| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722 |
- import shutil
- import sys
- import struct
- import tempfile
- import numpy as np
- from enum import IntEnum, auto
- from typing import Any, IO, List, Optional
- #
- # constants
- #
- GGUF_MAGIC = 0x46554747
- GGUF_VERSION = 1
- GGUF_DEFAULT_ALIGNMENT = 32
- # general
- KEY_GENERAL_ARCHITECTURE = "general.architecture"
- KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
- KEY_GENERAL_ALIGNMENT = "general.alignment"
- KEY_GENERAL_NAME = "general.name"
- KEY_GENERAL_AUTHOR = "general.author"
- KEY_GENERAL_URL = "general.url"
- KEY_GENERAL_DESCRIPTION = "general.description"
- KEY_GENERAL_LICENSE = "general.license"
- KEY_GENERAL_SOURCE_URL = "general.source.url"
- KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
- KEY_GENERAL_FILE_TYPE = "general.file_type"
- # LLM
- KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length"
- KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length"
- KEY_LLM_BLOCK_COUNT = "{arch}.block_count"
- KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
- KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
- KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
- # attention
- KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
- KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
- KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
- KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
- KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
- KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
- # RoPE
- KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
- KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
- # tokenization
- KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
- KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
- KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
- KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
- KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
- KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
- KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
- KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
- KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
- KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
- KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
- KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
- #
- # recommended mapping of model tensor names for storage in gguf
- #
- class MODEL_ARCH(IntEnum):
- LLAMA = auto()
- FALCON = auto()
- GPT2 = auto()
- GPTJ = auto()
- GPTNEOX = auto()
- MPT = auto()
- class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD = auto()
- POS_EMBD = auto()
- OUTPUT = auto()
- OUTPUT_NORM = auto()
- ROPE_FREQS = auto()
- ATTN_Q = auto()
- ATTN_K = auto()
- ATTN_V = auto()
- ATTN_QKV = auto()
- ATTN_OUT = auto()
- ATTN_NORM = auto()
- ATTN_NORM_2 = auto()
- ATTN_ROT_EMBD = auto()
- FFN_GATE = auto()
- FFN_DOWN = auto()
- FFN_UP = auto()
- FFN_NORM = auto()
- MODEL_ARCH_NAMES = {
- MODEL_ARCH.LLAMA: "llama",
- MODEL_ARCH.FALCON: "falcon",
- MODEL_ARCH.GPT2: "gpt2",
- MODEL_ARCH.GPTJ: "gptj",
- MODEL_ARCH.GPTNEOX: "gptneox",
- MODEL_ARCH.MPT: "mpt",
- }
- MODEL_TENSOR_NAMES = {
- MODEL_ARCH.LLAMA: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
- MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
- MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.GPTNEOX: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.FALCON: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.GPT2: {
- # TODO
- },
- # TODO
- }
- # tensors that will not be serialized
- MODEL_TENSOR_SKIP = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- }
- # TODO: the following helper functions should be removed
- # instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
- # however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
- # REMOVE
- def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
- for skip in MODEL_TENSOR_SKIP.get(arch, []):
- for i in range(n_blocks):
- if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
- return True
- return False
- def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
- tensor_map = {}
- # Token embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
- tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
- tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
- tensor_map["transformer.word_embeddings"] = mapped_to # falcon
- tensor_map["model.embed_tokens"] = mapped_to # llama-hf
- tensor_map["tok_embeddings"] = mapped_to # llama-pth
- # Position embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
- tensor_map["transformer.wpe"] = mapped_to # gpt2
- # Output
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
- tensor_map["embed_out"] = mapped_to # gptneox
- tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
- tensor_map["output"] = mapped_to # llama-pth
- # Output norm
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
- tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
- tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
- tensor_map["transformer.norm_f"] = mapped_to # mpt
- tensor_map["model.norm"] = mapped_to # llama-hf
- tensor_map["norm"] = mapped_to # llama-pth
- # Rope frequencies
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
- tensor_map["rope.freqs"] = mapped_to # llama-pth
- # Attention and feed-forward blocks
- for i in range(0, n_blocks):
- # Attention norm
- # TODO: is there are simpler way to write these 2 lines in Python?
