ggml.c 644 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. ggml_collect_imatrix_t g_imatrix_collect = NULL;
  334. void ggml_set_imatrix_collection(ggml_collect_imatrix_t imatrix_collect) {
  335. g_imatrix_collect = imatrix_collect;
  336. }
  337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  338. [GGML_TYPE_I8] = {
  339. .type_name = "i8",
  340. .blck_size = 1,
  341. .type_size = sizeof(int8_t),
  342. .is_quantized = false,
  343. },
  344. [GGML_TYPE_I16] = {
  345. .type_name = "i16",
  346. .blck_size = 1,
  347. .type_size = sizeof(int16_t),
  348. .is_quantized = false,
  349. },
  350. [GGML_TYPE_I32] = {
  351. .type_name = "i32",
  352. .blck_size = 1,
  353. .type_size = sizeof(int32_t),
  354. .is_quantized = false,
  355. },
  356. [GGML_TYPE_F32] = {
  357. .type_name = "f32",
  358. .blck_size = 1,
  359. .type_size = sizeof(float),
  360. .is_quantized = false,
  361. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  362. .vec_dot_type = GGML_TYPE_F32,
  363. },
  364. [GGML_TYPE_F16] = {
  365. .type_name = "f16",
  366. .blck_size = 1,
  367. .type_size = sizeof(ggml_fp16_t),
  368. .is_quantized = false,
  369. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  370. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  371. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  373. .vec_dot_type = GGML_TYPE_F16,
  374. },
  375. [GGML_TYPE_Q4_0] = {
  376. .type_name = "q4_0",
  377. .blck_size = QK4_0,
  378. .type_size = sizeof(block_q4_0),
  379. .is_quantized = true,
  380. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  381. .from_float = quantize_row_q4_0,
  382. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  383. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  384. .vec_dot_type = GGML_TYPE_Q8_0,
  385. },
  386. [GGML_TYPE_Q4_1] = {
  387. .type_name = "q4_1",
  388. .blck_size = QK4_1,
  389. .type_size = sizeof(block_q4_1),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  392. .from_float = quantize_row_q4_1,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  394. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  395. .vec_dot_type = GGML_TYPE_Q8_1,
  396. },
  397. [4] = { // GGML_TYPE_Q4_2
  398. .type_name = "DEPRECATED",
  399. .blck_size = 0,
  400. .type_size = 0,
  401. .is_quantized = false,
  402. .to_float = NULL,
  403. .from_float = NULL,
  404. .from_float_reference = NULL,
  405. .vec_dot = NULL,
  406. .vec_dot_type = GGML_TYPE_COUNT,
  407. },
  408. [5] = { // GGML_TYPE_Q4_3
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [GGML_TYPE_Q5_0] = {
  420. .type_name = "q5_0",
  421. .blck_size = QK5_0,
  422. .type_size = sizeof(block_q5_0),
  423. .is_quantized = true,
  424. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  425. .from_float = quantize_row_q5_0,
  426. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  427. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  428. .vec_dot_type = GGML_TYPE_Q8_0,
  429. },
  430. [GGML_TYPE_Q5_1] = {
  431. .type_name = "q5_1",
  432. .blck_size = QK5_1,
  433. .type_size = sizeof(block_q5_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  436. .from_float = quantize_row_q5_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  438. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. },
  441. [GGML_TYPE_Q8_0] = {
  442. .type_name = "q8_0",
  443. .blck_size = QK8_0,
  444. .type_size = sizeof(block_q8_0),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  447. .from_float = quantize_row_q8_0,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  449. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  450. .vec_dot_type = GGML_TYPE_Q8_0,
  451. },
  452. [GGML_TYPE_Q8_1] = {
  453. .type_name = "q8_1",
  454. .blck_size = QK8_1,
  455. .type_size = sizeof(block_q8_1),
  456. .is_quantized = true,
  457. .from_float = quantize_row_q8_1,
  458. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  459. .vec_dot_type = GGML_TYPE_Q8_1,
  460. },
  461. [GGML_TYPE_Q2_K] = {
  462. .type_name = "q2_K",
  463. .blck_size = QK_K,
  464. .type_size = sizeof(block_q2_K),
  465. .is_quantized = true,
  466. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  467. .from_float = quantize_row_q2_K,
  468. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  469. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  470. .vec_dot_type = GGML_TYPE_Q8_K,
  471. },
  472. [GGML_TYPE_Q3_K] = {
  473. .type_name = "q3_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q3_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  478. .from_float = quantize_row_q3_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  480. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q4_K] = {
  484. .type_name = "q4_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q4_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  489. .from_float = quantize_row_q4_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  491. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q5_K] = {
  495. .type_name = "q5_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q5_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  500. .from_float = quantize_row_q5_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  502. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q6_K] = {
  506. .type_name = "q6_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q6_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  511. .from_float = quantize_row_q6_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  513. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_IQ2_XXS] = {
  517. .type_name = "iq2_xxs",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_iq2_xxs),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  522. .from_float = NULL,
  523. .from_float_reference = NULL,
  524. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_IQ2_XS] = {
  528. .type_name = "iq2_xs",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_iq2_xs),
  531. .is_quantized = true,
  532. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  533. .from_float = NULL,
  534. .from_float_reference = NULL,
  535. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  536. .vec_dot_type = GGML_TYPE_Q8_K,
  537. },
  538. [GGML_TYPE_Q8_K] = {
  539. .type_name = "q8_K",
  540. .blck_size = QK_K,
  541. .type_size = sizeof(block_q8_K),
  542. .is_quantized = true,
  543. .from_float = quantize_row_q8_K,
  544. }
  545. };
  546. // For internal test use
  547. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  548. GGML_ASSERT(type < GGML_TYPE_COUNT);
  549. return type_traits[type];
  550. }
  551. //
  552. // simd mappings
  553. //
  554. #if defined(__ARM_NEON)
  555. #if !defined(__aarch64__)
  556. // 64-bit compatibility
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. #endif
  561. #endif
  562. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  563. // we then implement the fundamental computation operations below using only these macros
  564. // adding support for new architectures requires to define the corresponding SIMD macros
  565. //
  566. // GGML_F32_STEP / GGML_F16_STEP
  567. // number of elements to process in a single step
  568. //
  569. // GGML_F32_EPR / GGML_F16_EPR
  570. // number of elements to fit in a single register
  571. //
  572. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  573. #define GGML_SIMD
  574. // F32 NEON
  575. #define GGML_F32_STEP 16
  576. #define GGML_F32_EPR 4
  577. #define GGML_F32x4 float32x4_t
  578. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  579. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  580. #define GGML_F32x4_LOAD vld1q_f32
  581. #define GGML_F32x4_STORE vst1q_f32
  582. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  583. #define GGML_F32x4_ADD vaddq_f32
  584. #define GGML_F32x4_MUL vmulq_f32
  585. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  586. #define GGML_F32x4_REDUCE(res, x) \
  587. { \
  588. int offset = GGML_F32_ARR >> 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. offset >>= 1; \
  597. for (int i = 0; i < offset; ++i) { \
  598. x[i] = vaddq_f32(x[i], x[offset+i]); \
  599. } \
  600. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  601. }
  602. #define GGML_F32_VEC GGML_F32x4
  603. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  604. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  605. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  606. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  607. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  608. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  609. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  610. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  611. // F16 NEON
  612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  613. #define GGML_F16_STEP 32
  614. #define GGML_F16_EPR 8
  615. #define GGML_F16x8 float16x8_t
  616. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  617. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  618. #define GGML_F16x8_LOAD vld1q_f16
  619. #define GGML_F16x8_STORE vst1q_f16
  620. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  621. #define GGML_F16x8_ADD vaddq_f16
  622. #define GGML_F16x8_MUL vmulq_f16
  623. #define GGML_F16x8_REDUCE(res, x) \
  624. do { \
  625. int offset = GGML_F16_ARR >> 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. offset >>= 1; \
  634. for (int i = 0; i < offset; ++i) { \
  635. x[i] = vaddq_f16(x[i], x[offset+i]); \
  636. } \
  637. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  638. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  639. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  640. } while (0)
  641. #define GGML_F16_VEC GGML_F16x8
  642. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  643. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  644. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  645. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  646. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  647. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  648. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  649. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  650. #else
  651. // if FP16 vector arithmetic is not supported, we use FP32 instead
  652. // and take advantage of the vcvt_ functions to convert to/from FP16
  653. #define GGML_F16_STEP 16
  654. #define GGML_F16_EPR 4
  655. #define GGML_F32Cx4 float32x4_t
  656. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  657. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  658. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  659. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  660. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  661. #define GGML_F32Cx4_ADD vaddq_f32
  662. #define GGML_F32Cx4_MUL vmulq_f32
  663. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  664. #define GGML_F16_VEC GGML_F32Cx4
  665. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  666. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  667. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  668. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  669. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  670. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  671. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  672. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  673. #endif
  674. #elif defined(__AVX__)
  675. #define GGML_SIMD
  676. // F32 AVX
  677. #define GGML_F32_STEP 32
  678. #define GGML_F32_EPR 8
  679. #define GGML_F32x8 __m256
  680. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  681. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  682. #define GGML_F32x8_LOAD _mm256_loadu_ps
  683. #define GGML_F32x8_STORE _mm256_storeu_ps
  684. #if defined(__FMA__)
  685. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  686. #else
  687. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  688. #endif
  689. #define GGML_F32x8_ADD _mm256_add_ps
  690. #define GGML_F32x8_MUL _mm256_mul_ps
  691. #define GGML_F32x8_REDUCE(res, x) \
  692. do { \
  693. int offset = GGML_F32_ARR >> 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. offset >>= 1; \
  702. for (int i = 0; i < offset; ++i) { \
  703. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  704. } \
  705. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  706. _mm256_extractf128_ps(x[0], 1)); \
  707. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  708. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  709. } while (0)
  710. // TODO: is this optimal ?
  711. #define GGML_F32_VEC GGML_F32x8
  712. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  713. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  714. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  715. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  716. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  717. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  718. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  719. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  720. // F16 AVX
  721. #define GGML_F16_STEP 32
  722. #define GGML_F16_EPR 8
  723. // F16 arithmetic is not supported by AVX, so we use F32 instead
  724. #define GGML_F32Cx8 __m256
  725. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  726. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  727. #if defined(__F16C__)
  728. // the _mm256_cvt intrinsics require F16C
  729. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  730. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  731. #else
  732. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  733. float tmp[8];
  734. for (int i = 0; i < 8; i++) {
  735. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  736. }
  737. return _mm256_loadu_ps(tmp);
  738. }
  739. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  740. float arr[8];
  741. _mm256_storeu_ps(arr, y);
  742. for (int i = 0; i < 8; i++)
  743. x[i] = GGML_FP32_TO_FP16(arr[i]);
  744. }
  745. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  746. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  747. #endif
  748. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  749. #define GGML_F32Cx8_ADD _mm256_add_ps
  750. #define GGML_F32Cx8_MUL _mm256_mul_ps
  751. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  752. #define GGML_F16_VEC GGML_F32Cx8
  753. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  754. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  755. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  757. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  758. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  759. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  760. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  761. #elif defined(__POWER9_VECTOR__)
  762. #define GGML_SIMD
  763. // F32 POWER9
  764. #define GGML_F32_STEP 32
  765. #define GGML_F32_EPR 4
  766. #define GGML_F32x4 vector float
  767. #define GGML_F32x4_ZERO 0.0f
  768. #define GGML_F32x4_SET1 vec_splats
  769. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  770. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  771. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  772. #define GGML_F32x4_ADD vec_add
  773. #define GGML_F32x4_MUL vec_mul
  774. #define GGML_F32x4_REDUCE(res, x) \
  775. { \
  776. int offset = GGML_F32_ARR >> 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vec_add(x[i], x[offset+i]); \
  787. } \
  788. res = vec_extract(x[0], 0) + \
  789. vec_extract(x[0], 1) + \
  790. vec_extract(x[0], 2) + \
  791. vec_extract(x[0], 3); \
  792. }
  793. #define GGML_F32_VEC GGML_F32x4
  794. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  795. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  796. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  797. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  798. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  799. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  800. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  801. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  802. // F16 POWER9
  803. #define GGML_F16_STEP GGML_F32_STEP
  804. #define GGML_F16_EPR GGML_F32_EPR
  805. #define GGML_F16_VEC GGML_F32x4
  806. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  807. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  808. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  809. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  810. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  811. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  812. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  813. vec_extract_fp32_from_shortl(vec_xl(0, p))
  814. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  815. #define GGML_F16_VEC_STORE(p, r, i) \
  816. if (i & 0x1) \
  817. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  818. r[i - GGML_ENDIAN_BYTE(0)]), \
  819. 0, p - GGML_F16_EPR)
  820. #elif defined(__wasm_simd128__)
  821. #define GGML_SIMD
  822. // F32 WASM
  823. #define GGML_F32_STEP 16
  824. #define GGML_F32_EPR 4
  825. #define GGML_F32x4 v128_t
  826. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  827. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  828. #define GGML_F32x4_LOAD wasm_v128_load
  829. #define GGML_F32x4_STORE wasm_v128_store
  830. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  831. #define GGML_F32x4_ADD wasm_f32x4_add
  832. #define GGML_F32x4_MUL wasm_f32x4_mul
  833. #define GGML_F32x4_REDUCE(res, x) \
  834. { \
  835. int offset = GGML_F32_ARR >> 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  846. } \
  847. res = wasm_f32x4_extract_lane(x[0], 0) + \
  848. wasm_f32x4_extract_lane(x[0], 1) + \
  849. wasm_f32x4_extract_lane(x[0], 2) + \
  850. wasm_f32x4_extract_lane(x[0], 3); \
  851. }
  852. #define GGML_F32_VEC GGML_F32x4
  853. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  854. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  855. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  856. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  857. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  858. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  859. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  860. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  861. // F16 WASM
  862. #define GGML_F16_STEP 16
  863. #define GGML_F16_EPR 4
  864. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  865. float tmp[4];
  866. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  867. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  868. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  869. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  870. return wasm_v128_load(tmp);
  871. }
  872. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  873. float tmp[4];
  874. wasm_v128_store(tmp, x);
  875. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  876. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  877. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  878. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  879. }
  880. #define GGML_F16x4 v128_t
  881. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  882. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  883. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  884. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  885. #define GGML_F16x4_FMA GGML_F32x4_FMA
  886. #define GGML_F16x4_ADD wasm_f32x4_add
  887. #define GGML_F16x4_MUL wasm_f32x4_mul
  888. #define GGML_F16x4_REDUCE(res, x) \
  889. { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  901. } \
  902. res = wasm_f32x4_extract_lane(x[0], 0) + \
  903. wasm_f32x4_extract_lane(x[0], 1) + \
  904. wasm_f32x4_extract_lane(x[0], 2) + \
  905. wasm_f32x4_extract_lane(x[0], 3); \
  906. }
  907. #define GGML_F16_VEC GGML_F16x4
  908. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  913. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  914. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  916. #elif defined(__SSE3__)
  917. #define GGML_SIMD
  918. // F32 SSE
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 __m128
  922. #define GGML_F32x4_ZERO _mm_setzero_ps()
  923. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  924. #define GGML_F32x4_LOAD _mm_loadu_ps
  925. #define GGML_F32x4_STORE _mm_storeu_ps
  926. #if defined(__FMA__)
  927. // TODO: Does this work?
  928. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  929. #else
  930. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  931. #endif
  932. #define GGML_F32x4_ADD _mm_add_ps
  933. #define GGML_F32x4_MUL _mm_mul_ps
  934. #define GGML_F32x4_REDUCE(res, x) \
  935. { \
  936. int offset = GGML_F32_ARR >> 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. offset >>= 1; \
  945. for (int i = 0; i < offset; ++i) { \
  946. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  947. } \
  948. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  949. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  950. }
  951. // TODO: is this optimal ?
  952. #define GGML_F32_VEC GGML_F32x4
  953. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  954. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  955. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  956. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  957. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  958. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  959. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  960. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  961. // F16 SSE
  962. #define GGML_F16_STEP 32
  963. #define GGML_F16_EPR 4
  964. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  965. float tmp[4];
  966. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  967. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  968. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  969. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  970. return _mm_loadu_ps(tmp);
  971. }
  972. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  973. float arr[4];
  974. _mm_storeu_ps(arr, y);
  975. x[0] = GGML_FP32_TO_FP16(arr[0]);
  976. x[1] = GGML_FP32_TO_FP16(arr[1]);
  977. x[2] = GGML_FP32_TO_FP16(arr[2]);
  978. x[3] = GGML_FP32_TO_FP16(arr[3]);
  979. }
  980. #define GGML_F32Cx4 __m128
  981. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  982. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  983. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  984. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  985. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  986. #define GGML_F32Cx4_ADD _mm_add_ps
  987. #define GGML_F32Cx4_MUL _mm_mul_ps
  988. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  989. #define GGML_F16_VEC GGML_F32Cx4
  990. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  991. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  992. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  993. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  994. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  995. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  996. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  997. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  998. #endif
  999. // GGML_F32_ARR / GGML_F16_ARR
  1000. // number of registers to use per step
  1001. #ifdef GGML_SIMD
  1002. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1003. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1004. #endif
  1005. //
  1006. // fundamental operations
  1007. //
  1008. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1009. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1010. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1011. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1012. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1013. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1014. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1015. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1016. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1017. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1018. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1019. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1020. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1021. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1022. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1023. #ifdef GGML_SIMD
  1024. float sumf = 0.0f;
  1025. const int np = (n & ~(GGML_F32_STEP - 1));
  1026. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1027. GGML_F32_VEC ax[GGML_F32_ARR];
  1028. GGML_F32_VEC ay[GGML_F32_ARR];
  1029. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1030. for (int j = 0; j < GGML_F32_ARR; j++) {
  1031. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1032. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1033. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1034. }
  1035. }
  1036. // reduce sum0..sum3 to sum0
  1037. GGML_F32_VEC_REDUCE(sumf, sum);
  1038. // leftovers
  1039. for (int i = np; i < n; ++i) {
  1040. sumf += x[i]*y[i];
  1041. }
  1042. #else
  1043. // scalar
  1044. ggml_float sumf = 0.0;
  1045. for (int i = 0; i < n; ++i) {
  1046. sumf += (ggml_float)(x[i]*y[i]);
  1047. }
  1048. #endif
  1049. *s = sumf;
  1050. }
  1051. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1052. ggml_float sumf = 0.0;
  1053. #if defined(GGML_SIMD)
  1054. const int np = (n & ~(GGML_F16_STEP - 1));
  1055. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1056. GGML_F16_VEC ax[GGML_F16_ARR];
  1057. GGML_F16_VEC ay[GGML_F16_ARR];
  1058. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1059. for (int j = 0; j < GGML_F16_ARR; j++) {
  1060. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1061. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1062. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1063. }
  1064. }
  1065. // reduce sum0..sum3 to sum0
  1066. GGML_F16_VEC_REDUCE(sumf, sum);
  1067. // leftovers
  1068. for (int i = np; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #else
  1072. for (int i = 0; i < n; ++i) {
  1073. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1074. }
  1075. #endif
  1076. *s = sumf;
  1077. }
  1078. // compute GGML_VEC_DOT_UNROLL dot products at once
  1079. // xs - x row stride in bytes
  1080. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1081. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1082. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1083. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1084. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1085. }
  1086. #if defined(GGML_SIMD)
  1087. const int np = (n & ~(GGML_F16_STEP - 1));
  1088. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1089. GGML_F16_VEC ax[GGML_F16_ARR];
  1090. GGML_F16_VEC ay[GGML_F16_ARR];
  1091. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1092. for (int j = 0; j < GGML_F16_ARR; j++) {
  1093. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1094. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1095. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1096. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1097. }
  1098. }
  1099. }
  1100. // reduce sum0..sum3 to sum0
  1101. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1102. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1103. }
  1104. // leftovers
  1105. for (int i = np; i < n; ++i) {
  1106. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1107. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1108. }
  1109. }
  1110. #else
  1111. for (int i = 0; i < n; ++i) {
  1112. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1113. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. }
  1116. #endif
  1117. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1118. s[i] = sumf[i];
  1119. }
  1120. }
  1121. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1122. #if defined(GGML_SIMD)
  1123. const int np = (n & ~(GGML_F32_STEP - 1));
  1124. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1125. GGML_F32_VEC ax[GGML_F32_ARR];
  1126. GGML_F32_VEC ay[GGML_F32_ARR];
  1127. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1128. for (int j = 0; j < GGML_F32_ARR; j++) {
  1129. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1130. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1131. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1132. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1133. }
  1134. }
  1135. // leftovers
  1136. for (int i = np; i < n; ++i) {
  1137. y[i] += x[i]*v;
  1138. }
  1139. #else
  1140. // scalar
  1141. for (int i = 0; i < n; ++i) {
  1142. y[i] += x[i]*v;
  1143. }
  1144. #endif
  1145. }
  1146. // xs and vs are byte strides of x and v
  1147. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1148. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1149. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1150. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1151. x[i] = (const float *) ((const char *) xv + i*xs);
  1152. v[i] = (const float *) ((const char *) vv + i*vs);
  1153. }
  1154. #if defined(GGML_SIMD)
  1155. const int np = (n & ~(GGML_F32_STEP - 1));
  1156. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1157. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1158. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1159. }
  1160. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1161. GGML_F32_VEC ay[GGML_F32_ARR];
  1162. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1163. for (int j = 0; j < GGML_F32_ARR; j++) {
  1164. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1165. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1166. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1167. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1168. }
  1169. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1170. }
  1171. }
  1172. // leftovers
  1173. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1174. for (int i = np; i < n; ++i) {
  1175. y[i] += x[k][i]*v[k][0];
  1176. }
  1177. }
  1178. #else
  1179. // scalar
  1180. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[k][i]*v[k][0];
  1183. }
  1184. }
  1185. #endif
  1186. }
  1187. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1188. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1189. #if defined(GGML_USE_ACCELERATE)
  1190. vDSP_vsmul(y, 1, &v, y, 1, n);
  1191. #elif defined(GGML_SIMD)
  1192. const int np = (n & ~(GGML_F32_STEP - 1));
  1193. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1194. GGML_F32_VEC ay[GGML_F32_ARR];
  1195. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1196. for (int j = 0; j < GGML_F32_ARR; j++) {
  1197. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1198. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1199. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1200. }
  1201. }
  1202. // leftovers
  1203. for (int i = np; i < n; ++i) {
  1204. y[i] *= v;
  1205. }
  1206. #else
  1207. // scalar
  1208. for (int i = 0; i < n; ++i) {
  1209. y[i] *= v;
  1210. }
  1211. #endif
  1212. }
  1213. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1214. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1215. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1216. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1217. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1218. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1219. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1220. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1221. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1222. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1223. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1224. static const float GELU_COEF_A = 0.044715f;
  1225. static const float GELU_QUICK_COEF = -1.702f;
  1226. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1227. inline static float ggml_gelu_f32(float x) {
  1228. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1229. }
  1230. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1231. const uint16_t * i16 = (const uint16_t *) x;
  1232. for (int i = 0; i < n; ++i) {
  1233. y[i] = ggml_table_gelu_f16[i16[i]];
  1234. }
  1235. }
  1236. #ifdef GGML_GELU_FP16
  1237. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1238. uint16_t t;
  1239. for (int i = 0; i < n; ++i) {
  1240. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1241. memcpy(&t, &fp16, sizeof(uint16_t));
  1242. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1243. }
  1244. }
  1245. #else
  1246. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1247. for (int i = 0; i < n; ++i) {
  1248. y[i] = ggml_gelu_f32(x[i]);
  1249. }
  1250. }
  1251. #endif
  1252. inline static float ggml_gelu_quick_f32(float x) {
  1253. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1254. }
  1255. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_GELU_QUICK_FP16
  1262. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_gelu_quick_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. // Sigmoid Linear Unit (SiLU) function
  1278. inline static float ggml_silu_f32(float x) {
  1279. return x/(1.0f + expf(-x));
  1280. }
  1281. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1282. // const uint16_t * i16 = (const uint16_t *) x;
  1283. // for (int i = 0; i < n; ++i) {
  1284. // y[i] = ggml_table_silu_f16[i16[i]];
  1285. // }
  1286. //}
  1287. #ifdef GGML_SILU_FP16
  1288. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1289. uint16_t t;
  1290. for (int i = 0; i < n; ++i) {
  1291. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1292. memcpy(&t, &fp16, sizeof(uint16_t));
  1293. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1294. }
  1295. }
  1296. #else
  1297. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1298. for (int i = 0; i < n; ++i) {
  1299. y[i] = ggml_silu_f32(x[i]);
  1300. }
  1301. }
  1302. #endif
  1303. inline static float ggml_silu_backward_f32(float x, float dy) {
  1304. const float s = 1.0f/(1.0f + expf(-x));
  1305. return dy*s*(1.0f + x*(1.0f - s));
  1306. }
  1307. #ifdef GGML_SILU_FP16
  1308. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1309. for (int i = 0; i < n; ++i) {
  1310. // we did not use x[i] to compute forward silu but its f16 equivalent
  1311. // take derivative at f16 of x[i]:
  1312. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1313. float usedx = GGML_FP16_TO_FP32(fp16);
  1314. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1315. }
  1316. }
  1317. #else
  1318. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1319. for (int i = 0; i < n; ++i) {
  1320. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1321. }
  1322. }
  1323. #endif
  1324. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1325. #ifndef GGML_USE_ACCELERATE
  1326. ggml_float sum = 0.0;
  1327. for (int i = 0; i < n; ++i) {
  1328. sum += (ggml_float)x[i];
  1329. }
  1330. *s = sum;
  1331. #else
  1332. vDSP_sve(x, 1, s, n);
  1333. #endif
  1334. }
  1335. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1336. ggml_float sum = 0.0;
  1337. for (int i = 0; i < n; ++i) {
  1338. sum += (ggml_float)x[i];
  1339. }
  1340. *s = sum;
  1341. }
  1342. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1343. float sum = 0.0f;
  1344. for (int i = 0; i < n; ++i) {
  1345. sum += GGML_FP16_TO_FP32(x[i]);
  1346. }
  1347. *s = sum;
  1348. }
  1349. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1350. #ifndef GGML_USE_ACCELERATE
  1351. float max = -INFINITY;
  1352. for (int i = 0; i < n; ++i) {
  1353. max = MAX(max, x[i]);
  1354. }
  1355. *s = max;
  1356. #else
  1357. vDSP_maxv(x, 1, s, n);
  1358. #endif
  1359. }
  1360. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1361. ggml_vec_norm_f32(n, s, x);
  1362. *s = 1.f/(*s);
  1363. }
  1364. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1365. float max = -INFINITY;
  1366. int idx = 0;
  1367. for (int i = 0; i < n; ++i) {
  1368. max = MAX(max, x[i]);
  1369. if (max == x[i]) { idx = i; }
  1370. }
  1371. *s = idx;
  1372. }
  1373. //
  1374. // data types
  1375. //
  1376. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1377. "NONE",
  1378. "DUP",
  1379. "ADD",
  1380. "ADD1",
  1381. "ACC",
  1382. "SUB",
  1383. "MUL",
  1384. "DIV",
  1385. "SQR",
  1386. "SQRT",
  1387. "LOG",
  1388. "SUM",
  1389. "SUM_ROWS",
  1390. "MEAN",
  1391. "ARGMAX",
  1392. "REPEAT",
  1393. "REPEAT_BACK",
  1394. "CONCAT",
  1395. "SILU_BACK",
  1396. "NORM",
  1397. "RMS_NORM",
  1398. "RMS_NORM_BACK",
  1399. "GROUP_NORM",
  1400. "MUL_MAT",
  1401. "MUL_MAT_ID",
  1402. "OUT_PROD",
  1403. "SCALE",
  1404. "SET",
  1405. "CPY",
  1406. "CONT",
  1407. "RESHAPE",
  1408. "VIEW",
  1409. "PERMUTE",
  1410. "TRANSPOSE",
  1411. "GET_ROWS",
  1412. "GET_ROWS_BACK",
  1413. "DIAG",
  1414. "DIAG_MASK_INF",
  1415. "DIAG_MASK_ZERO",
  1416. "SOFT_MAX",
  1417. "SOFT_MAX_BACK",
  1418. "ROPE",
  1419. "ROPE_BACK",
  1420. "ALIBI",
  1421. "CLAMP",
  1422. "CONV_TRANSPOSE_1D",
  1423. "IM2COL",
  1424. "CONV_TRANSPOSE_2D",
  1425. "POOL_1D",
  1426. "POOL_2D",
  1427. "UPSCALE",
  1428. "PAD",
  1429. "ARGSORT",
  1430. "LEAKY_RELU",
  1431. "FLASH_ATTN",
  1432. "FLASH_FF",
  1433. "FLASH_ATTN_BACK",
  1434. "WIN_PART",
  1435. "WIN_UNPART",
  1436. "GET_REL_POS",
  1437. "ADD_REL_POS",
  1438. "UNARY",
  1439. "MAP_UNARY",
  1440. "MAP_BINARY",
  1441. "MAP_CUSTOM1_F32",
  1442. "MAP_CUSTOM2_F32",
  1443. "MAP_CUSTOM3_F32",
  1444. "MAP_CUSTOM1",
  1445. "MAP_CUSTOM2",
  1446. "MAP_CUSTOM3",
  1447. "CROSS_ENTROPY_LOSS",
  1448. "CROSS_ENTROPY_LOSS_BACK",
  1449. };
  1450. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1451. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1452. "none",
  1453. "x",
  1454. "x+y",
  1455. "x+y",
  1456. "view(x,nb,offset)+=y->x",
  1457. "x-y",
  1458. "x*y",
  1459. "x/y",
  1460. "x^2",
  1461. "√x",
  1462. "log(x)",
  1463. "Σx",
  1464. "Σx_k",
  1465. "Σx/n",
  1466. "argmax(x)",
  1467. "repeat(x)",
  1468. "repeat_back(x)",
  1469. "concat(x, y)",
  1470. "silu_back(x)",
  1471. "norm(x)",
  1472. "rms_norm(x)",
  1473. "rms_norm_back(x)",
  1474. "group_norm(x)",
  1475. "X*Y",
  1476. "X[i]*Y",
  1477. "X*Y",
  1478. "x*v",
  1479. "y-\\>view(x)",
  1480. "x-\\>y",
  1481. "cont(x)",
  1482. "reshape(x)",
  1483. "view(x)",
  1484. "permute(x)",
  1485. "transpose(x)",
  1486. "get_rows(x)",
  1487. "get_rows_back(x)",
  1488. "diag(x)",
  1489. "diag_mask_inf(x)",
  1490. "diag_mask_zero(x)",
  1491. "soft_max(x)",
  1492. "soft_max_back(x)",
  1493. "rope(x)",
  1494. "rope_back(x)",
  1495. "alibi(x)",
  1496. "clamp(x)",
  1497. "conv_transpose_1d(x)",
  1498. "im2col(x)",
  1499. "conv_transpose_2d(x)",
  1500. "pool_1d(x)",
  1501. "pool_2d(x)",
  1502. "upscale(x)",
  1503. "pad(x)",
  1504. "argsort(x)",
  1505. "leaky_relu(x)",
  1506. "flash_attn(x)",
  1507. "flash_ff(x)",
  1508. "flash_attn_back(x)",
  1509. "win_part(x)",
  1510. "win_unpart(x)",
  1511. "get_rel_pos(x)",
  1512. "add_rel_pos(x)",
  1513. "unary(x)",
  1514. "f(x)",
  1515. "f(x,y)",
  1516. "custom_f32(x)",
  1517. "custom_f32(x,y)",
  1518. "custom_f32(x,y,z)",
  1519. "custom(x)",
  1520. "custom(x,y)",
  1521. "custom(x,y,z)",
  1522. "cross_entropy_loss(x,y)",
  1523. "cross_entropy_loss_back(x,y)",
  1524. };
  1525. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1526. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1527. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1528. "ABS",
  1529. "SGN",
  1530. "NEG",
  1531. "STEP",
  1532. "TANH",
  1533. "ELU",
  1534. "RELU",
  1535. "GELU",
  1536. "GELU_QUICK",
  1537. "SILU",
  1538. };
  1539. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1540. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1541. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1542. // WARN:
  1543. // Mis-configuration can lead to problem that's hard to reason about:
  1544. // * At best it crash or talks nosense.
  1545. // * At worst it talks slightly difference but hard to perceive.
  1546. //
  1547. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1548. // Take care about compile options (e.g., GGML_USE_xxx).
  1549. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1550. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1551. static void ggml_setup_op_has_task_pass(void) {
  1552. { // INIT
  1553. bool * p = GGML_OP_HAS_INIT;
  1554. p[GGML_OP_ACC ] = true;
  1555. p[GGML_OP_MUL_MAT ] = true;
  1556. p[GGML_OP_MUL_MAT_ID ] = true;
  1557. p[GGML_OP_OUT_PROD ] = true;
  1558. p[GGML_OP_SET ] = true;
  1559. p[GGML_OP_GET_ROWS_BACK ] = true;
  1560. p[GGML_OP_DIAG_MASK_INF ] = true;
  1561. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1562. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1563. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1564. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1565. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1566. p[GGML_OP_ADD_REL_POS ] = true;
  1567. }
  1568. { // FINALIZE
  1569. bool * p = GGML_OP_HAS_FINALIZE;
  1570. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1571. }
  1572. }
  1573. //
  1574. // ggml context
  1575. //
  1576. struct ggml_context {
  1577. size_t mem_size;
  1578. void * mem_buffer;
  1579. bool mem_buffer_owned;
  1580. bool no_alloc;
  1581. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1582. int n_objects;
  1583. struct ggml_object * objects_begin;
  1584. struct ggml_object * objects_end;
  1585. struct ggml_scratch scratch;
  1586. struct ggml_scratch scratch_save;
  1587. };
  1588. struct ggml_context_container {
  1589. bool used;
  1590. struct ggml_context context;
  1591. };
  1592. //
  1593. // NUMA support
  1594. //
  1595. #define GGML_NUMA_MAX_NODES 8
  1596. #define GGML_NUMA_MAX_CPUS 512
  1597. struct ggml_numa_node {
  1598. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1599. uint32_t n_cpus;
  1600. };
  1601. struct ggml_numa_nodes {
  1602. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1603. uint32_t n_nodes;
  1604. uint32_t total_cpus; // hardware threads on system
  1605. };
  1606. //
  1607. // ggml state
  1608. //
  1609. struct ggml_state {
  1610. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1611. struct ggml_numa_nodes numa;
  1612. };
  1613. // global state
  1614. static struct ggml_state g_state;
  1615. static atomic_int g_state_barrier = 0;
  1616. // barrier via spin lock
  1617. inline static void ggml_critical_section_start(void) {
  1618. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1619. while (processing > 0) {
  1620. // wait for other threads to finish
  1621. atomic_fetch_sub(&g_state_barrier, 1);
  1622. sched_yield(); // TODO: reconsider this
  1623. processing = atomic_fetch_add(&g_state_barrier, 1);
  1624. }
  1625. }
  1626. // TODO: make this somehow automatically executed
  1627. // some sort of "sentry" mechanism
  1628. inline static void ggml_critical_section_end(void) {
  1629. atomic_fetch_sub(&g_state_barrier, 1);
  1630. }
  1631. void ggml_numa_init(void) {
  1632. if (g_state.numa.n_nodes > 0) {
  1633. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1634. return;
  1635. }
  1636. #ifdef __linux__
  1637. struct stat st;
  1638. char path[256];
  1639. int rv;
  1640. // enumerate nodes
  1641. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1642. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1643. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1644. if (stat(path, &st) != 0) { break; }
  1645. ++g_state.numa.n_nodes;
  1646. }
  1647. // enumerate CPUs
  1648. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1649. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1650. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1651. if (stat(path, &st) != 0) { break; }
  1652. ++g_state.numa.total_cpus;
  1653. }
  1654. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1655. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1656. g_state.numa.n_nodes = 0;
  1657. return;
  1658. }
  1659. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1660. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1661. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1662. node->n_cpus = 0;
  1663. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1664. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1665. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1666. if (stat(path, &st) == 0) {
  1667. node->cpus[node->n_cpus++] = c;
  1668. GGML_PRINT_DEBUG(" %u", c);
  1669. }
  1670. }
  1671. GGML_PRINT_DEBUG("\n");
  1672. }
  1673. if (ggml_is_numa()) {
  1674. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1675. if (fptr != NULL) {
  1676. char buf[42];
  1677. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1678. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1679. }
  1680. fclose(fptr);
  1681. }
  1682. }
  1683. #else
  1684. // TODO
  1685. #endif
  1686. }
  1687. bool ggml_is_numa(void) {
  1688. return g_state.numa.n_nodes > 1;
  1689. }
  1690. ////////////////////////////////////////////////////////////////////////////////
  1691. void ggml_print_object(const struct ggml_object * obj) {
  1692. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1693. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1694. }
  1695. void ggml_print_objects(const struct ggml_context * ctx) {
  1696. struct ggml_object * obj = ctx->objects_begin;
  1697. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1698. while (obj != NULL) {
  1699. ggml_print_object(obj);
  1700. obj = obj->next;
  1701. }
  1702. GGML_PRINT("%s: --- end ---\n", __func__);
  1703. }
  1704. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1706. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1707. }
  1708. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1709. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1710. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1711. }
  1712. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1713. size_t nbytes;
  1714. size_t blck_size = ggml_blck_size(tensor->type);
  1715. if (blck_size == 1) {
  1716. nbytes = ggml_type_size(tensor->type);
  1717. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1718. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1719. }
  1720. }
  1721. else {
  1722. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1723. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1724. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1725. }
  1726. }
  1727. return nbytes;
  1728. }
  1729. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1730. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1731. }
  1732. int ggml_blck_size(enum ggml_type type) {
  1733. return type_traits[type].blck_size;
  1734. }
  1735. size_t ggml_type_size(enum ggml_type type) {
  1736. return type_traits[type].type_size;
  1737. }
  1738. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1739. assert(ne % ggml_blck_size(type) == 0);
  1740. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1741. }
  1742. double ggml_type_sizef(enum ggml_type type) {
  1743. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1744. }
  1745. const char * ggml_type_name(enum ggml_type type) {
  1746. return type_traits[type].type_name;
  1747. }
  1748. bool ggml_is_quantized(enum ggml_type type) {
  1749. return type_traits[type].is_quantized;
  1750. }
  1751. const char * ggml_op_name(enum ggml_op op) {
  1752. return GGML_OP_NAME[op];
  1753. }
  1754. const char * ggml_op_symbol(enum ggml_op op) {
  1755. return GGML_OP_SYMBOL[op];
  1756. }
  1757. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1758. return GGML_UNARY_OP_NAME[op];
  1759. }
  1760. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1761. if (t->op == GGML_OP_UNARY) {
  1762. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1763. return ggml_unary_op_name(uop);
  1764. }
  1765. else {
  1766. return ggml_op_name(t->op);
  1767. }
  1768. }
  1769. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1770. return ggml_type_size(tensor->type);
  1771. }
  1772. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1775. }
  1776. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1778. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1779. }
  1780. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1783. }
  1784. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1785. return tensor->ne[3] == 1;
  1786. }
  1787. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1788. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1789. if (tensor->ne[i] > 1) {
  1790. return i + 1;
  1791. }
  1792. }
  1793. return 1;
  1794. }
  1795. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1796. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1797. return (t0->ne[0] == t1->ne[0]) &&
  1798. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1799. (t1->ne[3]%t0->ne[3] == 0);
  1800. }
  1801. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1802. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1803. return (t0->ne[1] == t1->ne[1]) &&
  1804. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1805. (t1->ne[3]%t0->ne[3] == 0);
  1806. }
  1807. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1808. enum ggml_type wtype = GGML_TYPE_COUNT;
  1809. switch (ftype) {
  1810. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1811. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1812. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1813. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1814. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1815. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1816. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1817. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1818. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1819. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1820. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1821. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1822. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1823. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1824. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1825. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1826. }
  1827. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1828. return wtype;
  1829. }
  1830. size_t ggml_tensor_overhead(void) {
  1831. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1832. }
  1833. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1834. return tensor->nb[0] > tensor->nb[1];
  1835. }
  1836. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1837. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1838. return
  1839. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1840. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1841. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1842. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1843. }
  1844. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1845. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1846. return
  1847. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1848. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1849. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1850. }
  1851. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1854. }
  1855. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1857. return
  1858. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1859. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1860. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1861. }
  1862. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1863. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1864. return
  1865. (t0->ne[0] == t1->ne[0] ) &&
  1866. (t0->ne[1] == t1->ne[1] ) &&
  1867. (t0->ne[2] == t1->ne[2] ) &&
  1868. (t0->ne[3] == t1->ne[3] );
  1869. }
  1870. // check if t1 can be represented as a repeatition of t0
  1871. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1872. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1873. return
  1874. (t1->ne[0]%t0->ne[0] == 0) &&
  1875. (t1->ne[1]%t0->ne[1] == 0) &&
  1876. (t1->ne[2]%t0->ne[2] == 0) &&
  1877. (t1->ne[3]%t0->ne[3] == 0);
  1878. }
  1879. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1880. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1881. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1882. }
  1883. static inline int ggml_up32(int n) {
  1884. return (n + 31) & ~31;
  1885. }
  1886. //static inline int ggml_up64(int n) {
  1887. // return (n + 63) & ~63;
  1888. //}
  1889. static inline int ggml_up(int n, int m) {
  1890. // assert m is a power of 2
  1891. GGML_ASSERT((m & (m - 1)) == 0);
  1892. return (n + m - 1) & ~(m - 1);
  1893. }
  1894. // assert that pointer is aligned to GGML_MEM_ALIGN
  1895. #define ggml_assert_aligned(ptr) \
  1896. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1897. ////////////////////////////////////////////////////////////////////////////////
  1898. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1899. // make this function thread safe
  1900. ggml_critical_section_start();
  1901. static bool is_first_call = true;
  1902. if (is_first_call) {
  1903. // initialize time system (required on Windows)
  1904. ggml_time_init();
  1905. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1906. {
  1907. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1908. ggml_fp16_t ii;
  1909. for (int i = 0; i < (1 << 16); ++i) {
  1910. uint16_t ui = i;
  1911. memcpy(&ii, &ui, sizeof(ii));
  1912. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1913. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1914. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1915. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1916. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1917. }
  1918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1919. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1920. }
  1921. // initialize g_state
  1922. {
  1923. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1924. g_state = (struct ggml_state) {
  1925. /*.contexts =*/ { { 0 } },
  1926. /*.numa =*/ {
  1927. .n_nodes = 0,
  1928. .total_cpus = 0,
  1929. },
  1930. };
  1931. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1932. g_state.contexts[i].used = false;
  1933. }
  1934. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1935. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1936. }
  1937. #if defined(GGML_USE_CUBLAS)
  1938. ggml_init_cublas();
  1939. #elif defined(GGML_USE_CLBLAST)
  1940. ggml_cl_init();
  1941. #endif
  1942. ggml_setup_op_has_task_pass();
  1943. is_first_call = false;
  1944. }
  1945. // find non-used context in g_state
  1946. struct ggml_context * ctx = NULL;
  1947. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1948. if (!g_state.contexts[i].used) {
  1949. g_state.contexts[i].used = true;
  1950. ctx = &g_state.contexts[i].context;
  1951. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1952. break;
  1953. }
  1954. }
  1955. if (ctx == NULL) {
  1956. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1957. ggml_critical_section_end();
  1958. return NULL;
  1959. }
  1960. // allow to call ggml_init with 0 size
  1961. if (params.mem_size == 0) {
  1962. params.mem_size = GGML_MEM_ALIGN;
  1963. }
  1964. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1965. *ctx = (struct ggml_context) {
  1966. /*.mem_size =*/ mem_size,
  1967. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1968. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1969. /*.no_alloc =*/ params.no_alloc,
  1970. /*.no_alloc_save =*/ params.no_alloc,
  1971. /*.n_objects =*/ 0,
  1972. /*.objects_begin =*/ NULL,
  1973. /*.objects_end =*/ NULL,
  1974. /*.scratch =*/ { 0, 0, NULL, },
  1975. /*.scratch_save =*/ { 0, 0, NULL, },
  1976. };
  1977. GGML_ASSERT(ctx->mem_buffer != NULL);
  1978. ggml_assert_aligned(ctx->mem_buffer);
  1979. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1980. ggml_critical_section_end();
  1981. return ctx;
  1982. }
  1983. void ggml_free(struct ggml_context * ctx) {
  1984. if (ctx == NULL) {
  1985. return;
  1986. }
  1987. // make this function thread safe
  1988. ggml_critical_section_start();
  1989. bool found = false;
  1990. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1991. if (&g_state.contexts[i].context == ctx) {
  1992. g_state.contexts[i].used = false;
  1993. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1994. __func__, i, ggml_used_mem(ctx));
  1995. if (ctx->mem_buffer_owned) {
  1996. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1997. }
  1998. found = true;
  1999. break;
  2000. }
  2001. }
  2002. if (!found) {
  2003. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2004. }
  2005. ggml_critical_section_end();
  2006. }
  2007. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2008. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2009. }
  2010. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2011. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2012. ctx->scratch = scratch;
  2013. return result;
  2014. }
  2015. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2016. return ctx->no_alloc;
  2017. }
  2018. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2019. ctx->no_alloc = no_alloc;
  2020. }
  2021. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2022. return ctx->mem_buffer;
  2023. }
  2024. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2025. return ctx->mem_size;
  2026. }
  2027. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2028. size_t max_size = 0;
  2029. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2030. max_size = MAX(max_size, ggml_nbytes(tensor));
  2031. }
  2032. return max_size;
  2033. }
  2034. // IMPORTANT:
  2035. // when creating "opt" tensors, always save and load the scratch buffer
  2036. // this is an error prone process, but it is necessary to support inplace
  2037. // operators when using scratch buffers
  2038. // TODO: implement a better way
  2039. static void ggml_scratch_save(struct ggml_context * ctx) {
  2040. // this is needed to allow opt tensors to store their data
  2041. // TODO: again, need to find a better way
  2042. ctx->no_alloc_save = ctx->no_alloc;
  2043. ctx->no_alloc = false;
  2044. ctx->scratch_save = ctx->scratch;
  2045. ctx->scratch.data = NULL;
  2046. }
  2047. static void ggml_scratch_load(struct ggml_context * ctx) {
  2048. ctx->no_alloc = ctx->no_alloc_save;
  2049. ctx->scratch = ctx->scratch_save;
  2050. }
  2051. ////////////////////////////////////////////////////////////////////////////////
  2052. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2053. // always insert objects at the end of the context's memory pool
  2054. struct ggml_object * obj_cur = ctx->objects_end;
  2055. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2056. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2057. const size_t cur_end = cur_offs + cur_size;
  2058. // align to GGML_MEM_ALIGN
  2059. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2060. char * const mem_buffer = ctx->mem_buffer;
  2061. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2062. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2063. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2064. __func__, cur_end + size_needed, ctx->mem_size);
  2065. assert(false);
  2066. return NULL;
  2067. }
  2068. *obj_new = (struct ggml_object) {
  2069. .offs = cur_end + GGML_OBJECT_SIZE,
  2070. .size = size_needed,
  2071. .next = NULL,
  2072. .type = type,
  2073. };
  2074. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2075. if (obj_cur != NULL) {
  2076. obj_cur->next = obj_new;
  2077. } else {
  2078. // this is the first object in this context
  2079. ctx->objects_begin = obj_new;
  2080. }
  2081. ctx->objects_end = obj_new;
  2082. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2083. return obj_new;
  2084. }
  2085. static struct ggml_tensor * ggml_new_tensor_impl(
  2086. struct ggml_context * ctx,
  2087. enum ggml_type type,
  2088. int n_dims,
  2089. const int64_t * ne,
  2090. struct ggml_tensor * view_src,
  2091. size_t view_offs) {
  2092. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2093. // find the base tensor and absolute offset
  2094. if (view_src != NULL && view_src->view_src != NULL) {
  2095. view_offs += view_src->view_offs;
  2096. view_src = view_src->view_src;
  2097. }
  2098. size_t data_size = ggml_row_size(type, ne[0]);
  2099. for (int i = 1; i < n_dims; i++) {
  2100. data_size *= ne[i];
  2101. }
  2102. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2103. void * data = view_src != NULL ? view_src->data : NULL;
  2104. if (data != NULL) {
  2105. data = (char *) data + view_offs;
  2106. }
  2107. size_t obj_alloc_size = 0;
  2108. if (view_src == NULL && !ctx->no_alloc) {
  2109. if (ctx->scratch.data != NULL) {
  2110. // allocate tensor data in the scratch buffer
  2111. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2112. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2113. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2114. assert(false);
  2115. return NULL;
  2116. }
  2117. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2118. ctx->scratch.offs += data_size;
  2119. } else {
  2120. // allocate tensor data in the context's memory pool
  2121. obj_alloc_size = data_size;
  2122. }
  2123. }
  2124. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2125. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2126. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2127. *result = (struct ggml_tensor) {
  2128. /*.type =*/ type,
  2129. /*.backend =*/ GGML_BACKEND_CPU,
  2130. /*.buffer =*/ NULL,
  2131. /*.ne =*/ { 1, 1, 1, 1 },
  2132. /*.nb =*/ { 0, 0, 0, 0 },
  2133. /*.op =*/ GGML_OP_NONE,
  2134. /*.op_params =*/ { 0 },
  2135. /*.is_param =*/ false,
  2136. /*.grad =*/ NULL,
  2137. /*.src =*/ { NULL },
  2138. /*.perf_runs =*/ 0,
  2139. /*.perf_cycles =*/ 0,
  2140. /*.perf_time_us =*/ 0,
  2141. /*.view_src =*/ view_src,
  2142. /*.view_offs =*/ view_offs,
  2143. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2144. /*.name =*/ { 0 },
  2145. /*.extra =*/ NULL,
  2146. /*.padding =*/ { 0 },
  2147. };
  2148. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2149. //ggml_assert_aligned(result->data);
  2150. for (int i = 0; i < n_dims; i++) {
  2151. result->ne[i] = ne[i];
  2152. }
  2153. result->nb[0] = ggml_type_size(type);
  2154. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2155. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2156. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2157. }
  2158. ctx->n_objects++;
  2159. return result;
  2160. }
  2161. struct ggml_tensor * ggml_new_tensor(
  2162. struct ggml_context * ctx,
  2163. enum ggml_type type,
  2164. int n_dims,
  2165. const int64_t * ne) {
  2166. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2167. }
  2168. struct ggml_tensor * ggml_new_tensor_1d(
  2169. struct ggml_context * ctx,
  2170. enum ggml_type type,
  2171. int64_t ne0) {
  2172. return ggml_new_tensor(ctx, type, 1, &ne0);
  2173. }
  2174. struct ggml_tensor * ggml_new_tensor_2d(
  2175. struct ggml_context * ctx,
  2176. enum ggml_type type,
  2177. int64_t ne0,
  2178. int64_t ne1) {
  2179. const int64_t ne[2] = { ne0, ne1 };
  2180. return ggml_new_tensor(ctx, type, 2, ne);
  2181. }
  2182. struct ggml_tensor * ggml_new_tensor_3d(
  2183. struct ggml_context * ctx,
  2184. enum ggml_type type,
  2185. int64_t ne0,
  2186. int64_t ne1,
  2187. int64_t ne2) {
  2188. const int64_t ne[3] = { ne0, ne1, ne2 };
  2189. return ggml_new_tensor(ctx, type, 3, ne);
  2190. }
  2191. struct ggml_tensor * ggml_new_tensor_4d(
  2192. struct ggml_context * ctx,
  2193. enum ggml_type type,
  2194. int64_t ne0,
  2195. int64_t ne1,
  2196. int64_t ne2,
  2197. int64_t ne3) {
  2198. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2199. return ggml_new_tensor(ctx, type, 4, ne);
  2200. }
  2201. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2202. ggml_scratch_save(ctx);
  2203. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2204. ggml_scratch_load(ctx);
  2205. ggml_set_i32(result, value);
  2206. return result;
  2207. }
  2208. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2209. ggml_scratch_save(ctx);
  2210. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2211. ggml_scratch_load(ctx);
  2212. ggml_set_f32(result, value);
  2213. return result;
  2214. }
  2215. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2216. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2217. }
  2218. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2219. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2220. assert(params_size <= GGML_MAX_OP_PARAMS);
  2221. memcpy(tensor->op_params, params, params_size);
  2222. }
  2223. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2224. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2225. return ((const int32_t *)(tensor->op_params))[i];
  2226. }
  2227. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2228. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2229. ((int32_t *)(tensor->op_params))[i] = value;
  2230. }
  2231. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2232. memset(tensor->data, 0, ggml_nbytes(tensor));
  2233. return tensor;
  2234. }
  2235. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2236. const int n = ggml_nrows(tensor);
  2237. const int nc = tensor->ne[0];
  2238. const size_t n1 = tensor->nb[1];
  2239. char * const data = tensor->data;
  2240. switch (tensor->type) {
  2241. case GGML_TYPE_I8:
  2242. {
  2243. assert(tensor->nb[0] == sizeof(int8_t));
  2244. for (int i = 0; i < n; i++) {
  2245. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2246. }
  2247. } break;
  2248. case GGML_TYPE_I16:
  2249. {
  2250. assert(tensor->nb[0] == sizeof(int16_t));
  2251. for (int i = 0; i < n; i++) {
  2252. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2253. }
  2254. } break;
  2255. case GGML_TYPE_I32:
  2256. {
  2257. assert(tensor->nb[0] == sizeof(int32_t));
  2258. for (int i = 0; i < n; i++) {
  2259. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2260. }
  2261. } break;
  2262. case GGML_TYPE_F16:
  2263. {
  2264. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2265. for (int i = 0; i < n; i++) {
  2266. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2267. }
  2268. } break;
  2269. case GGML_TYPE_F32:
  2270. {
  2271. assert(tensor->nb[0] == sizeof(float));
  2272. for (int i = 0; i < n; i++) {
  2273. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2274. }
  2275. } break;
  2276. default:
  2277. {
  2278. GGML_ASSERT(false);
  2279. } break;
  2280. }
  2281. return tensor;
  2282. }
  2283. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2284. const int n = ggml_nrows(tensor);
  2285. const int nc = tensor->ne[0];
  2286. const size_t n1 = tensor->nb[1];
  2287. char * const data = tensor->data;
  2288. switch (tensor->type) {
  2289. case GGML_TYPE_I8:
  2290. {
  2291. assert(tensor->nb[0] == sizeof(int8_t));
  2292. for (int i = 0; i < n; i++) {
  2293. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2294. }
  2295. } break;
  2296. case GGML_TYPE_I16:
  2297. {
  2298. assert(tensor->nb[0] == sizeof(int16_t));
  2299. for (int i = 0; i < n; i++) {
  2300. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2301. }
  2302. } break;
  2303. case GGML_TYPE_I32:
  2304. {
  2305. assert(tensor->nb[0] == sizeof(int32_t));
  2306. for (int i = 0; i < n; i++) {
  2307. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2308. }
  2309. } break;
  2310. case GGML_TYPE_F16:
  2311. {
  2312. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2313. for (int i = 0; i < n; i++) {
  2314. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2315. }
  2316. } break;
  2317. case GGML_TYPE_F32:
  2318. {
  2319. assert(tensor->nb[0] == sizeof(float));
  2320. for (int i = 0; i < n; i++) {
  2321. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2322. }
  2323. } break;
  2324. default:
  2325. {
  2326. GGML_ASSERT(false);
  2327. } break;
  2328. }
  2329. return tensor;
  2330. }
  2331. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2332. const int64_t ne2 = tensor->ne[2];
  2333. const int64_t ne1 = tensor->ne[1];
  2334. const int64_t ne0 = tensor->ne[0];
  2335. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2336. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2337. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2338. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2339. if (i0) {
  2340. * i0 = i0_;
  2341. }
  2342. if (i1) {
  2343. * i1 = i1_;
  2344. }
  2345. if (i2) {
  2346. * i2 = i2_;
  2347. }
  2348. if (i3) {
  2349. * i3 = i3_;
  2350. }
  2351. }
  2352. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2353. if (!ggml_is_contiguous(tensor)) {
  2354. int64_t id[4] = { 0, 0, 0, 0 };
  2355. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2356. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2357. }
  2358. switch (tensor->type) {
  2359. case GGML_TYPE_I8:
  2360. {
  2361. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2362. return ((int8_t *)(tensor->data))[i];
  2363. }
  2364. case GGML_TYPE_I16:
  2365. {
  2366. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2367. return ((int16_t *)(tensor->data))[i];
  2368. }
  2369. case GGML_TYPE_I32:
  2370. {
  2371. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2372. return ((int32_t *)(tensor->data))[i];
  2373. }
  2374. case GGML_TYPE_F16:
  2375. {
  2376. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2377. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2378. }
  2379. case GGML_TYPE_F32:
  2380. {
  2381. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2382. return ((float *)(tensor->data))[i];
  2383. }
  2384. default:
  2385. {
  2386. GGML_ASSERT(false);
  2387. }
  2388. }
  2389. return 0.0f;
  2390. }
  2391. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2392. if (!ggml_is_contiguous(tensor)) {
  2393. int64_t id[4] = { 0, 0, 0, 0 };
  2394. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2395. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2396. return;
  2397. }
  2398. switch (tensor->type) {
  2399. case GGML_TYPE_I8:
  2400. {
  2401. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2402. ((int8_t *)(tensor->data))[i] = value;
  2403. } break;
  2404. case GGML_TYPE_I16:
  2405. {
  2406. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2407. ((int16_t *)(tensor->data))[i] = value;
  2408. } break;
  2409. case GGML_TYPE_I32:
  2410. {
  2411. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2412. ((int32_t *)(tensor->data))[i] = value;
  2413. } break;
  2414. case GGML_TYPE_F16:
  2415. {
  2416. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2417. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2418. } break;
  2419. case GGML_TYPE_F32:
  2420. {
  2421. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2422. ((float *)(tensor->data))[i] = value;
