llama.cpp 559 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUBLAS
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #include <io.h>
  50. #endif
  51. #include <algorithm>
  52. #include <array>
  53. #include <cassert>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <cwctype>
  65. #include <forward_list>
  66. #include <fstream>
  67. #include <functional>
  68. #include <initializer_list>
  69. #include <locale>
  70. #include <map>
  71. #include <memory>
  72. #include <mutex>
  73. #include <numeric>
  74. #include <queue>
  75. #include <random>
  76. #include <regex>
  77. #include <set>
  78. #include <sstream>
  79. #include <thread>
  80. #include <type_traits>
  81. #include <unordered_map>
  82. #if defined(_MSC_VER)
  83. #pragma warning(disable: 4244 4267) // possible loss of data
  84. #endif
  85. #ifdef __GNUC__
  86. #ifdef __MINGW32__
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  90. #endif
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...)
  93. #endif
  94. #define LLAMA_MAX_NODES 8192
  95. #define LLAMA_MAX_EXPERTS 8
  96. //
  97. // logging
  98. //
  99. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  100. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  101. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  102. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  103. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  104. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  105. //
  106. // helpers
  107. //
  108. static size_t utf8_len(char src) {
  109. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  110. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  111. return lookup[highbits];
  112. }
  113. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  114. std::string result;
  115. for (size_t pos = 0; ; pos += search.length()) {
  116. auto new_pos = s.find(search, pos);
  117. if (new_pos == std::string::npos) {
  118. result += s.substr(pos, s.size() - pos);
  119. break;
  120. }
  121. result += s.substr(pos, new_pos - pos) + replace;
  122. pos = new_pos;
  123. }
  124. s = std::move(result);
  125. }
  126. static bool is_float_close(float a, float b, float abs_tol) {
  127. // Check for non-negative tolerance
  128. if (abs_tol < 0.0) {
  129. throw std::invalid_argument("Tolerance must be non-negative");
  130. }
  131. // Exact equality check
  132. if (a == b) {
  133. return true;
  134. }
  135. // Check for infinities
  136. if (std::isinf(a) || std::isinf(b)) {
  137. return false;
  138. }
  139. // Regular comparison using the provided absolute tolerance
  140. return std::fabs(b - a) <= abs_tol;
  141. }
  142. static void zeros(std::ofstream & file, size_t n) {
  143. char zero = 0;
  144. for (size_t i = 0; i < n; ++i) {
  145. file.write(&zero, 1);
  146. }
  147. }
  148. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  149. static std::string format(const char * fmt, ...) {
  150. va_list ap;
  151. va_list ap2;
  152. va_start(ap, fmt);
  153. va_copy(ap2, ap);
  154. int size = vsnprintf(NULL, 0, fmt, ap);
  155. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  156. std::vector<char> buf(size + 1);
  157. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  158. GGML_ASSERT(size2 == size);
  159. va_end(ap2);
  160. va_end(ap);
  161. return std::string(buf.data(), size);
  162. }
  163. //
  164. // gguf constants (sync with gguf.py)
  165. //
  166. enum llm_arch {
  167. LLM_ARCH_LLAMA,
  168. LLM_ARCH_FALCON,
  169. LLM_ARCH_BAICHUAN,
  170. LLM_ARCH_GPT2,
  171. LLM_ARCH_GPTJ,
  172. LLM_ARCH_GPTNEOX,
  173. LLM_ARCH_MPT,
  174. LLM_ARCH_STARCODER,
  175. LLM_ARCH_PERSIMMON,
  176. LLM_ARCH_REFACT,
  177. LLM_ARCH_BERT,
  178. LLM_ARCH_NOMIC_BERT,
  179. LLM_ARCH_BLOOM,
  180. LLM_ARCH_STABLELM,
  181. LLM_ARCH_QWEN,
  182. LLM_ARCH_QWEN2,
  183. LLM_ARCH_PHI2,
  184. LLM_ARCH_PLAMO,
  185. LLM_ARCH_CODESHELL,
  186. LLM_ARCH_ORION,
  187. LLM_ARCH_INTERNLM2,
  188. LLM_ARCH_MINICPM,
  189. LLM_ARCH_GEMMA,
  190. LLM_ARCH_STARCODER2,
  191. LLM_ARCH_MAMBA,
  192. LLM_ARCH_UNKNOWN,
  193. };
  194. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  195. { LLM_ARCH_LLAMA, "llama" },
  196. { LLM_ARCH_FALCON, "falcon" },
  197. { LLM_ARCH_GPT2, "gpt2" },
  198. { LLM_ARCH_GPTJ, "gptj" },
  199. { LLM_ARCH_GPTNEOX, "gptneox" },
  200. { LLM_ARCH_MPT, "mpt" },
  201. { LLM_ARCH_BAICHUAN, "baichuan" },
  202. { LLM_ARCH_STARCODER, "starcoder" },
  203. { LLM_ARCH_PERSIMMON, "persimmon" },
  204. { LLM_ARCH_REFACT, "refact" },
  205. { LLM_ARCH_BERT, "bert" },
  206. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  207. { LLM_ARCH_BLOOM, "bloom" },
  208. { LLM_ARCH_STABLELM, "stablelm" },
  209. { LLM_ARCH_QWEN, "qwen" },
  210. { LLM_ARCH_QWEN2, "qwen2" },
  211. { LLM_ARCH_PHI2, "phi2" },
  212. { LLM_ARCH_PLAMO, "plamo" },
  213. { LLM_ARCH_CODESHELL, "codeshell" },
  214. { LLM_ARCH_ORION, "orion" },
  215. { LLM_ARCH_INTERNLM2, "internlm2" },
  216. { LLM_ARCH_MINICPM, "minicpm" },
  217. { LLM_ARCH_GEMMA, "gemma" },
  218. { LLM_ARCH_STARCODER2, "starcoder2" },
  219. { LLM_ARCH_MAMBA, "mamba" },
  220. { LLM_ARCH_UNKNOWN, "(unknown)" },
  221. };
  222. enum llm_kv {
  223. LLM_KV_GENERAL_ARCHITECTURE,
  224. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  225. LLM_KV_GENERAL_ALIGNMENT,
  226. LLM_KV_GENERAL_NAME,
  227. LLM_KV_GENERAL_AUTHOR,
  228. LLM_KV_GENERAL_URL,
  229. LLM_KV_GENERAL_DESCRIPTION,
  230. LLM_KV_GENERAL_LICENSE,
  231. LLM_KV_GENERAL_SOURCE_URL,
  232. LLM_KV_GENERAL_SOURCE_HF_REPO,
  233. LLM_KV_CONTEXT_LENGTH,
  234. LLM_KV_EMBEDDING_LENGTH,
  235. LLM_KV_BLOCK_COUNT,
  236. LLM_KV_FEED_FORWARD_LENGTH,
  237. LLM_KV_USE_PARALLEL_RESIDUAL,
  238. LLM_KV_TENSOR_DATA_LAYOUT,
  239. LLM_KV_EXPERT_COUNT,
  240. LLM_KV_EXPERT_USED_COUNT,
  241. LLM_KV_POOLING_TYPE,
  242. LLM_KV_ATTENTION_HEAD_COUNT,
  243. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  244. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  245. LLM_KV_ATTENTION_CLAMP_KQV,
  246. LLM_KV_ATTENTION_KEY_LENGTH,
  247. LLM_KV_ATTENTION_VALUE_LENGTH,
  248. LLM_KV_ATTENTION_LAYERNORM_EPS,
  249. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  250. LLM_KV_ATTENTION_CAUSAL,
  251. LLM_KV_ROPE_DIMENSION_COUNT,
  252. LLM_KV_ROPE_FREQ_BASE,
  253. LLM_KV_ROPE_SCALE_LINEAR,
  254. LLM_KV_ROPE_SCALING_TYPE,
  255. LLM_KV_ROPE_SCALING_FACTOR,
  256. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  257. LLM_KV_ROPE_SCALING_FINETUNED,
  258. LLM_KV_SSM_INNER_SIZE,
  259. LLM_KV_SSM_CONV_KERNEL,
  260. LLM_KV_SSM_STATE_SIZE,
  261. LLM_KV_SSM_TIME_STEP_RANK,
  262. LLM_KV_TOKENIZER_MODEL,
  263. LLM_KV_TOKENIZER_LIST,
  264. LLM_KV_TOKENIZER_TOKEN_TYPE,
  265. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  266. LLM_KV_TOKENIZER_SCORES,
  267. LLM_KV_TOKENIZER_MERGES,
  268. LLM_KV_TOKENIZER_BOS_ID,
  269. LLM_KV_TOKENIZER_EOS_ID,
  270. LLM_KV_TOKENIZER_UNK_ID,
  271. LLM_KV_TOKENIZER_SEP_ID,
  272. LLM_KV_TOKENIZER_PAD_ID,
  273. LLM_KV_TOKENIZER_ADD_BOS,
  274. LLM_KV_TOKENIZER_ADD_EOS,
  275. LLM_KV_TOKENIZER_ADD_PREFIX,
  276. LLM_KV_TOKENIZER_HF_JSON,
  277. LLM_KV_TOKENIZER_RWKV,
  278. };
  279. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  280. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  281. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  282. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  283. { LLM_KV_GENERAL_NAME, "general.name" },
  284. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  285. { LLM_KV_GENERAL_URL, "general.url" },
  286. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  287. { LLM_KV_GENERAL_LICENSE, "general.license" },
  288. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  289. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  290. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  291. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  292. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  293. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  294. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  295. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  296. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  297. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  298. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  299. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  300. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  301. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  302. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  303. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  304. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  305. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  306. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  307. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  308. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  309. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  310. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  311. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  312. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  313. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  314. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  315. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  316. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  317. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  318. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  319. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  320. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  321. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  322. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  323. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  324. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  325. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  326. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  327. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  328. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  329. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  330. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  331. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  332. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  333. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  334. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  335. };
