finetune.cpp 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951
  1. #include "ggml.h"
  2. #include "ggml-alloc.h"
  3. #include "llama.h"
  4. #include "common.h"
  5. #include "train.h"
  6. #include <unordered_map>
  7. #include <vector>
  8. #include <cassert>
  9. #include <climits>
  10. #include <cstring>
  11. #include <cstdarg>
  12. #include <ctime>
  13. #include <random>
  14. #include <stdexcept>
  15. #include <algorithm>
  16. #include <string>
  17. #if defined(_MSC_VER)
  18. #pragma warning(disable: 4244 4267) // possible loss of data
  19. #endif
  20. static const size_t tensor_alignment = 32;
  21. struct my_llama_hparams {
  22. uint32_t n_vocab = 32000;
  23. uint32_t n_ctx = 512;
  24. uint32_t n_embd = 4096;
  25. uint32_t n_ff = 11008;
  26. uint32_t n_head = 32;
  27. uint32_t n_head_kv = 32;
  28. uint32_t n_layer = 32;
  29. // float f_norm_eps = 1e-5f; // falcon
  30. float f_norm_rms_eps = 1e-5f; // llama
  31. float rope_freq_base = 10000.0f;
  32. float rope_freq_scale = 1.0f;
  33. uint32_t n_gqa() const {
  34. return n_head/n_head_kv;
  35. }
  36. uint32_t n_embd_head() const {
  37. return n_embd/n_head;
  38. }
  39. uint32_t n_embd_gqa() const {
  40. return n_embd/n_gqa();
  41. }
  42. bool operator!=(const my_llama_hparams& other) const {
  43. return memcmp(this, &other, sizeof(other));
  44. }
  45. };
  46. struct my_llama_layer {
  47. // normalization
  48. struct ggml_tensor * attention_norm;
  49. // attention
  50. struct ggml_tensor * wq;
  51. struct ggml_tensor * wk;
  52. struct ggml_tensor * wv;
  53. struct ggml_tensor * wo;
  54. // normalization
  55. struct ggml_tensor * ffn_norm;
  56. // ff
  57. struct ggml_tensor * w1;
  58. struct ggml_tensor * w2;
  59. struct ggml_tensor * w3;
  60. };
  61. struct my_llama_model {
  62. struct my_llama_hparams hparams;
  63. struct ggml_tensor * tok_embeddings;
  64. struct ggml_tensor * norm;
  65. struct ggml_tensor * output;
  66. std::vector<my_llama_layer> layers;
  67. };
  68. struct my_llama_lora_hparams {
  69. uint32_t lora_r = 1;
  70. uint32_t lora_alpha = 1;
  71. uint32_t n_rank_attention_norm = 1;
  72. uint32_t n_rank_wq = 4;
  73. uint32_t n_rank_wk = 4;
  74. uint32_t n_rank_wv = 4;
  75. uint32_t n_rank_wo = 4;
  76. uint32_t n_rank_ffn_norm = 1;
  77. uint32_t n_rank_w1 = 4;
  78. uint32_t n_rank_w2 = 4;
  79. uint32_t n_rank_w3 = 4;
  80. uint32_t n_rank_tok_embeddings = 4;
  81. uint32_t n_rank_norm = 1;
  82. uint32_t n_rank_output = 4;
  83. bool operator!=(const my_llama_lora_hparams& other) const {
  84. return memcmp(this, &other, sizeof(other));
  85. }
  86. };
  87. struct my_llama_lora_layer {
  88. // normalization
  89. struct ggml_tensor * attention_norm_a;
  90. struct ggml_tensor * attention_norm_b;
  91. // attention
  92. struct ggml_tensor * wq_a;
  93. struct ggml_tensor * wq_b;
  94. struct ggml_tensor * wk_a;
  95. struct ggml_tensor * wk_b;
  96. struct ggml_tensor * wv_a;
  97. struct ggml_tensor * wv_b;
  98. struct ggml_tensor * wo_a;
  99. struct ggml_tensor * wo_b;
  100. // normalization
  101. struct ggml_tensor * ffn_norm_a;
  102. struct ggml_tensor * ffn_norm_b;
  103. // ff
  104. struct ggml_tensor * w1_a;
  105. struct ggml_tensor * w1_b;
  106. struct ggml_tensor * w2_a;
  107. struct ggml_tensor * w2_b;
  108. struct ggml_tensor * w3_a;
  109. struct ggml_tensor * w3_b;
  110. };
  111. struct my_llama_lora {
  112. struct ggml_context * ctx = NULL;
  113. std::vector<uint8_t> data;
  114. my_llama_lora_hparams hparams;
  115. struct ggml_tensor * tok_embeddings_a;
  116. struct ggml_tensor * tok_embeddings_b;
  117. struct ggml_tensor * norm_a;
  118. struct ggml_tensor * norm_b;
  119. struct ggml_tensor * output_a;
  120. struct ggml_tensor * output_b;
  121. std::vector<my_llama_lora_layer> layers;
  122. };
  123. // gguf constants
  124. static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora";
  125. static const char * LLM_KV_TRAINING_TYPE = "training.type";
  126. static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd";
  127. static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm";
  128. static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output";
  129. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm";
  130. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q";
  131. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k";
  132. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v";
  133. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output";
  134. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm";
  135. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate";
  136. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down";
  137. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up";
  138. // gguf constants (sync with gguf.py)
  139. static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
  140. static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
  141. static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
  142. static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
  143. static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
  144. static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
  145. static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
  146. static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv";
  147. static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
  148. static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
  149. static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
  150. static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
  151. static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
  152. static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
  153. static const char * LLM_TENSOR_OUTPUT = "output";
  154. static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
  155. static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
  156. static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
  157. static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
  158. static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
  159. static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
  160. static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
  161. static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
  162. static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
  163. static void print_params(struct my_llama_hparams * params) {
  164. printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
  165. printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
  166. printf("%s: n_embd: %u\n", __func__, params->n_embd);
  167. printf("%s: n_ff: %u\n", __func__, params->n_ff);
  168. printf("%s: n_head: %u\n", __func__, params->n_head);
  169. printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
  170. printf("%s: n_layer: %u\n", __func__, params->n_layer);
  171. printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
  172. printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
  173. printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
  174. }
  175. static void print_lora_params(struct my_llama_lora_hparams * params) {
  176. printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm);
  177. printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq);
  178. printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk);
  179. printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv);
  180. printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo);
  181. printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm);
  182. printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1);
  183. printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2);
  184. printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3);
  185. printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings);
  186. printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm);
  187. printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output);
  188. }
  189. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  190. { \
  191. const std::string skey(key); \
  192. const int kid = gguf_find_key(ctx, skey.c_str()); \
  193. if (kid >= 0) { \
  194. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  195. if (ktype != (type)) { \
  196. die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
  197. } \
  198. (dst) = func(ctx, kid); \
  199. } else if (req) { \
  200. die_fmt("key not found in model: %s", skey.c_str()); \
  201. } \
  202. }
  203. static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) {
  204. std::string arch;
  205. GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
  206. if (expected_arch != NULL) {
  207. if (arch != expected_arch) {
  208. printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch);
  209. }
  210. GGML_ASSERT(arch == expected_arch);
  211. }
  212. std::vector<char> keybuf;
  213. keybuf.resize(512);
  214. auto kv = [&arch, &keybuf](const char * key) -> const char * {
  215. snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
  216. return keybuf.data();
  217. };
  218. GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  219. GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
  220. GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  221. GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  222. GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  223. // n_head_kv is optional, default to n_head
  224. hparams->n_head_kv = hparams->n_head;
  225. GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  226. float rope_freq_scale = 1.0f;