  2423. } break;
  2424. default:
  2425. {
  2426. GGML_ASSERT(false);
  2427. } break;
  2428. }
  2429. }
  2430. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2431. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2432. switch (tensor->type) {
  2433. case GGML_TYPE_I8:
  2434. return ((int8_t *) data)[0];
  2435. case GGML_TYPE_I16:
  2436. return ((int16_t *) data)[0];
  2437. case GGML_TYPE_I32:
  2438. return ((int32_t *) data)[0];
  2439. case GGML_TYPE_F16:
  2440. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2441. case GGML_TYPE_F32:
  2442. return ((float *) data)[0];
  2443. default:
  2444. GGML_ASSERT(false);
  2445. }
  2446. return 0.0f;
  2447. }
  2448. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2449. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2450. switch (tensor->type) {
  2451. case GGML_TYPE_I8:
  2452. {
  2453. ((int8_t *)(data))[0] = value;
  2454. } break;
  2455. case GGML_TYPE_I16:
  2456. {
  2457. ((int16_t *)(data))[0] = value;
  2458. } break;
  2459. case GGML_TYPE_I32:
  2460. {
  2461. ((int32_t *)(data))[0] = value;
  2462. } break;
  2463. case GGML_TYPE_F16:
  2464. {
  2465. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2466. } break;
  2467. case GGML_TYPE_F32:
  2468. {
  2469. ((float *)(data))[0] = value;
  2470. } break;
  2471. default:
  2472. {
  2473. GGML_ASSERT(false);
  2474. } break;
  2475. }
  2476. }
  2477. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2478. if (!ggml_is_contiguous(tensor)) {
  2479. int64_t id[4] = { 0, 0, 0, 0 };
  2480. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2481. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2482. }
  2483. switch (tensor->type) {
  2484. case GGML_TYPE_I8:
  2485. {
  2486. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2487. return ((int8_t *)(tensor->data))[i];
  2488. }
  2489. case GGML_TYPE_I16:
  2490. {
  2491. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2492. return ((int16_t *)(tensor->data))[i];
  2493. }
  2494. case GGML_TYPE_I32:
  2495. {
  2496. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2497. return ((int32_t *)(tensor->data))[i];
  2498. }
  2499. case GGML_TYPE_F16:
  2500. {
  2501. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2502. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2503. }
  2504. case GGML_TYPE_F32:
  2505. {
  2506. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2507. return ((float *)(tensor->data))[i];
  2508. }
  2509. default:
  2510. {
  2511. GGML_ASSERT(false);
  2512. }
  2513. }
  2514. return 0.0f;
  2515. }
  2516. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2517. if (!ggml_is_contiguous(tensor)) {
  2518. int64_t id[4] = { 0, 0, 0, 0 };
  2519. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2520. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2521. return;
  2522. }
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. {
  2526. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2527. ((int8_t *)(tensor->data))[i] = value;
  2528. } break;
  2529. case GGML_TYPE_I16:
  2530. {
  2531. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2532. ((int16_t *)(tensor->data))[i] = value;
  2533. } break;
  2534. case GGML_TYPE_I32:
  2535. {
  2536. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2537. ((int32_t *)(tensor->data))[i] = value;
  2538. } break;
  2539. case GGML_TYPE_F16:
  2540. {
  2541. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2542. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2543. } break;
  2544. case GGML_TYPE_F32:
  2545. {
  2546. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2547. ((float *)(tensor->data))[i] = value;
  2548. } break;
  2549. default:
  2550. {
  2551. GGML_ASSERT(false);
  2552. } break;
  2553. }
  2554. }
  2555. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2556. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2557. switch (tensor->type) {
  2558. case GGML_TYPE_I8:
  2559. return ((int8_t *) data)[0];
  2560. case GGML_TYPE_I16:
  2561. return ((int16_t *) data)[0];
  2562. case GGML_TYPE_I32:
  2563. return ((int32_t *) data)[0];
  2564. case GGML_TYPE_F16:
  2565. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2566. case GGML_TYPE_F32:
  2567. return ((float *) data)[0];
  2568. default:
  2569. GGML_ASSERT(false);
  2570. }
  2571. return 0.0f;
  2572. }
  2573. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2574. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2575. switch (tensor->type) {
  2576. case GGML_TYPE_I8:
  2577. {
  2578. ((int8_t *)(data))[0] = value;
  2579. } break;
  2580. case GGML_TYPE_I16:
  2581. {
  2582. ((int16_t *)(data))[0] = value;
  2583. } break;
  2584. case GGML_TYPE_I32:
  2585. {
  2586. ((int32_t *)(data))[0] = value;
  2587. } break;
  2588. case GGML_TYPE_F16:
  2589. {
  2590. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2591. } break;
  2592. case GGML_TYPE_F32:
  2593. {
  2594. ((float *)(data))[0] = value;
  2595. } break;
  2596. default:
  2597. {
  2598. GGML_ASSERT(false);
  2599. } break;
  2600. }
  2601. }
  2602. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2603. return tensor->data;
  2604. }
  2605. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2606. assert(tensor->type == GGML_TYPE_F32);
  2607. return (float *)(tensor->data);
  2608. }
  2609. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2610. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2611. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2612. }
  2613. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2614. return tensor->name;
  2615. }
  2616. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2617. strncpy(tensor->name, name, sizeof(tensor->name));
  2618. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2619. return tensor;
  2620. }
  2621. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2622. va_list args;
  2623. va_start(args, fmt);
  2624. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2625. va_end(args);
  2626. return tensor;
  2627. }
  2628. struct ggml_tensor * ggml_view_tensor(
  2629. struct ggml_context * ctx,
  2630. struct ggml_tensor * src) {
  2631. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2632. ggml_format_name(result, "%s (view)", src->name);
  2633. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2634. result->nb[i] = src->nb[i];
  2635. }
  2636. return result;
  2637. }
  2638. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2639. struct ggml_object * obj = ctx->objects_begin;
  2640. char * const mem_buffer = ctx->mem_buffer;
  2641. while (obj != NULL) {
  2642. if (obj->type == GGML_OBJECT_TENSOR) {
  2643. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2644. }
  2645. obj = obj->next;
  2646. }
  2647. return NULL;
  2648. }
  2649. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2650. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2651. obj = obj->next;
  2652. char * const mem_buffer = ctx->mem_buffer;
  2653. while (obj != NULL) {
  2654. if (obj->type == GGML_OBJECT_TENSOR) {
  2655. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2656. }
  2657. obj = obj->next;
  2658. }
  2659. return NULL;
  2660. }
  2661. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2662. struct ggml_object * obj = ctx->objects_begin;
  2663. char * const mem_buffer = ctx->mem_buffer;
  2664. while (obj != NULL) {
  2665. if (obj->type == GGML_OBJECT_TENSOR) {
  2666. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2667. if (strcmp(cur->name, name) == 0) {
  2668. return cur;
  2669. }
  2670. }
  2671. obj = obj->next;
  2672. }
  2673. return NULL;
  2674. }
  2675. ////////////////////////////////////////////////////////////////////////////////
  2676. // ggml_dup
  2677. static struct ggml_tensor * ggml_dup_impl(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a,
  2680. bool inplace) {
  2681. bool is_node = false;
  2682. if (!inplace && (a->grad)) {
  2683. is_node = true;
  2684. }
  2685. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2686. result->op = GGML_OP_DUP;
  2687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2688. result->src[0] = a;
  2689. return result;
  2690. }
  2691. struct ggml_tensor * ggml_dup(
  2692. struct ggml_context * ctx,
  2693. struct ggml_tensor * a) {
  2694. return ggml_dup_impl(ctx, a, false);
  2695. }
  2696. struct ggml_tensor * ggml_dup_inplace(
  2697. struct ggml_context * ctx,
  2698. struct ggml_tensor * a) {
  2699. return ggml_dup_impl(ctx, a, true);
  2700. }
  2701. // ggml_add
  2702. static struct ggml_tensor * ggml_add_impl(
  2703. struct ggml_context * ctx,
  2704. struct ggml_tensor * a,
  2705. struct ggml_tensor * b,
  2706. bool inplace) {
  2707. GGML_ASSERT(ggml_can_repeat(b, a));
  2708. bool is_node = false;
  2709. if (!inplace && (a->grad || b->grad)) {
  2710. // TODO: support backward pass for broadcasting
  2711. GGML_ASSERT(ggml_are_same_shape(a, b));
  2712. is_node = true;
  2713. }
  2714. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2715. result->op = GGML_OP_ADD;
  2716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2717. result->src[0] = a;
  2718. result->src[1] = b;
  2719. return result;
  2720. }
  2721. struct ggml_tensor * ggml_add(
  2722. struct ggml_context * ctx,
  2723. struct ggml_tensor * a,
  2724. struct ggml_tensor * b) {
  2725. return ggml_add_impl(ctx, a, b, false);
  2726. }
  2727. struct ggml_tensor * ggml_add_inplace(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. struct ggml_tensor * b) {
  2731. return ggml_add_impl(ctx, a, b, true);
  2732. }
  2733. // ggml_add_cast
  2734. static struct ggml_tensor * ggml_add_cast_impl(
  2735. struct ggml_context * ctx,
  2736. struct ggml_tensor * a,
  2737. struct ggml_tensor * b,
  2738. enum ggml_type type) {
  2739. // TODO: support less-strict constraint
  2740. // GGML_ASSERT(ggml_can_repeat(b, a));
  2741. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2742. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2743. bool is_node = false;
  2744. if (a->grad || b->grad) {
  2745. // TODO: support backward pass for broadcasting
  2746. GGML_ASSERT(ggml_are_same_shape(a, b));
  2747. is_node = true;
  2748. }
  2749. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2750. result->op = GGML_OP_ADD;
  2751. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2752. result->src[0] = a;
  2753. result->src[1] = b;
  2754. return result;
  2755. }
  2756. struct ggml_tensor * ggml_add_cast(
  2757. struct ggml_context * ctx,
  2758. struct ggml_tensor * a,
  2759. struct ggml_tensor * b,
  2760. enum ggml_type type) {
  2761. return ggml_add_cast_impl(ctx, a, b, type);
  2762. }
  2763. // ggml_add1
  2764. static struct ggml_tensor * ggml_add1_impl(
  2765. struct ggml_context * ctx,
  2766. struct ggml_tensor * a,
  2767. struct ggml_tensor * b,
  2768. bool inplace) {
  2769. GGML_ASSERT(ggml_is_scalar(b));
  2770. GGML_ASSERT(ggml_is_padded_1d(a));
  2771. bool is_node = false;
  2772. if (a->grad || b->grad) {
  2773. is_node = true;
  2774. }
  2775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2776. result->op = GGML_OP_ADD1;
  2777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2778. result->src[0] = a;
  2779. result->src[1] = b;
  2780. return result;
  2781. }
  2782. struct ggml_tensor * ggml_add1(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a,
  2785. struct ggml_tensor * b) {
  2786. return ggml_add1_impl(ctx, a, b, false);
  2787. }
  2788. struct ggml_tensor * ggml_add1_inplace(
  2789. struct ggml_context * ctx,
  2790. struct ggml_tensor * a,
  2791. struct ggml_tensor * b) {
  2792. return ggml_add1_impl(ctx, a, b, true);
  2793. }
  2794. // ggml_acc
  2795. static struct ggml_tensor * ggml_acc_impl(
  2796. struct ggml_context * ctx,
  2797. struct ggml_tensor * a,
  2798. struct ggml_tensor * b,
  2799. size_t nb1,
  2800. size_t nb2,
  2801. size_t nb3,
  2802. size_t offset,
  2803. bool inplace) {
  2804. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2805. GGML_ASSERT(ggml_is_contiguous(a));
  2806. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2807. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2808. bool is_node = false;
  2809. if (!inplace && (a->grad || b->grad)) {
  2810. is_node = true;
  2811. }
  2812. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2813. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2814. ggml_set_op_params(result, params, sizeof(params));
  2815. result->op = GGML_OP_ACC;
  2816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2817. result->src[0] = a;
  2818. result->src[1] = b;
  2819. return result;
  2820. }
  2821. struct ggml_tensor * ggml_acc(
  2822. struct ggml_context * ctx,
  2823. struct ggml_tensor * a,
  2824. struct ggml_tensor * b,
  2825. size_t nb1,
  2826. size_t nb2,
  2827. size_t nb3,
  2828. size_t offset) {
  2829. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2830. }
  2831. struct ggml_tensor * ggml_acc_inplace(
  2832. struct ggml_context * ctx,
  2833. struct ggml_tensor * a,
  2834. struct ggml_tensor * b,
  2835. size_t nb1,
  2836. size_t nb2,
  2837. size_t nb3,
  2838. size_t offset) {
  2839. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2840. }
  2841. // ggml_sub
  2842. static struct ggml_tensor * ggml_sub_impl(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a,
  2845. struct ggml_tensor * b,
  2846. bool inplace) {
  2847. GGML_ASSERT(ggml_are_same_shape(a, b));
  2848. bool is_node = false;
  2849. if (!inplace && (a->grad || b->grad)) {
  2850. is_node = true;
  2851. }
  2852. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2853. result->op = GGML_OP_SUB;
  2854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2855. result->src[0] = a;
  2856. result->src[1] = b;
  2857. return result;
  2858. }
  2859. struct ggml_tensor * ggml_sub(
  2860. struct ggml_context * ctx,
  2861. struct ggml_tensor * a,
  2862. struct ggml_tensor * b) {
  2863. return ggml_sub_impl(ctx, a, b, false);
  2864. }
  2865. struct ggml_tensor * ggml_sub_inplace(
  2866. struct ggml_context * ctx,
  2867. struct ggml_tensor * a,
  2868. struct ggml_tensor * b) {
  2869. return ggml_sub_impl(ctx, a, b, true);
  2870. }
  2871. // ggml_mul
  2872. static struct ggml_tensor * ggml_mul_impl(
  2873. struct ggml_context * ctx,
  2874. struct ggml_tensor * a,
  2875. struct ggml_tensor * b,
  2876. bool inplace) {
  2877. GGML_ASSERT(ggml_can_repeat(b, a));
  2878. bool is_node = false;
  2879. if (!inplace && (a->grad || b->grad)) {
  2880. // TODO: support backward pass for broadcasting
  2881. GGML_ASSERT(ggml_are_same_shape(a, b));
  2882. is_node = true;
  2883. }
  2884. if (inplace) {
  2885. GGML_ASSERT(!is_node);
  2886. }
  2887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2888. result->op = GGML_OP_MUL;
  2889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2890. result->src[0] = a;
  2891. result->src[1] = b;
  2892. return result;
  2893. }
  2894. struct ggml_tensor * ggml_mul(
  2895. struct ggml_context * ctx,
  2896. struct ggml_tensor * a,
  2897. struct ggml_tensor * b) {
  2898. return ggml_mul_impl(ctx, a, b, false);
  2899. }
  2900. struct ggml_tensor * ggml_mul_inplace(
  2901. struct ggml_context * ctx,
  2902. struct ggml_tensor * a,
  2903. struct ggml_tensor * b) {
  2904. return ggml_mul_impl(ctx, a, b, true);
  2905. }
  2906. // ggml_div
  2907. static struct ggml_tensor * ggml_div_impl(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a,
  2910. struct ggml_tensor * b,
  2911. bool inplace) {
  2912. GGML_ASSERT(ggml_can_repeat(b, a));
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad || b->grad)) {
  2915. is_node = true;
  2916. }
  2917. if (inplace) {
  2918. GGML_ASSERT(!is_node);
  2919. }
  2920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2921. result->op = GGML_OP_DIV;
  2922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2923. result->src[0] = a;
  2924. result->src[1] = b;
  2925. return result;
  2926. }
  2927. struct ggml_tensor * ggml_div(
  2928. struct ggml_context * ctx,
  2929. struct ggml_tensor * a,
  2930. struct ggml_tensor * b) {
  2931. return ggml_div_impl(ctx, a, b, false);
  2932. }
  2933. struct ggml_tensor * ggml_div_inplace(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. struct ggml_tensor * b) {
  2937. return ggml_div_impl(ctx, a, b, true);
  2938. }
  2939. // ggml_sqr
  2940. static struct ggml_tensor * ggml_sqr_impl(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a,
  2943. bool inplace) {
  2944. bool is_node = false;
  2945. if (!inplace && (a->grad)) {
  2946. is_node = true;
  2947. }
  2948. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2949. result->op = GGML_OP_SQR;
  2950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2951. result->src[0] = a;
  2952. return result;
  2953. }
  2954. struct ggml_tensor * ggml_sqr(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a) {
  2957. return ggml_sqr_impl(ctx, a, false);
  2958. }
  2959. struct ggml_tensor * ggml_sqr_inplace(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a) {
  2962. return ggml_sqr_impl(ctx, a, true);
  2963. }
  2964. // ggml_sqrt
  2965. static struct ggml_tensor * ggml_sqrt_impl(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a,
  2968. bool inplace) {
  2969. bool is_node = false;
  2970. if (!inplace && (a->grad)) {
  2971. is_node = true;
  2972. }
  2973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2974. result->op = GGML_OP_SQRT;
  2975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2976. result->src[0] = a;
  2977. return result;
  2978. }
  2979. struct ggml_tensor * ggml_sqrt(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. return ggml_sqrt_impl(ctx, a, false);
  2983. }
  2984. struct ggml_tensor * ggml_sqrt_inplace(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. return ggml_sqrt_impl(ctx, a, true);
  2988. }
  2989. // ggml_log
  2990. static struct ggml_tensor * ggml_log_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. bool inplace) {
  2994. bool is_node = false;
  2995. if (!inplace && (a->grad)) {
  2996. is_node = true;
  2997. }
  2998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2999. result->op = GGML_OP_LOG;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src[0] = a;
  3002. return result;
  3003. }
  3004. struct ggml_tensor * ggml_log(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a) {
  3007. return ggml_log_impl(ctx, a, false);
  3008. }
  3009. struct ggml_tensor * ggml_log_inplace(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a) {
  3012. return ggml_log_impl(ctx, a, true);
  3013. }
  3014. // ggml_sum
  3015. struct ggml_tensor * ggml_sum(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a) {
  3018. bool is_node = false;
  3019. if (a->grad) {
  3020. is_node = true;
  3021. }
  3022. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3023. result->op = GGML_OP_SUM;
  3024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3025. result->src[0] = a;
  3026. return result;
  3027. }
  3028. // ggml_sum_rows
  3029. struct ggml_tensor * ggml_sum_rows(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a) {
  3032. bool is_node = false;
  3033. if (a->grad) {
  3034. is_node = true;
  3035. }
  3036. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3037. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3038. ne[i] = a->ne[i];
  3039. }
  3040. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3041. result->op = GGML_OP_SUM_ROWS;
  3042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3043. result->src[0] = a;
  3044. return result;
  3045. }
  3046. // ggml_mean
  3047. struct ggml_tensor * ggml_mean(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a) {
  3050. bool is_node = false;
  3051. if (a->grad) {
  3052. GGML_ASSERT(false); // TODO: implement
  3053. is_node = true;
  3054. }
  3055. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3056. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3057. result->op = GGML_OP_MEAN;
  3058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3059. result->src[0] = a;
  3060. return result;
  3061. }
  3062. // ggml_argmax
  3063. struct ggml_tensor * ggml_argmax(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a) {
  3066. GGML_ASSERT(ggml_is_matrix(a));
  3067. bool is_node = false;
  3068. if (a->grad) {
  3069. GGML_ASSERT(false);
  3070. is_node = true;
  3071. }
  3072. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3073. result->op = GGML_OP_ARGMAX;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. // ggml_repeat
  3079. struct ggml_tensor * ggml_repeat(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a,
  3082. struct ggml_tensor * b) {
  3083. GGML_ASSERT(ggml_can_repeat(a, b));
  3084. bool is_node = false;
  3085. if (a->grad) {
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3089. result->op = GGML_OP_REPEAT;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. return result;
  3093. }
  3094. // ggml_repeat_back
  3095. struct ggml_tensor * ggml_repeat_back(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a,
  3098. struct ggml_tensor * b) {
  3099. GGML_ASSERT(ggml_can_repeat(b, a));
  3100. bool is_node = false;
  3101. if (a->grad) {
  3102. is_node = true;
  3103. }
  3104. if (ggml_are_same_shape(a, b) && !is_node) {
  3105. return a;
  3106. }
  3107. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3108. result->op = GGML_OP_REPEAT_BACK;
  3109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3110. result->src[0] = a;
  3111. return result;
  3112. }
  3113. // ggml_concat
  3114. struct ggml_tensor * ggml_concat(
  3115. struct ggml_context* ctx,
  3116. struct ggml_tensor* a,
  3117. struct ggml_tensor* b) {
  3118. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3119. bool is_node = false;
  3120. if (a->grad || b->grad) {
  3121. is_node = true;
  3122. }
  3123. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3124. result->op = GGML_OP_CONCAT;
  3125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3126. result->src[0] = a;
  3127. result->src[1] = b;
  3128. return result;
  3129. }
  3130. // ggml_abs
  3131. struct ggml_tensor * ggml_abs(
  3132. struct ggml_context * ctx,
  3133. struct ggml_tensor * a) {
  3134. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3135. }
  3136. struct ggml_tensor * ggml_abs_inplace(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a) {
  3139. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3140. }
  3141. // ggml_sgn
  3142. struct ggml_tensor * ggml_sgn(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a) {
  3145. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3146. }
  3147. struct ggml_tensor * ggml_sgn_inplace(
  3148. struct ggml_context * ctx,
  3149. struct ggml_tensor * a) {
  3150. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3151. }
  3152. // ggml_neg
  3153. struct ggml_tensor * ggml_neg(
  3154. struct ggml_context * ctx,
  3155. struct ggml_tensor * a) {
  3156. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3157. }
  3158. struct ggml_tensor * ggml_neg_inplace(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a) {
  3161. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3162. }
  3163. // ggml_step
  3164. struct ggml_tensor * ggml_step(
  3165. struct ggml_context * ctx,
  3166. struct ggml_tensor * a) {
  3167. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3168. }
  3169. struct ggml_tensor * ggml_step_inplace(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a) {
  3172. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3173. }
  3174. // ggml_tanh
  3175. struct ggml_tensor * ggml_tanh(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a) {
  3178. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3179. }
  3180. struct ggml_tensor * ggml_tanh_inplace(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a) {
  3183. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3184. }
  3185. // ggml_elu
  3186. struct ggml_tensor * ggml_elu(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3190. }
  3191. struct ggml_tensor * ggml_elu_inplace(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a) {
  3194. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3195. }
  3196. // ggml_relu
  3197. struct ggml_tensor * ggml_relu(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3201. }
  3202. struct ggml_tensor * ggml_relu_inplace(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a) {
  3205. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3206. }
  3207. // ggml_leaky_relu
  3208. struct ggml_tensor * ggml_leaky_relu(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3211. bool is_node = false;
  3212. if (!inplace && (a->grad)) {
  3213. is_node = true;
  3214. }
  3215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3216. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3217. result->op = GGML_OP_LEAKY_RELU;
  3218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3219. result->src[0] = a;
  3220. return result;
  3221. }
  3222. // ggml_gelu
  3223. struct ggml_tensor * ggml_gelu(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3227. }
  3228. struct ggml_tensor * ggml_gelu_inplace(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a) {
  3231. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3232. }
  3233. // ggml_gelu_quick
  3234. struct ggml_tensor * ggml_gelu_quick(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a) {
  3237. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3238. }
  3239. struct ggml_tensor * ggml_gelu_quick_inplace(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a) {
  3242. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3243. }
  3244. // ggml_silu
  3245. struct ggml_tensor * ggml_silu(
  3246. struct ggml_context * ctx,
  3247. struct ggml_tensor * a) {
  3248. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3249. }
  3250. struct ggml_tensor * ggml_silu_inplace(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a) {
  3253. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3254. }
  3255. // ggml_silu_back
  3256. struct ggml_tensor * ggml_silu_back(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a,
  3259. struct ggml_tensor * b) {
  3260. bool is_node = false;
  3261. if (a->grad || b->grad) {
  3262. // TODO: implement backward
  3263. is_node = true;
  3264. }
  3265. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3266. result->op = GGML_OP_SILU_BACK;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src[0] = a;
  3269. result->src[1] = b;
  3270. return result;
  3271. }
  3272. // ggml_norm
  3273. static struct ggml_tensor * ggml_norm_impl(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a,
  3276. float eps,
  3277. bool inplace) {
  3278. bool is_node = false;
  3279. if (!inplace && (a->grad)) {
  3280. GGML_ASSERT(false); // TODO: implement backward
  3281. is_node = true;
  3282. }
  3283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3284. ggml_set_op_params(result, &eps, sizeof(eps));
  3285. result->op = GGML_OP_NORM;
  3286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3287. result->src[0] = a;
  3288. return result;
  3289. }
  3290. struct ggml_tensor * ggml_norm(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. float eps) {
  3294. return ggml_norm_impl(ctx, a, eps, false);
  3295. }
  3296. struct ggml_tensor * ggml_norm_inplace(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a,
  3299. float eps) {
  3300. return ggml_norm_impl(ctx, a, eps, true);
  3301. }
  3302. // ggml_rms_norm
  3303. static struct ggml_tensor * ggml_rms_norm_impl(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a,
  3306. float eps,
  3307. bool inplace) {
  3308. bool is_node = false;
  3309. if (!inplace && (a->grad)) {
  3310. is_node = true;
  3311. }
  3312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3313. ggml_set_op_params(result, &eps, sizeof(eps));
  3314. result->op = GGML_OP_RMS_NORM;
  3315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3316. result->src[0] = a;
  3317. return result;
  3318. }
  3319. struct ggml_tensor * ggml_rms_norm(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. float eps) {
  3323. return ggml_rms_norm_impl(ctx, a, eps, false);
  3324. }
  3325. struct ggml_tensor * ggml_rms_norm_inplace(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. float eps) {
  3329. return ggml_rms_norm_impl(ctx, a, eps, true);
  3330. }
  3331. // ggml_rms_norm_back
  3332. struct ggml_tensor * ggml_rms_norm_back(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. struct ggml_tensor * b,
  3336. float eps) {
  3337. bool is_node = false;
  3338. if (a->grad) {
  3339. // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3343. ggml_set_op_params(result, &eps, sizeof(eps));
  3344. result->op = GGML_OP_RMS_NORM_BACK;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src[0] = a;
  3347. result->src[1] = b;
  3348. return result;
  3349. }
  3350. // ggml_group_norm
  3351. static struct ggml_tensor * ggml_group_norm_impl(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. int n_groups,
  3355. bool inplace) {
  3356. bool is_node = false;
  3357. if (!inplace && (a->grad)) {
  3358. GGML_ASSERT(false); // TODO: implement backward
  3359. is_node = true;
  3360. }
  3361. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3362. result->op_params[0] = n_groups;
  3363. result->op = GGML_OP_GROUP_NORM;
  3364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3365. result->src[0] = a;
  3366. return result;
  3367. }
  3368. struct ggml_tensor * ggml_group_norm(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a,
  3371. int n_groups) {
  3372. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3373. }
  3374. struct ggml_tensor * ggml_group_norm_inplace(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a,
  3377. int n_groups) {
  3378. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3379. }
  3380. // ggml_mul_mat
  3381. struct ggml_tensor * ggml_mul_mat(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. struct ggml_tensor * b) {
  3385. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3386. GGML_ASSERT(!ggml_is_transposed(a));
  3387. bool is_node = false;
  3388. if (a->grad || b->grad) {
  3389. is_node = true;
  3390. }
  3391. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3392. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3393. result->op = GGML_OP_MUL_MAT;
  3394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3395. result->src[0] = a;
  3396. result->src[1] = b;
  3397. return result;
  3398. }
  3399. void ggml_mul_mat_set_prec(
  3400. struct ggml_tensor * a,
  3401. enum ggml_prec prec) {
  3402. const int32_t prec_i32 = (int32_t) prec;
  3403. ggml_set_op_params_i32(a, 0, prec_i32);
  3404. }
  3405. // ggml_mul_mat_id
  3406. struct ggml_tensor * ggml_mul_mat_id(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * const as[],
  3409. int n_as,
  3410. struct ggml_tensor * ids,
  3411. int id,
  3412. struct ggml_tensor * b) {
  3413. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3414. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3415. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3416. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3417. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3418. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3419. bool is_node = false;
  3420. if (as[0]->grad || b->grad) {
  3421. is_node = true;
  3422. }
  3423. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3424. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3425. ggml_set_op_params_i32(result, 0, id);
  3426. ggml_set_op_params_i32(result, 1, n_as);
  3427. result->op = GGML_OP_MUL_MAT_ID;
  3428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3429. result->src[0] = ids;
  3430. result->src[1] = b;
  3431. for (int i = 0; i < n_as; i++) {
  3432. struct ggml_tensor * a = as[i];
  3433. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3434. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3435. GGML_ASSERT(!ggml_is_transposed(a));
  3436. result->src[i + 2] = a;
  3437. }
  3438. return result;
  3439. }
  3440. // ggml_out_prod
  3441. struct ggml_tensor * ggml_out_prod(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a,
  3444. struct ggml_tensor * b) {
  3445. GGML_ASSERT(ggml_can_out_prod(a, b));
  3446. GGML_ASSERT(!ggml_is_transposed(a));
  3447. bool is_node = false;
  3448. if (a->grad || b->grad) {
  3449. is_node = true;
  3450. }
  3451. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3452. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3454. result->op = GGML_OP_OUT_PROD;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src[0] = a;
  3457. result->src[1] = b;
  3458. return result;
  3459. }
  3460. // ggml_scale
  3461. static struct ggml_tensor * ggml_scale_impl(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. float s,
  3465. bool inplace) {
  3466. GGML_ASSERT(ggml_is_padded_1d(a));
  3467. bool is_node = false;
  3468. if (a->grad) {
  3469. is_node = true;
  3470. }
  3471. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3472. ggml_set_op_params(result, &s, sizeof(s));
  3473. result->op = GGML_OP_SCALE;
  3474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3475. result->src[0] = a;
  3476. return result;
  3477. }
  3478. struct ggml_tensor * ggml_scale(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. float s) {
  3482. return ggml_scale_impl(ctx, a, s, false);
  3483. }
  3484. struct ggml_tensor * ggml_scale_inplace(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. float s) {
  3488. return ggml_scale_impl(ctx, a, s, true);
  3489. }
  3490. // ggml_set
  3491. static struct ggml_tensor * ggml_set_impl(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b,
  3495. size_t nb1,
  3496. size_t nb2,
  3497. size_t nb3,
  3498. size_t offset,
  3499. bool inplace) {
  3500. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3501. bool is_node = false;
  3502. if (a->grad || b->grad) {
  3503. is_node = true;
  3504. }
  3505. // make a view of the destination
  3506. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3507. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3508. ggml_set_op_params(result, params, sizeof(params));
  3509. result->op = GGML_OP_SET;
  3510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3511. result->src[0] = a;
  3512. result->src[1] = b;
  3513. return result;
  3514. }
  3515. struct ggml_tensor * ggml_set(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b,
  3519. size_t nb1,
  3520. size_t nb2,
  3521. size_t nb3,
  3522. size_t offset) {
  3523. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3524. }
  3525. struct ggml_tensor * ggml_set_inplace(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a,
  3528. struct ggml_tensor * b,
  3529. size_t nb1,
  3530. size_t nb2,
  3531. size_t nb3,
  3532. size_t offset) {
  3533. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3534. }
  3535. struct ggml_tensor * ggml_set_1d(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b,
  3539. size_t offset) {
  3540. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3541. }
  3542. struct ggml_tensor * ggml_set_1d_inplace(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b,
  3546. size_t offset) {
  3547. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3548. }
  3549. struct ggml_tensor * ggml_set_2d(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a,
  3552. struct ggml_tensor * b,
  3553. size_t nb1,
  3554. size_t offset) {
  3555. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3556. }
  3557. struct ggml_tensor * ggml_set_2d_inplace(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. struct ggml_tensor * b,
  3561. size_t nb1,
  3562. size_t offset) {
  3563. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3564. }
  3565. // ggml_cpy
  3566. static struct ggml_tensor * ggml_cpy_impl(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. struct ggml_tensor * b) {
  3570. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3571. bool is_node = false;
  3572. if (a->grad || b->grad) {
  3573. // inplace is false and either one have a grad
  3574. is_node = true;
  3575. }
  3576. // make a view of the destination
  3577. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3578. if (strlen(b->name) > 0) {
  3579. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3580. } else {
  3581. ggml_format_name(result, "%s (copy)", a->name);
  3582. }
  3583. result->op = GGML_OP_CPY;
  3584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3585. result->src[0] = a;
  3586. result->src[1] = b;
  3587. return result;
  3588. }
  3589. struct ggml_tensor * ggml_cpy(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. struct ggml_tensor * b) {
  3593. return ggml_cpy_impl(ctx, a, b);
  3594. }
  3595. struct ggml_tensor * ggml_cast(
  3596. struct ggml_context * ctx,
  3597. struct ggml_tensor * a,
  3598. enum ggml_type type) {
  3599. bool is_node = false;
  3600. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3601. ggml_format_name(result, "%s (copy)", a->name);
  3602. result->op = GGML_OP_CPY;
  3603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3604. result->src[0] = a;
  3605. result->src[1] = result;
  3606. return result;
  3607. }
  3608. // ggml_cont
  3609. static struct ggml_tensor * ggml_cont_impl(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a) {
  3612. bool is_node = false;
  3613. if (a->grad) {
  3614. is_node = true;
  3615. }
  3616. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3617. ggml_format_name(result, "%s (cont)", a->name);
  3618. result->op = GGML_OP_CONT;
  3619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3620. result->src[0] = a;
  3621. return result;
  3622. }
  3623. struct ggml_tensor * ggml_cont(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a) {
  3626. return ggml_cont_impl(ctx, a);
  3627. }
  3628. // make contiguous, with new shape
  3629. GGML_API struct ggml_tensor * ggml_cont_1d(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a,
  3632. int64_t ne0) {
  3633. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3634. }
  3635. GGML_API struct ggml_tensor * ggml_cont_2d(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. int64_t ne0,
  3639. int64_t ne1) {
  3640. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3641. }
  3642. GGML_API struct ggml_tensor * ggml_cont_3d(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a,
  3645. int64_t ne0,
  3646. int64_t ne1,
  3647. int64_t ne2) {
  3648. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3649. }
  3650. struct ggml_tensor * ggml_cont_4d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. int64_t ne2,
  3656. int64_t ne3) {
  3657. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3658. bool is_node = false;
  3659. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3660. ggml_format_name(result, "%s (cont)", a->name);
  3661. result->op = GGML_OP_CONT;
  3662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3663. result->src[0] = a;
  3664. return result;
  3665. }
  3666. // ggml_reshape
  3667. struct ggml_tensor * ggml_reshape(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b) {
  3671. GGML_ASSERT(ggml_is_contiguous(a));
  3672. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3673. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3674. bool is_node = false;
  3675. if (a->grad) {
  3676. is_node = true;
  3677. }
  3678. if (b->grad) {
  3679. // gradient propagation is not supported
  3680. //GGML_ASSERT(false);
  3681. }
  3682. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3683. ggml_format_name(result, "%s (reshaped)", a->name);
  3684. result->op = GGML_OP_RESHAPE;
  3685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3686. result->src[0] = a;
  3687. return result;
  3688. }
  3689. struct ggml_tensor * ggml_reshape_1d(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. int64_t ne0) {
  3693. GGML_ASSERT(ggml_is_contiguous(a));
  3694. GGML_ASSERT(ggml_nelements(a) == ne0);
  3695. bool is_node = false;
  3696. if (a->grad) {
  3697. is_node = true;
  3698. }
  3699. const int64_t ne[1] = { ne0 };
  3700. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3701. ggml_format_name(result, "%s (reshaped)", a->name);
  3702. result->op = GGML_OP_RESHAPE;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src[0] = a;
  3705. return result;
  3706. }
  3707. struct ggml_tensor * ggml_reshape_2d(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a,
  3710. int64_t ne0,
  3711. int64_t ne1) {
  3712. GGML_ASSERT(ggml_is_contiguous(a));
  3713. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3714. bool is_node = false;
  3715. if (a->grad) {
  3716. is_node = true;
  3717. }
  3718. const int64_t ne[2] = { ne0, ne1 };
  3719. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3720. ggml_format_name(result, "%s (reshaped)", a->name);
  3721. result->op = GGML_OP_RESHAPE;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_reshape_3d(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. int64_t ne0,
  3730. int64_t ne1,
  3731. int64_t ne2) {
  3732. GGML_ASSERT(ggml_is_contiguous(a));
  3733. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3734. bool is_node = false;
  3735. if (a->grad) {
  3736. is_node = true;
  3737. }
  3738. const int64_t ne[3] = { ne0, ne1, ne2 };
  3739. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3740. ggml_format_name(result, "%s (reshaped)", a->name);
  3741. result->op = GGML_OP_RESHAPE;
  3742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3743. result->src[0] = a;
  3744. return result;
  3745. }
  3746. struct ggml_tensor * ggml_reshape_4d(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. int64_t ne0,
  3750. int64_t ne1,
  3751. int64_t ne2,
  3752. int64_t ne3) {
  3753. GGML_ASSERT(ggml_is_contiguous(a));
  3754. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3755. bool is_node = false;
  3756. if (a->grad) {
  3757. is_node = true;
  3758. }
  3759. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3760. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3761. ggml_format_name(result, "%s (reshaped)", a->name);
  3762. result->op = GGML_OP_RESHAPE;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src[0] = a;
  3765. return result;
  3766. }
  3767. static struct ggml_tensor * ggml_view_impl(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. int n_dims,
  3771. const int64_t * ne,
  3772. size_t offset) {
  3773. bool is_node = false;
  3774. if (a->grad) {
  3775. is_node = true;
  3776. }
  3777. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3778. ggml_format_name(result, "%s (view)", a->name);
  3779. ggml_set_op_params(result, &offset, sizeof(offset));
  3780. result->op = GGML_OP_VIEW;
  3781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3782. result->src[0] = a;
  3783. return result;
  3784. }
  3785. // ggml_view_1d
  3786. struct ggml_tensor * ggml_view_1d(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. int64_t ne0,
  3790. size_t offset) {
  3791. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3792. return result;
  3793. }
  3794. // ggml_view_2d
  3795. struct ggml_tensor * ggml_view_2d(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. int64_t ne0,
  3799. int64_t ne1,
  3800. size_t nb1,
  3801. size_t offset) {
  3802. const int64_t ne[2] = { ne0, ne1 };
  3803. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3804. result->nb[1] = nb1;
  3805. result->nb[2] = result->nb[1]*ne1;
  3806. result->nb[3] = result->nb[2];
  3807. return result;
  3808. }
  3809. // ggml_view_3d
  3810. struct ggml_tensor * ggml_view_3d(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a,
  3813. int64_t ne0,
  3814. int64_t ne1,
  3815. int64_t ne2,
  3816. size_t nb1,
  3817. size_t nb2,
  3818. size_t offset) {
  3819. const int64_t ne[3] = { ne0, ne1, ne2 };
  3820. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3821. result->nb[1] = nb1;
  3822. result->nb[2] = nb2;
  3823. result->nb[3] = result->nb[2]*ne2;
  3824. return result;
  3825. }
  3826. // ggml_view_4d
  3827. struct ggml_tensor * ggml_view_4d(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. int64_t ne0,
  3831. int64_t ne1,
  3832. int64_t ne2,
  3833. int64_t ne3,
  3834. size_t nb1,
  3835. size_t nb2,
  3836. size_t nb3,
  3837. size_t offset) {
  3838. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3839. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3840. result->nb[1] = nb1;
  3841. result->nb[2] = nb2;
  3842. result->nb[3] = nb3;
  3843. return result;
  3844. }
  3845. // ggml_permute
  3846. struct ggml_tensor * ggml_permute(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. int axis0,
  3850. int axis1,
  3851. int axis2,
  3852. int axis3) {
  3853. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3854. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3855. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3856. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3857. GGML_ASSERT(axis0 != axis1);
  3858. GGML_ASSERT(axis0 != axis2);
  3859. GGML_ASSERT(axis0 != axis3);
  3860. GGML_ASSERT(axis1 != axis2);
  3861. GGML_ASSERT(axis1 != axis3);
  3862. GGML_ASSERT(axis2 != axis3);
  3863. bool is_node = false;
  3864. if (a->grad) {
  3865. is_node = true;
  3866. }
  3867. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3868. ggml_format_name(result, "%s (permuted)", a->name);
  3869. int ne[GGML_MAX_DIMS];
  3870. int nb[GGML_MAX_DIMS];
  3871. ne[axis0] = a->ne[0];
  3872. ne[axis1] = a->ne[1];
  3873. ne[axis2] = a->ne[2];
  3874. ne[axis3] = a->ne[3];
  3875. nb[axis0] = a->nb[0];
  3876. nb[axis1] = a->nb[1];
  3877. nb[axis2] = a->nb[2];
  3878. nb[axis3] = a->nb[3];
  3879. result->ne[0] = ne[0];
  3880. result->ne[1] = ne[1];
  3881. result->ne[2] = ne[2];
  3882. result->ne[3] = ne[3];
  3883. result->nb[0] = nb[0];
  3884. result->nb[1] = nb[1];
  3885. result->nb[2] = nb[2];
  3886. result->nb[3] = nb[3];
  3887. result->op = GGML_OP_PERMUTE;
  3888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3889. result->src[0] = a;
  3890. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3891. ggml_set_op_params(result, params, sizeof(params));
  3892. return result;
  3893. }
  3894. // ggml_transpose
  3895. struct ggml_tensor * ggml_transpose(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a) {
  3898. bool is_node = false;
  3899. if (a->grad) {
  3900. is_node = true;
  3901. }
  3902. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3903. ggml_format_name(result, "%s (transposed)", a->name);
  3904. result->ne[0] = a->ne[1];
  3905. result->ne[1] = a->ne[0];
  3906. result->nb[0] = a->nb[1];
  3907. result->nb[1] = a->nb[0];
  3908. result->op = GGML_OP_TRANSPOSE;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src[0] = a;
  3911. return result;
  3912. }
  3913. // ggml_get_rows
  3914. struct ggml_tensor * ggml_get_rows(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b) {
  3918. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3919. GGML_ASSERT(b->ne[3] == 1);
  3920. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3921. bool is_node = false;
  3922. if (a->grad || b->grad) {
  3923. is_node = true;
  3924. }
  3925. // TODO: implement non F32 return
  3926. enum ggml_type type = GGML_TYPE_F32;
  3927. if (a->type == GGML_TYPE_I32) {
  3928. type = a->type;
  3929. }
  3930. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3931. result->op = GGML_OP_GET_ROWS;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src[0] = a;
  3934. result->src[1] = b;
  3935. return result;
  3936. }
  3937. // ggml_get_rows_back
  3938. struct ggml_tensor * ggml_get_rows_back(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b,
  3942. struct ggml_tensor * c) {
  3943. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3944. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3945. bool is_node = false;
  3946. if (a->grad || b->grad) {
  3947. is_node = true;
  3948. }
  3949. // TODO: implement non F32 return
  3950. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3951. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3952. result->op = GGML_OP_GET_ROWS_BACK;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src[0] = a;
  3955. result->src[1] = b;
  3956. return result;
  3957. }
  3958. // ggml_diag
  3959. struct ggml_tensor * ggml_diag(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a) {
  3962. GGML_ASSERT(a->ne[1] == 1);
  3963. bool is_node = false;
  3964. if (a->grad) {
  3965. is_node = true;
  3966. }
  3967. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3968. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3969. result->op = GGML_OP_DIAG;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. return result;
  3973. }
  3974. // ggml_diag_mask_inf
  3975. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. int n_past,
  3979. bool inplace) {
  3980. bool is_node = false;
  3981. if (a->grad) {
  3982. is_node = true;
  3983. }
  3984. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3985. int32_t params[] = { n_past };
  3986. ggml_set_op_params(result, params, sizeof(params));
  3987. result->op = GGML_OP_DIAG_MASK_INF;
  3988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3989. result->src[0] = a;
  3990. return result;
  3991. }
  3992. struct ggml_tensor * ggml_diag_mask_inf(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. int n_past) {
  3996. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3997. }
  3998. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a,
  4001. int n_past) {
  4002. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4003. }
  4004. // ggml_diag_mask_zero
  4005. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. int n_past,
  4009. bool inplace) {
  4010. bool is_node = false;
  4011. if (a->grad) {
  4012. is_node = true;
  4013. }
  4014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4015. int32_t params[] = { n_past };
  4016. ggml_set_op_params(result, params, sizeof(params));
  4017. result->op = GGML_OP_DIAG_MASK_ZERO;
  4018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4019. result->src[0] = a;
  4020. return result;
  4021. }
  4022. struct ggml_tensor * ggml_diag_mask_zero(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a,
  4025. int n_past) {
  4026. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4027. }
  4028. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. int n_past) {
  4032. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4033. }
  4034. // ggml_soft_max
  4035. static struct ggml_tensor * ggml_soft_max_impl(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. struct ggml_tensor * mask,
  4039. float scale,
  4040. bool inplace) {
  4041. GGML_ASSERT(ggml_is_contiguous(a));
  4042. if (mask) {
  4043. GGML_ASSERT(ggml_is_contiguous(mask));
  4044. GGML_ASSERT(mask->ne[2] == 1);
  4045. GGML_ASSERT(mask->ne[3] == 1);
  4046. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4047. }
  4048. bool is_node = false;
  4049. if (a->grad) {
  4050. is_node = true;
  4051. }
  4052. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4053. float params[] = { scale };
  4054. ggml_set_op_params(result, params, sizeof(params));
  4055. result->op = GGML_OP_SOFT_MAX;
  4056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4057. result->src[0] = a;
  4058. result->src[1] = mask;
  4059. return result;
  4060. }
  4061. struct ggml_tensor * ggml_soft_max(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a) {
  4064. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4065. }
  4066. struct ggml_tensor * ggml_soft_max_inplace(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a) {
  4069. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4070. }
  4071. struct ggml_tensor * ggml_soft_max_ext(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * mask,
  4075. float scale) {
  4076. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4077. }
  4078. // ggml_soft_max_back
  4079. static struct ggml_tensor * ggml_soft_max_back_impl(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b,
  4083. bool inplace) {
  4084. bool is_node = false;
  4085. if (a->grad || b->grad) {
  4086. is_node = true; // TODO : implement backward pass
  4087. }
  4088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4089. result->op = GGML_OP_SOFT_MAX_BACK;
  4090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4091. result->src[0] = a;
  4092. result->src[1] = b;
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_soft_max_back(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. struct ggml_tensor * b) {
  4099. return ggml_soft_max_back_impl(ctx, a, b, false);
  4100. }
  4101. struct ggml_tensor * ggml_soft_max_back_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. return ggml_soft_max_back_impl(ctx, a, b, true);
  4106. }
  4107. // ggml_rope
  4108. static struct ggml_tensor * ggml_rope_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b,
  4112. int n_dims,
  4113. int mode,
  4114. int n_ctx,
  4115. int n_orig_ctx,
  4116. float freq_base,
  4117. float freq_scale,
  4118. float ext_factor,
  4119. float attn_factor,
  4120. float beta_fast,
  4121. float beta_slow,
  4122. float xpos_base,
  4123. bool xpos_down,
  4124. bool inplace) {
  4125. GGML_ASSERT(ggml_is_vector(b));
  4126. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4127. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4128. bool is_node = false;
  4129. if (a->grad) {
  4130. is_node = true;
  4131. }
  4132. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4133. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4134. memcpy(params + 5, &freq_base, sizeof(float));
  4135. memcpy(params + 6, &freq_scale, sizeof(float));
  4136. memcpy(params + 7, &ext_factor, sizeof(float));
  4137. memcpy(params + 8, &attn_factor, sizeof(float));
  4138. memcpy(params + 9, &beta_fast, sizeof(float));
  4139. memcpy(params + 10, &beta_slow, sizeof(float));
  4140. memcpy(params + 11, &xpos_base, sizeof(float));
  4141. memcpy(params + 12, &xpos_down, sizeof(bool));
  4142. ggml_set_op_params(result, params, sizeof(params));
  4143. result->op = GGML_OP_ROPE;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src[0] = a;
  4146. result->src[1] = b;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_rope(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. struct ggml_tensor * b,
  4153. int n_dims,
  4154. int mode,
  4155. int n_ctx) {
  4156. return ggml_rope_impl(
  4157. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4158. );
  4159. }
  4160. struct ggml_tensor * ggml_rope_inplace(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b,
  4164. int n_dims,
  4165. int mode,
  4166. int n_ctx) {
  4167. return ggml_rope_impl(
  4168. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4169. );
  4170. }
  4171. struct ggml_tensor * ggml_rope_custom(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b,
  4175. int n_dims,
  4176. int mode,
  4177. int n_ctx,
  4178. int n_orig_ctx,
  4179. float freq_base,
  4180. float freq_scale,
  4181. float ext_factor,
  4182. float attn_factor,
  4183. float beta_fast,
  4184. float beta_slow) {
  4185. return ggml_rope_impl(
  4186. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4187. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4188. );
  4189. }
  4190. struct ggml_tensor * ggml_rope_custom_inplace(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a,
  4193. struct ggml_tensor * b,
  4194. int n_dims,
  4195. int mode,
  4196. int n_ctx,
  4197. int n_orig_ctx,
  4198. float freq_base,
  4199. float freq_scale,
  4200. float ext_factor,
  4201. float attn_factor,
  4202. float beta_fast,
  4203. float beta_slow) {
  4204. return ggml_rope_impl(
  4205. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4206. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4207. );
  4208. }
  4209. struct ggml_tensor * ggml_rope_xpos_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. struct ggml_tensor * b,
  4213. int n_dims,
  4214. float base,
  4215. bool down) {
  4216. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4217. }
  4218. // ggml_rope_back
  4219. struct ggml_tensor * ggml_rope_back(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. struct ggml_tensor * b,
  4223. int n_dims,
  4224. int mode,
  4225. int n_ctx,
  4226. int n_orig_ctx,
  4227. float freq_base,
  4228. float freq_scale,
  4229. float ext_factor,
  4230. float attn_factor,
  4231. float beta_fast,
  4232. float beta_slow,
  4233. float xpos_base,
  4234. bool xpos_down) {
  4235. GGML_ASSERT(ggml_is_vector(b));
  4236. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4237. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4238. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4239. bool is_node = false;
  4240. if (a->grad) {
  4241. is_node = false; // TODO: implement backward
  4242. }
  4243. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4244. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4245. memcpy(params + 5, &freq_base, sizeof(float));
  4246. memcpy(params + 6, &freq_scale, sizeof(float));
  4247. memcpy(params + 7, &ext_factor, sizeof(float));
  4248. memcpy(params + 8, &attn_factor, sizeof(float));
  4249. memcpy(params + 9, &beta_fast, sizeof(float));
  4250. memcpy(params + 10, &beta_slow, sizeof(float));
  4251. memcpy(params + 11, &xpos_base, sizeof(float));
  4252. memcpy(params + 12, &xpos_down, sizeof(bool));
  4253. ggml_set_op_params(result, params, sizeof(params));
  4254. result->op = GGML_OP_ROPE_BACK;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src[0] = a;
  4257. result->src[1] = b;
  4258. return result;
  4259. }
  4260. // ggml_alibi
  4261. struct ggml_tensor * ggml_alibi(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. int n_past,
  4265. int n_head,
  4266. float bias_max) {
  4267. GGML_ASSERT(n_past >= 0);
  4268. bool is_node = false;
  4269. if (a->grad) {
  4270. GGML_ASSERT(false); // TODO: implement backward
  4271. is_node = true;
  4272. }
  4273. // TODO: when implement backward, fix this:
  4274. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4275. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4276. int32_t op_params[3] = { n_past, n_head };
  4277. memcpy(op_params + 2, &bias_max, sizeof(float));
  4278. ggml_set_op_params(result, op_params, sizeof(op_params));
  4279. result->op = GGML_OP_ALIBI;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src[0] = a;
  4282. return result;
  4283. }
  4284. // ggml_clamp
  4285. struct ggml_tensor * ggml_clamp(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. float min,
  4289. float max) {
  4290. bool is_node = false;
  4291. if (a->grad) {
  4292. GGML_ASSERT(false); // TODO: implement backward
  4293. is_node = true;
  4294. }
  4295. // TODO: when implement backward, fix this:
  4296. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4297. float params[] = { min, max };
  4298. ggml_set_op_params(result, params, sizeof(params));
  4299. result->op = GGML_OP_CLAMP;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src[0] = a;
  4302. return result;
  4303. }
  4304. // ggml_conv_1d
  4305. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4306. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4307. }
  4308. GGML_API struct ggml_tensor * ggml_conv_1d(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b,
  4312. int s0,
  4313. int p0,
  4314. int d0) {
  4315. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4316. struct ggml_tensor * result =
  4317. ggml_mul_mat(ctx,
  4318. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4319. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4320. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4321. return result;
  4322. }
  4323. // ggml_conv_1d_ph
  4324. struct ggml_tensor* ggml_conv_1d_ph(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b,
  4328. int s,
  4329. int d) {
  4330. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4331. }
  4332. // ggml_conv_transpose_1d
  4333. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4334. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4335. }
  4336. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. struct ggml_tensor * b,
  4340. int s0,
  4341. int p0,
  4342. int d0) {
  4343. GGML_ASSERT(ggml_is_matrix(b));
  4344. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4345. GGML_ASSERT(a->ne[3] == 1);
  4346. GGML_ASSERT(p0 == 0);
  4347. GGML_ASSERT(d0 == 1);
  4348. bool is_node = false;
  4349. if (a->grad || b->grad) {
  4350. GGML_ASSERT(false); // TODO: implement backward
  4351. is_node = true;
  4352. }
  4353. const int64_t ne[4] = {
  4354. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4355. a->ne[1], b->ne[2], 1,
  4356. };
  4357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4358. int32_t params[] = { s0, p0, d0 };
  4359. ggml_set_op_params(result, params, sizeof(params));
  4360. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4362. result->src[0] = a;
  4363. result->src[1] = b;
  4364. return result;
  4365. }
  4366. // ggml_conv_2d
  4367. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4368. // a: [OC,IC, KH, KW]
  4369. // b: [N, IC, IH, IW]
  4370. // result: [N, OH, OW, IC*KH*KW]
  4371. struct ggml_tensor * ggml_im2col(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b,
  4375. int s0,
  4376. int s1,
  4377. int p0,
  4378. int p1,
  4379. int d0,
  4380. int d1,
  4381. bool is_2D) {
  4382. if(is_2D) {
  4383. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4384. } else {
  4385. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4386. }
  4387. bool is_node = false;
  4388. if (a->grad || b->grad) {
  4389. GGML_ASSERT(false); // TODO: implement backward
  4390. is_node = true;
  4391. }
  4392. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4393. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4394. const int64_t ne[4] = {
  4395. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4396. OW,
  4397. is_2D ? OH : b->ne[2],
  4398. is_2D ? b->ne[3] : 1,
  4399. };
  4400. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4401. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4402. ggml_set_op_params(result, params, sizeof(params));
  4403. result->op = GGML_OP_IM2COL;
  4404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4405. result->src[0] = a;
  4406. result->src[1] = b;
  4407. return result;
  4408. }
  4409. // a: [OC,IC, KH, KW]
  4410. // b: [N, IC, IH, IW]
  4411. // result: [N, OC, OH, OW]
  4412. struct ggml_tensor * ggml_conv_2d(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. struct ggml_tensor * b,
  4416. int s0,
  4417. int s1,
  4418. int p0,
  4419. int p1,
  4420. int d0,
  4421. int d1) {
  4422. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4423. struct ggml_tensor * result =
  4424. ggml_mul_mat(ctx,
  4425. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4426. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4427. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4428. return result;
  4429. }
  4430. // ggml_conv_2d_sk_p0
  4431. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. struct ggml_tensor * b) {
  4435. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4436. }
  4437. // ggml_conv_2d_s1_ph
  4438. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4443. }
  4444. // ggml_conv_transpose_2d_p0
  4445. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4446. return (ins - 1) * s - 2 * p + ks;
  4447. }
  4448. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. struct ggml_tensor * b,
  4452. int stride) {
  4453. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4454. bool is_node = false;
  4455. if (a->grad || b->grad) {
  4456. GGML_ASSERT(false); // TODO: implement backward
  4457. is_node = true;
  4458. }
  4459. const int64_t ne[4] = {
  4460. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4461. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4462. a->ne[2], b->ne[3],
  4463. };
  4464. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4465. ggml_set_op_params_i32(result, 0, stride);
  4466. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src[0] = a;
  4469. result->src[1] = b;
  4470. return result;
  4471. }
  4472. // ggml_pool_*
  4473. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4474. return (ins + 2 * p - ks) / s + 1;
  4475. }
  4476. // ggml_pool_1d
  4477. struct ggml_tensor * ggml_pool_1d(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. enum ggml_op_pool op,
  4481. int k0,
  4482. int s0,
  4483. int p0) {
  4484. bool is_node = false;
  4485. if (a->grad) {
  4486. GGML_ASSERT(false); // TODO: implement backward
  4487. is_node = true;
  4488. }
  4489. const int64_t ne[2] = {
  4490. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4491. a->ne[1],
  4492. };
  4493. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4494. int32_t params[] = { op, k0, s0, p0 };
  4495. ggml_set_op_params(result, params, sizeof(params));
  4496. result->op = GGML_OP_POOL_1D;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. return result;
  4500. }
  4501. // ggml_pool_2d
  4502. struct ggml_tensor * ggml_pool_2d(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. enum ggml_op_pool op,
  4506. int k0,
  4507. int k1,
  4508. int s0,
  4509. int s1,
  4510. float p0,
  4511. float p1) {
  4512. bool is_node = false;
  4513. if (a->grad) {
  4514. GGML_ASSERT(false); // TODO: implement backward
  4515. is_node = true;
  4516. }
  4517. const int64_t ne[3] = {
  4518. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4519. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4520. a->ne[2],
  4521. };
  4522. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4523. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4524. ggml_set_op_params(result, params, sizeof(params));
  4525. result->op = GGML_OP_POOL_2D;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. return result;
  4529. }
  4530. // ggml_upscale
  4531. static struct ggml_tensor * ggml_upscale_impl(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. int scale_factor) {
  4535. bool is_node = false;
  4536. if (a->grad) {
  4537. GGML_ASSERT(false); // TODO: implement backward
  4538. is_node = true;
  4539. }
  4540. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4541. a->ne[0] * scale_factor,
  4542. a->ne[1] * scale_factor,
  4543. a->ne[2], a->ne[3]);
  4544. result->op = GGML_OP_UPSCALE;
  4545. result->op_params[0] = scale_factor;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src[0] = a;
  4548. return result;
  4549. }
  4550. struct ggml_tensor * ggml_pad(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. int p0, int p1, int p2, int p3) {
  4554. bool is_node = false;
  4555. if (a->grad) {
  4556. GGML_ASSERT(false); // TODO: implement backward
  4557. is_node = true;
  4558. }
  4559. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4560. a->ne[0] + p0,
  4561. a->ne[1] + p1,
  4562. a->ne[2] + p2,
  4563. a->ne[3] + p3);
  4564. result->op = GGML_OP_PAD;
  4565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4566. result->src[0] = a;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_upscale(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int scale_factor) {
  4573. return ggml_upscale_impl(ctx, a, scale_factor);
  4574. }
  4575. // ggml_argsort
  4576. struct ggml_tensor * ggml_argsort(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. enum ggml_sort_order order) {
  4580. bool is_node = false;
  4581. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4582. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4583. result->op = GGML_OP_ARGSORT;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src[0] = a;
  4586. return result;
  4587. }
  4588. // ggml_top_k
  4589. struct ggml_tensor * ggml_top_k(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. int k) {
  4593. GGML_ASSERT(a->ne[0] >= k);
  4594. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4595. result = ggml_view_4d(ctx, result,
  4596. k, result->ne[1], result->ne[2], result->ne[3],
  4597. result->nb[1], result->nb[2], result->nb[3],
  4598. 0);
  4599. return result;
  4600. }
  4601. // ggml_flash_attn
  4602. struct ggml_tensor * ggml_flash_attn(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * q,
  4605. struct ggml_tensor * k,
  4606. struct ggml_tensor * v,
  4607. bool masked) {
  4608. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4609. // TODO: check if vT can be multiplied by (k*qT)
  4610. bool is_node = false;
  4611. if (q->grad || k->grad || v->grad) {
  4612. is_node = true;
  4613. }
  4614. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4615. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4616. int32_t t = masked ? 1 : 0;
  4617. ggml_set_op_params(result, &t, sizeof(t));
  4618. result->op = GGML_OP_FLASH_ATTN;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = q;
  4621. result->src[1] = k;
  4622. result->src[2] = v;
  4623. return result;
  4624. }
  4625. // ggml_flash_ff
  4626. struct ggml_tensor * ggml_flash_ff(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. struct ggml_tensor * b0,
  4630. struct ggml_tensor * b1,
  4631. struct ggml_tensor * c0,
  4632. struct ggml_tensor * c1) {
  4633. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4634. // TODO: more checks
  4635. bool is_node = false;
  4636. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4637. is_node = true;
  4638. }
  4639. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4640. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4641. result->op = GGML_OP_FLASH_FF;
  4642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4643. result->src[0] = a;
  4644. result->src[1] = b0;
  4645. result->src[2] = b1;
  4646. result->src[3] = c0;
  4647. result->src[4] = c1;
  4648. return result;
  4649. }
  4650. // ggml_flash_attn_back
  4651. struct ggml_tensor * ggml_flash_attn_back(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * q,
  4654. struct ggml_tensor * k,
  4655. struct ggml_tensor * v,
  4656. struct ggml_tensor * d,
  4657. bool masked) {
  4658. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4659. // TODO: check if vT can be multiplied by (k*qT)
  4660. // d shape [D,N,ne2,ne3]
  4661. // q shape [D,N,ne2,ne3]
  4662. // k shape [D,M,kvne2,ne3]
  4663. // v shape [M,D,kvne2,ne3]
  4664. const int64_t D = q->ne[0];
  4665. const int64_t N = q->ne[1];
  4666. const int64_t M = k->ne[1];
  4667. const int64_t ne2 = q->ne[2];
  4668. const int64_t ne3 = q->ne[3];
  4669. const int64_t kvne2 = k->ne[2];
  4670. GGML_ASSERT(k->ne[0] == D);
  4671. GGML_ASSERT(v->ne[0] == M);
  4672. GGML_ASSERT(v->ne[1] == D);
  4673. GGML_ASSERT(d->ne[0] == D);
  4674. GGML_ASSERT(d->ne[1] == N);
  4675. GGML_ASSERT(k->ne[2] == kvne2);
  4676. GGML_ASSERT(k->ne[3] == ne3);
  4677. GGML_ASSERT(v->ne[2] == kvne2);
  4678. GGML_ASSERT(v->ne[3] == ne3);
  4679. GGML_ASSERT(d->ne[2] == ne2);
  4680. GGML_ASSERT(d->ne[3] == ne3);
  4681. GGML_ASSERT(ne2 % kvne2 == 0);
  4682. bool is_node = false;
  4683. if (q->grad || k->grad || v->grad) {
  4684. // when using this operation (in backwards pass) these grads are set.
  4685. // we don't want to create (big) grad of our result, so is_node is false.
  4686. is_node = false;
  4687. }
  4688. // store gradients of q, k and v as continuous tensors concatenated in result.