  336. struct LLM_KV {
  337. LLM_KV(llm_arch arch) : arch(arch) {}
  338. llm_arch arch;
  339. std::string operator()(llm_kv kv) const {
  340. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  341. }
  342. };
  343. enum llm_tensor {
  344. LLM_TENSOR_TOKEN_EMBD,
  345. LLM_TENSOR_TOKEN_EMBD_NORM,
  346. LLM_TENSOR_TOKEN_TYPES,
  347. LLM_TENSOR_POS_EMBD,
  348. LLM_TENSOR_OUTPUT,
  349. LLM_TENSOR_OUTPUT_NORM,
  350. LLM_TENSOR_ROPE_FREQS,
  351. LLM_TENSOR_ATTN_Q,
  352. LLM_TENSOR_ATTN_K,
  353. LLM_TENSOR_ATTN_V,
  354. LLM_TENSOR_ATTN_QKV,
  355. LLM_TENSOR_ATTN_OUT,
  356. LLM_TENSOR_ATTN_NORM,
  357. LLM_TENSOR_ATTN_NORM_2,
  358. LLM_TENSOR_ATTN_OUT_NORM,
  359. LLM_TENSOR_ATTN_ROT_EMBD,
  360. LLM_TENSOR_FFN_GATE_INP,
  361. LLM_TENSOR_FFN_NORM,
  362. LLM_TENSOR_FFN_GATE,
  363. LLM_TENSOR_FFN_DOWN,
  364. LLM_TENSOR_FFN_UP,
  365. LLM_TENSOR_FFN_ACT,
  366. LLM_TENSOR_FFN_DOWN_EXP,
  367. LLM_TENSOR_FFN_GATE_EXP,
  368. LLM_TENSOR_FFN_UP_EXP,
  369. LLM_TENSOR_ATTN_Q_NORM,
  370. LLM_TENSOR_ATTN_K_NORM,
  371. LLM_TENSOR_LAYER_OUT_NORM,
  372. LLM_TENSOR_SSM_IN,
  373. LLM_TENSOR_SSM_CONV1D,
  374. LLM_TENSOR_SSM_X,
  375. LLM_TENSOR_SSM_DT,
  376. LLM_TENSOR_SSM_A,
  377. LLM_TENSOR_SSM_D,
  378. LLM_TENSOR_SSM_OUT,
  379. };
  380. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  381. {
  382. LLM_ARCH_LLAMA,
  383. {
  384. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  385. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  386. { LLM_TENSOR_OUTPUT, "output" },
  387. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  388. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  389. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  390. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  391. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  392. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  393. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  394. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  395. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  396. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  397. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  398. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  399. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  400. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  401. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  402. },
  403. },
  404. {
  405. LLM_ARCH_BAICHUAN,
  406. {
  407. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  408. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  409. { LLM_TENSOR_OUTPUT, "output" },
  410. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  411. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  412. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  413. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  414. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  415. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  416. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  417. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  418. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  419. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  420. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  421. },
  422. },
  423. {
  424. LLM_ARCH_FALCON,
  425. {
  426. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  427. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  428. { LLM_TENSOR_OUTPUT, "output" },
  429. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  430. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  431. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  432. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  433. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  434. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  435. },
  436. },
  437. {
  438. LLM_ARCH_GPT2,
  439. {
  440. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  441. { LLM_TENSOR_POS_EMBD, "position_embd" },
  442. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  443. { LLM_TENSOR_OUTPUT, "output" },
  444. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  445. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  446. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  447. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  448. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  449. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  450. },
  451. },
  452. {
  453. LLM_ARCH_GPTJ,
  454. {
  455. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  456. },
  457. },
  458. {
  459. LLM_ARCH_GPTNEOX,
  460. {
  461. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  462. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  463. { LLM_TENSOR_OUTPUT, "output" },
  464. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  465. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  466. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  467. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  468. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  469. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  470. },
  471. },
  472. {
  473. LLM_ARCH_PERSIMMON,
  474. {
  475. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  476. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  477. { LLM_TENSOR_OUTPUT, "output"},
  478. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  479. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  480. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  481. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  482. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  483. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  484. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  485. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  486. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  487. },
  488. },
  489. {
  490. LLM_ARCH_MPT,
  491. {
  492. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  493. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  494. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  495. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  496. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  497. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  498. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  499. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  500. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  501. },
  502. },
  503. {
  504. LLM_ARCH_STARCODER,
  505. {
  506. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  507. { LLM_TENSOR_POS_EMBD, "position_embd" },
  508. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  509. { LLM_TENSOR_OUTPUT, "output" },
  510. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  511. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  512. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  513. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  514. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  515. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  516. },
  517. },
  518. {
  519. LLM_ARCH_REFACT,
  520. {
  521. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  522. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  523. { LLM_TENSOR_OUTPUT, "output" },
  524. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  525. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  526. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  527. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  528. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  529. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  530. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  531. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  532. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  533. },
  534. },
  535. {
  536. LLM_ARCH_BERT,
  537. {
  538. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  539. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  540. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  541. { LLM_TENSOR_POS_EMBD, "position_embd" },
