llama-bench.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. // utils
  23. static uint64_t get_time_ns() {
  24. using clock = std::chrono::high_resolution_clock;
  25. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  26. }
  27. template<class T>
  28. static std::string join(const std::vector<T> & values, const std::string & delim) {
  29. std::ostringstream str;
  30. for (size_t i = 0; i < values.size(); i++) {
  31. str << values[i];
  32. if (i < values.size() - 1) {
  33. str << delim;
  34. }
  35. }
  36. return str.str();
  37. }
  38. template<class T>
  39. static std::vector<T> split(const std::string & str, char delim) {
  40. std::vector<T> values;
  41. std::istringstream str_stream(str);
  42. std::string token;
  43. while (std::getline(str_stream, token, delim)) {
  44. T value;
  45. std::istringstream token_stream(token);
  46. token_stream >> value;
  47. values.push_back(value);
  48. }
  49. return values;
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. }
  98. #endif
  99. // TODO: other platforms
  100. return id;
  101. }
  102. static std::string get_gpu_info() {
  103. std::string id;
  104. #ifdef GGML_USE_CUBLAS
  105. int count = ggml_cuda_get_device_count();
  106. for (int i = 0; i < count; i++) {
  107. char buf[128];
  108. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  109. id += buf;
  110. if (i < count - 1) {
  111. id += "/";
  112. }
  113. }
  114. #endif
  115. // TODO: other backends
  116. return id;
  117. }
  118. // command line params
  119. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  120. struct cmd_params {
  121. std::vector<std::string> model;
  122. std::vector<int> n_prompt;
  123. std::vector<int> n_gen;
  124. std::vector<int> n_batch;
  125. std::vector<ggml_type> type_k;
  126. std::vector<ggml_type> type_v;
  127. std::vector<int> n_threads;
  128. std::vector<int> n_gpu_layers;
  129. std::vector<int> main_gpu;
  130. std::vector<bool> no_kv_offload;
  131. std::vector<bool> mul_mat_q;
  132. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  133. int reps;
  134. bool verbose;
  135. output_formats output_format;
  136. };
  137. static const cmd_params cmd_params_defaults = {
  138. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  139. /* n_prompt */ {512},
  140. /* n_gen */ {128},
  141. /* n_batch */ {512},
  142. /* type_k */ {GGML_TYPE_F16},
  143. /* type_v */ {GGML_TYPE_F16},
  144. /* n_threads */ {get_num_physical_cores()},
  145. /* n_gpu_layers */ {99},
  146. /* main_gpu */ {0},
  147. /* no_kv_offload */ {false},
  148. /* mul_mat_q */ {true},
  149. /* tensor_split */ {{}},
  150. /* reps */ 5,
  151. /* verbose */ false,
  152. /* output_format */ MARKDOWN
  153. };
  154. static void print_usage(int /* argc */, char ** argv) {
  155. printf("usage: %s [options]\n", argv[0]);
  156. printf("\n");
  157. printf("options:\n");
  158. printf(" -h, --help\n");
  159. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  160. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  161. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  162. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  163. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  164. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  165. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  166. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  167. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  168. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  169. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  170. printf(" -ts, --tensor_split <ts0/ts1/..> \n");
  171. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  172. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  173. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  174. printf("\n");
  175. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  176. }
  177. static ggml_type ggml_type_from_name(const std::string & s) {
  178. if (s == "f16") {
  179. return GGML_TYPE_F16;
  180. }
  181. if (s == "q8_0") {
  182. return GGML_TYPE_Q8_0;
  183. }
  184. if (s == "q4_0") {
  185. return GGML_TYPE_Q4_0;
  186. }
  187. if (s == "q4_1") {