  227. GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  228. GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  229. GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  230. if (rope_freq_scale != 1.0f) {
  231. hparams->rope_freq_scale = 1.0f / rope_freq_scale;
  232. }
  233. }
  234. static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) {
  235. auto & hparams = model->hparams;
  236. std::vector<char> tn_buf;
  237. tn_buf.resize(GGML_MAX_NAME);
  238. auto tn = [&tn_buf](const char * key) -> const char * {
  239. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
  240. return tn_buf.data();
  241. };
  242. auto tni = [&tn_buf](const char * key, int bid) -> const char * {
  243. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  244. std::string s = tn_buf.data();
  245. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
  246. return tn_buf.data();
  247. };
  248. // get parameters directly from gguf file
  249. {
  250. struct gguf_init_params params = {
  251. /*.no_alloc = */ false,
  252. /*.ctx = */ NULL,
  253. };
  254. struct gguf_context * mctx = gguf_init_from_file(fn_model, params);
  255. load_model_hparams_gguf(mctx, &hparams, "llama");
  256. gguf_free(mctx);
  257. }
  258. hparams.n_vocab = llama_n_vocab(input);
  259. hparams.n_ctx = n_ctx;
  260. // get tensors from llama_model (possibly mmapped)
  261. model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD));
  262. model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM));
  263. model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT));
  264. assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab);
  265. assert_shape_1d(model->norm, hparams.n_embd);
  266. assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab);
  267. model->layers.resize(hparams.n_layer);
  268. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  269. auto & layer = model->layers[i];
  270. layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i));
  271. layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i));
  272. layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i));
  273. layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i));
  274. layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i));
  275. layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i));
  276. layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
  277. layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
  278. layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
  279. assert_shape_1d(layer.attention_norm, hparams.n_embd);
  280. assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
  281. assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd_gqa());
  282. assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa());
  283. assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
  284. assert_shape_1d(layer.ffn_norm, hparams.n_embd);
  285. assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
  286. assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd);
  287. assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff);
  288. }
  289. }
  290. static void set_param_lora(struct my_llama_lora * lora) {
  291. const uint32_t n_layer = lora->layers.size();
  292. struct ggml_context* ctx = lora->ctx;
  293. ggml_set_param(ctx, lora->tok_embeddings_a);
  294. ggml_set_param(ctx, lora->tok_embeddings_b);
  295. ggml_set_param(ctx, lora->norm_a);
  296. ggml_set_param(ctx, lora->norm_b);
  297. ggml_set_param(ctx, lora->output_a);
  298. ggml_set_param(ctx, lora->output_b);
  299. for (uint32_t i = 0; i < n_layer; ++i) {
  300. auto & layer = lora->layers[i];
  301. ggml_set_param(ctx, layer.attention_norm_a);
  302. ggml_set_param(ctx, layer.attention_norm_b);
  303. ggml_set_param(ctx, layer.wq_a);
  304. ggml_set_param(ctx, layer.wq_b);
  305. ggml_set_param(ctx, layer.wk_a);
  306. ggml_set_param(ctx, layer.wk_b);
  307. ggml_set_param(ctx, layer.wv_a);
  308. ggml_set_param(ctx, layer.wv_b);
  309. ggml_set_param(ctx, layer.wo_a);
  310. ggml_set_param(ctx, layer.wo_b);
  311. ggml_set_param(ctx, layer.ffn_norm_a);
  312. ggml_set_param(ctx, layer.ffn_norm_b);
  313. ggml_set_param(ctx, layer.w1_a);
  314. ggml_set_param(ctx, layer.w1_b);
  315. ggml_set_param(ctx, layer.w2_a);
  316. ggml_set_param(ctx, layer.w2_b);
  317. ggml_set_param(ctx, layer.w3_a);
  318. ggml_set_param(ctx, layer.w3_b);
  319. }
  320. }
  321. static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) {
  322. ggml_allocr_alloc(alloc, lora->tok_embeddings_a);
  323. ggml_allocr_alloc(alloc, lora->tok_embeddings_b);
  324. ggml_allocr_alloc(alloc, lora->norm_a);
  325. ggml_allocr_alloc(alloc, lora->norm_b);
  326. ggml_allocr_alloc(alloc, lora->output_a);
  327. ggml_allocr_alloc(alloc, lora->output_b);
  328. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  329. auto & layer = lora->layers[i];
  330. ggml_allocr_alloc(alloc, layer.attention_norm_a);
  331. ggml_allocr_alloc(alloc, layer.attention_norm_b);
  332. ggml_allocr_alloc(alloc, layer.wq_a);
  333. ggml_allocr_alloc(alloc, layer.wq_b);
  334. ggml_allocr_alloc(alloc, layer.wk_a);
  335. ggml_allocr_alloc(alloc, layer.wk_b);
  336. ggml_allocr_alloc(alloc, layer.wv_a);
  337. ggml_allocr_alloc(alloc, layer.wv_b);
  338. ggml_allocr_alloc(alloc, layer.wo_a);
  339. ggml_allocr_alloc(alloc, layer.wo_b);
  340. ggml_allocr_alloc(alloc, layer.ffn_norm_a);
  341. ggml_allocr_alloc(alloc, layer.ffn_norm_b);
  342. ggml_allocr_alloc(alloc, layer.w1_a);
  343. ggml_allocr_alloc(alloc, layer.w1_b);
  344. ggml_allocr_alloc(alloc, layer.w2_a);
  345. ggml_allocr_alloc(alloc, layer.w2_b);
  346. ggml_allocr_alloc(alloc, layer.w3_a);
  347. ggml_allocr_alloc(alloc, layer.w3_b);
  348. }
  349. ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad);
  350. ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad);
  351. ggml_allocr_alloc(alloc, lora->norm_a->grad);
  352. ggml_allocr_alloc(alloc, lora->norm_b->grad);
  353. ggml_allocr_alloc(alloc, lora->output_a->grad);
  354. ggml_allocr_alloc(alloc, lora->output_b->grad);
  355. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  356. auto & layer = lora->layers[i];
  357. ggml_allocr_alloc(alloc, layer.attention_norm_a->grad);
  358. ggml_allocr_alloc(alloc, layer.attention_norm_b->grad);
  359. ggml_allocr_alloc(alloc, layer.wq_a->grad);
  360. ggml_allocr_alloc(alloc, layer.wq_b->grad);
  361. ggml_allocr_alloc(alloc, layer.wk_a->grad);
  362. ggml_allocr_alloc(alloc, layer.wk_b->grad);
  363. ggml_allocr_alloc(alloc, layer.wv_a->grad);
  364. ggml_allocr_alloc(alloc, layer.wv_b->grad);
  365. ggml_allocr_alloc(alloc, layer.wo_a->grad);
  366. ggml_allocr_alloc(alloc, layer.wo_b->grad);
  367. ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad);
  368. ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad);
  369. ggml_allocr_alloc(alloc, layer.w1_a->grad);
  370. ggml_allocr_alloc(alloc, layer.w1_b->grad);
  371. ggml_allocr_alloc(alloc, layer.w2_a->grad);
  372. ggml_allocr_alloc(alloc, layer.w2_b->grad);
  373. ggml_allocr_alloc(alloc, layer.w3_a->grad);
  374. ggml_allocr_alloc(alloc, layer.w3_b->grad);
  375. }
  376. }
  377. static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) {
  378. const auto & lparams = lora->hparams;
  379. const uint32_t n_embd = model->hparams.n_embd;
  380. const uint32_t n_embd_gqa = model->hparams.n_embd_gqa();
  381. const uint32_t n_layer = model->hparams.n_layer;
  382. const uint32_t n_vocab = model->hparams.n_vocab;
  383. const uint32_t n_ff = model->hparams.n_ff;
  384. std::vector<char> tn_buf;
  385. tn_buf.resize(GGML_MAX_NAME);
  386. auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
  387. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
  388. return tn_buf.data();
  389. };
  390. auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * {
  391. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  392. std::string s = tn_buf.data();
  393. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
  394. return tn_buf.data();
  395. };
  396. // context for lora tensors without their data
  397. struct ggml_init_params ctx_lora_params;
  398. ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
  399. ctx_lora_params.mem_buffer = NULL;
  400. ctx_lora_params.no_alloc = true;
  401. struct ggml_context * ctx = ggml_init(ctx_lora_params);
  402. lora->ctx = ctx;
  403. lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd);
  404. lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab);
  405. lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd);
  406. lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1);
  407. lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd);
  408. lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab);
  409. ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a"));
  410. ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b"));
  411. ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a"));
  412. ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b"));
  413. ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a"));
  414. ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b"));
  415. lora->layers.resize(n_layer);
  416. for (uint32_t i = 0; i < n_layer; ++i) {
  417. auto & layer = lora->layers[i];
  418. layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd);
  419. layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1);
  420. layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
  421. layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
  422. layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd);
  423. layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa);
  424. layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd);