  542. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  543. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  544. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  545. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  546. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  547. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  548. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  549. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  550. },
  551. },
  552. {
  553. LLM_ARCH_NOMIC_BERT,
  554. {
  555. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  556. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  557. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  558. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  559. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  560. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  561. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  562. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  563. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  564. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  565. },
  566. },
  567. {
  568. LLM_ARCH_BLOOM,
  569. {
  570. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  571. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  572. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  573. { LLM_TENSOR_OUTPUT, "output" },
  574. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  575. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  576. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  577. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  578. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  579. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  580. },
  581. },
  582. {
  583. LLM_ARCH_STABLELM,
  584. {
  585. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  586. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  587. { LLM_TENSOR_OUTPUT, "output" },
  588. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  589. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  590. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  591. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  592. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  593. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  594. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  595. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  596. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  597. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  598. },
  599. },
  600. {
  601. LLM_ARCH_QWEN,
  602. {
  603. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  604. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  605. { LLM_TENSOR_OUTPUT, "output" },
  606. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  607. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  608. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  609. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  610. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  611. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  612. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  613. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  614. },
  615. },
  616. {
  617. LLM_ARCH_QWEN2,
  618. {
  619. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  620. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  621. { LLM_TENSOR_OUTPUT, "output" },
  622. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  623. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  624. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  625. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  626. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  627. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  628. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  629. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  630. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  631. },
  632. },
  633. {
  634. LLM_ARCH_PHI2,
  635. {
  636. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  637. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  638. { LLM_TENSOR_OUTPUT, "output" },
  639. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  640. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  641. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  642. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  643. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  644. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  645. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  646. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  647. },
  648. },
  649. {
  650. LLM_ARCH_PLAMO,
  651. {
  652. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  653. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  654. { LLM_TENSOR_OUTPUT, "output" },
  655. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  656. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  657. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  658. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  659. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  660. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  661. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  662. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  663. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  664. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  665. },
  666. },
  667. {
  668. LLM_ARCH_CODESHELL,
  669. {
  670. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  671. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  672. { LLM_TENSOR_OUTPUT, "output" },
  673. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  674. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  675. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  676. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  677. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  678. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  679. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  680. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  681. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  682. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  683. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  684. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  685. },
  686. },
  687. {
  688. LLM_ARCH_ORION,
  689. {
  690. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  691. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  692. { LLM_TENSOR_OUTPUT, "output" },
  693. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  694. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  695. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  696. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  697. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  698. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  699. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  700. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  701. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  702. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  703. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  704. },
  705. },
  706. {
  707. LLM_ARCH_INTERNLM2,
  708. {
  709. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  710. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  711. { LLM_TENSOR_OUTPUT, "output" },
  712. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  713. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  714. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  715. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  716. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  717. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  718. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  719. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  720. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  721. },
  722. },
  723. {
  724. LLM_ARCH_MINICPM,
  725. {
  726. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  727. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  728. { LLM_TENSOR_OUTPUT, "output" },
  729. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  730. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  731. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  732. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  733. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  734. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  735. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  736. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  737. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  738. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  739. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  740. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  741. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  742. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  743. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  744. },
  745. },
  746. {
  747. LLM_ARCH_GEMMA,
  748. {