  188. return GGML_TYPE_Q4_1;
  189. }
  190. if (s == "q5_0") {
  191. return GGML_TYPE_Q5_0;
  192. }
  193. if (s == "q5_1") {
  194. return GGML_TYPE_Q5_1;
  195. }
  196. return GGML_TYPE_COUNT;
  197. }
  198. static cmd_params parse_cmd_params(int argc, char ** argv) {
  199. cmd_params params;
  200. std::string arg;
  201. bool invalid_param = false;
  202. const std::string arg_prefix = "--";
  203. const char split_delim = ',';
  204. params.verbose = cmd_params_defaults.verbose;
  205. params.output_format = cmd_params_defaults.output_format;
  206. params.reps = cmd_params_defaults.reps;
  207. for (int i = 1; i < argc; i++) {
  208. arg = argv[i];
  209. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  210. std::replace(arg.begin(), arg.end(), '_', '-');
  211. }
  212. if (arg == "-h" || arg == "--help") {
  213. print_usage(argc, argv);
  214. exit(0);
  215. } else if (arg == "-m" || arg == "--model") {
  216. if (++i >= argc) {
  217. invalid_param = true;
  218. break;
  219. }
  220. auto p = split<std::string>(argv[i], split_delim);
  221. params.model.insert(params.model.end(), p.begin(), p.end());
  222. } else if (arg == "-p" || arg == "--n-prompt") {
  223. if (++i >= argc) {
  224. invalid_param = true;
  225. break;
  226. }
  227. auto p = split<int>(argv[i], split_delim);
  228. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  229. } else if (arg == "-n" || arg == "--n-gen") {
  230. if (++i >= argc) {
  231. invalid_param = true;
  232. break;
  233. }
  234. auto p = split<int>(argv[i], split_delim);
  235. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  236. } else if (arg == "-b" || arg == "--batch-size") {
  237. if (++i >= argc) {
  238. invalid_param = true;
  239. break;
  240. }
  241. auto p = split<int>(argv[i], split_delim);
  242. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  243. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  244. if (++i >= argc) {
  245. invalid_param = true;
  246. break;
  247. }
  248. auto p = split<std::string>(argv[i], split_delim);
  249. std::vector<ggml_type> types;
  250. for (const auto & t : p) {
  251. ggml_type gt = ggml_type_from_name(t);
  252. if (gt == GGML_TYPE_COUNT) {
  253. invalid_param = true;
  254. break;
  255. }
  256. types.push_back(gt);
  257. }
  258. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  259. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  260. if (++i >= argc) {
  261. invalid_param = true;
  262. break;
  263. }
  264. auto p = split<std::string>(argv[i], split_delim);
  265. std::vector<ggml_type> types;
  266. for (const auto & t : p) {
  267. ggml_type gt = ggml_type_from_name(t);
  268. if (gt == GGML_TYPE_COUNT) {
  269. invalid_param = true;
  270. break;
  271. }
  272. types.push_back(gt);
  273. }
  274. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  275. } else if (arg == "-t" || arg == "--threads") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. auto p = split<int>(argv[i], split_delim);
  281. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  282. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. break;
  286. }
  287. auto p = split<int>(argv[i], split_delim);
  288. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  289. } else if (arg == "-mg" || arg == "--main-gpu") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. params.main_gpu = split<int>(argv[i], split_delim);
  295. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  296. if (++i >= argc) {
  297. invalid_param = true;
  298. break;
  299. }
  300. auto p = split<bool>(argv[i], split_delim);
  301. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  302. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  303. if (++i >= argc) {
  304. invalid_param = true;
  305. break;
  306. }
  307. auto p = split<bool>(argv[i], split_delim);
  308. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  309. } else if (arg == "-ts" || arg == "--tensor-split") {
  310. if (++i >= argc) {
  311. invalid_param = true;
  312. break;
  313. }
  314. for (auto ts : split<std::string>(argv[i], split_delim)) {
  315. // split string by ; and /
  316. const std::regex regex{R"([;/]+)"};
