ggml-backend.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define UNUSED GGML_UNUSED
  11. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  12. // backend buffer
  13. ggml_backend_buffer_t ggml_backend_buffer_init(
  14. struct ggml_backend * backend,
  15. struct ggml_backend_buffer_i iface,
  16. ggml_backend_buffer_context_t context,
  17. size_t size) {
  18. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  19. GGML_ASSERT(iface.get_base != NULL);
  20. (*buffer) = (struct ggml_backend_buffer) {
  21. /* .interface = */ iface,
  22. /* .backend = */ backend,
  23. /* .context = */ context,
  24. /* .size = */ size,
  25. };
  26. return buffer;
  27. }
  28. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  29. if (buffer == NULL) {
  30. return;
  31. }
  32. if (buffer->iface.free_buffer != NULL) {
  33. buffer->iface.free_buffer(buffer);
  34. }
  35. free(buffer);
  36. }
  37. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  38. return ggml_backend_get_alignment(buffer->backend);
  39. }
  40. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  41. return buffer->size;
  42. }
  43. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  44. void * base = buffer->iface.get_base(buffer);
  45. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  46. return base;
  47. }
  48. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  49. // get_alloc_size is optional, defaults to ggml_nbytes
  50. if (buffer->iface.get_alloc_size) {
  51. return buffer->iface.get_alloc_size(buffer, tensor);
  52. }
  53. return ggml_nbytes(tensor);
  54. }
  55. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  56. // init_tensor is optional
  57. if (buffer->iface.init_tensor) {
  58. buffer->iface.init_tensor(buffer, tensor);
  59. }
  60. }
  61. void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  62. // free_tensor is optional
  63. if (buffer->iface.free_tensor) {
  64. buffer->iface.free_tensor(buffer, tensor);
  65. }
  66. }
  67. // backend
  68. ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
  69. return tensor->buffer ? tensor->buffer->backend : NULL;
  70. }
  71. const char * ggml_backend_name(ggml_backend_t backend) {
  72. if (backend == NULL) {
  73. return "NULL";
  74. }
  75. return backend->iface.get_name(backend);
  76. }
  77. void ggml_backend_free(ggml_backend_t backend) {
  78. if (backend == NULL) {
  79. return;
  80. }
  81. backend->iface.free(backend);
  82. }
  83. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  84. return backend->iface.alloc_buffer(backend, size);
  85. }
  86. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  87. return backend->iface.get_alignment(backend);
  88. }
  89. void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  90. ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
  91. }
  92. void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  93. ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
  94. }
  95. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  96. ggml_backend_t backend = ggml_get_backend(tensor);
  97. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  98. GGML_ASSERT(backend != NULL && "tensor backend not set");
  99. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  100. backend->iface.synchronize(backend);
  101. }
  102. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  103. ggml_backend_t backend = ggml_get_backend(tensor);
  104. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  105. GGML_ASSERT(backend != NULL && "tensor backend not set");
  106. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  107. backend->iface.synchronize(backend);
  108. }
  109. void ggml_backend_synchronize(ggml_backend_t backend) {
  110. backend->iface.synchronize(backend);
  111. }
  112. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  113. return backend->iface.graph_plan_create(backend, cgraph);
  114. }
  115. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  116. backend->iface.graph_plan_free(backend, plan);
  117. }
  118. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  119. backend->iface.graph_plan_compute(backend, plan);
  120. }
  121. void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  122. backend->iface.graph_compute(backend, cgraph);
  123. }
  124. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  125. return backend->iface.supports_op(backend, op);
  126. }
  127. // backend copy
  128. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  129. if (a->type != b->type) {
  130. return false;
  131. }
  132. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  133. if (a->ne[i] != b->ne[i]) {
  134. return false;
  135. }
  136. if (a->nb[i] != b->nb[i]) {
  137. return false;
  138. }
  139. }
  140. return true;
  141. }
  142. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  143. //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
  144. //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
  145. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  146. // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