  749. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  750. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  751. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  752. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  753. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  754. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  755. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  756. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  757. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  758. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  759. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  760. },
  761. },
  762. {
  763. LLM_ARCH_STARCODER2,
  764. {
  765. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  766. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  767. { LLM_TENSOR_OUTPUT, "output" },
  768. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  769. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  770. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  771. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  772. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  773. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  774. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  775. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  776. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  777. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  778. },
  779. },
  780. {
  781. LLM_ARCH_MAMBA,
  782. {
  783. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  784. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  785. { LLM_TENSOR_OUTPUT, "output" },
  786. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  787. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  788. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  789. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  790. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  791. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  792. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  793. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  794. },
  795. },
  796. {
  797. LLM_ARCH_UNKNOWN,
  798. {
  799. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  800. },
  801. },
  802. };
  803. static llm_arch llm_arch_from_string(const std::string & name) {
  804. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  805. if (kv.second == name) {
  806. return kv.first;
  807. }
  808. }
  809. return LLM_ARCH_UNKNOWN;
  810. }
  811. // helper to handle gguf constants
  812. // usage:
  813. //
  814. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  815. //
  816. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  817. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  818. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  819. //
  820. struct LLM_TN {
  821. LLM_TN(llm_arch arch) : arch(arch) {}
  822. llm_arch arch;
  823. std::string operator()(llm_tensor tensor) const {
  824. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  825. return "__missing__";
  826. }
  827. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  828. }
  829. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  830. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  831. return "__missing__";
  832. }
  833. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  834. }
  835. std::string operator()(llm_tensor tensor, int bid) const {
  836. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  837. return "__missing__";
  838. }
  839. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  840. }
  841. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  842. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  843. return "__missing__";
  844. }
  845. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  846. }
  847. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  848. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  849. return "__missing__";
  850. }
  851. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  852. }
  853. };
  854. //
  855. // gguf helpers
  856. //
  857. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  858. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  859. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  860. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  861. };
  862. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  863. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  864. if (kv.second == name) {
  865. return (llama_rope_scaling_type) kv.first;
  866. }
  867. }
  868. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  869. }
  870. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  871. switch (type) {
  872. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  873. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  874. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  875. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  876. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  877. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  878. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  879. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  880. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  881. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  882. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  883. default: return format("unknown type %d", type);
  884. }
  885. }
  886. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  887. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  888. switch (type) {
  889. case GGUF_TYPE_STRING:
  890. return gguf_get_val_str(ctx_gguf, i);
  891. case GGUF_TYPE_ARRAY:
  892. {
  893. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  894. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  895. const void * data = gguf_get_arr_data(ctx_gguf, i);
  896. std::stringstream ss;
  897. ss << "[";
  898. for (int j = 0; j < arr_n; j++) {
  899. if (arr_type == GGUF_TYPE_STRING) {
  900. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  901. // escape quotes
  902. replace_all(val, "\\", "\\\\");
  903. replace_all(val, "\"", "\\\"");
  904. ss << '"' << val << '"';
  905. } else if (arr_type == GGUF_TYPE_ARRAY) {
  906. ss << "???";
  907. } else {
  908. ss << gguf_data_to_str(arr_type, data, j);
  909. }
  910. if (j < arr_n - 1) {
  911. ss << ", ";
  912. }
  913. }
  914. ss << "]";
  915. return ss.str();
  916. }
  917. default:
  918. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  919. }
  920. }
  921. //
  922. // ggml helpers
  923. //
  924. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  925. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  926. if (plan.work_size > 0) {
  927. buf.resize(plan.work_size);
  928. plan.work_data = buf.data();
  929. }
  930. ggml_graph_compute(graph, &plan);
  931. }
  932. //
  933. // llama helpers
  934. //
  935. #if defined(_WIN32)
  936. static std::string llama_format_win_err(DWORD err) {
  937. LPSTR buf;
  938. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  939. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  940. if (!size) {
  941. return "FormatMessageA failed";
  942. }
  943. std::string ret(buf, size);
  944. LocalFree(buf);
  945. return ret;
  946. }
  947. #endif
  948. template <typename T>
  949. struct no_init {
  950. T value;
  951. no_init() { /* do nothing */ }
  952. };
  953. struct llama_file {
  954. // use FILE * so we don't have to re-open the file to mmap
  955. FILE * fp;
  956. size_t size;
  957. llama_file(const char * fname, const char * mode) {
  958. fp = std::fopen(fname, mode);
  959. if (fp == NULL) {
  960. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  961. }
  962. seek(0, SEEK_END);
  963. size = tell();
  964. seek(0, SEEK_SET);
  965. }
  966. size_t tell() const {
  967. #ifdef _WIN32
  968. __int64 ret = _ftelli64(fp);
  969. #else
  970. long ret = std::ftell(fp);
  971. #endif
  972. GGML_ASSERT(ret != -1); // this really shouldn't fail
  973. return (size_t) ret;
  974. }
  975. void seek(size_t offset, int whence) const {
  976. #ifdef _WIN32
  977. int ret = _fseeki64(fp, (__int64) offset, whence);
  978. #else
  979. int ret = std::fseek(fp, (long) offset, whence);
  980. #endif
  981. GGML_ASSERT(ret == 0); // same
  982. }
  983. void read_raw(void * ptr, size_t len) const {
  984. if (len == 0) {
  985. return;
  986. }
  987. errno = 0;
  988. std::size_t ret = std::fread(ptr, len, 1, fp);
  989. if (ferror(fp)) {
  990. throw std::runtime_error(format("read error: %s", strerror(errno)));
  991. }
  992. if (ret != 1) {
  993. throw std::runtime_error("unexpectedly reached end of file");
  994. }
  995. }
  996. uint32_t read_u32() const {
  997. uint32_t ret;
  998. read_raw(&ret, sizeof(ret));
  999. return ret;
  1000. }
  1001. void write_raw(const void * ptr, size_t len) const {
  1002. if (len == 0) {
  1003. return;
  1004. }
  1005. errno = 0;
  1006. size_t ret = std::fwrite(ptr, len, 1, fp);
  1007. if (ret != 1) {
  1008. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1009. }
  1010. }
  1011. void write_u32(std::uint32_t val) const {
  1012. write_raw(&val, sizeof(val));
  1013. }
  1014. ~llama_file() {
  1015. if (fp) {
  1016. std::fclose(fp);
  1017. }
  1018. }
  1019. };
  1020. struct llama_mmap {
  1021. void * addr;
  1022. size_t size;
  1023. llama_mmap(const llama_mmap &) = delete;
  1024. #ifdef _POSIX_MAPPED_FILES
  1025. static constexpr bool SUPPORTED = true;