  425. layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa);
  426. layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
  427. layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
  428. layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd);
  429. layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1);
  430. layer.w1_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_embd);
  431. layer.w1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_ff);
  432. layer.w2_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_ff);
  433. layer.w2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_embd);
  434. layer.w3_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_embd);
  435. layer.w3_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_ff);
  436. ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i));
  437. ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i));
  438. ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i));
  439. ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i));
  440. ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i));
  441. ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i));
  442. ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i));
  443. ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i));
  444. ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i));
  445. ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i));
  446. ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i));
  447. ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i));
  448. ggml_set_name(layer.w1_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i));
  449. ggml_set_name(layer.w1_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i));
  450. ggml_set_name(layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i));
  451. ggml_set_name(layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i));
  452. ggml_set_name(layer.w3_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i));
  453. ggml_set_name(layer.w3_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i));
  454. }
  455. set_param_lora(lora);
  456. // measure data size
  457. size_t size = 0;
  458. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  459. size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
  460. }
  461. // allocate data
  462. struct ggml_allocr * alloc = NULL;
  463. lora->data.resize(size + tensor_alignment);
  464. alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
  465. alloc_lora(alloc, lora);
  466. ggml_allocr_free(alloc);
  467. }
  468. static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
  469. const uint32_t n_layer = lora->layers.size();
  470. struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
  471. randomize_tensor_normal(lora->tok_embeddings_a, rnd);
  472. randomize_tensor_normal(lora->tok_embeddings_b, rnd);
  473. randomize_tensor_normal(lora->norm_a, rnd);
  474. randomize_tensor_normal(lora->norm_b, rnd);
  475. randomize_tensor_normal(lora->output_a, rnd);
  476. randomize_tensor_normal(lora->output_b, rnd);
  477. for (uint32_t i = 0; i < n_layer; ++i) {
  478. auto & layer = lora->layers[i];
  479. randomize_tensor_normal(layer.attention_norm_a, rnd);
  480. randomize_tensor_normal(layer.attention_norm_b, rnd);
  481. randomize_tensor_normal(layer.wq_a, rnd);
  482. randomize_tensor_normal(layer.wq_b, rnd);
  483. randomize_tensor_normal(layer.wk_a, rnd);
  484. randomize_tensor_normal(layer.wk_b, rnd);
  485. randomize_tensor_normal(layer.wv_a, rnd);
  486. randomize_tensor_normal(layer.wv_b, rnd);
  487. randomize_tensor_normal(layer.wo_a, rnd);
  488. randomize_tensor_normal(layer.wo_b, rnd);
  489. randomize_tensor_normal(layer.ffn_norm_a, rnd);
  490. randomize_tensor_normal(layer.ffn_norm_b, rnd);
  491. randomize_tensor_normal(layer.w1_a, rnd);
  492. randomize_tensor_normal(layer.w1_b, rnd);
  493. randomize_tensor_normal(layer.w2_a, rnd);
  494. randomize_tensor_normal(layer.w2_b, rnd);
  495. randomize_tensor_normal(layer.w3_a, rnd);
  496. randomize_tensor_normal(layer.w3_b, rnd);
  497. }
  498. free_random_normal_distribution(rnd);
  499. }
  500. static struct ggml_tensor * llama_build_lora_finetune_graphs(
  501. struct my_llama_model * model,
  502. struct my_llama_lora * lora,
  503. struct ggml_allocr * alloc,
  504. struct ggml_context * ctx,
  505. struct ggml_cgraph * gf,
  506. struct ggml_cgraph * gb,
  507. struct ggml_cgraph * gb_tmp,
  508. struct ggml_tensor * * logits,
  509. struct ggml_tensor * tokens_input,
  510. struct ggml_tensor * targets,
  511. const int n_tokens,
  512. const int n_batch,
  513. const bool enable_flash_attn,
  514. const bool enable_checkpointing) {
  515. ggml_set_scratch(ctx, { 0, 0, nullptr, });
  516. const int n_past = 0;
  517. const int N = n_tokens;
  518. const auto & hparams = model->hparams;
  519. const int n_ctx = hparams.n_ctx;
  520. const int n_vocab = hparams.n_vocab;
  521. const int n_embd = hparams.n_embd;
  522. const int n_layer = hparams.n_layer;
  523. const int n_head = hparams.n_head;
  524. const int n_head_kv = hparams.n_head_kv;
  525. const int n_ff = hparams.n_ff;
  526. const int n_rot = hparams.n_embd_head();
  527. const int n_embd_head = hparams.n_embd_head();
  528. const int n_embd_gqa = hparams.n_embd_gqa();
  529. const float rms_norm_eps = hparams.f_norm_rms_eps;
  530. const float rope_freq_base = hparams.rope_freq_base;
  531. const float rope_freq_scale = hparams.rope_freq_scale;
  532. GGML_ASSERT((size_t) n_layer == lora->layers.size());
  533. auto set_name = [](struct ggml_tensor * t, const char * n) {
  534. ggml_set_name(t, n);
  535. if (t->grad) {
  536. ggml_format_name(t->grad, "%s->grad", n);
  537. }
  538. };
  539. // KQ_pos - contains the positions
  540. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
  541. ggml_allocr_alloc(alloc, KQ_pos);
  542. if (!ggml_allocr_is_measure(alloc)) {
  543. int * data = (int *) KQ_pos->data;
  544. for (int i = 0; i < N; ++i) {
  545. data[i] = n_past + i;
  546. }
  547. }
  548. // rope has so much parameters that we make a custom function for it
  549. auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
  550. (struct ggml_tensor * t) -> struct ggml_tensor * {
  551. // not capturing these, to silcence warnings
  552. const int rope_mode = 0;
  553. return ggml_rope_custom(ctx,
  554. t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
  555. rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
  556. );
  557. };
  558. set_name(tokens_input, "tokens_input");
  559. set_name(targets, "targets");
  560. GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
  561. auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
  562. if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) {
  563. return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
  564. } else if (a->type == GGML_TYPE_F32) {
  565. return ggml_add(ctx, a, b);
  566. } else {
  567. die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n",
  568. __func__, ggml_type_name(a->type));
  569. }
  570. };
  571. struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b));
  572. struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b));
  573. struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b));
  574. struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
  575. struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
  576. struct ggml_tensor * cur = t01;
  577. std::vector<struct ggml_tensor *> checkpoints;
  578. if (enable_checkpointing) {
  579. checkpoints.push_back(tokens_input);
  580. checkpoints.push_back(targets);
  581. checkpoints.push_back(t00);
  582. checkpoints.push_back(t01);
  583. }
  584. struct ggml_tensor * kv_scale = NULL;
  585. if (!enable_flash_attn) {
  586. kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
  587. }
  588. for (int il = 0; il < n_layer; ++il) {
  589. struct my_llama_layer & layer = model->layers[il];
  590. struct my_llama_lora_layer & llayer = lora->layers[il];
  591. struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b));
  592. struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b));
  593. struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b));
  594. struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b));
  595. struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b));
  596. struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b));
  597. struct ggml_tensor * w1 = add_to_f32(ctx, layer.w1, ggml_mul_mat(ctx, llayer.w1_a, llayer.w1_b));
  598. struct ggml_tensor * w2 = add_to_f32(ctx, layer.w2, ggml_mul_mat(ctx, llayer.w2_a, llayer.w2_b));
  599. struct ggml_tensor * w3 = add_to_f32(ctx, layer.w3, ggml_mul_mat(ctx, llayer.w3_a, llayer.w3_b));
  600. struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
  601. struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
  602. struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
  603. struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
  604. struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch);
  605. struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch);
  606. struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch);
  607. struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch);
  608. struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch);
  609. struct ggml_tensor * t11;
  610. if (ggml_is_quantized(wv->type)) {
  611. struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch);
  612. struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa);
  613. t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa);
  614. } else {
  615. t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa);