  147. if (src == dst) {
  148. return;
  149. }
  150. // TODO: allow backends to support copy to/from same backend
  151. if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
  152. ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
  153. } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
  154. ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
  155. } else {
  156. // shouldn't be hit when copying from/to CPU
  157. #ifndef NDEBUG
  158. fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
  159. #endif
  160. size_t nbytes = ggml_nbytes(src);
  161. void * data = malloc(nbytes);
  162. ggml_backend_tensor_get(src, data, 0, nbytes);
  163. ggml_backend_tensor_set(dst, data, 0, nbytes);
  164. free(data);
  165. }
  166. }
  167. // backend CPU
  168. struct ggml_backend_cpu_context {
  169. int n_threads;
  170. void * work_data;
  171. size_t work_size;
  172. };
  173. static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  174. return "CPU";
  175. UNUSED(backend);
  176. }
  177. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  178. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  179. free(cpu_ctx->work_data);
  180. free(cpu_ctx);
  181. free(backend);
  182. }
  183. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  184. return (void *)buffer->context;
  185. }
  186. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  187. free(buffer->context);
  188. UNUSED(buffer);
  189. }
  190. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  191. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  192. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  193. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  194. /* .init_tensor = */ NULL, // no initialization required
  195. /* .free_tensor = */ NULL, // no cleanup required
  196. };
  197. // for buffers from ptr, free is not called
  198. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  199. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  200. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  201. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  202. /* .init_tensor = */ NULL,
  203. /* .free_tensor = */ NULL,
  204. };
  205. static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
  206. static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
  207. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  208. void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
  209. GGML_ASSERT(data != NULL && "failed to allocate buffer");
  210. return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
  211. }
  212. static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
  213. return TENSOR_ALIGNMENT;
  214. UNUSED(backend);
  215. }
  216. static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  217. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  218. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  219. memcpy((char *)tensor->data + offset, data, size);
  220. UNUSED(backend);
  221. }
  222. static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  223. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  224. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  225. memcpy(data, (const char *)tensor->data + offset, size);
  226. UNUSED(backend);
  227. }
  228. static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
  229. UNUSED(backend);
  230. }
  231. static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  232. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  233. UNUSED(backend);
  234. }
  235. static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  236. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  237. UNUSED(backend);
  238. }
  239. struct ggml_backend_plan_cpu {
  240. struct ggml_cplan cplan;
  241. struct ggml_cgraph cgraph;
  242. };
  243. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  244. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  245. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  246. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  247. cpu_plan->cgraph = *cgraph;
  248. if (cpu_plan->cplan.work_size > 0) {
  249. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  250. }
  251. return cpu_plan;
  252. }
  253. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  254. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  255. free(cpu_plan->cplan.work_data);
  256. free(cpu_plan);
  257. UNUSED(backend);
  258. }
  259. static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  260. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  261. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  262. UNUSED(backend);
  263. }
  264. static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  265. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  266. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  267. if (cpu_ctx->work_size < cplan.work_size) {
  268. // TODO: may be faster to free and use malloc to avoid the copy
  269. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  270. cpu_ctx->work_size = cplan.work_size;
  271. }
  272. cplan.work_data = cpu_ctx->work_data;
