loraB");
  7146. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  7147. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  7148. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  7149. return 1;
  7150. }
  7151. // w = w + BA*s
  7152. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  7153. offload_func(BA);
  7154. ggml_set_name(BA, "BA");
  7155. if (scaling != 1.0f) {
  7156. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  7157. ggml_set_name(scale_tensor, "scale_tensor");
  7158. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  7159. offload_func(BA);
  7160. ggml_set_name(BA, "BA_scaled");
  7161. }
  7162. ggml_tensor * r;
  7163. if (base_t == dest_t) {
  7164. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  7165. offload_func_force_inplace(r);
  7166. ggml_set_name(r, "r_add_inplace");
  7167. }
  7168. else {
  7169. r = ggml_add(lora_ctx, base_t, BA);
  7170. offload_func(r);
  7171. ggml_set_name(r, "r_add");
  7172. r = ggml_cpy(lora_ctx, r, dest_t);
  7173. offload_func(r);
  7174. ggml_set_name(r, "r_cpy");
  7175. }
  7176. struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  7177. ggml_build_forward_expand(gf, r);
  7178. ggml_graph_compute_helper(work_buffer, gf, n_threads);
  7179. // we won't need these tensors again, reset the context to save memory
  7180. ggml_free(lora_ctx);
  7181. lora_ctx = ggml_init(params);
  7182. lora_tensors.clear();
  7183. n_tensors++;
  7184. if (n_tensors % 4 == 0) {
  7185. LLAMA_LOG_INFO(".");
  7186. }
  7187. }
  7188. }
  7189. // TODO: this should be in a destructor, it will leak on failure
  7190. ggml_free(lora_ctx);
  7191. if (base_ctx) {
  7192. ggml_free(base_ctx);
  7193. }
  7194. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  7195. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  7196. return 0;
  7197. }
  7198. //
  7199. // interface implementation
  7200. //
  7201. struct llama_model_params llama_model_default_params() {
  7202. struct llama_model_params result = {
  7203. /*.n_gpu_layers =*/ 0,
  7204. /*.main_gpu =*/ 0,
  7205. /*.tensor_split =*/ nullptr,
  7206. /*.progress_callback =*/ nullptr,
  7207. /*.progress_callback_user_data =*/ nullptr,
  7208. /*.vocab_only =*/ false,
  7209. /*.use_mmap =*/ true,
  7210. /*.use_mlock =*/ false,
  7211. };
  7212. #ifdef GGML_USE_METAL
  7213. result.n_gpu_layers = 1;
  7214. #endif
  7215. return result;
  7216. }
  7217. struct llama_context_params llama_context_default_params() {
  7218. struct llama_context_params result = {
  7219. /*.seed =*/ LLAMA_DEFAULT_SEED,
  7220. /*.n_ctx =*/ 512,
  7221. /*.n_batch =*/ 512,
  7222. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  7223. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  7224. /*.rope_freq_base =*/ 0.0f,
  7225. /*.rope_freq_scale =*/ 0.0f,
  7226. /*.mul_mat_q =*/ true,
  7227. /*.f16_kv =*/ true,
  7228. /*.logits_all =*/ false,
  7229. /*.embedding =*/ false,
  7230. };
  7231. return result;
  7232. }
  7233. struct llama_model_quantize_params llama_model_quantize_default_params() {
  7234. struct llama_model_quantize_params result = {
  7235. /*.nthread =*/ 0,
  7236. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  7237. /*.allow_requantize =*/ false,
  7238. /*.quantize_output_tensor =*/ true,
  7239. /*.only_copy =*/ false,
  7240. };
  7241. return result;
  7242. }
  7243. int llama_max_devices(void) {
  7244. return LLAMA_MAX_DEVICES;
  7245. }
  7246. bool llama_mmap_supported(void) {
  7247. return llama_mmap::SUPPORTED;
  7248. }
  7249. bool llama_mlock_supported(void) {
  7250. return llama_mlock::SUPPORTED;
  7251. }
  7252. void llama_backend_init(bool numa) {
  7253. ggml_time_init();
  7254. // needed to initialize f16 tables
  7255. {
  7256. struct ggml_init_params params = { 0, NULL, false };
  7257. struct ggml_context * ctx = ggml_init(params);
  7258. ggml_free(ctx);
  7259. }
  7260. if (numa) {
  7261. ggml_numa_init();
  7262. }
  7263. #ifdef GGML_USE_MPI
  7264. ggml_mpi_backend_init();
  7265. #endif
  7266. }
  7267. void llama_backend_free(void) {
  7268. #ifdef GGML_USE_MPI
  7269. ggml_mpi_backend_free();
  7270. #endif
  7271. }
  7272. int64_t llama_time_us(void) {
  7273. return ggml_time_us();
  7274. }
  7275. struct llama_model * llama_load_model_from_file(
  7276. const char * path_model,
  7277. struct llama_model_params params) {
  7278. ggml_time_init();
  7279. llama_model * model = new llama_model;
  7280. unsigned cur_percentage = 0;
  7281. if (params.progress_callback == NULL) {
  7282. params.progress_callback_user_data = &cur_percentage;
  7283. params.progress_callback = [](float progress, void * ctx) {
  7284. unsigned * cur_percentage_p = (unsigned *) ctx;
  7285. unsigned percentage = (unsigned) (100 * progress);
  7286. while (percentage > *cur_percentage_p) {
  7287. *cur_percentage_p = percentage;