  317. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  318. std::vector<std::string> split_arg{it, {}};
  319. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  320. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  321. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  322. if (i < split_arg.size()) {
  323. tensor_split[i] = std::stof(split_arg[i]);
  324. } else {
  325. tensor_split[i] = 0.0f;
  326. }
  327. }
  328. params.tensor_split.push_back(tensor_split);
  329. }
  330. } else if (arg == "-r" || arg == "--repetitions") {
  331. if (++i >= argc) {
  332. invalid_param = true;
  333. break;
  334. }
  335. params.reps = std::stoi(argv[i]);
  336. } else if (arg == "-o" || arg == "--output") {
  337. if (++i >= argc) {
  338. invalid_param = true;
  339. break;
  340. }
  341. if (argv[i] == std::string("csv")) {
  342. params.output_format = CSV;
  343. } else if (argv[i] == std::string("json")) {
  344. params.output_format = JSON;
  345. } else if (argv[i] == std::string("md")) {
  346. params.output_format = MARKDOWN;
  347. } else if (argv[i] == std::string("sql")) {
  348. params.output_format = SQL;
  349. } else {
  350. invalid_param = true;
  351. break;
  352. }
  353. } else if (arg == "-v" || arg == "--verbose") {
  354. params.verbose = true;
  355. } else {
  356. invalid_param = true;
  357. break;
  358. }
  359. }
  360. if (invalid_param) {
  361. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  362. print_usage(argc, argv);
  363. exit(1);
  364. }
  365. // set defaults
  366. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  367. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  368. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  369. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  370. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  371. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  372. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  373. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  374. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  375. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  376. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  377. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  378. return params;
  379. }
  380. struct cmd_params_instance {
  381. std::string model;
  382. int n_prompt;
  383. int n_gen;
  384. int n_batch;
  385. ggml_type type_k;
  386. ggml_type type_v;
  387. int n_threads;
  388. int n_gpu_layers;
  389. int main_gpu;
  390. bool no_kv_offload;
  391. bool mul_mat_q;
  392. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  393. llama_model_params to_llama_mparams() const {
  394. llama_model_params mparams = llama_model_default_params();
  395. mparams.n_gpu_layers = n_gpu_layers;
  396. mparams.main_gpu = main_gpu;
  397. mparams.tensor_split = tensor_split.data();
  398. return mparams;
  399. }
  400. bool equal_mparams(const cmd_params_instance & other) const {
  401. return model == other.model &&
  402. n_gpu_layers == other.n_gpu_layers &&
  403. main_gpu == other.main_gpu &&
  404. tensor_split == other.tensor_split;
  405. }
  406. llama_context_params to_llama_cparams() const {
  407. llama_context_params cparams = llama_context_default_params();
  408. cparams.n_ctx = n_prompt + n_gen;
  409. cparams.n_batch = n_batch;
  410. cparams.type_k = type_k;
  411. cparams.type_v = type_v;
  412. cparams.mul_mat_q = mul_mat_q;
  413. cparams.offload_kqv = !no_kv_offload;
  414. return cparams;
  415. }
  416. };
  417. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  418. std::vector<cmd_params_instance> instances;
  419. for (const auto & m : params.model)
  420. for (const auto & nl : params.n_gpu_layers)
  421. for (const auto & mg : params.main_gpu)
  422. for (const auto & ts : params.tensor_split)
  423. for (const auto & nb : params.n_batch)
  424. for (const auto & tk : params.type_k)
  425. for (const auto & tv : params.type_v)
  426. for (const auto & mmq : params.mul_mat_q)
  427. for (const auto & nkvo : params.no_kv_offload)
  428. for (const auto & nt : params.n_threads) {
  429. cmd_params_instance instance = {