  273. ggml_graph_compute(cgraph, &cplan);
  274. }
  275. static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  276. return true;
  277. UNUSED(backend);
  278. UNUSED(op);
  279. }
  280. static struct ggml_backend_i cpu_backend_i = {
  281. /* .get_name = */ ggml_backend_cpu_name,
  282. /* .free = */ ggml_backend_cpu_free,
  283. /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
  284. /* .get_alignment = */ ggml_backend_cpu_get_alignment,
  285. /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
  286. /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
  287. /* .synchronize = */ ggml_backend_cpu_synchronize,
  288. /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
  289. /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
  290. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  291. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  292. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  293. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  294. /* .supports_op = */ ggml_backend_cpu_supports_op,
  295. };
  296. ggml_backend_t ggml_backend_cpu_init(void) {
  297. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  298. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  299. ctx->work_data = NULL;
  300. ctx->work_size = 0;
  301. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  302. *cpu_backend = (struct ggml_backend) {
  303. /* .interface = */ cpu_backend_i,
  304. /* .context = */ ctx
  305. };
  306. return cpu_backend;
  307. }
  308. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  309. return backend->iface.get_name == ggml_backend_cpu_name;
  310. }
  311. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  312. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  313. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  314. ctx->n_threads = n_threads;
  315. }
  316. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
  317. return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
  318. }
  319. // scheduler
  320. #define GGML_MAX_BACKENDS 4
  321. #define GGML_MAX_SPLITS 256
  322. #define GGML_MAX_SPLIT_INPUTS 16
  323. struct ggml_backend_sched_split {
  324. ggml_tallocr_t tallocr;
  325. int i_start;
  326. int i_end;
  327. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  328. int n_inputs;
  329. struct ggml_cgraph * graph;
  330. };
  331. struct ggml_backend_sched {
  332. int n_backends;
  333. ggml_backend_t backends[GGML_MAX_BACKENDS];
  334. ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
  335. ggml_gallocr_t galloc;
  336. struct ggml_hash_set hash_set;
  337. ggml_tallocr_t * node_talloc; // [hash_set.size]
  338. struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
  339. struct ggml_cgraph * graph;
  340. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  341. int n_splits;
  342. struct ggml_context * ctx;
  343. // align context_buffer to GGML_MEM_ALIGN
  344. #ifdef _MSC_VER
  345. __declspec(align(GGML_MEM_ALIGN))
  346. #else
  347. __attribute__((aligned(GGML_MEM_ALIGN)))
  348. #endif
  349. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
  350. };
  351. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  352. #define node_allocr(node) sched->node_talloc[hash_id(node)]
  353. static bool ggml_is_view_op(enum ggml_op op) {
  354. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  355. }
  356. // returns the priority of the backend, lower is better
  357. static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
  358. for (int i = 0; i < sched->n_backends; i++) {
  359. if (sched->backends[i] == backend) {
  360. return i;
  361. }
  362. }
  363. return INT_MAX;
  364. }
  365. static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  366. for (int i = 0; i < sched->n_backends; i++) {
  367. if (sched->tallocs[i] == allocr) {
  368. return i;
  369. }
  370. }
  371. return INT_MAX;
  372. }
  373. // returns the backend that should be used for the node based on the current locations
  374. char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
  375. static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  376. // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
  377. // ie. kv cache updates
  378. // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
  379. // dst
  380. ggml_backend_t cur_backend = ggml_get_backend(node);
  381. if (cur_backend != NULL) {
  382. sprintf(causes[hash_id(node)], "1.dst");
  383. return cur_backend;
  384. }
  385. // view_src
  386. if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
  387. sprintf(causes[hash_id(node)], "1.vsrc");
  388. return ggml_get_backend(node->view_src);
  389. }
  390. // src
  391. int cur_prio = INT_MAX;
  392. size_t cur_size = 0;
  393. for (int i = 0; i < GGML_MAX_SRC; i++) {
  394. const struct ggml_tensor * src = node->src[i];
  395. if (src == NULL) {
  396. break;
  397. }
  398. ggml_backend_t src_backend = ggml_get_backend(src);
  399. if (src_backend != NULL) {
  400. int src_prio = sched_backend_prio(sched, src_backend);
  401. size_t src_size = ggml_nbytes(src);