  7288. LLAMA_LOG_INFO(".");
  7289. if (percentage >= 100) {
  7290. LLAMA_LOG_INFO("\n");
  7291. }
  7292. }
  7293. };
  7294. }
  7295. if (!llama_model_load(path_model, *model, params.n_gpu_layers,
  7296. params.main_gpu, params.tensor_split,
  7297. params.use_mmap, params.use_mlock, params.vocab_only,
  7298. params.progress_callback, params.progress_callback_user_data)) {
  7299. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  7300. delete model;
  7301. return nullptr;
  7302. }
  7303. return model;
  7304. }
  7305. void llama_free_model(struct llama_model * model) {
  7306. delete model;
  7307. }
  7308. struct llama_context * llama_new_context_with_model(
  7309. struct llama_model * model,
  7310. struct llama_context_params params) {
  7311. if (!model) {
  7312. return nullptr;
  7313. }
  7314. llama_context * ctx = new llama_context(*model);
  7315. const auto & hparams = model->hparams;
  7316. auto & cparams = ctx->cparams;
  7317. cparams.n_batch = params.n_batch;
  7318. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  7319. cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base;
  7320. cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  7321. cparams.n_threads = params.n_threads;
  7322. cparams.n_threads_batch = params.n_threads_batch;
  7323. cparams.mul_mat_q = params.mul_mat_q;
  7324. if (params.seed == LLAMA_DEFAULT_SEED) {
  7325. params.seed = time(NULL);
  7326. }
  7327. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  7328. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  7329. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  7330. ctx->rng = std::mt19937(params.seed);
  7331. ctx->logits_all = params.logits_all;
  7332. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  7333. // reserve memory for context buffers
  7334. if (!hparams.vocab_only) {
  7335. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
  7336. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  7337. llama_free(ctx);
  7338. return nullptr;
  7339. }
  7340. {
  7341. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  7342. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  7343. }
  7344. // resized during inference
  7345. if (params.logits_all) {
  7346. ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
  7347. } else {
  7348. ctx->logits.reserve(hparams.n_vocab);
  7349. }
  7350. if (params.embedding){
  7351. ctx->embedding.resize(hparams.n_embd);
  7352. }
  7353. {
  7354. static const size_t tensor_alignment = 32;
  7355. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  7356. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  7357. // create measure allocator
  7358. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  7359. // build worst-case graph
  7360. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  7361. int n_past = cparams.n_ctx - n_tokens;
  7362. llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  7363. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
  7364. #ifdef GGML_USE_METAL
  7365. if (model->n_gpu_layers > 0) {
  7366. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  7367. ctx->ctx_metal = ggml_metal_init(1);
  7368. if (!ctx->ctx_metal) {
  7369. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  7370. llama_free(ctx);
  7371. return NULL;
  7372. }
  7373. //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  7374. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7375. }
  7376. #endif
  7377. // measure memory requirements for the graph
  7378. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  7379. LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  7380. // recreate allocator with exact memory requirements
  7381. ggml_allocr_free(ctx->alloc);
  7382. ctx->buf_alloc.resize(alloc_size);
  7383. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  7384. #ifdef GGML_USE_METAL
  7385. if (ctx->ctx_metal) {
  7386. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7387. }
  7388. #endif
  7389. #ifdef GGML_USE_CUBLAS
  7390. ggml_cuda_set_scratch_size(alloc_size);
  7391. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  7392. // calculate total VRAM usage
  7393. auto add_tensor = [](const ggml_tensor * t, size_t & size) {
  7394. if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) {
  7395. size += ggml_nbytes(t);
  7396. }
  7397. };
  7398. size_t model_vram_size = 0;
  7399. for (const auto & kv : model->tensors_by_name) {
  7400. add_tensor(kv.second, model_vram_size);
  7401. }
  7402. size_t kv_vram_size = 0;
  7403. add_tensor(ctx->kv_self.k, kv_vram_size);
  7404. add_tensor(ctx->kv_self.v, kv_vram_size);
  7405. size_t ctx_vram_size = alloc_size + kv_vram_size;
  7406. size_t total_vram_size = model_vram_size + ctx_vram_size;
  7407. LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
  7408. total_vram_size / 1024.0 / 1024.0,
  7409. model_vram_size / 1024.0 / 1024.0,