  616. }
  617. struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv);
  618. struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch);
  619. struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch);
  620. struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
  621. struct ggml_tensor * t16;
  622. if (enable_flash_attn) {
  623. t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
  624. } else {
  625. struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
  626. struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
  627. struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
  628. struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
  629. t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
  630. }
  631. struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch);
  632. struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch);
  633. struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
  634. struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
  635. struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
  636. struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
  637. struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
  638. struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
  639. struct ggml_tensor * t25 = ggml_mul_mat (ctx, w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
  640. struct ggml_tensor * t26 = ggml_mul_mat (ctx, w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
  641. struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
  642. struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
  643. struct ggml_tensor * t29 = ggml_mul_mat (ctx, w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
  644. struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
  645. cur = t30;
  646. if (enable_checkpointing) {
  647. checkpoints.push_back(cur);
  648. }
  649. }
  650. struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
  651. struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
  652. struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
  653. struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
  654. struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
  655. struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
  656. if (enable_checkpointing) {
  657. checkpoints.push_back(t31);
  658. checkpoints.push_back(t32);
  659. checkpoints.push_back(t33);
  660. checkpoints.push_back(t34);
  661. checkpoints.push_back(t35);
  662. checkpoints.push_back(t36);
  663. }
  664. ggml_build_forward_expand(gf, t36);
  665. if (enable_checkpointing) {
  666. ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
  667. } else {
  668. ggml_graph_cpy(gf, gb);
  669. ggml_build_backward_expand(ctx, gf, gb, true);
  670. }
  671. GGML_ASSERT(alloc != NULL);
  672. // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
  673. int n_leafs_before = gb->n_leafs;
  674. int n_nodes_before = gb->n_nodes;
  675. struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
  676. // output tensors
  677. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
  678. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
  679. // input gradient
  680. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
  681. GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
  682. ggml_allocr_alloc(alloc, t36->grad);
  683. // KQ_pos
  684. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
  685. // make sure base model tensors data cannot be used in viewable operations
  686. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one));
  687. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one));
  688. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one));
  689. for (int il = 0; il < n_layer; ++il) {
  690. struct my_llama_layer & layer = model->layers[il];
  691. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one));
  692. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one));
  693. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one));
  694. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one));
  695. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one));
  696. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one));
  697. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one));
  698. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one));
  699. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one));
  700. }
  701. // allocating checkpoints in one block to reduce memory fragmentation
  702. // note: they will be freed in reverse order
  703. for (unsigned int i = 0; i < checkpoints.size(); ++i) {
  704. if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
  705. ggml_allocr_alloc(alloc, checkpoints[i]);
  706. }
  707. }
  708. ggml_allocr_alloc_graph(alloc, gb);
  709. // remove the additional nodes and leafs
  710. for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
  711. gb->leafs[i] = NULL;
  712. }
  713. for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
  714. gb->nodes[i] = NULL;
  715. }
  716. gb->n_leafs = n_leafs_before;
  717. gb->n_nodes = n_nodes_before;
  718. *logits = t35;
  719. return t36;
  720. }
  721. static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) {
  722. // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
  723. std::string arch;
  724. std::vector<char> keybuf;
  725. keybuf.resize(512);
  726. GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
  727. GGML_ASSERT(arch == "llama");
  728. uint32_t ftype_u;
  729. GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
  730. GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
  731. struct my_llama_hparams hparams;
  732. load_model_hparams_gguf(fctx, &hparams, arch.c_str());
  733. // parameters that define tensor shapes must match
  734. GGML_ASSERT(hparams.n_embd == model->hparams.n_embd);
  735. GGML_ASSERT(hparams.n_ff == model->hparams.n_ff);
  736. GGML_ASSERT(hparams.n_head == model->hparams.n_head);
  737. GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv);
  738. GGML_ASSERT(hparams.n_layer == model->hparams.n_layer);
  739. GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD);
  740. GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM);
  741. GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT);
  742. GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM);
  743. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q);
  744. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K);
  745. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V);
  746. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT);
  747. GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM);
  748. GGUF_GET_KEY(fctx, lora->hparams.n_rank_w1, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE);
  749. GGUF_GET_KEY(fctx, lora->hparams.n_rank_w2, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN);
  750. GGUF_GET_KEY(fctx, lora->hparams.n_rank_w3, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP);
  751. init_lora(model, lora);
  752. copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a));
  753. copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b));
  754. copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a));
  755. copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b));
  756. copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a));
  757. copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b));
  758. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  759. auto & layer = lora->layers[i];
  760. copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a));
  761. copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b));
  762. copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a));
  763. copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b));
  764. copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a));
  765. copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b));
  766. copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a));
  767. copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b));
  768. copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a));
  769. copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b));
  770. copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a));
  771. copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b));
  772. copy_tensor_by_name(layer.w1_a, f_ggml_ctx, ggml_get_name(layer.w1_a));
  773. copy_tensor_by_name(layer.w1_b, f_ggml_ctx, ggml_get_name(layer.w1_b));
  774. copy_tensor_by_name(layer.w2_a, f_ggml_ctx, ggml_get_name(layer.w2_a));
  775. copy_tensor_by_name(layer.w2_b, f_ggml_ctx, ggml_get_name(layer.w2_b));
  776. copy_tensor_by_name(layer.w3_a, f_ggml_ctx, ggml_get_name(layer.w3_a));
  777. copy_tensor_by_name(layer.w3_b, f_ggml_ctx, ggml_get_name(layer.w3_b));
  778. }
  779. }
  780. static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) {
  781. const char * arch = "llama";
  782. enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  783. std::vector<char> keybuf;
  784. keybuf.resize(512);
  785. auto kv = [arch, &keybuf](const char * key) -> const char * {
  786. snprintf(keybuf.data(), keybuf.size(), key, arch);
  787. return keybuf.data();
  788. };
  789. gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
  790. gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
  791. gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx);
  792. gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd);
  793. gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff);
  794. gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head);
  795. gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv);