  402. if (src_prio < cur_prio && src_size >= cur_size) {
  403. cur_prio = src_prio;
  404. cur_size = src_size;
  405. cur_backend = src_backend;
  406. sprintf(causes[hash_id(node)], "1.src%d", i);
  407. }
  408. }
  409. }
  410. return cur_backend;
  411. }
  412. static char * fmt_size(size_t size) {
  413. static char buffer[128];
  414. if (size >= 1024*1024) {
  415. sprintf(buffer, "%zuM", size/1024/1024);
  416. } else {
  417. sprintf(buffer, "%zuK", size/1024);
  418. }
  419. return buffer;
  420. }
  421. static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  422. int cur_split = 0;
  423. for (int i = 0; i < graph->n_nodes; i++) {
  424. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  425. ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
  426. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
  427. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  428. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  429. }
  430. fprintf(stderr, "\n");
  431. cur_split++;
  432. }
  433. struct ggml_tensor * node = graph->nodes[i];
  434. if (ggml_is_view_op(node->op)) {
  435. continue;
  436. }
  437. ggml_tallocr_t node_allocr = node_allocr(node);
  438. ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
  439. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
  440. for (int j = 0; j < GGML_MAX_SRC; j++) {
  441. struct ggml_tensor * src = node->src[j];
  442. if (src == NULL) {
  443. break;
  444. }
  445. ggml_tallocr_t src_allocr = node_allocr(src);
  446. ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
  447. fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
  448. }
  449. fprintf(stderr, "\n");
  450. }
  451. }
  452. // creates a copy of the tensor with the same memory layout
  453. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  454. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  455. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  456. dup->nb[i] = tensor->nb[i];
  457. }
  458. return dup;
  459. }
  460. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  461. // TODO: merge passes
  462. static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  463. // reset state
  464. size_t hash_size = sched->hash_set.size;
  465. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
  466. memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
  467. memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
  468. sched->n_splits = 0;
  469. struct ggml_init_params params = {
  470. /*.mem_size = */ sizeof(sched->context_buffer),
  471. /*.mem_buffer = */ sched->context_buffer,
  472. /*.no_alloc = */ true
  473. };
  474. if (sched->ctx != NULL) {
  475. ggml_free(sched->ctx);
  476. }
  477. sched->ctx = ggml_init(params);
  478. // pass 1: assign backends to ops with allocated inputs
  479. for (int i = 0; i < graph->n_leafs; i++) {
  480. struct ggml_tensor * leaf = graph->leafs[i];
  481. if (node_allocr(leaf) != NULL) {
  482. // do not overwrite user assignments
  483. continue;
  484. }
  485. ggml_backend_t leaf_backend = ggml_get_backend(leaf);
  486. if (leaf_backend == NULL && leaf->view_src != NULL) {
  487. leaf_backend = ggml_get_backend(leaf->view_src);
  488. }
  489. if (leaf_backend != NULL) {
  490. node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
  491. }
  492. }
  493. for (int i = 0; i < graph->n_nodes; i++) {
  494. struct ggml_tensor * node = graph->nodes[i];
  495. if (node_allocr(node) != NULL) {
  496. // do not overwrite user assignments
  497. continue;
  498. }
  499. ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
  500. if (node_backend != NULL) {
  501. node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
  502. }
  503. }
  504. //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  505. // pass 2: assign backends to ops from current assignments
  506. // TODO:
  507. // - reuse sched_backend_from_cur
  508. for (int i = 0; i < graph->n_nodes; i++) {
  509. struct ggml_tensor * node = graph->nodes[i];
  510. ggml_tallocr_t node_allocr = node_allocr(node);
  511. if (node_allocr == NULL) {
  512. int cur_prio = INT_MAX;
  513. size_t cur_size = 0;
  514. for (int j = 0; j < GGML_MAX_SRC; j++) {
  515. struct ggml_tensor * src = node->src[j];
  516. if (src == NULL) {
  517. break;
  518. }
  519. ggml_tallocr_t src_allocr = node_allocr(src);
  520. if (src_allocr != NULL) {
  521. int src_prio = sched_allocr_prio(sched, src_allocr);
  522. size_t src_size = ggml_nbytes(src);
  523. if (src_prio < cur_prio && src_size >= cur_size) {
  524. cur_prio = src_prio;
  525. cur_size = src_size;
  526. node_allocr = src_allocr;
  527. sprintf(causes[hash_id(node)], "2.src%d", j);
  528. }
  529. }
  530. }
  531. if (node_allocr != NULL) {
  532. node_allocr(node) = node_allocr;
  533. }
  534. }
  535. }
  536. //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  537. // pass 3: assign backends to remaining src from dst (should only be leafs)
  538. for (int i = 0; i < graph->n_nodes; i++) {
  539. struct ggml_tensor * node = graph->nodes[i];
