llama.h 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUBLAS
  5. #include "ggml-cuda.h"
  6. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  7. #else
  8. #define LLAMA_MAX_DEVICES 1
  9. #endif // GGML_USE_CUBLAS
  10. #include <stddef.h>
  11. #include <stdint.h>
  12. #include <stdio.h>
  13. #include <stdbool.h>
  14. #ifdef LLAMA_SHARED
  15. # if defined(_WIN32) && !defined(__MINGW32__)
  16. # ifdef LLAMA_BUILD
  17. # define LLAMA_API __declspec(dllexport)
  18. # else
  19. # define LLAMA_API __declspec(dllimport)
  20. # endif
  21. # else
  22. # define LLAMA_API __attribute__ ((visibility ("default")))
  23. # endif
  24. #else
  25. # define LLAMA_API
  26. #endif
  27. #ifdef __GNUC__
  28. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  29. #elif defined(_MSC_VER)
  30. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  31. #else
  32. # define DEPRECATED(func, hint) func
  33. #endif
  34. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  35. #define LLAMA_MAX_RNG_STATE (64*1024)
  36. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  37. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  38. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  39. #define LLAMA_SESSION_VERSION 3
  40. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  41. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  42. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  43. #endif
  44. #ifdef __cplusplus
  45. extern "C" {
  46. #endif
  47. //
  48. // C interface
  49. //
  50. // TODO: show sample usage
  51. //
  52. struct llama_model;
  53. struct llama_context;
  54. typedef int32_t llama_pos;
  55. typedef int32_t llama_token;
  56. typedef int32_t llama_seq_id;
  57. enum llama_vocab_type {
  58. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  59. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  60. };
  61. enum llama_token_type {
  62. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  63. LLAMA_TOKEN_TYPE_NORMAL = 1,
  64. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  65. LLAMA_TOKEN_TYPE_CONTROL = 3,
  66. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  67. LLAMA_TOKEN_TYPE_UNUSED = 5,
  68. LLAMA_TOKEN_TYPE_BYTE = 6,
  69. };
  70. // model file types
  71. enum llama_ftype {
  72. LLAMA_FTYPE_ALL_F32 = 0,
  73. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  74. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  77. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  78. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  79. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  94. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  95. };
  96. enum llama_rope_scaling_type {
  97. LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
  98. LLAMA_ROPE_SCALING_NONE = 0,
  99. LLAMA_ROPE_SCALING_LINEAR = 1,
  100. LLAMA_ROPE_SCALING_YARN = 2,
  101. LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
  102. };
  103. typedef struct llama_token_data {
  104. llama_token id; // token id
  105. float logit; // log-odds of the token
  106. float p; // probability of the token
  107. } llama_token_data;
  108. typedef struct llama_token_data_array {
  109. llama_token_data * data;
  110. size_t size;
  111. bool sorted;
  112. } llama_token_data_array;
  113. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  114. // Input data for llama_decode
  115. // A llama_batch object can contain input about one or many sequences
  116. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  117. //
  118. // - token : the token ids of the input (used when embd is NULL)
  119. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  120. // - pos : the positions of the respective token in the sequence
  121. // - seq_id : the sequence to which the respective token belongs
  122. // - logits : if zero, the logits for the respective token will not be output
  123. //
  124. typedef struct llama_batch {
  125. int32_t n_tokens;
  126. llama_token * token;
  127. float * embd;
  128. llama_pos * pos;
  129. int32_t * n_seq_id;
  130. llama_seq_id ** seq_id;
  131. int8_t * logits;
  132. // NOTE: helpers for smooth API transition - can be deprecated in the future
  133. // for future-proof code, use the above fields instead and ignore everything below
  134. //
  135. // pos[i] = all_pos_0 + i*all_pos_1
  136. //
  137. llama_pos all_pos_0; // used if pos == NULL
  138. llama_pos all_pos_1; // used if pos == NULL
  139. llama_seq_id all_seq_id; // used if seq_id == NULL
  140. } llama_batch;
  141. enum llama_model_kv_override_type {
  142. LLAMA_KV_OVERRIDE_INT,
  143. LLAMA_KV_OVERRIDE_FLOAT,
  144. LLAMA_KV_OVERRIDE_BOOL,
  145. };
  146. struct llama_model_kv_override {
  147. char key[128];
  148. enum llama_model_kv_override_type tag;
  149. union {
  150. int64_t int_value;
  151. double float_value;
  152. bool bool_value;
  153. };
  154. };
  155. struct llama_model_params {
  156. int32_t n_gpu_layers; // number of layers to store in VRAM
  157. int32_t main_gpu; // the GPU that is used for scratch and small tensors
  158. const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
  159. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  160. // If the provided progress_callback returns true, model loading continues.