  4689. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4690. const int64_t elem_q = ggml_nelements(q);
  4691. const int64_t elem_k = ggml_nelements(k);
  4692. const int64_t elem_v = ggml_nelements(v);
  4693. enum ggml_type result_type = GGML_TYPE_F32;
  4694. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4695. const size_t tsize = ggml_type_size(result_type);
  4696. const size_t offs_q = 0;
  4697. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4698. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4699. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4700. const size_t nelements = (end + tsize - 1)/tsize;
  4701. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4702. int32_t masked_i = masked ? 1 : 0;
  4703. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4704. result->op = GGML_OP_FLASH_ATTN_BACK;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src[0] = q;
  4707. result->src[1] = k;
  4708. result->src[2] = v;
  4709. result->src[3] = d;
  4710. return result;
  4711. }
  4712. // ggml_win_part
  4713. struct ggml_tensor * ggml_win_part(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. int w) {
  4717. GGML_ASSERT(a->ne[3] == 1);
  4718. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4719. bool is_node = false;
  4720. if (a->grad) {
  4721. GGML_ASSERT(false); // TODO: implement backward
  4722. is_node = true;
  4723. }
  4724. // padding
  4725. const int px = (w - a->ne[1]%w)%w;
  4726. const int py = (w - a->ne[2]%w)%w;
  4727. const int npx = (px + a->ne[1])/w;
  4728. const int npy = (py + a->ne[2])/w;
  4729. const int np = npx*npy;
  4730. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4731. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4732. int32_t params[] = { npx, npy, w };
  4733. ggml_set_op_params(result, params, sizeof(params));
  4734. result->op = GGML_OP_WIN_PART;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src[0] = a;
  4737. return result;
  4738. }
  4739. // ggml_win_unpart
  4740. struct ggml_tensor * ggml_win_unpart(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. int w0,
  4744. int h0,
  4745. int w) {
  4746. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4747. bool is_node = false;
  4748. if (a->grad) {
  4749. GGML_ASSERT(false); // TODO: implement backward
  4750. is_node = true;
  4751. }
  4752. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4753. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4754. int32_t params[] = { w };
  4755. ggml_set_op_params(result, params, sizeof(params));
  4756. result->op = GGML_OP_WIN_UNPART;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. // ggml_get_rel_pos
  4762. struct ggml_tensor * ggml_get_rel_pos(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a,
  4765. int qh,
  4766. int kh) {
  4767. GGML_ASSERT(qh == kh);
  4768. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4769. bool is_node = false;
  4770. if (a->grad) {
  4771. GGML_ASSERT(false); // TODO: implement backward
  4772. is_node = true;
  4773. }
  4774. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4775. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4776. result->op = GGML_OP_GET_REL_POS;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src[0] = a;
  4779. return result;
  4780. }
  4781. // ggml_add_rel_pos
  4782. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * pw,
  4786. struct ggml_tensor * ph,
  4787. bool inplace) {
  4788. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4789. GGML_ASSERT(ggml_is_contiguous(a));
  4790. GGML_ASSERT(ggml_is_contiguous(pw));
  4791. GGML_ASSERT(ggml_is_contiguous(ph));
  4792. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4793. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4794. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4795. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4796. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4797. bool is_node = false;
  4798. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4799. is_node = true;
  4800. }
  4801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4802. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4803. result->op = GGML_OP_ADD_REL_POS;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. result->src[1] = pw;
  4807. result->src[2] = ph;
  4808. return result;
  4809. }
  4810. struct ggml_tensor * ggml_add_rel_pos(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. struct ggml_tensor * pw,
  4814. struct ggml_tensor * ph) {
  4815. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4816. }
  4817. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * pw,
  4821. struct ggml_tensor * ph) {
  4822. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4823. }
  4824. // gmml_unary
  4825. static struct ggml_tensor * ggml_unary_impl(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. enum ggml_unary_op op,
  4829. bool inplace) {
  4830. bool is_node = false;
  4831. if (!inplace && (a->grad)) {
  4832. is_node = true;
  4833. }
  4834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4835. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4836. result->op = GGML_OP_UNARY;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src[0] = a;
  4839. return result;
  4840. }
  4841. struct ggml_tensor * ggml_unary(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. enum ggml_unary_op op) {
  4845. return ggml_unary_impl(ctx, a, op, false);
  4846. }
  4847. struct ggml_tensor * ggml_unary_inplace(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. enum ggml_unary_op op) {
  4851. return ggml_unary_impl(ctx, a, op, true);
  4852. }
  4853. // ggml_map_unary
  4854. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. const ggml_unary_op_f32_t fun,
  4858. bool inplace) {
  4859. bool is_node = false;
  4860. if (!inplace && a->grad) {
  4861. is_node = true;
  4862. }
  4863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4864. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4865. result->op = GGML_OP_MAP_UNARY;
  4866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4867. result->src[0] = a;
  4868. return result;
  4869. }
  4870. struct ggml_tensor * ggml_map_unary_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. const ggml_unary_op_f32_t fun) {
  4874. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4875. }
  4876. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. const ggml_unary_op_f32_t fun) {
  4880. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4881. }
  4882. // ggml_map_binary
  4883. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b,
  4887. const ggml_binary_op_f32_t fun,
  4888. bool inplace) {
  4889. GGML_ASSERT(ggml_are_same_shape(a, b));
  4890. bool is_node = false;
  4891. if (!inplace && (a->grad || b->grad)) {
  4892. is_node = true;
  4893. }
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4896. result->op = GGML_OP_MAP_BINARY;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. result->src[1] = b;
  4900. return result;
  4901. }
  4902. struct ggml_tensor * ggml_map_binary_f32(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * b,
  4906. const ggml_binary_op_f32_t fun) {
  4907. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4908. }
  4909. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. struct ggml_tensor * b,
  4913. const ggml_binary_op_f32_t fun) {
  4914. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4915. }
  4916. // ggml_map_custom1_f32
  4917. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. const ggml_custom1_op_f32_t fun,
  4921. bool inplace) {
  4922. bool is_node = false;
  4923. if (!inplace && a->grad) {
  4924. is_node = true;
  4925. }
  4926. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4927. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4928. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4930. result->src[0] = a;
  4931. return result;
  4932. }
  4933. struct ggml_tensor * ggml_map_custom1_f32(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. const ggml_custom1_op_f32_t fun) {
  4937. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4938. }
  4939. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. const ggml_custom1_op_f32_t fun) {
  4943. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4944. }
  4945. // ggml_map_custom2_f32
  4946. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. struct ggml_tensor * b,
  4950. const ggml_custom2_op_f32_t fun,
  4951. bool inplace) {
  4952. bool is_node = false;
  4953. if (!inplace && (a->grad || b->grad)) {
  4954. is_node = true;
  4955. }
  4956. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4957. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4958. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4960. result->src[0] = a;
  4961. result->src[1] = b;
  4962. return result;
  4963. }
  4964. struct ggml_tensor * ggml_map_custom2_f32(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b,
  4968. const ggml_custom2_op_f32_t fun) {
  4969. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4970. }
  4971. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. struct ggml_tensor * b,
  4975. const ggml_custom2_op_f32_t fun) {
  4976. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4977. }
  4978. // ggml_map_custom3_f32
  4979. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. struct ggml_tensor * b,
  4983. struct ggml_tensor * c,
  4984. const ggml_custom3_op_f32_t fun,
  4985. bool inplace) {
  4986. bool is_node = false;
  4987. if (!inplace && (a->grad || b->grad || c->grad)) {
  4988. is_node = true;
  4989. }
  4990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4991. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4992. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src[0] = a;
  4995. result->src[1] = b;
  4996. result->src[2] = c;
  4997. return result;
  4998. }
  4999. struct ggml_tensor * ggml_map_custom3_f32(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. struct ggml_tensor * c,
  5004. const ggml_custom3_op_f32_t fun) {
  5005. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5006. }
  5007. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. struct ggml_tensor * c,
  5012. const ggml_custom3_op_f32_t fun) {
  5013. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5014. }
  5015. // ggml_map_custom1
  5016. struct ggml_map_custom1_op_params {
  5017. ggml_custom1_op_t fun;
  5018. int n_tasks;
  5019. void * userdata;
  5020. };
  5021. static struct ggml_tensor * ggml_map_custom1_impl(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. const ggml_custom1_op_t fun,
  5025. int n_tasks,
  5026. void * userdata,
  5027. bool inplace) {
  5028. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5029. bool is_node = false;
  5030. if (!inplace && a->grad) {
  5031. is_node = true;
  5032. }
  5033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. struct ggml_map_custom1_op_params params = {
  5035. /*.fun =*/ fun,
  5036. /*.n_tasks =*/ n_tasks,
  5037. /*.userdata =*/ userdata
  5038. };
  5039. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5040. result->op = GGML_OP_MAP_CUSTOM1;
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = a;
  5043. return result;
  5044. }
  5045. struct ggml_tensor * ggml_map_custom1(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. const ggml_custom1_op_t fun,
  5049. int n_tasks,
  5050. void * userdata) {
  5051. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5052. }
  5053. struct ggml_tensor * ggml_map_custom1_inplace(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. const ggml_custom1_op_t fun,
  5057. int n_tasks,
  5058. void * userdata) {
  5059. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5060. }
  5061. // ggml_map_custom2
  5062. struct ggml_map_custom2_op_params {
  5063. ggml_custom2_op_t fun;
  5064. int n_tasks;
  5065. void * userdata;
  5066. };
  5067. static struct ggml_tensor * ggml_map_custom2_impl(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. struct ggml_tensor * b,
  5071. const ggml_custom2_op_t fun,
  5072. int n_tasks,
  5073. void * userdata,
  5074. bool inplace) {
  5075. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5076. bool is_node = false;
  5077. if (!inplace && (a->grad || b->grad)) {
  5078. is_node = true;
  5079. }
  5080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5081. struct ggml_map_custom2_op_params params = {
  5082. /*.fun =*/ fun,
  5083. /*.n_tasks =*/ n_tasks,
  5084. /*.userdata =*/ userdata
  5085. };
  5086. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5087. result->op = GGML_OP_MAP_CUSTOM2;
  5088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5089. result->src[0] = a;
  5090. result->src[1] = b;
  5091. return result;
  5092. }
  5093. struct ggml_tensor * ggml_map_custom2(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b,
  5097. const ggml_custom2_op_t fun,
  5098. int n_tasks,
  5099. void * userdata) {
  5100. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5101. }
  5102. struct ggml_tensor * ggml_map_custom2_inplace(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b,
  5106. const ggml_custom2_op_t fun,
  5107. int n_tasks,
  5108. void * userdata) {
  5109. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5110. }
  5111. // ggml_map_custom3
  5112. struct ggml_map_custom3_op_params {
  5113. ggml_custom3_op_t fun;
  5114. int n_tasks;
  5115. void * userdata;
  5116. };
  5117. static struct ggml_tensor * ggml_map_custom3_impl(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. struct ggml_tensor * b,
  5121. struct ggml_tensor * c,
  5122. const ggml_custom3_op_t fun,
  5123. int n_tasks,
  5124. void * userdata,
  5125. bool inplace) {
  5126. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5127. bool is_node = false;
  5128. if (!inplace && (a->grad || b->grad || c->grad)) {
  5129. is_node = true;
  5130. }
  5131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5132. struct ggml_map_custom3_op_params params = {
  5133. /*.fun =*/ fun,
  5134. /*.n_tasks =*/ n_tasks,
  5135. /*.userdata =*/ userdata
  5136. };
  5137. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5138. result->op = GGML_OP_MAP_CUSTOM3;
  5139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5140. result->src[0] = a;
  5141. result->src[1] = b;
  5142. result->src[2] = c;
  5143. return result;
  5144. }
  5145. struct ggml_tensor * ggml_map_custom3(
  5146. struct ggml_context * ctx,
  5147. struct ggml_tensor * a,
  5148. struct ggml_tensor * b,
  5149. struct ggml_tensor * c,
  5150. const ggml_custom3_op_t fun,
  5151. int n_tasks,
  5152. void * userdata) {
  5153. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5154. }
  5155. struct ggml_tensor * ggml_map_custom3_inplace(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b,
  5159. struct ggml_tensor * c,
  5160. const ggml_custom3_op_t fun,
  5161. int n_tasks,
  5162. void * userdata) {
  5163. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5164. }
  5165. // ggml_cross_entropy_loss
  5166. struct ggml_tensor * ggml_cross_entropy_loss(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. struct ggml_tensor * b) {
  5170. GGML_ASSERT(ggml_are_same_shape(a, b));
  5171. bool is_node = false;
  5172. if (a->grad || b->grad) {
  5173. is_node = true;
  5174. }
  5175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5176. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5178. result->src[0] = a;
  5179. result->src[1] = b;
  5180. return result;
  5181. }
  5182. // ggml_cross_entropy_loss_back
  5183. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. struct ggml_tensor * b,
  5187. struct ggml_tensor * c) {
  5188. GGML_ASSERT(ggml_are_same_shape(a, b));
  5189. GGML_ASSERT(ggml_is_scalar(c));
  5190. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5191. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5192. result->grad = NULL;
  5193. result->src[0] = a;
  5194. result->src[1] = b;
  5195. result->src[2] = c;
  5196. return result;
  5197. }
  5198. ////////////////////////////////////////////////////////////////////////////////
  5199. void ggml_set_param(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * tensor) {
  5202. tensor->is_param = true;
  5203. GGML_ASSERT(tensor->grad == NULL);
  5204. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5205. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5206. }
  5207. // ggml_compute_forward_dup
  5208. static void ggml_compute_forward_dup_same_cont(
  5209. const struct ggml_compute_params * params,
  5210. const struct ggml_tensor * src0,
  5211. struct ggml_tensor * dst) {
  5212. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5213. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5214. GGML_ASSERT(src0->type == dst->type);
  5215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5216. return;
  5217. }
  5218. const size_t nb00 = src0->nb[0];
  5219. const size_t nb0 = dst->nb[0];
  5220. const int ith = params->ith; // thread index
  5221. const int nth = params->nth; // number of threads
  5222. // parallelize by elements
  5223. const int ne = ggml_nelements(dst);
  5224. const int dr = (ne + nth - 1) / nth;
  5225. const int ie0 = dr * ith;
  5226. const int ie1 = MIN(ie0 + dr, ne);
  5227. if (ie0 < ie1) {
  5228. memcpy(
  5229. ((char *) dst->data + ie0*nb0),
  5230. ((char *) src0->data + ie0*nb00),
  5231. (ie1 - ie0) * ggml_type_size(src0->type));
  5232. }
  5233. }
  5234. static void ggml_compute_forward_dup_f16(
  5235. const struct ggml_compute_params * params,
  5236. const struct ggml_tensor * src0,
  5237. struct ggml_tensor * dst) {
  5238. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5240. return;
  5241. }
  5242. GGML_TENSOR_UNARY_OP_LOCALS
  5243. const int ith = params->ith; // thread index
  5244. const int nth = params->nth; // number of threads
  5245. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5246. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5247. return;
  5248. }
  5249. // parallelize by rows
  5250. const int nr = ne01;
  5251. // number of rows per thread
  5252. const int dr = (nr + nth - 1) / nth;
  5253. // row range for this thread
  5254. const int ir0 = dr * ith;
  5255. const int ir1 = MIN(ir0 + dr, nr);
  5256. if (src0->type == dst->type &&
  5257. ne00 == ne0 &&
  5258. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5259. // copy by rows
  5260. const size_t rs = ne00*nb00;
  5261. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5262. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5263. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5264. memcpy(
  5265. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5266. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5267. rs);
  5268. }
  5269. }
  5270. }
  5271. return;
  5272. }
  5273. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5274. if (ggml_is_contiguous(dst)) {
  5275. if (nb00 == sizeof(ggml_fp16_t)) {
  5276. if (dst->type == GGML_TYPE_F16) {
  5277. size_t id = 0;
  5278. const size_t rs = ne00 * nb00;
  5279. char * dst_ptr = (char *) dst->data;
  5280. for (int i03 = 0; i03 < ne03; i03++) {
  5281. for (int i02 = 0; i02 < ne02; i02++) {
  5282. id += rs * ir0;
  5283. for (int i01 = ir0; i01 < ir1; i01++) {
  5284. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5285. memcpy(dst_ptr + id, src0_ptr, rs);
  5286. id += rs;
  5287. }
  5288. id += rs * (ne01 - ir1);
  5289. }
  5290. }
  5291. } else if (dst->type == GGML_TYPE_F32) {
  5292. size_t id = 0;
  5293. float * dst_ptr = (float *) dst->data;
  5294. for (int i03 = 0; i03 < ne03; i03++) {
  5295. for (int i02 = 0; i02 < ne02; i02++) {
  5296. id += ne00 * ir0;
  5297. for (int i01 = ir0; i01 < ir1; i01++) {
  5298. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5299. for (int i00 = 0; i00 < ne00; i00++) {
  5300. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5301. id++;
  5302. }
  5303. }
  5304. id += ne00 * (ne01 - ir1);
  5305. }
  5306. }
  5307. } else if (type_traits[dst->type].from_float) {
  5308. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5309. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5310. size_t id = 0;
  5311. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5312. char * dst_ptr = (char *) dst->data;
  5313. for (int i03 = 0; i03 < ne03; i03++) {
  5314. for (int i02 = 0; i02 < ne02; i02++) {
  5315. id += rs * ir0;
  5316. for (int i01 = ir0; i01 < ir1; i01++) {
  5317. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5318. for (int i00 = 0; i00 < ne00; i00++) {
  5319. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5320. }
  5321. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5322. id += rs;
  5323. }
  5324. id += rs * (ne01 - ir1);
  5325. }
  5326. }
  5327. } else {
  5328. GGML_ASSERT(false); // TODO: implement
  5329. }
  5330. } else {
  5331. //printf("%s: this is not optimal - fix me\n", __func__);
  5332. if (dst->type == GGML_TYPE_F32) {
  5333. size_t id = 0;
  5334. float * dst_ptr = (float *) dst->data;
  5335. for (int i03 = 0; i03 < ne03; i03++) {
  5336. for (int i02 = 0; i02 < ne02; i02++) {
  5337. id += ne00 * ir0;
  5338. for (int i01 = ir0; i01 < ir1; i01++) {
  5339. for (int i00 = 0; i00 < ne00; i00++) {
  5340. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5341. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5342. id++;
  5343. }
  5344. }
  5345. id += ne00 * (ne01 - ir1);
  5346. }
  5347. }
  5348. } else if (dst->type == GGML_TYPE_F16) {
  5349. size_t id = 0;
  5350. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5351. for (int i03 = 0; i03 < ne03; i03++) {
  5352. for (int i02 = 0; i02 < ne02; i02++) {
  5353. id += ne00 * ir0;
  5354. for (int i01 = ir0; i01 < ir1; i01++) {
  5355. for (int i00 = 0; i00 < ne00; i00++) {
  5356. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5357. dst_ptr[id] = *src0_ptr;
  5358. id++;
  5359. }
  5360. }
  5361. id += ne00 * (ne01 - ir1);
  5362. }
  5363. }
  5364. } else {
  5365. GGML_ASSERT(false); // TODO: implement
  5366. }
  5367. }
  5368. return;
  5369. }
  5370. // dst counters
  5371. int64_t i10 = 0;
  5372. int64_t i11 = 0;
  5373. int64_t i12 = 0;
  5374. int64_t i13 = 0;
  5375. if (dst->type == GGML_TYPE_F16) {
  5376. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5377. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5378. i10 += ne00 * ir0;
  5379. while (i10 >= ne0) {
  5380. i10 -= ne0;
  5381. if (++i11 == ne1) {
  5382. i11 = 0;
  5383. if (++i12 == ne2) {
  5384. i12 = 0;
  5385. if (++i13 == ne3) {
  5386. i13 = 0;
  5387. }
  5388. }
  5389. }
  5390. }
  5391. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5392. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5393. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5394. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5395. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5396. if (++i10 == ne00) {
  5397. i10 = 0;
  5398. if (++i11 == ne01) {
  5399. i11 = 0;
  5400. if (++i12 == ne02) {
  5401. i12 = 0;
  5402. if (++i13 == ne03) {
  5403. i13 = 0;
  5404. }
  5405. }
  5406. }
  5407. }
  5408. }
  5409. }
  5410. i10 += ne00 * (ne01 - ir1);
  5411. while (i10 >= ne0) {
  5412. i10 -= ne0;
  5413. if (++i11 == ne1) {
  5414. i11 = 0;
  5415. if (++i12 == ne2) {
  5416. i12 = 0;
  5417. if (++i13 == ne3) {
  5418. i13 = 0;
  5419. }
  5420. }
  5421. }
  5422. }
  5423. }
  5424. }
  5425. } else if (dst->type == GGML_TYPE_F32) {
  5426. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5427. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5428. i10 += ne00 * ir0;
  5429. while (i10 >= ne0) {
  5430. i10 -= ne0;
  5431. if (++i11 == ne1) {
  5432. i11 = 0;
  5433. if (++i12 == ne2) {
  5434. i12 = 0;
  5435. if (++i13 == ne3) {
  5436. i13 = 0;
  5437. }
  5438. }
  5439. }
  5440. }
  5441. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5442. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5443. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5444. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5445. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5446. if (++i10 == ne0) {
  5447. i10 = 0;
  5448. if (++i11 == ne1) {
  5449. i11 = 0;
  5450. if (++i12 == ne2) {
  5451. i12 = 0;
  5452. if (++i13 == ne3) {
  5453. i13 = 0;
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. }
  5460. i10 += ne00 * (ne01 - ir1);
  5461. while (i10 >= ne0) {
  5462. i10 -= ne0;
  5463. if (++i11 == ne1) {
  5464. i11 = 0;
  5465. if (++i12 == ne2) {
  5466. i12 = 0;
  5467. if (++i13 == ne3) {
  5468. i13 = 0;
  5469. }
  5470. }
  5471. }
  5472. }
  5473. }
  5474. }
  5475. } else {
  5476. GGML_ASSERT(false); // TODO: implement
  5477. }
  5478. }
  5479. static void ggml_compute_forward_dup_f32(
  5480. const struct ggml_compute_params * params,
  5481. const struct ggml_tensor * src0,
  5482. struct ggml_tensor * dst) {
  5483. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5485. return;
  5486. }
  5487. GGML_TENSOR_UNARY_OP_LOCALS
  5488. const int ith = params->ith; // thread index
  5489. const int nth = params->nth; // number of threads
  5490. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5491. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5492. return;
  5493. }
  5494. // parallelize by rows
  5495. const int nr = ne01;
  5496. // number of rows per thread
  5497. const int dr = (nr + nth - 1) / nth;
  5498. // row range for this thread
  5499. const int ir0 = dr * ith;
  5500. const int ir1 = MIN(ir0 + dr, nr);
  5501. if (src0->type == dst->type &&
  5502. ne00 == ne0 &&
  5503. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5504. // copy by rows
  5505. const size_t rs = ne00*nb00;
  5506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5508. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5509. memcpy(
  5510. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5511. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5512. rs);
  5513. }
  5514. }
  5515. }
  5516. return;
  5517. }
  5518. if (ggml_is_contiguous(dst)) {
  5519. // TODO: simplify
  5520. if (nb00 == sizeof(float)) {
  5521. if (dst->type == GGML_TYPE_F32) {
  5522. size_t id = 0;
  5523. const size_t rs = ne00 * nb00;
  5524. char * dst_ptr = (char *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += rs * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5530. memcpy(dst_ptr + id, src0_ptr, rs);
  5531. id += rs;
  5532. }
  5533. id += rs * (ne01 - ir1);
  5534. }
  5535. }
  5536. } else if (type_traits[dst->type].from_float) {
  5537. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5538. size_t id = 0;
  5539. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5540. char * dst_ptr = (char *) dst->data;
  5541. for (int i03 = 0; i03 < ne03; i03++) {
  5542. for (int i02 = 0; i02 < ne02; i02++) {
  5543. id += rs * ir0;
  5544. for (int i01 = ir0; i01 < ir1; i01++) {
  5545. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5546. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5547. id += rs;
  5548. }
  5549. id += rs * (ne01 - ir1);
  5550. }
  5551. }
  5552. } else {
  5553. GGML_ASSERT(false); // TODO: implement
  5554. }
  5555. } else {
  5556. //printf("%s: this is not optimal - fix me\n", __func__);
  5557. if (dst->type == GGML_TYPE_F32) {
  5558. size_t id = 0;
  5559. float * dst_ptr = (float *) dst->data;
  5560. for (int i03 = 0; i03 < ne03; i03++) {
  5561. for (int i02 = 0; i02 < ne02; i02++) {
  5562. id += ne00 * ir0;
  5563. for (int i01 = ir0; i01 < ir1; i01++) {
  5564. for (int i00 = 0; i00 < ne00; i00++) {
  5565. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5566. dst_ptr[id] = *src0_ptr;
  5567. id++;
  5568. }
  5569. }
  5570. id += ne00 * (ne01 - ir1);
  5571. }
  5572. }
  5573. } else if (dst->type == GGML_TYPE_F16) {
  5574. size_t id = 0;
  5575. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5576. for (int i03 = 0; i03 < ne03; i03++) {
  5577. for (int i02 = 0; i02 < ne02; i02++) {
  5578. id += ne00 * ir0;
  5579. for (int i01 = ir0; i01 < ir1; i01++) {
  5580. for (int i00 = 0; i00 < ne00; i00++) {
  5581. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5582. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5583. id++;
  5584. }
  5585. }
  5586. id += ne00 * (ne01 - ir1);
  5587. }
  5588. }
  5589. } else {
  5590. GGML_ASSERT(false); // TODO: implement
  5591. }
  5592. }
  5593. return;
  5594. }
  5595. // dst counters
  5596. int64_t i10 = 0;
  5597. int64_t i11 = 0;
  5598. int64_t i12 = 0;
  5599. int64_t i13 = 0;
  5600. if (dst->type == GGML_TYPE_F32) {
  5601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5603. i10 += ne00 * ir0;
  5604. while (i10 >= ne0) {
  5605. i10 -= ne0;
  5606. if (++i11 == ne1) {
  5607. i11 = 0;
  5608. if (++i12 == ne2) {
  5609. i12 = 0;
  5610. if (++i13 == ne3) {
  5611. i13 = 0;
  5612. }
  5613. }
  5614. }
  5615. }
  5616. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5617. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5618. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5619. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5620. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5621. if (++i10 == ne0) {
  5622. i10 = 0;
  5623. if (++i11 == ne1) {
  5624. i11 = 0;
  5625. if (++i12 == ne2) {
  5626. i12 = 0;
  5627. if (++i13 == ne3) {
  5628. i13 = 0;
  5629. }
  5630. }
  5631. }
  5632. }
  5633. }
  5634. }
  5635. i10 += ne00 * (ne01 - ir1);
  5636. while (i10 >= ne0) {
  5637. i10 -= ne0;
  5638. if (++i11 == ne1) {
  5639. i11 = 0;
  5640. if (++i12 == ne2) {
  5641. i12 = 0;
  5642. if (++i13 == ne3) {
  5643. i13 = 0;
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. } else if (dst->type == GGML_TYPE_F16) {
  5651. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5652. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5653. i10 += ne00 * ir0;
  5654. while (i10 >= ne0) {
  5655. i10 -= ne0;
  5656. if (++i11 == ne1) {
  5657. i11 = 0;
  5658. if (++i12 == ne2) {
  5659. i12 = 0;
  5660. if (++i13 == ne3) {
  5661. i13 = 0;
  5662. }
  5663. }
  5664. }
  5665. }
  5666. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5667. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5668. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5669. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5670. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5671. if (++i10 == ne0) {
  5672. i10 = 0;
  5673. if (++i11 == ne1) {
  5674. i11 = 0;
  5675. if (++i12 == ne2) {
  5676. i12 = 0;
  5677. if (++i13 == ne3) {
  5678. i13 = 0;
  5679. }
  5680. }
  5681. }
  5682. }
  5683. }
  5684. }
  5685. i10 += ne00 * (ne01 - ir1);
  5686. while (i10 >= ne0) {
  5687. i10 -= ne0;
  5688. if (++i11 == ne1) {
  5689. i11 = 0;
  5690. if (++i12 == ne2) {
  5691. i12 = 0;
  5692. if (++i13 == ne3) {
  5693. i13 = 0;
  5694. }
  5695. }
  5696. }
  5697. }
  5698. }
  5699. }
  5700. } else {
  5701. GGML_ASSERT(false); // TODO: implement
  5702. }
  5703. }
  5704. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5705. static void ggml_compute_forward_dup_bytes(
  5706. const struct ggml_compute_params * params,
  5707. const struct ggml_tensor * src0,
  5708. struct ggml_tensor * dst) {
  5709. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5710. GGML_ASSERT(src0->type == dst->type);
  5711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5712. return;
  5713. }
  5714. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5715. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5716. return;
  5717. }
  5718. GGML_TENSOR_UNARY_OP_LOCALS;
  5719. const size_t type_size = ggml_type_size(src0->type);
  5720. const int ith = params->ith; // thread index
  5721. const int nth = params->nth; // number of threads
  5722. // parallelize by rows
  5723. const int nr = ne01;
  5724. // number of rows per thread
  5725. const int dr = (nr + nth - 1) / nth;
  5726. // row range for this thread
  5727. const int ir0 = dr * ith;
  5728. const int ir1 = MIN(ir0 + dr, nr);
  5729. if (src0->type == dst->type &&
  5730. ne00 == ne0 &&
  5731. nb00 == type_size && nb0 == type_size) {
  5732. // copy by rows
  5733. const size_t rs = ne00 * type_size;
  5734. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5735. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5736. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5737. memcpy(
  5738. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5739. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5740. rs);
  5741. }
  5742. }
  5743. }
  5744. return;
  5745. }
  5746. if (ggml_is_contiguous(dst)) {
  5747. size_t id = 0;
  5748. char * dst_ptr = (char *) dst->data;
  5749. const size_t rs = ne00 * type_size;
  5750. if (nb00 == type_size) {
  5751. // src0 is contigous on first dimension, copy by rows
  5752. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5753. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5754. id += rs * ir0;
  5755. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5756. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5757. memcpy(dst_ptr + id, src0_ptr, rs);
  5758. id += rs;
  5759. }
  5760. id += rs * (ne01 - ir1);
  5761. }
  5762. }
  5763. } else {
  5764. //printf("%s: this is not optimal - fix me\n", __func__);
  5765. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5766. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5767. id += rs * ir0;
  5768. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5769. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5770. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5771. memcpy(dst_ptr + id, src0_ptr, type_size);
  5772. id += type_size;
  5773. }
  5774. }
  5775. id += rs * (ne01 - ir1);
  5776. }
  5777. }
  5778. }
  5779. return;
  5780. }
  5781. // dst counters
  5782. int64_t i10 = 0;
  5783. int64_t i11 = 0;
  5784. int64_t i12 = 0;
  5785. int64_t i13 = 0;
  5786. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5787. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5788. i10 += ne00 * ir0;
  5789. while (i10 >= ne0) {
  5790. i10 -= ne0;
  5791. if (++i11 == ne1) {
  5792. i11 = 0;
  5793. if (++i12 == ne2) {
  5794. i12 = 0;
  5795. if (++i13 == ne3) {
  5796. i13 = 0;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5802. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5803. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5804. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5805. memcpy(dst_ptr, src0_ptr, type_size);
  5806. if (++i10 == ne0) {
  5807. i10 = 0;
  5808. if (++i11 == ne1) {
  5809. i11 = 0;
  5810. if (++i12 == ne2) {
  5811. i12 = 0;
  5812. if (++i13 == ne3) {
  5813. i13 = 0;
  5814. }
  5815. }
  5816. }
  5817. }
  5818. }
  5819. }
  5820. i10 += ne00 * (ne01 - ir1);
  5821. while (i10 >= ne0) {
  5822. i10 -= ne0;
  5823. if (++i11 == ne1) {
  5824. i11 = 0;
  5825. if (++i12 == ne2) {
  5826. i12 = 0;
  5827. if (++i13 == ne3) {
  5828. i13 = 0;
  5829. }
  5830. }
  5831. }
  5832. }
  5833. }
  5834. }
  5835. }
  5836. static void ggml_compute_forward_dup(
  5837. const struct ggml_compute_params * params,
  5838. const struct ggml_tensor * src0,
  5839. struct ggml_tensor * dst) {
  5840. if (src0->type == dst->type) {
  5841. ggml_compute_forward_dup_bytes(params, src0, dst);
  5842. return;
  5843. }
  5844. switch (src0->type) {
  5845. case GGML_TYPE_F16:
  5846. {
  5847. ggml_compute_forward_dup_f16(params, src0, dst);
  5848. } break;
  5849. case GGML_TYPE_F32:
  5850. {
  5851. ggml_compute_forward_dup_f32(params, src0, dst);
  5852. } break;
  5853. default:
  5854. {
  5855. GGML_ASSERT(false);
  5856. } break;
  5857. }
  5858. }
  5859. // ggml_compute_forward_add
  5860. static void ggml_compute_forward_add_f32(
  5861. const struct ggml_compute_params * params,
  5862. const struct ggml_tensor * src0,
  5863. const struct ggml_tensor * src1,
  5864. struct ggml_tensor * dst) {
  5865. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5866. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5867. return;
  5868. }
  5869. const int ith = params->ith;
  5870. const int nth = params->nth;
  5871. const int nr = ggml_nrows(src0);
  5872. GGML_TENSOR_BINARY_OP_LOCALS
  5873. GGML_ASSERT( nb0 == sizeof(float));
  5874. GGML_ASSERT(nb00 == sizeof(float));
  5875. // rows per thread
  5876. const int dr = (nr + nth - 1)/nth;
  5877. // row range for this thread
  5878. const int ir0 = dr*ith;
  5879. const int ir1 = MIN(ir0 + dr, nr);
  5880. if (nb10 == sizeof(float)) {
  5881. for (int ir = ir0; ir < ir1; ++ir) {
  5882. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5883. const int64_t i03 = ir/(ne02*ne01);
  5884. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5885. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5886. const int64_t i13 = i03 % ne13;
  5887. const int64_t i12 = i02 % ne12;
  5888. const int64_t i11 = i01 % ne11;
  5889. const int64_t nr0 = ne00 / ne10;
  5890. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5891. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5892. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5893. for (int64_t r = 0; r < nr0; ++r) {
  5894. #ifdef GGML_USE_ACCELERATE
  5895. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5896. #else
  5897. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5898. #endif
  5899. }
  5900. }
  5901. } else {
  5902. // src1 is not contiguous
  5903. for (int ir = ir0; ir < ir1; ++ir) {
  5904. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5905. const int64_t i03 = ir/(ne02*ne01);
  5906. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5907. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5908. const int64_t i13 = i03 % ne13;
  5909. const int64_t i12 = i02 % ne12;
  5910. const int64_t i11 = i01 % ne11;
  5911. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5912. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5913. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5914. const int64_t i10 = i0 % ne10;
  5915. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5916. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5917. }
  5918. }
  5919. }
  5920. }
  5921. static void ggml_compute_forward_add_f16_f32(
  5922. const struct ggml_compute_params * params,
  5923. const struct ggml_tensor * src0,
  5924. const struct ggml_tensor * src1,
  5925. struct ggml_tensor * dst) {
  5926. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5928. return;
  5929. }
  5930. const int ith = params->ith;
  5931. const int nth = params->nth;
  5932. const int nr = ggml_nrows(src0);
  5933. GGML_TENSOR_BINARY_OP_LOCALS
  5934. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5935. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5936. if (dst->type == GGML_TYPE_F32) {
  5937. GGML_ASSERT( nb0 == sizeof(float));
  5938. }
  5939. else {
  5940. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5941. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5942. }
  5943. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5944. // rows per thread
  5945. const int dr = (nr + nth - 1)/nth;
  5946. // row range for this thread
  5947. const int ir0 = dr*ith;
  5948. const int ir1 = MIN(ir0 + dr, nr);
  5949. if (nb10 == sizeof(float)) {
  5950. if (dst->type == GGML_TYPE_F16) {
  5951. for (int ir = ir0; ir < ir1; ++ir) {
  5952. // src0, src1 and dst are same shape => same indices
  5953. const int i3 = ir/(ne2*ne1);
  5954. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5955. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5956. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5957. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5958. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5959. for (int i = 0; i < ne0; i++) {
  5960. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5961. }
  5962. }
  5963. } else {
  5964. for (int ir = ir0; ir < ir1; ++ir) {
  5965. // src0, src1 and dst are same shape => same indices
  5966. const int i3 = ir/(ne2*ne1);
  5967. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5968. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5969. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5970. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5971. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5972. for (int i = 0; i < ne0; i++) {
  5973. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5974. }
  5975. }
  5976. }
  5977. }
  5978. else {
  5979. // src1 is not contiguous
  5980. GGML_ASSERT(false);
  5981. }
  5982. }
  5983. static void ggml_compute_forward_add_f16_f16(
  5984. const struct ggml_compute_params * params,
  5985. const struct ggml_tensor * src0,
  5986. const struct ggml_tensor * src1,
  5987. struct ggml_tensor * dst) {
  5988. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5990. return;
  5991. }
  5992. const int ith = params->ith;
  5993. const int nth = params->nth;
  5994. const int nr = ggml_nrows(src0);
  5995. GGML_TENSOR_BINARY_OP_LOCALS
  5996. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5997. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5998. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5999. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6000. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6001. // rows per thread
  6002. const int dr = (nr + nth - 1)/nth;
  6003. // row range for this thread
  6004. const int ir0 = dr*ith;
  6005. const int ir1 = MIN(ir0 + dr, nr);
  6006. if (nb10 == sizeof(ggml_fp16_t)) {
  6007. for (int ir = ir0; ir < ir1; ++ir) {
  6008. // src0, src1 and dst are same shape => same indices
  6009. const int i3 = ir/(ne2*ne1);
  6010. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6011. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6012. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6013. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6014. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6015. for (int i = 0; i < ne0; i++) {
  6016. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6017. }
  6018. }
  6019. }
  6020. else {
  6021. // src1 is not contiguous
  6022. GGML_ASSERT(false);
  6023. }
  6024. }
  6025. static void ggml_compute_forward_add_q_f32(
  6026. const struct ggml_compute_params * params,
  6027. const struct ggml_tensor * src0,
  6028. const struct ggml_tensor * src1,
  6029. struct ggml_tensor * dst) {
  6030. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6032. return;
  6033. }
  6034. const int nr = ggml_nrows(src0);
  6035. GGML_TENSOR_BINARY_OP_LOCALS
  6036. const int ith = params->ith;
  6037. const int nth = params->nth;
  6038. const enum ggml_type type = src0->type;
  6039. const enum ggml_type dtype = dst->type;
  6040. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6041. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6042. // we don't support permuted src0 or src1
  6043. GGML_ASSERT(nb00 == ggml_type_size(type));
  6044. GGML_ASSERT(nb10 == sizeof(float));
  6045. // dst cannot be transposed or permuted
  6046. GGML_ASSERT(nb0 <= nb1);
  6047. GGML_ASSERT(nb1 <= nb2);
  6048. GGML_ASSERT(nb2 <= nb3);
  6049. GGML_ASSERT(ggml_is_quantized(src0->type));
  6050. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6051. // rows per thread
  6052. const int dr = (nr + nth - 1)/nth;
  6053. // row range for this thread
  6054. const int ir0 = dr*ith;
  6055. const int ir1 = MIN(ir0 + dr, nr);
  6056. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6057. for (int ir = ir0; ir < ir1; ++ir) {
  6058. // src0 indices
  6059. const int i03 = ir/(ne02*ne01);
  6060. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6061. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6062. // src1 and dst are same shape as src0 => same indices
  6063. const int i13 = i03;
  6064. const int i12 = i02;
  6065. const int i11 = i01;
  6066. const int i3 = i03;
  6067. const int i2 = i02;
  6068. const int i1 = i01;
  6069. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6070. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6071. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6072. assert(ne00 % 32 == 0);
  6073. // unquantize row from src0 to temp buffer
  6074. dequantize_row_q(src0_row, wdata, ne00);
  6075. // add src1
  6076. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6077. // quantize row to dst
  6078. if (quantize_row_q != NULL) {
  6079. quantize_row_q(wdata, dst_row, ne00);
  6080. } else {
  6081. memcpy(dst_row, wdata, ne0*nb0);
  6082. }
  6083. }
  6084. }
  6085. static void ggml_compute_forward_add(
  6086. const struct ggml_compute_params * params,
  6087. const struct ggml_tensor * src0,
  6088. const struct ggml_tensor * src1,
  6089. struct ggml_tensor * dst) {
  6090. switch (src0->type) {
  6091. case GGML_TYPE_F32:
  6092. {
  6093. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6094. } break;
  6095. case GGML_TYPE_F16:
  6096. {
  6097. if (src1->type == GGML_TYPE_F16) {
  6098. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6099. }
  6100. else if (src1->type == GGML_TYPE_F32) {
  6101. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6102. }
  6103. else {
  6104. GGML_ASSERT(false);
  6105. }
  6106. } break;
  6107. case GGML_TYPE_Q4_0:
  6108. case GGML_TYPE_Q4_1:
  6109. case GGML_TYPE_Q5_0:
  6110. case GGML_TYPE_Q5_1:
  6111. case GGML_TYPE_Q8_0:
  6112. case GGML_TYPE_Q2_K:
  6113. case GGML_TYPE_Q3_K:
  6114. case GGML_TYPE_Q4_K:
  6115. case GGML_TYPE_Q5_K:
  6116. case GGML_TYPE_Q6_K:
  6117. case GGML_TYPE_IQ2_XXS:
  6118. case GGML_TYPE_IQ2_XS:
  6119. {
  6120. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6121. } break;
  6122. default:
  6123. {
  6124. GGML_ASSERT(false);
  6125. } break;
  6126. }
  6127. }
  6128. // ggml_compute_forward_add1
  6129. static void ggml_compute_forward_add1_f32(
  6130. const struct ggml_compute_params * params,
  6131. const struct ggml_tensor * src0,
  6132. const struct ggml_tensor * src1,
  6133. struct ggml_tensor * dst) {
  6134. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6135. GGML_ASSERT(ggml_is_scalar(src1));
  6136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6137. return;
  6138. }
  6139. const int ith = params->ith;
  6140. const int nth = params->nth;
  6141. const int nr = ggml_nrows(src0);
  6142. GGML_TENSOR_UNARY_OP_LOCALS
  6143. GGML_ASSERT( nb0 == sizeof(float));
  6144. GGML_ASSERT(nb00 == sizeof(float));
  6145. // rows per thread
  6146. const int dr = (nr + nth - 1)/nth;
  6147. // row range for this thread
  6148. const int ir0 = dr*ith;
  6149. const int ir1 = MIN(ir0 + dr, nr);
  6150. for (int ir = ir0; ir < ir1; ++ir) {
  6151. // src0 and dst are same shape => same indices
  6152. const int i3 = ir/(ne2*ne1);
  6153. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6154. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6155. #ifdef GGML_USE_ACCELERATE
  6156. UNUSED(ggml_vec_add1_f32);
  6157. vDSP_vadd(
  6158. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6159. (float *) ((char *) src1->data), 0,
  6160. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6161. ne0);
  6162. #else
  6163. ggml_vec_add1_f32(ne0,
  6164. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6165. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6166. *(float *) src1->data);
  6167. #endif
  6168. }
  6169. }
  6170. static void ggml_compute_forward_add1_f16_f32(
  6171. const struct ggml_compute_params * params,
  6172. const struct ggml_tensor * src0,
  6173. const struct ggml_tensor * src1,
  6174. struct ggml_tensor * dst) {
  6175. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6176. GGML_ASSERT(ggml_is_scalar(src1));
  6177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6178. return;
  6179. }
  6180. // scalar to add
  6181. const float v = *(float *) src1->data;
  6182. const int ith = params->ith;
  6183. const int nth = params->nth;
  6184. const int nr = ggml_nrows(src0);
  6185. GGML_TENSOR_UNARY_OP_LOCALS
  6186. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6187. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6188. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6189. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6190. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6191. // rows per thread
  6192. const int dr = (nr + nth - 1)/nth;
  6193. // row range for this thread
  6194. const int ir0 = dr*ith;
  6195. const int ir1 = MIN(ir0 + dr, nr);
  6196. for (int ir = ir0; ir < ir1; ++ir) {
  6197. // src0 and dst are same shape => same indices
  6198. const int i3 = ir/(ne2*ne1);
  6199. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6200. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6201. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6202. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6203. for (int i = 0; i < ne0; i++) {
  6204. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6205. }
  6206. }
  6207. }
  6208. static void ggml_compute_forward_add1_f16_f16(
  6209. const struct ggml_compute_params * params,
  6210. const struct ggml_tensor * src0,
  6211. const struct ggml_tensor * src1,
  6212. struct ggml_tensor * dst) {
  6213. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6214. GGML_ASSERT(ggml_is_scalar(src1));
  6215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6216. return;
  6217. }
  6218. // scalar to add
  6219. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6220. const int ith = params->ith;
  6221. const int nth = params->nth;
  6222. const int nr = ggml_nrows(src0);
  6223. GGML_TENSOR_UNARY_OP_LOCALS
  6224. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6225. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6226. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6227. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6228. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6229. // rows per thread
  6230. const int dr = (nr + nth - 1)/nth;
  6231. // row range for this thread
  6232. const int ir0 = dr*ith;
  6233. const int ir1 = MIN(ir0 + dr, nr);
  6234. for (int ir = ir0; ir < ir1; ++ir) {
  6235. // src0 and dst are same shape => same indices
  6236. const int i3 = ir/(ne2*ne1);
  6237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6239. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6240. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6241. for (int i = 0; i < ne0; i++) {
  6242. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6243. }
  6244. }
  6245. }
  6246. static void ggml_compute_forward_add1_q_f32(
  6247. const struct ggml_compute_params * params,
  6248. const struct ggml_tensor * src0,
  6249. const struct ggml_tensor * src1,
  6250. struct ggml_tensor * dst) {
  6251. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6252. GGML_ASSERT(ggml_is_scalar(src1));
  6253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6254. return;
  6255. }
  6256. // scalar to add
  6257. const float v = *(float *) src1->data;
  6258. const int ith = params->ith;
  6259. const int nth = params->nth;
  6260. const int nr = ggml_nrows(src0);
  6261. GGML_TENSOR_UNARY_OP_LOCALS
  6262. const enum ggml_type type = src0->type;
  6263. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6264. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6265. // we don't support permuted src0
  6266. GGML_ASSERT(nb00 == ggml_type_size(type));
  6267. // dst cannot be transposed or permuted
  6268. GGML_ASSERT(nb0 <= nb1);
  6269. GGML_ASSERT(nb1 <= nb2);
  6270. GGML_ASSERT(nb2 <= nb3);
  6271. GGML_ASSERT(ggml_is_quantized(src0->type));
  6272. GGML_ASSERT(dst->type == src0->type);
  6273. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6274. // rows per thread
  6275. const int dr = (nr + nth - 1)/nth;
  6276. // row range for this thread
  6277. const int ir0 = dr*ith;
  6278. const int ir1 = MIN(ir0 + dr, nr);
  6279. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6280. for (int ir = ir0; ir < ir1; ++ir) {
  6281. // src0 and dst are same shape => same indices
  6282. const int i3 = ir/(ne2*ne1);
  6283. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6284. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6285. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6286. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6287. assert(ne0 % 32 == 0);
  6288. // unquantize row from src0 to temp buffer
  6289. dequantize_row_q(src0_row, wdata, ne0);
  6290. // add src1
  6291. ggml_vec_acc1_f32(ne0, wdata, v);
  6292. // quantize row to dst
  6293. quantize_row_q(wdata, dst_row, ne0);
  6294. }
  6295. }
  6296. static void ggml_compute_forward_add1(
  6297. const struct ggml_compute_params * params,
  6298. const struct ggml_tensor * src0,
  6299. const struct ggml_tensor * src1,
  6300. struct ggml_tensor * dst) {
  6301. switch (src0->type) {
  6302. case GGML_TYPE_F32:
  6303. {
  6304. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6305. } break;
  6306. case GGML_TYPE_F16:
  6307. {
  6308. if (src1->type == GGML_TYPE_F16) {
  6309. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6310. }
  6311. else if (src1->type == GGML_TYPE_F32) {
  6312. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6313. }
  6314. else {
  6315. GGML_ASSERT(false);
  6316. }
  6317. } break;
  6318. case GGML_TYPE_Q4_0:
  6319. case GGML_TYPE_Q4_1:
  6320. case GGML_TYPE_Q5_0:
  6321. case GGML_TYPE_Q5_1:
  6322. case GGML_TYPE_Q8_0:
  6323. case GGML_TYPE_Q8_1:
  6324. case GGML_TYPE_Q2_K:
  6325. case GGML_TYPE_Q3_K:
  6326. case GGML_TYPE_Q4_K:
  6327. case GGML_TYPE_Q5_K:
  6328. case GGML_TYPE_Q6_K:
  6329. case GGML_TYPE_IQ2_XXS:
  6330. case GGML_TYPE_IQ2_XS:
  6331. {
  6332. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6333. } break;
  6334. default:
  6335. {
  6336. GGML_ASSERT(false);
  6337. } break;
  6338. }
  6339. }
  6340. // ggml_compute_forward_acc
  6341. static void ggml_compute_forward_acc_f32(
  6342. const struct ggml_compute_params * params,
  6343. const struct ggml_tensor * src0,
  6344. const struct ggml_tensor * src1,
  6345. struct ggml_tensor * dst) {
  6346. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6347. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6348. // view src0 and dst with these strides and data offset inbytes during acc
  6349. // nb0 is implicitly element_size because src0 and dst are contiguous
  6350. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6351. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6352. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6353. size_t offset = ((int32_t *) dst->op_params)[3];
  6354. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6355. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6356. // memcpy needs to be synchronized across threads to avoid race conditions.
  6357. // => do it in INIT phase
  6358. memcpy(
  6359. ((char *) dst->data),
  6360. ((char *) src0->data),
  6361. ggml_nbytes(dst));
  6362. }
  6363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6364. return;
  6365. }
  6366. const int ith = params->ith;
  6367. const int nth = params->nth;
  6368. const int nr = ggml_nrows(src1);
  6369. const int nc = src1->ne[0];
  6370. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6371. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6372. // src0 and dst as viewed during acc
  6373. const size_t nb0 = ggml_element_size(src0);
  6374. const size_t nb00 = nb0;
  6375. const size_t nb01 = nb1;
  6376. const size_t nb02 = nb2;
  6377. const size_t nb03 = nb3;
  6378. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6379. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6380. GGML_ASSERT(nb10 == sizeof(float));
  6381. // rows per thread
  6382. const int dr = (nr + nth - 1)/nth;
  6383. // row range for this thread
  6384. const int ir0 = dr*ith;
  6385. const int ir1 = MIN(ir0 + dr, nr);
  6386. for (int ir = ir0; ir < ir1; ++ir) {
  6387. // src0 and dst are viewed with shape of src1 and offset
  6388. // => same indices
  6389. const int i3 = ir/(ne12*ne11);
  6390. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6391. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6392. #ifdef GGML_USE_ACCELERATE
  6393. vDSP_vadd(
  6394. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6396. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6397. #else
  6398. ggml_vec_add_f32(nc,
  6399. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6400. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6401. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6402. #endif
  6403. }
  6404. }
  6405. static void ggml_compute_forward_acc(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. const struct ggml_tensor * src1,
  6409. struct ggml_tensor * dst) {
  6410. switch (src0->type) {
  6411. case GGML_TYPE_F32:
  6412. {
  6413. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6414. } break;
  6415. case GGML_TYPE_F16:
  6416. case GGML_TYPE_Q4_0:
  6417. case GGML_TYPE_Q4_1:
  6418. case GGML_TYPE_Q5_0:
  6419. case GGML_TYPE_Q5_1:
  6420. case GGML_TYPE_Q8_0:
  6421. case GGML_TYPE_Q8_1:
  6422. case GGML_TYPE_Q2_K:
  6423. case GGML_TYPE_Q3_K:
  6424. case GGML_TYPE_Q4_K:
  6425. case GGML_TYPE_Q5_K:
  6426. case GGML_TYPE_Q6_K:
  6427. case GGML_TYPE_IQ2_XXS:
  6428. case GGML_TYPE_IQ2_XS:
  6429. default:
  6430. {
  6431. GGML_ASSERT(false);
  6432. } break;
  6433. }
  6434. }
  6435. // ggml_compute_forward_sub
  6436. static void ggml_compute_forward_sub_f32(
  6437. const struct ggml_compute_params * params,
  6438. const struct ggml_tensor * src0,
  6439. const struct ggml_tensor * src1,
  6440. struct ggml_tensor * dst) {
  6441. assert(params->ith == 0);
  6442. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6444. return;
  6445. }
  6446. const int nr = ggml_nrows(src0);
  6447. GGML_TENSOR_BINARY_OP_LOCALS
  6448. GGML_ASSERT( nb0 == sizeof(float));
  6449. GGML_ASSERT(nb00 == sizeof(float));
  6450. if (nb10 == sizeof(float)) {
  6451. for (int ir = 0; ir < nr; ++ir) {
  6452. // src0, src1 and dst are same shape => same indices
  6453. const int i3 = ir/(ne2*ne1);
  6454. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6455. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6456. #ifdef GGML_USE_ACCELERATE
  6457. vDSP_vsub(
  6458. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6459. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6460. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6461. ne0);
  6462. #else
  6463. ggml_vec_sub_f32(ne0,
  6464. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6465. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6466. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6467. #endif
  6468. // }
  6469. // }
  6470. }
  6471. } else {
  6472. // src1 is not contiguous
  6473. for (int ir = 0; ir < nr; ++ir) {
  6474. // src0, src1 and dst are same shape => same indices
  6475. const int i3 = ir/(ne2*ne1);
  6476. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6477. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6478. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6479. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6480. for (int i0 = 0; i0 < ne0; i0++) {
  6481. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6482. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6483. }
  6484. }
  6485. }
  6486. }
  6487. static void ggml_compute_forward_sub(
  6488. const struct ggml_compute_params * params,
  6489. const struct ggml_tensor * src0,
  6490. const struct ggml_tensor * src1,
  6491. struct ggml_tensor * dst) {
  6492. switch (src0->type) {
  6493. case GGML_TYPE_F32:
  6494. {
  6495. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6496. } break;
  6497. default:
  6498. {
  6499. GGML_ASSERT(false);
  6500. } break;
  6501. }
  6502. }
  6503. // ggml_compute_forward_mul
  6504. static void ggml_compute_forward_mul_f32(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. const struct ggml_tensor * src1,
  6508. struct ggml_tensor * dst) {
  6509. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6511. return;
  6512. }
  6513. const int ith = params->ith;
  6514. const int nth = params->nth;
  6515. #ifdef GGML_USE_CLBLAST
  6516. if (src1->backend == GGML_BACKEND_GPU) {
  6517. // TODO: OpenCL kernel support full broadcast
  6518. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6519. if (ith == 0) {
  6520. ggml_cl_mul(src0, src1, dst);
  6521. }
  6522. return;
  6523. }
  6524. #endif
  6525. const int64_t nr = ggml_nrows(src0);
  6526. GGML_TENSOR_BINARY_OP_LOCALS
  6527. GGML_ASSERT( nb0 == sizeof(float));
  6528. GGML_ASSERT(nb00 == sizeof(float));
  6529. if (nb10 == sizeof(float)) {
  6530. for (int64_t ir = ith; ir < nr; ir += nth) {
  6531. // src0 and dst are same shape => same indices
  6532. const int64_t i03 = ir/(ne02*ne01);
  6533. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6534. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6535. const int64_t i13 = i03 % ne13;
  6536. const int64_t i12 = i02 % ne12;
  6537. const int64_t i11 = i01 % ne11;
  6538. const int64_t nr0 = ne00 / ne10;
  6539. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6540. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6541. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6542. for (int64_t r = 0 ; r < nr0; ++r) {
  6543. #ifdef GGML_USE_ACCELERATE
  6544. UNUSED(ggml_vec_mul_f32);
  6545. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6546. #else
  6547. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6548. #endif
  6549. }
  6550. }
  6551. } else {
  6552. // src1 is not contiguous
  6553. for (int64_t ir = ith; ir < nr; ir += nth) {
  6554. // src0 and dst are same shape => same indices
  6555. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6556. const int64_t i03 = ir/(ne02*ne01);
  6557. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6558. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6559. const int64_t i13 = i03 % ne13;
  6560. const int64_t i12 = i02 % ne12;
  6561. const int64_t i11 = i01 % ne11;
  6562. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6563. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6564. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6565. const int64_t i10 = i0 % ne10;
  6566. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6567. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6568. }
  6569. }
  6570. }
  6571. }
  6572. static void ggml_compute_forward_mul(
  6573. const struct ggml_compute_params * params,
  6574. const struct ggml_tensor * src0,
  6575. const struct ggml_tensor * src1,
  6576. struct ggml_tensor * dst) {
  6577. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6578. switch (src0->type) {
  6579. case GGML_TYPE_F32:
  6580. {
  6581. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6582. } break;
  6583. default:
  6584. {
  6585. GGML_ASSERT(false);
  6586. } break;
  6587. }
  6588. }
  6589. // ggml_compute_forward_div
  6590. static void ggml_compute_forward_div_f32(
  6591. const struct ggml_compute_params * params,
  6592. const struct ggml_tensor * src0,
  6593. const struct ggml_tensor * src1,
  6594. struct ggml_tensor * dst) {
  6595. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6597. return;
  6598. }
  6599. const int ith = params->ith;
  6600. const int nth = params->nth;
  6601. const int64_t nr = ggml_nrows(src0);
  6602. GGML_TENSOR_BINARY_OP_LOCALS
  6603. GGML_ASSERT( nb0 == sizeof(float));
  6604. GGML_ASSERT(nb00 == sizeof(float));
  6605. if (nb10 == sizeof(float)) {
  6606. for (int64_t ir = ith; ir < nr; ir += nth) {
  6607. // src0 and dst are same shape => same indices
  6608. const int64_t i03 = ir/(ne02*ne01);
  6609. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6610. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6611. const int64_t i13 = i03 % ne13;
  6612. const int64_t i12 = i02 % ne12;
  6613. const int64_t i11 = i01 % ne11;
  6614. const int64_t nr0 = ne00 / ne10;
  6615. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6616. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6617. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6618. for (int64_t r = 0; r < nr0; ++r) {
  6619. #ifdef GGML_USE_ACCELERATE
  6620. UNUSED(ggml_vec_div_f32);
  6621. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6622. #else
  6623. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6624. #endif
  6625. }
  6626. }
  6627. } else {
  6628. // src1 is not contiguous
  6629. for (int64_t ir = ith; ir < nr; ir += nth) {
  6630. // src0 and dst are same shape => same indices
  6631. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6632. const int64_t i03 = ir/(ne02*ne01);
  6633. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6634. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6635. const int64_t i13 = i03 % ne13;
  6636. const int64_t i12 = i02 % ne12;
  6637. const int64_t i11 = i01 % ne11;
  6638. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6639. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6640. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6641. const int64_t i10 = i0 % ne10;
  6642. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6643. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6644. }
  6645. }
  6646. }
  6647. }
  6648. static void ggml_compute_forward_div(
  6649. const struct ggml_compute_params * params,
  6650. const struct ggml_tensor * src0,
  6651. const struct ggml_tensor * src1,
  6652. struct ggml_tensor * dst) {
  6653. switch (src0->type) {
  6654. case GGML_TYPE_F32:
  6655. {
  6656. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6657. } break;
  6658. default:
  6659. {
  6660. GGML_ASSERT(false);
  6661. } break;
  6662. }
  6663. }
  6664. // ggml_compute_forward_sqr
  6665. static void ggml_compute_forward_sqr_f32(
  6666. const struct ggml_compute_params * params,
  6667. const struct ggml_tensor * src0,
  6668. struct ggml_tensor * dst) {
  6669. assert(params->ith == 0);
  6670. assert(ggml_are_same_shape(src0, dst));
  6671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6672. return;
  6673. }
  6674. const int n = ggml_nrows(src0);
  6675. const int nc = src0->ne[0];
  6676. assert( dst->nb[0] == sizeof(float));
  6677. assert(src0->nb[0] == sizeof(float));
  6678. for (int i = 0; i < n; i++) {
  6679. ggml_vec_sqr_f32(nc,
  6680. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6681. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6682. }
  6683. }
  6684. static void ggml_compute_forward_sqr(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. struct ggml_tensor * dst) {
  6688. switch (src0->type) {
  6689. case GGML_TYPE_F32:
  6690. {
  6691. ggml_compute_forward_sqr_f32(params, src0, dst);
  6692. } break;
  6693. default:
  6694. {
  6695. GGML_ASSERT(false);
  6696. } break;
  6697. }
  6698. }
  6699. // ggml_compute_forward_sqrt
  6700. static void ggml_compute_forward_sqrt_f32(
  6701. const struct ggml_compute_params * params,
  6702. const struct ggml_tensor * src0,
  6703. struct ggml_tensor * dst) {
  6704. assert(params->ith == 0);
  6705. assert(ggml_are_same_shape(src0, dst));
  6706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6707. return;
  6708. }
  6709. const int n = ggml_nrows(src0);
  6710. const int nc = src0->ne[0];
  6711. assert( dst->nb[0] == sizeof(float));
  6712. assert(src0->nb[0] == sizeof(float));
  6713. for (int i = 0; i < n; i++) {
  6714. ggml_vec_sqrt_f32(nc,
  6715. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6716. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6717. }
  6718. }
  6719. static void ggml_compute_forward_sqrt(
  6720. const struct ggml_compute_params * params,
  6721. const struct ggml_tensor * src0,
  6722. struct ggml_tensor * dst) {
  6723. switch (src0->type) {
  6724. case GGML_TYPE_F32:
  6725. {
  6726. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6727. } break;
  6728. default:
  6729. {
  6730. GGML_ASSERT(false);
  6731. } break;
  6732. }
  6733. }
  6734. // ggml_compute_forward_log
  6735. static void ggml_compute_forward_log_f32(
  6736. const struct ggml_compute_params * params,
  6737. const struct ggml_tensor * src0,
  6738. struct ggml_tensor * dst) {
  6739. GGML_ASSERT(params->ith == 0);
  6740. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6742. return;
  6743. }
  6744. const int n = ggml_nrows(src0);
  6745. const int nc = src0->ne[0];
  6746. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6747. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6748. for (int i = 0; i < n; i++) {
  6749. ggml_vec_log_f32(nc,
  6750. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6751. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6752. }
  6753. }
  6754. static void ggml_compute_forward_log(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. struct ggml_tensor * dst) {
  6758. switch (src0->type) {
  6759. case GGML_TYPE_F32:
  6760. {
  6761. ggml_compute_forward_log_f32(params, src0, dst);
  6762. } break;
  6763. default:
  6764. {
  6765. GGML_ASSERT(false);
  6766. } break;
  6767. }
  6768. }
  6769. // ggml_compute_forward_sum
  6770. static void ggml_compute_forward_sum_f32(
  6771. const struct ggml_compute_params * params,
  6772. const struct ggml_tensor * src0,
  6773. struct ggml_tensor * dst) {
  6774. assert(params->ith == 0);
  6775. assert(ggml_is_scalar(dst));
  6776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6777. return;
  6778. }
  6779. assert(ggml_is_scalar(dst));
  6780. assert(src0->nb[0] == sizeof(float));
  6781. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6782. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6783. ggml_float sum = 0;
  6784. ggml_float row_sum = 0;
  6785. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6786. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6787. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6788. ggml_vec_sum_f32_ggf(ne00,
  6789. &row_sum,
  6790. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6791. sum += row_sum;
  6792. }
  6793. }
  6794. }
  6795. ((float *) dst->data)[0] = sum;
  6796. }
  6797. static void ggml_compute_forward_sum_f16(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. struct ggml_tensor * dst) {
  6801. assert(params->ith == 0);
  6802. assert(ggml_is_scalar(dst));
  6803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6804. return;
  6805. }
  6806. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6807. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6808. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6809. float sum = 0;
  6810. float row_sum = 0;
  6811. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6812. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6813. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6814. ggml_vec_sum_f16_ggf(ne00,
  6815. &row_sum,
  6816. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6817. sum += row_sum;
  6818. }
  6819. }
  6820. }
  6821. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6822. }
  6823. static void ggml_compute_forward_sum(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. struct ggml_tensor * dst) {
  6827. switch (src0->type) {
  6828. case GGML_TYPE_F32:
  6829. {
  6830. ggml_compute_forward_sum_f32(params, src0, dst);
  6831. } break;
  6832. case GGML_TYPE_F16:
  6833. {
  6834. ggml_compute_forward_sum_f16(params, src0, dst);
  6835. } break;
  6836. default:
  6837. {
  6838. GGML_ASSERT(false);
  6839. } break;
  6840. }
  6841. }
  6842. // ggml_compute_forward_sum_rows
  6843. static void ggml_compute_forward_sum_rows_f32(
  6844. const struct ggml_compute_params * params,
  6845. const struct ggml_tensor * src0,
  6846. struct ggml_tensor * dst) {
  6847. GGML_ASSERT(params->ith == 0);
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6852. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6853. GGML_TENSOR_UNARY_OP_LOCALS
  6854. GGML_ASSERT(ne0 == 1);
  6855. GGML_ASSERT(ne1 == ne01);
  6856. GGML_ASSERT(ne2 == ne02);
  6857. GGML_ASSERT(ne3 == ne03);
  6858. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6859. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6860. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6861. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6862. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6863. float row_sum = 0;
  6864. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6865. dst_row[0] = row_sum;
  6866. }
  6867. }
  6868. }
  6869. }
  6870. static void ggml_compute_forward_sum_rows(
  6871. const struct ggml_compute_params * params,
  6872. const struct ggml_tensor * src0,
  6873. struct ggml_tensor * dst) {
  6874. switch (src0->type) {
  6875. case GGML_TYPE_F32:
  6876. {
  6877. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6878. } break;
  6879. default:
  6880. {
  6881. GGML_ASSERT(false);
  6882. } break;
  6883. }
  6884. }
  6885. // ggml_compute_forward_mean
  6886. static void ggml_compute_forward_mean_f32(
  6887. const struct ggml_compute_params * params,
  6888. const struct ggml_tensor * src0,
  6889. struct ggml_tensor * dst) {
  6890. assert(params->ith == 0);
  6891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6892. return;
  6893. }
  6894. assert(src0->nb[0] == sizeof(float));
  6895. GGML_TENSOR_UNARY_OP_LOCALS
  6896. assert(ne0 == 1);
  6897. assert(ne1 == ne01);
  6898. assert(ne2 == ne02);
  6899. assert(ne3 == ne03);
  6900. UNUSED(ne0);
  6901. UNUSED(ne1);
  6902. UNUSED(ne2);
  6903. UNUSED(ne3);
  6904. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6905. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6906. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6907. ggml_vec_sum_f32(ne00,
  6908. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6909. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6910. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6911. }
  6912. }
  6913. }
  6914. }
  6915. static void ggml_compute_forward_mean(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. switch (src0->type) {
  6920. case GGML_TYPE_F32:
  6921. {
  6922. ggml_compute_forward_mean_f32(params, src0, dst);
  6923. } break;
  6924. default:
  6925. {
  6926. GGML_ASSERT(false);
  6927. } break;
  6928. }
  6929. }
  6930. // ggml_compute_forward_argmax
  6931. static void ggml_compute_forward_argmax_f32(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. assert(params->ith == 0);
  6936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6937. return;
  6938. }
  6939. assert(src0->nb[0] == sizeof(float));
  6940. assert(dst->nb[0] == sizeof(float));
  6941. const int64_t ne00 = src0->ne[0];
  6942. const int64_t ne01 = src0->ne[1];
  6943. const size_t nb01 = src0->nb[1];
  6944. const size_t nb0 = dst->nb[0];
  6945. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6946. float * src = (float *) ((char *) src0->data + i1*nb01);
  6947. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6948. int v = 0;
  6949. ggml_vec_argmax_f32(ne00, &v, src);
  6950. dst_[0] = v;
  6951. }
  6952. }
  6953. static void ggml_compute_forward_argmax(
  6954. const struct ggml_compute_params * params,
  6955. const struct ggml_tensor * src0,
  6956. struct ggml_tensor * dst) {
  6957. switch (src0->type) {
  6958. case GGML_TYPE_F32:
  6959. {
  6960. ggml_compute_forward_argmax_f32(params, src0, dst);
  6961. } break;
  6962. default:
  6963. {
  6964. GGML_ASSERT(false);
  6965. } break;
  6966. }
  6967. }
  6968. // ggml_compute_forward_repeat
  6969. static void ggml_compute_forward_repeat_f32(
  6970. const struct ggml_compute_params * params,
  6971. const struct ggml_tensor * src0,
  6972. struct ggml_tensor * dst) {
  6973. GGML_ASSERT(params->ith == 0);
  6974. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6976. return;
  6977. }
  6978. GGML_TENSOR_UNARY_OP_LOCALS
  6979. // guaranteed to be an integer due to the check in ggml_can_repeat
  6980. const int nr0 = (int)(ne0/ne00);
  6981. const int nr1 = (int)(ne1/ne01);
  6982. const int nr2 = (int)(ne2/ne02);
  6983. const int nr3 = (int)(ne3/ne03);
  6984. // TODO: support for transposed / permuted tensors
  6985. GGML_ASSERT(nb0 == sizeof(float));
  6986. GGML_ASSERT(nb00 == sizeof(float));
  6987. // TODO: maybe this is not optimal?