  7410. ctx_vram_size / 1024.0 / 1024.0);
  7411. #endif
  7412. }
  7413. #ifdef GGML_USE_METAL
  7414. if (model->n_gpu_layers > 0) {
  7415. // this allocates all Metal resources and memory buffers
  7416. void * data_ptr = NULL;
  7417. size_t data_size = 0;
  7418. if (ctx->model.mapping) {
  7419. data_ptr = ctx->model.mapping->addr;
  7420. data_size = ctx->model.mapping->size;
  7421. } else {
  7422. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  7423. data_size = ggml_get_mem_size (ctx->model.ctx);
  7424. }
  7425. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  7426. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  7427. #define LLAMA_METAL_CHECK_BUF(result) \
  7428. if (!(result)) { \
  7429. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  7430. llama_free(ctx); \
  7431. return NULL; \
  7432. }
  7433. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  7434. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  7435. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  7436. #undef LLAMA_METAL_CHECK_BUF
  7437. }
  7438. #endif
  7439. }
  7440. #ifdef GGML_USE_MPI
  7441. ctx->ctx_mpi = ggml_mpi_init();
  7442. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  7443. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  7444. // TODO: needs fix after #3228
  7445. GGML_ASSERT(false && "not implemented");
  7446. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  7447. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  7448. llama_backend_free();
  7449. exit(1);
  7450. }
  7451. #endif
  7452. return ctx;
  7453. }
  7454. void llama_free(struct llama_context * ctx) {
  7455. delete ctx;
  7456. }
  7457. const llama_model * llama_get_model(const struct llama_context * ctx) {
  7458. return &ctx->model;
  7459. }
  7460. int llama_n_ctx(const struct llama_context * ctx) {
  7461. return ctx->cparams.n_ctx;
  7462. }
  7463. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  7464. return model->vocab.type;
  7465. }
  7466. int llama_n_vocab(const struct llama_model * model) {
  7467. return model->vocab.id_to_token.size();
  7468. }
  7469. int llama_n_ctx_train(const struct llama_model * model) {
  7470. return model->hparams.n_ctx_train;
  7471. }
  7472. int llama_n_embd(const struct llama_model * model) {
  7473. return model->hparams.n_embd;
  7474. }
  7475. float llama_rope_freq_scale_train(const struct llama_model * model) {
  7476. return model->hparams.rope_freq_scale_train;
  7477. }
  7478. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  7479. return snprintf(buf, buf_size, "%s %s %s",
  7480. llama_model_arch_name(model->arch).c_str(),
  7481. llama_model_type_name(model->type),
  7482. llama_model_ftype_name(model->ftype).c_str());
  7483. }
  7484. uint64_t llama_model_size(const struct llama_model * model) {
  7485. uint64_t size = 0;
  7486. for (const auto & it : model->tensors_by_name) {
  7487. size += ggml_nbytes(it.second);
  7488. }
  7489. return size;
  7490. }
  7491. uint64_t llama_model_n_params(const struct llama_model * model) {
  7492. uint64_t nparams = 0;
  7493. for (const auto & it : model->tensors_by_name) {
  7494. nparams += ggml_nelements(it.second);
  7495. }
  7496. return nparams;
  7497. }
  7498. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  7499. return ggml_get_tensor(model->ctx, name);
  7500. }
  7501. int llama_model_quantize(
  7502. const char * fname_inp,
  7503. const char * fname_out,
  7504. const llama_model_quantize_params * params) {
  7505. try {
  7506. llama_model_quantize_internal(fname_inp, fname_out, params);
  7507. return 0;
  7508. } catch (const std::exception & err) {
  7509. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  7510. return 1;
  7511. }
  7512. }
  7513. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7514. try {
  7515. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  7516. } catch (const std::exception & err) {
  7517. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7518. return 1;
  7519. }
  7520. }
  7521. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7522. try {
  7523. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  7524. } catch (const std::exception & err) {
  7525. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7526. return 1;
  7527. }
  7528. }
  7529. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  7530. return ctx->kv_self.head;
  7531. }
  7532. void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) {
  7533. llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1);
  7534. }
  7535. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  7536. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  7537. }
  7538. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  7539. if (seq_id_src == seq_id_dst) {
  7540. return;
  7541. }
  7542. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  7543. }