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to else None
- tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
- tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
- tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
- # Attention norm 2
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
- # Attention query-key-value
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
- # Attention query
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
- # Attention key
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
- # Attention value
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
- # Attention output
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
- # Rotary embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
- # Feed-forward norm
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
- tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
- # Feed-forward up
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
- # Feed-forward gate
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
- # Feed-forward down
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
- tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
- return tensor_map
- class TokenType(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- #
- # implementation
- #
- class GGMLQuantizationType(IntEnum):
- F32 = 0
- F16 = 1
- Q4_0 = 2
- Q4_1 = 3
- Q5_0 = 6
- Q5_1 = 7
- Q8_0 = 8
- Q8_1 = 9
- Q2_K = 10
- Q3_K = 11
- Q4_K = 12
- Q5_K = 13
- Q6_K = 14
- Q8_K = 15
- class GGUFValueType(IntEnum):
- UINT8 = 0
- INT8 = 1
- UINT16 = 2
- INT16 = 3
- UINT32 = 4
- INT32 = 5
- FLOAT32 = 6
- BOOL = 7
- STRING = 8
- ARRAY = 9
- @staticmethod
- def get_type(val):
- if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
- return GGUFValueType.STRING
- elif isinstance(val, list):
- return GGUFValueType.ARRAY
- elif isinstance(val, float):
- return GGUFValueType.FLOAT32
- elif isinstance(val, bool):
- return GGUFValueType.BOOL
- elif isinstance(val, int):
- return GGUFValueType.INT32
- else:
- print("Unknown type: "+str(type(val)))
- sys.exit()
- class GGUFWriter:
- def __init__(self, path: str, arch: str, use_temp_file = True):
- self.fout = open(path, "wb")
- self.arch = arch
- self.offset_tensor = 0
- self.data_alignment = GGUF_DEFAULT_ALIGNMENT
- self.kv_data = b""
- self.kv_data_count = 0
- self.ti_data = b""
- self.ti_data_count = 0
- self.add_architecture()
- self.use_temp_file = use_temp_file
- self.tensors = []
- def write_header_to_file(self):
- self.fout.write(struct.pack("<I", GGUF_MAGIC))
- self.fout.write(struct.pack("<I", GGUF_VERSION))
- self.fout.write(struct.pack("<I", self.ti_data_count))
- self.fout.write(struct.pack("<I", self.kv_data_count))
- self.flush()
- # print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
- def write_kv_data_to_file(self):
- self.fout.write(self.kv_data)
- self.flush()
- def write_ti_data_to_file(self):
- self.fout.write(self.ti_data)
- self.flush()
- def add_key(self, key: str):
- self.add_val(key, GGUFValueType.STRING, add_vtype=False)
- def add_uint8(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT8)
- def add_int8(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT8)
- def add_uint16(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT16)
- def add_int16(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT16)
- def add_uint32(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT32)
- def add_int32(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT32)
- def add_float32(self, key: str, val: float):
- self.add_key(key)
- self.add_val(val, GGUFValueType.FLOAT32)
- def add_bool(self, key: str, val: bool):
- self.add_key(key)
- self.add_val(val, GGUFValueType.BOOL)
- def add_string(self, key: str, val: str):
- if len(val) == 0:
- return
- self.add_key(key)
- self.add_val(val, GGUFValueType.STRING)
- def add_array(self, key: str, val: list):
- if not isinstance(val, list):
- raise ValueError("Value must be a list for array type")
- self.add_key(key)
- self.add_val(val, GGUFValueType.ARRAY)
- def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
- if vtype is None:
- vtype = GGUFValueType.get_type(val)
- if add_vtype:
- self.kv_data += struct.pack("<I", vtype)
- self.kv_data_count += 1
- if vtype == GGUFValueType.UINT8:
- self.kv_data += struct.pack("<B", val)
- elif vtype == GGUFValueType.INT8:
- self.kv_data += struct.pack("<b", val)
- elif vtype == GGUFValueType.UINT16:
- self.kv_data += struct.pack("<H", val)
- elif vtype == GGUFValueType.INT16:
- self.kv_data += struct.pack("<h", val)
- elif vtype == GGUFValueType.UINT32:
- self.kv_data += struct.pack("<I", val)
- elif vtype == GGUFValueType.INT32:
- self.kv_data += struct.pack("<i", val)
- elif vtype == GGUFValueType.FLOAT32:
- self.kv_data += struct.pack("<f", val)
- elif vtype == GGUFValueType.BOOL:
- self.kv_data += struct.pack("?", val)
- elif vtype == GGUFValueType.STRING:
- encoded_val = val.encode("utf8") if isinstance(val, str) else val
- self.kv_data += struct.pack("<I", len(encoded_val))
- self.kv_data += encoded_val
- elif vtype == GGUFValueType.ARRAY:
- ltype = set([GGUFValueType.get_type(item) for item in val])
- assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
- self.kv_data += struct.pack("<I", list(ltype)[0])
- self.kv_data += struct.pack("<I", len(val))
- for item in val:
- self.add_val(item, add_vtype=False)
- else:
- raise ValueError("Invalid GGUF metadata value type")
- @staticmethod
- def ggml_pad(x: int, n: int) -> int:
- return ((x + n - 1) // n) * n
- def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
- assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
- encoded_name = name.encode("utf8")
- self.ti_data += struct.pack("<I", len(encoded_name))
- self.ti_data += encoded_name
- n_dims = len(tensor_shape)
- self.ti_data += struct.pack("<I", n_dims)
- for i in range(n_dims):
- self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
- if raw_dtype is None:
- dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