  430. /* .model = */ m,
  431. /* .n_prompt = */ n_prompt,
  432. /* .n_gen = */ n_gen,
  433. /* .n_batch = */ nb,
  434. /* .type_k = */ tk,
  435. /* .type_v = */ tv,
  436. /* .n_threads = */ nt,
  437. /* .n_gpu_layers = */ nl,
  438. /* .main_gpu = */ mg,
  439. /* .no_kv_offload= */ nkvo,
  440. /* .mul_mat_q = */ mmq,
  441. /* .tensor_split = */ ts,
  442. };
  443. instances.push_back(instance);
  444. }
  445. return instances;
  446. }
  447. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  448. std::vector<cmd_params_instance> instances;
  449. #if 1
  450. // this ordering minimizes the number of times that each model needs to be reloaded
  451. for (const auto & m : params.model)
  452. for (const auto & nl : params.n_gpu_layers)
  453. for (const auto & mg : params.main_gpu)
  454. for (const auto & ts : params.tensor_split)
  455. for (const auto & nb : params.n_batch)
  456. for (const auto & tk : params.type_k)
  457. for (const auto & tv : params.type_v)
  458. for (const auto & mmq : params.mul_mat_q)
  459. for (const auto & nkvo : params.no_kv_offload)
  460. for (const auto & nt : params.n_threads) {
  461. for (const auto & n_prompt : params.n_prompt) {
  462. if (n_prompt == 0) {
  463. continue;
  464. }
  465. cmd_params_instance instance = {
  466. /* .model = */ m,
  467. /* .n_prompt = */ n_prompt,
  468. /* .n_gen = */ 0,
  469. /* .n_batch = */ nb,
  470. /* .type_k = */ tk,
  471. /* .type_v = */ tv,
  472. /* .n_threads = */ nt,
  473. /* .n_gpu_layers = */ nl,
  474. /* .main_gpu = */ mg,
  475. /* .no_kv_offload= */ nkvo,
  476. /* .mul_mat_q = */ mmq,
  477. /* .tensor_split = */ ts,
  478. };
  479. instances.push_back(instance);
  480. }
  481. for (const auto & n_gen : params.n_gen) {
  482. if (n_gen == 0) {
  483. continue;
  484. }
  485. cmd_params_instance instance = {
  486. /* .model = */ m,
  487. /* .n_prompt = */ 0,
  488. /* .n_gen = */ n_gen,
  489. /* .n_batch = */ nb,
  490. /* .type_k = */ tk,
  491. /* .type_v = */ tv,
  492. /* .n_threads = */ nt,
  493. /* .n_gpu_layers = */ nl,
  494. /* .main_gpu = */ mg,
  495. /* .no_kv_offload= */ nkvo,
  496. /* .mul_mat_q = */ mmq,
  497. /* .tensor_split = */ ts,
  498. };
  499. instances.push_back(instance);
  500. }
  501. }
  502. #else
  503. // this ordering separates the prompt and generation tests
  504. for (const auto & n_prompt : params.n_prompt) {
  505. if (n_prompt == 0) {
  506. continue;
  507. }
  508. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  509. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  510. }
  511. for (const auto & n_gen : params.n_gen) {
  512. if (n_gen == 0) {
  513. continue;
  514. }
  515. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  516. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  517. }
  518. #endif
  519. return instances;
  520. }
  521. struct test {
  522. static const std::string build_commit;
  523. static const int build_number;
  524. static const bool cuda;
  525. static const bool opencl;
  526. static const bool metal;
  527. static const bool gpu_blas;
  528. static const bool blas;
  529. static const std::string cpu_info;
  530. static const std::string gpu_info;
  531. std::string model_filename;
  532. std::string model_type;
  533. uint64_t model_size;
  534. uint64_t model_n_params;
  535. int n_batch;
  536. int n_threads;
  537. ggml_type type_k;
  538. ggml_type type_v;
  539. int n_gpu_layers;
  540. int main_gpu;
  541. bool no_kv_offload;
  542. bool mul_mat_q;
  543. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  544. int n_prompt;
  545. int n_gen;
  546. std::string test_time;
  547. std::vector<uint64_t> samples_ns;
  548. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  549. model_filename = inst.model;
  550. char buf[128];
  551. llama_model_desc(lmodel, buf, sizeof(buf));
  552. model_type = buf;
  553. model_size = llama_model_size(lmodel);
  554. model_n_params = llama_model_n_params(lmodel);
  555. n_batch = inst.n_batch;
  556. n_threads = inst.n_threads;
  557. type_k = inst.type_k;
  558. type_v = inst.type_v;
  559. n_gpu_layers = inst.n_gpu_layers;
  560. main_gpu = inst.main_gpu;