  7544. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  7545. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  7546. }
  7547. void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  7548. llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
  7549. }
  7550. // Returns the *maximum* size of the state
  7551. size_t llama_get_state_size(const struct llama_context * ctx) {
  7552. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  7553. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  7554. const size_t s_rng_size = sizeof(size_t);
  7555. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  7556. const size_t s_logits_capacity = sizeof(size_t);
  7557. const size_t s_logits_size = sizeof(size_t);
  7558. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  7559. const size_t s_embedding_size = sizeof(size_t);
  7560. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  7561. const size_t s_kv_size = sizeof(size_t);
  7562. const size_t s_kv_ntok = sizeof(int);
  7563. const size_t s_kv = ctx->kv_self.buf.size;
  7564. const size_t s_total = (
  7565. + s_rng_size
  7566. + s_rng
  7567. + s_logits_capacity
  7568. + s_logits_size
  7569. + s_logits
  7570. + s_embedding_size
  7571. + s_embedding
  7572. + s_kv_size
  7573. + s_kv_ntok
  7574. + s_kv
  7575. );
  7576. return s_total;
  7577. }
  7578. // llama_context_data
  7579. struct llama_data_context {
  7580. virtual void write(const void * src, size_t size) = 0;
  7581. virtual size_t get_size_written() = 0;
  7582. virtual ~llama_data_context() = default;
  7583. };
  7584. struct llama_data_buffer_context : llama_data_context {
  7585. uint8_t * ptr;
  7586. size_t size_written = 0;
  7587. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  7588. void write(const void * src, size_t size) override {
  7589. memcpy(ptr, src, size);
  7590. ptr += size;
  7591. size_written += size;
  7592. }
  7593. size_t get_size_written() override {
  7594. return size_written;
  7595. }
  7596. };
  7597. struct llama_data_file_context : llama_data_context {
  7598. llama_file * file;
  7599. size_t size_written = 0;
  7600. llama_data_file_context(llama_file * f) : file(f) {}
  7601. void write(const void * src, size_t size) override {
  7602. file->write_raw(src, size);
  7603. size_written += size;
  7604. }
  7605. size_t get_size_written() override {
  7606. return size_written;
  7607. }
  7608. };
  7609. /** copy state data into either a buffer or file depending on the passed in context
  7610. *
  7611. * file context:
  7612. * llama_file file("/path", "wb");
  7613. * llama_data_file_context data_ctx(&file);
  7614. * llama_copy_state_data(ctx, &data_ctx);
  7615. *
  7616. * buffer context:
  7617. * std::vector<uint8_t> buf(max_size, 0);
  7618. * llama_data_buffer_context data_ctx(&buf.data());
  7619. * llama_copy_state_data(ctx, &data_ctx);
  7620. *
  7621. */
  7622. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  7623. // copy rng
  7624. {
  7625. std::stringstream rng_ss;
  7626. rng_ss << ctx->rng;
  7627. const size_t rng_size = rng_ss.str().size();
  7628. char rng_buf[LLAMA_MAX_RNG_STATE];
  7629. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  7630. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  7631. data_ctx->write(&rng_size, sizeof(rng_size));
  7632. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  7633. }
  7634. // copy logits
  7635. {
  7636. const size_t logits_cap = ctx->logits.capacity();
  7637. const size_t logits_size = ctx->logits.size();
  7638. data_ctx->write(&logits_cap, sizeof(logits_cap));
  7639. data_ctx->write(&logits_size, sizeof(logits_size));
  7640. if (logits_size) {
  7641. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  7642. }
  7643. // If there is a gap between the size and the capacity, write padding
  7644. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  7645. if (padding_size > 0) {
  7646. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  7647. data_ctx->write(padding.data(), padding_size);
  7648. }
  7649. }
  7650. // copy embeddings
  7651. {
  7652. const size_t embedding_size = ctx->embedding.size();
  7653. data_ctx->write(&embedding_size, sizeof(embedding_size));
  7654. if (embedding_size) {
  7655. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  7656. }
  7657. }
  7658. // copy kv cache
  7659. {
  7660. const auto & kv_self = ctx->kv_self;
  7661. const auto & hparams = ctx->model.hparams;
  7662. const auto & cparams = ctx->cparams;
  7663. const auto n_layer = hparams.n_layer;
  7664. const auto n_embd = hparams.n_embd_gqa();
  7665. const auto n_ctx = cparams.n_ctx;
  7666. const size_t kv_buf_size = kv_self.buf.size;
  7667. const uint32_t kv_head = kv_self.head;
  7668. const uint32_t kv_size = kv_self.size;
  7669. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  7670. data_ctx->write(&kv_head, sizeof(kv_head));