  1026. // list of mapped fragments (first_offset, last_offset)
  1027. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1028. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1029. size = file->size;
  1030. int fd = fileno(file->fp);
  1031. int flags = MAP_SHARED;
  1032. // prefetch/readahead impairs performance on NUMA systems
  1033. if (numa) { prefetch = 0; }
  1034. #ifdef __linux__
  1035. // advise the kernel to read the file sequentially (increases readahead)
  1036. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1037. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1038. strerror(errno));
  1039. }
  1040. if (prefetch) { flags |= MAP_POPULATE; }
  1041. #endif
  1042. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1043. if (addr == MAP_FAILED) { // NOLINT
  1044. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1045. }
  1046. if (prefetch > 0) {
  1047. // advise the kernel to preload the mapped memory
  1048. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1049. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1050. strerror(errno));
  1051. }
  1052. }
  1053. if (numa) {
  1054. // advise the kernel not to use readahead
  1055. // (because the next page might not belong on the same node)
  1056. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1057. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1058. strerror(errno));
  1059. }
  1060. }
  1061. // initialize list of mapped_fragments
  1062. mapped_fragments.emplace_back(0, file->size);
  1063. }
  1064. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1065. // align first to the next page
  1066. size_t offset_in_page = *first & (page_size - 1);
  1067. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1068. *first += offset_to_page;
  1069. // align last to the previous page
  1070. *last = *last & ~(page_size - 1);
  1071. if (*last <= *first) {
  1072. *last = *first;
  1073. }
  1074. }
  1075. // partially unmap the file in the range [first, last)
  1076. void unmap_fragment(size_t first, size_t last) {
  1077. // note: this function must not be called multiple times with overlapping ranges
  1078. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1079. int page_size = sysconf(_SC_PAGESIZE);
  1080. align_range(&first, &last, page_size);
  1081. size_t len = last - first;
  1082. if (len == 0) {
  1083. return;
  1084. }
  1085. GGML_ASSERT(first % page_size == 0);
  1086. GGML_ASSERT(last % page_size == 0);
  1087. GGML_ASSERT(last > first);
  1088. void * next_page_start = (uint8_t *) addr + first;
  1089. // unmap the range
  1090. if (munmap(next_page_start, len)) {
  1091. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1092. }
  1093. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1094. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1095. for (const auto & frag : mapped_fragments) {
  1096. if (frag.first < first && frag.second > last) {
  1097. // the range is in the middle of the fragment, split it
  1098. new_mapped_fragments.emplace_back(frag.first, first);
  1099. new_mapped_fragments.emplace_back(last, frag.second);
  1100. } else if (frag.first < first && frag.second > first) {
  1101. // the range starts in the middle of the fragment
  1102. new_mapped_fragments.emplace_back(frag.first, first);
  1103. } else if (frag.first < last && frag.second > last) {
  1104. // the range ends in the middle of the fragment
  1105. new_mapped_fragments.emplace_back(last, frag.second);
  1106. } else if (frag.first >= first && frag.second <= last) {
  1107. // the range covers the entire fragment
  1108. } else {
  1109. // the range is outside the fragment
  1110. new_mapped_fragments.push_back(frag);
  1111. }
  1112. }
  1113. mapped_fragments = std::move(new_mapped_fragments);
  1114. }
  1115. ~llama_mmap() {
  1116. for (const auto & frag : mapped_fragments) {
  1117. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1118. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1119. }
  1120. }
  1121. }
  1122. #elif defined(_WIN32)
  1123. static constexpr bool SUPPORTED = true;
  1124. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1125. GGML_UNUSED(numa);
  1126. size = file->size;
  1127. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1128. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1129. if (hMapping == NULL) {
  1130. DWORD error = GetLastError();
  1131. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1132. }
  1133. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1134. DWORD error = GetLastError();
  1135. CloseHandle(hMapping);
  1136. if (addr == NULL) {
  1137. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1138. }
  1139. if (prefetch > 0) {
  1140. #if _WIN32_WINNT >= 0x602
  1141. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1142. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1143. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1144. // may fail on pre-Windows 8 systems
  1145. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1146. if (pPrefetchVirtualMemory) {
  1147. // advise the kernel to preload the mapped memory
  1148. WIN32_MEMORY_RANGE_ENTRY range;
  1149. range.VirtualAddress = addr;
  1150. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1151. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1152. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1153. llama_format_win_err(GetLastError()).c_str());
  1154. }
  1155. }
  1156. #else
  1157. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1158. #endif
  1159. }
  1160. }
  1161. void unmap_fragment(size_t first, size_t last) {
  1162. // not supported
  1163. GGML_UNUSED(first);
  1164. GGML_UNUSED(last);
  1165. }
  1166. ~llama_mmap() {
  1167. if (!UnmapViewOfFile(addr)) {
  1168. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1169. llama_format_win_err(GetLastError()).c_str());
  1170. }
  1171. }
  1172. #else
  1173. static constexpr bool SUPPORTED = false;
  1174. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1175. GGML_UNUSED(file);
  1176. GGML_UNUSED(prefetch);
  1177. GGML_UNUSED(numa);
  1178. throw std::runtime_error("mmap not supported");
  1179. }
  1180. void unmap_fragment(size_t first, size_t last) {
  1181. GGML_UNUSED(first);
  1182. GGML_UNUSED(last);
  1183. throw std::runtime_error("mmap not supported");
  1184. }
  1185. #endif
  1186. };
  1187. // Represents some region of memory being locked using mlock or VirtualLock;
  1188. // will automatically unlock on destruction.
  1189. struct llama_mlock {
  1190. void * addr = NULL;
  1191. size_t size = 0;
  1192. bool failed_already = false;
  1193. llama_mlock() {}
  1194. llama_mlock(const llama_mlock &) = delete;
  1195. ~llama_mlock() {
  1196. if (size) {
  1197. raw_unlock(addr, size);
  1198. }
  1199. }
  1200. void init(void * ptr) {
  1201. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1202. addr = ptr;
  1203. }
  1204. void grow_to(size_t target_size) {
  1205. GGML_ASSERT(addr);
  1206. if (failed_already) {
  1207. return;
  1208. }
  1209. size_t granularity = lock_granularity();
  1210. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1211. if (target_size > size) {
  1212. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1213. size = target_size;
  1214. } else {
  1215. failed_already = true;
  1216. }
  1217. }
  1218. }
  1219. #ifdef _POSIX_MEMLOCK_RANGE
  1220. static constexpr bool SUPPORTED = true;
  1221. static size_t lock_granularity() {
  1222. return (size_t) sysconf(_SC_PAGESIZE);
  1223. }
  1224. #ifdef __APPLE__
  1225. #define MLOCK_SUGGESTION \
  1226. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1227. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1228. #else
  1229. #define MLOCK_SUGGESTION \
  1230. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1231. #endif
  1232. bool raw_lock(const void * addr, size_t size) const {
  1233. if (!mlock(addr, size)) {
  1234. return true;
  1235. }
  1236. char* errmsg = std::strerror(errno);
  1237. bool suggest = (errno == ENOMEM);
  1238. // Check if the resource limit is fine after all
  1239. struct rlimit lock_limit;
  1240. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1241. suggest = false;
  1242. }
  1243. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1244. suggest = false;
  1245. }
  1246. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1247. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1248. return false;
  1249. }
  1250. #undef MLOCK_SUGGESTION
  1251. static void raw_unlock(void * addr, size_t size) {
  1252. if (munlock(addr, size)) {
  1253. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1254. }
  1255. }
  1256. #elif defined(_WIN32)
  1257. static constexpr bool SUPPORTED = true;
  1258. static size_t lock_granularity() {
  1259. SYSTEM_INFO si;
  1260. GetSystemInfo(&si);
  1261. return (size_t) si.dwPageSize;
  1262. }
  1263. bool raw_lock(void * ptr, size_t len) const {
  1264. for (int tries = 1; ; tries++) {
  1265. if (VirtualLock(ptr, len)) {
  1266. return true;
  1267. }
  1268. if (tries == 2) {
  1269. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1270. len, size, llama_format_win_err(GetLastError()).c_str());
  1271. return false;
  1272. }
  1273. // It failed but this was only the first try; increase the working
  1274. // set size and try again.