  561. no_kv_offload = inst.no_kv_offload;
  562. mul_mat_q = inst.mul_mat_q;
  563. tensor_split = inst.tensor_split;
  564. n_prompt = inst.n_prompt;
  565. n_gen = inst.n_gen;
  566. // RFC 3339 date-time format
  567. time_t t = time(NULL);
  568. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  569. test_time = buf;
  570. (void) ctx;
  571. }
  572. uint64_t avg_ns() const {
  573. return ::avg(samples_ns);
  574. }
  575. uint64_t stdev_ns() const {
  576. return ::stdev(samples_ns);
  577. }
  578. std::vector<double> get_ts() const {
  579. int n_tokens = n_prompt + n_gen;
  580. std::vector<double> ts;
  581. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  582. return ts;
  583. }
  584. double avg_ts() const {
  585. return ::avg(get_ts());
  586. }
  587. double stdev_ts() const {
  588. return ::stdev(get_ts());
  589. }
  590. static std::string get_backend() {
  591. if (cuda) {
  592. return GGML_CUDA_NAME;
  593. }
  594. if (opencl) {
  595. return "OpenCL";
  596. }
  597. if (metal) {
  598. return "Metal";
  599. }
  600. if (gpu_blas) {
  601. return "GPU BLAS";
  602. }
  603. if (blas) {
  604. return "BLAS";
  605. }
  606. return "CPU";
  607. }
  608. static const std::vector<std::string> & get_fields() {
  609. static const std::vector<std::string> fields = {
  610. "build_commit", "build_number",
  611. "cuda", "opencl", "metal", "gpu_blas", "blas",
  612. "cpu_info", "gpu_info",
  613. "model_filename", "model_type", "model_size", "model_n_params",
  614. "n_batch", "n_threads", "type_k", "type_v",
  615. "n_gpu_layers", "main_gpu", "no_kv_offload",
  616. "mul_mat_q", "tensor_split",
  617. "n_prompt", "n_gen", "test_time",
  618. "avg_ns", "stddev_ns",
  619. "avg_ts", "stddev_ts"
  620. };
  621. return fields;
  622. }
  623. enum field_type {STRING, BOOL, INT, FLOAT};
  624. static field_type get_field_type(const std::string & field) {
  625. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  626. field == "model_size" || field == "model_n_params" ||
  627. field == "n_gpu_layers" || field == "main_gpu" ||
  628. field == "n_prompt" || field == "n_gen" ||
  629. field == "avg_ns" || field == "stddev_ns") {
  630. return INT;
  631. }
  632. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  633. field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
  634. return BOOL;
  635. }
  636. if (field == "avg_ts" || field == "stddev_ts") {
  637. return FLOAT;
  638. }
  639. return STRING;
  640. }
  641. std::vector<std::string> get_values() const {
  642. std::string tensor_split_str;
  643. int max_nonzero = 0;
  644. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  645. if (tensor_split[i] > 0) {
  646. max_nonzero = i;
  647. }
  648. }
  649. for (int i = 0; i <= max_nonzero; i++) {
  650. char buf[32];
  651. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  652. tensor_split_str += buf;
  653. if (i < max_nonzero) {
  654. tensor_split_str += "/";
  655. }
  656. }
  657. std::vector<std::string> values = {
  658. build_commit, std::to_string(build_number),
  659. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  660. cpu_info, gpu_info,
  661. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  662. std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  663. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(no_kv_offload),
  664. std::to_string(mul_mat_q), tensor_split_str,
  665. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  666. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  667. std::to_string(avg_ts()), std::to_string(stdev_ts())
  668. };
  669. return values;
  670. }
  671. std::map<std::string, std::string> get_map() const {
  672. std::map<std::string, std::string> map;
  673. auto fields = get_fields();
  674. auto values = get_values();
  675. std::transform(fields.begin(), fields.end(), values.begin(),
  676. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  677. return map;
  678. }
  679. };
  680. const std::string test::build_commit = LLAMA_COMMIT;
  681. const int test::build_number = LLAMA_BUILD_NUMBER;
  682. const bool test::cuda = !!ggml_cpu_has_cublas();
  683. const bool test::opencl = !!ggml_cpu_has_clblast();