  7671. data_ctx->write(&kv_size, sizeof(kv_size));
  7672. if (kv_buf_size) {
  7673. const size_t elt_size = ggml_element_size(kv_self.k);
  7674. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7675. ggml_cgraph gf{};
  7676. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7677. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  7678. kout3d->data = kout3d_data.data();
  7679. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7680. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  7681. vout3d->data = vout3d_data.data();
  7682. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7683. n_embd, kv_head, n_layer,
  7684. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7685. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7686. kv_head, n_embd, n_layer,
  7687. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7688. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  7689. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  7690. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7691. ggml_free(cpy_ctx);
  7692. // our data is now in the kout3d_data and vout3d_data buffers
  7693. // write them to file
  7694. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  7695. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  7696. }
  7697. for (uint32_t i = 0; i < kv_size; ++i) {
  7698. const auto & cell = kv_self.cells[i];
  7699. const llama_pos pos = cell.pos;
  7700. const size_t seq_id_size = cell.seq_id.size();
  7701. data_ctx->write(&pos, sizeof(pos));
  7702. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  7703. for (auto seq_id : cell.seq_id) {
  7704. data_ctx->write(&seq_id, sizeof(seq_id));
  7705. }
  7706. }
  7707. }
  7708. }
  7709. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  7710. llama_data_buffer_context data_ctx(dst);
  7711. llama_copy_state_data_internal(ctx, &data_ctx);
  7712. return data_ctx.get_size_written();
  7713. }
  7714. // Sets the state reading from the specified source address
  7715. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  7716. uint8_t * inp = src;
  7717. // set rng
  7718. {
  7719. size_t rng_size;
  7720. char rng_buf[LLAMA_MAX_RNG_STATE];
  7721. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  7722. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  7723. std::stringstream rng_ss;
  7724. rng_ss.str(std::string(&rng_buf[0], rng_size));
  7725. rng_ss >> ctx->rng;
  7726. GGML_ASSERT(!rng_ss.fail());
  7727. }
  7728. // set logits
  7729. {
  7730. size_t logits_cap;
  7731. size_t logits_size;
  7732. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  7733. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  7734. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  7735. if (logits_size) {
  7736. ctx->logits.resize(logits_size);
  7737. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  7738. }
  7739. inp += logits_cap * sizeof(float);
  7740. }
  7741. // set embeddings
  7742. {
  7743. size_t embedding_size;
  7744. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  7745. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  7746. if (embedding_size) {
  7747. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  7748. inp += embedding_size * sizeof(float);
  7749. }
  7750. }
  7751. // set kv cache
  7752. {
  7753. const auto & kv_self = ctx->kv_self;
  7754. const auto & hparams = ctx->model.hparams;
  7755. const auto & cparams = ctx->cparams;
  7756. const int n_layer = hparams.n_layer;
  7757. const int n_embd = hparams.n_embd_gqa();
  7758. const int n_ctx = cparams.n_ctx;
  7759. size_t kv_buf_size;
  7760. uint32_t kv_head;
  7761. uint32_t kv_size;
  7762. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  7763. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  7764. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  7765. if (kv_buf_size) {
  7766. GGML_ASSERT(kv_self.buf.size == kv_buf_size);
  7767. const size_t elt_size = ggml_element_size(kv_self.k);
  7768. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7769. ggml_cgraph gf{};
  7770. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7771. kin3d->data = (void *) inp;
  7772. inp += ggml_nbytes(kin3d);
  7773. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7774. vin3d->data = (void *) inp;
  7775. inp += ggml_nbytes(vin3d);
  7776. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7777. n_embd, kv_head, n_layer,
  7778. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7779. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7780. kv_head, n_embd, n_layer,
  7781. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7782. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  7783. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  7784. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7785. ggml_free(cpy_ctx);
  7786. }
  7787. ctx->kv_self.head = kv_head;