  796. gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer);
  797. gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head());
  798. gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps);
  799. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base);
  800. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale);
  801. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings);
  802. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm);
  803. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output);
  804. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm);
  805. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq);
  806. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk);
  807. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv);
  808. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo);
  809. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm);
  810. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_w1);
  811. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_w2);
  812. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_w3);
  813. gguf_add_tensor(fctx, lora->tok_embeddings_a);
  814. gguf_add_tensor(fctx, lora->tok_embeddings_b);
  815. gguf_add_tensor(fctx, lora->norm_a);
  816. gguf_add_tensor(fctx, lora->norm_b);
  817. gguf_add_tensor(fctx, lora->output_a);
  818. gguf_add_tensor(fctx, lora->output_b);
  819. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  820. auto & layer = lora->layers[i];
  821. gguf_add_tensor(fctx, layer.attention_norm_a);
  822. gguf_add_tensor(fctx, layer.attention_norm_b);
  823. gguf_add_tensor(fctx, layer.wq_a);
  824. gguf_add_tensor(fctx, layer.wq_b);
  825. gguf_add_tensor(fctx, layer.wk_a);
  826. gguf_add_tensor(fctx, layer.wk_b);
  827. gguf_add_tensor(fctx, layer.wv_a);
  828. gguf_add_tensor(fctx, layer.wv_b);
  829. gguf_add_tensor(fctx, layer.wo_a);
  830. gguf_add_tensor(fctx, layer.wo_b);
  831. gguf_add_tensor(fctx, layer.ffn_norm_a);
  832. gguf_add_tensor(fctx, layer.ffn_norm_b);
  833. gguf_add_tensor(fctx, layer.w1_a);
  834. gguf_add_tensor(fctx, layer.w1_b);
  835. gguf_add_tensor(fctx, layer.w2_a);
  836. gguf_add_tensor(fctx, layer.w2_b);
  837. gguf_add_tensor(fctx, layer.w3_a);
  838. gguf_add_tensor(fctx, layer.w3_b);
  839. }
  840. }
  841. static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  842. std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA;
  843. GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
  844. GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
  845. load_train_state_gguf(fctx, f_ggml_ctx, train);
  846. load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora);
  847. }
  848. static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  849. gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
  850. save_llama_lora_gguf(fctx, model, lora);
  851. save_train_state_gguf(fctx, train);
  852. }
  853. static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  854. struct ggml_context * f_ggml_ctx;
  855. struct gguf_init_params params;
  856. params.no_alloc = false;
  857. params.ctx = &f_ggml_ctx;
  858. struct gguf_context * fctx = gguf_init_from_file(filename, params);
  859. if (fctx == NULL) {
  860. return false;
  861. }
  862. load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train);
  863. gguf_free(fctx);
  864. return true;
  865. }
  866. static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  867. printf("%s: saving to %s\n", __func__, filename);
  868. struct gguf_context * fctx = gguf_init_empty();
  869. save_checkpoint_lora_gguf(fctx, model, lora, train);
  870. // write file
  871. const bool only_meta = false;
  872. gguf_write_to_file(fctx, filename, only_meta);
  873. gguf_free(fctx);
  874. }
  875. struct llama_file {
  876. // use FILE * so we don't have to re-open the file to mmap
  877. FILE * fp;
  878. size_t size;
  879. llama_file(const char * fname, const char * mode) {
  880. fp = std::fopen(fname, mode);
  881. if (fp == NULL) {
  882. size = 0;
  883. } else {
  884. seek(0, SEEK_END);
  885. size = tell();
  886. seek(0, SEEK_SET);
  887. }
  888. }
  889. size_t tell() const {
  890. #ifdef _WIN32
  891. __int64 ret = _ftelli64(fp);
  892. #else
  893. long ret = std::ftell(fp);
  894. #endif
  895. GGML_ASSERT(ret != -1); // this really shouldn't fail
  896. return (size_t) ret;
  897. }
  898. void seek(size_t offset, int whence) {
  899. #ifdef _WIN32
  900. int ret = _fseeki64(fp, (__int64) offset, whence);
  901. #else
  902. int ret = std::fseek(fp, (long) offset, whence);
  903. #endif
  904. GGML_ASSERT(ret == 0); // same
  905. }
  906. void read_raw(void * ptr, size_t size) {
  907. if (size == 0) {
  908. return;
  909. }
  910. errno = 0;
  911. std::size_t ret = std::fread(ptr, size, 1, fp);
  912. if (ferror(fp)) {
  913. die_fmt("read error: %s", strerror(errno));
  914. }
  915. if (ret != 1) {
  916. die("unexpectedly reached end of file");
  917. }
  918. }
  919. std::uint32_t read_u32() {
  920. std::uint32_t ret;
  921. read_raw(&ret, sizeof(ret));
  922. return ret;
  923. }
  924. std::string read_string(std::uint32_t len) {
  925. std::vector<char> chars(len);
  926. read_raw(chars.data(), len);
  927. return std::string(chars.data(), len);
  928. }
  929. void write_raw(const void * ptr, size_t size) {
  930. if (size == 0) {
  931. return;
  932. }
  933. errno = 0;
  934. size_t ret = std::fwrite(ptr, size, 1, fp);
  935. if (ret != 1) {
  936. die_fmt("write error: %s", strerror(errno));
  937. }
  938. }
  939. void write_u32(std::uint32_t val) {
  940. write_raw(&val, sizeof(val));
  941. }
  942. ~llama_file() {
  943. if (fp) {
  944. std::fclose(fp);
  945. }
  946. }
  947. };
  948. static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) {
  949. if (tensor == NULL) {
  950. file->write_u32(0);
  951. file->write_u32(0);
  952. file->write_u32(GGML_TYPE_F32);
  953. file->seek((0-file->tell()) & 31, SEEK_CUR);
  954. return;
  955. }
  956. if (name == NULL) {
  957. name = ggml_get_name(tensor);
  958. }
  959. uint32_t name_len = strlen(name);
  960. uint32_t nd = tensor->n_dims;
  961. uint32_t ne[4] = { (uint32_t)tensor->ne[0],
  962. (uint32_t)tensor->ne[1],
  963. (uint32_t)tensor->ne[2],
  964. (uint32_t)tensor->ne[3] };
  965. file->write_u32(nd);
  966. file->write_u32(name_len);
  967. file->write_u32(tensor->type);
  968. file->write_raw(ne, sizeof(ne[0]) * nd);
  969. file->write_raw(name, name_len);
  970. file->seek((0-file->tell()) & 31, SEEK_CUR);
  971. file->write_raw(tensor->data, ggml_nbytes(tensor));
  972. }
  973. static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) {
  974. printf("%s: saving to %s\n", __func__, filename);
  975. struct llama_file file(filename, "wb");
  976. if (file.fp == NULL) {
  977. return;
  978. }
  979. std::vector<char> tn_buf;
  980. tn_buf.resize(GGML_MAX_NAME);
  981. auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
  982. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
  983. return tn_buf.data();
  984. };
  985. auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * {
  986. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  987. std::string s = tn_buf.data();
  988. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
  989. return tn_buf.data();
  990. };
  991. uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
  992. // write_magic
  993. file.write_u32(LLAMA_FILE_MAGIC_LORA); // magic
  994. file.write_u32(1); // version
  995. // write_hparams
  996. file.write_u32(lora->hparams.lora_r);
  997. file.write_u32(lora->hparams.lora_alpha);
  998. // write tensors
  999. write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA"));
  1000. write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB"));
  1001. write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA"));
  1002. write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB"));
  1003. write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA"));
  1004. write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB"));
  1005. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  1006. auto & layer = lora->layers[i];
  1007. write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA"));
  1008. write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB"));
  1009. write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA"));
  1010. write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB"));
  1011. write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA"));
  1012. write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB"));
  1013. write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA"));
  1014. write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB"));
  1015. write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA"));
  1016. write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB"));
  1017. write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA"));
  1018. write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB"));
  1019. write_tensor(&file, layer.w1_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA"));
  1020. write_tensor(&file, layer.w1_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB"));
  1021. write_tensor(&file, layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA"));
  1022. write_tensor(&file, layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB"));
  1023. write_tensor(&file, layer.w3_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA"));
  1024. write_tensor(&file, layer.w3_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB"));
  1025. }
  1026. }
  1027. struct train_params {
  1028. struct train_params_common common;