  6988. for (int i3 = 0; i3 < nr3; i3++) {
  6989. for (int k3 = 0; k3 < ne03; k3++) {
  6990. for (int i2 = 0; i2 < nr2; i2++) {
  6991. for (int k2 = 0; k2 < ne02; k2++) {
  6992. for (int i1 = 0; i1 < nr1; i1++) {
  6993. for (int k1 = 0; k1 < ne01; k1++) {
  6994. for (int i0 = 0; i0 < nr0; i0++) {
  6995. ggml_vec_cpy_f32(ne00,
  6996. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6997. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6998. }
  6999. }
  7000. }
  7001. }
  7002. }
  7003. }
  7004. }
  7005. }
  7006. static void ggml_compute_forward_repeat_f16(
  7007. const struct ggml_compute_params * params,
  7008. const struct ggml_tensor * src0,
  7009. struct ggml_tensor * dst) {
  7010. GGML_ASSERT(params->ith == 0);
  7011. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7013. return;
  7014. }
  7015. GGML_TENSOR_UNARY_OP_LOCALS
  7016. // guaranteed to be an integer due to the check in ggml_can_repeat
  7017. const int nr0 = (int)(ne0/ne00);
  7018. const int nr1 = (int)(ne1/ne01);
  7019. const int nr2 = (int)(ne2/ne02);
  7020. const int nr3 = (int)(ne3/ne03);
  7021. // TODO: support for transposed / permuted tensors
  7022. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7023. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7024. // TODO: maybe this is not optimal?
  7025. for (int i3 = 0; i3 < nr3; i3++) {
  7026. for (int k3 = 0; k3 < ne03; k3++) {
  7027. for (int i2 = 0; i2 < nr2; i2++) {
  7028. for (int k2 = 0; k2 < ne02; k2++) {
  7029. for (int i1 = 0; i1 < nr1; i1++) {
  7030. for (int k1 = 0; k1 < ne01; k1++) {
  7031. for (int i0 = 0; i0 < nr0; i0++) {
  7032. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7033. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7034. // ggml_vec_cpy_f16(ne00, y, x)
  7035. for (int i = 0; i < ne00; ++i) {
  7036. y[i] = x[i];
  7037. }
  7038. }
  7039. }
  7040. }
  7041. }
  7042. }
  7043. }
  7044. }
  7045. }
  7046. static void ggml_compute_forward_repeat(
  7047. const struct ggml_compute_params * params,
  7048. const struct ggml_tensor * src0,
  7049. struct ggml_tensor * dst) {
  7050. switch (src0->type) {
  7051. case GGML_TYPE_F16:
  7052. case GGML_TYPE_I16:
  7053. {
  7054. ggml_compute_forward_repeat_f16(params, src0, dst);
  7055. } break;
  7056. case GGML_TYPE_F32:
  7057. case GGML_TYPE_I32:
  7058. {
  7059. ggml_compute_forward_repeat_f32(params, src0, dst);
  7060. } break;
  7061. default:
  7062. {
  7063. GGML_ASSERT(false);
  7064. } break;
  7065. }
  7066. }
  7067. // ggml_compute_forward_repeat_back
  7068. static void ggml_compute_forward_repeat_back_f32(
  7069. const struct ggml_compute_params * params,
  7070. const struct ggml_tensor * src0,
  7071. struct ggml_tensor * dst) {
  7072. GGML_ASSERT(params->ith == 0);
  7073. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7075. return;
  7076. }
  7077. GGML_TENSOR_UNARY_OP_LOCALS
  7078. // guaranteed to be an integer due to the check in ggml_can_repeat
  7079. const int nr0 = (int)(ne00/ne0);
  7080. const int nr1 = (int)(ne01/ne1);
  7081. const int nr2 = (int)(ne02/ne2);
  7082. const int nr3 = (int)(ne03/ne3);
  7083. // TODO: support for transposed / permuted tensors
  7084. GGML_ASSERT(nb0 == sizeof(float));
  7085. GGML_ASSERT(nb00 == sizeof(float));
  7086. if (ggml_is_contiguous(dst)) {
  7087. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7088. } else {
  7089. for (int k3 = 0; k3 < ne3; k3++) {
  7090. for (int k2 = 0; k2 < ne2; k2++) {
  7091. for (int k1 = 0; k1 < ne1; k1++) {
  7092. ggml_vec_set_f32(ne0,
  7093. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7094. 0);
  7095. }
  7096. }
  7097. }
  7098. }
  7099. // TODO: maybe this is not optimal?
  7100. for (int i3 = 0; i3 < nr3; i3++) {
  7101. for (int k3 = 0; k3 < ne3; k3++) {
  7102. for (int i2 = 0; i2 < nr2; i2++) {
  7103. for (int k2 = 0; k2 < ne2; k2++) {
  7104. for (int i1 = 0; i1 < nr1; i1++) {
  7105. for (int k1 = 0; k1 < ne1; k1++) {
  7106. for (int i0 = 0; i0 < nr0; i0++) {
  7107. ggml_vec_acc_f32(ne0,
  7108. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7109. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7110. }
  7111. }
  7112. }
  7113. }
  7114. }
  7115. }
  7116. }
  7117. }
  7118. static void ggml_compute_forward_repeat_back(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. switch (src0->type) {
  7123. case GGML_TYPE_F32:
  7124. {
  7125. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7126. } break;
  7127. default:
  7128. {
  7129. GGML_ASSERT(false);
  7130. } break;
  7131. }
  7132. }
  7133. // ggml_compute_forward_concat
  7134. static void ggml_compute_forward_concat_f32(
  7135. const struct ggml_compute_params * params,
  7136. const struct ggml_tensor * src0,
  7137. const struct ggml_tensor * src1,
  7138. struct ggml_tensor * dst) {
  7139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7140. return;
  7141. }
  7142. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7143. const int ith = params->ith;
  7144. const int nth = params->nth;
  7145. GGML_TENSOR_BINARY_OP_LOCALS
  7146. // TODO: support for transposed / permuted tensors
  7147. GGML_ASSERT(nb0 == sizeof(float));
  7148. GGML_ASSERT(nb00 == sizeof(float));
  7149. GGML_ASSERT(nb10 == sizeof(float));
  7150. for (int i3 = 0; i3 < ne3; i3++) {
  7151. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7152. if (i2 < ne02) { // src0
  7153. for (int i1 = 0; i1 < ne1; i1++) {
  7154. for (int i0 = 0; i0 < ne0; i0++) {
  7155. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7156. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7157. *y = *x;
  7158. }
  7159. }
  7160. } // src1
  7161. else {
  7162. for (int i1 = 0; i1 < ne1; i1++) {
  7163. for (int i0 = 0; i0 < ne0; i0++) {
  7164. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7165. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7166. *y = *x;
  7167. }
  7168. }
  7169. }
  7170. }
  7171. }
  7172. }
  7173. static void ggml_compute_forward_concat(
  7174. const struct ggml_compute_params* params,
  7175. const struct ggml_tensor* src0,
  7176. const struct ggml_tensor* src1,
  7177. struct ggml_tensor* dst) {
  7178. switch (src0->type) {
  7179. case GGML_TYPE_F32:
  7180. case GGML_TYPE_I32:
  7181. {
  7182. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7183. } break;
  7184. default:
  7185. {
  7186. GGML_ASSERT(false);
  7187. } break;
  7188. }
  7189. }
  7190. // ggml_compute_forward_abs
  7191. static void ggml_compute_forward_abs_f32(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. struct ggml_tensor * dst) {
  7195. assert(params->ith == 0);
  7196. assert(ggml_are_same_shape(src0, dst));
  7197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7198. return;
  7199. }
  7200. const int n = ggml_nrows(src0);
  7201. const int nc = src0->ne[0];
  7202. assert(dst->nb[0] == sizeof(float));
  7203. assert(src0->nb[0] == sizeof(float));
  7204. for (int i = 0; i < n; i++) {
  7205. ggml_vec_abs_f32(nc,
  7206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7208. }
  7209. }
  7210. static void ggml_compute_forward_abs(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. struct ggml_tensor * dst) {
  7214. switch (src0->type) {
  7215. case GGML_TYPE_F32:
  7216. {
  7217. ggml_compute_forward_abs_f32(params, src0, dst);
  7218. } break;
  7219. default:
  7220. {
  7221. GGML_ASSERT(false);
  7222. } break;
  7223. }
  7224. }
  7225. // ggml_compute_forward_sgn
  7226. static void ggml_compute_forward_sgn_f32(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. struct ggml_tensor * dst) {
  7230. assert(params->ith == 0);
  7231. assert(ggml_are_same_shape(src0, dst));
  7232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7233. return;
  7234. }
  7235. const int n = ggml_nrows(src0);
  7236. const int nc = src0->ne[0];
  7237. assert(dst->nb[0] == sizeof(float));
  7238. assert(src0->nb[0] == sizeof(float));
  7239. for (int i = 0; i < n; i++) {
  7240. ggml_vec_sgn_f32(nc,
  7241. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7242. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7243. }
  7244. }
  7245. static void ggml_compute_forward_sgn(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. struct ggml_tensor * dst) {
  7249. switch (src0->type) {
  7250. case GGML_TYPE_F32:
  7251. {
  7252. ggml_compute_forward_sgn_f32(params, src0, dst);
  7253. } break;
  7254. default:
  7255. {
  7256. GGML_ASSERT(false);
  7257. } break;
  7258. }
  7259. }
  7260. // ggml_compute_forward_neg
  7261. static void ggml_compute_forward_neg_f32(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. struct ggml_tensor * dst) {
  7265. assert(params->ith == 0);
  7266. assert(ggml_are_same_shape(src0, dst));
  7267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7268. return;
  7269. }
  7270. const int n = ggml_nrows(src0);
  7271. const int nc = src0->ne[0];
  7272. assert(dst->nb[0] == sizeof(float));
  7273. assert(src0->nb[0] == sizeof(float));
  7274. for (int i = 0; i < n; i++) {
  7275. ggml_vec_neg_f32(nc,
  7276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7278. }
  7279. }
  7280. static void ggml_compute_forward_neg(
  7281. const struct ggml_compute_params * params,
  7282. const struct ggml_tensor * src0,
  7283. struct ggml_tensor * dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_neg_f32(params, src0, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_step
  7296. static void ggml_compute_forward_step_f32(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. assert(params->ith == 0);
  7301. assert(ggml_are_same_shape(src0, dst));
  7302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7303. return;
  7304. }
  7305. const int n = ggml_nrows(src0);
  7306. const int nc = src0->ne[0];
  7307. assert(dst->nb[0] == sizeof(float));
  7308. assert(src0->nb[0] == sizeof(float));
  7309. for (int i = 0; i < n; i++) {
  7310. ggml_vec_step_f32(nc,
  7311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7313. }
  7314. }
  7315. static void ggml_compute_forward_step(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. struct ggml_tensor * dst) {
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_step_f32(params, src0, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_tanh
  7331. static void ggml_compute_forward_tanh_f32(
  7332. const struct ggml_compute_params * params,
  7333. const struct ggml_tensor * src0,
  7334. struct ggml_tensor * dst) {
  7335. assert(params->ith == 0);
  7336. assert(ggml_are_same_shape(src0, dst));
  7337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7338. return;
  7339. }
  7340. const int n = ggml_nrows(src0);
  7341. const int nc = src0->ne[0];
  7342. assert(dst->nb[0] == sizeof(float));
  7343. assert(src0->nb[0] == sizeof(float));
  7344. for (int i = 0; i < n; i++) {
  7345. ggml_vec_tanh_f32(nc,
  7346. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7347. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7348. }
  7349. }
  7350. static void ggml_compute_forward_tanh(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_tanh_f32(params, src0, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_elu
  7366. static void ggml_compute_forward_elu_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. struct ggml_tensor * dst) {
  7370. assert(params->ith == 0);
  7371. assert(ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. const int n = ggml_nrows(src0);
  7376. const int nc = src0->ne[0];
  7377. assert(dst->nb[0] == sizeof(float));
  7378. assert(src0->nb[0] == sizeof(float));
  7379. for (int i = 0; i < n; i++) {
  7380. ggml_vec_elu_f32(nc,
  7381. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7382. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7383. }
  7384. }
  7385. static void ggml_compute_forward_elu(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. switch (src0->type) {
  7390. case GGML_TYPE_F32:
  7391. {
  7392. ggml_compute_forward_elu_f32(params, src0, dst);
  7393. } break;
  7394. default:
  7395. {
  7396. GGML_ASSERT(false);
  7397. } break;
  7398. }
  7399. }
  7400. // ggml_compute_forward_relu
  7401. static void ggml_compute_forward_relu_f32(
  7402. const struct ggml_compute_params * params,
  7403. const struct ggml_tensor * src0,
  7404. struct ggml_tensor * dst) {
  7405. assert(params->ith == 0);
  7406. assert(ggml_are_same_shape(src0, dst));
  7407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7408. return;
  7409. }
  7410. const int n = ggml_nrows(src0);
  7411. const int nc = src0->ne[0];
  7412. assert(dst->nb[0] == sizeof(float));
  7413. assert(src0->nb[0] == sizeof(float));
  7414. for (int i = 0; i < n; i++) {
  7415. ggml_vec_relu_f32(nc,
  7416. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7417. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7418. }
  7419. }
  7420. static void ggml_compute_forward_relu(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. struct ggml_tensor * dst) {
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_relu_f32(params, src0, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_gelu
  7436. static void ggml_compute_forward_gelu_f32(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. struct ggml_tensor * dst) {
  7440. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7441. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7442. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7444. return;
  7445. }
  7446. const int ith = params->ith;
  7447. const int nth = params->nth;
  7448. const int nc = src0->ne[0];
  7449. const int nr = ggml_nrows(src0);
  7450. // rows per thread
  7451. const int dr = (nr + nth - 1)/nth;
  7452. // row range for this thread
  7453. const int ir0 = dr*ith;
  7454. const int ir1 = MIN(ir0 + dr, nr);
  7455. for (int i1 = ir0; i1 < ir1; i1++) {
  7456. ggml_vec_gelu_f32(nc,
  7457. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7458. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7459. #ifndef NDEBUG
  7460. for (int k = 0; k < nc; k++) {
  7461. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7462. UNUSED(x);
  7463. assert(!isnan(x));
  7464. assert(!isinf(x));
  7465. }
  7466. #endif
  7467. }
  7468. }
  7469. static void ggml_compute_forward_gelu(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. struct ggml_tensor * dst) {
  7473. switch (src0->type) {
  7474. case GGML_TYPE_F32:
  7475. {
  7476. ggml_compute_forward_gelu_f32(params, src0, dst);
  7477. } break;
  7478. default:
  7479. {
  7480. GGML_ASSERT(false);
  7481. } break;
  7482. }
  7483. }
  7484. // ggml_compute_forward_gelu_quick
  7485. static void ggml_compute_forward_gelu_quick_f32(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. struct ggml_tensor * dst) {
  7489. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7490. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7491. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7493. return;
  7494. }
  7495. const int ith = params->ith;
  7496. const int nth = params->nth;
  7497. const int nc = src0->ne[0];
  7498. const int nr = ggml_nrows(src0);
  7499. // rows per thread
  7500. const int dr = (nr + nth - 1)/nth;
  7501. // row range for this thread
  7502. const int ir0 = dr*ith;
  7503. const int ir1 = MIN(ir0 + dr, nr);
  7504. for (int i1 = ir0; i1 < ir1; i1++) {
  7505. ggml_vec_gelu_quick_f32(nc,
  7506. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7507. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7508. #ifndef NDEBUG
  7509. for (int k = 0; k < nc; k++) {
  7510. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7511. UNUSED(x);
  7512. assert(!isnan(x));
  7513. assert(!isinf(x));
  7514. }
  7515. #endif
  7516. }
  7517. }
  7518. static void ggml_compute_forward_gelu_quick(
  7519. const struct ggml_compute_params * params,
  7520. const struct ggml_tensor * src0,
  7521. struct ggml_tensor * dst) {
  7522. switch (src0->type) {
  7523. case GGML_TYPE_F32:
  7524. {
  7525. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7526. } break;
  7527. default:
  7528. {
  7529. GGML_ASSERT(false);
  7530. } break;
  7531. }
  7532. }
  7533. // ggml_compute_forward_silu
  7534. static void ggml_compute_forward_silu_f32(
  7535. const struct ggml_compute_params * params,
  7536. const struct ggml_tensor * src0,
  7537. struct ggml_tensor * dst) {
  7538. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7539. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7540. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7542. return;
  7543. }
  7544. const int ith = params->ith;
  7545. const int nth = params->nth;
  7546. const int nc = src0->ne[0];
  7547. const int nr = ggml_nrows(src0);
  7548. // rows per thread
  7549. const int dr = (nr + nth - 1)/nth;
  7550. // row range for this thread
  7551. const int ir0 = dr*ith;
  7552. const int ir1 = MIN(ir0 + dr, nr);
  7553. for (int i1 = ir0; i1 < ir1; i1++) {
  7554. ggml_vec_silu_f32(nc,
  7555. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7556. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7557. #ifndef NDEBUG
  7558. for (int k = 0; k < nc; k++) {
  7559. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7560. UNUSED(x);
  7561. assert(!isnan(x));
  7562. assert(!isinf(x));
  7563. }
  7564. #endif
  7565. }
  7566. }
  7567. static void ggml_compute_forward_silu(
  7568. const struct ggml_compute_params * params,
  7569. const struct ggml_tensor * src0,
  7570. struct ggml_tensor * dst) {
  7571. switch (src0->type) {
  7572. case GGML_TYPE_F32:
  7573. {
  7574. ggml_compute_forward_silu_f32(params, src0, dst);
  7575. } break;
  7576. default:
  7577. {
  7578. GGML_ASSERT(false);
  7579. } break;
  7580. }
  7581. }
  7582. // ggml_compute_forward_leaky_relu
  7583. static void ggml_compute_forward_leaky_relu_f32(
  7584. const struct ggml_compute_params * params,
  7585. const struct ggml_tensor * src0,
  7586. struct ggml_tensor * dst) {
  7587. assert(params->ith == 0);
  7588. assert(ggml_are_same_shape(src0, dst));
  7589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7590. return;
  7591. }
  7592. const int n = ggml_nrows(src0);
  7593. const int nc = src0->ne[0];
  7594. float negative_slope;
  7595. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7596. assert(dst->nb[0] == sizeof(float));
  7597. assert(src0->nb[0] == sizeof(float));
  7598. for (int i = 0; i < n; i++) {
  7599. ggml_vec_leaky_relu_f32(nc,
  7600. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7601. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7602. }
  7603. }
  7604. static void ggml_compute_forward_leaky_relu(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. struct ggml_tensor * dst) {
  7608. switch (src0->type) {
  7609. case GGML_TYPE_F32:
  7610. {
  7611. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7612. } break;
  7613. default:
  7614. {
  7615. GGML_ASSERT(false);
  7616. } break;
  7617. }
  7618. }
  7619. // ggml_compute_forward_silu_back
  7620. static void ggml_compute_forward_silu_back_f32(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. const struct ggml_tensor * grad,
  7624. struct ggml_tensor * dst) {
  7625. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7626. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7627. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7628. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7629. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7631. return;
  7632. }
  7633. const int ith = params->ith;
  7634. const int nth = params->nth;
  7635. const int nc = src0->ne[0];
  7636. const int nr = ggml_nrows(src0);
  7637. // rows per thread
  7638. const int dr = (nr + nth - 1)/nth;
  7639. // row range for this thread
  7640. const int ir0 = dr*ith;
  7641. const int ir1 = MIN(ir0 + dr, nr);
  7642. for (int i1 = ir0; i1 < ir1; i1++) {
  7643. ggml_vec_silu_backward_f32(nc,
  7644. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7645. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7646. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7647. #ifndef NDEBUG
  7648. for (int k = 0; k < nc; k++) {
  7649. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7650. UNUSED(x);
  7651. assert(!isnan(x));
  7652. assert(!isinf(x));
  7653. }
  7654. #endif
  7655. }
  7656. }
  7657. static void ggml_compute_forward_silu_back(
  7658. const struct ggml_compute_params * params,
  7659. const struct ggml_tensor * src0,
  7660. const struct ggml_tensor * grad,
  7661. struct ggml_tensor * dst) {
  7662. switch (src0->type) {
  7663. case GGML_TYPE_F32:
  7664. {
  7665. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7666. } break;
  7667. default:
  7668. {
  7669. GGML_ASSERT(false);
  7670. } break;
  7671. }
  7672. }
  7673. // ggml_compute_forward_norm
  7674. static void ggml_compute_forward_norm_f32(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. struct ggml_tensor * dst) {
  7678. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7680. return;
  7681. }
  7682. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7683. const int ith = params->ith;
  7684. const int nth = params->nth;
  7685. GGML_TENSOR_UNARY_OP_LOCALS
  7686. float eps;
  7687. memcpy(&eps, dst->op_params, sizeof(float));
  7688. GGML_ASSERT(eps > 0.0f);
  7689. // TODO: optimize
  7690. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7691. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7692. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7693. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7694. ggml_float sum = 0.0;
  7695. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7696. sum += (ggml_float)x[i00];
  7697. }
  7698. float mean = sum/ne00;
  7699. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7700. ggml_float sum2 = 0.0;
  7701. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7702. float v = x[i00] - mean;
  7703. y[i00] = v;
  7704. sum2 += (ggml_float)(v*v);
  7705. }
  7706. float variance = sum2/ne00;
  7707. const float scale = 1.0f/sqrtf(variance + eps);
  7708. ggml_vec_scale_f32(ne00, y, scale);
  7709. }
  7710. }
  7711. }
  7712. }
  7713. static void ggml_compute_forward_norm(
  7714. const struct ggml_compute_params * params,
  7715. const struct ggml_tensor * src0,
  7716. struct ggml_tensor * dst) {
  7717. switch (src0->type) {
  7718. case GGML_TYPE_F32:
  7719. {
  7720. ggml_compute_forward_norm_f32(params, src0, dst);
  7721. } break;
  7722. default:
  7723. {
  7724. GGML_ASSERT(false);
  7725. } break;
  7726. }
  7727. }
  7728. // ggml_compute_forward_group_rms_norm
  7729. static void ggml_compute_forward_rms_norm_f32(
  7730. const struct ggml_compute_params * params,
  7731. const struct ggml_tensor * src0,
  7732. struct ggml_tensor * dst) {
  7733. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7735. return;
  7736. }
  7737. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7738. const int ith = params->ith;
  7739. const int nth = params->nth;
  7740. GGML_TENSOR_UNARY_OP_LOCALS
  7741. float eps;
  7742. memcpy(&eps, dst->op_params, sizeof(float));
  7743. GGML_ASSERT(eps > 0.0f);
  7744. // TODO: optimize
  7745. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7747. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7748. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7749. ggml_float sum = 0.0;
  7750. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7751. sum += (ggml_float)(x[i00] * x[i00]);
  7752. }
  7753. const float mean = sum/ne00;
  7754. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7755. memcpy(y, x, ne00 * sizeof(float));
  7756. // for (int i00 = 0; i00 < ne00; i00++) {
  7757. // y[i00] = x[i00];
  7758. // }
  7759. const float scale = 1.0f/sqrtf(mean + eps);
  7760. ggml_vec_scale_f32(ne00, y, scale);
  7761. }
  7762. }
  7763. }
  7764. }
  7765. static void ggml_compute_forward_rms_norm(
  7766. const struct ggml_compute_params * params,
  7767. const struct ggml_tensor * src0,
  7768. struct ggml_tensor * dst) {
  7769. switch (src0->type) {
  7770. case GGML_TYPE_F32:
  7771. {
  7772. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7773. } break;
  7774. default:
  7775. {
  7776. GGML_ASSERT(false);
  7777. } break;
  7778. }
  7779. }
  7780. static void ggml_compute_forward_rms_norm_back_f32(
  7781. const struct ggml_compute_params * params,
  7782. const struct ggml_tensor * src0,
  7783. const struct ggml_tensor * src1,
  7784. struct ggml_tensor * dst) {
  7785. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7787. return;
  7788. }
  7789. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7790. const int ith = params->ith;
  7791. const int nth = params->nth;
  7792. GGML_TENSOR_BINARY_OP_LOCALS
  7793. float eps;
  7794. memcpy(&eps, dst->op_params, sizeof(float));
  7795. // TODO: optimize
  7796. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7797. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7798. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7799. // src1 is same shape as src0 => same indices
  7800. const int64_t i11 = i01;
  7801. const int64_t i12 = i02;
  7802. const int64_t i13 = i03;
  7803. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7804. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7805. ggml_float sum_xx = 0.0;
  7806. ggml_float sum_xdz = 0.0;
  7807. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7808. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7809. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7810. }
  7811. //const float mean = (float)(sum_xx)/ne00;
  7812. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7813. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7814. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7815. // we could cache rms from forward pass to improve performance.
  7816. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7817. //const float rms = sqrtf(mean_eps);
  7818. const float rrms = 1.0f / sqrtf(mean_eps);
  7819. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7820. {
  7821. // z = rms_norm(x)
  7822. //
  7823. // rms_norm(src0) =
  7824. // scale(
  7825. // src0,
  7826. // div(
  7827. // 1,
  7828. // sqrt(
  7829. // add(
  7830. // scale(
  7831. // sum(
  7832. // sqr(
  7833. // src0)),
  7834. // (1.0/N)),
  7835. // eps))));
  7836. // postorder:
  7837. // ## op args grad
  7838. // 00 param src0 grad[#00]
  7839. // 01 const 1
  7840. // 02 sqr (#00) grad[#02]
  7841. // 03 sum (#02) grad[#03]
  7842. // 04 const 1/N
  7843. // 05 scale (#03, #04) grad[#05]
  7844. // 06 const eps
  7845. // 07 add (#05, #06) grad[#07]
  7846. // 08 sqrt (#07) grad[#08]
  7847. // 09 div (#01,#08) grad[#09]
  7848. // 10 scale (#00,#09) grad[#10]
  7849. //
  7850. // backward pass, given grad[#10]
  7851. // #10: scale
  7852. // grad[#00] += scale(grad[#10],#09)
  7853. // grad[#09] += sum(mul(grad[#10],#00))
  7854. // #09: div
  7855. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7856. // #08: sqrt
  7857. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7858. // #07: add
  7859. // grad[#05] += grad[#07]
  7860. // #05: scale
  7861. // grad[#03] += scale(grad[#05],#04)
  7862. // #03: sum
  7863. // grad[#02] += repeat(grad[#03], #02)
  7864. // #02:
  7865. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7866. //
  7867. // substitute and simplify:
  7868. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7869. // grad[#02] = repeat(grad[#03], #02)
  7870. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7871. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7872. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7873. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7874. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7875. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7876. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7877. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7878. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7879. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7880. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7881. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7882. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7883. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7884. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7885. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7886. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7887. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7888. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7889. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7890. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7891. // a = b*c + d*e
  7892. // a = b*c*f/f + d*e*f/f
  7893. // a = (b*c*f + d*e*f)*(1/f)
  7894. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7895. // a = (b + d*e/c)*c
  7896. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7897. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7898. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7899. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7900. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7901. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7902. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7903. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7904. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7905. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7906. }
  7907. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7908. // post-order:
  7909. // dx := x
  7910. // dx := scale(dx,-mean_xdz/mean_eps)
  7911. // dx := add(dx, dz)
  7912. // dx := scale(dx, rrms)
  7913. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7914. ggml_vec_cpy_f32 (ne00, dx, x);
  7915. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7916. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7917. ggml_vec_acc_f32 (ne00, dx, dz);
  7918. ggml_vec_scale_f32(ne00, dx, rrms);
  7919. }
  7920. }
  7921. }
  7922. }
  7923. static void ggml_compute_forward_rms_norm_back(
  7924. const struct ggml_compute_params * params,
  7925. const struct ggml_tensor * src0,
  7926. const struct ggml_tensor * src1,
  7927. struct ggml_tensor * dst) {
  7928. switch (src0->type) {
  7929. case GGML_TYPE_F32:
  7930. {
  7931. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7932. } break;
  7933. default:
  7934. {
  7935. GGML_ASSERT(false);
  7936. } break;
  7937. }
  7938. }
  7939. // ggml_compute_forward_group_norm
  7940. static void ggml_compute_forward_group_norm_f32(
  7941. const struct ggml_compute_params * params,
  7942. const struct ggml_tensor * src0,
  7943. struct ggml_tensor * dst) {
  7944. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7946. return;
  7947. }
  7948. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7949. const int ith = params->ith;
  7950. const int nth = params->nth;
  7951. GGML_TENSOR_UNARY_OP_LOCALS
  7952. const float eps = 1e-6f; // TODO: make this a parameter
  7953. // TODO: optimize
  7954. int n_channels = src0->ne[2];
  7955. int n_groups = dst->op_params[0];
  7956. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7957. for (int i = ith; i < n_groups; i+=nth) {
  7958. int start = i * n_channels_per_group;
  7959. int end = start + n_channels_per_group;
  7960. if (end > n_channels) {
  7961. end = n_channels;
  7962. }
  7963. int step = end - start;
  7964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7965. ggml_float sum = 0.0;
  7966. for (int64_t i02 = start; i02 < end; i02++) {
  7967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7968. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7969. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7970. sum += (ggml_float)x[i00];
  7971. }
  7972. }
  7973. }
  7974. float mean = sum / (ne00 * ne01 * step);
  7975. ggml_float sum2 = 0.0;
  7976. for (int64_t i02 = start; i02 < end; i02++) {
  7977. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7978. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7979. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7980. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7981. float v = x[i00] - mean;
  7982. y[i00] = v;
  7983. sum2 += (ggml_float)(v * v);
  7984. }
  7985. }
  7986. }
  7987. float variance = sum2 / (ne00 * ne01 * step);
  7988. const float scale = 1.0f / sqrtf(variance + eps);
  7989. for (int64_t i02 = start; i02 < end; i02++) {
  7990. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7991. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7992. ggml_vec_scale_f32(ne00, y, scale);
  7993. }
  7994. }
  7995. }
  7996. }
  7997. }
  7998. static void ggml_compute_forward_group_norm(
  7999. const struct ggml_compute_params * params,
  8000. const struct ggml_tensor * src0,
  8001. struct ggml_tensor * dst) {
  8002. switch (src0->type) {
  8003. case GGML_TYPE_F32:
  8004. {
  8005. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8006. } break;
  8007. default:
  8008. {
  8009. GGML_ASSERT(false);
  8010. } break;
  8011. }
  8012. }
  8013. // ggml_compute_forward_mul_mat
  8014. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8015. // helper function to determine if it is better to use BLAS or not
  8016. // for large matrices, BLAS is faster
  8017. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8018. const struct ggml_tensor * src0 = dst->src[0];
  8019. const struct ggml_tensor * src1 = dst->src[1];
  8020. //const int64_t ne00 = src0->ne[0];
  8021. //const int64_t ne01 = src0->ne[1];
  8022. const int64_t ne10 = src1->ne[0];
  8023. const int64_t ne0 = dst->ne[0];
  8024. const int64_t ne1 = dst->ne[1];
  8025. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8026. // all the experts for each batch element and the processing would become incredibly slow
  8027. // TODO: find the optimal values for these
  8028. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8029. ggml_is_contiguous(src0) &&
  8030. ggml_is_contiguous(src1) &&
  8031. //src0->type == GGML_TYPE_F32 &&
  8032. src1->type == GGML_TYPE_F32 &&
  8033. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8034. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8035. return true;
  8036. }
  8037. return false;
  8038. }
  8039. #endif
  8040. static void ggml_compute_forward_mul_mat(
  8041. const struct ggml_compute_params * params,
  8042. const struct ggml_tensor * src0,
  8043. const struct ggml_tensor * src1,
  8044. struct ggml_tensor * dst) {
  8045. int64_t t0 = ggml_perf_time_us();
  8046. UNUSED(t0);
  8047. GGML_TENSOR_BINARY_OP_LOCALS
  8048. const int ith = params->ith;
  8049. const int nth = params->nth;
  8050. if (ith == 1 && g_imatrix_collect) {
  8051. g_imatrix_collect(src0, src1);
  8052. }
  8053. const enum ggml_type type = src0->type;
  8054. const bool src1_cont = ggml_is_contiguous(src1);
  8055. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8056. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8057. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8058. GGML_ASSERT(ne0 == ne01);
  8059. GGML_ASSERT(ne1 == ne11);
  8060. GGML_ASSERT(ne2 == ne12);
  8061. GGML_ASSERT(ne3 == ne13);
  8062. // we don't support permuted src0 or src1
  8063. GGML_ASSERT(nb00 == ggml_type_size(type));
  8064. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8065. // dst cannot be transposed or permuted
  8066. GGML_ASSERT(nb0 == sizeof(float));
  8067. GGML_ASSERT(nb0 <= nb1);
  8068. GGML_ASSERT(nb1 <= nb2);
  8069. GGML_ASSERT(nb2 <= nb3);
  8070. // broadcast factors
  8071. const int64_t r2 = ne12/ne02;
  8072. const int64_t r3 = ne13/ne03;
  8073. // nb01 >= nb00 - src0 is not transposed
  8074. // compute by src0 rows
  8075. #if defined(GGML_USE_CLBLAST)
  8076. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8077. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8078. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8079. }
  8080. return;
  8081. }
  8082. #endif
  8083. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8084. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8085. if (params->ith != 0) {
  8086. return;
  8087. }
  8088. if (params->type == GGML_TASK_INIT) {
  8089. return;
  8090. }
  8091. if (params->type == GGML_TASK_FINALIZE) {
  8092. return;
  8093. }
  8094. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8095. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8096. // broadcast src0 into src1 across 2nd,3rd dimension
  8097. const int64_t i03 = i13/r3;
  8098. const int64_t i02 = i12/r2;
  8099. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8100. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8101. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8102. if (type != GGML_TYPE_F32) {
  8103. float * const wdata = params->wdata;
  8104. ggml_to_float_t const to_float = type_traits[type].to_float;
  8105. size_t id = 0;
  8106. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8107. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8108. id += ne00;
  8109. }
  8110. assert(id*sizeof(float) <= params->wsize);
  8111. x = wdata;
  8112. }
  8113. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8114. ne1, ne01, ne10,
  8115. 1.0f, y, ne10,
  8116. x, ne00,
  8117. 0.0f, d, ne01);
  8118. }
  8119. }
  8120. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8121. return;
  8122. }
  8123. #endif
  8124. if (params->type == GGML_TASK_INIT) {
  8125. if (src1->type != vec_dot_type) {
  8126. char * wdata = params->wdata;
  8127. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8128. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8129. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8130. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8131. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8132. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8133. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8134. wdata += row_size;
  8135. }
  8136. }
  8137. }
  8138. }
  8139. return;
  8140. }
  8141. if (params->type == GGML_TASK_FINALIZE) {
  8142. return;
  8143. }
  8144. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8145. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8146. const int64_t nr0 = ne01; // src0 rows
  8147. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8148. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8149. // distribute the thread work across the inner or outer loop based on which one is larger
  8150. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8151. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8152. const int64_t ith0 = ith % nth0;
  8153. const int64_t ith1 = ith / nth0;
  8154. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8155. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8156. const int64_t ir010 = dr0*ith0;
  8157. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8158. const int64_t ir110 = dr1*ith1;
  8159. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8160. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8161. // threads with no work simply yield (not sure if it helps)
  8162. if (ir010 >= ir011 || ir110 >= ir111) {
  8163. sched_yield();
  8164. return;
  8165. }
  8166. assert(ne12 % ne02 == 0);
  8167. assert(ne13 % ne03 == 0);
  8168. // block-tiling attempt
  8169. const int64_t blck_0 = 16;
  8170. const int64_t blck_1 = 16;
  8171. // attempt to reduce false-sharing (does not seem to make a difference)
  8172. float tmp[16];
  8173. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8174. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8175. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8176. const int64_t i13 = (ir1/(ne12*ne1));
  8177. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8178. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8179. // broadcast src0 into src1
  8180. const int64_t i03 = i13/r3;
  8181. const int64_t i02 = i12/r2;
  8182. const int64_t i1 = i11;
  8183. const int64_t i2 = i12;
  8184. const int64_t i3 = i13;
  8185. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8186. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8187. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8188. // the original src1 data pointer, so we should index using the indices directly
  8189. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8190. const char * src1_col = (const char *) wdata +
  8191. (src1_cont || src1->type != vec_dot_type
  8192. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8193. : (i11*nb11 + i12*nb12 + i13*nb13));
  8194. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8195. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8196. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8197. //}
  8198. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8199. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8200. }
  8201. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8202. }
  8203. }
  8204. }
  8205. }
  8206. // ggml_compute_forward_mul_mat_id
  8207. static void ggml_compute_forward_mul_mat_id(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * ids,
  8210. const struct ggml_tensor * src1,
  8211. struct ggml_tensor * dst) {
  8212. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8213. GGML_TENSOR_BINARY_OP_LOCALS
  8214. const int ith = params->ith;
  8215. const int nth = params->nth;
  8216. const enum ggml_type type = src0->type;
  8217. const bool src1_cont = ggml_is_contiguous(src1);
  8218. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8219. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8220. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8221. GGML_ASSERT(ne0 == ne01);
  8222. GGML_ASSERT(ne1 == ne11);
  8223. GGML_ASSERT(ne2 == ne12);
  8224. GGML_ASSERT(ne3 == ne13);
  8225. // we don't support permuted src0 or src1
  8226. GGML_ASSERT(nb00 == ggml_type_size(type));
  8227. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8228. // dst cannot be transposed or permuted
  8229. GGML_ASSERT(nb0 == sizeof(float));
  8230. GGML_ASSERT(nb0 <= nb1);
  8231. GGML_ASSERT(nb1 <= nb2);
  8232. GGML_ASSERT(nb2 <= nb3);
  8233. // broadcast factors
  8234. const int64_t r2 = ne12/ne02;
  8235. const int64_t r3 = ne13/ne03;
  8236. // row groups
  8237. const int id = ggml_get_op_params_i32(dst, 0);
  8238. const int n_as = ggml_get_op_params_i32(dst, 1);
  8239. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8240. (char *) params->wdata :
  8241. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8242. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8243. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8244. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8245. if (params->type == GGML_TASK_INIT) {
  8246. char * wdata = params->wdata;
  8247. if (src1->type != vec_dot_type) {
  8248. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8249. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8250. assert(src1->type == GGML_TYPE_F32);
  8251. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8252. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8253. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8254. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8255. wdata += row_size;
  8256. }
  8257. }
  8258. }
  8259. }
  8260. // initialize matrix_row_counts
  8261. GGML_ASSERT(wdata == wdata_src1_end);
  8262. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8263. // group rows by src0 matrix
  8264. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8265. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8266. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8267. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8268. matrix_row_counts[row_id] += 1;
  8269. }
  8270. return;
  8271. }
  8272. if (params->type == GGML_TASK_FINALIZE) {
  8273. return;
  8274. }
  8275. // compute each matrix multiplication in sequence
  8276. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8277. const int64_t cne1 = matrix_row_counts[cur_a];
  8278. if (cne1 == 0) {
  8279. continue;
  8280. }
  8281. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8282. if (ith == 1 && g_imatrix_collect) {
  8283. g_imatrix_collect(src0_cur, src1);
  8284. }
  8285. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8286. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8287. const int64_t nr0 = ne01; // src0 rows
  8288. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8289. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8290. // distribute the thread work across the inner or outer loop based on which one is larger
  8291. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8292. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8293. const int64_t ith0 = ith % nth0;
  8294. const int64_t ith1 = ith / nth0;
  8295. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8296. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8297. const int64_t ir010 = dr0*ith0;
  8298. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8299. const int64_t ir110 = dr1*ith1;
  8300. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8301. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8302. // threads with no work simply yield (not sure if it helps)
  8303. if (ir010 >= ir011 || ir110 >= ir111) {
  8304. sched_yield();
  8305. continue;
  8306. }
  8307. assert(ne12 % ne02 == 0);
  8308. assert(ne13 % ne03 == 0);
  8309. // block-tiling attempt
  8310. const int64_t blck_0 = 16;
  8311. const int64_t blck_1 = 16;
  8312. // attempt to reduce false-sharing (does not seem to make a difference)
  8313. float tmp[16];
  8314. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8315. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8316. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8317. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8318. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8319. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8320. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8321. // broadcast src0 into src1
  8322. const int64_t i03 = i13/r3;
  8323. const int64_t i02 = i12/r2;
  8324. const int64_t i1 = i11;
  8325. const int64_t i2 = i12;
  8326. const int64_t i3 = i13;
  8327. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8328. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8329. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8330. // the original src1 data pointer, so we should index using the indices directly
  8331. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8332. const char * src1_col = (const char *) wdata +
  8333. (src1_cont || src1->type != vec_dot_type
  8334. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8335. : (i11*nb11 + i12*nb12 + i13*nb13));
  8336. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8337. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8338. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8339. //}
  8340. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8341. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8342. }
  8343. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8344. }
  8345. }
  8346. }
  8347. }
  8348. #undef MMID_MATRIX_ROW
  8349. }
  8350. // ggml_compute_forward_out_prod
  8351. static void ggml_compute_forward_out_prod_f32(
  8352. const struct ggml_compute_params * params,
  8353. const struct ggml_tensor * src0,
  8354. const struct ggml_tensor * src1,
  8355. struct ggml_tensor * dst) {
  8356. // int64_t t0 = ggml_perf_time_us();
  8357. // UNUSED(t0);
  8358. GGML_TENSOR_BINARY_OP_LOCALS
  8359. const int ith = params->ith;
  8360. const int nth = params->nth;
  8361. GGML_ASSERT(ne0 == ne00);
  8362. GGML_ASSERT(ne1 == ne10);
  8363. GGML_ASSERT(ne2 == ne02);
  8364. GGML_ASSERT(ne02 == ne12);
  8365. GGML_ASSERT(ne3 == ne13);
  8366. GGML_ASSERT(ne03 == ne13);
  8367. // we don't support permuted src0 or src1
  8368. GGML_ASSERT(nb00 == sizeof(float));
  8369. // dst cannot be transposed or permuted
  8370. GGML_ASSERT(nb0 == sizeof(float));
  8371. // GGML_ASSERT(nb0 <= nb1);
  8372. // GGML_ASSERT(nb1 <= nb2);
  8373. // GGML_ASSERT(nb2 <= nb3);
  8374. // nb01 >= nb00 - src0 is not transposed
  8375. // compute by src0 rows
  8376. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8377. // TODO: #if defined(GGML_USE_CLBLAST)
  8378. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8379. bool use_blas = ggml_is_matrix(src0) &&
  8380. ggml_is_matrix(src1) &&
  8381. ggml_is_contiguous(src0) &&
  8382. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8383. #endif
  8384. if (params->type == GGML_TASK_INIT) {
  8385. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8386. if (use_blas) {
  8387. return;
  8388. }
  8389. #endif
  8390. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8391. return;
  8392. }
  8393. if (params->type == GGML_TASK_FINALIZE) {
  8394. return;
  8395. }
  8396. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8397. if (use_blas) {
  8398. if (params->ith != 0) { // All threads other than the first do no work.
  8399. return;
  8400. }
  8401. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8402. // src0: (k,n)
  8403. // src1: (k,m)
  8404. // dst: (m,n)
  8405. //
  8406. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8407. // Also expressed as (major,minor)
  8408. // a: (m,k): so src1 transposed
  8409. // b: (k,n): so src0
  8410. // c: (m,n)
  8411. //
  8412. // However, if ggml_is_transposed(src1) is true, then
  8413. // src1->data already contains a transposed version, so sgemm mustn't
  8414. // transpose it further.
  8415. int n = src0->ne[0];
  8416. int k = src0->ne[1];
  8417. int m = src1->ne[0];
  8418. int transposeA, lda;
  8419. if (!ggml_is_transposed(src1)) {
  8420. transposeA = CblasTrans;
  8421. lda = m;
  8422. } else {
  8423. transposeA = CblasNoTrans;
  8424. lda = k;
  8425. }
  8426. float * a = (float *) ((char *) src1->data);
  8427. float * b = (float *) ((char *) src0->data);
  8428. float * c = (float *) ((char *) dst->data);
  8429. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8430. return;
  8431. }
  8432. #endif
  8433. // dst[:,:,:,:] = 0
  8434. // for i2,i3:
  8435. // for i1:
  8436. // for i01:
  8437. // for i0:
  8438. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8439. // parallelize by last three dimensions
  8440. // total rows in dst
  8441. const int64_t nr = ne1*ne2*ne3;
  8442. // rows per thread
  8443. const int64_t dr = (nr + nth - 1)/nth;
  8444. // row range for this thread
  8445. const int64_t ir0 = dr*ith;
  8446. const int64_t ir1 = MIN(ir0 + dr, nr);
  8447. // block-tiling attempt
  8448. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8449. const int64_t blck_1 = 16;
  8450. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8451. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8452. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8453. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8454. for (int64_t ir = bir; ir < bir1; ++ir) {
  8455. // dst indices
  8456. const int64_t i3 = ir/(ne2*ne1);
  8457. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8458. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8459. const int64_t i02 = i2;
  8460. const int64_t i03 = i3;
  8461. //const int64_t i10 = i1;
  8462. const int64_t i12 = i2;
  8463. const int64_t i13 = i3;
  8464. #if GGML_VEC_MAD_UNROLL > 2
  8465. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8466. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8467. const int64_t i11 = i01;
  8468. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8469. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8470. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8471. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8472. }
  8473. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8474. const int64_t i11 = i01;
  8475. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8476. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8477. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8478. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8479. }
  8480. #else
  8481. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8482. const int64_t i11 = i01;
  8483. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8484. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8485. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8486. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8487. }
  8488. #endif
  8489. }
  8490. }
  8491. }
  8492. //int64_t t1 = ggml_perf_time_us();
  8493. //static int64_t acc = 0;
  8494. //acc += t1 - t0;
  8495. //if (t1 - t0 > 10) {
  8496. // printf("\n");
  8497. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8498. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8499. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8500. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8501. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8502. //}
  8503. }
  8504. static void ggml_compute_forward_out_prod_q_f32(
  8505. const struct ggml_compute_params * params,
  8506. const struct ggml_tensor * src0,
  8507. const struct ggml_tensor * src1,
  8508. struct ggml_tensor * dst) {
  8509. // int64_t t0 = ggml_perf_time_us();
  8510. // UNUSED(t0);
  8511. GGML_TENSOR_BINARY_OP_LOCALS;
  8512. const int ith = params->ith;
  8513. const int nth = params->nth;
  8514. const enum ggml_type type = src0->type;
  8515. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8516. GGML_ASSERT(ne02 == ne12);
  8517. GGML_ASSERT(ne03 == ne13);
  8518. GGML_ASSERT(ne2 == ne12);
  8519. GGML_ASSERT(ne3 == ne13);
  8520. // we don't support permuted src0 dim0
  8521. GGML_ASSERT(nb00 == ggml_type_size(type));
  8522. // dst dim0 cannot be transposed or permuted
  8523. GGML_ASSERT(nb0 == sizeof(float));
  8524. // GGML_ASSERT(nb0 <= nb1);
  8525. // GGML_ASSERT(nb1 <= nb2);
  8526. // GGML_ASSERT(nb2 <= nb3);
  8527. GGML_ASSERT(ne0 == ne00);
  8528. GGML_ASSERT(ne1 == ne10);
  8529. GGML_ASSERT(ne2 == ne02);
  8530. GGML_ASSERT(ne3 == ne03);
  8531. // nb01 >= nb00 - src0 is not transposed
  8532. // compute by src0 rows
  8533. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8534. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8535. if (params->type == GGML_TASK_INIT) {
  8536. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8537. return;
  8538. }
  8539. if (params->type == GGML_TASK_FINALIZE) {
  8540. return;
  8541. }
  8542. // parallelize by last three dimensions
  8543. // total rows in dst
  8544. const int64_t nr = ne1*ne2*ne3;
  8545. // rows per thread
  8546. const int64_t dr = (nr + nth - 1)/nth;
  8547. // row range for this thread
  8548. const int64_t ir0 = dr*ith;
  8549. const int64_t ir1 = MIN(ir0 + dr, nr);
  8550. // dst[:,:,:,:] = 0
  8551. // for i2,i3:
  8552. // for i1:
  8553. // for i01:
  8554. // for i0:
  8555. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8556. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8557. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8558. // dst indices
  8559. const int64_t i3 = ir/(ne2*ne1);
  8560. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8561. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8562. const int64_t i02 = i2;
  8563. const int64_t i03 = i3;
  8564. //const int64_t i10 = i1;
  8565. const int64_t i12 = i2;
  8566. const int64_t i13 = i3;
  8567. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8568. const int64_t i11 = i01;
  8569. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8570. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8571. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8572. dequantize_row_q(s0, wdata, ne0);
  8573. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8574. }
  8575. }
  8576. //int64_t t1 = ggml_perf_time_us();
  8577. //static int64_t acc = 0;
  8578. //acc += t1 - t0;
  8579. //if (t1 - t0 > 10) {
  8580. // printf("\n");
  8581. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8582. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8583. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8584. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8585. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8586. //}
  8587. }
  8588. static void ggml_compute_forward_out_prod(
  8589. const struct ggml_compute_params * params,
  8590. const struct ggml_tensor * src0,
  8591. const struct ggml_tensor * src1,
  8592. struct ggml_tensor * dst) {
  8593. switch (src0->type) {
  8594. case GGML_TYPE_Q4_0:
  8595. case GGML_TYPE_Q4_1:
  8596. case GGML_TYPE_Q5_0:
  8597. case GGML_TYPE_Q5_1:
  8598. case GGML_TYPE_Q8_0:
  8599. case GGML_TYPE_Q2_K:
  8600. case GGML_TYPE_Q3_K:
  8601. case GGML_TYPE_Q4_K:
  8602. case GGML_TYPE_Q5_K:
  8603. case GGML_TYPE_Q6_K:
  8604. case GGML_TYPE_IQ2_XXS:
  8605. case GGML_TYPE_IQ2_XS:
  8606. {
  8607. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8608. } break;
  8609. case GGML_TYPE_F16:
  8610. {
  8611. GGML_ASSERT(false); // todo
  8612. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8613. } break;
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_scale
  8625. static void ggml_compute_forward_scale_f32(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. struct ggml_tensor * dst) {
  8629. GGML_ASSERT(ggml_is_contiguous(src0));
  8630. GGML_ASSERT(ggml_is_contiguous(dst));
  8631. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8633. return;
  8634. }
  8635. // scale factor
  8636. float v;
  8637. memcpy(&v, dst->op_params, sizeof(float));
  8638. const int ith = params->ith;
  8639. const int nth = params->nth;
  8640. const int nc = src0->ne[0];
  8641. const int nr = ggml_nrows(src0);
  8642. // rows per thread
  8643. const int dr = (nr + nth - 1)/nth;
  8644. // row range for this thread
  8645. const int ir0 = dr*ith;
  8646. const int ir1 = MIN(ir0 + dr, nr);
  8647. const size_t nb01 = src0->nb[1];
  8648. const size_t nb1 = dst->nb[1];
  8649. for (int i1 = ir0; i1 < ir1; i1++) {
  8650. if (dst->data != src0->data) {
  8651. // src0 is same shape as dst => same indices
  8652. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8653. }
  8654. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8655. }
  8656. }
  8657. static void ggml_compute_forward_scale(
  8658. const struct ggml_compute_params * params,
  8659. const struct ggml_tensor * src0,
  8660. struct ggml_tensor * dst) {
  8661. switch (src0->type) {
  8662. case GGML_TYPE_F32:
  8663. {
  8664. ggml_compute_forward_scale_f32(params, src0, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_set
  8673. static void ggml_compute_forward_set_f32(
  8674. const struct ggml_compute_params * params,
  8675. const struct ggml_tensor * src0,
  8676. const struct ggml_tensor * src1,
  8677. struct ggml_tensor * dst) {
  8678. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8679. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8680. // view src0 and dst with these strides and data offset inbytes during set
  8681. // nb0 is implicitly element_size because src0 and dst are contiguous
  8682. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8683. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8684. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8685. size_t offset = ((int32_t *) dst->op_params)[3];
  8686. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8687. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8688. // memcpy needs to be synchronized across threads to avoid race conditions.