  7788. ctx->kv_self.size = kv_size;
  7789. ctx->kv_self.cells.resize(kv_size);
  7790. for (uint32_t i = 0; i < kv_size; ++i) {
  7791. llama_pos pos;
  7792. size_t seq_id_size;
  7793. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  7794. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  7795. ctx->kv_self.cells[i].pos = pos;
  7796. llama_seq_id seq_id;
  7797. for (size_t j = 0; j < seq_id_size; ++j) {
  7798. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  7799. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  7800. }
  7801. }
  7802. }
  7803. const size_t nread = inp - src;
  7804. const size_t max_size = llama_get_state_size(ctx);
  7805. GGML_ASSERT(nread <= max_size);
  7806. return nread;
  7807. }
  7808. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7809. llama_file file(path_session, "rb");
  7810. // sanity checks
  7811. {
  7812. const uint32_t magic = file.read_u32();
  7813. const uint32_t version = file.read_u32();
  7814. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  7815. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  7816. return false;
  7817. }
  7818. llama_hparams session_hparams;
  7819. file.read_raw(&session_hparams, sizeof(llama_hparams));
  7820. if (session_hparams != ctx->model.hparams) {
  7821. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  7822. return false;
  7823. }
  7824. }
  7825. // load the prompt
  7826. {
  7827. const uint32_t n_token_count = file.read_u32();
  7828. if (n_token_count > n_token_capacity) {
  7829. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  7830. return false;
  7831. }
  7832. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  7833. *n_token_count_out = n_token_count;
  7834. }
  7835. // restore the context state
  7836. {
  7837. const size_t n_state_size_cur = file.size - file.tell();
  7838. const size_t n_state_size_max = llama_get_state_size(ctx);
  7839. if (n_state_size_cur > n_state_size_max) {
  7840. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  7841. return false;
  7842. }
  7843. std::vector<uint8_t> state_data(n_state_size_max);
  7844. file.read_raw(state_data.data(), n_state_size_cur);
  7845. llama_set_state_data(ctx, state_data.data());
  7846. }
  7847. return true;
  7848. }
  7849. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7850. try {
  7851. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  7852. } catch (const std::exception & err) {
  7853. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  7854. return false;
  7855. }
  7856. }
  7857. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  7858. llama_file file(path_session, "wb");
  7859. file.write_u32(LLAMA_SESSION_MAGIC);
  7860. file.write_u32(LLAMA_SESSION_VERSION);
  7861. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  7862. // save the prompt
  7863. file.write_u32((uint32_t) n_token_count);
  7864. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  7865. // save the context state using stream saving
  7866. llama_data_file_context data_ctx(&file);
  7867. llama_copy_state_data_internal(ctx, &data_ctx);
  7868. return true;
  7869. }
  7870. int llama_eval(
  7871. struct llama_context * ctx,
  7872. llama_token * tokens,
  7873. int32_t n_tokens,
  7874. int n_past) {
  7875. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7876. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  7877. if (ret < 0) {
  7878. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7879. }
  7880. return ret;
  7881. }
  7882. int llama_eval_embd(
  7883. struct llama_context * ctx,
  7884. float * embd,
  7885. int32_t n_tokens,
  7886. int n_past) {
  7887. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7888. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
  7889. const int ret = llama_decode_internal(*ctx, batch);
  7890. if (ret < 0) {
  7891. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7892. }
  7893. return ret;
  7894. }
  7895. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  7896. ctx->cparams.n_threads = n_threads;
  7897. ctx->cparams.n_threads_batch = n_threads_batch;
  7898. }
  7899. struct llama_batch llama_batch_get_one(
  7900. llama_token * tokens,
  7901. int32_t n_tokens,
  7902. llama_pos pos_0,
  7903. llama_seq_id seq_id) {
  7904. return {
  7905. /*n_tokens =*/ n_tokens,
  7906. /*tokens =*/ tokens,
  7907. /*embd =*/ nullptr,
  7908. /*pos =*/ nullptr,
  7909. /*n_seq_id =*/ nullptr,
  7910. /*seq_id =*/ nullptr,
  7911. /*logits =*/ nullptr,
  7912. /*all_pos_0 =*/ pos_0,
  7913. /*all_pos_1 =*/ 1,
  7914. /*all_seq_id =*/ seq_id,
  7915. };
  7916. }
  7917. struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
  7918. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  7919. if (embd) {
  7920. batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
  7921. } else {
  7922. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