  1029. const char * fn_model_base;
  1030. const char * fn_lora_out;
  1031. bool only_write_lora;
  1032. float f_norm_rms_eps;
  1033. float rope_freq_base;
  1034. float rope_freq_scale;
  1035. bool custom_f_norm_rms_eps;
  1036. bool custom_rope_freq_base;
  1037. bool custom_rope_freq_scale;
  1038. int32_t lora_r;
  1039. int32_t lora_alpha;
  1040. bool custom_lora_alpha;
  1041. uint32_t n_rank_attention_norm;
  1042. uint32_t n_rank_wq;
  1043. uint32_t n_rank_wk;
  1044. uint32_t n_rank_wv;
  1045. uint32_t n_rank_wo;
  1046. uint32_t n_rank_ffn_norm;
  1047. uint32_t n_rank_w1;
  1048. uint32_t n_rank_w2;
  1049. uint32_t n_rank_w3;
  1050. uint32_t n_rank_tok_embeddings;
  1051. uint32_t n_rank_norm;
  1052. uint32_t n_rank_output;
  1053. bool custom_n_rank_attention_norm;
  1054. bool custom_n_rank_wq;
  1055. bool custom_n_rank_wk;
  1056. bool custom_n_rank_wv;
  1057. bool custom_n_rank_wo;
  1058. bool custom_n_rank_ffn_norm;
  1059. bool custom_n_rank_w1;
  1060. bool custom_n_rank_w2;
  1061. bool custom_n_rank_w3;
  1062. bool custom_n_rank_tok_embeddings;
  1063. bool custom_n_rank_norm;
  1064. bool custom_n_rank_output;
  1065. };
  1066. static struct train_params get_default_train_params() {
  1067. struct train_params params;
  1068. params.common = get_default_train_params_common();
  1069. params.fn_model_base = "";
  1070. params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf";
  1071. params.only_write_lora = false;
  1072. params.f_norm_rms_eps = 1e-5f;
  1073. params.rope_freq_base = 10000.0f;
  1074. params.rope_freq_scale = 1.0f;
  1075. params.custom_f_norm_rms_eps = false;
  1076. params.custom_rope_freq_base = false;
  1077. params.custom_rope_freq_scale = false;
  1078. params.lora_r = 4;
  1079. params.lora_alpha = 4;
  1080. params.custom_lora_alpha = false;
  1081. params.n_rank_attention_norm = 1;
  1082. params.n_rank_wq = 4;
  1083. params.n_rank_wk = 4;
  1084. params.n_rank_wv = 4;
  1085. params.n_rank_wo = 4;
  1086. params.n_rank_ffn_norm = 1;
  1087. params.n_rank_w1 = 4;
  1088. params.n_rank_w2 = 4;
  1089. params.n_rank_w3 = 4;
  1090. params.n_rank_tok_embeddings = 4;
  1091. params.n_rank_norm = 1;
  1092. params.n_rank_output = 4;
  1093. params.custom_n_rank_attention_norm = false;
  1094. params.custom_n_rank_wq = false;
  1095. params.custom_n_rank_wk = false;
  1096. params.custom_n_rank_wv = false;
  1097. params.custom_n_rank_wo = false;
  1098. params.custom_n_rank_ffn_norm = false;
  1099. params.custom_n_rank_w1 = false;
  1100. params.custom_n_rank_w2 = false;
  1101. params.custom_n_rank_w3 = false;
  1102. params.custom_n_rank_tok_embeddings = false;
  1103. params.custom_n_rank_norm = false;
  1104. params.custom_n_rank_output = false;
  1105. return params;
  1106. }
  1107. static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
  1108. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  1109. fprintf(stderr, "\n");
  1110. fprintf(stderr, "options:\n");
  1111. fprintf(stderr, " -h, --help show this help message and exit\n");
  1112. fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base);
  1113. fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out);
  1114. fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n");
  1115. fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
  1116. fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
  1117. fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
  1118. fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha);
  1119. fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r);
  1120. fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
  1121. fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
  1122. fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
  1123. fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n");
  1124. fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n");
  1125. fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n");
  1126. fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n");
  1127. fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n");
  1128. fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n");
  1129. fprintf(stderr, " --rank-w1 N LORA rank for w1 tensor, overrides default rank.\n");
  1130. fprintf(stderr, " --rank-w2 N LORA rank for w2 tensor, overrides default rank.\n");
  1131. fprintf(stderr, " --rank-w3 N LORA rank for w3 tensor, overrides default rank.\n");
  1132. print_common_train_usage(argc, argv, &params->common);
  1133. }
  1134. static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
  1135. bool invalid_param = false;
  1136. std::string arg;
  1137. struct train_params default_params = get_default_train_params();
  1138. const std::string arg_prefix = "--";
  1139. for (int i = 1; i < argc; i++) {
  1140. arg = argv[i];
  1141. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  1142. std::replace(arg.begin(), arg.end(), '_', '-');
  1143. }
  1144. if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
  1145. if (invalid_param) {
  1146. break;
  1147. } else if (params->common.print_usage) {
  1148. train_print_usage(argc, argv, &default_params);
  1149. exit(0);
  1150. }
  1151. } else if (arg == "--model-base") {
  1152. if (++i >= argc) {
  1153. invalid_param = true;
  1154. break;
  1155. }
  1156. params->fn_model_base = argv[i];
  1157. } else if (arg == "--lora-out") {
  1158. if (++i >= argc) {
  1159. invalid_param = true;
  1160. break;
  1161. }
  1162. params->fn_lora_out = argv[i];
  1163. } else if (arg == "--only-write-lora") {
  1164. params->only_write_lora = true;
  1165. } else if (arg == "--norm-rms-eps") {
  1166. if (++i >= argc) {
  1167. invalid_param = true;
  1168. break;
  1169. }
  1170. params->f_norm_rms_eps = std::stof(argv[i]);
  1171. params->custom_f_norm_rms_eps = true;
  1172. } else if (arg == "--rope-freq-base") {
  1173. if (++i >= argc) {
  1174. invalid_param = true;
  1175. break;
  1176. }
  1177. params->rope_freq_base = std::stof(argv[i]);
  1178. params->custom_rope_freq_base = true;
  1179. } else if (arg == "--rope-freq-scale") {
  1180. if (++i >= argc) {
  1181. invalid_param = true;
  1182. break;
  1183. }
  1184. params->rope_freq_scale = std::stof(argv[i]);
  1185. params->custom_rope_freq_scale = true;
  1186. } else if (arg == "--lora-alpha") {
  1187. if (++i >= argc) {
  1188. invalid_param = true;
  1189. break;
  1190. }
  1191. params->lora_alpha = std::stoi(argv[i]);
  1192. params->custom_lora_alpha = true;
  1193. } else if (arg == "--lora-r") {
  1194. if (++i >= argc) {
  1195. invalid_param = true;
  1196. break;
  1197. }
  1198. params->lora_r = std::stoi(argv[i]);
  1199. } else if (arg == "--rank-att-norm") {
  1200. if (++i >= argc) {
  1201. invalid_param = true;
  1202. break;
  1203. }
  1204. params->n_rank_attention_norm = std::stoi(argv[i]);
  1205. params->custom_n_rank_attention_norm = true;
  1206. } else if (arg == "--rank-ffn-norm") {
  1207. if (++i >= argc) {
  1208. invalid_param = true;
  1209. break;
  1210. }
  1211. params->n_rank_ffn_norm = std::stoi(argv[i]);
  1212. params->custom_n_rank_ffn_norm = true;
  1213. } else if (arg == "--rank-out-norm") {
  1214. if (++i >= argc) {
  1215. invalid_param = true;
  1216. break;
  1217. }
  1218. params->n_rank_norm = std::stoi(argv[i]);
  1219. params->custom_n_rank_norm = true;
  1220. } else if (arg == "--rank-tok-embd") {
  1221. if (++i >= argc) {
  1222. invalid_param = true;
  1223. break;
  1224. }
  1225. params->n_rank_tok_embeddings = std::stoi(argv[i]);
  1226. params->custom_n_rank_tok_embeddings = true;
  1227. } else if (arg == "--rank-out") {
  1228. if (++i >= argc) {
  1229. invalid_param = true;
  1230. break;
  1231. }
  1232. params->n_rank_output = std::stoi(argv[i]);
  1233. params->custom_n_rank_output = true;
  1234. } else if (arg == "--rank-wq") {
  1235. if (++i >= argc) {
  1236. invalid_param = true;
  1237. break;
  1238. }
  1239. params->n_rank_wq = std::stoi(argv[i]);
  1240. params->custom_n_rank_wq = true;
  1241. } else if (arg == "--rank-wk") {
  1242. if (++i >= argc) {
  1243. invalid_param = true;
  1244. break;
  1245. }
  1246. params->n_rank_wk = std::stoi(argv[i]);
  1247. params->custom_n_rank_wk = true;
  1248. } else if (arg == "--rank-wv") {
  1249. if (++i >= argc) {
  1250. invalid_param = true;
  1251. break;
  1252. }
  1253. params->n_rank_wv = std::stoi(argv[i]);
  1254. params->custom_n_rank_wv = true;
  1255. } else if (arg == "--rank-wo") {
  1256. if (++i >= argc) {
  1257. invalid_param = true;
  1258. break;
  1259. }
  1260. params->n_rank_wo = std::stoi(argv[i]);
  1261. params->custom_n_rank_wo = true;
  1262. } else if (arg == "--rank-w1") {
  1263. if (++i >= argc) {
  1264. invalid_param = true;
  1265. break;
  1266. }
  1267. params->n_rank_w1 = std::stoi(argv[i]);
  1268. params->custom_n_rank_w1 = true;
  1269. } else if (arg == "--rank-w2") {
  1270. if (++i >= argc) {
  1271. invalid_param = true;
  1272. break;
  1273. }
  1274. params->n_rank_w2 = std::stoi(argv[i]);
  1275. params->custom_n_rank_w2 = true;
  1276. } else if (arg == "--rank-w3") {
  1277. if (++i >= argc) {
  1278. invalid_param = true;
  1279. break;
  1280. }
  1281. params->n_rank_w3 = std::stoi(argv[i]);
  1282. params->custom_n_rank_w3 = true;
  1283. } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  1284. if (++i >= argc) {
  1285. invalid_param = true;
  1286. break;
  1287. }
  1288. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  1289. params->common.n_gpu_layers = std::stoi(argv[i]);
  1290. #else
  1291. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  1292. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  1293. #endif