  8689. // => do it in INIT phase
  8690. memcpy(
  8691. ((char *) dst->data),
  8692. ((char *) src0->data),
  8693. ggml_nbytes(dst));
  8694. }
  8695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8696. return;
  8697. }
  8698. const int ith = params->ith;
  8699. const int nth = params->nth;
  8700. const int nr = ggml_nrows(src1);
  8701. const int nc = src1->ne[0];
  8702. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8703. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8704. // src0 and dst as viewed during set
  8705. const size_t nb0 = ggml_element_size(src0);
  8706. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8707. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8708. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8709. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8710. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8711. GGML_ASSERT(nb10 == sizeof(float));
  8712. // rows per thread
  8713. const int dr = (nr + nth - 1)/nth;
  8714. // row range for this thread
  8715. const int ir0 = dr*ith;
  8716. const int ir1 = MIN(ir0 + dr, nr);
  8717. for (int ir = ir0; ir < ir1; ++ir) {
  8718. // src0 and dst are viewed with shape of src1 and offset
  8719. // => same indices
  8720. const int i3 = ir/(ne12*ne11);
  8721. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8722. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8723. ggml_vec_cpy_f32(nc,
  8724. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8725. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8726. }
  8727. }
  8728. static void ggml_compute_forward_set(
  8729. const struct ggml_compute_params * params,
  8730. const struct ggml_tensor * src0,
  8731. const struct ggml_tensor * src1,
  8732. struct ggml_tensor * dst) {
  8733. switch (src0->type) {
  8734. case GGML_TYPE_F32:
  8735. {
  8736. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8737. } break;
  8738. case GGML_TYPE_F16:
  8739. case GGML_TYPE_Q4_0:
  8740. case GGML_TYPE_Q4_1:
  8741. case GGML_TYPE_Q5_0:
  8742. case GGML_TYPE_Q5_1:
  8743. case GGML_TYPE_Q8_0:
  8744. case GGML_TYPE_Q8_1:
  8745. case GGML_TYPE_Q2_K:
  8746. case GGML_TYPE_Q3_K:
  8747. case GGML_TYPE_Q4_K:
  8748. case GGML_TYPE_Q5_K:
  8749. case GGML_TYPE_Q6_K:
  8750. case GGML_TYPE_IQ2_XXS:
  8751. case GGML_TYPE_IQ2_XS:
  8752. default:
  8753. {
  8754. GGML_ASSERT(false);
  8755. } break;
  8756. }
  8757. }
  8758. // ggml_compute_forward_cpy
  8759. static void ggml_compute_forward_cpy(
  8760. const struct ggml_compute_params * params,
  8761. const struct ggml_tensor * src0,
  8762. struct ggml_tensor * dst) {
  8763. ggml_compute_forward_dup(params, src0, dst);
  8764. }
  8765. // ggml_compute_forward_cont
  8766. static void ggml_compute_forward_cont(
  8767. const struct ggml_compute_params * params,
  8768. const struct ggml_tensor * src0,
  8769. struct ggml_tensor * dst) {
  8770. ggml_compute_forward_dup(params, src0, dst);
  8771. }
  8772. // ggml_compute_forward_reshape
  8773. static void ggml_compute_forward_reshape(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0,
  8776. struct ggml_tensor * dst) {
  8777. // NOP
  8778. UNUSED(params);
  8779. UNUSED(src0);
  8780. UNUSED(dst);
  8781. }
  8782. // ggml_compute_forward_view
  8783. static void ggml_compute_forward_view(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0) {
  8786. // NOP
  8787. UNUSED(params);
  8788. UNUSED(src0);
  8789. }
  8790. // ggml_compute_forward_permute
  8791. static void ggml_compute_forward_permute(
  8792. const struct ggml_compute_params * params,
  8793. const struct ggml_tensor * src0) {
  8794. // NOP
  8795. UNUSED(params);
  8796. UNUSED(src0);
  8797. }
  8798. // ggml_compute_forward_transpose
  8799. static void ggml_compute_forward_transpose(
  8800. const struct ggml_compute_params * params,
  8801. const struct ggml_tensor * src0) {
  8802. // NOP
  8803. UNUSED(params);
  8804. UNUSED(src0);
  8805. }
  8806. // ggml_compute_forward_get_rows
  8807. static void ggml_compute_forward_get_rows_q(
  8808. const struct ggml_compute_params * params,
  8809. const struct ggml_tensor * src0,
  8810. const struct ggml_tensor * src1,
  8811. struct ggml_tensor * dst) {
  8812. assert(params->ith == 0);
  8813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8814. return;
  8815. }
  8816. GGML_TENSOR_BINARY_OP_LOCALS
  8817. const int64_t nc = ne00;
  8818. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8819. const enum ggml_type type = src0->type;
  8820. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8821. assert(ne0 == nc);
  8822. assert(ne02 == ne11);
  8823. assert(nb00 == ggml_type_size(type));
  8824. assert(ggml_nrows(dst) == nr);
  8825. // TODO: multi-thread
  8826. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8827. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8828. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8829. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8830. dequantize_row_q(
  8831. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8832. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8833. }
  8834. }
  8835. }
  8836. }
  8837. static void ggml_compute_forward_get_rows_f16(
  8838. const struct ggml_compute_params * params,
  8839. const struct ggml_tensor * src0,
  8840. const struct ggml_tensor * src1,
  8841. struct ggml_tensor * dst) {
  8842. assert(params->ith == 0);
  8843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8844. return;
  8845. }
  8846. GGML_TENSOR_BINARY_OP_LOCALS
  8847. const int64_t nc = ne00;
  8848. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8849. assert(ne0 == nc);
  8850. assert(ne02 == ne11);
  8851. assert(nb00 == sizeof(ggml_fp16_t));
  8852. assert(ggml_nrows(dst) == nr);
  8853. // TODO: multi-thread
  8854. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8855. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8856. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8857. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8858. ggml_fp16_to_fp32_row(
  8859. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8860. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8861. }
  8862. }
  8863. }
  8864. }
  8865. static void ggml_compute_forward_get_rows_f32(
  8866. const struct ggml_compute_params * params,
  8867. const struct ggml_tensor * src0,
  8868. const struct ggml_tensor * src1,
  8869. struct ggml_tensor * dst) {
  8870. assert(params->ith == 0);
  8871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8872. return;
  8873. }
  8874. GGML_TENSOR_BINARY_OP_LOCALS
  8875. const int64_t nc = ne00;
  8876. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8877. assert(ne0 == nc);
  8878. assert(ne02 == ne11);
  8879. assert(nb00 == sizeof(float));
  8880. assert(ggml_nrows(dst) == nr);
  8881. // TODO: multi-thread
  8882. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8883. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8884. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8885. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8886. ggml_vec_cpy_f32(nc,
  8887. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8888. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8889. }
  8890. }
  8891. }
  8892. }
  8893. static void ggml_compute_forward_get_rows(
  8894. const struct ggml_compute_params * params,
  8895. const struct ggml_tensor * src0,
  8896. const struct ggml_tensor * src1,
  8897. struct ggml_tensor * dst) {
  8898. switch (src0->type) {
  8899. case GGML_TYPE_Q4_0:
  8900. case GGML_TYPE_Q4_1:
  8901. case GGML_TYPE_Q5_0:
  8902. case GGML_TYPE_Q5_1:
  8903. case GGML_TYPE_Q8_0:
  8904. case GGML_TYPE_Q8_1:
  8905. case GGML_TYPE_Q2_K:
  8906. case GGML_TYPE_Q3_K:
  8907. case GGML_TYPE_Q4_K:
  8908. case GGML_TYPE_Q5_K:
  8909. case GGML_TYPE_Q6_K:
  8910. case GGML_TYPE_IQ2_XXS:
  8911. case GGML_TYPE_IQ2_XS:
  8912. {
  8913. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8914. } break;
  8915. case GGML_TYPE_F16:
  8916. {
  8917. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8918. } break;
  8919. case GGML_TYPE_F32:
  8920. case GGML_TYPE_I32:
  8921. {
  8922. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8923. } break;
  8924. default:
  8925. {
  8926. GGML_ASSERT(false);
  8927. } break;
  8928. }
  8929. //static bool first = true;
  8930. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8931. //if (first) {
  8932. // first = false;
  8933. //} else {
  8934. // for (int k = 0; k < dst->ne[1]; ++k) {
  8935. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8936. // for (int i = 0; i < 16; ++i) {
  8937. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8938. // }
  8939. // printf("\n");
  8940. // }
  8941. // printf("\n");
  8942. // }
  8943. // printf("\n");
  8944. // exit(0);
  8945. //}
  8946. }
  8947. // ggml_compute_forward_get_rows_back
  8948. static void ggml_compute_forward_get_rows_back_f32_f16(
  8949. const struct ggml_compute_params * params,
  8950. const struct ggml_tensor * src0,
  8951. const struct ggml_tensor * src1,
  8952. struct ggml_tensor * dst) {
  8953. GGML_ASSERT(params->ith == 0);
  8954. GGML_ASSERT(ggml_is_contiguous(dst));
  8955. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8956. if (params->type == GGML_TASK_INIT) {
  8957. memset(dst->data, 0, ggml_nbytes(dst));
  8958. }
  8959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8960. return;
  8961. }
  8962. const int nc = src0->ne[0];
  8963. const int nr = ggml_nelements(src1);
  8964. GGML_ASSERT( dst->ne[0] == nc);
  8965. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8966. for (int i = 0; i < nr; ++i) {
  8967. const int r = ((int32_t *) src1->data)[i];
  8968. for (int j = 0; j < nc; ++j) {
  8969. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8970. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8971. }
  8972. }
  8973. }
  8974. static void ggml_compute_forward_get_rows_back_f32(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. struct ggml_tensor * dst) {
  8979. GGML_ASSERT(params->ith == 0);
  8980. GGML_ASSERT(ggml_is_contiguous(dst));
  8981. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8982. if (params->type == GGML_TASK_INIT) {
  8983. memset(dst->data, 0, ggml_nbytes(dst));
  8984. }
  8985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8986. return;
  8987. }
  8988. const int nc = src0->ne[0];
  8989. const int nr = ggml_nelements(src1);
  8990. GGML_ASSERT( dst->ne[0] == nc);
  8991. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8992. for (int i = 0; i < nr; ++i) {
  8993. const int r = ((int32_t *) src1->data)[i];
  8994. ggml_vec_add_f32(nc,
  8995. (float *) ((char *) dst->data + r*dst->nb[1]),
  8996. (float *) ((char *) dst->data + r*dst->nb[1]),
  8997. (float *) ((char *) src0->data + i*src0->nb[1]));
  8998. }
  8999. }
  9000. static void ggml_compute_forward_get_rows_back(
  9001. const struct ggml_compute_params * params,
  9002. const struct ggml_tensor * src0,
  9003. const struct ggml_tensor * src1,
  9004. struct ggml_tensor * dst) {
  9005. switch (src0->type) {
  9006. case GGML_TYPE_F16:
  9007. {
  9008. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9009. } break;
  9010. case GGML_TYPE_F32:
  9011. {
  9012. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9013. } break;
  9014. default:
  9015. {
  9016. GGML_ASSERT(false);
  9017. } break;
  9018. }
  9019. //static bool first = true;
  9020. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9021. //if (first) {
  9022. // first = false;
  9023. //} else {
  9024. // for (int k = 0; k < dst->ne[1]; ++k) {
  9025. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9026. // for (int i = 0; i < 16; ++i) {
  9027. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9028. // }
  9029. // printf("\n");
  9030. // }
  9031. // printf("\n");
  9032. // }
  9033. // printf("\n");
  9034. // exit(0);
  9035. //}
  9036. }
  9037. // ggml_compute_forward_diag
  9038. static void ggml_compute_forward_diag_f32(
  9039. const struct ggml_compute_params * params,
  9040. const struct ggml_tensor * src0,
  9041. struct ggml_tensor * dst) {
  9042. GGML_ASSERT(params->ith == 0);
  9043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9044. return;
  9045. }
  9046. // TODO: handle transposed/permuted matrices
  9047. GGML_TENSOR_UNARY_OP_LOCALS
  9048. GGML_ASSERT(ne00 == ne0);
  9049. GGML_ASSERT(ne00 == ne1);
  9050. GGML_ASSERT(ne01 == 1);
  9051. GGML_ASSERT(ne02 == ne2);
  9052. GGML_ASSERT(ne03 == ne3);
  9053. GGML_ASSERT(nb00 == sizeof(float));
  9054. GGML_ASSERT(nb0 == sizeof(float));
  9055. for (int i3 = 0; i3 < ne3; i3++) {
  9056. for (int i2 = 0; i2 < ne2; i2++) {
  9057. for (int i1 = 0; i1 < ne1; i1++) {
  9058. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9059. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9060. for (int i0 = 0; i0 < i1; i0++) {
  9061. d[i0] = 0;
  9062. }
  9063. d[i1] = s[i1];
  9064. for (int i0 = i1+1; i0 < ne0; i0++) {
  9065. d[i0] = 0;
  9066. }
  9067. }
  9068. }
  9069. }
  9070. }
  9071. static void ggml_compute_forward_diag(
  9072. const struct ggml_compute_params * params,
  9073. const struct ggml_tensor * src0,
  9074. struct ggml_tensor * dst) {
  9075. switch (src0->type) {
  9076. case GGML_TYPE_F32:
  9077. {
  9078. ggml_compute_forward_diag_f32(params, src0, dst);
  9079. } break;
  9080. default:
  9081. {
  9082. GGML_ASSERT(false);
  9083. } break;
  9084. }
  9085. }
  9086. // ggml_compute_forward_diag_mask_inf
  9087. static void ggml_compute_forward_diag_mask_f32(
  9088. const struct ggml_compute_params * params,
  9089. const struct ggml_tensor * src0,
  9090. struct ggml_tensor * dst,
  9091. const float value) {
  9092. const int ith = params->ith;
  9093. const int nth = params->nth;
  9094. const int n_past = ((int32_t *) dst->op_params)[0];
  9095. const bool inplace = src0->data == dst->data;
  9096. GGML_ASSERT(n_past >= 0);
  9097. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9098. // memcpy needs to be synchronized across threads to avoid race conditions.
  9099. // => do it in INIT phase
  9100. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9101. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9102. memcpy(
  9103. ((char *) dst->data),
  9104. ((char *) src0->data),
  9105. ggml_nbytes(dst));
  9106. }
  9107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9108. return;
  9109. }
  9110. // TODO: handle transposed/permuted matrices
  9111. const int n = ggml_nrows(src0);
  9112. const int nc = src0->ne[0];
  9113. const int nr = src0->ne[1];
  9114. const int nz = n/nr;
  9115. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9116. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9117. for (int k = 0; k < nz; k++) {
  9118. for (int j = ith; j < nr; j += nth) {
  9119. for (int i = n_past; i < nc; i++) {
  9120. if (i > n_past + j) {
  9121. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9122. }
  9123. }
  9124. }
  9125. }
  9126. }
  9127. static void ggml_compute_forward_diag_mask_inf(
  9128. const struct ggml_compute_params * params,
  9129. const struct ggml_tensor * src0,
  9130. struct ggml_tensor * dst) {
  9131. switch (src0->type) {
  9132. case GGML_TYPE_F32:
  9133. {
  9134. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9135. } break;
  9136. default:
  9137. {
  9138. GGML_ASSERT(false);
  9139. } break;
  9140. }
  9141. }
  9142. static void ggml_compute_forward_diag_mask_zero(
  9143. const struct ggml_compute_params * params,
  9144. const struct ggml_tensor * src0,
  9145. struct ggml_tensor * dst) {
  9146. switch (src0->type) {
  9147. case GGML_TYPE_F32:
  9148. {
  9149. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9150. } break;
  9151. default:
  9152. {
  9153. GGML_ASSERT(false);
  9154. } break;
  9155. }
  9156. }
  9157. // ggml_compute_forward_soft_max
  9158. static void ggml_compute_forward_soft_max_f32(
  9159. const struct ggml_compute_params * params,
  9160. const struct ggml_tensor * src0,
  9161. const struct ggml_tensor * src1,
  9162. struct ggml_tensor * dst) {
  9163. assert(ggml_is_contiguous(dst));
  9164. assert(ggml_are_same_shape(src0, dst));
  9165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9166. return;
  9167. }
  9168. float scale = 1.0f;
  9169. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9170. // TODO: handle transposed/permuted matrices
  9171. const int ith = params->ith;
  9172. const int nth = params->nth;
  9173. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9174. const int nc = src0->ne[0];
  9175. const int nr = ggml_nrows(src0);
  9176. // rows per thread
  9177. const int dr = (nr + nth - 1)/nth;
  9178. // row range for this thread
  9179. const int ir0 = dr*ith;
  9180. const int ir1 = MIN(ir0 + dr, nr);
  9181. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9182. for (int i1 = ir0; i1 < ir1; i1++) {
  9183. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9184. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9185. // broadcast the mask across rows
  9186. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9187. ggml_vec_cpy_f32 (nc, wp, sp);
  9188. ggml_vec_scale_f32(nc, wp, scale);
  9189. if (mp) {
  9190. ggml_vec_acc_f32(nc, wp, mp);
  9191. }
  9192. #ifndef NDEBUG
  9193. for (int i = 0; i < nc; ++i) {
  9194. //printf("p[%d] = %f\n", i, p[i]);
  9195. assert(!isnan(wp[i]));
  9196. }
  9197. #endif
  9198. float max = -INFINITY;
  9199. ggml_vec_max_f32(nc, &max, wp);
  9200. ggml_float sum = 0.0;
  9201. uint16_t scvt;
  9202. for (int i = 0; i < nc; i++) {
  9203. if (wp[i] == -INFINITY) {
  9204. dp[i] = 0.0f;
  9205. } else {
  9206. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9207. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9208. memcpy(&scvt, &s, sizeof(scvt));
  9209. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9210. sum += (ggml_float)val;
  9211. dp[i] = val;
  9212. }
  9213. }
  9214. assert(sum > 0.0);
  9215. sum = 1.0/sum;
  9216. ggml_vec_scale_f32(nc, dp, sum);
  9217. #ifndef NDEBUG
  9218. for (int i = 0; i < nc; ++i) {
  9219. assert(!isnan(dp[i]));
  9220. assert(!isinf(dp[i]));
  9221. }
  9222. #endif
  9223. }
  9224. }
  9225. static void ggml_compute_forward_soft_max(
  9226. const struct ggml_compute_params * params,
  9227. const struct ggml_tensor * src0,
  9228. const struct ggml_tensor * src1,
  9229. struct ggml_tensor * dst) {
  9230. switch (src0->type) {
  9231. case GGML_TYPE_F32:
  9232. {
  9233. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9234. } break;
  9235. default:
  9236. {
  9237. GGML_ASSERT(false);
  9238. } break;
  9239. }
  9240. }
  9241. // ggml_compute_forward_soft_max_back
  9242. static void ggml_compute_forward_soft_max_back_f32(
  9243. const struct ggml_compute_params * params,
  9244. const struct ggml_tensor * src0,
  9245. const struct ggml_tensor * src1,
  9246. struct ggml_tensor * dst) {
  9247. GGML_ASSERT(ggml_is_contiguous(src0));
  9248. GGML_ASSERT(ggml_is_contiguous(src1));
  9249. GGML_ASSERT(ggml_is_contiguous(dst));
  9250. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9251. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9253. return;
  9254. }
  9255. // TODO: handle transposed/permuted matrices
  9256. const int ith = params->ith;
  9257. const int nth = params->nth;
  9258. const int nc = src0->ne[0];
  9259. const int nr = ggml_nrows(src0);
  9260. // rows per thread
  9261. const int dr = (nr + nth - 1)/nth;
  9262. // row range for this thread
  9263. const int ir0 = dr*ith;
  9264. const int ir1 = MIN(ir0 + dr, nr);
  9265. for (int i1 = ir0; i1 < ir1; i1++) {
  9266. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9267. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9268. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9269. #ifndef NDEBUG
  9270. for (int i = 0; i < nc; ++i) {
  9271. //printf("p[%d] = %f\n", i, p[i]);
  9272. assert(!isnan(dy[i]));
  9273. assert(!isnan(y[i]));
  9274. }
  9275. #endif
  9276. // Jii = yi - yi*yi
  9277. // Jij = -yi*yj
  9278. // J = diag(y)-y.T*y
  9279. // dx = J * dy
  9280. // dxk = sum_i(Jki * dyi)
  9281. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9282. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9283. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9284. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9285. // dxk = -yk * dot(y, dy) + yk*dyk
  9286. // dxk = yk * (- dot(y, dy) + dyk)
  9287. // dxk = yk * (dyk - dot(y, dy))
  9288. //
  9289. // post-order:
  9290. // dot_y_dy := dot(y, dy)
  9291. // dx := dy
  9292. // dx := dx - dot_y_dy
  9293. // dx := dx * y
  9294. // linear runtime, no additional memory
  9295. float dot_y_dy = 0;
  9296. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9297. ggml_vec_cpy_f32 (nc, dx, dy);
  9298. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9299. ggml_vec_mul_f32 (nc, dx, dx, y);
  9300. #ifndef NDEBUG
  9301. for (int i = 0; i < nc; ++i) {
  9302. assert(!isnan(dx[i]));
  9303. assert(!isinf(dx[i]));
  9304. }
  9305. #endif
  9306. }
  9307. }
  9308. static void ggml_compute_forward_soft_max_back(
  9309. const struct ggml_compute_params * params,
  9310. const struct ggml_tensor * src0,
  9311. const struct ggml_tensor * src1,
  9312. struct ggml_tensor * dst) {
  9313. switch (src0->type) {
  9314. case GGML_TYPE_F32:
  9315. {
  9316. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9317. } break;
  9318. default:
  9319. {
  9320. GGML_ASSERT(false);
  9321. } break;
  9322. }
  9323. }
  9324. // ggml_compute_forward_alibi
  9325. static void ggml_compute_forward_alibi_f32(
  9326. const struct ggml_compute_params * params,
  9327. const struct ggml_tensor * src0,
  9328. struct ggml_tensor * dst) {
  9329. assert(params->ith == 0);
  9330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9331. return;
  9332. }
  9333. //const int n_past = ((int32_t *) dst->op_params)[0];
  9334. const int n_head = ((int32_t *) dst->op_params)[1];
  9335. float max_bias;
  9336. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9337. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9338. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9339. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9340. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9341. const int64_t n = ggml_nrows(src0);
  9342. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9343. const size_t nb0 = src0->nb[0];
  9344. const size_t nb1 = src0->nb[1];
  9345. const size_t nb2 = src0->nb[2];
  9346. //const int nb3 = src0->nb[3];
  9347. GGML_ASSERT(nb0 == sizeof(float));
  9348. GGML_ASSERT(n_head == ne2);
  9349. // add alibi to src0 (KQ_scaled)
  9350. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9351. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9352. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9353. for (int64_t i = 0; i < ne0; i++) {
  9354. for (int64_t j = 0; j < ne1; j++) {
  9355. for (int64_t k = 0; k < ne2_ne3; k++) {
  9356. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9357. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9358. // TODO: k*nb2 or k*nb3
  9359. float m_k;
  9360. if (k < n_heads_log2_floor) {
  9361. m_k = powf(m0, k + 1);
  9362. } else {
  9363. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9364. }
  9365. pdst[0] = i * m_k + src[0];
  9366. }
  9367. }
  9368. }
  9369. }
  9370. static void ggml_compute_forward_alibi_f16(
  9371. const struct ggml_compute_params * params,
  9372. const struct ggml_tensor * src0,
  9373. struct ggml_tensor * dst) {
  9374. assert(params->ith == 0);
  9375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9376. return;
  9377. }
  9378. //const int n_past = ((int32_t *) dst->op_params)[0];
  9379. const int n_head = ((int32_t *) dst->op_params)[1];
  9380. float max_bias;
  9381. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9382. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9383. const int ne1 = src0->ne[1]; // seq_len_without_past
  9384. const int ne2 = src0->ne[2]; // n_head -> this is k
  9385. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9386. const int n = ggml_nrows(src0);
  9387. const int ne2_ne3 = n/ne1; // ne2*ne3
  9388. const int nb0 = src0->nb[0];
  9389. const int nb1 = src0->nb[1];
  9390. const int nb2 = src0->nb[2];
  9391. //const int nb3 = src0->nb[3];
  9392. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9393. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9394. GGML_ASSERT(n_head == ne2);
  9395. // add alibi to src0 (KQ_scaled)
  9396. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9397. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9398. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9399. for (int i = 0; i < ne0; i++) {
  9400. for (int j = 0; j < ne1; j++) {
  9401. for (int k = 0; k < ne2_ne3; k++) {
  9402. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9403. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9404. // TODO: k*nb2 or k*nb3
  9405. float m_k;
  9406. if (k < n_heads_log2_floor) {
  9407. m_k = powf(m0, k + 1);
  9408. } else {
  9409. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9410. }
  9411. // we return F32
  9412. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9413. }
  9414. }
  9415. }
  9416. }
  9417. static void ggml_compute_forward_alibi(
  9418. const struct ggml_compute_params * params,
  9419. const struct ggml_tensor * src0,
  9420. struct ggml_tensor * dst) {
  9421. switch (src0->type) {
  9422. case GGML_TYPE_F16:
  9423. {
  9424. ggml_compute_forward_alibi_f16(params, src0, dst);
  9425. } break;
  9426. case GGML_TYPE_F32:
  9427. {
  9428. ggml_compute_forward_alibi_f32(params, src0, dst);
  9429. } break;
  9430. case GGML_TYPE_Q4_0:
  9431. case GGML_TYPE_Q4_1:
  9432. case GGML_TYPE_Q5_0:
  9433. case GGML_TYPE_Q5_1:
  9434. case GGML_TYPE_Q8_0:
  9435. case GGML_TYPE_Q8_1:
  9436. case GGML_TYPE_Q2_K:
  9437. case GGML_TYPE_Q3_K:
  9438. case GGML_TYPE_Q4_K:
  9439. case GGML_TYPE_Q5_K:
  9440. case GGML_TYPE_Q6_K:
  9441. case GGML_TYPE_IQ2_XXS:
  9442. case GGML_TYPE_IQ2_XS:
  9443. case GGML_TYPE_Q8_K:
  9444. case GGML_TYPE_I8:
  9445. case GGML_TYPE_I16:
  9446. case GGML_TYPE_I32:
  9447. case GGML_TYPE_COUNT:
  9448. {
  9449. GGML_ASSERT(false);
  9450. } break;
  9451. }
  9452. }
  9453. // ggml_compute_forward_clamp
  9454. static void ggml_compute_forward_clamp_f32(
  9455. const struct ggml_compute_params * params,
  9456. const struct ggml_tensor * src0,
  9457. struct ggml_tensor * dst) {
  9458. assert(params->ith == 0);
  9459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9460. return;
  9461. }
  9462. float min;
  9463. float max;
  9464. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9465. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9466. const int ith = params->ith;
  9467. const int nth = params->nth;
  9468. const int n = ggml_nrows(src0);
  9469. const int nc = src0->ne[0];
  9470. const size_t nb00 = src0->nb[0];
  9471. const size_t nb01 = src0->nb[1];
  9472. const size_t nb0 = dst->nb[0];
  9473. const size_t nb1 = dst->nb[1];
  9474. GGML_ASSERT( nb0 == sizeof(float));
  9475. GGML_ASSERT(nb00 == sizeof(float));
  9476. for (int j = ith; j < n; j += nth) {
  9477. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9478. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9479. for (int i = 0; i < nc; i++) {
  9480. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9481. }
  9482. }
  9483. }
  9484. static void ggml_compute_forward_clamp(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * src0,
  9487. struct ggml_tensor * dst) {
  9488. switch (src0->type) {
  9489. case GGML_TYPE_F32:
  9490. {
  9491. ggml_compute_forward_clamp_f32(params, src0, dst);
  9492. } break;
  9493. case GGML_TYPE_F16:
  9494. case GGML_TYPE_Q4_0:
  9495. case GGML_TYPE_Q4_1:
  9496. case GGML_TYPE_Q5_0:
  9497. case GGML_TYPE_Q5_1:
  9498. case GGML_TYPE_Q8_0:
  9499. case GGML_TYPE_Q8_1:
  9500. case GGML_TYPE_Q2_K:
  9501. case GGML_TYPE_Q3_K:
  9502. case GGML_TYPE_Q4_K:
  9503. case GGML_TYPE_Q5_K:
  9504. case GGML_TYPE_Q6_K:
  9505. case GGML_TYPE_IQ2_XXS:
  9506. case GGML_TYPE_IQ2_XS:
  9507. case GGML_TYPE_Q8_K:
  9508. case GGML_TYPE_I8:
  9509. case GGML_TYPE_I16:
  9510. case GGML_TYPE_I32:
  9511. case GGML_TYPE_COUNT:
  9512. {
  9513. GGML_ASSERT(false);
  9514. } break;
  9515. }
  9516. }
  9517. // ggml_compute_forward_rope
  9518. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9519. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9520. return 1 - MIN(1, MAX(0, y));
  9521. }
  9522. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9523. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9524. static void rope_yarn(
  9525. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9526. float * cos_theta, float * sin_theta
  9527. ) {
  9528. // Get n-d rotational scaling corrected for extrapolation
  9529. float theta_interp = freq_scale * theta_extrap;
  9530. float theta = theta_interp;
  9531. if (ext_factor != 0.0f) {
  9532. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9533. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9534. // Get n-d magnitude scaling corrected for interpolation
  9535. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9536. }
  9537. *cos_theta = cosf(theta) * mscale;
  9538. *sin_theta = sinf(theta) * mscale;
  9539. }
  9540. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9541. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9542. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9543. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9544. }
  9545. static void ggml_rope_cache_init(
  9546. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9547. float * cache, float sin_sign, float theta_scale
  9548. ) {
  9549. float theta = theta_base;
  9550. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9551. rope_yarn(
  9552. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9553. );
  9554. cache[i0 + 1] *= sin_sign;
  9555. theta *= theta_scale;
  9556. }
  9557. }
  9558. void ggml_rope_yarn_corr_dims(
  9559. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9560. ) {
  9561. // start and end correction dims
  9562. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9563. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9564. }
  9565. static void ggml_compute_forward_rope_f32(
  9566. const struct ggml_compute_params * params,
  9567. const struct ggml_tensor * src0,
  9568. const struct ggml_tensor * src1,
  9569. struct ggml_tensor * dst,
  9570. const bool forward) {
  9571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9572. return;
  9573. }
  9574. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9575. // these two only relevant for xPos RoPE:
  9576. float xpos_base;
  9577. bool xpos_down;
  9578. //const int n_past = ((int32_t *) dst->op_params)[0];
  9579. const int n_dims = ((int32_t *) dst->op_params)[1];
  9580. const int mode = ((int32_t *) dst->op_params)[2];
  9581. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9582. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9583. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9584. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9585. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9586. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9587. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9588. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9589. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9590. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9591. GGML_TENSOR_UNARY_OP_LOCALS
  9592. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9593. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9594. GGML_ASSERT(nb00 == sizeof(float));
  9595. const int ith = params->ith;
  9596. const int nth = params->nth;
  9597. const int nr = ggml_nrows(dst);
  9598. GGML_ASSERT(n_dims <= ne0);
  9599. GGML_ASSERT(n_dims % 2 == 0);
  9600. // rows per thread
  9601. const int dr = (nr + nth - 1)/nth;
  9602. // row range for this thread
  9603. const int ir0 = dr*ith;
  9604. const int ir1 = MIN(ir0 + dr, nr);
  9605. // row index used to determine which thread to use
  9606. int ir = 0;
  9607. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9608. const float inv_ndims = -1.f/n_dims;
  9609. float corr_dims[2];
  9610. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9611. const bool is_neox = mode & 2;
  9612. const bool is_glm = mode & 4;
  9613. // backward process uses inverse rotation by cos and sin.
  9614. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9615. // this essentially just switches the sign of sin.
  9616. const float sin_sign = forward ? 1.0f : -1.0f;
  9617. const int32_t * pos = (const int32_t *) src1->data;
  9618. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9619. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9620. const int64_t p = pos[i2];
  9621. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9622. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9623. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9624. }
  9625. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9626. if (ir++ < ir0) continue;
  9627. if (ir > ir1) break;
  9628. float theta_base = (float)p;
  9629. if (is_glm) {
  9630. theta_base = MIN(p, n_ctx - 2);
  9631. float block_theta = MAX(p - (n_ctx - 2), 0);
  9632. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9633. const float cos_theta = cosf(theta_base);
  9634. const float sin_theta = sinf(theta_base) * sin_sign;
  9635. const float cos_block_theta = cosf(block_theta);
  9636. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9637. theta_base *= theta_scale;
  9638. block_theta *= theta_scale;
  9639. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9640. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9641. const float x0 = src[0];
  9642. const float x1 = src[n_dims/2];
  9643. const float x2 = src[n_dims];
  9644. const float x3 = src[n_dims/2*3];
  9645. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9646. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9647. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9648. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9649. }
  9650. } else if (!is_neox) {
  9651. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9652. const float cos_theta = cache[i0 + 0];
  9653. const float sin_theta = cache[i0 + 1];
  9654. // zeta scaling for xPos only:
  9655. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9656. if (xpos_down) zeta = 1.0f / zeta;
  9657. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9658. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9659. const float x0 = src[0];
  9660. const float x1 = src[1];
  9661. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9662. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9663. }
  9664. } else {
  9665. // TODO: this might be wrong for ne0 != n_dims - need double check
  9666. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9667. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9668. theta_base *= freq_scale;
  9669. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9670. if (ic < n_dims) {
  9671. const int64_t ib = 0;
  9672. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9673. float cur_rot = inv_ndims * ic - ib;
  9674. float cos_theta, sin_theta;
  9675. rope_yarn(
  9676. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9677. &cos_theta, &sin_theta
  9678. );
  9679. sin_theta *= sin_sign;
  9680. theta_base *= theta_scale;
  9681. const int64_t i0 = ib*n_dims + ic/2;
  9682. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9683. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9684. const float x0 = src[0];
  9685. const float x1 = src[n_dims/2];
  9686. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9687. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9688. } else {
  9689. const int64_t i0 = ic;
  9690. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9691. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9692. dst_data[0] = src[0];
  9693. dst_data[1] = src[1];
  9694. }
  9695. }
  9696. }
  9697. }
  9698. }
  9699. }
  9700. }
  9701. static void ggml_compute_forward_rope_f16(
  9702. const struct ggml_compute_params * params,
  9703. const struct ggml_tensor * src0,
  9704. const struct ggml_tensor * src1,
  9705. struct ggml_tensor * dst,
  9706. const bool forward) {
  9707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9708. return;
  9709. }
  9710. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9711. //const int n_past = ((int32_t *) dst->op_params)[0];
  9712. const int n_dims = ((int32_t *) dst->op_params)[1];
  9713. const int mode = ((int32_t *) dst->op_params)[2];
  9714. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9715. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9716. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9717. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9718. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9719. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9720. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9721. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9722. GGML_TENSOR_UNARY_OP_LOCALS
  9723. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9724. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9725. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9726. const int ith = params->ith;
  9727. const int nth = params->nth;
  9728. const int nr = ggml_nrows(dst);
  9729. GGML_ASSERT(n_dims <= ne0);
  9730. GGML_ASSERT(n_dims % 2 == 0);
  9731. // rows per thread
  9732. const int dr = (nr + nth - 1)/nth;
  9733. // row range for this thread
  9734. const int ir0 = dr*ith;
  9735. const int ir1 = MIN(ir0 + dr, nr);
  9736. // row index used to determine which thread to use
  9737. int ir = 0;
  9738. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9739. const float inv_ndims = -1.f/n_dims;
  9740. float corr_dims[2];
  9741. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9742. const bool is_neox = mode & 2;
  9743. const bool is_glm = mode & 4;
  9744. // backward process uses inverse rotation by cos and sin.
  9745. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9746. // this essentially just switches the sign of sin.
  9747. const float sin_sign = forward ? 1.0f : -1.0f;
  9748. const int32_t * pos = (const int32_t *) src1->data;
  9749. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9750. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9751. const int64_t p = pos[i2];
  9752. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9753. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9754. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9755. }
  9756. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9757. if (ir++ < ir0) continue;
  9758. if (ir > ir1) break;
  9759. float theta_base = (float)p;
  9760. if (is_glm) {
  9761. theta_base = MIN(p, n_ctx - 2);
  9762. float block_theta = MAX(p - (n_ctx - 2), 0);
  9763. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9764. const float cos_theta = cosf(theta_base);
  9765. const float sin_theta = sinf(theta_base) * sin_sign;
  9766. const float cos_block_theta = cosf(block_theta);
  9767. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9768. theta_base *= theta_scale;
  9769. block_theta *= theta_scale;
  9770. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9771. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9772. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9773. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9774. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9775. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9776. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9777. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9778. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9779. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9780. }
  9781. } else if (!is_neox) {
  9782. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9783. const float cos_theta = cache[i0 + 0];
  9784. const float sin_theta = cache[i0 + 1];
  9785. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9786. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9787. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9788. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9789. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9790. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9791. }
  9792. } else {
  9793. // TODO: this might be wrong for ne0 != n_dims - need double check
  9794. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9795. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9796. theta_base *= freq_scale;
  9797. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9798. if (ic < n_dims) {
  9799. const int64_t ib = 0;
  9800. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9801. float cur_rot = inv_ndims * ic - ib;
  9802. float cos_theta, sin_theta;
  9803. rope_yarn(
  9804. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9805. &cos_theta, &sin_theta
  9806. );
  9807. sin_theta *= sin_sign;
  9808. theta_base *= theta_scale;
  9809. const int64_t i0 = ib*n_dims + ic/2;
  9810. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9811. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9812. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9813. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9814. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9815. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9816. } else {
  9817. const int64_t i0 = ic;
  9818. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9819. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9820. dst_data[0] = src[0];
  9821. dst_data[1] = src[1];
  9822. }
  9823. }
  9824. }
  9825. }
  9826. }
  9827. }
  9828. }
  9829. static void ggml_compute_forward_rope(
  9830. const struct ggml_compute_params * params,
  9831. const struct ggml_tensor * src0,
  9832. const struct ggml_tensor * src1,
  9833. struct ggml_tensor * dst) {
  9834. switch (src0->type) {
  9835. case GGML_TYPE_F16:
  9836. {
  9837. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9838. } break;
  9839. case GGML_TYPE_F32:
  9840. {
  9841. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9842. } break;
  9843. default:
  9844. {
  9845. GGML_ASSERT(false);
  9846. } break;
  9847. }
  9848. }
  9849. // ggml_compute_forward_rope_back
  9850. static void ggml_compute_forward_rope_back(
  9851. const struct ggml_compute_params * params,
  9852. const struct ggml_tensor * src0,
  9853. const struct ggml_tensor * src1,
  9854. struct ggml_tensor * dst) {
  9855. switch (src0->type) {
  9856. case GGML_TYPE_F16:
  9857. {
  9858. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9859. } break;
  9860. case GGML_TYPE_F32:
  9861. {
  9862. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9863. } break;
  9864. default:
  9865. {
  9866. GGML_ASSERT(false);
  9867. } break;
  9868. }
  9869. }
  9870. // ggml_compute_forward_conv_transpose_1d
  9871. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9872. const struct ggml_compute_params * params,
  9873. const struct ggml_tensor * src0,
  9874. const struct ggml_tensor * src1,
  9875. struct ggml_tensor * dst) {
  9876. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9877. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9878. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9879. int64_t t0 = ggml_perf_time_us();
  9880. UNUSED(t0);
  9881. GGML_TENSOR_BINARY_OP_LOCALS
  9882. const int ith = params->ith;
  9883. const int nth = params->nth;
  9884. const int nk = ne00*ne01*ne02;
  9885. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9886. GGML_ASSERT(nb10 == sizeof(float));
  9887. if (params->type == GGML_TASK_INIT) {
  9888. memset(params->wdata, 0, params->wsize);
  9889. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9890. {
  9891. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9892. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9893. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9894. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9895. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9896. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9897. dst_data[i00*ne02 + i02] = src[i00];
  9898. }
  9899. }
  9900. }
  9901. }
  9902. // permute source data (src1) from (L x Cin) to (Cin x L)
  9903. {
  9904. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9905. ggml_fp16_t * dst_data = wdata;
  9906. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9907. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9908. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9909. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9910. }
  9911. }
  9912. }
  9913. // need to zero dst since we are accumulating into it
  9914. memset(dst->data, 0, ggml_nbytes(dst));
  9915. return;
  9916. }
  9917. if (params->type == GGML_TASK_FINALIZE) {
  9918. return;
  9919. }
  9920. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9921. // total rows in dst
  9922. const int nr = ne1;
  9923. // rows per thread
  9924. const int dr = (nr + nth - 1)/nth;
  9925. // row range for this thread
  9926. const int ir0 = dr*ith;
  9927. const int ir1 = MIN(ir0 + dr, nr);
  9928. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9929. ggml_fp16_t * const wdata_src = wdata + nk;
  9930. for (int i1 = ir0; i1 < ir1; i1++) {
  9931. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9932. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9933. for (int i10 = 0; i10 < ne10; i10++) {
  9934. const int i1n = i10*ne11;
  9935. for (int i00 = 0; i00 < ne00; i00++) {
  9936. float v = 0;
  9937. ggml_vec_dot_f16(ne02, &v,
  9938. (ggml_fp16_t *) wdata_src + i1n,
  9939. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9940. dst_data[i10*s0 + i00] += v;
  9941. }
  9942. }
  9943. }
  9944. }
  9945. static void ggml_compute_forward_conv_transpose_1d_f32(
  9946. const struct ggml_compute_params * params,
  9947. const struct ggml_tensor * src0,
  9948. const struct ggml_tensor * src1,
  9949. struct ggml_tensor * dst) {
  9950. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9951. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9952. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9953. int64_t t0 = ggml_perf_time_us();
  9954. UNUSED(t0);
  9955. GGML_TENSOR_BINARY_OP_LOCALS
  9956. const int ith = params->ith;
  9957. const int nth = params->nth;
  9958. const int nk = ne00*ne01*ne02;
  9959. GGML_ASSERT(nb00 == sizeof(float));
  9960. GGML_ASSERT(nb10 == sizeof(float));
  9961. if (params->type == GGML_TASK_INIT) {
  9962. memset(params->wdata, 0, params->wsize);
  9963. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9964. {
  9965. float * const wdata = (float *) params->wdata + 0;
  9966. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9968. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9969. float * dst_data = wdata + i01*ne00*ne02;
  9970. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9971. dst_data[i00*ne02 + i02] = src[i00];
  9972. }
  9973. }
  9974. }
  9975. }
  9976. // prepare source data (src1)
  9977. {
  9978. float * const wdata = (float *) params->wdata + nk;
  9979. float * dst_data = wdata;
  9980. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9981. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9982. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9983. dst_data[i10*ne11 + i11] = src[i10];
  9984. }
  9985. }
  9986. }
  9987. // need to zero dst since we are accumulating into it
  9988. memset(dst->data, 0, ggml_nbytes(dst));
  9989. return;
  9990. }
  9991. if (params->type == GGML_TASK_FINALIZE) {
  9992. return;
  9993. }
  9994. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9995. // total rows in dst
  9996. const int nr = ne1;
  9997. // rows per thread
  9998. const int dr = (nr + nth - 1)/nth;
  9999. // row range for this thread
  10000. const int ir0 = dr*ith;
  10001. const int ir1 = MIN(ir0 + dr, nr);
  10002. float * const wdata = (float *) params->wdata + 0;
  10003. float * const wdata_src = wdata + nk;
  10004. for (int i1 = ir0; i1 < ir1; i1++) {
  10005. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10006. float * wdata_kernel = wdata + i1*ne02*ne00;
  10007. for (int i10 = 0; i10 < ne10; i10++) {
  10008. const int i1n = i10*ne11;
  10009. for (int i00 = 0; i00 < ne00; i00++) {
  10010. float v = 0;
  10011. ggml_vec_dot_f32(ne02, &v,
  10012. wdata_src + i1n,
  10013. wdata_kernel + i00*ne02);
  10014. dst_data[i10*s0 + i00] += v;
  10015. }
  10016. }
  10017. }
  10018. }
  10019. static void ggml_compute_forward_conv_transpose_1d(
  10020. const struct ggml_compute_params * params,
  10021. const struct ggml_tensor * src0,
  10022. const struct ggml_tensor * src1,
  10023. struct ggml_tensor * dst) {
  10024. switch (src0->type) {
  10025. case GGML_TYPE_F16:
  10026. {
  10027. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10028. } break;
  10029. case GGML_TYPE_F32:
  10030. {
  10031. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10032. } break;
  10033. default:
  10034. {
  10035. GGML_ASSERT(false);
  10036. } break;
  10037. }
  10038. }
  10039. // src0: kernel [OC, IC, KH, KW]
  10040. // src1: image [N, IC, IH, IW]
  10041. // dst: result [N, OH, OW, IC*KH*KW]
  10042. static void ggml_compute_forward_im2col_f16(
  10043. const struct ggml_compute_params * params,
  10044. const struct ggml_tensor * src0,
  10045. const struct ggml_tensor * src1,
  10046. struct ggml_tensor * dst) {
  10047. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10048. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10049. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10050. int64_t t0 = ggml_perf_time_us();
  10051. UNUSED(t0);
  10052. GGML_TENSOR_BINARY_OP_LOCALS;
  10053. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10054. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10055. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10056. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10057. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10058. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10059. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10060. const int ith = params->ith;
  10061. const int nth = params->nth;
  10062. const int64_t N = is_2D ? ne13 : ne12;
  10063. const int64_t IC = is_2D ? ne12 : ne11;
  10064. const int64_t IH = is_2D ? ne11 : 1;
  10065. const int64_t IW = ne10;
  10066. const int64_t KH = is_2D ? ne01 : 1;
  10067. const int64_t KW = ne00;
  10068. const int64_t OH = is_2D ? ne2 : 1;
  10069. const int64_t OW = ne1;
  10070. int ofs0 = is_2D ? nb13 : nb12;
  10071. int ofs1 = is_2D ? nb12 : nb11;
  10072. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10073. GGML_ASSERT(nb10 == sizeof(float));
  10074. if (params->type == GGML_TASK_INIT) {
  10075. return;
  10076. }
  10077. if (params->type == GGML_TASK_FINALIZE) {
  10078. return;
  10079. }
  10080. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10081. {
  10082. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10083. for (int64_t in = 0; in < N; in++) {
  10084. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10085. for (int64_t iow = 0; iow < OW; iow++) {
  10086. for (int64_t iic = ith; iic < IC; iic += nth) {
  10087. // micro kernel
  10088. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10089. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10090. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10091. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10092. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10093. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10094. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10095. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10096. } else {
  10097. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10098. }
  10099. }
  10100. }
  10101. }
  10102. }
  10103. }
  10104. }
  10105. }
  10106. }
  10107. static void ggml_compute_forward_im2col(
  10108. const struct ggml_compute_params * params,
  10109. const struct ggml_tensor * src0,
  10110. const struct ggml_tensor * src1,
  10111. struct ggml_tensor * dst) {
  10112. switch (src0->type) {
  10113. case GGML_TYPE_F16:
  10114. {
  10115. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10116. } break;
  10117. case GGML_TYPE_F32:
  10118. {
  10119. GGML_ASSERT(false);
  10120. } break;
  10121. default:
  10122. {
  10123. GGML_ASSERT(false);
  10124. } break;
  10125. }
  10126. }
  10127. // ggml_compute_forward_conv_transpose_2d
  10128. static void ggml_compute_forward_conv_transpose_2d(
  10129. const struct ggml_compute_params * params,
  10130. const struct ggml_tensor * src0,
  10131. const struct ggml_tensor * src1,
  10132. struct ggml_tensor * dst) {
  10133. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10134. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10135. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10136. int64_t t0 = ggml_perf_time_us();
  10137. UNUSED(t0);
  10138. GGML_TENSOR_BINARY_OP_LOCALS
  10139. const int ith = params->ith;
  10140. const int nth = params->nth;
  10141. const int nk = ne00*ne01*ne02*ne03;
  10142. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10143. GGML_ASSERT(nb10 == sizeof(float));
  10144. if (params->type == GGML_TASK_INIT) {
  10145. memset(params->wdata, 0, params->wsize);
  10146. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10147. {
  10148. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10149. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10150. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10151. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10152. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10153. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10154. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10155. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10156. }
  10157. }
  10158. }
  10159. }
  10160. }
  10161. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10162. {
  10163. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10164. for (int i12 = 0; i12 < ne12; i12++) {
  10165. for (int i11 = 0; i11 < ne11; i11++) {
  10166. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10167. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10168. for (int i10 = 0; i10 < ne10; i10++) {
  10169. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10170. }
  10171. }
  10172. }
  10173. }
  10174. memset(dst->data, 0, ggml_nbytes(dst));
  10175. return;
  10176. }
  10177. if (params->type == GGML_TASK_FINALIZE) {
  10178. return;
  10179. }
  10180. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10181. // total patches in dst
  10182. const int np = ne2;
  10183. // patches per thread
  10184. const int dp = (np + nth - 1)/nth;
  10185. // patch range for this thread
  10186. const int ip0 = dp*ith;
  10187. const int ip1 = MIN(ip0 + dp, np);
  10188. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10189. ggml_fp16_t * const wdata_src = wdata + nk;
  10190. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10191. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10192. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10193. for (int i11 = 0; i11 < ne11; i11++) {
  10194. for (int i10 = 0; i10 < ne10; i10++) {
  10195. const int i1n = i11*ne10*ne12 + i10*ne12;
  10196. for (int i01 = 0; i01 < ne01; i01++) {
  10197. for (int i00 = 0; i00 < ne00; i00++) {
  10198. float v = 0;
  10199. ggml_vec_dot_f16(ne03, &v,
  10200. wdata_src + i1n,
  10201. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10202. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10203. }
  10204. }
  10205. }
  10206. }
  10207. }
  10208. }
  10209. // ggml_compute_forward_pool_1d_sk_p0
  10210. static void ggml_compute_forward_pool_1d_sk_p0(
  10211. const struct ggml_compute_params * params,
  10212. const enum ggml_op_pool op,
  10213. const struct ggml_tensor * src,
  10214. const int k,
  10215. struct ggml_tensor * dst) {
  10216. assert(src->type == GGML_TYPE_F32);
  10217. assert(params->ith == 0);
  10218. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10219. return;
  10220. }
  10221. const char * cdata = (const char *)src->data;
  10222. const char * const data_end = cdata + ggml_nbytes(src);
  10223. float * drow = (float *)dst->data;
  10224. const int64_t rs = dst->ne[0];
  10225. while (cdata < data_end) {
  10226. const float * const srow = (const float *)cdata;
  10227. int j = 0;
  10228. for (int64_t i = 0; i < rs; ++i) {
  10229. switch (op) {
  10230. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10231. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10232. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10233. }
  10234. for (int ki = 0; ki < k; ++ki) {
  10235. switch (op) {
  10236. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10237. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10238. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10239. }
  10240. ++j;
  10241. }
  10242. switch (op) {
  10243. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10244. case GGML_OP_POOL_MAX: break;
  10245. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10246. }
  10247. }
  10248. cdata += src->nb[1];
  10249. drow += rs;
  10250. }
  10251. }
  10252. // ggml_compute_forward_pool_1d
  10253. static void ggml_compute_forward_pool_1d(
  10254. const struct ggml_compute_params * params,
  10255. const struct ggml_tensor * src0,
  10256. struct ggml_tensor * dst) {
  10257. const int32_t * opts = (const int32_t *)dst->op_params;
  10258. enum ggml_op_pool op = opts[0];
  10259. const int k0 = opts[1];
  10260. const int s0 = opts[2];
  10261. const int p0 = opts[3];
  10262. GGML_ASSERT(p0 == 0); // padding not supported
  10263. GGML_ASSERT(k0 == s0); // only s = k supported
  10264. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10265. }
  10266. // ggml_compute_forward_pool_2d
  10267. static void ggml_compute_forward_pool_2d(
  10268. const struct ggml_compute_params * params,
  10269. const struct ggml_tensor * src,
  10270. struct ggml_tensor * dst) {
  10271. assert(src->type == GGML_TYPE_F32);
  10272. assert(params->ith == 0);
  10273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10274. return;
  10275. }
  10276. const int32_t * opts = (const int32_t *)dst->op_params;
  10277. enum ggml_op_pool op = opts[0];
  10278. const int k0 = opts[1];
  10279. const int k1 = opts[2];
  10280. const int s0 = opts[3];
  10281. const int s1 = opts[4];
  10282. const int p0 = opts[5];
  10283. const int p1 = opts[6];
  10284. const char * cdata = (const char*)src->data;
  10285. const char * const data_end = cdata + ggml_nbytes(src);
  10286. const int64_t px = dst->ne[0];
  10287. const int64_t py = dst->ne[1];
  10288. const int64_t pa = px * py;
  10289. float * dplane = (float *)dst->data;
  10290. const int ka = k0 * k1;
  10291. const int offset0 = -p0;
  10292. const int offset1 = -p1;
  10293. while (cdata < data_end) {
  10294. for (int oy = 0; oy < py; ++oy) {
  10295. float * const drow = dplane + oy * px;
  10296. for (int ox = 0; ox < px; ++ox) {
  10297. float * const out = drow + ox;
  10298. switch (op) {
  10299. case GGML_OP_POOL_AVG: *out = 0; break;
  10300. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10301. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10302. }
  10303. const int ix = offset0 + ox * s0;
  10304. const int iy = offset1 + oy * s1;
  10305. for (int ky = 0; ky < k1; ++ky) {
  10306. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10307. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10308. for (int kx = 0; kx < k0; ++kx) {
  10309. int j = ix + kx;
  10310. if (j < 0 || j >= src->ne[0]) continue;
  10311. switch (op) {
  10312. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10313. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10314. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10315. }
  10316. }
  10317. }
  10318. switch (op) {
  10319. case GGML_OP_POOL_AVG: *out /= ka; break;
  10320. case GGML_OP_POOL_MAX: break;
  10321. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10322. }
  10323. }
  10324. }
  10325. cdata += src->nb[2];
  10326. dplane += pa;
  10327. }
  10328. }
  10329. // ggml_compute_forward_upscale
  10330. static void ggml_compute_forward_upscale_f32(
  10331. const struct ggml_compute_params * params,
  10332. const struct ggml_tensor * src0,
  10333. struct ggml_tensor * dst) {
  10334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10335. return;
  10336. }
  10337. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10338. const int ith = params->ith;
  10339. const int nth = params->nth;
  10340. GGML_TENSOR_UNARY_OP_LOCALS
  10341. const int scale_factor = dst->op_params[0];
  10342. // TODO: optimize
  10343. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10344. const int64_t i03 = i3;
  10345. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10346. const int64_t i02 = i2;
  10347. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10348. const int64_t i01 = i1 / scale_factor;
  10349. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10350. const int64_t i00 = i0 / scale_factor;
  10351. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10352. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10353. *y = *x;
  10354. }
  10355. }
  10356. }
  10357. }
  10358. }
  10359. static void ggml_compute_forward_upscale(
  10360. const struct ggml_compute_params * params,
  10361. const struct ggml_tensor * src0,
  10362. struct ggml_tensor * dst) {
  10363. switch (src0->type) {
  10364. case GGML_TYPE_F32:
  10365. {
  10366. ggml_compute_forward_upscale_f32(params, src0, dst);
  10367. } break;
  10368. default:
  10369. {
  10370. GGML_ASSERT(false);
  10371. } break;
  10372. }
  10373. }
  10374. // ggml_compute_forward_pad
  10375. static void ggml_compute_forward_pad_f32(
  10376. const struct ggml_compute_params * params,
  10377. const struct ggml_tensor * src0,
  10378. struct ggml_tensor * dst) {
  10379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10380. return;
  10381. }
  10382. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10383. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10384. const int ith = params->ith;
  10385. const int nth = params->nth;
  10386. GGML_TENSOR_UNARY_OP_LOCALS
  10387. float * dst_ptr = (float *) dst->data;
  10388. // TODO: optimize
  10389. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10390. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10391. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10392. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10393. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10394. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10395. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10396. dst_ptr[dst_idx] = *src_ptr;
  10397. } else {
  10398. dst_ptr[dst_idx] = 0;
  10399. }
  10400. }
  10401. }
  10402. }
  10403. }
  10404. }
  10405. static void ggml_compute_forward_pad(
  10406. const struct ggml_compute_params * params,
  10407. const struct ggml_tensor * src0,
  10408. struct ggml_tensor * dst) {
  10409. switch (src0->type) {
  10410. case GGML_TYPE_F32:
  10411. {
  10412. ggml_compute_forward_pad_f32(params, src0, dst);
  10413. } break;
  10414. default:
  10415. {
  10416. GGML_ASSERT(false);
  10417. } break;
  10418. }
  10419. }
  10420. // ggml_compute_forward_argsort
  10421. static void ggml_compute_forward_argsort_f32(
  10422. const struct ggml_compute_params * params,
  10423. const struct ggml_tensor * src0,
  10424. struct ggml_tensor * dst) {
  10425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10426. return;
  10427. }
  10428. GGML_TENSOR_UNARY_OP_LOCALS
  10429. GGML_ASSERT(nb0 == sizeof(float));
  10430. const int ith = params->ith;
  10431. const int nth = params->nth;
  10432. const int64_t nr = ggml_nrows(src0);
  10433. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10434. for (int64_t i = ith; i < nr; i += nth) {
  10435. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10436. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10437. for (int64_t j = 0; j < ne0; j++) {
  10438. dst_data[j] = j;
  10439. }
  10440. // C doesn't have a functional sort, so we do a bubble sort instead
  10441. for (int64_t j = 0; j < ne0; j++) {
  10442. for (int64_t k = j + 1; k < ne0; k++) {
  10443. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10444. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10445. int32_t tmp = dst_data[j];
  10446. dst_data[j] = dst_data[k];
  10447. dst_data[k] = tmp;
  10448. }
  10449. }
  10450. }
  10451. }
  10452. }
  10453. static void ggml_compute_forward_argsort(
  10454. const struct ggml_compute_params * params,
  10455. const struct ggml_tensor * src0,
  10456. struct ggml_tensor * dst) {
  10457. switch (src0->type) {
  10458. case GGML_TYPE_F32:
  10459. {
  10460. ggml_compute_forward_argsort_f32(params, src0, dst);
  10461. } break;
  10462. default:
  10463. {
  10464. GGML_ASSERT(false);
  10465. } break;
  10466. }
  10467. }
  10468. // ggml_compute_forward_flash_attn
  10469. static void ggml_compute_forward_flash_attn_f32(
  10470. const struct ggml_compute_params * params,
  10471. const struct ggml_tensor * q,
  10472. const struct ggml_tensor * k,
  10473. const struct ggml_tensor * v,
  10474. const bool masked,
  10475. struct ggml_tensor * dst) {
  10476. int64_t t0 = ggml_perf_time_us();
  10477. UNUSED(t0);
  10478. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10479. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10480. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10481. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10482. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10483. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10484. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10485. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10486. const int ith = params->ith;
  10487. const int nth = params->nth;
  10488. const int64_t D = neq0;
  10489. const int64_t N = neq1;
  10490. const int64_t P = nek1 - N;
  10491. const int64_t M = P + N;
  10492. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10493. GGML_ASSERT(ne0 == D);
  10494. GGML_ASSERT(ne1 == N);
  10495. GGML_ASSERT(P >= 0);
  10496. GGML_ASSERT(nbq0 == sizeof(float));
  10497. GGML_ASSERT(nbk0 == sizeof(float));
  10498. GGML_ASSERT(nbv0 == sizeof(float));
  10499. GGML_ASSERT(neq0 == D);
  10500. GGML_ASSERT(nek0 == D);
  10501. GGML_ASSERT(nev1 == D);
  10502. GGML_ASSERT(neq1 == N);
  10503. GGML_ASSERT(nek1 == N + P);
  10504. GGML_ASSERT(nev1 == D);
  10505. // dst cannot be transposed or permuted
  10506. GGML_ASSERT(nb0 == sizeof(float));
  10507. GGML_ASSERT(nb0 <= nb1);
  10508. GGML_ASSERT(nb1 <= nb2);
  10509. GGML_ASSERT(nb2 <= nb3);
  10510. if (params->type == GGML_TASK_INIT) {
  10511. return;
  10512. }
  10513. if (params->type == GGML_TASK_FINALIZE) {
  10514. return;
  10515. }
  10516. // parallelize by q rows using ggml_vec_dot_f32
  10517. // total rows in q
  10518. const int nr = neq1*neq2*neq3;
  10519. // rows per thread
  10520. const int dr = (nr + nth - 1)/nth;
  10521. // row range for this thread
  10522. const int ir0 = dr*ith;
  10523. const int ir1 = MIN(ir0 + dr, nr);
  10524. const float scale = 1.0f/sqrtf(D);
  10525. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10526. for (int ir = ir0; ir < ir1; ++ir) {
  10527. // q indices
  10528. const int iq3 = ir/(neq2*neq1);
  10529. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10530. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10531. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10532. for (int i = M; i < Mup; ++i) {
  10533. S[i] = -INFINITY;
  10534. }
  10535. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10536. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10537. // k indices
  10538. const int ik3 = iq3;
  10539. const int ik2 = iq2 % nek2;
  10540. const int ik1 = ic;
  10541. // S indices
  10542. const int i1 = ik1;
  10543. ggml_vec_dot_f32(neq0,
  10544. S + i1,
  10545. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10546. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10547. }
  10548. // scale
  10549. ggml_vec_scale_f32(masked_begin, S, scale);
  10550. for (int64_t i = masked_begin; i < M; i++) {
  10551. S[i] = -INFINITY;
  10552. }
  10553. // softmax
  10554. // exclude known -INF S[..] values from max and loop
  10555. // dont forget to set their SW values to zero
  10556. {
  10557. float max = -INFINITY;
  10558. ggml_vec_max_f32(masked_begin, &max, S);
  10559. ggml_float sum = 0.0;
  10560. {
  10561. #ifdef GGML_SOFT_MAX_ACCELERATE
  10562. max = -max;
  10563. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10564. vvexpf(S, S, &Mup);
  10565. ggml_vec_sum_f32(Mup, &sum, S);
  10566. #else
  10567. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10568. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10569. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10570. if (i >= masked_begin) {
  10571. break;
  10572. }
  10573. float * SS = S + i;
  10574. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10575. if (i + j >= masked_begin) {
  10576. break;
  10577. } else if (SS[j] == -INFINITY) {
  10578. SS[j] = 0.0f;
  10579. } else {
  10580. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10581. const float val = expf(SS[j] - max);
  10582. #else
  10583. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10584. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10585. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10586. #endif
  10587. sump[j] += (ggml_float)val;
  10588. SS[j] = val;
  10589. }
  10590. }
  10591. }
  10592. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10593. sum += sump[i];
  10594. }
  10595. #endif
  10596. }
  10597. assert(sum > 0.0);
  10598. sum = 1.0/sum;
  10599. ggml_vec_scale_f32(masked_begin, S, sum);
  10600. #ifndef NDEBUG
  10601. for (int i = 0; i < masked_begin; ++i) {
  10602. assert(!isnan(S[i]));
  10603. assert(!isinf(S[i]));
  10604. }
  10605. #endif
  10606. }
  10607. for (int64_t ic = 0; ic < nev1; ++ic) {
  10608. // dst indices
  10609. const int i1 = iq1;
  10610. const int i2 = iq2;
  10611. const int i3 = iq3;
  10612. // v indices
  10613. const int iv2 = iq2 % nev2;
  10614. const int iv3 = iq3;
  10615. ggml_vec_dot_f32(masked_begin,
  10616. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10617. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10618. S);
  10619. }
  10620. }
  10621. }
  10622. static void ggml_compute_forward_flash_attn_f16(
  10623. const struct ggml_compute_params * params,
  10624. const struct ggml_tensor * q,
  10625. const struct ggml_tensor * k,
  10626. const struct ggml_tensor * v,
  10627. const bool masked,
  10628. struct ggml_tensor * dst) {
  10629. int64_t t0 = ggml_perf_time_us();
  10630. UNUSED(t0);
  10631. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10632. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10633. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10634. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10635. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10636. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10637. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10638. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10639. const int ith = params->ith;
  10640. const int nth = params->nth;
  10641. const int64_t D = neq0;
  10642. const int64_t N = neq1;
  10643. const int64_t P = nek1 - N;
  10644. const int64_t M = P + N;
  10645. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10646. GGML_ASSERT(ne0 == D);
  10647. GGML_ASSERT(ne1 == N);
  10648. GGML_ASSERT(P >= 0);
  10649. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10650. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10651. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10652. GGML_ASSERT(neq0 == D);
  10653. GGML_ASSERT(nek0 == D);
  10654. GGML_ASSERT(nev1 == D);
  10655. GGML_ASSERT(neq1 == N);
  10656. GGML_ASSERT(nek1 == N + P);
  10657. GGML_ASSERT(nev1 == D);
  10658. // dst cannot be transposed or permuted
  10659. GGML_ASSERT(nb0 == sizeof(float));
  10660. GGML_ASSERT(nb0 <= nb1);
  10661. GGML_ASSERT(nb1 <= nb2);
  10662. GGML_ASSERT(nb2 <= nb3);
  10663. if (params->type == GGML_TASK_INIT) {
  10664. return;
  10665. }
  10666. if (params->type == GGML_TASK_FINALIZE) {
  10667. return;
  10668. }
  10669. // parallelize by q rows using ggml_vec_dot_f32
  10670. // total rows in q
  10671. const int nr = neq1*neq2*neq3;
  10672. // rows per thread
  10673. const int dr = (nr + nth - 1)/nth;
  10674. // row range for this thread
  10675. const int ir0 = dr*ith;
  10676. const int ir1 = MIN(ir0 + dr, nr);
  10677. const float scale = 1.0f/sqrtf(D);
  10678. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10679. for (int ir = ir0; ir < ir1; ++ir) {
  10680. // q indices
  10681. const int iq3 = ir/(neq2*neq1);
  10682. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10683. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10684. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10685. for (int i = M; i < Mup; ++i) {
  10686. S[i] = -INFINITY;
  10687. }
  10688. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10689. for (int64_t ic = 0; ic < nek1; ++ic) {
  10690. // k indices
  10691. const int ik3 = iq3;
  10692. const int ik2 = iq2 % nek2;
  10693. const int ik1 = ic;
  10694. // S indices
  10695. const int i1 = ik1;
  10696. ggml_vec_dot_f16(neq0,
  10697. S + i1,
  10698. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10699. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10700. }
  10701. } else {
  10702. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10703. // k indices
  10704. const int ik3 = iq3;
  10705. const int ik2 = iq2 % nek2;
  10706. const int ik1 = ic;
  10707. // S indices
  10708. const int i1 = ik1;
  10709. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10710. S + i1,
  10711. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10712. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10713. }
  10714. }
  10715. // scale
  10716. ggml_vec_scale_f32(nek1, S, scale);
  10717. if (masked) {
  10718. for (int64_t i = P; i < M; i++) {
  10719. if (i > P + iq1) {
  10720. S[i] = -INFINITY;
  10721. }
  10722. }
  10723. }
  10724. // softmax
  10725. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10726. // dont forget to set their S values to zero
  10727. {
  10728. float max = -INFINITY;
  10729. ggml_vec_max_f32(M, &max, S);
  10730. ggml_float sum = 0.0;
  10731. {
  10732. #ifdef GGML_SOFT_MAX_ACCELERATE
  10733. max = -max;
  10734. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10735. vvexpf(S, S, &Mup);
  10736. ggml_vec_sum_f32(Mup, &sum, S);
  10737. #else
  10738. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10739. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10740. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10741. float * SS = S + i;
  10742. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10743. if (SS[j] == -INFINITY) {
  10744. SS[j] = 0.0f;
  10745. } else {
  10746. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10747. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10748. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10749. sump[j] += (ggml_float)val;
  10750. SS[j] = val;
  10751. }
  10752. }
  10753. }
  10754. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10755. sum += sump[i];
  10756. }
  10757. #endif
  10758. }
  10759. assert(sum > 0.0);
  10760. sum = 1.0/sum;
  10761. ggml_vec_scale_f32(M, S, sum);
  10762. #ifndef NDEBUG
  10763. for (int i = 0; i < M; ++i) {
  10764. assert(!isnan(S[i]));
  10765. assert(!isinf(S[i]));
  10766. }
  10767. #endif
  10768. }
  10769. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10770. for (int64_t i = 0; i < M; i++) {
  10771. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10772. }
  10773. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10774. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10775. for (int64_t ic = 0; ic < nev1; ++ic) {
  10776. // dst indices
  10777. const int i1 = iq1;
  10778. const int i2 = iq2;
  10779. const int i3 = iq3;
  10780. // v indices
  10781. const int iv2 = iq2 % nev2;
  10782. const int iv3 = iq3;
  10783. ggml_vec_dot_f16(nev0,
  10784. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10785. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10786. S16);
  10787. }
  10788. } else {
  10789. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10790. // dst indices
  10791. const int i1 = iq1;
  10792. const int i2 = iq2;
  10793. const int i3 = iq3;
  10794. // v indices
  10795. const int iv2 = iq2 % nev2;
  10796. const int iv3 = iq3;
  10797. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10798. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10799. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10800. S16);
  10801. }
  10802. }
  10803. }
  10804. }
  10805. static void ggml_compute_forward_flash_attn(
  10806. const struct ggml_compute_params * params,
  10807. const struct ggml_tensor * q,
  10808. const struct ggml_tensor * k,
  10809. const struct ggml_tensor * v,
  10810. const bool masked,
  10811. struct ggml_tensor * dst) {
  10812. switch (q->type) {
  10813. case GGML_TYPE_F16:
  10814. {
  10815. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10816. } break;
  10817. case GGML_TYPE_F32:
  10818. {
  10819. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10820. } break;
  10821. default:
  10822. {
  10823. GGML_ASSERT(false);
  10824. } break;
  10825. }
  10826. }
  10827. // ggml_compute_forward_flash_ff
  10828. static void ggml_compute_forward_flash_ff_f16(
  10829. const struct ggml_compute_params * params,
  10830. const struct ggml_tensor * a, // F16
  10831. const struct ggml_tensor * b0, // F16 fc_w
  10832. const struct ggml_tensor * b1, // F32 fc_b
  10833. const struct ggml_tensor * c0, // F16 proj_w
  10834. const struct ggml_tensor * c1, // F32 proj_b
  10835. struct ggml_tensor * dst) {
  10836. int64_t t0 = ggml_perf_time_us();
  10837. UNUSED(t0);
  10838. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10839. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10840. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10841. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10842. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10843. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10844. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10845. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10846. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10847. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10848. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10849. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10850. const int ith = params->ith;
  10851. const int nth = params->nth;
  10852. const int64_t D = nea0;
  10853. //const int64_t N = nea1;
  10854. const int64_t M = neb01;
  10855. GGML_ASSERT(ne0 == nea0);
  10856. GGML_ASSERT(ne1 == nea1);
  10857. GGML_ASSERT(ne2 == nea2);
  10858. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10859. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10860. GGML_ASSERT(nbb10 == sizeof(float));
  10861. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10862. GGML_ASSERT(nbc10 == sizeof(float));
  10863. GGML_ASSERT(neb00 == D);
  10864. GGML_ASSERT(neb01 == M);
  10865. GGML_ASSERT(neb10 == M);
  10866. GGML_ASSERT(neb11 == 1);
  10867. GGML_ASSERT(nec00 == M);
  10868. GGML_ASSERT(nec01 == D);
  10869. GGML_ASSERT(nec10 == D);
  10870. GGML_ASSERT(nec11 == 1);
  10871. // dst cannot be transposed or permuted
  10872. GGML_ASSERT(nb0 == sizeof(float));
  10873. GGML_ASSERT(nb0 <= nb1);
  10874. GGML_ASSERT(nb1 <= nb2);
  10875. GGML_ASSERT(nb2 <= nb3);
  10876. if (params->type == GGML_TASK_INIT) {
  10877. return;
  10878. }
  10879. if (params->type == GGML_TASK_FINALIZE) {
  10880. return;
  10881. }
  10882. // parallelize by a rows using ggml_vec_dot_f32
  10883. // total rows in a
  10884. const int nr = nea1*nea2*nea3;
  10885. // rows per thread
  10886. const int dr = (nr + nth - 1)/nth;
  10887. // row range for this thread
  10888. const int ir0 = dr*ith;
  10889. const int ir1 = MIN(ir0 + dr, nr);
  10890. for (int ir = ir0; ir < ir1; ++ir) {
  10891. // a indices
  10892. const int ia3 = ir/(nea2*nea1);
  10893. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10894. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10895. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10896. for (int64_t ic = 0; ic < neb01; ++ic) {
  10897. // b0 indices
  10898. const int ib03 = ia3;
  10899. const int ib02 = ia2;
  10900. const int ib01 = ic;
  10901. // S indices
  10902. const int i1 = ib01;
  10903. ggml_vec_dot_f16(nea0,
  10904. S + i1,
  10905. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10906. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10907. }
  10908. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10909. //ggml_vec_gelu_f32(neb01, S, S);
  10910. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10911. for (int64_t i = 0; i < M; i++) {
  10912. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10913. }
  10914. ggml_vec_gelu_f16(neb01, S16, S16);
  10915. {
  10916. // dst indices
  10917. const int i1 = ia1;
  10918. const int i2 = ia2;
  10919. const int i3 = ia3;
  10920. for (int64_t ic = 0; ic < nec01; ++ic) {
  10921. ggml_vec_dot_f16(neb01,
  10922. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10923. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10924. S16);
  10925. }
  10926. ggml_vec_add_f32(nec01,
  10927. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10928. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10929. (float *) c1->data);
  10930. }
  10931. }
  10932. }
  10933. static void ggml_compute_forward_flash_ff(
  10934. const struct ggml_compute_params * params,
  10935. const struct ggml_tensor * a,
  10936. const struct ggml_tensor * b0,
  10937. const struct ggml_tensor * b1,
  10938. const struct ggml_tensor * c0,
  10939. const struct ggml_tensor * c1,
  10940. struct ggml_tensor * dst) {
  10941. switch (b0->type) {
  10942. case GGML_TYPE_F16:
  10943. {
  10944. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10945. } break;
  10946. case GGML_TYPE_F32:
  10947. {
  10948. GGML_ASSERT(false); // TODO
  10949. } break;
  10950. default:
  10951. {
  10952. GGML_ASSERT(false);
  10953. } break;
  10954. }
  10955. }
  10956. // ggml_compute_forward_flash_attn_back
  10957. static void ggml_compute_forward_flash_attn_back_f32(
  10958. const struct ggml_compute_params * params,
  10959. const struct ggml_tensor * q,
  10960. const struct ggml_tensor * k,
  10961. const struct ggml_tensor * v,
  10962. const struct ggml_tensor * d,
  10963. const bool masked,
  10964. struct ggml_tensor * dst) {
  10965. int64_t t0 = ggml_perf_time_us();
  10966. UNUSED(t0);
  10967. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10968. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10969. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10970. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10971. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10972. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10973. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10974. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10975. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10976. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10977. const int ith = params->ith;
  10978. const int nth = params->nth;
  10979. const int64_t D = neq0;
  10980. const int64_t N = neq1;
  10981. const int64_t P = nek1 - N;
  10982. const int64_t M = P + N;
  10983. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10984. const int mxDM = MAX(D, Mup);
  10985. // GGML_ASSERT(ne0 == D);
  10986. // GGML_ASSERT(ne1 == N);
  10987. GGML_ASSERT(P >= 0);
  10988. GGML_ASSERT(nbq0 == sizeof(float));
  10989. GGML_ASSERT(nbk0 == sizeof(float));
  10990. GGML_ASSERT(nbv0 == sizeof(float));
  10991. GGML_ASSERT(neq0 == D);
  10992. GGML_ASSERT(nek0 == D);
  10993. GGML_ASSERT(nev1 == D);
  10994. GGML_ASSERT(ned0 == D);
  10995. GGML_ASSERT(neq1 == N);
  10996. GGML_ASSERT(nek1 == N + P);
  10997. GGML_ASSERT(nev1 == D);
  10998. GGML_ASSERT(ned1 == N);
  10999. // dst cannot be transposed or permuted
  11000. GGML_ASSERT(nb0 == sizeof(float));
  11001. GGML_ASSERT(nb0 <= nb1);
  11002. GGML_ASSERT(nb1 <= nb2);
  11003. GGML_ASSERT(nb2 <= nb3);
  11004. if (params->type == GGML_TASK_INIT) {
  11005. if (ith == 0) {
  11006. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11007. }
  11008. return;
  11009. }
  11010. if (params->type == GGML_TASK_FINALIZE) {
  11011. return;
  11012. }
  11013. const int64_t elem_q = ggml_nelements(q);
  11014. const int64_t elem_k = ggml_nelements(k);
  11015. enum ggml_type result_type = dst->type;
  11016. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11017. const size_t tsize = ggml_type_size(result_type);
  11018. const size_t offs_q = 0;
  11019. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11020. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11021. void * grad_q = (char *) dst->data;
  11022. void * grad_k = (char *) dst->data + offs_k;
  11023. void * grad_v = (char *) dst->data + offs_v;
  11024. const size_t nbgq1 = nb0*neq0;
  11025. const size_t nbgq2 = nb0*neq0*neq1;
  11026. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11027. const size_t nbgk1 = nb0*nek0;
  11028. const size_t nbgk2 = nb0*nek0*nek1;
  11029. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11030. const size_t nbgv1 = nb0*nev0;
  11031. const size_t nbgv2 = nb0*nev0*nev1;
  11032. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11033. // parallelize by k rows using ggml_vec_dot_f32
  11034. // total rows in k
  11035. const int nr = nek2*nek3;
  11036. // rows per thread
  11037. const int dr = (nr + nth - 1)/nth;
  11038. // row range for this thread
  11039. const int ir0 = dr*ith;
  11040. const int ir1 = MIN(ir0 + dr, nr);
  11041. const float scale = 1.0f/sqrtf(D);
  11042. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11043. // how often k2 (and v2) is repeated in q2
  11044. int nrep = neq2/nek2;
  11045. for (int ir = ir0; ir < ir1; ++ir) {
  11046. // q indices
  11047. const int ik3 = ir/(nek2);
  11048. const int ik2 = ir - ik3*nek2;
  11049. const int iq3 = ik3;
  11050. const int id3 = ik3;
  11051. const int iv3 = ik3;
  11052. const int iv2 = ik2;
  11053. for (int irep = 0; irep < nrep; ++irep) {
  11054. const int iq2 = ik2 + irep*nek2;
  11055. const int id2 = iq2;
  11056. // (ik2 + irep*nek2) % nek2 == ik2
  11057. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11058. const int id1 = iq1;
  11059. // not sure about CACHE_LINE_SIZE_F32..