  540. ggml_tallocr_t node_allocr = node_allocr(node);
  541. for (int j = 0; j < GGML_MAX_SRC; j++) {
  542. struct ggml_tensor * src = node->src[j];
  543. if (src == NULL) {
  544. break;
  545. }
  546. ggml_tallocr_t src_allocr = node_allocr(src);
  547. if (src_allocr == NULL) {
  548. node_allocr(src) = node_allocr;
  549. }
  550. }
  551. }
  552. //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  553. // pass 4: split graph, find tensors that need to be copied
  554. // TODO:
  555. // - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
  556. // find first backend
  557. int cur_split = 0;
  558. for (int i = 0; i < graph->n_nodes; i++) {
  559. struct ggml_tensor * node = graph->nodes[i];
  560. if (node->view_src == NULL) {
  561. sched->splits[0].tallocr = node_allocr(node);
  562. break;
  563. }
  564. }
  565. sched->splits[0].i_start = 0;
  566. sched->splits[0].n_inputs = 0;
  567. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  568. ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
  569. size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  570. for (int i = 0; i < graph->n_nodes; i++) {
  571. struct ggml_tensor * node = graph->nodes[i];
  572. if (ggml_is_view_op(node->op)) {
  573. continue;
  574. }
  575. ggml_tallocr_t node_allocr = node_allocr(node);
  576. if (node_allocr != cur_allocr) {
  577. sched->splits[cur_split].i_end = i;
  578. cur_split++;
  579. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  580. sched->splits[cur_split].tallocr = node_allocr;
  581. sched->splits[cur_split].i_start = i;
  582. sched->splits[cur_split].n_inputs = 0;
  583. memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
  584. cur_allocr = node_allocr;
  585. cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  586. }
  587. // find inputs that are not on the same backend
  588. for (int j = 0; j < GGML_MAX_SRC; j++) {
  589. struct ggml_tensor * src = node->src[j];
  590. if (src == NULL) {
  591. break;
  592. }
  593. ggml_tallocr_t src_allocr = node_allocr(src);
  594. if (src_allocr != node_allocr) {
  595. int n_inputs = sched->splits[cur_split].n_inputs++;
  596. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  597. sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
  598. // create copies
  599. size_t id = hash_id(src);
  600. if (sched->node_copies[id][cur_backend_id] == NULL) {
  601. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  602. sched->node_copies[id][cur_backend_id] = tensor_copy;
  603. node_allocr(tensor_copy) = cur_allocr;
  604. ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
  605. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  606. }
  607. node->src[j] = sched->node_copies[id][cur_backend_id];
  608. }
  609. }
  610. }
  611. sched->splits[cur_split].i_end = graph->n_nodes;
  612. sched->n_splits = cur_split + 1;
  613. //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
  614. #if 1
  615. // sanity check: all sources should have the same backend as the node
  616. for (int i = 0; i < graph->n_nodes; i++) {
  617. struct ggml_tensor * node = graph->nodes[i];
  618. ggml_tallocr_t node_allocr = node_allocr(node);
  619. if (node_allocr == NULL) {
  620. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  621. }
  622. for (int j = 0; j < GGML_MAX_SRC; j++) {
  623. struct ggml_tensor * src = node->src[j];
  624. if (src == NULL) {
  625. break;
  626. }
  627. ggml_tallocr_t src_allocr = node_allocr(src);
  628. if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
  629. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  630. node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
  631. j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
  632. }
  633. }
  634. }
  635. #endif
  636. // create copies of the graph for each split
  637. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  638. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  639. for (int i = 0; i < sched->n_splits; i++) {
  640. struct ggml_backend_sched_split * split = &sched->splits[i];
  641. split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
  642. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  643. for (int j = 0; j < split->n_inputs; j++) {
  644. struct ggml_tensor * input = split->inputs[j];
  645. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
  646. input_cpy->src[0] = input;
  647. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  648. }
  649. for (int j = split->i_start; j < split->i_end; j++) {
  650. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  651. }
  652. }
  653. sched->graph = graph_copy;
  654. }
  655. static void sched_alloc_splits(ggml_backend_sched_t sched) {
  656. ggml_gallocr_alloc_graph_n(
  657. sched->galloc,
  658. sched->graph,
  659. sched->hash_set,
  660. sched->node_talloc);
  661. }
  662. static void sched_compute_splits(ggml_backend_sched_t sched) {
  663. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  664. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  665. struct ggml_backend_sched_split * splits = sched->splits;