  161. // If it returns false, model loading is immediately aborted.
  162. llama_progress_callback progress_callback;
  163. // context pointer passed to the progress callback
  164. void * progress_callback_user_data;
  165. // override key-value pairs of the model meta data
  166. const struct llama_model_kv_override * kv_overrides;
  167. // Keep the booleans together to avoid misalignment during copy-by-value.
  168. bool vocab_only; // only load the vocabulary, no weights
  169. bool use_mmap; // use mmap if possible
  170. bool use_mlock; // force system to keep model in RAM
  171. };
  172. struct llama_context_params {
  173. uint32_t seed; // RNG seed, -1 for random
  174. uint32_t n_ctx; // text context, 0 = from model
  175. uint32_t n_batch; // prompt processing maximum batch size
  176. uint32_t n_threads; // number of threads to use for generation
  177. uint32_t n_threads_batch; // number of threads to use for batch processing
  178. int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  179. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  180. float rope_freq_base; // RoPE base frequency, 0 = from model
  181. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  182. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  183. float yarn_attn_factor; // YaRN magnitude scaling factor
  184. float yarn_beta_fast; // YaRN low correction dim
  185. float yarn_beta_slow; // YaRN high correction dim
  186. uint32_t yarn_orig_ctx; // YaRN original context size
  187. enum ggml_type type_k; // data type for K cache
  188. enum ggml_type type_v; // data type for V cache
  189. // Keep the booleans together to avoid misalignment during copy-by-value.
  190. bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
  191. bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  192. bool embedding; // embedding mode only
  193. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  194. };
  195. // model quantization parameters
  196. typedef struct llama_model_quantize_params {
  197. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  198. enum llama_ftype ftype; // quantize to this llama_ftype
  199. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  200. bool quantize_output_tensor; // quantize output.weight
  201. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  202. bool pure; // disable k-quant mixtures and quantize all tensors to the same type
  203. } llama_model_quantize_params;
  204. // grammar types
  205. struct llama_grammar;
  206. // grammar element type
  207. enum llama_gretype {
  208. // end of rule definition
  209. LLAMA_GRETYPE_END = 0,
  210. // start of alternate definition for rule
  211. LLAMA_GRETYPE_ALT = 1,
  212. // non-terminal element: reference to rule
  213. LLAMA_GRETYPE_RULE_REF = 2,
  214. // terminal element: character (code point)
  215. LLAMA_GRETYPE_CHAR = 3,
  216. // inverse char(s) ([^a], [^a-b] [^abc])
  217. LLAMA_GRETYPE_CHAR_NOT = 4,
  218. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  219. // be an inclusive range ([a-z])
  220. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  221. // modifies a preceding LLAMA_GRETYPE_CHAR or
  222. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  223. LLAMA_GRETYPE_CHAR_ALT = 6,
  224. };
  225. typedef struct llama_grammar_element {
  226. enum llama_gretype type;
  227. uint32_t value; // Unicode code point or rule ID
  228. } llama_grammar_element;
  229. // performance timing information
  230. struct llama_timings {
  231. double t_start_ms;
  232. double t_end_ms;
  233. double t_load_ms;
  234. double t_sample_ms;
  235. double t_p_eval_ms;
  236. double t_eval_ms;
  237. int32_t n_sample;
  238. int32_t n_p_eval;
  239. int32_t n_eval;
  240. };
  241. // Helpers for getting default parameters
  242. LLAMA_API struct llama_model_params llama_model_default_params(void);
  243. LLAMA_API struct llama_context_params llama_context_default_params(void);
  244. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  245. // Initialize the llama + ggml backend
  246. // If numa is true, use NUMA optimizations
  247. // Call once at the start of the program
  248. LLAMA_API void llama_backend_init(bool numa);
  249. // Call once at the end of the program - currently only used for MPI
  250. LLAMA_API void llama_backend_free(void);
  251. LLAMA_API struct llama_model * llama_load_model_from_file(
  252. const char * path_model,
  253. struct llama_model_params params);
  254. LLAMA_API void llama_free_model(struct llama_model * model);
  255. LLAMA_API struct llama_context * llama_new_context_with_model(