  684. const bool test::metal = !!ggml_cpu_has_metal();
  685. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  686. const bool test::blas = !!ggml_cpu_has_blas();
  687. const std::string test::cpu_info = get_cpu_info();
  688. const std::string test::gpu_info = get_gpu_info();
  689. struct printer {
  690. virtual ~printer() {}
  691. FILE * fout;
  692. virtual void print_header(const cmd_params & params) { (void) params; }
  693. virtual void print_test(const test & t) = 0;
  694. virtual void print_footer() { }
  695. };
  696. struct csv_printer : public printer {
  697. static std::string escape_csv(const std::string & field) {
  698. std::string escaped = "\"";
  699. for (auto c : field) {
  700. if (c == '"') {
  701. escaped += "\"";
  702. }
  703. escaped += c;
  704. }
  705. escaped += "\"";
  706. return escaped;
  707. }
  708. void print_header(const cmd_params & params) override {
  709. std::vector<std::string> fields = test::get_fields();
  710. fprintf(fout, "%s\n", join(fields, ",").c_str());
  711. (void) params;
  712. }
  713. void print_test(const test & t) override {
  714. std::vector<std::string> values = t.get_values();
  715. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  716. fprintf(fout, "%s\n", join(values, ",").c_str());
  717. }
  718. };
  719. struct json_printer : public printer {
  720. bool first = true;
  721. static std::string escape_json(const std::string & value) {
  722. std::string escaped;
  723. for (auto c : value) {
  724. if (c == '"') {
  725. escaped += "\\\"";
  726. } else if (c == '\\') {
  727. escaped += "\\\\";
  728. } else if (c <= 0x1f) {
  729. char buf[8];
  730. snprintf(buf, sizeof(buf), "\\u%04x", c);
  731. escaped += buf;
  732. } else {
  733. escaped += c;
  734. }
  735. }
  736. return escaped;
  737. }
  738. static std::string format_value(const std::string & field, const std::string & value) {
  739. switch (test::get_field_type(field)) {
  740. case test::STRING:
  741. return "\"" + escape_json(value) + "\"";
  742. case test::BOOL:
  743. return value == "0" ? "false" : "true";
  744. default:
  745. return value;
  746. }
  747. }
  748. void print_header(const cmd_params & params) override {
  749. fprintf(fout, "[\n");
  750. (void) params;
  751. }
  752. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  753. assert(fields.size() == values.size());
  754. for (size_t i = 0; i < fields.size(); i++) {
  755. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  756. }
  757. }
  758. void print_test(const test & t) override {
  759. if (first) {
  760. first = false;
  761. } else {
  762. fprintf(fout, ",\n");
  763. }
  764. fprintf(fout, " {\n");
  765. print_fields(test::get_fields(), t.get_values());
  766. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  767. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  768. fprintf(fout, " }");
  769. fflush(fout);
  770. }
  771. void print_footer() override {
  772. fprintf(fout, "\n]\n");
  773. }
  774. };
  775. struct markdown_printer : public printer {
  776. std::vector<std::string> fields;
  777. static int get_field_width(const std::string & field) {
  778. if (field == "model") {
  779. return -30;
  780. }
  781. if (field == "t/s") {
  782. return 16;
  783. }
  784. if (field == "size" || field == "params") {
  785. return 10;
  786. }
  787. if (field == "n_gpu_layers") {
  788. return 3;
  789. }
  790. int width = std::max((int)field.length(), 10);
  791. if (test::get_field_type(field) == test::STRING) {
  792. return -width;
  793. }
  794. return width;
  795. }
  796. static std::string get_field_display_name(const std::string & field) {
  797. if (field == "n_gpu_layers") {
  798. return "ngl";
  799. }
  800. if (field == "n_threads") {
  801. return "threads";
  802. }
  803. if (field == "mul_mat_q") {
  804. return "mmq";
  805. }
  806. if (field == "no_kv_offload") {
  807. return "nkvo";
  808. }
  809. if (field == "tensor_split") {
  810. return "ts";
  811. }
  812. return field;
  813. }
  814. void print_header(const cmd_params & params) override {
  815. // select fields to print
  816. fields.push_back("model");