  1294. } else {
  1295. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  1296. train_print_usage(argc, argv, &default_params);
  1297. exit(1);
  1298. }
  1299. }
  1300. if (invalid_param) {
  1301. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  1302. train_print_usage(argc, argv, &default_params);
  1303. exit(1);
  1304. }
  1305. finish_processing_train_args(&params->common);
  1306. return true;
  1307. }
  1308. struct save_train_files_data {
  1309. const char * fn_checkpoint_out;
  1310. const char * fn_lora_out;
  1311. const char * pattern_fn_it;
  1312. const char * fn_latest;
  1313. struct my_llama_model * model;
  1314. struct my_llama_lora * lora;
  1315. };
  1316. static void save_train_files(void * vdata, struct train_state * train) {
  1317. struct save_train_files_data * data = (struct save_train_files_data *) vdata;
  1318. int64_t iter = train->opt->iter;
  1319. if (strlen(data->fn_checkpoint_out) > 0) {
  1320. save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train);
  1321. save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train);
  1322. }
  1323. if (strlen(data->fn_lora_out) > 0) {
  1324. save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora);
  1325. save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora);
  1326. }
  1327. }
  1328. static int64_t get_parameter_count(struct my_llama_lora* lora) {
  1329. int64_t nx = 0;
  1330. nx += ggml_nelements(lora->tok_embeddings_a);
  1331. nx += ggml_nelements(lora->tok_embeddings_b);
  1332. nx += ggml_nelements(lora->norm_a);
  1333. nx += ggml_nelements(lora->norm_b);
  1334. nx += ggml_nelements(lora->output_a);
  1335. nx += ggml_nelements(lora->output_b);
  1336. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  1337. auto & layer = lora->layers[i];
  1338. nx += ggml_nelements(layer.attention_norm_a);
  1339. nx += ggml_nelements(layer.attention_norm_b);
  1340. nx += ggml_nelements(layer.wq_a);
  1341. nx += ggml_nelements(layer.wq_b);
  1342. nx += ggml_nelements(layer.wk_a);
  1343. nx += ggml_nelements(layer.wk_b);
  1344. nx += ggml_nelements(layer.wv_a);
  1345. nx += ggml_nelements(layer.wv_b);
  1346. nx += ggml_nelements(layer.wo_a);
  1347. nx += ggml_nelements(layer.wo_b);
  1348. nx += ggml_nelements(layer.ffn_norm_a);
  1349. nx += ggml_nelements(layer.ffn_norm_b);
  1350. nx += ggml_nelements(layer.w1_a);
  1351. nx += ggml_nelements(layer.w1_b);
  1352. nx += ggml_nelements(layer.w2_a);
  1353. nx += ggml_nelements(layer.w2_b);
  1354. nx += ggml_nelements(layer.w3_a);
  1355. nx += ggml_nelements(layer.w3_b);
  1356. }
  1357. return nx;
  1358. }
  1359. int main(int argc, char ** argv) {
  1360. struct train_params params = get_default_train_params();
  1361. if (!train_params_parse(argc, argv, &params)) {
  1362. return 1;
  1363. }
  1364. if (params.common.seed == LLAMA_DEFAULT_SEED) {
  1365. params.common.seed = time(NULL);
  1366. }
  1367. printf("%s: seed: %u\n", __func__, params.common.seed);
  1368. srand(params.common.seed);
  1369. struct llama_model_params llama_mparams = llama_model_default_params();
  1370. llama_mparams.n_gpu_layers = params.common.n_gpu_layers;
  1371. llama_mparams.vocab_only = false;
  1372. printf("%s: model base = '%s'\n", __func__, params.fn_model_base);
  1373. struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams);
  1374. struct llama_context_params llama_cparams = llama_context_default_params();
  1375. struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams);
  1376. struct my_llama_model model;
  1377. init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx);
  1378. struct my_llama_lora lora;
  1379. struct train_state * train = init_train_state();
  1380. struct ggml_opt_context * opt = train->opt;
  1381. // set params from command line
  1382. if (params.custom_f_norm_rms_eps) {
  1383. model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
  1384. }
  1385. if (params.custom_rope_freq_base) {
  1386. model.hparams.rope_freq_base = params.rope_freq_base;
  1387. }
  1388. if (params.custom_rope_freq_scale) {
  1389. model.hparams.rope_freq_scale = params.rope_freq_scale;
  1390. }
  1391. lora.hparams.lora_r = params.lora_r;
  1392. lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r;
  1393. uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1;
  1394. uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r;
  1395. uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r;
  1396. uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r;
  1397. uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r;
  1398. uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1;
  1399. uint32_t n_rank_w1 = params.custom_n_rank_w1 ? params.n_rank_w1 : params.lora_r;
  1400. uint32_t n_rank_w2 = params.custom_n_rank_w2 ? params.n_rank_w2 : params.lora_r;
  1401. uint32_t n_rank_w3 = params.custom_n_rank_w3 ? params.n_rank_w3 : params.lora_r;
  1402. uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r;
  1403. uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1;
  1404. uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r;
  1405. lora.hparams.n_rank_attention_norm = n_rank_attention_norm;
  1406. lora.hparams.n_rank_wq = n_rank_wq;
  1407. lora.hparams.n_rank_wk = n_rank_wk;
  1408. lora.hparams.n_rank_wv = n_rank_wv;
  1409. lora.hparams.n_rank_wo = n_rank_wo;
  1410. lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm;
  1411. lora.hparams.n_rank_w1 = n_rank_w1;
  1412. lora.hparams.n_rank_w2 = n_rank_w2;
  1413. lora.hparams.n_rank_w3 = n_rank_w3;
  1414. lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings;
  1415. lora.hparams.n_rank_norm = n_rank_norm;
  1416. lora.hparams.n_rank_output = n_rank_output;
  1417. // set opt params from command line
  1418. opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
  1419. opt->params.print_forward_graph = false;
  1420. opt->params.print_backward_graph = false;
  1421. opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
  1422. opt->params.n_threads = params.common.n_threads;
  1423. opt->params.past = params.common.opt_past;
  1424. opt->params.delta = params.common.opt_delta;
  1425. opt->params.max_no_improvement = params.common.opt_max_no_improvement;
  1426. opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
  1427. opt->params.adam.n_iter = params.common.adam_n_iter;
  1428. opt->params.adam.sched = 1.0f;
  1429. opt->params.adam.alpha = params.common.adam_alpha;
  1430. opt->params.adam.decay = params.common.adam_decay;
  1431. opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
  1432. opt->params.adam.beta1 = params.common.adam_beta1;
  1433. opt->params.adam.beta2 = params.common.adam_beta2;
  1434. opt->params.adam.gclip = params.common.adam_gclip;
  1435. opt->params.adam.eps_f = params.common.adam_eps_f;
  1436. ggml_allocr * alloc = NULL;
  1437. printf("%s: init model\n", __func__);
  1438. bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train);
  1439. if (existed) {
  1440. // overwrite last n_ctx with user provided n_ctx
  1441. if (params.common.custom_n_ctx) {
  1442. model.hparams.n_ctx = params.common.n_ctx;
  1443. }
  1444. const bool opt_param_count_changed = (
  1445. (lora.hparams.n_rank_attention_norm != n_rank_attention_norm)
  1446. || (lora.hparams.n_rank_wq != n_rank_wq)
  1447. || (lora.hparams.n_rank_wk != n_rank_wk)
  1448. || (lora.hparams.n_rank_wv != n_rank_wv)
  1449. || (lora.hparams.n_rank_wo != n_rank_wo)
  1450. || (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm)
  1451. || (lora.hparams.n_rank_w1 != n_rank_w1)
  1452. || (lora.hparams.n_rank_w2 != n_rank_w2)
  1453. || (lora.hparams.n_rank_w3 != n_rank_w3)
  1454. || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings)
  1455. || (lora.hparams.n_rank_norm != n_rank_norm)
  1456. || (lora.hparams.n_rank_output != n_rank_output)
  1457. );
  1458. const bool opt_past_changed = opt->params.past != params.common.opt_past;
  1459. if (opt_param_count_changed) {
  1460. print_lora_params(&lora.hparams);
  1461. die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting.");
  1462. // need to discard previous optimizer gradient statistics and opt_init with new shapes
  1463. // TODO
  1464. }
  1465. if (opt_past_changed) {
  1466. die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
  1467. // need to discard previous optimizer past function value statistics and opt_init with new shapes
  1468. // TODO
  1469. }
  1470. } else { // existed == false
  1471. init_lora(&model, &lora);
  1472. randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
  1473. if (!params.only_write_lora) {
  1474. ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora));
  1475. }
  1476. }
  1477. opt->iter = train->train_its;
  1478. print_params(&model.hparams);
  1479. print_lora_params(&lora.hparams);
  1480. printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
  1481. printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
  1482. printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
  1483. printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
  1484. printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f));
  1485. if (params.only_write_lora) {
  1486. save_train_files_data save_data;
  1487. save_data.fn_checkpoint_out = "";
  1488. save_data.fn_lora_out = params.fn_lora_out;
  1489. save_data.pattern_fn_it = params.common.pattern_fn_it;
  1490. save_data.fn_latest = params.common.fn_latest;
  1491. save_data.model = &model;
  1492. save_data.lora = &lora;
  1493. save_train_files(&save_data, train);
  1494. free_train_state(train);
  1495. ggml_free(lora.ctx);
  1496. llama_free(lctx);
  1497. llama_free_model(lmodel);
