common.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. #include <unordered_map>
  9. #include <tuple>
  10. //
  11. // CLI argument parsing
  12. //
  13. int32_t get_num_physical_cores();
  14. struct gpt_params {
  15. uint32_t seed = -1; // RNG seed
  16. int32_t n_threads = get_num_physical_cores();
  17. int32_t n_predict = -1; // new tokens to predict
  18. int32_t n_ctx = 512; // context size
  19. int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
  20. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  21. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  22. int32_t n_gpu_layers = 0; // number of layers to store in VRAM
  23. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  24. float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
  25. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  26. float rope_freq_base = 10000.0f; // RoPE base frequency
  27. float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
  28. // sampling parameters
  29. int32_t top_k = 40; // <= 0 to use vocab size
  30. float top_p = 0.95f; // 1.0 = disabled
  31. float tfs_z = 1.00f; // 1.0 = disabled
  32. float typical_p = 1.00f; // 1.0 = disabled
  33. float temp = 0.80f; // 1.0 = disabled
  34. float repeat_penalty = 1.10f; // 1.0 = disabled
  35. int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  36. float frequency_penalty = 0.00f; // 0.0 = disabled
  37. float presence_penalty = 0.00f; // 0.0 = disabled
  38. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  39. float mirostat_tau = 5.00f; // target entropy
  40. float mirostat_eta = 0.10f; // learning rate
  41. std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
  42. // Classifier-Free Guidance
  43. // https://arxiv.org/abs/2306.17806
  44. std::string cfg_negative_prompt; // string to help guidance
  45. float cfg_scale = 1.f; // How strong is guidance
  46. std::string model = "models/7B/ggml-model-f16.gguf"; // model path
  47. std::string model_alias = "unknown"; // model alias
  48. std::string prompt = "";
  49. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  50. std::string input_prefix = ""; // string to prefix user inputs with
  51. std::string input_suffix = ""; // string to suffix user inputs with
  52. std::string grammar = ""; // optional BNF-like grammar to constrain sampling
  53. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  54. std::string lora_adapter = ""; // lora adapter path
  55. std::string lora_base = ""; // base model path for the lora adapter
  56. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  57. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  58. bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
  59. bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
  60. bool memory_f16 = true; // use f16 instead of f32 for memory kv
  61. bool random_prompt = false; // do not randomize prompt if none provided
  62. bool use_color = false; // use color to distinguish generations and inputs
  63. bool interactive = false; // interactive mode
  64. bool prompt_cache_all = false; // save user input and generations to prompt cache
  65. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  66. bool embedding = false; // get only sentence embedding
  67. bool interactive_first = false; // wait for user input immediately
  68. bool multiline_input = false; // reverse the usage of `\`
  69. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  70. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  71. bool ignore_eos = false; // ignore generated EOS tokens
  72. bool instruct = false; // instruction mode (used for Alpaca models)
  73. bool penalize_nl = true; // consider newlines as a repeatable token
  74. bool perplexity = false; // compute perplexity over the prompt
  75. bool use_mmap = true; // use mmap for faster loads
  76. bool use_mlock = false; // use mlock to keep model in memory
  77. bool mem_test = false; // compute maximum memory usage
  78. bool numa = false; // attempt optimizations that help on some NUMA systems
  79. bool export_cgraph = false; // export the computation graph
  80. bool verbose_prompt = false; // print prompt tokens before generation
  81. };
  82. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  83. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  84. std::string gpt_random_prompt(std::mt19937 & rng);
  85. //
  86. // Model utils
  87. //
  88. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  89. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  90. //
  91. // Vocab utils
  92. //
  93. std::vector<llama_token> llama_tokenize(
  94. struct llama_context * ctx,
  95. const std::string & text,
  96. bool add_bos);
  97. std::vector<llama_token> llama_tokenize_bpe(
  98. struct llama_context * ctx,
  99. const std::string & text,
  100. bool add_bos);
  101. std::string llama_token_to_str(
  102. const struct llama_context * ctx,
  103. llama_token token);
  104. std::string llama_token_to_str_bpe(
  105. const struct llama_context * ctx,
  106. llama_token token);