- else:
- dtype = raw_dtype
- self.ti_data += struct.pack("<I", dtype)
- self.ti_data += struct.pack("<Q", self.offset_tensor)
- self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
- self.ti_data_count += 1
- def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
- if self.use_temp_file and not hasattr(self, "temp_file"):
- self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
- self.temp_file.seek(0)
- self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
- pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
- if not self.use_temp_file:
- self.tensors.append((tensor, pad))
- return
- tensor.tofile(self.temp_file)
- if pad != 0:
- self.temp_file.write(bytes([0] * pad))
- def write_tensor_data(self, tensor: np.ndarray):
- pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
- if pad != 0:
- self.fout.write(bytes([0] * pad))
- tensor.tofile(self.fout)
- pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
- if pad != 0:
- self.fout.write(bytes([0] * pad))
- def write_tensors_to_file(self):
- self.write_ti_data_to_file()
- pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
- if pad != 0:
- self.fout.write(bytes([0] * pad))
- if not self.use_temp_file:
- for (currtensor, currpad) in self.tensors:
- currtensor.tofile(self.fout)
- if currpad != 0:
- self.fout.write(bytes([0] * currpad))
- return
- self.temp_file.seek(0)
- shutil.copyfileobj(self.temp_file, self.fout)
- self.flush()
- self.temp_file.close()
- def flush(self):
- self.fout.flush()
- def close(self):
- self.fout.close()
- def add_architecture(self):
- self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
- def add_author(self, author: str):
- self.add_string(KEY_GENERAL_AUTHOR, author)
- def add_tensor_data_layout(self, layout: str):
- self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
- def add_url(self, url: str):
- self.add_string(KEY_GENERAL_URL, url)
- def add_description(self, description: str):
- self.add_string(KEY_GENERAL_DESCRIPTION, description)
- def add_source_url(self, url: str):
- self.add_string(KEY_GENERAL_SOURCE_URL, url)
- def add_source_hf_repo(self, repo: str):
- self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
- def add_file_type(self, ftype: int):
- self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
- def add_name(self, name: str):
- self.add_string(KEY_GENERAL_NAME, name)
- def add_quantization_version(self, quantization_version: GGMLQuantizationType):
- self.add_uint32(
- KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
- def add_custom_alignment(self, alignment: int):
- self.data_alignment = alignment
- self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
- def add_context_length(self, length: int):
- self.add_uint32(
- KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length)
- def add_embedding_length(self, length: int):
- self.add_uint32(
- KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length)
- def add_block_count(self, length: int):
- self.add_uint32(
- KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length)
- def add_feed_forward_length(self, length: int):
- self.add_uint32(
- KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
- def add_parallel_residual(self, use: bool):
- self.add_bool(
- KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
- def add_tensor_data_layout(self, layout: str):
- self.add_string(
- KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
- def add_head_count(self, count: int):
- self.add_uint32(
- KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
- def add_head_count_kv(self, count: int):
- self.add_uint32(
- KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
- def add_max_alibi_bias(self, bias: float):
- self.add_float32(
- KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
- def add_clamp_kqv(self, value: float):
- self.add_float32(
- KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
- def add_layer_norm_eps(self, value: float):
- self.add_float32(
- KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
- def add_layer_norm_rms_eps(self, value: float):
- self.add_float32(
- KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
- def add_rope_dimension_count(self, count: int):
- self.add_uint32(
- KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
- def add_rope_scale_linear(self, value: float):
- self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
- def add_tokenizer_model(self, model: str):
- self.add_string(KEY_TOKENIZER_MODEL, model)
- def add_token_list(self, tokens: List):
- self.add_array(KEY_TOKENIZER_LIST, tokens)
- def add_token_merges(self, merges: List):
- self.add_array(KEY_TOKENIZER_MERGES, merges)
- def add_token_types(self, types: List[int]):
- self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
- def add_token_scores(self, scores: List[float]):
- self.add_array(KEY_TOKENIZER_SCORES, scores)
- def add_bos_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
- def add_eos_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
- def add_unk_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
- def add_sep_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
- def add_pad_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
- # Example usage:
- if __name__ == "__main__":
- # Example usage with a file
- gguf_writer = GGUFWriter("example.gguf", "llama")
- gguf_writer.add_architecture()
- gguf_writer.add_block_count(12)
- gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
- gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
- gguf_writer.add_custom_alignment(64)
- tensor1 = np.ones((32,), dtype=np.float32) * 100.0
- tensor2 = np.ones((64,), dtype=np.float32) * 101.0
- tensor3 = np.ones((96,), dtype=np.float32) * 102.0
- gguf_writer.add_tensor("tensor1", tensor1)
- gguf_writer.add_tensor("tensor2", tensor2)
- gguf_writer.add_tensor("tensor3", tensor3)
- gguf_writer.write_header_to_file()
- gguf_writer.write_kv_data_to_file()
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
|