  7923. }
  7924. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
  7925. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
  7926. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
  7927. for (int i = 0; i < n_tokens; ++i) {
  7928. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  7929. }
  7930. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
  7931. return batch;
  7932. }
  7933. void llama_batch_free(struct llama_batch batch) {
  7934. if (batch.token) free(batch.token);
  7935. if (batch.embd) free(batch.embd);
  7936. if (batch.pos) free(batch.pos);
  7937. if (batch.n_seq_id) free(batch.n_seq_id);
  7938. if (batch.seq_id) {
  7939. for (int i = 0; i < batch.n_tokens; ++i) {
  7940. free(batch.seq_id[i]);
  7941. }
  7942. free(batch.seq_id);
  7943. }
  7944. if (batch.logits) free(batch.logits);
  7945. }
  7946. int llama_decode(
  7947. struct llama_context * ctx,
  7948. struct llama_batch batch) {
  7949. const int ret = llama_decode_internal(*ctx, batch);
  7950. if (ret < 0) {
  7951. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7952. }
  7953. return ret;
  7954. }
  7955. float * llama_get_logits(struct llama_context * ctx) {
  7956. return ctx->logits.data();
  7957. }
  7958. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  7959. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  7960. }
  7961. float * llama_get_embeddings(struct llama_context * ctx) {
  7962. return ctx->embedding.data();
  7963. }
  7964. const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
  7965. return ctx->model.vocab.id_to_token[token].text.c_str();
  7966. }
  7967. float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
  7968. return ctx->model.vocab.id_to_token[token].score;
  7969. }
  7970. llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
  7971. return ctx->model.vocab.id_to_token[token].type;
  7972. }
  7973. llama_token llama_token_bos(const struct llama_context * ctx) {
  7974. return ctx->model.vocab.special_bos_id;
  7975. }
  7976. llama_token llama_token_eos(const struct llama_context * ctx) {
  7977. return ctx->model.vocab.special_eos_id;
  7978. }
  7979. llama_token llama_token_nl(const struct llama_context * ctx) {
  7980. return ctx->model.vocab.linefeed_id;
  7981. }
  7982. llama_token llama_token_prefix(const struct llama_context * ctx) {
  7983. return ctx->model.vocab.special_prefix_id;
  7984. }
  7985. llama_token llama_token_middle(const struct llama_context * ctx) {
  7986. return ctx->model.vocab.special_middle_id;
  7987. }
  7988. llama_token llama_token_suffix(const struct llama_context * ctx) {
  7989. return ctx->model.vocab.special_suffix_id;
  7990. }
  7991. llama_token llama_token_eot(const struct llama_context * ctx) {
  7992. return ctx->model.vocab.special_eot_id;
  7993. }
  7994. int llama_tokenize(
  7995. const struct llama_model * model,
  7996. const char * text,
  7997. int text_len,
  7998. llama_token * tokens,
  7999. int n_max_tokens,
  8000. bool add_bos,
  8001. bool special) {
  8002. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  8003. if (n_max_tokens < (int) res.size()) {
  8004. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  8005. return -((int) res.size());
  8006. }
  8007. for (size_t i = 0; i < res.size(); i++) {
  8008. tokens[i] = res[i];
  8009. }
  8010. return res.size();
  8011. }
  8012. static std::string llama_decode_text(const std::string & text) {
  8013. std::string decoded_text;
  8014. auto unicode_sequences = codepoints_from_utf8(text);
  8015. for (auto& unicode_sequence : unicode_sequences) {
  8016. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  8017. }
  8018. return decoded_text;
  8019. }
  8020. // does not write null-terminator to buf
  8021. int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
  8022. if (0 <= token && token < llama_n_vocab(model)) {
  8023. switch (llama_vocab_get_type(model->vocab)) {
  8024. case LLAMA_VOCAB_TYPE_SPM: {
  8025. if (llama_is_normal_token(model->vocab, token)) {
  8026. std::string result = model->vocab.id_to_token[token].text;
  8027. llama_unescape_whitespace(result);
  8028. if (length < (int) result.length()) {
  8029. return -result.length();
  8030. }
  8031. memcpy(buf, result.c_str(), result.length());
  8032. return result.length();
  8033. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  8034. if (length < 3) {
  8035. return -3;
  8036. }
  8037. memcpy(buf, "\xe2\x96\x85", 3);
  8038. return 3;
  8039. } else if (llama_is_control_token(model->vocab, token)) {
  8040. ;
  8041. } else if (llama_is_byte_token(model->vocab, token)) {
  8042. if (length < 1) {
  8043. return -1;
  8044. }
  8045. buf[0] = llama_token_to_byte(model->vocab, token);
  8046. return 1;
  8047. } else {
  8048. // TODO: for now we accept all unsupported token types,
  8049. // suppressing them like CONTROL tokens.