  1275. SIZE_T min_ws_size, max_ws_size;
  1276. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1277. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1278. llama_format_win_err(GetLastError()).c_str());
  1279. return false;
  1280. }
  1281. // Per MSDN: "The maximum number of pages that a process can lock
  1282. // is equal to the number of pages in its minimum working set minus
  1283. // a small overhead."
  1284. // Hopefully a megabyte is enough overhead:
  1285. size_t increment = len + 1048576;
  1286. // The minimum must be <= the maximum, so we need to increase both:
  1287. min_ws_size += increment;
  1288. max_ws_size += increment;
  1289. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1290. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1291. llama_format_win_err(GetLastError()).c_str());
  1292. return false;
  1293. }
  1294. }
  1295. }
  1296. static void raw_unlock(void * ptr, size_t len) {
  1297. if (!VirtualUnlock(ptr, len)) {
  1298. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1299. llama_format_win_err(GetLastError()).c_str());
  1300. }
  1301. }
  1302. #else
  1303. static constexpr bool SUPPORTED = false;
  1304. static size_t lock_granularity() {
  1305. return (size_t) 65536;
  1306. }
  1307. bool raw_lock(const void * addr, size_t len) const {
  1308. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1309. return false;
  1310. }
  1311. static void raw_unlock(const void * addr, size_t len) {}
  1312. #endif
  1313. };
  1314. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1315. std::vector<char> result(8, 0);
  1316. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1317. if (n_tokens < 0) {
  1318. result.resize(-n_tokens);
  1319. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1320. GGML_ASSERT(check == -n_tokens);
  1321. }
  1322. else {
  1323. result.resize(n_tokens);
  1324. }
  1325. return std::string(result.data(), result.size());
  1326. }
  1327. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1328. ggml_backend_buffer_type_t buft = nullptr;
  1329. #if defined(GGML_USE_CUBLAS)
  1330. // host buffers should only be used when data is expected to be copied to/from the GPU
  1331. if (host_buffer) {
  1332. buft = ggml_backend_cuda_host_buffer_type();
  1333. }
  1334. #elif defined(GGML_USE_SYCL)
  1335. if (host_buffer) {
  1336. buft = ggml_backend_sycl_host_buffer_type();
  1337. }
  1338. #elif defined(GGML_USE_CPU_HBM)
  1339. buft = ggml_backend_cpu_hbm_buffer_type();
  1340. #elif defined(GGML_USE_VULKAN)
  1341. if (host_buffer) {
  1342. buft = ggml_backend_vk_host_buffer_type();
  1343. }
  1344. #endif
  1345. if (buft == nullptr) {
  1346. buft = ggml_backend_cpu_buffer_type();
  1347. }
  1348. return buft;
  1349. GGML_UNUSED(host_buffer);
  1350. }
  1351. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1352. ggml_backend_buffer_type_t buft = nullptr;
  1353. #ifdef GGML_USE_METAL
  1354. buft = ggml_backend_metal_buffer_type();
  1355. #elif defined(GGML_USE_CUBLAS)
  1356. buft = ggml_backend_cuda_buffer_type(gpu);
  1357. #elif defined(GGML_USE_VULKAN)
  1358. buft = ggml_backend_vk_buffer_type(gpu);
  1359. #elif defined(GGML_USE_SYCL)
  1360. buft = ggml_backend_sycl_buffer_type(gpu);
  1361. #elif defined(GGML_USE_CLBLAST)
  1362. buft = ggml_backend_opencl_buffer_type();
  1363. #elif defined(GGML_USE_KOMPUTE)
  1364. buft = ggml_backend_kompute_buffer_type(gpu);
  1365. if (buft == nullptr) {
  1366. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1367. }
  1368. #endif
  1369. if (buft == nullptr) {
  1370. buft = llama_default_buffer_type_cpu(true);
  1371. }
  1372. return buft;
  1373. GGML_UNUSED(gpu);
  1374. }
  1375. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1376. ggml_backend_buffer_type_t buft = nullptr;
  1377. #ifdef GGML_USE_CUBLAS
  1378. if (ggml_backend_cuda_get_device_count() > 1) {
  1379. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1380. }
  1381. #endif
  1382. #ifdef GGML_USE_SYCL
  1383. if (ggml_backend_sycl_get_device_count() > 1) {
  1384. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1385. }
  1386. #endif
  1387. if (buft == nullptr) {
  1388. buft = llama_default_buffer_type_offload(fallback_gpu);
  1389. }
  1390. return buft;
  1391. GGML_UNUSED(tensor_split);
  1392. }
  1393. static size_t llama_get_device_count() {
  1394. #if defined(GGML_USE_CUBLAS)
  1395. return ggml_backend_cuda_get_device_count();
  1396. #elif defined(GGML_USE_SYCL)
  1397. return ggml_backend_sycl_get_device_count();
  1398. #elif defined(GGML_USE_VULKAN)
  1399. return ggml_backend_vk_get_device_count();
  1400. #else
  1401. return 1;
  1402. #endif
  1403. }
  1404. static size_t llama_get_device_memory(int device) {
  1405. #if defined(GGML_USE_CUBLAS)
  1406. size_t total;
  1407. size_t free;
  1408. ggml_backend_cuda_get_device_memory(device, &total, &free);
  1409. return free;
  1410. #elif defined(GGML_USE_SYCL)
  1411. size_t total;
  1412. size_t free;
  1413. ggml_backend_sycl_get_device_memory(device, &total, &free);
  1414. return free;
  1415. #elif defined(GGML_USE_VULKAN)
  1416. size_t total;
  1417. size_t free;
  1418. ggml_backend_vk_get_device_memory(device, &total, &free);
  1419. return free;