  817. fields.push_back("size");
  818. fields.push_back("params");
  819. fields.push_back("backend");
  820. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  821. if (!is_cpu_backend) {
  822. fields.push_back("n_gpu_layers");
  823. }
  824. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  825. fields.push_back("n_threads");
  826. }
  827. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  828. fields.push_back("n_batch");
  829. }
  830. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  831. fields.push_back("type_k");
  832. }
  833. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  834. fields.push_back("type_v");
  835. }
  836. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  837. fields.push_back("main_gpu");
  838. }
  839. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  840. fields.push_back("mul_mat_q");
  841. }
  842. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  843. fields.push_back("no_kv_offload");
  844. }
  845. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  846. fields.push_back("tensor_split");
  847. }
  848. fields.push_back("test");
  849. fields.push_back("t/s");
  850. fprintf(fout, "|");
  851. for (const auto & field : fields) {
  852. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  853. }
  854. fprintf(fout, "\n");
  855. fprintf(fout, "|");
  856. for (const auto & field : fields) {
  857. int width = get_field_width(field);
  858. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  859. }
  860. fprintf(fout, "\n");
  861. }
  862. void print_test(const test & t) override {
  863. std::map<std::string, std::string> vmap = t.get_map();
  864. fprintf(fout, "|");
  865. for (const auto & field : fields) {
  866. std::string value;
  867. char buf[128];
  868. if (field == "model") {
  869. value = t.model_type;
  870. } else if (field == "size") {
  871. if (t.model_size < 1024*1024*1024) {
  872. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  873. } else {
  874. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  875. }
  876. value = buf;
  877. } else if (field == "params") {
  878. if (t.model_n_params < 1000*1000*1000) {
  879. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  880. } else {
  881. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  882. }
  883. value = buf;
  884. } else if (field == "backend") {
  885. value = test::get_backend();
  886. } else if (field == "test") {
  887. if (t.n_prompt > 0 && t.n_gen == 0) {
  888. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  889. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  890. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  891. } else {
  892. assert(false);
  893. exit(1);
  894. }
  895. value = buf;
  896. } else if (field == "t/s") {
  897. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  898. value = buf;
  899. } else if (vmap.find(field) != vmap.end()) {
  900. value = vmap.at(field);
  901. } else {
  902. assert(false);
  903. exit(1);
  904. }
  905. int width = get_field_width(field);
  906. if (field == "t/s") {
  907. // HACK: the utf-8 character is 2 bytes
  908. width += 1;
  909. }
  910. fprintf(fout, " %*s |", width, value.c_str());
  911. }
  912. fprintf(fout, "\n");
  913. }
  914. void print_footer() override {
  915. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  916. }
  917. };
  918. struct sql_printer : public printer {
  919. static std::string get_sql_field_type(const std::string & field) {
  920. switch (test::get_field_type(field)) {
  921. case test::STRING:
  922. return "TEXT";
  923. case test::BOOL:
  924. case test::INT:
  925. return "INTEGER";
  926. case test::FLOAT:
  927. return "REAL";
  928. default:
  929. assert(false);
  930. exit(1);
  931. }
  932. }
  933. void print_header(const cmd_params & params) override {
  934. std::vector<std::string> fields = test::get_fields();
  935. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  936. for (size_t i = 0; i < fields.size(); i++) {
  937. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  938. }
  939. fprintf(fout, ");\n");
  940. fprintf(fout, "\n");
  941. (void) params;
  942. }