  8050. // GGML_ASSERT(false);
  8051. }
  8052. break;
  8053. }
  8054. case LLAMA_VOCAB_TYPE_BPE: {
  8055. if (llama_is_normal_token(model->vocab, token)) {
  8056. std::string result = model->vocab.id_to_token[token].text;
  8057. result = llama_decode_text(result);
  8058. if (length < (int) result.length()) {
  8059. return -result.length();
  8060. }
  8061. memcpy(buf, result.c_str(), result.length());
  8062. return result.length();
  8063. } else if (llama_is_control_token(model->vocab, token)) {
  8064. ;
  8065. } else {
  8066. // TODO: for now we accept all unsupported token types,
  8067. // suppressing them like CONTROL tokens.
  8068. // GGML_ASSERT(false);
  8069. }
  8070. break;
  8071. }
  8072. default:
  8073. GGML_ASSERT(false);
  8074. }
  8075. }
  8076. return 0;
  8077. }
  8078. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  8079. struct llama_timings result = {
  8080. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  8081. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  8082. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  8083. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  8084. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  8085. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  8086. /*.n_sample =*/ std::max(1, ctx->n_sample),
  8087. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  8088. /*.n_eval =*/ std::max(1, ctx->n_eval),
  8089. };
  8090. return result;
  8091. }
  8092. void llama_print_timings(struct llama_context * ctx) {
  8093. const llama_timings timings = llama_get_timings(ctx);
  8094. LLAMA_LOG_INFO("\n");
  8095. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  8096. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  8097. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  8098. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  8099. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  8100. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  8101. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  8102. LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  8103. }
  8104. void llama_reset_timings(struct llama_context * ctx) {
  8105. ctx->t_start_us = ggml_time_us();
  8106. ctx->t_sample_us = ctx->n_sample = 0;
  8107. ctx->t_eval_us = ctx->n_eval = 0;
  8108. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  8109. }
  8110. const char * llama_print_system_info(void) {
  8111. static std::string s;
  8112. s = "";
  8113. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  8114. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  8115. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  8116. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  8117. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  8118. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  8119. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  8120. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  8121. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  8122. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  8123. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  8124. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  8125. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  8126. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  8127. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  8128. return s.c_str();
  8129. }
  8130. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  8131. fprintf(stream, "\n");
  8132. fprintf(stream, "###########\n");
  8133. fprintf(stream, "# Timings #\n");
  8134. fprintf(stream, "###########\n");
  8135. fprintf(stream, "\n");
  8136. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  8137. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  8138. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  8139. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  8140. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  8141. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  8142. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  8143. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  8144. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  8145. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  8146. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  8147. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  8148. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  8149. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  8150. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  8151. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  8152. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  8153. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  8154. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  8155. }
  8156. // For internal test use
  8157. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  8158. struct llama_context * ctx
  8159. ) {
  8160. return ctx->model.tensors_by_name;
  8161. }
  8162. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  8163. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  8164. g_state.log_callback_user_data = user_data;
  8165. }
  8166. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  8167. va_list args_copy;
  8168. va_copy(args_copy, args);
  8169. char buffer[128];
  8170. int len = vsnprintf(buffer, 128, format, args);
  8171. if (len < 128) {
  8172. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  8173. } else {
  8174. char* buffer2 = new char[len+1];
  8175. vsnprintf(buffer2, len+1, format, args_copy);
  8176. buffer2[len] = 0;
  8177. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  8178. delete[] buffer2;
  8179. }
  8180. va_end(args_copy);
  8181. }
  8182. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  8183. va_list args;
  8184. va_start(args, format);
  8185. llama_log_internal_v(level, format, args);
  8186. va_end(args);
  8187. }
  8188. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  8189. (void) level;
  8190. (void) user_data;
  8191. fputs(text, stderr);
  8192. fflush(stderr);
  8193. }