  1420. #else
  1421. return 1;
  1422. GGML_UNUSED(device);
  1423. #endif
  1424. }
  1425. //
  1426. // globals
  1427. //
  1428. struct llama_state {
  1429. llama_state() {
  1430. #ifdef GGML_USE_METAL
  1431. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1432. #endif
  1433. }
  1434. // We save the log callback globally
  1435. ggml_log_callback log_callback = llama_log_callback_default;
  1436. void * log_callback_user_data = nullptr;
  1437. };
  1438. static llama_state g_state;
  1439. // available llama models
  1440. enum e_model {
  1441. MODEL_UNKNOWN,
  1442. MODEL_17M,
  1443. MODEL_22M,
  1444. MODEL_33M,
  1445. MODEL_109M,
  1446. MODEL_137M,
  1447. MODEL_335M,
  1448. MODEL_0_5B,
  1449. MODEL_1B,
  1450. MODEL_2B,
  1451. MODEL_3B,
  1452. MODEL_4B,
  1453. MODEL_7B,
  1454. MODEL_8B,
  1455. MODEL_13B,
  1456. MODEL_14B,
  1457. MODEL_15B,
  1458. MODEL_20B,
  1459. MODEL_30B,
  1460. MODEL_34B,
  1461. MODEL_40B,
  1462. MODEL_65B,
  1463. MODEL_70B,
  1464. MODEL_SMALL,
  1465. MODEL_MEDIUM,
  1466. MODEL_LARGE,
  1467. MODEL_XL,
  1468. };
  1469. static const size_t kiB = 1024;
  1470. static const size_t MiB = 1024*kiB;
  1471. static const size_t GiB = 1024*MiB;
  1472. struct llama_hparams {
  1473. bool vocab_only;
  1474. bool rope_finetuned;
  1475. uint32_t n_vocab;
  1476. uint32_t n_ctx_train; // context size the model was trained on
  1477. uint32_t n_embd;
  1478. uint32_t n_head;
  1479. uint32_t n_head_kv;
  1480. uint32_t n_layer;
  1481. uint32_t n_rot;
  1482. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1483. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1484. uint32_t n_ff;
  1485. uint32_t n_expert = 0;
  1486. uint32_t n_expert_used = 0;
  1487. uint32_t n_vocab_type = 0; // for BERT-style token types
  1488. float f_norm_eps;
  1489. float f_norm_rms_eps;
  1490. float rope_freq_base_train;
  1491. float rope_freq_scale_train;
  1492. uint32_t n_yarn_orig_ctx;
  1493. // for State Space Models
  1494. uint32_t ssm_d_conv = 0;
  1495. uint32_t ssm_d_inner = 0;
  1496. uint32_t ssm_d_state = 0;
  1497. uint32_t ssm_dt_rank = 0;
  1498. float f_clamp_kqv = 0.0f;
  1499. float f_max_alibi_bias = 0.0f;
  1500. bool causal_attn = true;
  1501. bool need_kq_pos = false;
  1502. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1503. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1504. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1505. bool operator!=(const llama_hparams & other) const {
  1506. if (this->vocab_only != other.vocab_only) return true;
  1507. if (this->n_vocab != other.n_vocab) return true;
  1508. if (this->n_ctx_train != other.n_ctx_train) return true;
  1509. if (this->n_embd != other.n_embd) return true;
  1510. if (this->n_head != other.n_head) return true;
  1511. if (this->n_head_kv != other.n_head_kv) return true;
  1512. if (this->n_layer != other.n_layer) return true;
  1513. if (this->n_rot != other.n_rot) return true;
  1514. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1515. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1516. if (this->n_ff != other.n_ff) return true;
  1517. if (this->n_expert != other.n_expert) return true;
  1518. if (this->n_expert_used != other.n_expert_used) return true;
  1519. if (this->rope_finetuned != other.rope_finetuned) return true;
  1520. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1521. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1522. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1523. if (this->ssm_d_state != other.ssm_d_state) return true;
  1524. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1525. const float EPSILON = 1e-9f;
  1526. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1527. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1528. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1529. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1530. return false;
  1531. }
  1532. uint32_t n_gqa() const {
  1533. if (n_head_kv == 0) {
  1534. return 0;
  1535. }
  1536. return n_head/n_head_kv;
  1537. }
  1538. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1539. return n_embd_head_k * n_head_kv;
  1540. }
  1541. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1542. return n_embd_head_v * n_head_kv;
  1543. }
  1544. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1545. // corresponds to Mamba's conv_states size
  1546. // TODO: maybe support other convolution strides than 1
  1547. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1548. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1549. }
  1550. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1551. // corresponds to Mamba's ssm_states size
  1552. return ssm_d_state * ssm_d_inner;
  1553. }
  1554. };
  1555. struct llama_cparams {
  1556. uint32_t n_ctx; // context size used during inference
  1557. uint32_t n_batch;
  1558. uint32_t n_threads; // number of threads to use for generation
  1559. uint32_t n_threads_batch; // number of threads to use for batch processing
  1560. float rope_freq_base;
  1561. float rope_freq_scale;
  1562. uint32_t n_yarn_orig_ctx;
  1563. // These hyperparameters are not exposed in GGUF, because all
  1564. // existing YaRN models use the same values for them.