  11060. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11061. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11062. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11063. for (int i = M; i < Mup; ++i) {
  11064. S[i] = -INFINITY;
  11065. }
  11066. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11067. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11068. // k indices
  11069. const int ik1 = ic;
  11070. // S indices
  11071. const int i1 = ik1;
  11072. ggml_vec_dot_f32(neq0,
  11073. S + i1,
  11074. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11075. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11076. }
  11077. // scale
  11078. ggml_vec_scale_f32(masked_begin, S, scale);
  11079. for (int64_t i = masked_begin; i < M; i++) {
  11080. S[i] = -INFINITY;
  11081. }
  11082. // softmax
  11083. // exclude known -INF S[..] values from max and loop
  11084. // dont forget to set their SM values to zero
  11085. {
  11086. float max = -INFINITY;
  11087. ggml_vec_max_f32(masked_begin, &max, S);
  11088. ggml_float sum = 0.0;
  11089. {
  11090. #ifdef GGML_SOFT_MAX_ACCELERATE
  11091. max = -max;
  11092. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11093. vvexpf(SM, SM, &Mup);
  11094. ggml_vec_sum_f32(Mup, &sum, SM);
  11095. #else
  11096. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11097. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11098. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11099. if (i >= masked_begin) {
  11100. break;
  11101. }
  11102. float * SR = S + i;
  11103. float * SW = SM + i;
  11104. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11105. if (i + j >= masked_begin) {
  11106. break;
  11107. } else if (SR[j] == -INFINITY) {
  11108. SW[j] = 0.0f;
  11109. } else {
  11110. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11111. const float val = expf(SR[j] - max);
  11112. #else
  11113. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11114. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11115. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11116. #endif
  11117. sump[j] += (ggml_float)val;
  11118. SW[j] = val;
  11119. }
  11120. }
  11121. }
  11122. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11123. sum += sump[i];
  11124. }
  11125. #endif
  11126. }
  11127. assert(sum > 0.0);
  11128. sum = 1.0/sum;
  11129. ggml_vec_scale_f32(masked_begin, SM, sum);
  11130. }
  11131. // step-by-step explanation
  11132. {
  11133. // forward-process shape grads from backward process
  11134. // parallel_for ik2,ik3:
  11135. // for irep:
  11136. // iq2 = ik2 + irep*nek2
  11137. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11138. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11139. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11140. // for iq1:
  11141. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11142. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11143. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11144. // S0 = -Inf [D,1,1,1]
  11145. // ~S1[i] = dot(kcur[:D,i], qcur)
  11146. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11147. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11148. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11149. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11150. // ~S5[i] = dot(vcur[:,i], S4)
  11151. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11152. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11153. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11154. // dst backward-/ grad[dst] = d
  11155. //
  11156. // output gradients with their dependencies:
  11157. //
  11158. // grad[kcur] = grad[S1].T @ qcur
  11159. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11160. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11161. // grad[S4] = grad[S5] @ vcur
  11162. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11163. // grad[qcur] = grad[S1] @ kcur
  11164. // grad[vcur] = grad[S5].T @ S4
  11165. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11166. //
  11167. // in post-order:
  11168. //
  11169. // S1 = qcur @ kcur.T
  11170. // S2 = S1 * scale
  11171. // S3 = diag_mask_inf(S2, P)
  11172. // S4 = softmax(S3)
  11173. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11174. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11175. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11176. // grad[qcur] = grad[S1] @ kcur
  11177. // grad[kcur] = grad[S1].T @ qcur
  11178. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11179. //
  11180. // using less variables (SM=S4):
  11181. //
  11182. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11183. // SM = softmax(S)
  11184. // S = d[:D,iq1,iq2,iq3] @ vcur
  11185. // dot_SM_gradSM = dot(SM, S)
  11186. // S = SM * (S - dot(SM, S))
  11187. // S = diag_mask_zero(S, P) * scale
  11188. //
  11189. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11190. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11191. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11192. }
  11193. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11194. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11195. // for ic:
  11196. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11197. // exclude known future zero S[..] values from operation
  11198. ggml_vec_set_f32(masked_begin, S, 0);
  11199. for (int64_t ic = 0; ic < D; ++ic) {
  11200. ggml_vec_mad_f32(masked_begin,
  11201. S,
  11202. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11203. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11204. }
  11205. // S = SM * (S - dot(SM, S))
  11206. float dot_SM_gradSM = 0;
  11207. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11208. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11209. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11210. // S = diag_mask_zero(S, P) * scale
  11211. // already done by above ggml_vec_set_f32
  11212. // exclude known zero S[..] values from operation
  11213. ggml_vec_scale_f32(masked_begin, S, scale);
  11214. // S shape [M,1]
  11215. // SM shape [M,1]
  11216. // kcur shape [D,M]
  11217. // qcur shape [D,1]
  11218. // vcur shape [M,D]
  11219. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11220. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11221. // for ic:
  11222. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11223. // exclude known zero S[..] values from loop
  11224. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11225. ggml_vec_mad_f32(D,
  11226. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11227. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11228. S[ic]);
  11229. }
  11230. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11231. // for ic:
  11232. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11233. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11234. // exclude known zero S[..] values from loop
  11235. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11236. ggml_vec_mad_f32(D,
  11237. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11238. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11239. S[ic]);
  11240. }
  11241. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11242. // for ic:
  11243. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11244. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11245. // exclude known zero SM[..] values from mad
  11246. for (int64_t ic = 0; ic < D; ++ic) {
  11247. ggml_vec_mad_f32(masked_begin,
  11248. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11249. SM,
  11250. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11251. }
  11252. }
  11253. }
  11254. }
  11255. }
  11256. static void ggml_compute_forward_flash_attn_back(
  11257. const struct ggml_compute_params * params,
  11258. const struct ggml_tensor * q,
  11259. const struct ggml_tensor * k,
  11260. const struct ggml_tensor * v,
  11261. const struct ggml_tensor * d,
  11262. const bool masked,
  11263. struct ggml_tensor * dst) {
  11264. switch (q->type) {
  11265. case GGML_TYPE_F32:
  11266. {
  11267. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11268. } break;
  11269. default:
  11270. {
  11271. GGML_ASSERT(false);
  11272. } break;
  11273. }
  11274. }
  11275. // ggml_compute_forward_win_part
  11276. static void ggml_compute_forward_win_part_f32(
  11277. const struct ggml_compute_params * params,
  11278. const struct ggml_tensor * src0,
  11279. struct ggml_tensor * dst) {
  11280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11281. return;
  11282. }
  11283. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11285. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11286. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11287. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11288. assert(ne00 == ne0);
  11289. assert(ne3 == nep0*nep1);
  11290. // TODO: optimize / multi-thread
  11291. for (int py = 0; py < nep1; ++py) {
  11292. for (int px = 0; px < nep0; ++px) {
  11293. const int64_t i3 = py*nep0 + px;
  11294. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11295. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11296. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11297. const int64_t i02 = py*w + i2;
  11298. const int64_t i01 = px*w + i1;
  11299. const int64_t i00 = i0;
  11300. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11301. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11302. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11303. ((float *) dst->data)[i] = 0.0f;
  11304. } else {
  11305. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11306. }
  11307. }
  11308. }
  11309. }
  11310. }
  11311. }
  11312. }
  11313. static void ggml_compute_forward_win_part(
  11314. const struct ggml_compute_params * params,
  11315. const struct ggml_tensor * src0,
  11316. struct ggml_tensor * dst) {
  11317. switch (src0->type) {
  11318. case GGML_TYPE_F32:
  11319. {
  11320. ggml_compute_forward_win_part_f32(params, src0, dst);
  11321. } break;
  11322. default:
  11323. {
  11324. GGML_ASSERT(false);
  11325. } break;
  11326. }
  11327. }
  11328. // ggml_compute_forward_win_unpart
  11329. static void ggml_compute_forward_win_unpart_f32(
  11330. const struct ggml_compute_params * params,
  11331. const struct ggml_tensor * src0,
  11332. struct ggml_tensor * dst) {
  11333. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11334. return;
  11335. }
  11336. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11337. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11338. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11339. // padding
  11340. const int px = (w - ne1%w)%w;
  11341. //const int py = (w - ne2%w)%w;
  11342. const int npx = (px + ne1)/w;
  11343. //const int npy = (py + ne2)/w;
  11344. assert(ne0 == ne00);
  11345. // TODO: optimize / multi-thread
  11346. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11347. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11348. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11349. const int ip2 = i2/w;
  11350. const int ip1 = i1/w;
  11351. const int64_t i02 = i2%w;
  11352. const int64_t i01 = i1%w;
  11353. const int64_t i00 = i0;
  11354. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11355. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11356. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11357. }
  11358. }
  11359. }
  11360. }
  11361. static void ggml_compute_forward_win_unpart(
  11362. const struct ggml_compute_params * params,
  11363. const struct ggml_tensor * src0,
  11364. struct ggml_tensor * dst) {
  11365. switch (src0->type) {
  11366. case GGML_TYPE_F32:
  11367. {
  11368. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11369. } break;
  11370. default:
  11371. {
  11372. GGML_ASSERT(false);
  11373. } break;
  11374. }
  11375. }
  11376. //gmml_compute_forward_unary
  11377. static void ggml_compute_forward_unary(
  11378. const struct ggml_compute_params * params,
  11379. const struct ggml_tensor * src0,
  11380. struct ggml_tensor * dst) {
  11381. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11382. switch (op) {
  11383. case GGML_UNARY_OP_ABS:
  11384. {
  11385. ggml_compute_forward_abs(params, src0, dst);
  11386. } break;
  11387. case GGML_UNARY_OP_SGN:
  11388. {
  11389. ggml_compute_forward_sgn(params, src0, dst);
  11390. } break;
  11391. case GGML_UNARY_OP_NEG:
  11392. {
  11393. ggml_compute_forward_neg(params, src0, dst);
  11394. } break;
  11395. case GGML_UNARY_OP_STEP:
  11396. {
  11397. ggml_compute_forward_step(params, src0, dst);
  11398. } break;
  11399. case GGML_UNARY_OP_TANH:
  11400. {
  11401. ggml_compute_forward_tanh(params, src0, dst);
  11402. } break;
  11403. case GGML_UNARY_OP_ELU:
  11404. {
  11405. ggml_compute_forward_elu(params, src0, dst);
  11406. } break;
  11407. case GGML_UNARY_OP_RELU:
  11408. {
  11409. ggml_compute_forward_relu(params, src0, dst);
  11410. } break;
  11411. case GGML_UNARY_OP_GELU:
  11412. {
  11413. ggml_compute_forward_gelu(params, src0, dst);
  11414. } break;
  11415. case GGML_UNARY_OP_GELU_QUICK:
  11416. {
  11417. ggml_compute_forward_gelu_quick(params, src0, dst);
  11418. } break;
  11419. case GGML_UNARY_OP_SILU:
  11420. {
  11421. ggml_compute_forward_silu(params, src0, dst);
  11422. } break;
  11423. default:
  11424. {
  11425. GGML_ASSERT(false);
  11426. } break;
  11427. }
  11428. }
  11429. // ggml_compute_forward_get_rel_pos
  11430. static void ggml_compute_forward_get_rel_pos_f16(
  11431. const struct ggml_compute_params * params,
  11432. const struct ggml_tensor * src0,
  11433. struct ggml_tensor * dst) {
  11434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11435. return;
  11436. }
  11437. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11438. GGML_TENSOR_UNARY_OP_LOCALS
  11439. const int64_t w = ne1;
  11440. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11441. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11442. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11443. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11444. const int64_t pos = (w - i1 - 1) + i2;
  11445. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11446. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11447. }
  11448. }
  11449. }
  11450. }
  11451. static void ggml_compute_forward_get_rel_pos(
  11452. const struct ggml_compute_params * params,
  11453. const struct ggml_tensor * src0,
  11454. struct ggml_tensor * dst) {
  11455. switch (src0->type) {
  11456. case GGML_TYPE_F16:
  11457. {
  11458. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11459. } break;
  11460. default:
  11461. {
  11462. GGML_ASSERT(false);
  11463. } break;
  11464. }
  11465. }
  11466. // ggml_compute_forward_add_rel_pos
  11467. static void ggml_compute_forward_add_rel_pos_f32(
  11468. const struct ggml_compute_params * params,
  11469. const struct ggml_tensor * src0,
  11470. const struct ggml_tensor * src1,
  11471. const struct ggml_tensor * src2,
  11472. struct ggml_tensor * dst) {
  11473. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11474. if (!inplace && params->type == GGML_TASK_INIT) {
  11475. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11476. return;
  11477. }
  11478. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11479. return;
  11480. }
  11481. int64_t t0 = ggml_perf_time_us();
  11482. UNUSED(t0);
  11483. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11484. float * src1_data = (float *) src1->data;
  11485. float * src2_data = (float *) src2->data;
  11486. float * dst_data = (float *) dst->data;
  11487. const int64_t ne10 = src1->ne[0];
  11488. const int64_t ne11 = src1->ne[1];
  11489. const int64_t ne12 = src1->ne[2];
  11490. const int64_t ne13 = src1->ne[3];
  11491. const int ith = params->ith;
  11492. const int nth = params->nth;
  11493. // total patches in dst
  11494. const int np = ne13;
  11495. // patches per thread
  11496. const int dp = (np + nth - 1)/nth;
  11497. // patch range for this thread
  11498. const int ip0 = dp*ith;
  11499. const int ip1 = MIN(ip0 + dp, np);
  11500. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11501. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11502. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11503. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11504. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11505. const int64_t jp0 = jp1 + i10;
  11506. const float src1_e = src1_data[jp0];
  11507. const float src2_e = src2_data[jp0];
  11508. const int64_t jdh = jp0 * ne10;
  11509. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11510. for (int64_t j = 0; j < ne10; ++j) {
  11511. dst_data[jdh + j ] += src2_e;
  11512. dst_data[jdw + j*ne10] += src1_e;
  11513. }
  11514. }
  11515. }
  11516. }
  11517. }
  11518. }
  11519. static void ggml_compute_forward_add_rel_pos(
  11520. const struct ggml_compute_params * params,
  11521. const struct ggml_tensor * src0,
  11522. const struct ggml_tensor * src1,
  11523. const struct ggml_tensor * src2,
  11524. struct ggml_tensor * dst) {
  11525. switch (src0->type) {
  11526. case GGML_TYPE_F32:
  11527. {
  11528. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11529. } break;
  11530. default:
  11531. {
  11532. GGML_ASSERT(false);
  11533. } break;
  11534. }
  11535. }
  11536. // ggml_compute_forward_map_unary
  11537. static void ggml_compute_forward_map_unary_f32(
  11538. const struct ggml_compute_params * params,
  11539. const struct ggml_tensor * src0,
  11540. struct ggml_tensor * dst,
  11541. const ggml_unary_op_f32_t fun) {
  11542. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11544. return;
  11545. }
  11546. const int n = ggml_nrows(src0);
  11547. const int nc = src0->ne[0];
  11548. assert( dst->nb[0] == sizeof(float));
  11549. assert(src0->nb[0] == sizeof(float));
  11550. for (int i = 0; i < n; i++) {
  11551. fun(nc,
  11552. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11553. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11554. }
  11555. }
  11556. static void ggml_compute_forward_map_unary(
  11557. const struct ggml_compute_params * params,
  11558. const struct ggml_tensor * src0,
  11559. struct ggml_tensor * dst,
  11560. const ggml_unary_op_f32_t fun) {
  11561. switch (src0->type) {
  11562. case GGML_TYPE_F32:
  11563. {
  11564. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11565. } break;
  11566. default:
  11567. {
  11568. GGML_ASSERT(false);
  11569. } break;
  11570. }
  11571. }
  11572. // ggml_compute_forward_map_binary
  11573. static void ggml_compute_forward_map_binary_f32(
  11574. const struct ggml_compute_params * params,
  11575. const struct ggml_tensor * src0,
  11576. const struct ggml_tensor * src1,
  11577. struct ggml_tensor * dst,
  11578. const ggml_binary_op_f32_t fun) {
  11579. assert(params->ith == 0);
  11580. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11582. return;
  11583. }
  11584. const int n = ggml_nrows(src0);
  11585. const int nc = src0->ne[0];
  11586. assert( dst->nb[0] == sizeof(float));
  11587. assert(src0->nb[0] == sizeof(float));
  11588. assert(src1->nb[0] == sizeof(float));
  11589. for (int i = 0; i < n; i++) {
  11590. fun(nc,
  11591. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11592. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11593. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11594. }
  11595. }
  11596. static void ggml_compute_forward_map_binary(
  11597. const struct ggml_compute_params * params,
  11598. const struct ggml_tensor * src0,
  11599. const struct ggml_tensor * src1,
  11600. struct ggml_tensor * dst,
  11601. const ggml_binary_op_f32_t fun) {
  11602. switch (src0->type) {
  11603. case GGML_TYPE_F32:
  11604. {
  11605. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11606. } break;
  11607. default:
  11608. {
  11609. GGML_ASSERT(false);
  11610. } break;
  11611. }
  11612. }
  11613. // ggml_compute_forward_map_custom1
  11614. static void ggml_compute_forward_map_custom1_f32(
  11615. const struct ggml_compute_params * params,
  11616. const struct ggml_tensor * a,
  11617. struct ggml_tensor * dst,
  11618. const ggml_custom1_op_f32_t fun) {
  11619. assert(params->ith == 0);
  11620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11621. return;
  11622. }
  11623. fun(dst, a);
  11624. }
  11625. // ggml_compute_forward_map_custom2
  11626. static void ggml_compute_forward_map_custom2_f32(
  11627. const struct ggml_compute_params * params,
  11628. const struct ggml_tensor * a,
  11629. const struct ggml_tensor * b,
  11630. struct ggml_tensor * dst,
  11631. const ggml_custom2_op_f32_t fun) {
  11632. assert(params->ith == 0);
  11633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11634. return;
  11635. }
  11636. fun(dst, a, b);
  11637. }
  11638. // ggml_compute_forward_map_custom3
  11639. static void ggml_compute_forward_map_custom3_f32(
  11640. const struct ggml_compute_params * params,
  11641. const struct ggml_tensor * a,
  11642. const struct ggml_tensor * b,
  11643. const struct ggml_tensor * c,
  11644. struct ggml_tensor * dst,
  11645. const ggml_custom3_op_f32_t fun) {
  11646. assert(params->ith == 0);
  11647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11648. return;
  11649. }
  11650. fun(dst, a, b, c);
  11651. }
  11652. // ggml_compute_forward_map_custom1
  11653. static void ggml_compute_forward_map_custom1(
  11654. const struct ggml_compute_params * params,
  11655. const struct ggml_tensor * a,
  11656. struct ggml_tensor * dst) {
  11657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11658. return;
  11659. }
  11660. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11661. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11662. }
  11663. // ggml_compute_forward_map_custom2
  11664. static void ggml_compute_forward_map_custom2(
  11665. const struct ggml_compute_params * params,
  11666. const struct ggml_tensor * a,
  11667. const struct ggml_tensor * b,
  11668. struct ggml_tensor * dst) {
  11669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11670. return;
  11671. }
  11672. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11673. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11674. }
  11675. // ggml_compute_forward_map_custom3
  11676. static void ggml_compute_forward_map_custom3(
  11677. const struct ggml_compute_params * params,
  11678. const struct ggml_tensor * a,
  11679. const struct ggml_tensor * b,
  11680. const struct ggml_tensor * c,
  11681. struct ggml_tensor * dst) {
  11682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11683. return;
  11684. }
  11685. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11686. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11687. }
  11688. // ggml_compute_forward_cross_entropy_loss
  11689. static void ggml_compute_forward_cross_entropy_loss_f32(
  11690. const struct ggml_compute_params * params,
  11691. const struct ggml_tensor * src0,
  11692. const struct ggml_tensor * src1,
  11693. struct ggml_tensor * dst) {
  11694. GGML_ASSERT(ggml_is_contiguous(src0));
  11695. GGML_ASSERT(ggml_is_contiguous(src1));
  11696. GGML_ASSERT(ggml_is_scalar(dst));
  11697. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11698. const int ith = params->ith;
  11699. const int nth = params->nth;
  11700. float * sums = (float *) params->wdata;
  11701. // TODO: handle transposed/permuted matrices
  11702. const int nc = src0->ne[0];
  11703. const int nr = ggml_nrows(src0);
  11704. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11705. if (params->type == GGML_TASK_INIT) {
  11706. if (ith == 0) {
  11707. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11708. }
  11709. return;
  11710. }
  11711. if (params->type == GGML_TASK_FINALIZE) {
  11712. if (ith == 0) {
  11713. float * dp = (float *) dst->data;
  11714. ggml_vec_sum_f32(nth, dp, sums);
  11715. dp[0] *= -1.0f / (float) nr;
  11716. }
  11717. return;
  11718. }
  11719. const double eps = 1e-9;
  11720. // rows per thread
  11721. const int dr = (nr + nth - 1)/nth;
  11722. // row range for this thread
  11723. const int ir0 = dr*ith;
  11724. const int ir1 = MIN(ir0 + dr, nr);
  11725. for (int i1 = ir0; i1 < ir1; i1++) {
  11726. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11727. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11728. float * st = ((float *) params->wdata) + nth + ith*nc;
  11729. #ifndef NDEBUG
  11730. for (int i = 0; i < nc; ++i) {
  11731. //printf("p[%d] = %f\n", i, p[i]);
  11732. assert(!isnan(s0[i]));
  11733. assert(!isnan(s1[i]));
  11734. }
  11735. #endif
  11736. // soft_max
  11737. ggml_float sum = 0.0;
  11738. {
  11739. float max = -INFINITY;
  11740. ggml_vec_max_f32(nc, &max, s0);
  11741. uint16_t scvt; UNUSED(scvt);
  11742. for (int i = 0; i < nc; i++) {
  11743. if (s0[i] == -INFINITY) {
  11744. st[i] = 0.0f;
  11745. } else {
  11746. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11747. const float s = s0[i] - max;
  11748. const float val = expf(s);
  11749. #else
  11750. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11751. memcpy(&scvt, &s, sizeof(scvt));
  11752. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11753. #endif
  11754. sum += (ggml_float)val;
  11755. st[i] = val;
  11756. }
  11757. }
  11758. assert(sum > 0.0);
  11759. // sum = 1.0/sum;
  11760. }
  11761. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11762. sum = (1.0 - eps) / sum;
  11763. ggml_vec_scale_f32(nc, st, sum);
  11764. ggml_vec_add1_f32(nc, st, st, eps);
  11765. ggml_vec_log_f32(nc, st, st);
  11766. ggml_vec_mul_f32(nc, st, st, s1);
  11767. float st_sum = 0;
  11768. ggml_vec_sum_f32(nc, &st_sum, st);
  11769. sums[ith] += st_sum;
  11770. #ifndef NDEBUG
  11771. for (int i = 0; i < nc; ++i) {
  11772. assert(!isnan(st[i]));
  11773. assert(!isinf(st[i]));
  11774. }
  11775. #endif
  11776. }
  11777. }
  11778. static void ggml_compute_forward_cross_entropy_loss(
  11779. const struct ggml_compute_params * params,
  11780. const struct ggml_tensor * src0,
  11781. const struct ggml_tensor * src1,
  11782. struct ggml_tensor * dst) {
  11783. switch (src0->type) {
  11784. case GGML_TYPE_F32:
  11785. {
  11786. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11787. } break;
  11788. default:
  11789. {
  11790. GGML_ASSERT(false);
  11791. } break;
  11792. }
  11793. }
  11794. // ggml_compute_forward_cross_entropy_loss_back
  11795. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11796. const struct ggml_compute_params * params,
  11797. const struct ggml_tensor * src0,
  11798. const struct ggml_tensor * src1,
  11799. const struct ggml_tensor * opt0,
  11800. struct ggml_tensor * dst) {
  11801. GGML_ASSERT(ggml_is_contiguous(dst));
  11802. GGML_ASSERT(ggml_is_contiguous(src0));
  11803. GGML_ASSERT(ggml_is_contiguous(src1));
  11804. GGML_ASSERT(ggml_is_contiguous(opt0));
  11805. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11806. const int64_t ith = params->ith;
  11807. const int64_t nth = params->nth;
  11808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11809. return;
  11810. }
  11811. const double eps = 1e-9;
  11812. // TODO: handle transposed/permuted matrices
  11813. const int64_t nc = src0->ne[0];
  11814. const int64_t nr = ggml_nrows(src0);
  11815. // rows per thread
  11816. const int64_t dr = (nr + nth - 1)/nth;
  11817. // row range for this thread
  11818. const int64_t ir0 = dr*ith;
  11819. const int64_t ir1 = MIN(ir0 + dr, nr);
  11820. float * d = (float *) opt0->data;
  11821. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11822. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11823. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11824. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11825. #ifndef NDEBUG
  11826. for (int i = 0; i < nc; ++i) {
  11827. //printf("p[%d] = %f\n", i, p[i]);
  11828. assert(!isnan(s0[i]));
  11829. assert(!isnan(s1[i]));
  11830. }
  11831. #endif
  11832. // soft_max
  11833. ggml_float sum = 0.0;
  11834. {
  11835. float max = -INFINITY;
  11836. ggml_vec_max_f32(nc, &max, s0);
  11837. uint16_t scvt; UNUSED(scvt);
  11838. for (int i = 0; i < nc; i++) {
  11839. if (s0[i] == -INFINITY) {
  11840. ds0[i] = 0.0f;
  11841. } else {
  11842. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11843. const float s = s0[i] - max;
  11844. const float val = expf(s);
  11845. #else
  11846. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11847. memcpy(&scvt, &s, sizeof(scvt));
  11848. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11849. #endif
  11850. sum += (ggml_float)val;
  11851. ds0[i] = val;
  11852. }
  11853. }
  11854. assert(sum > 0.0);
  11855. sum = (1.0 - eps)/sum;
  11856. }
  11857. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11858. ggml_vec_scale_f32(nc, ds0, sum);
  11859. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11860. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11861. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11862. #ifndef NDEBUG
  11863. for (int i = 0; i < nc; ++i) {
  11864. assert(!isnan(ds0[i]));
  11865. assert(!isinf(ds0[i]));
  11866. }
  11867. #endif
  11868. }
  11869. }
  11870. static void ggml_compute_forward_cross_entropy_loss_back(
  11871. const struct ggml_compute_params * params,
  11872. const struct ggml_tensor * src0,
  11873. const struct ggml_tensor * src1,
  11874. const struct ggml_tensor * opt0,
  11875. struct ggml_tensor * dst) {
  11876. switch (src0->type) {
  11877. case GGML_TYPE_F32:
  11878. {
  11879. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11880. } break;
  11881. default:
  11882. {
  11883. GGML_ASSERT(false);
  11884. } break;
  11885. }
  11886. }
  11887. /////////////////////////////////
  11888. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11889. GGML_ASSERT(params);
  11890. if (tensor->op == GGML_OP_NONE) {
  11891. return;
  11892. }
  11893. #ifdef GGML_USE_CUBLAS
  11894. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11895. if (skip_cpu) {
  11896. return;
  11897. }
  11898. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11899. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11900. #endif // GGML_USE_CUBLAS
  11901. switch (tensor->op) {
  11902. case GGML_OP_DUP:
  11903. {
  11904. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11905. } break;
  11906. case GGML_OP_ADD:
  11907. {
  11908. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11909. } break;
  11910. case GGML_OP_ADD1:
  11911. {
  11912. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11913. } break;
  11914. case GGML_OP_ACC:
  11915. {
  11916. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11917. } break;
  11918. case GGML_OP_SUB:
  11919. {
  11920. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11921. } break;
  11922. case GGML_OP_MUL:
  11923. {
  11924. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11925. } break;
  11926. case GGML_OP_DIV:
  11927. {
  11928. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11929. } break;
  11930. case GGML_OP_SQR:
  11931. {
  11932. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11933. } break;
  11934. case GGML_OP_SQRT:
  11935. {
  11936. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11937. } break;
  11938. case GGML_OP_LOG:
  11939. {
  11940. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11941. } break;
  11942. case GGML_OP_SUM:
  11943. {
  11944. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11945. } break;
  11946. case GGML_OP_SUM_ROWS:
  11947. {
  11948. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11949. } break;
  11950. case GGML_OP_MEAN:
  11951. {
  11952. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11953. } break;
  11954. case GGML_OP_ARGMAX:
  11955. {
  11956. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11957. } break;
  11958. case GGML_OP_REPEAT:
  11959. {
  11960. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11961. } break;
  11962. case GGML_OP_REPEAT_BACK:
  11963. {
  11964. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11965. } break;
  11966. case GGML_OP_CONCAT:
  11967. {
  11968. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11969. } break;
  11970. case GGML_OP_SILU_BACK:
  11971. {
  11972. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11973. } break;
  11974. case GGML_OP_NORM:
  11975. {
  11976. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11977. } break;
  11978. case GGML_OP_RMS_NORM:
  11979. {
  11980. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11981. } break;
  11982. case GGML_OP_RMS_NORM_BACK:
  11983. {
  11984. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11985. } break;
  11986. case GGML_OP_GROUP_NORM:
  11987. {
  11988. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11989. } break;
  11990. case GGML_OP_MUL_MAT:
  11991. {
  11992. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11993. } break;
  11994. case GGML_OP_MUL_MAT_ID:
  11995. {
  11996. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11997. } break;
  11998. case GGML_OP_OUT_PROD:
  11999. {
  12000. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12001. } break;
  12002. case GGML_OP_SCALE:
  12003. {
  12004. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12005. } break;
  12006. case GGML_OP_SET:
  12007. {
  12008. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12009. } break;
  12010. case GGML_OP_CPY:
  12011. {
  12012. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12013. } break;
  12014. case GGML_OP_CONT:
  12015. {
  12016. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12017. } break;
  12018. case GGML_OP_RESHAPE:
  12019. {
  12020. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12021. } break;
  12022. case GGML_OP_VIEW:
  12023. {
  12024. ggml_compute_forward_view(params, tensor->src[0]);
  12025. } break;
  12026. case GGML_OP_PERMUTE:
  12027. {
  12028. ggml_compute_forward_permute(params, tensor->src[0]);
  12029. } break;
  12030. case GGML_OP_TRANSPOSE:
  12031. {
  12032. ggml_compute_forward_transpose(params, tensor->src[0]);
  12033. } break;
  12034. case GGML_OP_GET_ROWS:
  12035. {
  12036. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12037. } break;
  12038. case GGML_OP_GET_ROWS_BACK:
  12039. {
  12040. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12041. } break;
  12042. case GGML_OP_DIAG:
  12043. {
  12044. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12045. } break;
  12046. case GGML_OP_DIAG_MASK_INF:
  12047. {
  12048. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12049. } break;
  12050. case GGML_OP_DIAG_MASK_ZERO:
  12051. {
  12052. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12053. } break;
  12054. case GGML_OP_SOFT_MAX:
  12055. {
  12056. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12057. } break;
  12058. case GGML_OP_SOFT_MAX_BACK:
  12059. {
  12060. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12061. } break;
  12062. case GGML_OP_ROPE:
  12063. {
  12064. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12065. } break;
  12066. case GGML_OP_ROPE_BACK:
  12067. {
  12068. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12069. } break;
  12070. case GGML_OP_ALIBI:
  12071. {
  12072. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12073. } break;
  12074. case GGML_OP_CLAMP:
  12075. {
  12076. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12077. } break;
  12078. case GGML_OP_CONV_TRANSPOSE_1D:
  12079. {
  12080. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12081. } break;
  12082. case GGML_OP_IM2COL:
  12083. {
  12084. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12085. } break;
  12086. case GGML_OP_CONV_TRANSPOSE_2D:
  12087. {
  12088. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12089. } break;
  12090. case GGML_OP_POOL_1D:
  12091. {
  12092. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12093. } break;
  12094. case GGML_OP_POOL_2D:
  12095. {
  12096. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12097. } break;
  12098. case GGML_OP_UPSCALE:
  12099. {
  12100. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12101. } break;
  12102. case GGML_OP_PAD:
  12103. {
  12104. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12105. } break;
  12106. case GGML_OP_ARGSORT:
  12107. {
  12108. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12109. } break;
  12110. case GGML_OP_LEAKY_RELU:
  12111. {
  12112. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12113. } break;
  12114. case GGML_OP_FLASH_ATTN:
  12115. {
  12116. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12117. GGML_ASSERT(t == 0 || t == 1);
  12118. const bool masked = t != 0;
  12119. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12120. } break;
  12121. case GGML_OP_FLASH_FF:
  12122. {
  12123. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12124. } break;
  12125. case GGML_OP_FLASH_ATTN_BACK:
  12126. {
  12127. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12128. GGML_ASSERT(t == 0 || t == 1);
  12129. bool masked = t != 0;
  12130. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12131. } break;
  12132. case GGML_OP_WIN_PART:
  12133. {
  12134. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12135. } break;
  12136. case GGML_OP_WIN_UNPART:
  12137. {
  12138. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12139. } break;
  12140. case GGML_OP_UNARY:
  12141. {
  12142. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12143. } break;
  12144. case GGML_OP_GET_REL_POS:
  12145. {
  12146. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12147. } break;
  12148. case GGML_OP_ADD_REL_POS:
  12149. {
  12150. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12151. } break;
  12152. case GGML_OP_MAP_UNARY:
  12153. {
  12154. ggml_unary_op_f32_t fun;
  12155. memcpy(&fun, tensor->op_params, sizeof(fun));
  12156. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12157. }
  12158. break;
  12159. case GGML_OP_MAP_BINARY:
  12160. {
  12161. ggml_binary_op_f32_t fun;
  12162. memcpy(&fun, tensor->op_params, sizeof(fun));
  12163. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12164. }
  12165. break;
  12166. case GGML_OP_MAP_CUSTOM1_F32:
  12167. {
  12168. ggml_custom1_op_f32_t fun;
  12169. memcpy(&fun, tensor->op_params, sizeof(fun));
  12170. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12171. }
  12172. break;
  12173. case GGML_OP_MAP_CUSTOM2_F32:
  12174. {
  12175. ggml_custom2_op_f32_t fun;
  12176. memcpy(&fun, tensor->op_params, sizeof(fun));
  12177. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12178. }
  12179. break;
  12180. case GGML_OP_MAP_CUSTOM3_F32:
  12181. {
  12182. ggml_custom3_op_f32_t fun;
  12183. memcpy(&fun, tensor->op_params, sizeof(fun));
  12184. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12185. }
  12186. break;
  12187. case GGML_OP_MAP_CUSTOM1:
  12188. {
  12189. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12190. }
  12191. break;
  12192. case GGML_OP_MAP_CUSTOM2:
  12193. {
  12194. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12195. }
  12196. break;
  12197. case GGML_OP_MAP_CUSTOM3:
  12198. {
  12199. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12200. }
  12201. break;
  12202. case GGML_OP_CROSS_ENTROPY_LOSS:
  12203. {
  12204. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12205. }
  12206. break;
  12207. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12208. {
  12209. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12210. }
  12211. break;
  12212. case GGML_OP_NONE:
  12213. {
  12214. // nop
  12215. } break;
  12216. case GGML_OP_COUNT:
  12217. {
  12218. GGML_ASSERT(false);
  12219. } break;
  12220. }
  12221. }
  12222. ////////////////////////////////////////////////////////////////////////////////
  12223. static size_t ggml_hash_size(size_t min_sz) {
  12224. // next primes after powers of two
  12225. static const size_t primes[] = {
  12226. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12227. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12228. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12229. 16777259, 33554467, 67108879, 134217757, 268435459,
  12230. 536870923, 1073741827, 2147483659
  12231. };
  12232. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12233. // find the smallest prime that is larger or equal to min_sz
  12234. size_t l = 0;
  12235. size_t r = n_primes;
  12236. while (l < r) {
  12237. size_t m = (l + r)/2;
  12238. if (primes[m] < min_sz) {
  12239. l = m + 1;
  12240. } else {
  12241. r = m;
  12242. }
  12243. }
  12244. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12245. return sz;
  12246. }
  12247. static size_t ggml_hash(const void * p) {
  12248. return (size_t)p;
  12249. }
  12250. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12251. size_t h = ggml_hash(key) % hash_set.size;
  12252. // linear probing
  12253. size_t i = h;
  12254. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12255. i = (i + 1) % hash_set.size;
  12256. if (i == h) {
  12257. // visited all hash table entries -> not found
  12258. return GGML_HASHTABLE_FULL;
  12259. }
  12260. }
  12261. return i;
  12262. }
  12263. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12264. size_t i = ggml_hash_find(hash_set, key);
  12265. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12266. }
  12267. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12268. size_t i = ggml_hash_find(hash_set, key);
  12269. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12270. if (hash_set.keys[i] == key) {
  12271. return GGML_HASHTABLE_ALREADY_EXISTS;
  12272. }
  12273. // insert
  12274. GGML_ASSERT(hash_set.keys[i] == NULL);
  12275. hash_set.keys[i] = key;
  12276. return i;
  12277. }
  12278. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12279. size_t i = ggml_hash_find(hash_set, key);
  12280. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12281. hash_set.keys[i] = key;
  12282. return i;
  12283. }
  12284. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12285. size = ggml_hash_size(size);
  12286. struct ggml_hash_set result;
  12287. result.size = size;
  12288. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12289. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12290. return result;
  12291. }
  12292. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12293. free(hash_set.keys);
  12294. }
  12295. struct hash_map {
  12296. struct ggml_hash_set set;
  12297. struct ggml_tensor ** vals;
  12298. };
  12299. static struct hash_map * ggml_new_hash_map(size_t size) {
  12300. struct hash_map * result = malloc(sizeof(struct hash_map));
  12301. result->set = ggml_hash_set_new(size);
  12302. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12303. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12304. return result;
  12305. }
  12306. static void ggml_hash_map_free(struct hash_map * map) {
  12307. ggml_hash_set_free(map->set);
  12308. free(map->vals);
  12309. free(map);
  12310. }
  12311. // gradient checkpointing
  12312. static struct ggml_tensor * ggml_recompute_graph_node(
  12313. struct ggml_context * ctx,
  12314. struct ggml_cgraph * graph,
  12315. struct hash_map * replacements,
  12316. struct ggml_tensor * node) {
  12317. if (node == NULL) {
  12318. return NULL;
  12319. }
  12320. if (node->is_param) {
  12321. return node;
  12322. }
  12323. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12324. return node;
  12325. }
  12326. int count_children = 0;
  12327. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12328. if (node->src[k]) {
  12329. ++count_children;
  12330. }
  12331. }
  12332. if (count_children == 0) {
  12333. return node;
  12334. }
  12335. size_t i = ggml_hash_find(replacements->set, node);
  12336. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12337. if (replacements->set.keys[i] == node) {
  12338. return replacements->vals[i];
  12339. }
  12340. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12341. // insert clone into replacements
  12342. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12343. replacements->set.keys[i] = node;
  12344. replacements->vals[i] = clone;
  12345. clone->op = node->op;
  12346. clone->grad = node->grad;
  12347. clone->is_param = node->is_param;
  12348. clone->extra = node->extra;
  12349. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12350. clone->nb[k] = node->nb[k];
  12351. }
  12352. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12353. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12354. }
  12355. if (node->view_src != NULL) {
  12356. clone->data = (node->view_src->data == NULL)
  12357. ? NULL // view_src not yet allocated
  12358. : (char *) node->view_src->data // view_src already allocated
  12359. + node->view_offs;
  12360. clone->view_src = node->view_src;
  12361. clone->view_offs = node->view_offs;
  12362. }
  12363. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12364. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12365. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12366. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12367. return clone;
  12368. }
  12369. void ggml_build_backward_gradient_checkpointing(
  12370. struct ggml_context * ctx,
  12371. struct ggml_cgraph * gf,
  12372. struct ggml_cgraph * gb,
  12373. struct ggml_cgraph * gb_tmp,
  12374. struct ggml_tensor * * checkpoints,
  12375. int n_checkpoints) {
  12376. ggml_graph_cpy(gf, gb_tmp);
  12377. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12378. if (n_checkpoints <= 0) {
  12379. ggml_graph_cpy(gb_tmp, gb);
  12380. return;
  12381. }
  12382. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12383. // insert checkpoints in replacements
  12384. for (int i = 0; i < n_checkpoints; ++i) {
  12385. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12386. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12387. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12388. replacements->set.keys[k] = checkpoints[i];
  12389. replacements->vals[k] = checkpoints[i];
  12390. }
  12391. ggml_graph_cpy(gf, gb);
  12392. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12393. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12394. // by recomputing them from checkpoints
  12395. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12396. struct ggml_tensor * node = gb_tmp->nodes[i];
  12397. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12398. // insert new tensors recomputing src, reusing already made replacements,
  12399. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12400. // recurse for input tensors,
  12401. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12402. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12403. }
  12404. // insert rewritten backward node with replacements made into resulting backward graph gb
  12405. ggml_build_forward_expand(gb, node);
  12406. }
  12407. ggml_hash_map_free(replacements);
  12408. }
  12409. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12410. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12411. if (ggml_hash_contains(zero_table, a)) {
  12412. return b;
  12413. } else {
  12414. return ggml_add_impl(ctx, a, b, false);
  12415. }
  12416. }
  12417. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12418. if (ggml_hash_contains(zero_table, a)) {
  12419. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12420. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12421. } else {
  12422. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12423. }
  12424. }
  12425. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12426. if (ggml_hash_contains(zero_table, a)) {
  12427. return ggml_repeat(ctx, b, a);
  12428. } else {
  12429. return ggml_add1_impl(ctx, a, b, false);
  12430. }
  12431. }
  12432. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12433. if (ggml_hash_contains(zero_table, a)) {
  12434. return ggml_neg(ctx, b);
  12435. } else {
  12436. return ggml_sub_impl(ctx, a, b, false);
  12437. }
  12438. }
  12439. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12440. struct ggml_tensor * src0 = tensor->src[0];
  12441. struct ggml_tensor * src1 = tensor->src[1];
  12442. switch (tensor->op) {
  12443. case GGML_OP_DUP:
  12444. {
  12445. if (src0->grad) {
  12446. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12447. }
  12448. } break;
  12449. case GGML_OP_ADD:
  12450. {
  12451. if (src0->grad) {
  12452. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12453. }
  12454. if (src1->grad) {
  12455. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12456. }
  12457. } break;
  12458. case GGML_OP_ADD1:
  12459. {
  12460. if (src0->grad) {
  12461. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12462. }
  12463. if (src1->grad) {
  12464. src1->grad = ggml_add_or_set(ctx,
  12465. src1->grad,
  12466. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12467. zero_table);
  12468. }
  12469. } break;
  12470. case GGML_OP_ACC:
  12471. {
  12472. if (src0->grad) {
  12473. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12474. }
  12475. if (src1->grad) {
  12476. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12477. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12478. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12479. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12480. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12481. tensor->grad,
  12482. src1->grad->ne[0],
  12483. src1->grad->ne[1],
  12484. src1->grad->ne[2],
  12485. src1->grad->ne[3],
  12486. nb1, nb2, nb3, offset);
  12487. src1->grad =
  12488. ggml_add_or_set(ctx,
  12489. src1->grad,
  12490. ggml_reshape(ctx,
  12491. ggml_cont(ctx, tensor_grad_view),
  12492. src1->grad),
  12493. zero_table);
  12494. }
  12495. } break;
  12496. case GGML_OP_SUB:
  12497. {
  12498. if (src0->grad) {
  12499. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12500. }
  12501. if (src1->grad) {
  12502. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12503. }
  12504. } break;
  12505. case GGML_OP_MUL:
  12506. {
  12507. if (src0->grad) {
  12508. src0->grad =
  12509. ggml_add_or_set(ctx,
  12510. src0->grad,
  12511. ggml_mul(ctx, src1, tensor->grad),
  12512. zero_table);
  12513. }
  12514. if (src1->grad) {
  12515. src1->grad =
  12516. ggml_add_or_set(ctx,
  12517. src1->grad,
  12518. ggml_mul(ctx, src0, tensor->grad),
  12519. zero_table);
  12520. }
  12521. } break;
  12522. case GGML_OP_DIV:
  12523. {
  12524. if (src0->grad) {
  12525. src0->grad =
  12526. ggml_add_or_set(ctx,
  12527. src0->grad,
  12528. ggml_div(ctx, tensor->grad, src1),
  12529. zero_table);
  12530. }
  12531. if (src1->grad) {
  12532. src1->grad =
  12533. ggml_sub_or_set(ctx,
  12534. src1->grad,
  12535. ggml_mul(ctx,
  12536. tensor->grad,
  12537. ggml_div(ctx, tensor, src1)),
  12538. zero_table);
  12539. }
  12540. } break;
  12541. case GGML_OP_SQR:
  12542. {
  12543. if (src0->grad) {
  12544. src0->grad =
  12545. ggml_add_or_set(ctx,
  12546. src0->grad,
  12547. ggml_scale(ctx,
  12548. ggml_mul(ctx, src0, tensor->grad),
  12549. 2.0f),
  12550. zero_table);
  12551. }
  12552. } break;
  12553. case GGML_OP_SQRT:
  12554. {
  12555. if (src0->grad) {
  12556. src0->grad =
  12557. ggml_add_or_set(ctx,
  12558. src0->grad,
  12559. ggml_scale(ctx,
  12560. ggml_div(ctx,
  12561. tensor->grad,
  12562. tensor),
  12563. 0.5f),
  12564. zero_table);
  12565. }
  12566. } break;
  12567. case GGML_OP_LOG:
  12568. {
  12569. if (src0->grad) {
  12570. src0->grad =
  12571. ggml_add_or_set(ctx,
  12572. src0->grad,
  12573. ggml_div(ctx,
  12574. tensor->grad,
  12575. src0),
  12576. zero_table);
  12577. }
  12578. } break;
  12579. case GGML_OP_SUM:
  12580. {
  12581. if (src0->grad) {
  12582. src0->grad =
  12583. ggml_add1_or_set(ctx,
  12584. src0->grad,
  12585. tensor->grad,
  12586. zero_table);
  12587. }
  12588. } break;
  12589. case GGML_OP_SUM_ROWS:
  12590. {
  12591. if (src0->grad) {
  12592. src0->grad =
  12593. ggml_add_or_set(ctx,
  12594. src0->grad,
  12595. ggml_repeat(ctx,
  12596. tensor->grad,
  12597. src0->grad),
  12598. zero_table);
  12599. }
  12600. } break;
  12601. case GGML_OP_MEAN:
  12602. case GGML_OP_ARGMAX:
  12603. {