  943. void print_test(const test & t) override {
  944. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  945. fprintf(fout, "VALUES (");
  946. std::vector<std::string> values = t.get_values();
  947. for (size_t i = 0; i < values.size(); i++) {
  948. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  949. }
  950. fprintf(fout, ");\n");
  951. }
  952. };
  953. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  954. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  955. int n_processed = 0;
  956. llama_set_n_threads(ctx, n_threads, n_threads);
  957. while (n_processed < n_prompt) {
  958. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  959. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  960. n_processed += n_tokens;
  961. }
  962. }
  963. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  964. llama_token token = llama_token_bos(llama_get_model(ctx));
  965. llama_set_n_threads(ctx, n_threads, n_threads);
  966. for (int i = 0; i < n_gen; i++) {
  967. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  968. }
  969. }
  970. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  971. (void) level;
  972. (void) text;
  973. (void) user_data;
  974. }
  975. int main(int argc, char ** argv) {
  976. // try to set locale for unicode characters in markdown
  977. setlocale(LC_CTYPE, ".UTF-8");
  978. #if !defined(NDEBUG)
  979. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  980. #endif
  981. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  982. fprintf(stderr, "warning: debug build, performance may be affected\n");
  983. #endif
  984. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  985. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  986. #endif
  987. cmd_params params = parse_cmd_params(argc, argv);
  988. // initialize llama.cpp
  989. if (!params.verbose) {
  990. llama_log_set(llama_null_log_callback, NULL);
  991. }
  992. bool numa = false;
  993. llama_backend_init(numa);
  994. // initialize printer
  995. std::unique_ptr<printer> p;
  996. switch (params.output_format) {
  997. case CSV:
  998. p.reset(new csv_printer());
  999. break;
  1000. case JSON:
  1001. p.reset(new json_printer());
  1002. break;
  1003. case MARKDOWN:
  1004. p.reset(new markdown_printer());
  1005. break;
  1006. case SQL:
  1007. p.reset(new sql_printer());
  1008. break;
  1009. default:
  1010. assert(false);
  1011. exit(1);
  1012. }
  1013. p->fout = stdout;
  1014. p->print_header(params);
  1015. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1016. llama_model * lmodel = nullptr;
  1017. const cmd_params_instance * prev_inst = nullptr;
  1018. for (const auto & inst : params_instances) {
  1019. // keep the same model between tests when possible
  1020. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1021. if (lmodel) {
  1022. llama_free_model(lmodel);
  1023. }
  1024. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1025. if (lmodel == NULL) {
  1026. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1027. return 1;
  1028. }
  1029. prev_inst = &inst;
  1030. }
  1031. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1032. if (ctx == NULL) {
  1033. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1034. llama_free_model(lmodel);
  1035. return 1;
  1036. }
  1037. test t(inst, lmodel, ctx);
  1038. llama_kv_cache_clear(ctx);
  1039. // warmup run
  1040. if (t.n_prompt > 0) {
  1041. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  1042. }
  1043. if (t.n_gen > 0) {
  1044. test_gen(ctx, 1, 0, t.n_threads);
  1045. }
  1046. for (int i = 0; i < params.reps; i++) {
  1047. llama_kv_cache_clear(ctx);
  1048. uint64_t t_start = get_time_ns();
  1049. if (t.n_prompt > 0) {
  1050. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1051. }
  1052. if (t.n_gen > 0) {
  1053. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1054. }
  1055. uint64_t t_ns = get_time_ns() - t_start;
  1056. t.samples_ns.push_back(t_ns);
  1057. }
  1058. p->print_test(t);
  1059. llama_print_timings(ctx);
  1060. llama_free(ctx);
  1061. }
  1062. llama_free_model(lmodel);
  1063. p->print_footer();
  1064. llama_backend_free();
  1065. return 0;
  1066. }