  256. struct llama_model * model,
  257. struct llama_context_params params);
  258. // Frees all allocated memory
  259. LLAMA_API void llama_free(struct llama_context * ctx);
  260. LLAMA_API int64_t llama_time_us(void);
  261. LLAMA_API int32_t llama_max_devices(void);
  262. LLAMA_API bool llama_mmap_supported (void);
  263. LLAMA_API bool llama_mlock_supported(void);
  264. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  265. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  266. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  267. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  268. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  269. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  270. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  271. // Get the model's RoPE frequency scaling factor
  272. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  273. // Functions to access the model's GGUF metadata scalar values
  274. // - The functions return the length of the string on success, or -1 on failure
  275. // - The output string is always null-terminated and cleared on failure
  276. // - GGUF array values are not supported by these functions
  277. // Get metadata value as a string by key name
  278. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  279. // Get the number of metadata key/value pairs
  280. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  281. // Get metadata key name by index
  282. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  283. // Get metadata value as a string by index
  284. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  285. // Get a string describing the model type
  286. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  287. // Returns the total size of all the tensors in the model in bytes
  288. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  289. // Returns the total number of parameters in the model
  290. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  291. // Get a llama model tensor
  292. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  293. // Returns 0 on success
  294. LLAMA_API uint32_t llama_model_quantize(
  295. const char * fname_inp,
  296. const char * fname_out,
  297. const llama_model_quantize_params * params);
  298. // Apply a LoRA adapter to a loaded model
  299. // path_base_model is the path to a higher quality model to use as a base for
  300. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  301. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  302. // will be applied on top of the previous one
  303. // Returns 0 on success
  304. LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
  305. struct llama_context * ctx,
  306. const char * path_lora,
  307. float scale,
  308. const char * path_base_model,
  309. int32_t n_threads),
  310. "use llama_model_apply_lora_from_file instead");
  311. LLAMA_API int32_t llama_model_apply_lora_from_file(
  312. const struct llama_model * model,
  313. const char * path_lora,
  314. float scale,
  315. const char * path_base_model,
  316. int32_t n_threads);
  317. //
  318. // KV cache
  319. //
  320. // Information associated with an individual cell in the KV cache view.
  321. struct llama_kv_cache_view_cell {
  322. // The position for this cell. Takes KV cache shifts into account.
  323. // May be negative if the cell is not populated.
  324. llama_pos pos;
  325. };
  326. // An updateable view of the KV cache.
  327. struct llama_kv_cache_view {
  328. // Number of KV cache cells. This will be the same as the context size.
  329. int32_t n_cells;
  330. // Maximum number of sequences that can exist in a cell. It's not an error
  331. // if there are more sequences in a cell than this value, however they will
  332. // not be visible in the view cells_sequences.
  333. int32_t n_max_seq;
  334. // Number of tokens in the cache. For example, if there are two populated
  335. // cells, the first with 1 sequence id in it and the second with 2 sequence
  336. // ids then you'll have 3 tokens.
  337. int32_t token_count;
  338. // Number of populated cache cells.
  339. int32_t used_cells;
  340. // Maximum contiguous empty slots in the cache.
  341. int32_t max_contiguous;
  342. // Index to the start of the max_contiguous slot range. Can be negative
  343. // when cache is full.
  344. int32_t max_contiguous_idx;
  345. // Information for an individual cell.
  346. struct llama_kv_cache_view_cell * cells;
  347. // The sequences for each cell. There will be n_max_seq items per cell.