  666. for (int i = 0; i < sched->n_splits; i++) {
  667. struct ggml_backend_sched_split * split = &splits[i];
  668. ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
  669. int split_backend_id = sched_backend_prio(sched, split_backend);
  670. // copy the input tensors to the split backend
  671. uint64_t copy_start_us = ggml_time_us();
  672. for (int j = 0; j < split->n_inputs; j++) {
  673. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
  674. if (split->inputs[j]->buffer == NULL) {
  675. if (split->inputs[j]->view_src == NULL) {
  676. fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
  677. exit(1);
  678. }
  679. struct ggml_tensor * view = split->inputs[j];
  680. view->backend = view->view_src->backend;
  681. view->buffer = view->view_src->buffer;
  682. view->data = (char *)view->view_src->data + view->view_offs;
  683. ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
  684. }
  685. if (input_cpy->buffer == NULL) {
  686. fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
  687. exit(1);
  688. }
  689. GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
  690. GGML_ASSERT(input_cpy->buffer->backend == split_backend);
  691. ggml_backend_tensor_copy(split->inputs[j], input_cpy);
  692. }
  693. // ggml_backend_synchronize(split_backend);
  694. int64_t copy_end_us = ggml_time_us();
  695. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  696. #if 0
  697. char split_filename[GGML_MAX_NAME];
  698. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  699. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  700. #endif
  701. uint64_t compute_start_us = ggml_time_us();
  702. ggml_backend_graph_compute(split_backend, split->graph);
  703. // ggml_backend_synchronize(split_backend);
  704. uint64_t compute_end_us = ggml_time_us();
  705. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  706. }
  707. #if 0
  708. // per-backend timings
  709. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  710. for (int i = 0; i < sched->n_backends; i++) {
  711. if (copy_us[i] > 0 || compute_us[i] > 0) {
  712. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  713. }
  714. }
  715. #endif
  716. }
  717. static void sched_reset(ggml_backend_sched_t sched) {
  718. for (int i = 0; i < sched->n_backends; i++) {
  719. ggml_tallocr_reset(sched->tallocs[i]);
  720. }
  721. }
  722. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
  723. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  724. struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
  725. memset(sched, 0, sizeof(struct ggml_backend_sched));
  726. fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
  727. sched->n_backends = n_backends;
  728. for (int i = 0; i < n_backends; i++) {
  729. sched->backends[i] = backends[i];
  730. }
  731. sched->galloc = ggml_gallocr_new();
  732. // init measure allocs for each backend
  733. for (int i = 0; i < n_backends; i++) {
  734. sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
  735. }
  736. return sched;
  737. }
  738. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  739. if (sched == NULL) {
  740. return;
  741. }
  742. for (int i = 0; i < sched->n_backends; i++) {
  743. ggml_tallocr_free(sched->tallocs[i]);
  744. }
  745. ggml_gallocr_free(sched->galloc);
  746. free(sched->hash_set.keys);
  747. free(sched->node_talloc);
  748. free(sched->node_copies);
  749. free(sched);
  750. }
  751. void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  752. // initialize hash tables
  753. size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
  754. sched->hash_set.size = hash_size;
  755. sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
  756. sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
  757. sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
  758. sched_split_graph(sched, measure_graph);
  759. sched_alloc_splits(sched);
  760. // allocate buffers and reset allocators
  761. for (int i = 0; i < sched->n_backends; i++) {
  762. size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
  763. ggml_tallocr_free(sched->tallocs[i]);
  764. sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
  765. }
  766. sched_reset(sched);
  767. }
  768. void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  769. GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  770. sched_split_graph(sched, graph);
  771. sched_alloc_splits(sched);
  772. sched_compute_splits(sched);
  773. sched_reset(sched);
  774. }
  775. ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
  776. int backend_index = sched_backend_prio(sched, backend);
  777. return sched->tallocs[backend_index];
  778. }
  779. ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
  780. int backend_index = sched_backend_prio(sched, backend);
  781. return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
  782. }
  783. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  784. int backend_index = sched_backend_prio(sched, backend);
  785. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  786. node_allocr(node) = sched->tallocs[backend_index];
  787. }