  12604. GGML_ASSERT(false); // TODO: implement
  12605. } break;
  12606. case GGML_OP_REPEAT:
  12607. {
  12608. // necessary for llama
  12609. if (src0->grad) {
  12610. src0->grad = ggml_add_or_set(ctx,
  12611. src0->grad,
  12612. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12613. zero_table);
  12614. }
  12615. } break;
  12616. case GGML_OP_REPEAT_BACK:
  12617. {
  12618. if (src0->grad) {
  12619. // TODO: test this
  12620. src0->grad = ggml_add_or_set(ctx,
  12621. src0->grad,
  12622. ggml_repeat(ctx, tensor->grad, src0->grad),
  12623. zero_table);
  12624. }
  12625. } break;
  12626. case GGML_OP_CONCAT:
  12627. {
  12628. GGML_ASSERT(false); // TODO: implement
  12629. } break;
  12630. case GGML_OP_SILU_BACK:
  12631. {
  12632. GGML_ASSERT(false); // TODO: not implemented
  12633. } break;
  12634. case GGML_OP_NORM:
  12635. {
  12636. GGML_ASSERT(false); // TODO: not implemented
  12637. } break;
  12638. case GGML_OP_RMS_NORM:
  12639. {
  12640. // necessary for llama
  12641. if (src0->grad) {
  12642. float eps;
  12643. memcpy(&eps, tensor->op_params, sizeof(float));
  12644. src0->grad = ggml_add_or_set(ctx,
  12645. src0->grad,
  12646. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12647. zero_table);
  12648. }
  12649. } break;
  12650. case GGML_OP_RMS_NORM_BACK:
  12651. {
  12652. GGML_ASSERT(false); // TODO: not implemented
  12653. } break;
  12654. case GGML_OP_GROUP_NORM:
  12655. {
  12656. GGML_ASSERT(false); // TODO: not implemented
  12657. } break;
  12658. case GGML_OP_MUL_MAT:
  12659. {
  12660. // https://cs231n.github.io/optimization-2/#staged
  12661. // # forward pass
  12662. // s0 = np.random.randn(5, 10)
  12663. // s1 = np.random.randn(10, 3)
  12664. // t = s0.dot(s1)
  12665. // # now suppose we had the gradient on t from above in the circuit
  12666. // dt = np.random.randn(*t.shape) # same shape as t
  12667. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12668. // ds1 = t.T.dot(dt)
  12669. // tensor.shape [m,p,qq,rr]
  12670. // src0.shape [n,m,q1,r1]
  12671. // src1.shape [n,p,qq,rr]
  12672. // necessary for llama
  12673. if (src0->grad) {
  12674. struct ggml_tensor * s1_tg =
  12675. ggml_out_prod(ctx, // [n,m,qq,rr]
  12676. src1, // [n,p,qq,rr]
  12677. tensor->grad); // [m,p,qq,rr]
  12678. const int64_t qq = s1_tg->ne[2];
  12679. const int64_t rr = s1_tg->ne[3];
  12680. const int64_t q1 = src0->ne[2];
  12681. const int64_t r1 = src0->ne[3];
  12682. const bool ne2_broadcasted = qq > q1;
  12683. const bool ne3_broadcasted = rr > r1;
  12684. if (ne2_broadcasted || ne3_broadcasted) {
  12685. // sum broadcast repetitions of s1_tg into shape of src0
  12686. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12687. }
  12688. src0->grad =
  12689. ggml_add_or_set(ctx,
  12690. src0->grad, // [n,m,q1,r1]
  12691. s1_tg, // [n,m,q1,r1]
  12692. zero_table);
  12693. }
  12694. if (src1->grad) {
  12695. src1->grad =
  12696. ggml_add_or_set(ctx,
  12697. src1->grad, // [n,p,qq,rr]
  12698. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12699. // ggml_cont(ctx, // [m,n,q1,r1]
  12700. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12701. // tensor->grad), // [m,p,qq,rr]
  12702. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12703. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12704. // // and then use ggml_out_prod
  12705. ggml_out_prod(ctx, // [n,p,qq,rr]
  12706. src0, // [n,m,q1,r1]
  12707. ggml_transpose(ctx, // [p,m,qq,rr]
  12708. tensor->grad)), // [m,p,qq,rr]
  12709. zero_table);
  12710. }
  12711. } break;
  12712. case GGML_OP_MUL_MAT_ID:
  12713. {
  12714. GGML_ASSERT(false); // TODO: not implemented
  12715. } break;
  12716. case GGML_OP_OUT_PROD:
  12717. {
  12718. GGML_ASSERT(false); // TODO: not implemented
  12719. } break;
  12720. case GGML_OP_SCALE:
  12721. {
  12722. // necessary for llama
  12723. if (src0->grad) {
  12724. float s;
  12725. memcpy(&s, tensor->op_params, sizeof(float));
  12726. src0->grad =
  12727. ggml_add_or_set(ctx,
  12728. src0->grad,
  12729. ggml_scale_impl(ctx, tensor->grad, s, false),
  12730. zero_table);
  12731. }
  12732. } break;
  12733. case GGML_OP_SET:
  12734. {
  12735. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12736. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12737. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12738. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12739. struct ggml_tensor * tensor_grad_view = NULL;
  12740. if (src0->grad || src1->grad) {
  12741. GGML_ASSERT(src0->type == tensor->type);
  12742. GGML_ASSERT(tensor->grad->type == tensor->type);
  12743. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12744. tensor_grad_view = ggml_view_4d(ctx,
  12745. tensor->grad,
  12746. src1->grad->ne[0],
  12747. src1->grad->ne[1],
  12748. src1->grad->ne[2],
  12749. src1->grad->ne[3],
  12750. nb1, nb2, nb3, offset);
  12751. }
  12752. if (src0->grad) {
  12753. src0->grad = ggml_add_or_set(ctx,
  12754. src0->grad,
  12755. ggml_acc_impl(ctx,
  12756. tensor->grad,
  12757. ggml_neg(ctx, tensor_grad_view),
  12758. nb1, nb2, nb3, offset, false),
  12759. zero_table);
  12760. }
  12761. if (src1->grad) {
  12762. src1->grad =
  12763. ggml_add_or_set(ctx,
  12764. src1->grad,
  12765. ggml_reshape(ctx,
  12766. ggml_cont(ctx, tensor_grad_view),
  12767. src1->grad),
  12768. zero_table);
  12769. }
  12770. } break;
  12771. case GGML_OP_CPY:
  12772. {
  12773. // necessary for llama
  12774. // cpy overwrites value of src1 by src0 and returns view(src1)
  12775. // the overwriting is mathematically equivalent to:
  12776. // tensor = src0 * 1 + src1 * 0
  12777. if (src0->grad) {
  12778. // dsrc0 = dtensor * 1
  12779. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12780. }
  12781. if (src1->grad) {
  12782. // dsrc1 = dtensor * 0 -> noop
  12783. }
  12784. } break;
  12785. case GGML_OP_CONT:
  12786. {
  12787. // same as cpy
  12788. if (src0->grad) {
  12789. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12790. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12791. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12792. }
  12793. } break;
  12794. case GGML_OP_RESHAPE:
  12795. {
  12796. // necessary for llama
  12797. if (src0->grad) {
  12798. src0->grad =
  12799. ggml_add_or_set(ctx, src0->grad,
  12800. ggml_reshape(ctx,
  12801. ggml_is_contiguous(tensor->grad)
  12802. ? tensor->grad
  12803. : ggml_cont(ctx, tensor->grad),
  12804. src0->grad),
  12805. zero_table);
  12806. }
  12807. } break;
  12808. case GGML_OP_VIEW:
  12809. {
  12810. // necessary for llama
  12811. if (src0->grad) {
  12812. size_t offset;
  12813. memcpy(&offset, tensor->op_params, sizeof(offset));
  12814. size_t nb1 = tensor->nb[1];
  12815. size_t nb2 = tensor->nb[2];
  12816. size_t nb3 = tensor->nb[3];
  12817. if (src0->type != src0->grad->type) {
  12818. // gradient is typically F32, but src0 could be other type
  12819. size_t ng = ggml_element_size(src0->grad);
  12820. size_t n0 = ggml_element_size(src0);
  12821. GGML_ASSERT(offset % n0 == 0);
  12822. GGML_ASSERT(nb1 % n0 == 0);
  12823. GGML_ASSERT(nb2 % n0 == 0);
  12824. GGML_ASSERT(nb3 % n0 == 0);
  12825. offset = (offset / n0) * ng;
  12826. nb1 = (nb1 / n0) * ng;
  12827. nb2 = (nb2 / n0) * ng;
  12828. nb3 = (nb3 / n0) * ng;
  12829. }
  12830. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12831. }
  12832. } break;
  12833. case GGML_OP_PERMUTE:
  12834. {
  12835. // necessary for llama
  12836. if (src0->grad) {
  12837. int32_t * axes = (int32_t *) tensor->op_params;
  12838. int axis0 = axes[0] & 0x3;
  12839. int axis1 = axes[1] & 0x3;
  12840. int axis2 = axes[2] & 0x3;
  12841. int axis3 = axes[3] & 0x3;
  12842. int axes_backward[4] = {0,0,0,0};
  12843. axes_backward[axis0] = 0;
  12844. axes_backward[axis1] = 1;
  12845. axes_backward[axis2] = 2;
  12846. axes_backward[axis3] = 3;
  12847. src0->grad =
  12848. ggml_add_or_set(ctx, src0->grad,
  12849. ggml_permute(ctx,
  12850. tensor->grad,
  12851. axes_backward[0],
  12852. axes_backward[1],
  12853. axes_backward[2],
  12854. axes_backward[3]),
  12855. zero_table);
  12856. }
  12857. } break;
  12858. case GGML_OP_TRANSPOSE:
  12859. {
  12860. // necessary for llama
  12861. if (src0->grad) {
  12862. src0->grad =
  12863. ggml_add_or_set(ctx, src0->grad,
  12864. ggml_transpose(ctx, tensor->grad),
  12865. zero_table);
  12866. }
  12867. } break;
  12868. case GGML_OP_GET_ROWS:
  12869. {
  12870. // necessary for llama (only for tokenizer)
  12871. if (src0->grad) {
  12872. src0->grad =
  12873. ggml_add_or_set(ctx, src0->grad,
  12874. // last ggml_get_rows_back argument src0->grad is only
  12875. // necessary to setup correct output shape
  12876. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12877. zero_table);
  12878. }
  12879. if (src1->grad) {
  12880. // noop
  12881. }
  12882. } break;
  12883. case GGML_OP_GET_ROWS_BACK:
  12884. {
  12885. GGML_ASSERT(false); // TODO: not implemented
  12886. } break;
  12887. case GGML_OP_DIAG:
  12888. {
  12889. GGML_ASSERT(false); // TODO: not implemented
  12890. } break;
  12891. case GGML_OP_DIAG_MASK_INF:
  12892. {
  12893. // necessary for llama
  12894. if (src0->grad) {
  12895. const int n_past = ((int32_t *) tensor->op_params)[0];
  12896. src0->grad =
  12897. ggml_add_or_set(ctx, src0->grad,
  12898. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12899. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12900. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12901. zero_table);
  12902. }
  12903. } break;
  12904. case GGML_OP_DIAG_MASK_ZERO:
  12905. {
  12906. // necessary for llama
  12907. if (src0->grad) {
  12908. const int n_past = ((int32_t *) tensor->op_params)[0];
  12909. src0->grad =
  12910. ggml_add_or_set(ctx, src0->grad,
  12911. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12912. zero_table);
  12913. }
  12914. } break;
  12915. case GGML_OP_SOFT_MAX:
  12916. {
  12917. // necessary for llama
  12918. if (src0->grad) {
  12919. src0->grad =
  12920. ggml_add_or_set(ctx, src0->grad,
  12921. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12922. zero_table);
  12923. }
  12924. } break;
  12925. case GGML_OP_SOFT_MAX_BACK:
  12926. {
  12927. GGML_ASSERT(false); // TODO: not implemented
  12928. } break;
  12929. case GGML_OP_ROPE:
  12930. {
  12931. // necessary for llama
  12932. if (src0->grad) {
  12933. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12934. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12935. const int mode = ((int32_t *) tensor->op_params)[2];
  12936. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12937. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12938. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12939. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12940. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12941. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12942. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12943. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12944. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12945. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12946. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12947. src0->grad = ggml_add_or_set(ctx,
  12948. src0->grad,
  12949. ggml_rope_back(ctx,
  12950. tensor->grad,
  12951. src1,
  12952. n_dims,
  12953. mode,
  12954. n_ctx,
  12955. n_orig_ctx,
  12956. freq_base,
  12957. freq_scale,
  12958. ext_factor,
  12959. attn_factor,
  12960. beta_fast,
  12961. beta_slow,
  12962. xpos_base,
  12963. xpos_down),
  12964. zero_table);
  12965. }
  12966. } break;
  12967. case GGML_OP_ROPE_BACK:
  12968. {
  12969. if (src0->grad) {
  12970. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12971. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12972. const int mode = ((int32_t *) tensor->op_params)[2];
  12973. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12974. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12975. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12976. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12977. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12978. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12979. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12980. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12981. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12982. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12983. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12984. src0->grad = ggml_add_or_set(ctx,
  12985. src0->grad,
  12986. ggml_rope_impl(ctx,
  12987. tensor->grad,
  12988. src1,
  12989. n_dims,
  12990. mode,
  12991. n_ctx,
  12992. n_orig_ctx,
  12993. freq_base,
  12994. freq_scale,
  12995. ext_factor,
  12996. attn_factor,
  12997. beta_fast,
  12998. beta_slow,
  12999. xpos_base,
  13000. xpos_down,
  13001. false),
  13002. zero_table);
  13003. }
  13004. } break;
  13005. case GGML_OP_ALIBI:
  13006. {
  13007. GGML_ASSERT(false); // TODO: not implemented
  13008. } break;
  13009. case GGML_OP_CLAMP:
  13010. {
  13011. GGML_ASSERT(false); // TODO: not implemented
  13012. } break;
  13013. case GGML_OP_CONV_TRANSPOSE_1D:
  13014. {
  13015. GGML_ASSERT(false); // TODO: not implemented
  13016. } break;
  13017. case GGML_OP_IM2COL:
  13018. {
  13019. GGML_ASSERT(false); // TODO: not implemented
  13020. } break;
  13021. case GGML_OP_CONV_TRANSPOSE_2D:
  13022. {
  13023. GGML_ASSERT(false); // TODO: not implemented
  13024. } break;
  13025. case GGML_OP_POOL_1D:
  13026. {
  13027. GGML_ASSERT(false); // TODO: not implemented
  13028. } break;
  13029. case GGML_OP_POOL_2D:
  13030. {
  13031. GGML_ASSERT(false); // TODO: not implemented
  13032. } break;
  13033. case GGML_OP_UPSCALE:
  13034. {
  13035. GGML_ASSERT(false); // TODO: not implemented
  13036. } break;
  13037. case GGML_OP_PAD:
  13038. {
  13039. GGML_ASSERT(false); // TODO: not implemented
  13040. } break;
  13041. case GGML_OP_ARGSORT:
  13042. {
  13043. GGML_ASSERT(false); // TODO: not implemented
  13044. } break;
  13045. case GGML_OP_LEAKY_RELU:
  13046. {
  13047. GGML_ASSERT(false); // TODO: not implemented
  13048. } break;
  13049. case GGML_OP_FLASH_ATTN:
  13050. {
  13051. struct ggml_tensor * flash_grad = NULL;
  13052. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13053. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13054. GGML_ASSERT(t == 0 || t == 1);
  13055. bool masked = t != 0;
  13056. flash_grad =
  13057. ggml_flash_attn_back(ctx,
  13058. src0,
  13059. src1,
  13060. tensor->src[2],
  13061. tensor->grad,
  13062. masked);
  13063. }
  13064. struct ggml_tensor * src2 = tensor->src[2];
  13065. const int64_t elem_q = ggml_nelements(src0);
  13066. const int64_t elem_k = ggml_nelements(src1);
  13067. const int64_t elem_v = ggml_nelements(src2);
  13068. enum ggml_type result_type = flash_grad->type;
  13069. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13070. const size_t tsize = ggml_type_size(result_type);
  13071. const size_t offs_q = 0;
  13072. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13073. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13074. if (src0->grad) {
  13075. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13076. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13077. src0->grad = ggml_add_or_set(ctx,
  13078. src0->grad,
  13079. grad_q,
  13080. zero_table);
  13081. }
  13082. if (src1->grad) {
  13083. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13084. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13085. src1->grad = ggml_add_or_set(ctx,
  13086. src1->grad,
  13087. grad_k,
  13088. zero_table);
  13089. }
  13090. if (src2->grad) {
  13091. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13092. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13093. src2->grad = ggml_add_or_set(ctx,
  13094. src2->grad,
  13095. grad_v,
  13096. zero_table);
  13097. }
  13098. } break;
  13099. case GGML_OP_FLASH_FF:
  13100. {
  13101. GGML_ASSERT(false); // not supported
  13102. } break;
  13103. case GGML_OP_FLASH_ATTN_BACK:
  13104. {
  13105. GGML_ASSERT(false); // not supported
  13106. } break;
  13107. case GGML_OP_WIN_PART:
  13108. case GGML_OP_WIN_UNPART:
  13109. case GGML_OP_UNARY:
  13110. {
  13111. switch (ggml_get_unary_op(tensor)) {
  13112. case GGML_UNARY_OP_ABS:
  13113. {
  13114. if (src0->grad) {
  13115. src0->grad =
  13116. ggml_add_or_set(ctx,
  13117. src0->grad,
  13118. ggml_mul(ctx,
  13119. ggml_sgn(ctx, src0),
  13120. tensor->grad),
  13121. zero_table);
  13122. }
  13123. } break;
  13124. case GGML_UNARY_OP_SGN:
  13125. {
  13126. if (src0->grad) {
  13127. // noop
  13128. }
  13129. } break;
  13130. case GGML_UNARY_OP_NEG:
  13131. {
  13132. if (src0->grad) {
  13133. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13134. }
  13135. } break;
  13136. case GGML_UNARY_OP_STEP:
  13137. {
  13138. if (src0->grad) {
  13139. // noop
  13140. }
  13141. } break;
  13142. case GGML_UNARY_OP_TANH:
  13143. {
  13144. GGML_ASSERT(false); // TODO: not implemented
  13145. } break;
  13146. case GGML_UNARY_OP_ELU:
  13147. {
  13148. GGML_ASSERT(false); // TODO: not implemented
  13149. } break;
  13150. case GGML_UNARY_OP_RELU:
  13151. {
  13152. if (src0->grad) {
  13153. src0->grad = ggml_add_or_set(ctx,
  13154. src0->grad,
  13155. ggml_mul(ctx,
  13156. ggml_step(ctx, src0),
  13157. tensor->grad),
  13158. zero_table);
  13159. }
  13160. } break;
  13161. case GGML_UNARY_OP_GELU:
  13162. {
  13163. GGML_ASSERT(false); // TODO: not implemented
  13164. } break;
  13165. case GGML_UNARY_OP_GELU_QUICK:
  13166. {
  13167. GGML_ASSERT(false); // TODO: not implemented
  13168. } break;
  13169. case GGML_UNARY_OP_SILU:
  13170. {
  13171. // necessary for llama
  13172. if (src0->grad) {
  13173. src0->grad = ggml_add_or_set(ctx,
  13174. src0->grad,
  13175. ggml_silu_back(ctx, src0, tensor->grad),
  13176. zero_table);
  13177. }
  13178. } break;
  13179. default:
  13180. GGML_ASSERT(false);
  13181. }
  13182. } break;
  13183. case GGML_OP_GET_REL_POS:
  13184. case GGML_OP_ADD_REL_POS:
  13185. case GGML_OP_MAP_UNARY:
  13186. case GGML_OP_MAP_BINARY:
  13187. case GGML_OP_MAP_CUSTOM1_F32:
  13188. case GGML_OP_MAP_CUSTOM2_F32:
  13189. case GGML_OP_MAP_CUSTOM3_F32:
  13190. case GGML_OP_MAP_CUSTOM1:
  13191. case GGML_OP_MAP_CUSTOM2:
  13192. case GGML_OP_MAP_CUSTOM3:
  13193. {
  13194. GGML_ASSERT(false); // not supported
  13195. } break;
  13196. case GGML_OP_CROSS_ENTROPY_LOSS:
  13197. {
  13198. if (src0->grad) {
  13199. src0->grad = ggml_add_or_set(ctx,
  13200. src0->grad,
  13201. ggml_cross_entropy_loss_back(ctx,
  13202. src0,
  13203. src1,
  13204. tensor->grad),
  13205. zero_table);
  13206. }
  13207. } break;
  13208. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13209. {
  13210. GGML_ASSERT(false); // not supported
  13211. } break;
  13212. case GGML_OP_NONE:
  13213. {
  13214. // nop
  13215. } break;
  13216. case GGML_OP_COUNT:
  13217. {
  13218. GGML_ASSERT(false);
  13219. } break;
  13220. }
  13221. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13222. if (tensor->src[i] && tensor->src[i]->grad) {
  13223. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13224. }
  13225. }
  13226. }
  13227. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13228. if (node->grad == NULL) {
  13229. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13230. // it can also happen during forward pass, if the user performs computations with constants
  13231. if (node->op != GGML_OP_NONE) {
  13232. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13233. }
  13234. }
  13235. // check if already visited
  13236. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13237. return;
  13238. }
  13239. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13240. const int k =
  13241. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13242. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13243. /* unknown order, just fall back to using i*/ i;
  13244. if (node->src[k]) {
  13245. ggml_visit_parents(cgraph, node->src[k]);
  13246. }
  13247. }
  13248. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13249. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13250. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13251. if (strlen(node->name) == 0) {
  13252. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13253. }
  13254. cgraph->leafs[cgraph->n_leafs] = node;
  13255. cgraph->n_leafs++;
  13256. } else {
  13257. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13258. if (strlen(node->name) == 0) {
  13259. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13260. }
  13261. cgraph->nodes[cgraph->n_nodes] = node;
  13262. if (cgraph->grads) {
  13263. cgraph->grads[cgraph->n_nodes] = node->grad;
  13264. }
  13265. cgraph->n_nodes++;
  13266. }
  13267. }
  13268. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13269. if (!expand) {
  13270. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13271. ggml_graph_clear(cgraph);
  13272. }
  13273. const int n0 = cgraph->n_nodes;
  13274. UNUSED(n0);
  13275. ggml_visit_parents(cgraph, tensor);
  13276. const int n_new = cgraph->n_nodes - n0;
  13277. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13278. if (n_new > 0) {
  13279. // the last added node should always be starting point
  13280. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13281. }
  13282. }
  13283. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13284. ggml_build_forward_impl(cgraph, tensor, true);
  13285. }
  13286. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13287. GGML_ASSERT(gf->n_nodes > 0);
  13288. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13289. if (keep) {
  13290. for (int i = 0; i < gf->n_nodes; i++) {
  13291. struct ggml_tensor * node = gf->nodes[i];
  13292. if (node->grad) {
  13293. node->grad = ggml_dup_tensor(ctx, node);
  13294. gf->grads[i] = node->grad;
  13295. }
  13296. }
  13297. }
  13298. // remember original gradients which start with zero values
  13299. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13300. for (int i = 0; i < gf->n_nodes; i++) {
  13301. if (gf->grads[i]) {
  13302. ggml_hash_insert(zero_table, gf->grads[i]);
  13303. }
  13304. }
  13305. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13306. struct ggml_tensor * node = gf->nodes[i];
  13307. // inplace operations to add gradients are not created by ggml_compute_backward
  13308. // use allocator to automatically make inplace operations
  13309. if (node->grad) {
  13310. ggml_compute_backward(ctx, node, zero_table);
  13311. }
  13312. }
  13313. for (int i = 0; i < gf->n_nodes; i++) {
  13314. struct ggml_tensor * node = gf->nodes[i];
  13315. if (node->is_param) {
  13316. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13317. ggml_build_forward_expand(gb, node->grad);
  13318. }
  13319. }
  13320. ggml_hash_set_free(zero_table);
  13321. }
  13322. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13323. size_t nbytes = sizeof(struct ggml_cgraph);
  13324. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13325. if (grads) {
  13326. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13327. }
  13328. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13329. return nbytes;
  13330. }
  13331. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13332. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13333. }
  13334. size_t ggml_graph_overhead(void) {
  13335. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13336. }
  13337. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13338. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13339. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13340. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13341. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13342. size_t hash_size = ggml_hash_size(size * 2);
  13343. struct ggml_tensor ** nodes_ptr = data_start;
  13344. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13345. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13346. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13347. // check that we allocated the correct amount of memory
  13348. assert(obj_size == (size_t) (
  13349. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13350. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13351. *cgraph = (struct ggml_cgraph) {
  13352. /*.size =*/ size,
  13353. /*.n_nodes =*/ 0,
  13354. /*.n_leafs =*/ 0,
  13355. /*.nodes =*/ nodes_ptr,
  13356. /*.grads =*/ grads_ptr,
  13357. /*.leafs =*/ leafs_ptr,
  13358. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13359. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13360. /*.perf_runs =*/ 0,
  13361. /*.perf_cycles =*/ 0,
  13362. /*.perf_time_us =*/ 0,
  13363. };
  13364. return cgraph;
  13365. }
  13366. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13367. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13368. }
  13369. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13370. struct ggml_cgraph cgraph = {
  13371. /*.size =*/ 0,
  13372. /*.n_nodes =*/ i1 - i0,
  13373. /*.n_leafs =*/ 0,
  13374. /*.nodes =*/ cgraph0->nodes + i0,
  13375. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13376. /*.leafs =*/ NULL,
  13377. /*.hash_table =*/ { 0, NULL },
  13378. /*.order =*/ cgraph0->order,
  13379. /*.perf_runs =*/ 0,
  13380. /*.perf_cycles =*/ 0,
  13381. /*.perf_time_us =*/ 0,
  13382. };
  13383. return cgraph;
  13384. }
  13385. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13386. GGML_ASSERT(dst->size >= src->n_leafs);
  13387. GGML_ASSERT(dst->size >= src->n_nodes);
  13388. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13389. dst->n_leafs = src->n_leafs;
  13390. dst->n_nodes = src->n_nodes;
  13391. dst->order = src->order;
  13392. for (int i = 0; i < src->n_leafs; ++i) {
  13393. dst->leafs[i] = src->leafs[i];
  13394. }
  13395. for (int i = 0; i < src->n_nodes; ++i) {
  13396. dst->nodes[i] = src->nodes[i];
  13397. }
  13398. if (src->grads) {
  13399. GGML_ASSERT(dst->grads != NULL);
  13400. for (int i = 0; i < src->n_nodes; ++i) {
  13401. dst->grads[i] = src->grads[i];
  13402. }
  13403. }
  13404. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13405. if (src->visited_hash_table.keys[i]) {
  13406. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13407. }
  13408. }
  13409. }
  13410. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13411. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13412. ggml_graph_cpy(cgraph, result);
  13413. return result;
  13414. }
  13415. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13416. GGML_ASSERT(cgraph->grads != NULL);
  13417. for (int i = 0; i < cgraph->n_nodes; i++) {
  13418. struct ggml_tensor * grad = cgraph->grads[i];
  13419. if (grad) {
  13420. ggml_set_zero(grad);
  13421. }
  13422. }
  13423. }
  13424. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13425. cgraph->n_leafs = 0;
  13426. cgraph->n_nodes = 0;
  13427. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13428. }
  13429. //
  13430. // thread data
  13431. //
  13432. // synchronization is done via busy loops
  13433. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13434. //
  13435. #ifdef __APPLE__
  13436. //#include <os/lock.h>
  13437. //
  13438. //typedef os_unfair_lock ggml_lock_t;
  13439. //
  13440. //#define ggml_lock_init(x) UNUSED(x)
  13441. //#define ggml_lock_destroy(x) UNUSED(x)
  13442. //#define ggml_lock_lock os_unfair_lock_lock
  13443. //#define ggml_lock_unlock os_unfair_lock_unlock
  13444. //
  13445. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13446. typedef int ggml_lock_t;
  13447. #define ggml_lock_init(x) UNUSED(x)
  13448. #define ggml_lock_destroy(x) UNUSED(x)
  13449. #define ggml_lock_lock(x) UNUSED(x)
  13450. #define ggml_lock_unlock(x) UNUSED(x)
  13451. #define GGML_LOCK_INITIALIZER 0
  13452. typedef pthread_t ggml_thread_t;
  13453. #define ggml_thread_create pthread_create
  13454. #define ggml_thread_join pthread_join
  13455. #else
  13456. //typedef pthread_spinlock_t ggml_lock_t;
  13457. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13458. //#define ggml_lock_destroy pthread_spin_destroy
  13459. //#define ggml_lock_lock pthread_spin_lock
  13460. //#define ggml_lock_unlock pthread_spin_unlock
  13461. typedef int ggml_lock_t;
  13462. #define ggml_lock_init(x) UNUSED(x)
  13463. #define ggml_lock_destroy(x) UNUSED(x)
  13464. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13465. #define ggml_lock_lock(x) _mm_pause()
  13466. #else
  13467. #define ggml_lock_lock(x) UNUSED(x)
  13468. #endif
  13469. #define ggml_lock_unlock(x) UNUSED(x)
  13470. #define GGML_LOCK_INITIALIZER 0
  13471. typedef pthread_t ggml_thread_t;
  13472. #define ggml_thread_create pthread_create
  13473. #define ggml_thread_join pthread_join
  13474. #endif
  13475. // Android's libc implementation "bionic" does not support setting affinity
  13476. #if defined(__linux__) && !defined(__BIONIC__)
  13477. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13478. if (!ggml_is_numa()) {
  13479. return;
  13480. }
  13481. // run thread on node_num thread_n / (threads per node)
  13482. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13483. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13484. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13485. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13486. CPU_ZERO_S(setsize, cpus);
  13487. for (size_t i = 0; i < node->n_cpus; ++i) {
  13488. CPU_SET_S(node->cpus[i], setsize, cpus);
  13489. }
  13490. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13491. if (rv) {
  13492. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13493. strerror(rv));
  13494. }
  13495. CPU_FREE(cpus);
  13496. }
  13497. static void clear_numa_thread_affinity(void) {
  13498. if (!ggml_is_numa()) {
  13499. return;
  13500. }
  13501. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13502. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13503. CPU_ZERO_S(setsize, cpus);
  13504. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13505. CPU_SET_S(i, setsize, cpus);
  13506. }
  13507. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13508. if (rv) {
  13509. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13510. strerror(rv));
  13511. }
  13512. CPU_FREE(cpus);
  13513. }
  13514. #else
  13515. // TODO: Windows etc.
  13516. // (the linux implementation may also work on BSD, someone should test)
  13517. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13518. static void clear_numa_thread_affinity(void) {}
  13519. #endif
  13520. struct ggml_compute_state_shared {
  13521. const struct ggml_cgraph * cgraph;
  13522. const struct ggml_cplan * cplan;
  13523. int64_t perf_node_start_cycles;
  13524. int64_t perf_node_start_time_us;
  13525. const int n_threads;
  13526. // synchronization primitives
  13527. atomic_int n_active; // num active threads
  13528. atomic_int node_n; // active graph node
  13529. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13530. void * abort_callback_data;
  13531. };
  13532. struct ggml_compute_state {
  13533. ggml_thread_t thrd;
  13534. int ith;
  13535. struct ggml_compute_state_shared * shared;
  13536. };
  13537. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13538. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13539. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13540. node->perf_runs++;
  13541. node->perf_cycles += cycles_cur;
  13542. node->perf_time_us += time_us_cur;
  13543. }
  13544. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13545. int n_tasks = 0;
  13546. switch (node->op) {
  13547. case GGML_OP_CPY:
  13548. case GGML_OP_DUP:
  13549. case GGML_OP_ADD:
  13550. case GGML_OP_ADD1:
  13551. case GGML_OP_ACC:
  13552. {
  13553. n_tasks = n_threads;
  13554. } break;
  13555. case GGML_OP_SUB:
  13556. case GGML_OP_SQR:
  13557. case GGML_OP_SQRT:
  13558. case GGML_OP_LOG:
  13559. case GGML_OP_SUM:
  13560. case GGML_OP_SUM_ROWS:
  13561. case GGML_OP_MEAN:
  13562. case GGML_OP_ARGMAX:
  13563. case GGML_OP_REPEAT:
  13564. case GGML_OP_REPEAT_BACK:
  13565. case GGML_OP_LEAKY_RELU:
  13566. {
  13567. n_tasks = 1;
  13568. } break;
  13569. case GGML_OP_UNARY:
  13570. switch (ggml_get_unary_op(node)) {
  13571. case GGML_UNARY_OP_ABS:
  13572. case GGML_UNARY_OP_SGN:
  13573. case GGML_UNARY_OP_NEG:
  13574. case GGML_UNARY_OP_STEP:
  13575. case GGML_UNARY_OP_TANH:
  13576. case GGML_UNARY_OP_ELU:
  13577. case GGML_UNARY_OP_RELU:
  13578. {
  13579. n_tasks = 1;
  13580. } break;
  13581. case GGML_UNARY_OP_GELU:
  13582. case GGML_UNARY_OP_GELU_QUICK:
  13583. case GGML_UNARY_OP_SILU:
  13584. {
  13585. n_tasks = n_threads;
  13586. } break;
  13587. default:
  13588. GGML_ASSERT(false);
  13589. }
  13590. break;
  13591. case GGML_OP_SILU_BACK:
  13592. case GGML_OP_MUL:
  13593. case GGML_OP_DIV:
  13594. case GGML_OP_NORM:
  13595. case GGML_OP_RMS_NORM:
  13596. case GGML_OP_RMS_NORM_BACK:
  13597. case GGML_OP_GROUP_NORM:
  13598. case GGML_OP_CONCAT:
  13599. {
  13600. n_tasks = n_threads;
  13601. } break;
  13602. case GGML_OP_MUL_MAT:
  13603. {
  13604. n_tasks = n_threads;
  13605. // TODO: use different scheduling for different matrix sizes
  13606. //const int nr0 = ggml_nrows(node->src[0]);
  13607. //const int nr1 = ggml_nrows(node->src[1]);
  13608. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13609. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13610. } break;
  13611. case GGML_OP_MUL_MAT_ID:
  13612. {
  13613. n_tasks = n_threads;
  13614. } break;
  13615. case GGML_OP_OUT_PROD:
  13616. {
  13617. n_tasks = n_threads;
  13618. } break;
  13619. case GGML_OP_SCALE:
  13620. case GGML_OP_SET:
  13621. case GGML_OP_CONT:
  13622. case GGML_OP_RESHAPE:
  13623. case GGML_OP_VIEW:
  13624. case GGML_OP_PERMUTE:
  13625. case GGML_OP_TRANSPOSE:
  13626. case GGML_OP_GET_ROWS:
  13627. case GGML_OP_GET_ROWS_BACK:
  13628. case GGML_OP_DIAG:
  13629. {
  13630. n_tasks = 1;
  13631. } break;
  13632. case GGML_OP_DIAG_MASK_ZERO:
  13633. case GGML_OP_DIAG_MASK_INF:
  13634. case GGML_OP_SOFT_MAX_BACK:
  13635. case GGML_OP_ROPE:
  13636. case GGML_OP_ROPE_BACK:
  13637. case GGML_OP_ADD_REL_POS:
  13638. {
  13639. n_tasks = n_threads;
  13640. } break;
  13641. case GGML_OP_ALIBI:
  13642. {
  13643. n_tasks = 1; //TODO
  13644. } break;
  13645. case GGML_OP_CLAMP:
  13646. {
  13647. n_tasks = 1; //TODO
  13648. } break;
  13649. case GGML_OP_SOFT_MAX:
  13650. {
  13651. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13652. } break;
  13653. case GGML_OP_CONV_TRANSPOSE_1D:
  13654. {
  13655. n_tasks = n_threads;
  13656. } break;
  13657. case GGML_OP_IM2COL:
  13658. {
  13659. n_tasks = n_threads;
  13660. } break;
  13661. case GGML_OP_CONV_TRANSPOSE_2D:
  13662. {
  13663. n_tasks = n_threads;
  13664. } break;
  13665. case GGML_OP_POOL_1D:
  13666. case GGML_OP_POOL_2D:
  13667. {
  13668. n_tasks = 1;
  13669. } break;
  13670. case GGML_OP_UPSCALE:
  13671. {
  13672. n_tasks = n_threads;
  13673. } break;
  13674. case GGML_OP_PAD:
  13675. {
  13676. n_tasks = n_threads;
  13677. } break;
  13678. case GGML_OP_ARGSORT:
  13679. {
  13680. n_tasks = n_threads;
  13681. } break;
  13682. case GGML_OP_FLASH_ATTN:
  13683. {
  13684. n_tasks = n_threads;
  13685. } break;
  13686. case GGML_OP_FLASH_FF:
  13687. {
  13688. n_tasks = n_threads;
  13689. } break;
  13690. case GGML_OP_FLASH_ATTN_BACK:
  13691. {
  13692. n_tasks = n_threads;
  13693. } break;
  13694. case GGML_OP_WIN_PART:
  13695. case GGML_OP_WIN_UNPART:
  13696. case GGML_OP_GET_REL_POS:
  13697. case GGML_OP_MAP_UNARY:
  13698. case GGML_OP_MAP_BINARY:
  13699. case GGML_OP_MAP_CUSTOM1_F32:
  13700. case GGML_OP_MAP_CUSTOM2_F32:
  13701. case GGML_OP_MAP_CUSTOM3_F32:
  13702. {
  13703. n_tasks = 1;
  13704. } break;
  13705. case GGML_OP_MAP_CUSTOM1:
  13706. {
  13707. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13708. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13709. n_tasks = n_threads;
  13710. } else {
  13711. n_tasks = MIN(p->n_tasks, n_threads);
  13712. }
  13713. } break;
  13714. case GGML_OP_MAP_CUSTOM2:
  13715. {
  13716. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13717. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13718. n_tasks = n_threads;
  13719. } else {
  13720. n_tasks = MIN(p->n_tasks, n_threads);
  13721. }
  13722. } break;
  13723. case GGML_OP_MAP_CUSTOM3:
  13724. {
  13725. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13726. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13727. n_tasks = n_threads;
  13728. } else {
  13729. n_tasks = MIN(p->n_tasks, n_threads);
  13730. }
  13731. } break;
  13732. case GGML_OP_CROSS_ENTROPY_LOSS:
  13733. {
  13734. n_tasks = n_threads;
  13735. } break;
  13736. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13737. {
  13738. n_tasks = n_threads;
  13739. } break;
  13740. case GGML_OP_NONE:
  13741. {
  13742. n_tasks = 1;
  13743. } break;
  13744. case GGML_OP_COUNT:
  13745. {
  13746. GGML_ASSERT(false);
  13747. } break;
  13748. default:
  13749. {
  13750. fprintf(stderr, "%s: op not implemented: ", __func__);
  13751. if (node->op < GGML_OP_COUNT) {
  13752. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13753. } else {
  13754. fprintf(stderr, "%d\n", node->op);
  13755. }
  13756. GGML_ASSERT(false);
  13757. } break;
  13758. }
  13759. assert(n_tasks > 0);
  13760. return n_tasks;
  13761. }
  13762. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13763. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13764. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13765. const struct ggml_cplan * cplan = state->shared->cplan;
  13766. const int n_threads = state->shared->n_threads;
  13767. set_numa_thread_affinity(state->ith, n_threads);
  13768. int node_n = -1;
  13769. while (true) {
  13770. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13771. state->shared->node_n += 1;
  13772. return (thread_ret_t) GGML_EXIT_ABORTED;
  13773. }
  13774. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13775. // all other threads are finished and spinning
  13776. // do finalize and init here so we don't have synchronize again
  13777. struct ggml_compute_params params = {
  13778. /*.type =*/ GGML_TASK_FINALIZE,
  13779. /*.ith =*/ 0,
  13780. /*.nth =*/ 0,
  13781. /*.wsize =*/ cplan->work_size,
  13782. /*.wdata =*/ cplan->work_data,
  13783. };
  13784. if (node_n != -1) {
  13785. /* FINALIZE */
  13786. struct ggml_tensor * node = cgraph->nodes[node_n];
  13787. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13788. params.nth = ggml_get_n_tasks(node, n_threads);
  13789. ggml_compute_forward(&params, node);
  13790. }
  13791. ggml_graph_compute_perf_stats_node(node, state->shared);
  13792. }
  13793. // distribute new work or execute it direct if 1T
  13794. while (++node_n < cgraph->n_nodes) {
  13795. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13796. struct ggml_tensor * node = cgraph->nodes[node_n];
  13797. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13798. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13799. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13800. params.nth = n_tasks;
  13801. /* INIT */
  13802. if (GGML_OP_HAS_INIT[node->op]) {
  13803. params.type = GGML_TASK_INIT;
  13804. ggml_compute_forward(&params, node);
  13805. }
  13806. if (n_tasks == 1) {
  13807. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13808. // they do something more efficient than spinning (?)
  13809. params.type = GGML_TASK_COMPUTE;
  13810. ggml_compute_forward(&params, node);
  13811. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13812. params.type = GGML_TASK_FINALIZE;
  13813. ggml_compute_forward(&params, node);
  13814. }
  13815. ggml_graph_compute_perf_stats_node(node, state->shared);
  13816. } else {
  13817. break;
  13818. }
  13819. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13820. break;
  13821. }
  13822. }
  13823. atomic_store(&state->shared->n_active, n_threads);
  13824. atomic_store(&state->shared->node_n, node_n);
  13825. } else {
  13826. // wait for other threads to finish
  13827. const int last = node_n;
  13828. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13829. while (true) {
  13830. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13831. // depending on the workload and the operating system.
  13832. // since it is not clear what is the best approach, it should potentially become user-configurable
  13833. // ref: https://github.com/ggerganov/ggml/issues/291
  13834. // UPD: adding the do_yield flag seems to resolve the issue universally
  13835. if (do_yield) {
  13836. sched_yield();
  13837. }
  13838. node_n = atomic_load(&state->shared->node_n);
  13839. if (node_n != last) break;
  13840. };
  13841. }
  13842. // check if we should stop
  13843. if (node_n >= cgraph->n_nodes) break;
  13844. /* COMPUTE */
  13845. struct ggml_tensor * node = cgraph->nodes[node_n];
  13846. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13847. struct ggml_compute_params params = {
  13848. /*.type =*/ GGML_TASK_COMPUTE,
  13849. /*.ith =*/ state->ith,
  13850. /*.nth =*/ n_tasks,
  13851. /*.wsize =*/ cplan->work_size,
  13852. /*.wdata =*/ cplan->work_data,
  13853. };
  13854. if (state->ith < n_tasks) {
  13855. ggml_compute_forward(&params, node);
  13856. }
  13857. }
  13858. return GGML_EXIT_SUCCESS;
  13859. }
  13860. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  13861. if (n_threads <= 0) {
  13862. n_threads = GGML_DEFAULT_N_THREADS;
  13863. }
  13864. size_t work_size = 0;
  13865. struct ggml_cplan cplan;
  13866. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13867. // thread scheduling for the different operations + work buffer size estimation
  13868. for (int i = 0; i < cgraph->n_nodes; i++) {
  13869. struct ggml_tensor * node = cgraph->nodes[i];
  13870. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13871. size_t cur = 0;
  13872. switch (node->op) {
  13873. case GGML_OP_CPY:
  13874. case GGML_OP_DUP:
  13875. {
  13876. if (ggml_is_quantized(node->type)) {
  13877. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13878. }
  13879. } break;
  13880. case GGML_OP_ADD:
  13881. case GGML_OP_ADD1:
  13882. {
  13883. if (ggml_is_quantized(node->src[0]->type)) {
  13884. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13885. }
  13886. } break;
  13887. case GGML_OP_ACC:
  13888. {
  13889. if (ggml_is_quantized(node->src[0]->type)) {
  13890. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13891. }
  13892. } break;
  13893. case GGML_OP_MUL_MAT:
  13894. {
  13895. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13896. #if defined(GGML_USE_CLBLAST)
  13897. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13898. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13899. } else
  13900. #endif
  13901. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13902. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13903. if (node->src[0]->type != GGML_TYPE_F32) {
  13904. // here we need memory just for single 2D matrix from src0
  13905. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13906. }
  13907. } else
  13908. #endif
  13909. if (node->src[1]->type != vec_dot_type) {
  13910. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13911. }
  13912. } break;
  13913. case GGML_OP_MUL_MAT_ID:
  13914. {
  13915. cur = 0;
  13916. const struct ggml_tensor * src0 = node->src[2];
  13917. const struct ggml_tensor * src1 = node->src[1];
  13918. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13919. if (src1->type != vec_dot_type) {
  13920. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13921. }
  13922. const int n_as = ggml_get_op_params_i32(node, 1);
  13923. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  13924. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13925. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13926. } break;
  13927. case GGML_OP_OUT_PROD:
  13928. {
  13929. if (ggml_is_quantized(node->src[0]->type)) {
  13930. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13931. }
  13932. } break;
  13933. case GGML_OP_SOFT_MAX:
  13934. case GGML_OP_ROPE:
  13935. {
  13936. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13937. } break;
  13938. case GGML_OP_CONV_TRANSPOSE_1D:
  13939. {
  13940. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13941. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13942. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13943. const int64_t ne00 = node->src[0]->ne[0]; // K
  13944. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13945. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13946. const int64_t ne10 = node->src[1]->ne[0]; // L
  13947. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13948. if (node->src[0]->type == GGML_TYPE_F16 &&
  13949. node->src[1]->type == GGML_TYPE_F32) {
  13950. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13951. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13952. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13953. node->src[1]->type == GGML_TYPE_F32) {
  13954. cur += sizeof(float)*ne00*ne01*ne02;
  13955. cur += sizeof(float)*ne10*ne11;
  13956. } else {
  13957. GGML_ASSERT(false);
  13958. }
  13959. } break;
  13960. case GGML_OP_CONV_TRANSPOSE_2D:
  13961. {
  13962. const int64_t ne00 = node->src[0]->ne[0]; // W
  13963. const int64_t ne01 = node->src[0]->ne[1]; // H
  13964. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13965. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13966. const int64_t ne10 = node->src[1]->ne[0]; // W
  13967. const int64_t ne11 = node->src[1]->ne[1]; // H
  13968. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13969. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13970. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13971. } break;
  13972. case GGML_OP_FLASH_ATTN:
  13973. {
  13974. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13975. if (node->src[1]->type == GGML_TYPE_F32) {
  13976. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13977. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13978. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13979. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13980. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13981. }
  13982. } break;
  13983. case GGML_OP_FLASH_FF:
  13984. {
  13985. if (node->src[1]->type == GGML_TYPE_F32) {
  13986. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13987. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13988. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13989. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13990. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13991. }
  13992. } break;
  13993. case GGML_OP_FLASH_ATTN_BACK:
  13994. {
  13995. const int64_t D = node->src[0]->ne[0];
  13996. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13997. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13998. if (node->src[1]->type == GGML_TYPE_F32) {
  13999. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14000. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14001. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14002. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14003. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14004. }
  14005. } break;
  14006. case GGML_OP_CROSS_ENTROPY_LOSS:
  14007. {
  14008. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14009. } break;
  14010. case GGML_OP_COUNT:
  14011. {
  14012. GGML_ASSERT(false);
  14013. } break;
  14014. default:
  14015. break;
  14016. }
  14017. work_size = MAX(work_size, cur);
  14018. }
  14019. if (work_size > 0) {
  14020. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14021. }
  14022. cplan.n_threads = n_threads;
  14023. cplan.work_size = work_size;
  14024. cplan.work_data = NULL;
  14025. return cplan;
  14026. }
  14027. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14028. {
  14029. GGML_ASSERT(cplan);
  14030. GGML_ASSERT(cplan->n_threads > 0);
  14031. if (cplan->work_size > 0) {
  14032. GGML_ASSERT(cplan->work_data);
  14033. }
  14034. }
  14035. const int n_threads = cplan->n_threads;
  14036. struct ggml_compute_state_shared state_shared = {
  14037. /*.cgraph =*/ cgraph,
  14038. /*.cgraph_plan =*/ cplan,
  14039. /*.perf_node_start_cycles =*/ 0,
  14040. /*.perf_node_start_time_us =*/ 0,
  14041. /*.n_threads =*/ n_threads,
  14042. /*.n_active =*/ n_threads,
  14043. /*.node_n =*/ -1,
  14044. /*.abort_callback =*/ NULL,
  14045. /*.abort_callback_data =*/ NULL,
  14046. };
  14047. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14048. // create thread pool
  14049. if (n_threads > 1) {
  14050. for (int j = 1; j < n_threads; ++j) {
  14051. workers[j] = (struct ggml_compute_state) {
  14052. .thrd = 0,
  14053. .ith = j,
  14054. .shared = &state_shared,
  14055. };
  14056. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14057. GGML_ASSERT(rc == 0);
  14058. UNUSED(rc);
  14059. }
  14060. }
  14061. workers[0].ith = 0;
  14062. workers[0].shared = &state_shared;
  14063. const int64_t perf_start_cycles = ggml_perf_cycles();
  14064. const int64_t perf_start_time_us = ggml_perf_time_us();
  14065. // this is a work thread too
  14066. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14067. // don't leave affinity set on the main thread
  14068. clear_numa_thread_affinity();
  14069. // join or kill thread pool
  14070. if (n_threads > 1) {
  14071. for (int j = 1; j < n_threads; j++) {
  14072. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14073. GGML_ASSERT(rc == 0);
  14074. }
  14075. }
  14076. // performance stats (graph)
  14077. {
  14078. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14079. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14080. cgraph->perf_runs++;
  14081. cgraph->perf_cycles += perf_cycles_cur;
  14082. cgraph->perf_time_us += perf_time_us_cur;
  14083. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14084. __func__, cgraph->perf_runs,
  14085. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14086. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14087. (double) perf_time_us_cur / 1000.0,
  14088. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14089. }
  14090. return compute_status;
  14091. }
  14092. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14093. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14094. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14095. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14096. ggml_graph_compute(cgraph, &cplan);
  14097. }
  14098. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14099. for (int i = 0; i < cgraph->n_leafs; i++) {
  14100. struct ggml_tensor * leaf = cgraph->leafs[i];
  14101. if (strcmp(leaf->name, name) == 0) {
  14102. return leaf;
  14103. }
  14104. }
  14105. for (int i = 0; i < cgraph->n_nodes; i++) {
  14106. struct ggml_tensor * node = cgraph->nodes[i];
  14107. if (strcmp(node->name, name) == 0) {
  14108. return node;
  14109. }
  14110. }
  14111. return NULL;
  14112. }
  14113. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14114. const int64_t * ne = tensor->ne;
  14115. const size_t * nb = tensor->nb;
  14116. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14117. ggml_type_name(tensor->type),
  14118. ggml_op_name (tensor->op),
  14119. ggml_n_dims(tensor),
  14120. ne[0], ne[1], ne[2], ne[3],
  14121. nb[0], nb[1], nb[2], nb[3],
  14122. tensor->data,
  14123. tensor->name);
  14124. }
  14125. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14126. const int64_t * ne = tensor->ne;
  14127. const size_t * nb = tensor->nb;
  14128. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14129. arg,
  14130. ggml_type_name(tensor->type),
  14131. ggml_op_name (tensor->op),
  14132. ggml_n_dims(tensor),
  14133. ne[0], ne[1], ne[2], ne[3],
  14134. nb[0], nb[1], nb[2], nb[3],
  14135. tensor->data,
  14136. tensor->name);
  14137. }
  14138. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14139. uint64_t size_eval = 0;
  14140. // compute size of intermediate results
  14141. // TODO: does not take into account scratch buffers !!!!