  348. llama_seq_id * cells_sequences;
  349. };
  350. // Create an empty KV cache view. (use only for debugging purposes)
  351. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
  352. // Free a KV cache view. (use only for debugging purposes)
  353. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  354. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  355. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  356. // Returns the number of tokens in the KV cache (slow, use only for debug)
  357. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  358. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  359. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  360. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  361. // Clear the KV cache
  362. LLAMA_API void llama_kv_cache_clear(
  363. struct llama_context * ctx);
  364. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  365. // seq_id < 0 : match any sequence
  366. // p0 < 0 : [0, p1]
  367. // p1 < 0 : [p0, inf)
  368. LLAMA_API void llama_kv_cache_seq_rm(
  369. struct llama_context * ctx,
  370. llama_seq_id seq_id,
  371. llama_pos p0,
  372. llama_pos p1);
  373. // Copy all tokens that belong to the specified sequence to another sequence
  374. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  375. // p0 < 0 : [0, p1]
  376. // p1 < 0 : [p0, inf)
  377. LLAMA_API void llama_kv_cache_seq_cp(
  378. struct llama_context * ctx,
  379. llama_seq_id seq_id_src,
  380. llama_seq_id seq_id_dst,
  381. llama_pos p0,
  382. llama_pos p1);
  383. // Removes all tokens that do not belong to the specified sequence
  384. LLAMA_API void llama_kv_cache_seq_keep(
  385. struct llama_context * ctx,
  386. llama_seq_id seq_id);
  387. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  388. // If the KV cache is RoPEd, the KV data is updated accordingly
  389. // p0 < 0 : [0, p1]
  390. // p1 < 0 : [p0, inf)
  391. LLAMA_API void llama_kv_cache_seq_shift(
  392. struct llama_context * ctx,
  393. llama_seq_id seq_id,
  394. llama_pos p0,
  395. llama_pos p1,
  396. llama_pos delta);
  397. // Integer division of the positions by factor of `d > 1`
  398. // If the KV cache is RoPEd, the KV data is updated accordingly
  399. // p0 < 0 : [0, p1]
  400. // p1 < 0 : [p0, inf)
  401. LLAMA_API void llama_kv_cache_seq_div(
  402. struct llama_context * ctx,
  403. llama_seq_id seq_id,
  404. llama_pos p0,
  405. llama_pos p1,
  406. int d);
  407. //
  408. // State / sessions
  409. //
  410. // Returns the maximum size in bytes of the state (rng, logits, embedding
  411. // and kv_cache) - will often be smaller after compacting tokens
  412. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  413. // Copies the state to the specified destination address.
  414. // Destination needs to have allocated enough memory.
  415. // Returns the number of bytes copied
  416. LLAMA_API size_t llama_copy_state_data(
  417. struct llama_context * ctx,
  418. uint8_t * dst);
  419. // Set the state reading from the specified address
  420. // Returns the number of bytes read
  421. LLAMA_API size_t llama_set_state_data(
  422. struct llama_context * ctx,
  423. uint8_t * src);
  424. // Save/load session file
  425. LLAMA_API bool llama_load_session_file(
  426. struct llama_context * ctx,
  427. const char * path_session,
  428. llama_token * tokens_out,
  429. size_t n_token_capacity,
  430. size_t * n_token_count_out);
  431. LLAMA_API bool llama_save_session_file(
  432. struct llama_context * ctx,
  433. const char * path_session,
  434. const llama_token * tokens,
  435. size_t n_token_count);
  436. //
  437. // Decoding
  438. //
  439. // Run the llama inference to obtain the logits and probabilities for the next token(s).
  440. // tokens + n_tokens is the provided batch of new tokens to process
  441. // n_past is the number of tokens to use from previous eval calls
  442. // Returns 0 on success
  443. // DEPRECATED: use llama_decode() instead
  444. LLAMA_API DEPRECATED(int llama_eval(
  445. struct llama_context * ctx,
  446. llama_token * tokens,
  447. int32_t n_tokens,
  448. int32_t n_past),
  449. "use llama_decode() instead");
  450. // Same as llama_eval, but use float matrix input directly.