  1498. return 0;
  1499. }
  1500. printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
  1501. printf("%s: opt iter %d\n", __func__, opt->iter);
  1502. int n_tokens = model.hparams.n_ctx;
  1503. int n_vocab = model.hparams.n_vocab;
  1504. int n_batch = params.common.n_batch;
  1505. std::vector<uint8_t> mem_input_data;
  1506. std::vector<uint8_t> mem_compute_data;
  1507. // context for input tensors without their data
  1508. struct ggml_init_params ctx_input_params = {
  1509. ggml_tensor_overhead() * 2, // mem_size
  1510. NULL, // mem_buffer
  1511. true, // no_alloc
  1512. };
  1513. struct ggml_context * ctx_input = ggml_init(ctx_input_params);
  1514. // the input tensors
  1515. struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
  1516. struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
  1517. // measure required memory for input tensors
  1518. size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
  1519. GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
  1520. tensor_alignment;
  1521. printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
  1522. // allocate input tensors
  1523. mem_input_data.resize(max_input_size);
  1524. alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
  1525. ggml_allocr_alloc(alloc, tokens_input);
  1526. ggml_allocr_alloc(alloc, target_probs);
  1527. ggml_allocr_free(alloc);
  1528. // context for compute tensors without their data
  1529. const size_t estimated_compute_size_wo_data = (
  1530. 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
  1531. (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
  1532. );
  1533. struct ggml_init_params ctx_compute_params = {
  1534. estimated_compute_size_wo_data, // mem_size
  1535. NULL, // mem_buffer
  1536. true, // no_alloc
  1537. };
  1538. struct ggml_context * ctx_compute = NULL;
  1539. struct ggml_tensor * loss = NULL;
  1540. struct ggml_tensor * logits = NULL;
  1541. struct ggml_cgraph * gf = NULL;
  1542. struct ggml_cgraph * gb = NULL;
  1543. struct ggml_cgraph * gb_tmp = NULL;
  1544. // measure required memory for compute tensors
  1545. size_t best_compute_size = SIZE_MAX;
  1546. enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
  1547. // find best evaluation order
  1548. for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
  1549. ctx_compute = ggml_init(ctx_compute_params);
  1550. alloc = ggml_allocr_new_measure(tensor_alignment);
  1551. gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1552. gf->order = (enum ggml_cgraph_eval_order) order;
  1553. gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1554. gb_tmp = params.common.use_checkpointing
  1555. ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
  1556. : NULL;
  1557. loss = llama_build_lora_finetune_graphs(
  1558. &model, &lora, alloc, ctx_compute,
  1559. gf, gb, gb_tmp,
  1560. &logits, tokens_input, target_probs,
  1561. n_tokens, n_batch,
  1562. params.common.use_flash,
  1563. params.common.use_checkpointing
  1564. );
  1565. size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
  1566. if (max_compute_size < best_compute_size) {
  1567. best_compute_size = max_compute_size;
  1568. best_order = gf->order;
  1569. }
  1570. ggml_allocr_free(alloc);
  1571. ggml_free(ctx_compute);
  1572. }
  1573. size_t max_compute_size = best_compute_size;
  1574. printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
  1575. printf("%s: evaluation order = %s\n", __func__,
  1576. (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
  1577. (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
  1578. "invalid");
  1579. // allocate compute tensors
  1580. mem_compute_data.resize(max_compute_size);
  1581. ctx_compute = ggml_init(ctx_compute_params);
  1582. alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
  1583. gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1584. gf->order = best_order;
  1585. gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1586. gb_tmp = params.common.use_checkpointing
  1587. ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
  1588. : NULL;
  1589. loss = llama_build_lora_finetune_graphs(
  1590. &model, &lora, alloc, ctx_compute,
  1591. gf, gb, gb_tmp,
  1592. &logits, tokens_input, target_probs,
  1593. n_tokens, n_batch,
  1594. params.common.use_flash,
  1595. params.common.use_checkpointing
  1596. );
  1597. ggml_allocr_free(alloc);
  1598. // tokenize data
  1599. std::vector<llama_token> train_tokens;
  1600. std::vector<size_t> train_samples_begin;
  1601. std::vector<size_t> train_samples_size;
  1602. printf("%s: tokenize training data\n", __func__);
  1603. tokenize_file(lctx,
  1604. params.common.fn_train_data,
  1605. params.common.sample_start,
  1606. params.common.include_sample_start,
  1607. params.common.overlapping_samples,
  1608. n_tokens,
  1609. train_tokens,
  1610. train_samples_begin,
  1611. train_samples_size);
  1612. GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
  1613. printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
  1614. std::vector<size_t> token_noccurs;
  1615. token_noccurs.resize(model.hparams.n_vocab, 0);
  1616. for (unsigned int i = 0; i < train_tokens.size(); ++i) {
  1617. ++token_noccurs[train_tokens[i]];
  1618. }
  1619. int n_unique_tokens = 0;
  1620. for (unsigned int i = 0; i < token_noccurs.size(); ++i) {
  1621. if (token_noccurs[i] == 0) continue;
  1622. ++n_unique_tokens;
  1623. }
  1624. printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
  1625. size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
  1626. const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
  1627. if (changed_train_data) {
  1628. printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
  1629. }
  1630. if (params.common.force_reshuffle) {
  1631. printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
  1632. }
  1633. if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
  1634. train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
  1635. train->shuffle_sample_count = train_samples_size.size();
  1636. train->shuffle_next_sample = 0;
  1637. train->shuffle_samples_hash = shuffle_samples_hash;
  1638. }
  1639. std::vector<size_t> train_shuffled_samples_offs;
  1640. std::vector<size_t> train_shuffled_samples_begin;
  1641. std::vector<size_t> train_shuffled_samples_size;
  1642. train_shuffled_samples_offs.resize(train_samples_begin.size());
  1643. train_shuffled_samples_begin.resize(train_samples_begin.size());
  1644. train_shuffled_samples_size.resize(train_samples_size.size());
  1645. train->shuffle_rng_state_next = shuffle_samples(
  1646. train->shuffle_rng_state_current,
  1647. train_shuffled_samples_offs.data(),
  1648. train_shuffled_samples_begin.data(),
  1649. train_shuffled_samples_size.data(),
  1650. train_samples_begin.data(),
  1651. train_samples_size.data(),
  1652. train_samples_size.size());
  1653. printf("%s: begin training\n", __func__);
  1654. save_train_files_data save_data;
  1655. save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
  1656. save_data.fn_lora_out = params.fn_lora_out;
  1657. save_data.pattern_fn_it = params.common.pattern_fn_it;
  1658. save_data.fn_latest = params.common.fn_latest;
  1659. save_data.model = &model;
  1660. save_data.lora = &lora;
  1661. struct train_opt_callback_data opt_cb_data;
  1662. opt_cb_data.params = &params.common;
  1663. opt_cb_data.train = train;
  1664. opt_cb_data.save_cb = &save_train_files;
  1665. opt_cb_data.save_data = &save_data;
  1666. opt_cb_data.lctx = lctx;
  1667. opt_cb_data.last_save_iter = opt->iter;
  1668. opt_cb_data.tokens_data = train_tokens.data();
  1669. opt_cb_data.tokens_size = train_tokens.size();
  1670. opt_cb_data.samples_begin = train_samples_begin.data();
  1671. opt_cb_data.samples_size = train_samples_size.data();
  1672. opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
  1673. opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
  1674. opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
  1675. opt_cb_data.samples_count = train_samples_size.size();
  1676. opt_cb_data.tokens_input = tokens_input;
  1677. opt_cb_data.target_probs = target_probs;
  1678. opt_cb_data.first_iter = opt->iter;
  1679. opt_cb_data.first_epoch = train->train_epochs;
  1680. opt_cb_data.iter_at_last_epoch = -1;
  1681. opt_cb_data.last_time = ggml_time_ms();
  1682. opt_cb_data.millis_per_iter = 0.0;
  1683. // measure required memory for work buffer
  1684. size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
  1685. printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
  1686. // context for work buffer
  1687. struct ggml_init_params ctx_work_params = {
  1688. max_work_size, // mem_size
  1689. NULL, // mem_buffer
  1690. false, // no_alloc
  1691. };
  1692. struct ggml_context * ctx_work = ggml_init(ctx_work_params);
  1693. int64_t t0 = ggml_time_ms();
  1694. ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
  1695. ggml_free(ctx_work);
  1696. ggml_free(ctx_compute);
  1697. ggml_free(ctx_input);
  1698. int64_t t1 = ggml_time_ms();
  1699. printf("%s: total training time: ", __func__);
  1700. print_duration((double) (t1 - t0));
  1701. printf("\n");
  1702. int new_iters = opt->iter - opt_cb_data.last_save_iter;
  1703. if (new_iters > 0) {
  1704. train->train_its += new_iters;
  1705. train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
  1706. save_train_files(&save_data, train);
  1707. opt_cb_data.last_save_iter = opt->iter;
  1708. }
  1709. ggml_free(opt->ctx);
  1710. free_train_state(train);
  1711. ggml_free(lora.ctx);
  1712. llama_free(lctx);
  1713. llama_free_model(lmodel);
  1714. return 0;
  1715. }