  14142. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14143. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14144. }
  14145. // print
  14146. {
  14147. FILE * fout = stdout;
  14148. fprintf(fout, "\n");
  14149. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14150. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14151. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14152. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14153. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14154. // header
  14155. fprintf(fout, "\n");
  14156. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14157. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14158. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14159. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14160. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14161. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14162. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14163. }
  14164. // header
  14165. fprintf(fout, "\n");
  14166. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14167. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14168. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14169. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14170. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14171. if (cgraph->nodes[i]->src[j]) {
  14172. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14173. }
  14174. }
  14175. fprintf(fout, "\n");
  14176. }
  14177. fprintf(fout, "\n");
  14178. }
  14179. // write binary data
  14180. {
  14181. FILE * fout = fopen(fname, "wb");
  14182. if (!fout) {
  14183. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14184. return;
  14185. }
  14186. // header
  14187. {
  14188. const uint32_t magic = GGML_FILE_MAGIC;
  14189. const uint32_t version = GGML_FILE_VERSION;
  14190. const uint32_t n_leafs = cgraph->n_leafs;
  14191. const uint32_t n_nodes = cgraph->n_nodes;
  14192. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14193. fwrite(&version, sizeof(uint32_t), 1, fout);
  14194. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14195. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14196. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14197. }
  14198. // leafs
  14199. {
  14200. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14201. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14202. const uint32_t type = tensor->type;
  14203. const uint32_t op = tensor->op;
  14204. fwrite(&type, sizeof(uint32_t), 1, fout);
  14205. fwrite(&op, sizeof(uint32_t), 1, fout);
  14206. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14207. const uint64_t ne = tensor->ne[j];
  14208. const uint64_t nb = tensor->nb[j];
  14209. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14210. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14211. }
  14212. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14213. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14214. // dump the data
  14215. // TODO: pad this to 32 byte boundary
  14216. {
  14217. const size_t size = ggml_nbytes(tensor);
  14218. fwrite(tensor->data, sizeof(char), size, fout);
  14219. }
  14220. }
  14221. }
  14222. // nodes
  14223. {
  14224. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14225. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14226. const uint32_t type = tensor->type;
  14227. const uint32_t op = tensor->op;
  14228. fwrite(&type, sizeof(uint32_t), 1, fout);
  14229. fwrite(&op, sizeof(uint32_t), 1, fout);
  14230. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14231. const uint64_t ne = tensor->ne[j];
  14232. const uint64_t nb = tensor->nb[j];
  14233. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14234. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14235. }
  14236. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14237. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14238. // output the op arguments
  14239. {
  14240. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14241. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14242. args[j] = tensor->src[j];
  14243. }
  14244. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14245. if (args[j]) {
  14246. int32_t idx = -1;
  14247. // check if leaf
  14248. {
  14249. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14250. if (args[j] == cgraph->leafs[k]) {
  14251. idx = k;
  14252. break;
  14253. }
  14254. }
  14255. }
  14256. // check if node
  14257. if (idx == -1) {
  14258. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14259. if (args[j] == cgraph->nodes[k]) {
  14260. idx = cgraph->n_leafs + k;
  14261. break;
  14262. }
  14263. }
  14264. }
  14265. if (idx == -1) {
  14266. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14267. fclose(fout);
  14268. return;
  14269. }
  14270. fwrite(&idx, sizeof(int32_t), 1, fout);
  14271. } else {
  14272. const int32_t nul = -1;
  14273. fwrite(&nul, sizeof(int32_t), 1, fout);
  14274. }
  14275. }
  14276. }
  14277. }
  14278. }
  14279. fclose(fout);
  14280. }
  14281. }
  14282. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14283. assert(*ctx_data == NULL);
  14284. assert(*ctx_eval == NULL);
  14285. struct ggml_cgraph * result = NULL;
  14286. struct ggml_tensor * data = NULL;
  14287. // read file into data
  14288. {
  14289. FILE * fin = fopen(fname, "rb");
  14290. if (!fin) {
  14291. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14292. return result;
  14293. }
  14294. size_t fsize = 0;
  14295. fseek(fin, 0, SEEK_END);
  14296. fsize = ftell(fin);
  14297. fseek(fin, 0, SEEK_SET);
  14298. // create the data context
  14299. {
  14300. const size_t overhead = 1*ggml_tensor_overhead();
  14301. struct ggml_init_params params = {
  14302. .mem_size = fsize + overhead,
  14303. .mem_buffer = NULL,
  14304. .no_alloc = false,
  14305. };
  14306. *ctx_data = ggml_init(params);
  14307. if (!*ctx_data) {
  14308. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14309. fclose(fin);
  14310. return result;
  14311. }
  14312. }
  14313. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14314. {
  14315. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14316. if (ret != fsize) {
  14317. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14318. fclose(fin);
  14319. return result;
  14320. }
  14321. }
  14322. fclose(fin);
  14323. }
  14324. // populate result
  14325. {
  14326. char * ptr = (char *) data->data;
  14327. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14328. if (magic != GGML_FILE_MAGIC) {
  14329. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14330. return result;
  14331. }
  14332. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14333. if (version != GGML_FILE_VERSION) {
  14334. fprintf(stderr, "%s: invalid version number\n", __func__);
  14335. return result;
  14336. }
  14337. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14338. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14339. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14340. const int graph_size = MAX(n_leafs, n_nodes);
  14341. // create the data context
  14342. {
  14343. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14344. struct ggml_init_params params = {
  14345. .mem_size = size_eval + overhead,
  14346. .mem_buffer = NULL,
  14347. .no_alloc = true,
  14348. };
  14349. *ctx_eval = ggml_init(params);
  14350. if (!*ctx_eval) {
  14351. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14352. return result;
  14353. }
  14354. }
  14355. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14356. result->n_leafs = n_leafs;
  14357. result->n_nodes = n_nodes;
  14358. // leafs
  14359. {
  14360. uint32_t type;
  14361. uint32_t op;
  14362. for (uint32_t i = 0; i < n_leafs; ++i) {
  14363. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14364. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14365. int64_t ne[GGML_MAX_DIMS];
  14366. size_t nb[GGML_MAX_DIMS];
  14367. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14368. uint64_t ne_cur;
  14369. uint64_t nb_cur;
  14370. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14371. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14372. ne[j] = ne_cur;
  14373. nb[j] = nb_cur;
  14374. }
  14375. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14376. tensor->op = (enum ggml_op) op;
  14377. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14378. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14379. tensor->data = (void *) ptr;
  14380. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14381. tensor->nb[j] = nb[j];
  14382. }
  14383. result->leafs[i] = tensor;
  14384. ptr += ggml_nbytes(tensor);
  14385. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14386. }
  14387. }
  14388. ggml_set_no_alloc(*ctx_eval, false);
  14389. // nodes
  14390. {
  14391. uint32_t type;
  14392. uint32_t op;
  14393. for (uint32_t i = 0; i < n_nodes; ++i) {
  14394. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14395. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14396. enum ggml_op eop = (enum ggml_op) op;
  14397. int64_t ne[GGML_MAX_DIMS];
  14398. size_t nb[GGML_MAX_DIMS];
  14399. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14400. uint64_t ne_cur;
  14401. uint64_t nb_cur;
  14402. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14403. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14404. ne[j] = ne_cur;
  14405. nb[j] = nb_cur;
  14406. }
  14407. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14408. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14409. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14410. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14411. // parse args
  14412. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14413. const int32_t arg_idx = ptr_arg_idx[j];
  14414. if (arg_idx == -1) {
  14415. continue;
  14416. }
  14417. if (arg_idx < result->n_leafs) {
  14418. args[j] = result->leafs[arg_idx];
  14419. } else {
  14420. args[j] = result->nodes[arg_idx - result->n_leafs];
  14421. }
  14422. }
  14423. // create the tensor
  14424. // "view" operations are handled differently
  14425. // TODO: handle inplace ops - currently a copy is always made
  14426. struct ggml_tensor * tensor = NULL;
  14427. switch (eop) {
  14428. // TODO: implement other view ops
  14429. case GGML_OP_RESHAPE:
  14430. {
  14431. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14432. } break;
  14433. case GGML_OP_VIEW:
  14434. {
  14435. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14436. size_t offs;
  14437. memcpy(&offs, ptr_op_params, sizeof(offs));
  14438. tensor->data = ((char *) tensor->data) + offs;
  14439. } break;
  14440. case GGML_OP_TRANSPOSE:
  14441. {
  14442. tensor = ggml_transpose(*ctx_eval, args[0]);
  14443. } break;
  14444. case GGML_OP_PERMUTE:
  14445. {
  14446. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14447. } break;
  14448. default:
  14449. {
  14450. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14451. tensor->op = eop;
  14452. } break;
  14453. }
  14454. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14455. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14456. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14457. tensor->nb[j] = nb[j];
  14458. }
  14459. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14460. tensor->src[j] = args[j];
  14461. }
  14462. result->nodes[i] = tensor;
  14463. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14464. }
  14465. }
  14466. }
  14467. return result;
  14468. }
  14469. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14470. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14471. GGML_PRINT("=== GRAPH ===\n");
  14472. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14473. for (int i = 0; i < cgraph->n_nodes; i++) {
  14474. struct ggml_tensor * node = cgraph->nodes[i];
  14475. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14476. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14477. i,
  14478. node->ne[0], node->ne[1], node->ne[2],
  14479. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14480. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14481. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14482. (double) node->perf_time_us / 1000.0,
  14483. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14484. }
  14485. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14486. for (int i = 0; i < cgraph->n_leafs; i++) {
  14487. struct ggml_tensor * node = cgraph->leafs[i];
  14488. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14489. i,
  14490. node->ne[0], node->ne[1],
  14491. ggml_op_name(node->op),
  14492. ggml_get_name(node));
  14493. }
  14494. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14495. if (perf_total_per_op_us[i] == 0) {
  14496. continue;
  14497. }
  14498. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14499. }
  14500. GGML_PRINT("========================================\n");
  14501. }
  14502. // check if node is part of the graph
  14503. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14504. if (cgraph == NULL) {
  14505. return true;
  14506. }
  14507. for (int i = 0; i < cgraph->n_nodes; i++) {
  14508. if (cgraph->nodes[i] == node) {
  14509. return true;
  14510. }
  14511. }
  14512. return false;
  14513. }
  14514. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14515. for (int i = 0; i < cgraph->n_nodes; i++) {
  14516. struct ggml_tensor * parent = cgraph->nodes[i];
  14517. if (parent->grad == node) {
  14518. return parent;
  14519. }
  14520. }
  14521. return NULL;
  14522. }
  14523. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14524. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14525. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14526. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14527. gparent0 ? (void *) gparent0 : (void *) parent,
  14528. gparent0 ? "g" : "x",
  14529. gparent ? (void *) gparent : (void *) node,
  14530. gparent ? "g" : "x",
  14531. gparent ? "empty" : "vee",
  14532. gparent ? "dashed" : "solid",
  14533. label);
  14534. }
  14535. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14536. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14537. (void *) parent, "x",
  14538. (void *) node, "x",
  14539. label);
  14540. }
  14541. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14542. char color[16];
  14543. FILE * fp = fopen(filename, "w");
  14544. GGML_ASSERT(fp);
  14545. fprintf(fp, "digraph G {\n");
  14546. fprintf(fp, " newrank = true;\n");
  14547. fprintf(fp, " rankdir = LR;\n");
  14548. for (int i = 0; i < gb->n_nodes; i++) {
  14549. struct ggml_tensor * node = gb->nodes[i];
  14550. if (ggml_graph_get_parent(gb, node) != NULL) {
  14551. continue;
  14552. }
  14553. if (node->is_param) {
  14554. snprintf(color, sizeof(color), "yellow");
  14555. } else if (node->grad) {
  14556. if (ggml_graph_find(gf, node)) {
  14557. snprintf(color, sizeof(color), "green");
  14558. } else {
  14559. snprintf(color, sizeof(color), "lightblue");
  14560. }
  14561. } else {
  14562. snprintf(color, sizeof(color), "white");
  14563. }
  14564. fprintf(fp, " \"%p\" [ "
  14565. "style = filled; fillcolor = %s; shape = record; "
  14566. "label=\"",
  14567. (void *) node, color);
  14568. if (strlen(node->name) > 0) {
  14569. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14570. } else {
  14571. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14572. }
  14573. if (ggml_is_matrix(node)) {
  14574. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14575. } else {
  14576. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14577. }
  14578. if (node->grad) {
  14579. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14580. } else {
  14581. fprintf(fp, "\"; ]\n");
  14582. }
  14583. }
  14584. for (int i = 0; i < gb->n_leafs; i++) {
  14585. struct ggml_tensor * node = gb->leafs[i];
  14586. snprintf(color, sizeof(color), "pink");
  14587. fprintf(fp, " \"%p\" [ "
  14588. "style = filled; fillcolor = %s; shape = record; "
  14589. "label=\"<x>",
  14590. (void *) node, color);
  14591. if (strlen(node->name) > 0) {
  14592. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14593. } else {
  14594. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14595. }
  14596. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14597. if (ggml_nelements(node) < 5) {
  14598. fprintf(fp, " | (");
  14599. for (int j = 0; j < ggml_nelements(node); j++) {
  14600. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14601. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14602. }
  14603. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14604. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14605. }
  14606. else {
  14607. fprintf(fp, "#");
  14608. }
  14609. if (j < ggml_nelements(node) - 1) {
  14610. fprintf(fp, ", ");
  14611. }
  14612. }
  14613. fprintf(fp, ")");
  14614. }
  14615. fprintf(fp, "\"; ]\n");
  14616. }
  14617. for (int i = 0; i < gb->n_nodes; i++) {
  14618. struct ggml_tensor * node = gb->nodes[i];
  14619. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14620. if (node->src[j]) {
  14621. char label[16];
  14622. snprintf(label, sizeof(label), "src %d", j);
  14623. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14624. }
  14625. }
  14626. }
  14627. for (int i = 0; i < gb->n_leafs; i++) {
  14628. struct ggml_tensor * node = gb->leafs[i];
  14629. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14630. if (node->src[j]) {
  14631. char label[16];
  14632. snprintf(label, sizeof(label), "src %d", j);
  14633. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14634. }
  14635. }
  14636. }
  14637. fprintf(fp, "}\n");
  14638. fclose(fp);
  14639. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14640. }
  14641. ////////////////////////////////////////////////////////////////////////////////
  14642. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14643. int i = 0;
  14644. for (int p = 0; p < np; ++p) {
  14645. const int64_t ne = ggml_nelements(ps[p]) ;
  14646. // TODO: add function to set tensor from array
  14647. for (int64_t j = 0; j < ne; ++j) {
  14648. ggml_set_f32_1d(ps[p], j, x[i++]);
  14649. }
  14650. }
  14651. }
  14652. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14653. int i = 0;
  14654. for (int p = 0; p < np; ++p) {
  14655. const int64_t ne = ggml_nelements(ps[p]) ;
  14656. // TODO: add function to get all elements at once
  14657. for (int64_t j = 0; j < ne; ++j) {
  14658. x[i++] = ggml_get_f32_1d(ps[p], j);
  14659. }
  14660. }
  14661. }
  14662. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14663. int64_t i = 0;
  14664. for (int p = 0; p < np; ++p) {
  14665. const int64_t ne = ggml_nelements(ps[p]) ;
  14666. // TODO: add function to get all elements at once
  14667. for (int64_t j = 0; j < ne; ++j) {
  14668. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14669. }
  14670. }
  14671. }
  14672. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14673. int64_t i = 0;
  14674. for (int p = 0; p < np; ++p) {
  14675. const int64_t ne = ggml_nelements(ps[p]) ;
  14676. // TODO: add function to get all elements at once
  14677. for (int64_t j = 0; j < ne; ++j) {
  14678. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14679. }
  14680. }
  14681. }
  14682. //
  14683. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14684. //
  14685. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14686. //
  14687. static enum ggml_opt_result ggml_opt_adam(
  14688. struct ggml_context * ctx,
  14689. struct ggml_opt_context * opt,
  14690. struct ggml_opt_params params,
  14691. struct ggml_tensor * f,
  14692. struct ggml_cgraph * gf,
  14693. struct ggml_cgraph * gb,
  14694. ggml_opt_callback callback,
  14695. void * callback_data) {
  14696. GGML_ASSERT(ggml_is_scalar(f));
  14697. // these will store the parameters we want to optimize
  14698. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14699. int np = 0;
  14700. int64_t nx = 0;
  14701. for (int i = 0; i < gf->n_nodes; ++i) {
  14702. if (gf->nodes[i]->is_param) {
  14703. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14704. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14705. ps[np++] = gf->nodes[i];
  14706. nx += ggml_nelements(gf->nodes[i]);
  14707. }
  14708. }
  14709. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14710. int iter = opt->iter;
  14711. ggml_opt_init(opt->ctx, opt, params, nx);
  14712. opt->iter = iter;
  14713. }
  14714. // constants
  14715. float sched = params.adam.sched;
  14716. const float alpha = params.adam.alpha;
  14717. const float decay = params.adam.decay * alpha;
  14718. const float beta1 = params.adam.beta1;
  14719. const float beta2 = params.adam.beta2;
  14720. const float eps = params.adam.eps;
  14721. const float gclip = params.adam.gclip;
  14722. const int decay_min_ndim = params.adam.decay_min_ndim;
  14723. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14724. const float accum_norm = 1.0f / (float) n_accum;
  14725. float * g = opt->adam.g->data; // gradients
  14726. float * m = opt->adam.m->data; // first moment
  14727. float * v = opt->adam.v->data; // second moment
  14728. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14729. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14730. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14731. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14732. bool cancel = false;
  14733. // compute the function value
  14734. float fx = 0;
  14735. ggml_set_zero(opt->adam.g);
  14736. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14737. if (callback) {
  14738. callback(callback_data, accum_step, &sched, &cancel);
  14739. if (cancel) {
  14740. return GGML_OPT_CANCEL;
  14741. }
  14742. }
  14743. // ggml_graph_reset (gf);
  14744. ggml_set_f32 (f->grad, 1.0f);
  14745. ggml_graph_compute(gb, &cplan);
  14746. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14747. fx += ggml_get_f32_1d(f, 0);
  14748. }
  14749. fx *= accum_norm;
  14750. opt->adam.fx_prev = fx;
  14751. opt->adam.fx_best = opt->adam.fx_prev;
  14752. if (pf) {
  14753. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14754. }
  14755. opt->loss_before = opt->adam.fx_prev;
  14756. opt->loss_after = opt->adam.fx_prev;
  14757. // initialize
  14758. if (opt->just_initialized) {
  14759. opt->adam.n_no_improvement = 0;
  14760. opt->just_initialized = false;
  14761. }
  14762. float * fx_best = &opt->adam.fx_best;
  14763. float * fx_prev = &opt->adam.fx_prev;
  14764. int * n_no_improvement = &opt->adam.n_no_improvement;
  14765. int iter0 = opt->iter;
  14766. // run the optimizer
  14767. for (int t = 0; t < params.adam.n_iter; ++t) {
  14768. opt->iter = iter0 + t + 1;
  14769. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14770. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14771. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14772. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14773. for (int i = 0; i < np; ++i) {
  14774. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14775. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14776. }
  14777. const int64_t t_start_wall = ggml_time_us();
  14778. const int64_t t_start_cpu = ggml_cycles();
  14779. UNUSED(t_start_wall);
  14780. UNUSED(t_start_cpu);
  14781. {
  14782. float gnorm = 1.0f;
  14783. if (gclip > 0.0f) {
  14784. // gradient clipping
  14785. ggml_float sum = 0.0;
  14786. for (int64_t i = 0; i < nx; ++i) {
  14787. sum += (ggml_float)(g[i]*g[i]);
  14788. }
  14789. ggml_float norm = sqrt(sum);
  14790. if (norm > (ggml_float) gclip) {
  14791. gnorm = (float) ((ggml_float) gclip / norm);
  14792. }
  14793. }
  14794. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14795. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14796. int64_t i = 0;
  14797. for (int p = 0; p < np; ++p) {
  14798. const int64_t ne = ggml_nelements(ps[p]);
  14799. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14800. for (int64_t j = 0; j < ne; ++j) {
  14801. float x = ggml_get_f32_1d(ps[p], j);
  14802. float g_ = g[i]*gnorm;
  14803. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14804. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14805. float mh = m[i]*beta1h;
  14806. float vh = v[i]*beta2h;
  14807. vh = sqrtf(vh) + eps;
  14808. x = x*(1.0f - p_decay) - mh/vh;
  14809. ggml_set_f32_1d(ps[p], j, x);
  14810. ++i;
  14811. }
  14812. }
  14813. }
  14814. fx = 0;
  14815. ggml_set_zero(opt->adam.g);
  14816. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14817. if (callback) {
  14818. callback(callback_data, accum_step, &sched, &cancel);
  14819. if (cancel) {
  14820. return GGML_OPT_CANCEL;;
  14821. }
  14822. }
  14823. // ggml_graph_reset (gf);
  14824. ggml_set_f32 (f->grad, 1.0f);
  14825. ggml_graph_compute(gb, &cplan);
  14826. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14827. fx += ggml_get_f32_1d(f, 0);
  14828. }
  14829. fx *= accum_norm;
  14830. opt->loss_after = fx;
  14831. // check convergence
  14832. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14833. GGML_PRINT_DEBUG("converged\n");
  14834. return GGML_OPT_OK;
  14835. }
  14836. // delta-based convergence test
  14837. if (pf != NULL) {
  14838. // need at least params.past iterations to start checking for convergence
  14839. if (params.past <= iter0 + t) {
  14840. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14841. if (fabsf(rate) < params.delta) {
  14842. return GGML_OPT_OK;
  14843. }
  14844. }
  14845. pf[(iter0 + t)%params.past] = fx;
  14846. }
  14847. // check for improvement
  14848. if (params.max_no_improvement > 0) {
  14849. if (fx_best[0] > fx) {
  14850. fx_best[0] = fx;
  14851. n_no_improvement[0] = 0;
  14852. } else {
  14853. ++n_no_improvement[0];
  14854. if (n_no_improvement[0] >= params.max_no_improvement) {
  14855. return GGML_OPT_OK;
  14856. }
  14857. }
  14858. }
  14859. fx_prev[0] = fx;
  14860. {
  14861. const int64_t t_end_cpu = ggml_cycles();
  14862. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14863. UNUSED(t_end_cpu);
  14864. const int64_t t_end_wall = ggml_time_us();
  14865. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14866. UNUSED(t_end_wall);
  14867. }
  14868. }
  14869. return GGML_OPT_DID_NOT_CONVERGE;
  14870. }
  14871. //
  14872. // L-BFGS
  14873. //
  14874. // the L-BFGS implementation below is based on the following implementation:
  14875. //
  14876. // https://github.com/chokkan/liblbfgs
  14877. //
  14878. struct ggml_lbfgs_iteration_data {
  14879. float alpha;
  14880. float ys;
  14881. float * s;
  14882. float * y;
  14883. };
  14884. static enum ggml_opt_result linesearch_backtracking(
  14885. const struct ggml_opt_params * params,
  14886. int nx,
  14887. float * x,
  14888. float * fx,
  14889. float * g,
  14890. float * d,
  14891. float * step,
  14892. const float * xp,
  14893. struct ggml_tensor * f,
  14894. struct ggml_cgraph * gb,
  14895. struct ggml_cplan * cplan,
  14896. const int np,
  14897. struct ggml_tensor * ps[],
  14898. bool * cancel,
  14899. ggml_opt_callback callback,
  14900. void * callback_data) {
  14901. int count = 0;
  14902. float width = 0.0f;
  14903. float dg = 0.0f;
  14904. float finit = 0.0f;
  14905. float dginit = 0.0f;
  14906. float dgtest = 0.0f;
  14907. const float dec = 0.5f;
  14908. const float inc = 2.1f;
  14909. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14910. const float accum_norm = 1.0f / (float) n_accum;
  14911. if (*step <= 0.f) {
  14912. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14913. }
  14914. // compute the initial gradient in the search direction
  14915. ggml_vec_dot_f32(nx, &dginit, g, d);
  14916. // make sure that d points to a descent direction
  14917. if (0 < dginit) {
  14918. return GGML_LINESEARCH_FAIL;
  14919. }
  14920. // initialize local variables
  14921. finit = *fx;
  14922. dgtest = params->lbfgs.ftol*dginit;
  14923. while (true) {
  14924. ggml_vec_cpy_f32(nx, x, xp);
  14925. ggml_vec_mad_f32(nx, x, d, *step);
  14926. // evaluate the function and gradient values
  14927. {
  14928. ggml_opt_set_params(np, ps, x);
  14929. *fx = 0;
  14930. memset(g, 0, sizeof(float)*nx);
  14931. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14932. if (callback) {
  14933. // LBFG-S does not support learning rate -> ignore learning schedule
  14934. float sched = 0;
  14935. callback(callback_data, accum_step, &sched, cancel);
  14936. if (*cancel) {
  14937. return GGML_OPT_CANCEL;
  14938. }
  14939. }
  14940. // ggml_graph_reset (gf);
  14941. ggml_set_f32 (f->grad, 1.0f);
  14942. ggml_graph_compute(gb, cplan);
  14943. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14944. *fx += ggml_get_f32_1d(f, 0);
  14945. }
  14946. *fx *= accum_norm;
  14947. }
  14948. ++count;
  14949. if (*fx > finit + (*step)*dgtest) {
  14950. width = dec;
  14951. } else {
  14952. // Armijo condition is satisfied
  14953. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14954. return count;
  14955. }
  14956. ggml_vec_dot_f32(nx, &dg, g, d);
  14957. // check the Wolfe condition
  14958. if (dg < params->lbfgs.wolfe * dginit) {
  14959. width = inc;
  14960. } else {
  14961. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14962. // regular Wolfe conditions
  14963. return count;
  14964. }
  14965. if(dg > -params->lbfgs.wolfe*dginit) {
  14966. width = dec;
  14967. } else {
  14968. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14969. return count;
  14970. }
  14971. }
  14972. }
  14973. if (*step < params->lbfgs.min_step) {
  14974. return GGML_LINESEARCH_MINIMUM_STEP;
  14975. }
  14976. if (*step > params->lbfgs.max_step) {
  14977. return GGML_LINESEARCH_MAXIMUM_STEP;
  14978. }
  14979. if (params->lbfgs.max_linesearch <= count) {
  14980. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14981. }
  14982. (*step) *= width;
  14983. }
  14984. GGML_UNREACHABLE();
  14985. }
  14986. static enum ggml_opt_result ggml_opt_lbfgs(
  14987. struct ggml_context * ctx,
  14988. struct ggml_opt_context * opt,
  14989. struct ggml_opt_params params,
  14990. struct ggml_tensor * f,
  14991. struct ggml_cgraph * gf,
  14992. struct ggml_cgraph * gb,
  14993. ggml_opt_callback callback,
  14994. void * callback_data) {
  14995. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14996. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14997. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14998. return GGML_OPT_INVALID_WOLFE;
  14999. }
  15000. }
  15001. const int m = params.lbfgs.m;
  15002. // these will store the parameters we want to optimize
  15003. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15004. int np = 0;
  15005. int nx = 0;
  15006. for (int i = 0; i < gf->n_nodes; ++i) {
  15007. if (gf->nodes[i]->is_param) {
  15008. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15009. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15010. ps[np++] = gf->nodes[i];
  15011. nx += ggml_nelements(gf->nodes[i]);
  15012. }
  15013. }
  15014. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15015. int iter = opt->iter;
  15016. ggml_opt_init(ctx, opt, params, nx);
  15017. opt->iter = iter;
  15018. }
  15019. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15020. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15021. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15022. float * x = opt->lbfgs.x->data; // current parameters
  15023. float * xp = opt->lbfgs.xp->data; // previous parameters
  15024. float * g = opt->lbfgs.g->data; // current gradient
  15025. float * gp = opt->lbfgs.gp->data; // previous gradient
  15026. float * d = opt->lbfgs.d->data; // search direction
  15027. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15028. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15029. const float accum_norm = 1.0f / (float) n_accum;
  15030. float fx = 0.0f; // cost function value
  15031. float xnorm = 0.0f; // ||x||
  15032. float gnorm = 0.0f; // ||g||
  15033. // initialize x from the graph nodes
  15034. ggml_opt_get_params(np, ps, x);
  15035. // the L-BFGS memory
  15036. float * lm_alpha = opt->lbfgs.lmal->data;
  15037. float * lm_ys = opt->lbfgs.lmys->data;
  15038. float * lm_s = opt->lbfgs.lms->data;
  15039. float * lm_y = opt->lbfgs.lmy->data;
  15040. bool cancel = false;
  15041. // evaluate the function value and its gradient
  15042. {
  15043. ggml_opt_set_params(np, ps, x);
  15044. fx = 0;
  15045. memset(g, 0, sizeof(float)*nx);
  15046. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15047. if (callback) {
  15048. // LBFG-S does not support learning rate -> ignore learning schedule
  15049. float sched = 0;
  15050. callback(callback_data, accum_step, &sched, &cancel);
  15051. if (cancel) {
  15052. return GGML_OPT_CANCEL;
  15053. }
  15054. }
  15055. // ggml_graph_reset (gf);
  15056. ggml_set_f32 (f->grad, 1.0f);
  15057. ggml_graph_compute(gb, &cplan);
  15058. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15059. fx += ggml_get_f32_1d(f, 0);
  15060. }
  15061. fx *= accum_norm;
  15062. opt->loss_before = fx;
  15063. opt->loss_after = fx;
  15064. }
  15065. // search direction = -gradient
  15066. ggml_vec_neg_f32(nx, d, g);
  15067. // ||x||, ||g||
  15068. ggml_vec_norm_f32(nx, &xnorm, x);
  15069. ggml_vec_norm_f32(nx, &gnorm, g);
  15070. if (xnorm < 1.0f) {
  15071. xnorm = 1.0f;
  15072. }
  15073. // already optimized
  15074. if (gnorm/xnorm <= params.lbfgs.eps) {
  15075. return GGML_OPT_OK;
  15076. }
  15077. if (opt->just_initialized) {
  15078. if (pf) {
  15079. pf[0] = fx;
  15080. }
  15081. opt->lbfgs.fx_best = fx;
  15082. // initial step
  15083. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15084. opt->lbfgs.j = 0;
  15085. opt->lbfgs.k = 1;
  15086. opt->lbfgs.end = 0;
  15087. opt->lbfgs.n_no_improvement = 0;
  15088. opt->just_initialized = false;
  15089. }
  15090. float * fx_best = &opt->lbfgs.fx_best;
  15091. float * step = &opt->lbfgs.step;
  15092. int * j = &opt->lbfgs.j;
  15093. int * k = &opt->lbfgs.k;
  15094. int * end = &opt->lbfgs.end;
  15095. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15096. int ls = 0;
  15097. int bound = 0;
  15098. float ys = 0.0f;
  15099. float yy = 0.0f;
  15100. float beta = 0.0f;
  15101. int it = 0;
  15102. while (true) {
  15103. // store the current position and gradient vectors
  15104. ggml_vec_cpy_f32(nx, xp, x);
  15105. ggml_vec_cpy_f32(nx, gp, g);
  15106. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15107. // to determine if the optimization should be cancelled
  15108. // this is a simple change, but not doing this atm, since I don't have a nice
  15109. // way to test and don't want to break something with so many changes lined up
  15110. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15111. if (cancel) {
  15112. return GGML_OPT_CANCEL;
  15113. }
  15114. if (ls < 0) {
  15115. // linesearch failed - go back to the previous point and return
  15116. ggml_vec_cpy_f32(nx, x, xp);
  15117. ggml_vec_cpy_f32(nx, g, gp);
  15118. return ls;
  15119. }
  15120. opt->loss_after = fx;
  15121. ggml_vec_norm_f32(nx, &xnorm, x);
  15122. ggml_vec_norm_f32(nx, &gnorm, g);
  15123. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15124. if (xnorm < 1.0f) {
  15125. xnorm = 1.0f;
  15126. }
  15127. if (gnorm/xnorm <= params.lbfgs.eps) {
  15128. // converged
  15129. return GGML_OPT_OK;
  15130. }
  15131. // delta-based convergence test
  15132. if (pf != NULL) {
  15133. // need at least params.past iterations to start checking for convergence
  15134. if (params.past <= k[0]) {
  15135. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15136. if (fabsf(rate) < params.delta) {
  15137. return GGML_OPT_OK;
  15138. }
  15139. }
  15140. pf[k[0]%params.past] = fx;
  15141. }
  15142. // check for improvement
  15143. if (params.max_no_improvement > 0) {
  15144. if (fx < fx_best[0]) {
  15145. fx_best[0] = fx;
  15146. n_no_improvement[0] = 0;
  15147. } else {
  15148. n_no_improvement[0]++;
  15149. if (n_no_improvement[0] >= params.max_no_improvement) {
  15150. return GGML_OPT_OK;
  15151. }
  15152. }
  15153. }
  15154. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15155. // reached the maximum number of iterations
  15156. return GGML_OPT_DID_NOT_CONVERGE;
  15157. }
  15158. // update vectors s and y:
  15159. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15160. // y_{k+1} = g_{k+1} - g_{k}.
  15161. //
  15162. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15163. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15164. // compute scalars ys and yy:
  15165. // ys = y^t \cdot s -> 1 / \rho.
  15166. // yy = y^t \cdot y.
  15167. //
  15168. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15169. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15170. lm_ys[end[0]] = ys;
  15171. // find new search direction
  15172. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15173. bound = (m <= k[0]) ? m : k[0];
  15174. k[0]++;
  15175. it++;
  15176. end[0] = (end[0] + 1)%m;
  15177. // initialize search direction with -g
  15178. ggml_vec_neg_f32(nx, d, g);
  15179. j[0] = end[0];
  15180. for (int i = 0; i < bound; ++i) {
  15181. j[0] = (j[0] + m - 1) % m;
  15182. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15183. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15184. lm_alpha[j[0]] /= lm_ys[j[0]];
  15185. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15186. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15187. }
  15188. ggml_vec_scale_f32(nx, d, ys/yy);
  15189. for (int i = 0; i < bound; ++i) {
  15190. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15191. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15192. beta /= lm_ys[j[0]];
  15193. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15194. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15195. j[0] = (j[0] + 1)%m;
  15196. }
  15197. step[0] = 1.0;
  15198. }
  15199. GGML_UNREACHABLE();
  15200. }
  15201. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15202. struct ggml_opt_params result;
  15203. switch (type) {
  15204. case GGML_OPT_ADAM:
  15205. {
  15206. result = (struct ggml_opt_params) {
  15207. .type = GGML_OPT_ADAM,
  15208. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15209. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15210. .past = 0,
  15211. .delta = 1e-5f,
  15212. .max_no_improvement = 100,
  15213. .print_forward_graph = true,
  15214. .print_backward_graph = true,
  15215. .n_gradient_accumulation = 1,
  15216. .adam = {
  15217. .n_iter = 10000,
  15218. .sched = 1.000f,
  15219. .decay = 0.0f,
  15220. .decay_min_ndim = 2,
  15221. .alpha = 0.001f,
  15222. .beta1 = 0.9f,
  15223. .beta2 = 0.999f,
  15224. .eps = 1e-8f,
  15225. .eps_f = 1e-5f,
  15226. .eps_g = 1e-3f,
  15227. .gclip = 0.0f,
  15228. },
  15229. };
  15230. } break;
  15231. case GGML_OPT_LBFGS:
  15232. {
  15233. result = (struct ggml_opt_params) {
  15234. .type = GGML_OPT_LBFGS,
  15235. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15236. .n_threads = 1,
  15237. .past = 0,
  15238. .delta = 1e-5f,
  15239. .max_no_improvement = 0,
  15240. .print_forward_graph = true,
  15241. .print_backward_graph = true,
  15242. .n_gradient_accumulation = 1,
  15243. .lbfgs = {
  15244. .m = 6,
  15245. .n_iter = 100,
  15246. .max_linesearch = 20,
  15247. .eps = 1e-5f,
  15248. .ftol = 1e-4f,
  15249. .wolfe = 0.9f,
  15250. .min_step = 1e-20f,
  15251. .max_step = 1e+20f,
  15252. .linesearch = GGML_LINESEARCH_DEFAULT,
  15253. },
  15254. };
  15255. } break;
  15256. }
  15257. return result;
  15258. }
  15259. GGML_API void ggml_opt_init(
  15260. struct ggml_context * ctx,
  15261. struct ggml_opt_context * opt,
  15262. struct ggml_opt_params params,
  15263. int64_t nx) {
  15264. opt->ctx = ctx;
  15265. opt->params = params;
  15266. opt->iter = 0;
  15267. opt->nx = nx;
  15268. opt->just_initialized = true;
  15269. if (opt->ctx == NULL) {
  15270. struct ggml_init_params ctx_opt_params;
  15271. if (opt->params.type == GGML_OPT_ADAM) {
  15272. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15273. if (opt->params.past > 0) {
  15274. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15275. }
  15276. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15277. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15278. if (opt->params.past > 0) {
  15279. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15280. }
  15281. }
  15282. ctx_opt_params.mem_buffer = NULL;
  15283. ctx_opt_params.no_alloc = false;
  15284. opt->ctx = ggml_init(ctx_opt_params);
  15285. }
  15286. switch (opt->params.type) {
  15287. case GGML_OPT_ADAM:
  15288. {
  15289. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15290. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15291. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15292. opt->adam.pf = params.past > 0
  15293. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15294. : NULL;
  15295. ggml_set_zero(opt->adam.m);
  15296. ggml_set_zero(opt->adam.v);
  15297. if (opt->adam.pf) {
  15298. ggml_set_zero(opt->adam.pf);
  15299. }
  15300. } break;
  15301. case GGML_OPT_LBFGS:
  15302. {
  15303. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15304. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15305. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15306. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15307. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15308. opt->lbfgs.pf = params.past > 0
  15309. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15310. : NULL;
  15311. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15312. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15313. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15314. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15315. ggml_set_zero(opt->lbfgs.x);
  15316. ggml_set_zero(opt->lbfgs.xp);
  15317. ggml_set_zero(opt->lbfgs.g);
  15318. ggml_set_zero(opt->lbfgs.gp);
  15319. ggml_set_zero(opt->lbfgs.d);
  15320. if (opt->lbfgs.pf) {
  15321. ggml_set_zero(opt->lbfgs.pf);
  15322. }
  15323. ggml_set_zero(opt->lbfgs.lmal);
  15324. ggml_set_zero(opt->lbfgs.lmys);
  15325. ggml_set_zero(opt->lbfgs.lms);
  15326. ggml_set_zero(opt->lbfgs.lmy);
  15327. } break;
  15328. }
  15329. }
  15330. enum ggml_opt_result ggml_opt(
  15331. struct ggml_context * ctx,
  15332. struct ggml_opt_params params,
  15333. struct ggml_tensor * f) {
  15334. bool free_ctx = false;
  15335. if (ctx == NULL) {
  15336. struct ggml_init_params params_ctx = {
  15337. .mem_size = 16*1024*1024,
  15338. .mem_buffer = NULL,
  15339. .no_alloc = false,
  15340. };
  15341. ctx = ggml_init(params_ctx);
  15342. if (ctx == NULL) {
  15343. return GGML_OPT_NO_CONTEXT;
  15344. }
  15345. free_ctx = true;
  15346. }
  15347. enum ggml_opt_result result = GGML_OPT_OK;
  15348. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15349. ggml_opt_init(ctx, opt, params, 0);
  15350. result = ggml_opt_resume(ctx, opt, f);
  15351. if (free_ctx) {
  15352. ggml_free(ctx);
  15353. }
  15354. return result;
  15355. }
  15356. enum ggml_opt_result ggml_opt_resume(
  15357. struct ggml_context * ctx,
  15358. struct ggml_opt_context * opt,
  15359. struct ggml_tensor * f) {
  15360. // build forward + backward compute graphs
  15361. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15362. ggml_build_forward_expand(gf, f);
  15363. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15364. ggml_build_backward_expand(ctx, gf, gb, true);
  15365. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15366. }
  15367. enum ggml_opt_result ggml_opt_resume_g(
  15368. struct ggml_context * ctx,
  15369. struct ggml_opt_context * opt,
  15370. struct ggml_tensor * f,
  15371. struct ggml_cgraph * gf,
  15372. struct ggml_cgraph * gb,
  15373. ggml_opt_callback callback,
  15374. void * callback_data) {
  15375. // build forward + backward compute graphs
  15376. enum ggml_opt_result result = GGML_OPT_OK;
  15377. switch (opt->params.type) {
  15378. case GGML_OPT_ADAM:
  15379. {
  15380. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15381. } break;
  15382. case GGML_OPT_LBFGS:
  15383. {
  15384. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15385. } break;
  15386. }
  15387. if (opt->params.print_forward_graph) {
  15388. ggml_graph_print (gf);
  15389. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15390. }
  15391. if (opt->params.print_backward_graph) {
  15392. ggml_graph_print (gb);
  15393. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15394. }
  15395. return result;
  15396. }
  15397. ////////////////////////////////////////////////////////////////////////////////
  15398. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15399. assert(k % QK4_0 == 0);
  15400. const int nb = k / QK4_0;
  15401. for (int b = 0; b < n; b += k) {
  15402. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15403. quantize_row_q4_0_reference(src + b, y, k);
  15404. for (int i = 0; i < nb; i++) {
  15405. for (int j = 0; j < QK4_0; j += 2) {
  15406. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15407. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15408. hist[vi0]++;
  15409. hist[vi1]++;
  15410. }
  15411. }
  15412. }
  15413. return (n/QK4_0*sizeof(block_q4_0));
  15414. }
  15415. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15416. assert(k % QK4_1 == 0);
  15417. const int nb = k / QK4_1;
  15418. for (int b = 0; b < n; b += k) {
  15419. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15420. quantize_row_q4_1_reference(src + b, y, k);
  15421. for (int i = 0; i < nb; i++) {
  15422. for (int j = 0; j < QK4_1; j += 2) {
  15423. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15424. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15425. hist[vi0]++;
  15426. hist[vi1]++;
  15427. }
  15428. }
  15429. }
  15430. return (n/QK4_1*sizeof(block_q4_1));
  15431. }
  15432. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15433. assert(k % QK5_0 == 0);
  15434. const int nb = k / QK5_0;
  15435. for (int b = 0; b < n; b += k) {
  15436. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15437. quantize_row_q5_0_reference(src + b, y, k);
  15438. for (int i = 0; i < nb; i++) {
  15439. uint32_t qh;
  15440. memcpy(&qh, &y[i].qh, sizeof(qh));
  15441. for (int j = 0; j < QK5_0; j += 2) {
  15442. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15443. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15444. // cast to 16 bins
  15445. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15446. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15447. hist[vi0]++;
  15448. hist[vi1]++;
  15449. }
  15450. }
  15451. }
  15452. return (n/QK5_0*sizeof(block_q5_0));
  15453. }
  15454. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15455. assert(k % QK5_1 == 0);
  15456. const int nb = k / QK5_1;
  15457. for (int b = 0; b < n; b += k) {
  15458. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15459. quantize_row_q5_1_reference(src + b, y, k);
  15460. for (int i = 0; i < nb; i++) {
  15461. uint32_t qh;
  15462. memcpy(&qh, &y[i].qh, sizeof(qh));
  15463. for (int j = 0; j < QK5_1; j += 2) {
  15464. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15465. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15466. // cast to 16 bins
  15467. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15468. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15469. hist[vi0]++;
  15470. hist[vi1]++;
  15471. }
  15472. }
  15473. }
  15474. return (n/QK5_1*sizeof(block_q5_1));
  15475. }
  15476. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15477. assert(k % QK8_0 == 0);
  15478. const int nb = k / QK8_0;
  15479. for (int b = 0; b < n; b += k) {
  15480. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15481. quantize_row_q8_0_reference(src + b, y, k);
  15482. for (int i = 0; i < nb; i++) {
  15483. for (int j = 0; j < QK8_0; ++j) {
  15484. const int8_t vi = y[i].qs[j];
  15485. hist[vi/16 + 8]++;
  15486. }
  15487. }
  15488. }
  15489. return (n/QK8_0*sizeof(block_q8_0));
  15490. }
  15491. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15492. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15493. (void)imatrix;
  15494. size_t result = 0;
  15495. int n = nrows * n_per_row;
  15496. switch (type) {
  15497. case GGML_TYPE_Q4_0:
  15498. {
  15499. GGML_ASSERT(start % QK4_0 == 0);
  15500. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15501. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15502. } break;
  15503. case GGML_TYPE_Q4_1:
  15504. {
  15505. GGML_ASSERT(start % QK4_1 == 0);
  15506. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15507. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15508. } break;
  15509. case GGML_TYPE_Q5_0:
  15510. {
  15511. GGML_ASSERT(start % QK5_0 == 0);
  15512. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15513. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15514. } break;
  15515. case GGML_TYPE_Q5_1:
  15516. {
  15517. GGML_ASSERT(start % QK5_1 == 0);
  15518. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15519. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15520. } break;
  15521. case GGML_TYPE_Q8_0:
  15522. {
  15523. GGML_ASSERT(start % QK8_0 == 0);
  15524. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15525. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15526. } break;
  15527. case GGML_TYPE_Q2_K:
  15528. {
  15529. GGML_ASSERT(start % QK_K == 0);
  15530. GGML_ASSERT(start % n_per_row == 0);
  15531. size_t start_row = start / n_per_row;
  15532. size_t row_size = ggml_row_size(type, n_per_row);
  15533. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15534. GGML_ASSERT(result == row_size * nrows);
  15535. } break;
  15536. case GGML_TYPE_Q3_K:
  15537. {
  15538. GGML_ASSERT(start % QK_K == 0);
  15539. GGML_ASSERT(start % n_per_row == 0);
  15540. size_t start_row = start / n_per_row;
  15541. size_t row_size = ggml_row_size(type, n_per_row);
  15542. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15543. GGML_ASSERT(result == row_size * nrows);
  15544. } break;
  15545. case GGML_TYPE_Q4_K:
  15546. {
  15547. GGML_ASSERT(start % QK_K == 0);
  15548. GGML_ASSERT(start % n_per_row == 0);
  15549. size_t start_row = start / n_per_row;
  15550. size_t row_size = ggml_row_size(type, n_per_row);
  15551. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15552. GGML_ASSERT(result == row_size * nrows);
  15553. } break;
  15554. case GGML_TYPE_Q5_K:
  15555. {
  15556. GGML_ASSERT(start % QK_K == 0);
  15557. GGML_ASSERT(start % n_per_row == 0);
  15558. size_t start_row = start / n_per_row;
  15559. size_t row_size = ggml_row_size(type, n_per_row);
  15560. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15561. GGML_ASSERT(result == row_size * nrows);
  15562. } break;
  15563. case GGML_TYPE_Q6_K:
  15564. {
  15565. GGML_ASSERT(start % QK_K == 0);
  15566. GGML_ASSERT(start % n_per_row == 0);
  15567. size_t start_row = start / n_per_row;
  15568. size_t row_size = ggml_row_size(type, n_per_row);
  15569. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15570. GGML_ASSERT(result == row_size * nrows);
  15571. } break;
  15572. case GGML_TYPE_IQ2_XXS:
  15573. {
  15574. GGML_ASSERT(start % QK_K == 0);
  15575. GGML_ASSERT(start % n_per_row == 0);
  15576. GGML_ASSERT(imatrix);
  15577. size_t start_row = start / n_per_row;
  15578. size_t row_size = ggml_row_size(type, n_per_row);
  15579. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15580. GGML_ASSERT(result == row_size * nrows);
  15581. } break;
  15582. case GGML_TYPE_IQ2_XS:
  15583. {
  15584. GGML_ASSERT(start % QK_K == 0);
  15585. GGML_ASSERT(start % n_per_row == 0);
  15586. GGML_ASSERT(imatrix);
  15587. size_t start_row = start / n_per_row;
  15588. size_t row_size = ggml_row_size(type, n_per_row);
  15589. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15590. GGML_ASSERT(result == row_size * nrows);
  15591. } break;
  15592. case GGML_TYPE_F16:
  15593. {
  15594. int elemsize = sizeof(ggml_fp16_t);
  15595. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15596. result = n * elemsize;
  15597. } break;
  15598. case GGML_TYPE_F32:
  15599. {
  15600. int elemsize = sizeof(float);
  15601. result = n * elemsize;
  15602. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15603. } break;
  15604. default:
  15605. assert(false);
  15606. }
  15607. return result;
  15608. }
  15609. ////////////////////////////////////////////////////////////////////////////////
  15610. struct gguf_str {
  15611. uint64_t n; // GGUFv2
  15612. char * data;
  15613. };
  15614. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15615. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15616. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15617. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15618. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15619. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15620. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15621. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15622. [GGUF_TYPE_BOOL] = sizeof(bool),
  15623. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15624. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15625. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15626. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15627. [GGUF_TYPE_ARRAY] = 0, // undefined
  15628. };
  15629. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15630. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15631. [GGUF_TYPE_UINT8] = "u8",
  15632. [GGUF_TYPE_INT8] = "i8",
  15633. [GGUF_TYPE_UINT16] = "u16",
  15634. [GGUF_TYPE_INT16] = "i16",
  15635. [GGUF_TYPE_UINT32] = "u32",
  15636. [GGUF_TYPE_INT32] = "i32",
  15637. [GGUF_TYPE_FLOAT32] = "f32",
  15638. [GGUF_TYPE_BOOL] = "bool",
  15639. [GGUF_TYPE_STRING] = "str",
  15640. [GGUF_TYPE_ARRAY] = "arr",
  15641. [GGUF_TYPE_UINT64] = "u64",
  15642. [GGUF_TYPE_INT64] = "i64",
  15643. [GGUF_TYPE_FLOAT64] = "f64",
  15644. };
  15645. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15646. union gguf_value {
  15647. uint8_t uint8;
  15648. int8_t int8;
  15649. uint16_t uint16;
  15650. int16_t int16;
  15651. uint32_t uint32;
  15652. int32_t int32;
  15653. float float32;
  15654. uint64_t uint64;
  15655. int64_t int64;
  15656. double float64;
  15657. bool bool_;
  15658. struct gguf_str str;
  15659. struct {
  15660. enum gguf_type type;
  15661. uint64_t n; // GGUFv2
  15662. void * data;
  15663. } arr;
  15664. };
  15665. struct gguf_kv {
  15666. struct gguf_str key;
  15667. enum gguf_type type;
  15668. union gguf_value value;
  15669. };
  15670. struct gguf_header {
  15671. char magic[4];
  15672. uint32_t version;
  15673. uint64_t n_tensors; // GGUFv2
  15674. uint64_t n_kv; // GGUFv2
  15675. };
  15676. struct gguf_tensor_info {
  15677. struct gguf_str name;
  15678. uint32_t n_dims;
  15679. uint64_t ne[GGML_MAX_DIMS];
  15680. enum ggml_type type;
  15681. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15682. // for writing API
  15683. const void * data;
  15684. size_t size;
  15685. };
  15686. struct gguf_context {
  15687. struct gguf_header header;
  15688. struct gguf_kv * kv;
  15689. struct gguf_tensor_info * infos;
  15690. size_t alignment;
  15691. size_t offset; // offset of `data` from beginning of file
  15692. size_t size; // size of `data` in bytes
  15693. //uint8_t * padding;
  15694. void * data;
  15695. };
  15696. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15697. const size_t n = fread(dst, 1, size, file);
  15698. *offset += n;
  15699. return n == size;
  15700. }
  15701. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15702. p->n = 0;
  15703. p->data = NULL;
  15704. bool ok = true;
  15705. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15706. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15707. return ok;
  15708. }
  15709. struct gguf_context * gguf_init_empty(void) {
  15710. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15711. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15712. ctx->header.version = GGUF_VERSION;
  15713. ctx->header.n_tensors = 0;
  15714. ctx->header.n_kv = 0;
  15715. ctx->kv = NULL;
  15716. ctx->infos = NULL;
  15717. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15718. ctx->offset = 0;
  15719. ctx->size = 0;
  15720. ctx->data = NULL;
  15721. return ctx;
  15722. }
  15723. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15724. FILE * file = fopen(fname, "rb");
  15725. if (!file) {
  15726. return NULL;
  15727. }
  15728. // offset from start of file
  15729. size_t offset = 0;
  15730. char magic[4];
  15731. // check the magic before making allocations
  15732. {
  15733. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15734. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15735. if (magic[i] != GGUF_MAGIC[i]) {
  15736. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15737. fclose(file);
  15738. return NULL;
  15739. }
  15740. }
  15741. }
  15742. bool ok = true;
  15743. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15744. // read the header
  15745. {
  15746. strncpy(ctx->header.magic, magic, 4);
  15747. ctx->kv = NULL;
  15748. ctx->infos = NULL;
  15749. ctx->data = NULL;
  15750. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15751. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15752. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15753. if (ctx->header.version == 1) {
  15754. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15755. fclose(file);
  15756. gguf_free(ctx);
  15757. return NULL;
  15758. }
  15759. if (!ok) {
  15760. fprintf(stderr, "%s: failed to read header\n", __func__);
  15761. fclose(file);
  15762. gguf_free(ctx);
  15763. return NULL;
  15764. }
  15765. }
  15766. // read the kv pairs
  15767. {
  15768. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15769. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15770. struct gguf_kv * kv = &ctx->kv[i];
  15771. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15772. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15773. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15774. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15775. switch (kv->type) {
  15776. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15777. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15778. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15779. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15780. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15781. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15782. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15783. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15784. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15785. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15786. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15787. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15788. case GGUF_TYPE_ARRAY:
  15789. {
  15790. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15791. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15792. switch (kv->value.arr.type) {
  15793. case GGUF_TYPE_UINT8:
  15794. case GGUF_TYPE_INT8:
  15795. case GGUF_TYPE_UINT16:
  15796. case GGUF_TYPE_INT16:
  15797. case GGUF_TYPE_UINT32:
  15798. case GGUF_TYPE_INT32:
  15799. case GGUF_TYPE_FLOAT32:
  15800. case GGUF_TYPE_UINT64:
  15801. case GGUF_TYPE_INT64:
  15802. case GGUF_TYPE_FLOAT64:
  15803. case GGUF_TYPE_BOOL:
  15804. {
  15805. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15806. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15807. } break;
  15808. case GGUF_TYPE_STRING:
  15809. {
  15810. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15811. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15812. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15813. }
  15814. } break;
  15815. case GGUF_TYPE_ARRAY:
  15816. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15817. }
  15818. } break;
  15819. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15820. }
  15821. if (!ok) {
  15822. break;
  15823. }
  15824. }
  15825. if (!ok) {
  15826. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15827. fclose(file);
  15828. gguf_free(ctx);
  15829. return NULL;
  15830. }
  15831. }
  15832. // read the tensor infos
  15833. {
  15834. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15835. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15836. struct gguf_tensor_info * info = &ctx->infos[i];
  15837. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15838. info->ne[j] = 1;
  15839. }
  15840. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15841. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15842. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15843. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15844. }
  15845. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15846. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15847. if (!ok) {
  15848. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15849. fclose(file);
  15850. gguf_free(ctx);
  15851. return NULL;
  15852. }
  15853. }
  15854. }
  15855. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15856. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15857. if (alignment_idx != -1) {
  15858. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15859. }
  15860. // we require the data section to be aligned, so take into account any padding
  15861. {
  15862. const size_t offset_pad = offset % ctx->alignment;
  15863. if (offset_pad != 0) {
  15864. offset += ctx->alignment - offset_pad;
  15865. fseek(file, offset, SEEK_SET);
  15866. }
  15867. }
  15868. // store the current file offset - this is where the data section starts
  15869. ctx->offset = offset;
  15870. // compute the total size of the data section, taking into account the alignment
  15871. {
  15872. ctx->size = 0;
  15873. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15874. struct gguf_tensor_info * info = &ctx->infos[i];
  15875. const int64_t ne =
  15876. (int64_t) info->ne[0] *
  15877. (int64_t) info->ne[1] *
  15878. (int64_t) info->ne[2] *
  15879. (int64_t) info->ne[3];
  15880. if (ne % ggml_blck_size(info->type) != 0) {
  15881. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15882. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  15883. fclose(file);
  15884. gguf_free(ctx);
  15885. return NULL;
  15886. }
  15887. const size_t size_cur = ggml_row_size(info->type, ne);
  15888. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15889. }
  15890. }
  15891. // load the tensor data only if requested
  15892. if (params.ctx != NULL) {
  15893. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15894. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15895. // the ggml_tensor structs to the appropriate locations in the binary blob
  15896. // compute the exact size needed for the new ggml_context
  15897. const size_t mem_size =
  15898. params.no_alloc ?
  15899. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15900. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15901. struct ggml_init_params pdata = {
  15902. .mem_size = mem_size,
  15903. .mem_buffer = NULL,
  15904. .no_alloc = params.no_alloc,
  15905. };
  15906. *params.ctx = ggml_init(pdata);
  15907. struct ggml_context * ctx_data = *params.ctx;
  15908. struct ggml_tensor * data = NULL;
  15909. if (!params.no_alloc) {
  15910. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15911. ok = ok && data != NULL;
  15912. // read the binary blob with the tensor data
  15913. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15914. if (!ok) {
  15915. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15916. fclose(file);
  15917. ggml_free(ctx_data);
  15918. gguf_free(ctx);
  15919. return NULL;
  15920. }
  15921. ctx->data = data->data;
  15922. }
  15923. ggml_set_no_alloc(ctx_data, true);
  15924. // create the tensors
  15925. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15926. const int64_t ne[GGML_MAX_DIMS] = {
  15927. ctx->infos[i].ne[0],
  15928. ctx->infos[i].ne[1],
  15929. ctx->infos[i].ne[2],
  15930. ctx->infos[i].ne[3],
  15931. };
  15932. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15933. ok = ok && cur != NULL;
  15934. ggml_set_name(cur, ctx->infos[i].name.data);
  15935. if (!ok) {
  15936. break;
  15937. }
  15938. // point the data member to the appropriate location in the binary blob using the tensor infos
  15939. if (!params.no_alloc) {
  15940. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15941. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15942. }
  15943. }
  15944. if (!ok) {
  15945. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15946. fclose(file);
  15947. ggml_free(ctx_data);
  15948. gguf_free(ctx);
  15949. return NULL;
  15950. }
  15951. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15952. }
  15953. fclose(file);
  15954. return ctx;
  15955. }
  15956. void gguf_free(struct gguf_context * ctx) {
  15957. if (ctx == NULL) {
  15958. return;
  15959. }
  15960. if (ctx->kv) {
  15961. // free string memory - not great..
  15962. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15963. struct gguf_kv * kv = &ctx->kv[i];
  15964. if (kv->key.data) {
  15965. free(kv->key.data);
  15966. }
  15967. if (kv->type == GGUF_TYPE_STRING) {
  15968. if (kv->value.str.data) {
  15969. free(kv->value.str.data);
  15970. }
  15971. }
  15972. if (kv->type == GGUF_TYPE_ARRAY) {
  15973. if (kv->value.arr.data) {
  15974. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15975. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15976. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15977. if (str->data) {
  15978. free(str->data);
  15979. }
  15980. }
  15981. }
  15982. free(kv->value.arr.data);
  15983. }
  15984. }
  15985. }
  15986. free(ctx->kv);
  15987. }
  15988. if (ctx->infos) {
  15989. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15990. struct gguf_tensor_info * info = &ctx->infos[i];
  15991. if (info->name.data) {
  15992. free(info->name.data);
  15993. }
  15994. }
  15995. free(ctx->infos);
  15996. }
  15997. GGML_ALIGNED_FREE(ctx);
  15998. }
  15999. const char * gguf_type_name(enum gguf_type type) {
  16000. return GGUF_TYPE_NAME[type];
  16001. }
  16002. int gguf_get_version(const struct gguf_context * ctx) {
  16003. return ctx->header.version;
  16004. }
  16005. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16006. return ctx->alignment;
  16007. }
  16008. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16009. return ctx->offset;
  16010. }
  16011. void * gguf_get_data(const struct gguf_context * ctx) {
  16012. return ctx->data;
  16013. }
  16014. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16015. return ctx->header.n_kv;
  16016. }
  16017. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16018. // return -1 if key not found
  16019. int keyfound = -1;
  16020. const int n_kv = gguf_get_n_kv(ctx);
  16021. for (int i = 0; i < n_kv; ++i) {
  16022. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16023. keyfound = i;
  16024. break;
  16025. }
  16026. }
  16027. return keyfound;
  16028. }
  16029. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16030. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16031. return ctx->kv[key_id].key.data;
  16032. }
  16033. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16034. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16035. return ctx->kv[key_id].type;
  16036. }
  16037. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16038. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16039. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16040. return ctx->kv[key_id].value.arr.type;
  16041. }
  16042. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16043. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16044. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16045. return ctx->kv[key_id].value.arr.data;
  16046. }
  16047. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16048. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16049. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16050. struct gguf_kv * kv = &ctx->kv[key_id];
  16051. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16052. return str->data;
  16053. }
  16054. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16055. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16056. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16057. return ctx->kv[key_id].value.arr.n;
  16058. }
  16059. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16060. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16061. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16062. return ctx->kv[key_id].value.uint8;
  16063. }
  16064. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16065. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16066. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16067. return ctx->kv[key_id].value.int8;
  16068. }
  16069. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16070. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16071. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16072. return ctx->kv[key_id].value.uint16;
  16073. }
  16074. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16075. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16076. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16077. return ctx->kv[key_id].value.int16;
  16078. }
  16079. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16080. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16081. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16082. return ctx->kv[key_id].value.uint32;
  16083. }
  16084. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16085. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16086. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16087. return ctx->kv[key_id].value.int32;
  16088. }
  16089. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16090. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16091. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16092. return ctx->kv[key_id].value.float32;
  16093. }
  16094. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16095. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16096. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16097. return ctx->kv[key_id].value.uint64;
  16098. }
  16099. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16100. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16101. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16102. return ctx->kv[key_id].value.int64;
  16103. }
  16104. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16105. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16106. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16107. return ctx->kv[key_id].value.float64;
  16108. }
  16109. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16110. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16111. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16112. return ctx->kv[key_id].value.bool_;
  16113. }
  16114. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16115. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16116. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16117. return ctx->kv[key_id].value.str.data;
  16118. }
  16119. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16120. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16121. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16122. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16123. return &ctx->kv[key_id].value;
  16124. }
  16125. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16126. return ctx->header.n_tensors;
  16127. }
  16128. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16129. // return -1 if tensor not found
  16130. int tensorfound = -1;
  16131. const int n_tensors = gguf_get_n_tensors(ctx);
  16132. for (int i = 0; i < n_tensors; ++i) {
  16133. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16134. tensorfound = i;
  16135. break;
  16136. }
  16137. }
  16138. return tensorfound;
  16139. }
  16140. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16141. return ctx->infos[i].offset;
  16142. }
  16143. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16144. return ctx->infos[i].name.data;
  16145. }
  16146. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16147. return ctx->infos[i].type;
  16148. }
  16149. // returns the index
  16150. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16151. const int idx = gguf_find_key(ctx, key);
  16152. if (idx >= 0) {
  16153. return idx;
  16154. }
  16155. const int n_kv = gguf_get_n_kv(ctx);
  16156. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16157. ctx->kv[n_kv].key.n = strlen(key);
  16158. ctx->kv[n_kv].key.data = strdup(key);
  16159. ctx->header.n_kv++;
  16160. return n_kv;
  16161. }
  16162. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16163. const int idx = gguf_get_or_add_key(ctx, key);
  16164. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16165. ctx->kv[idx].value.uint8 = val;
  16166. }
  16167. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16168. const int idx = gguf_get_or_add_key(ctx, key);
  16169. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16170. ctx->kv[idx].value.int8 = val;
  16171. }
  16172. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16173. const int idx = gguf_get_or_add_key(ctx, key);
  16174. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16175. ctx->kv[idx].value.uint16 = val;
  16176. }
  16177. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16178. const int idx = gguf_get_or_add_key(ctx, key);
  16179. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16180. ctx->kv[idx].value.int16 = val;
  16181. }
  16182. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16183. const int idx = gguf_get_or_add_key(ctx, key);
  16184. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16185. ctx->kv[idx].value.uint32 = val;
  16186. }
  16187. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16188. const int idx = gguf_get_or_add_key(ctx, key);
  16189. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16190. ctx->kv[idx].value.int32 = val;
  16191. }
  16192. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16193. const int idx = gguf_get_or_add_key(ctx, key);
  16194. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16195. ctx->kv[idx].value.float32 = val;
  16196. }
  16197. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16198. const int idx = gguf_get_or_add_key(ctx, key);
  16199. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16200. ctx->kv[idx].value.uint64 = val;
  16201. }
  16202. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16203. const int idx = gguf_get_or_add_key(ctx, key);
  16204. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16205. ctx->kv[idx].value.int64 = val;
  16206. }
  16207. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16208. const int idx = gguf_get_or_add_key(ctx, key);
  16209. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16210. ctx->kv[idx].value.float64 = val;
  16211. }
  16212. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16213. const int idx = gguf_get_or_add_key(ctx, key);
  16214. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16215. ctx->kv[idx].value.bool_ = val;
  16216. }
  16217. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16218. const int idx = gguf_get_or_add_key(ctx, key);
  16219. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16220. ctx->kv[idx].value.str.n = strlen(val);
  16221. ctx->kv[idx].value.str.data = strdup(val);
  16222. }
  16223. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16224. const int idx = gguf_get_or_add_key(ctx, key);
  16225. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16226. ctx->kv[idx].value.arr.type = type;
  16227. ctx->kv[idx].value.arr.n = n;
  16228. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16229. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16230. }
  16231. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16232. const int idx = gguf_get_or_add_key(ctx, key);
  16233. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16234. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16235. ctx->kv[idx].value.arr.n = n;
  16236. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16237. for (int i = 0; i < n; i++) {
  16238. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16239. str->n = strlen(data[i]);
  16240. str->data = strdup(data[i]);
  16241. }
  16242. }
  16243. // set or add KV pairs from another context
  16244. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16245. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16246. switch (src->kv[i].type) {
  16247. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16248. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16249. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16250. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16251. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16252. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16253. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16254. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16255. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16256. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16257. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16258. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16259. case GGUF_TYPE_ARRAY:
  16260. {
  16261. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16262. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16263. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16264. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16265. }
  16266. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16267. free((void *)data);
  16268. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16269. GGML_ASSERT(false && "nested arrays not supported");
  16270. } else {
  16271. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16272. }
  16273. } break;
  16274. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16275. }
  16276. }
  16277. }
  16278. void gguf_add_tensor(
  16279. struct gguf_context * ctx,
  16280. const struct ggml_tensor * tensor) {
  16281. const int idx = ctx->header.n_tensors;
  16282. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16283. ctx->infos[idx].name.n = strlen(tensor->name);
  16284. ctx->infos[idx].name.data = strdup(tensor->name);
  16285. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16286. ctx->infos[idx].ne[i] = 1;
  16287. }
  16288. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16289. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16290. ctx->infos[idx].ne[i] = tensor->ne[i];
  16291. }
  16292. ctx->infos[idx].type = tensor->type;
  16293. ctx->infos[idx].offset = 0;
  16294. ctx->infos[idx].data = tensor->data;
  16295. ctx->infos[idx].size = ggml_nbytes(tensor);
  16296. if (ctx->header.n_tensors > 0) {
  16297. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16298. }
  16299. ctx->header.n_tensors++;
  16300. }
  16301. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16302. const int idx = gguf_find_tensor(ctx, name);
  16303. if (idx < 0) {
  16304. GGML_ASSERT(false && "tensor not found");
  16305. }
  16306. ctx->infos[idx].type = type;
  16307. }
  16308. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16309. const int idx = gguf_find_tensor(ctx, name);
  16310. if (idx < 0) {
  16311. GGML_ASSERT(false && "tensor not found");
  16312. }
  16313. ctx->infos[idx].data = data;
  16314. ctx->infos[idx].size = size;
  16315. // update offsets
  16316. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16317. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16318. }
  16319. }
  16320. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16321. // fwrite(&val->n, sizeof(val->n), 1, file);
  16322. // fwrite(val->data, sizeof(char), val->n, file);
  16323. //}
  16324. //
  16325. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16326. // fwrite(val, sizeof(char), size, file);
  16327. //}
  16328. struct gguf_buf {
  16329. void * data;
  16330. size_t size;
  16331. size_t offset;
  16332. };
  16333. static struct gguf_buf gguf_buf_init(size_t size) {
  16334. struct gguf_buf buf = {
  16335. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16336. /*buf.size =*/ size,
  16337. /*buf.offset =*/ 0,
  16338. };
  16339. return buf;
  16340. }
  16341. static void gguf_buf_free(struct gguf_buf buf) {
  16342. if (buf.data) {
  16343. free(buf.data);
  16344. }
  16345. }
  16346. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16347. if (buf->offset + size > buf->size) {
  16348. buf->size = 1.5*(buf->offset + size);
  16349. if (buf->data) {
  16350. buf->data = realloc(buf->data, buf->size);
  16351. }
  16352. }
  16353. }
  16354. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16355. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16356. if (buf->data) {
  16357. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16358. }
  16359. buf->offset += sizeof(val->n);
  16360. if (buf->data) {
  16361. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16362. }
  16363. buf->offset += val->n;
  16364. }
  16365. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16366. gguf_buf_grow(buf, el_size);
  16367. if (buf->data) {
  16368. memcpy((char *) buf->data + buf->offset, val, el_size);
  16369. }
  16370. buf->offset += el_size;
  16371. }
  16372. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16373. // write header
  16374. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16375. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16376. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16377. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16378. // write key-value pairs
  16379. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16380. struct gguf_kv * kv = &ctx->kv[i];
  16381. gguf_bwrite_str(buf, &kv->key);
  16382. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16383. switch (kv->type) {
  16384. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16385. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16386. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16387. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16388. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16389. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16390. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16391. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16392. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16393. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16394. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16395. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16396. case GGUF_TYPE_ARRAY:
  16397. {
  16398. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16399. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16400. switch (kv->value.arr.type) {
  16401. case GGUF_TYPE_UINT8:
  16402. case GGUF_TYPE_INT8:
  16403. case GGUF_TYPE_UINT16:
  16404. case GGUF_TYPE_INT16:
  16405. case GGUF_TYPE_UINT32:
  16406. case GGUF_TYPE_INT32:
  16407. case GGUF_TYPE_FLOAT32:
  16408. case GGUF_TYPE_UINT64:
  16409. case GGUF_TYPE_INT64:
  16410. case GGUF_TYPE_FLOAT64:
  16411. case GGUF_TYPE_BOOL:
  16412. {
  16413. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16414. } break;
  16415. case GGUF_TYPE_STRING:
  16416. {
  16417. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16418. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16419. }
  16420. } break;
  16421. case GGUF_TYPE_ARRAY:
  16422. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16423. }
  16424. } break;
  16425. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16426. }
  16427. }
  16428. // write tensor infos
  16429. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16430. struct gguf_tensor_info * info = &ctx->infos[i];
  16431. gguf_bwrite_str(buf, &info->name);
  16432. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16433. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16434. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16435. }
  16436. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16437. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16438. }
  16439. // we require the data section to be aligned, so take into account any padding
  16440. {
  16441. const size_t offset = buf->offset;
  16442. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16443. if (offset_pad != offset) {
  16444. uint8_t pad = 0;
  16445. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16446. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16447. }
  16448. }
  16449. }
  16450. if (only_meta) {
  16451. return;
  16452. }
  16453. size_t offset = 0;
  16454. // write tensor data
  16455. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16456. struct gguf_tensor_info * info = &ctx->infos[i];
  16457. const size_t size = info->size;
  16458. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16459. gguf_bwrite_el(buf, info->data, size);
  16460. if (size_pad != size) {
  16461. uint8_t pad = 0;
  16462. for (size_t j = 0; j < size_pad - size; ++j) {
  16463. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16464. }
  16465. }
  16466. GGML_ASSERT(offset == info->offset);
  16467. offset += size_pad;
  16468. }
  16469. }
  16470. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16471. FILE * file = fopen(fname, "wb");
  16472. if (!file) {
  16473. GGML_ASSERT(false && "failed to open file for writing");
  16474. }
  16475. struct gguf_buf buf = gguf_buf_init(16*1024);
  16476. gguf_write_to_buf(ctx, &buf, only_meta);
  16477. fwrite(buf.data, 1, buf.offset, file);
  16478. gguf_buf_free(buf);
  16479. fclose(file);
  16480. }
  16481. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16482. // no allocs - only compute size
  16483. struct gguf_buf buf = gguf_buf_init(0);
  16484. gguf_write_to_buf(ctx, &buf, true);
  16485. return buf.offset;
  16486. }
  16487. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16488. struct gguf_buf buf = gguf_buf_init(16*1024);
  16489. gguf_write_to_buf(ctx, &buf, true);
  16490. memcpy(data, buf.data, buf.offset);
  16491. gguf_buf_free(buf);
  16492. }
  16493. ////////////////////////////////////////////////////////////////////////////////
  16494. int ggml_cpu_has_avx(void) {
  16495. #if defined(__AVX__)
  16496. return 1;
  16497. #else
  16498. return 0;
  16499. #endif
  16500. }
  16501. int ggml_cpu_has_avx_vnni(void) {
  16502. #if defined(__AVXVNNI__)
  16503. return 1;
  16504. #else
  16505. return 0;
  16506. #endif
  16507. }
  16508. int ggml_cpu_has_avx2(void) {
  16509. #if defined(__AVX2__)
  16510. return 1;
  16511. #else
  16512. return 0;
  16513. #endif
  16514. }
  16515. int ggml_cpu_has_avx512(void) {
  16516. #if defined(__AVX512F__)
  16517. return 1;
  16518. #else
  16519. return 0;
  16520. #endif
  16521. }
  16522. int ggml_cpu_has_avx512_vbmi(void) {
  16523. #if defined(__AVX512VBMI__)
  16524. return 1;
  16525. #else
  16526. return 0;
  16527. #endif
  16528. }
  16529. int ggml_cpu_has_avx512_vnni(void) {
  16530. #if defined(__AVX512VNNI__)
  16531. return 1;
  16532. #else
  16533. return 0;
  16534. #endif
  16535. }
  16536. int ggml_cpu_has_fma(void) {
  16537. #if defined(__FMA__)
  16538. return 1;
  16539. #else
  16540. return 0;
  16541. #endif
  16542. }
  16543. int ggml_cpu_has_neon(void) {
  16544. #if defined(__ARM_NEON)
  16545. return 1;
  16546. #else
  16547. return 0;
  16548. #endif
  16549. }
  16550. int ggml_cpu_has_arm_fma(void) {
  16551. #if defined(__ARM_FEATURE_FMA)
  16552. return 1;
  16553. #else
  16554. return 0;
  16555. #endif
  16556. }
  16557. int ggml_cpu_has_metal(void) {
  16558. #if defined(GGML_USE_METAL)
  16559. return 1;
  16560. #else
  16561. return 0;
  16562. #endif
  16563. }
  16564. int ggml_cpu_has_f16c(void) {
  16565. #if defined(__F16C__)
  16566. return 1;
  16567. #else
  16568. return 0;
  16569. #endif
  16570. }
  16571. int ggml_cpu_has_fp16_va(void) {
  16572. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16573. return 1;
  16574. #else
  16575. return 0;
  16576. #endif
  16577. }
  16578. int ggml_cpu_has_wasm_simd(void) {
  16579. #if defined(__wasm_simd128__)
  16580. return 1;
  16581. #else
  16582. return 0;
  16583. #endif
  16584. }
  16585. int ggml_cpu_has_blas(void) {
  16586. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16587. return 1;
  16588. #else
  16589. return 0;
  16590. #endif
  16591. }
  16592. int ggml_cpu_has_cublas(void) {
  16593. #if defined(GGML_USE_CUBLAS)
  16594. return 1;
  16595. #else
  16596. return 0;
  16597. #endif
  16598. }
  16599. int ggml_cpu_has_clblast(void) {
  16600. #if defined(GGML_USE_CLBLAST)
  16601. return 1;
  16602. #else
  16603. return 0;
  16604. #endif
  16605. }
  16606. int ggml_cpu_has_gpublas(void) {
  16607. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16608. }
  16609. int ggml_cpu_has_sse3(void) {
  16610. #if defined(__SSE3__)
  16611. return 1;
  16612. #else
  16613. return 0;
  16614. #endif
  16615. }
  16616. int ggml_cpu_has_ssse3(void) {
  16617. #if defined(__SSSE3__)
  16618. return 1;
  16619. #else
  16620. return 0;
  16621. #endif
  16622. }
  16623. int ggml_cpu_has_vsx(void) {
  16624. #if defined(__POWER9_VECTOR__)
  16625. return 1;
  16626. #else
  16627. return 0;
  16628. #endif
  16629. }
  16630. ////////////////////////////////////////////////////////////////////////////////