  451. // DEPRECATED: use llama_decode() instead
  452. LLAMA_API DEPRECATED(int llama_eval_embd(
  453. struct llama_context * ctx,
  454. float * embd,
  455. int32_t n_tokens,
  456. int32_t n_past),
  457. "use llama_decode() instead");
  458. // Return batch for single sequence of tokens starting at pos_0
  459. //
  460. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  461. //
  462. LLAMA_API struct llama_batch llama_batch_get_one(
  463. llama_token * tokens,
  464. int32_t n_tokens,
  465. llama_pos pos_0,
  466. llama_seq_id seq_id);
  467. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  468. // Each token can be assigned up to n_seq_max sequence ids
  469. // The batch has to be freed with llama_batch_free()
  470. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  471. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  472. // The rest of the llama_batch members are allocated with size n_tokens
  473. // All members are left uninitialized
  474. LLAMA_API struct llama_batch llama_batch_init(
  475. int32_t n_tokens,
  476. int32_t embd,
  477. int32_t n_seq_max);
  478. // Frees a batch of tokens allocated with llama_batch_init()
  479. LLAMA_API void llama_batch_free(struct llama_batch batch);
  480. // Positive return values does not mean a fatal error, but rather a warning.
  481. // 0 - success
  482. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  483. // < 0 - error
  484. LLAMA_API int32_t llama_decode(
  485. struct llama_context * ctx,
  486. struct llama_batch batch);
  487. // Set the number of threads used for decoding
  488. // n_threads is the number of threads used for generation (single token)
  489. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  490. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  491. // Token logits obtained from the last call to llama_eval()
  492. // The logits for the last token are stored in the last row
  493. // Logits for which llama_batch.logits[i] == 0 are undefined
  494. // Rows: n_tokens provided with llama_batch
  495. // Cols: n_vocab
  496. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  497. // Logits for the ith token. Equivalent to:
  498. // llama_get_logits(ctx) + i*n_vocab
  499. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  500. // Get the embeddings for the input
  501. // shape: [n_embd] (1-dimensional)
  502. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  503. //
  504. // Vocab
  505. //
  506. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  507. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  508. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  509. // Special tokens
  510. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  511. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  512. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  513. // Returns -1 if unknown, 1 for true or 0 for false.
  514. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  515. // Returns -1 if unknown, 1 for true or 0 for false.
  516. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  517. // codellama infill tokens
  518. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  519. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  520. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  521. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  522. //
  523. // Tokenization
  524. //
  525. /// @details Convert the provided text into tokens.
  526. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  527. /// @return Returns the number of tokens on success, no more than n_max_tokens
  528. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  529. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  530. /// Does not insert a leading space.
  531. LLAMA_API int32_t llama_tokenize(
  532. const struct llama_model * model,
  533. const char * text,
  534. int32_t text_len,
  535. llama_token * tokens,
  536. int32_t n_max_tokens,
  537. bool add_bos,
  538. bool special);
  539. // Token Id -> Piece.
  540. // Uses the vocabulary in the provided context.
  541. // Does not write null terminator to the buffer.
  542. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  543. LLAMA_API int32_t llama_token_to_piece(
  544. const struct llama_model * model,
  545. llama_token token,
  546. char * buf,
  547. int32_t length);
  548. //
  549. // Grammar
  550. //
  551. LLAMA_API struct llama_grammar * llama_grammar_init(
  552. const llama_grammar_element ** rules,
  553. size_t n_rules,
  554. size_t start_rule_index);
  555. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  556. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  557. //
  558. // Sampling functions
  559. //
  560. // Sets the current rng seed.
  561. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  562. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  563. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  564. LLAMA_API void llama_sample_repetition_penalties(
  565. struct llama_context * ctx,
  566. llama_token_data_array * candidates,
  567. const llama_token * last_tokens,
  568. size_t penalty_last_n,
  569. float penalty_repeat,
  570. float penalty_freq,
  571. float penalty_present);
  572. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  573. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
  574. /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  575. /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  576. LLAMA_API void llama_sample_classifier_free_guidance(
  577. struct llama_context * ctx,
  578. llama_token_data_array * candidates,
  579. struct llama_context * guidance_ctx,
  580. float scale);
  581. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  582. LLAMA_API void llama_sample_softmax(
  583. struct llama_context * ctx,
  584. llama_token_data_array * candidates);
  585. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  586. LLAMA_API void llama_sample_top_k(
  587. struct llama_context * ctx,
  588. llama_token_data_array * candidates,
  589. int32_t k,
  590. size_t min_keep);
  591. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  592. LLAMA_API void llama_sample_top_p(
  593. struct llama_context * ctx,
  594. llama_token_data_array * candidates,
  595. float p,
  596. size_t min_keep);
  597. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  598. LLAMA_API void llama_sample_min_p(
  599. struct llama_context * ctx,
  600. llama_token_data_array * candidates,
  601. float p,
  602. size_t min_keep);
  603. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  604. LLAMA_API void llama_sample_tail_free(
  605. struct llama_context * ctx,
  606. llama_token_data_array * candidates,
  607. float z,
  608. size_t min_keep);
  609. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  610. LLAMA_API void llama_sample_typical(
  611. struct llama_context * ctx,
  612. llama_token_data_array * candidates,
  613. float p,
  614. size_t min_keep);
  615. LLAMA_API void llama_sample_temp(
  616. struct llama_context * ctx,
  617. llama_token_data_array * candidates,
  618. float temp);
  619. LLAMA_API DEPRECATED(void llama_sample_temperature(
  620. struct llama_context * ctx,
  621. llama_token_data_array * candidates,
  622. float temp),
  623. "use llama_sample_temp instead");
  624. /// @details Apply constraints from grammar
  625. LLAMA_API void llama_sample_grammar(
  626. struct llama_context * ctx,
  627. llama_token_data_array * candidates,
  628. const struct llama_grammar * grammar);
  629. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  630. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  631. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  632. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  633. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  634. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  635. LLAMA_API llama_token llama_sample_token_mirostat(
  636. struct llama_context * ctx,
  637. llama_token_data_array * candidates,
  638. float tau,
  639. float eta,
  640. int32_t m,
  641. float * mu);
  642. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  643. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  644. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  645. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  646. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  647. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  648. struct llama_context * ctx,
  649. llama_token_data_array * candidates,
  650. float tau,
  651. float eta,
  652. float * mu);
  653. /// @details Selects the token with the highest probability.
  654. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  655. LLAMA_API llama_token llama_sample_token_greedy(
  656. struct llama_context * ctx,
  657. llama_token_data_array * candidates);
  658. /// @details Randomly selects a token from the candidates based on their probabilities.
  659. LLAMA_API llama_token llama_sample_token(
  660. struct llama_context * ctx,
  661. llama_token_data_array * candidates);
  662. /// @details Accepts the sampled token into the grammar
  663. LLAMA_API void llama_grammar_accept_token(
  664. struct llama_context * ctx,
  665. struct llama_grammar * grammar,
  666. llama_token token);
  667. //
  668. // Beam search
  669. //
  670. struct llama_beam_view {
  671. const llama_token * tokens;
  672. size_t n_tokens;
  673. float p; // Cumulative beam probability (renormalized relative to all beams)
  674. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  675. };
  676. // Passed to beam_search_callback function.
  677. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  678. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  679. // These pointers are valid only during the synchronous callback, so should not be saved.
  680. struct llama_beams_state {
  681. struct llama_beam_view * beam_views;
  682. size_t n_beams; // Number of elements in beam_views[].
  683. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  684. bool last_call; // True iff this is the last callback invocation.
  685. };
  686. // Type of pointer to the beam_search_callback function.
  687. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  688. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  689. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  690. /// @details Deterministically returns entire sentence constructed by a beam search.
  691. /// @param ctx Pointer to the llama_context.
  692. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  693. /// @param callback_data A pointer that is simply passed back to callback.
  694. /// @param n_beams Number of beams to use.
  695. /// @param n_past Number of tokens already evaluated.
  696. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  697. LLAMA_API void llama_beam_search(
  698. struct llama_context * ctx,
  699. llama_beam_search_callback_fn_t callback,
  700. void * callback_data,
  701. size_t n_beams,
  702. int32_t n_past,
  703. int32_t n_predict);
  704. // Performance information
  705. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  706. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  707. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  708. // Print system information
  709. LLAMA_API const char * llama_print_system_info(void);
  710. // Set callback for all future logging events.
  711. // If this is not called, or NULL is supplied, everything is output on stderr.
  712. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  713. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  714. #ifdef __cplusplus
  715. }
  716. #endif
  717. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  718. #ifdef LLAMA_API_INTERNAL
  719. #include <vector>
  720. #include <string>
  721. struct ggml_tensor;
  722. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  723. struct llama_context * ctx
  724. );
  725. #endif // LLAMA_API_INTERNAL
  726. #endif // LLAMA_H