  1565. float yarn_ext_factor;
  1566. float yarn_attn_factor;
  1567. float yarn_beta_fast;
  1568. float yarn_beta_slow;
  1569. float defrag_thold;
  1570. bool embeddings;
  1571. bool causal_attn;
  1572. bool offload_kqv;
  1573. enum llama_pooling_type pooling_type;
  1574. ggml_backend_sched_eval_callback cb_eval;
  1575. void * cb_eval_user_data;
  1576. };
  1577. struct llama_layer {
  1578. // normalization
  1579. struct ggml_tensor * attn_norm;
  1580. struct ggml_tensor * attn_norm_b;
  1581. struct ggml_tensor * attn_norm_2;
  1582. struct ggml_tensor * attn_norm_2_b;
  1583. struct ggml_tensor * attn_q_norm;
  1584. struct ggml_tensor * attn_q_norm_b;
  1585. struct ggml_tensor * attn_k_norm;
  1586. struct ggml_tensor * attn_k_norm_b;
  1587. struct ggml_tensor * attn_out_norm;
  1588. struct ggml_tensor * attn_out_norm_b;
  1589. // attention
  1590. struct ggml_tensor * wq;
  1591. struct ggml_tensor * wk;
  1592. struct ggml_tensor * wv;
  1593. struct ggml_tensor * wo;
  1594. struct ggml_tensor * wqkv;
  1595. // attention bias
  1596. struct ggml_tensor * bq;
  1597. struct ggml_tensor * bk;
  1598. struct ggml_tensor * bv;
  1599. struct ggml_tensor * bo;
  1600. struct ggml_tensor * bqkv;
  1601. // normalization
  1602. struct ggml_tensor * ffn_norm;
  1603. struct ggml_tensor * ffn_norm_b;
  1604. struct ggml_tensor * layer_out_norm;
  1605. struct ggml_tensor * layer_out_norm_b;
  1606. // ff
  1607. struct ggml_tensor * ffn_gate; // w1
  1608. struct ggml_tensor * ffn_down; // w2
  1609. struct ggml_tensor * ffn_up; // w3
  1610. // ff MoE
  1611. struct ggml_tensor * ffn_gate_inp;
  1612. struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
  1613. struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
  1614. struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
  1615. // ff bias
  1616. struct ggml_tensor * ffn_down_b; // b2
  1617. struct ggml_tensor * ffn_up_b; // b3
  1618. struct ggml_tensor * ffn_act;
  1619. // mamba proj
  1620. struct ggml_tensor * ssm_in;
  1621. struct ggml_tensor * ssm_x;
  1622. struct ggml_tensor * ssm_dt;
  1623. struct ggml_tensor * ssm_out;
  1624. // mamba
  1625. struct ggml_tensor * ssm_conv1d;
  1626. struct ggml_tensor * ssm_a;
  1627. struct ggml_tensor * ssm_d;
  1628. // mamba bias
  1629. struct ggml_tensor * ssm_conv1d_b;
  1630. struct ggml_tensor * ssm_dt_b;
  1631. };
  1632. struct llama_kv_cell {
  1633. llama_pos pos = -1;
  1634. llama_pos delta = 0;
  1635. int32_t src = 0; // used by recurrent state models to copy states
  1636. std::set<llama_seq_id> seq_id;
  1637. bool has_seq_id(const llama_seq_id & id) const {
  1638. return seq_id.find(id) != seq_id.end();
  1639. }
  1640. bool is_empty() const {
  1641. return seq_id.empty();
  1642. }
  1643. bool is_same_seq(const llama_kv_cell & other) const {
  1644. return seq_id == other.seq_id;
  1645. }
  1646. };
  1647. // ring-buffer of cached KV data
  1648. struct llama_kv_cache {
  1649. bool has_shift = false;
  1650. bool do_defrag = false;
  1651. bool do_copy = false;
  1652. // with recurrent state models, a cell can hold the state for more than one past token
  1653. bool recurrent = false;
  1654. // Note: The value of head isn't only used to optimize searching
  1655. // for a free KV slot. llama_decode_internal also uses it, so it
  1656. // cannot be freely changed after a slot has been allocated.
  1657. uint32_t head = 0;
  1658. uint32_t size = 0;
  1659. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1660. // computed before each graph build
  1661. uint32_t n = 0;
  1662. ggml_type type_k = GGML_TYPE_F16;
  1663. ggml_type type_v = GGML_TYPE_F16;
  1664. std::vector<llama_kv_cell> cells;
  1665. std::vector<struct ggml_tensor *> k_l; // per layer
  1666. std::vector<struct ggml_tensor *> v_l;
  1667. std::vector<struct ggml_context *> ctxs;
  1668. std::vector<ggml_backend_buffer_t> bufs;
  1669. size_t total_size() const {
  1670. size_t size = 0;
  1671. for (ggml_backend_buffer_t buf : bufs) {
  1672. size += ggml_backend_buffer_get_size(buf);
  1673. }
  1674. return size;
  1675. }
  1676. ~llama_kv_cache() {
  1677. for (struct ggml_context * ctx : ctxs) {
  1678. ggml_free(ctx);
  1679. }
  1680. for (ggml_backend_buffer_t buf : bufs) {
  1681. ggml_backend_buffer_free(buf);
  1682. }
  1683. }
  1684. };
  1685. struct llama_vocab {
  1686. using id = int32_t;
  1687. using token = std::string;
  1688. using ttype = llama_token_type;
  1689. struct token_data {
  1690. token text;
  1691. float score;
  1692. ttype type;
  1693. };
  1694. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1695. std::unordered_map<token, id> token_to_id;
  1696. std::vector<token_data> id_to_token;
  1697. std::unordered_map<token, id> special_tokens_cache;
  1698. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1699. // default LLaMA special tokens
  1700. id special_bos_id = 1;
  1701. id special_eos_id = 2;
  1702. id special_unk_id = 0;
  1703. id special_sep_id = -1;
  1704. id special_pad_id = -1;
  1705. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1706. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1707. id linefeed_id = 13;
  1708. id special_prefix_id = 32007;
  1709. id special_middle_id = 32009;
  1710. id special_suffix_id = 32008;
  1711. id special_eot_id = 32010;
  1712. bool add_space_prefix = true;
  1713. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1714. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1715. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1716. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1717. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1718. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1719. if (it == bpe_ranks.end()) {
  1720. return -1;
  1721. }
  1722. return it->second;
  1723. }
  1724. };
  1725. struct llama_model {
  1726. e_model type = MODEL_UNKNOWN;
  1727. llm_arch arch = LLM_ARCH_UNKNOWN;
  1728. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1729. std::string name = "n/a";
  1730. llama_hparams hparams = {};
  1731. llama_vocab vocab;
  1732. struct ggml_tensor * tok_embd;
  1733. struct ggml_tensor * type_embd;
  1734. struct ggml_tensor * pos_embd;
  1735. struct ggml_tensor * tok_norm;
  1736. struct ggml_tensor * tok_norm_b;
  1737. struct ggml_tensor * output_norm;
  1738. struct ggml_tensor * output_norm_b;
  1739. struct ggml_tensor * output;
  1740. struct ggml_tensor * output_b;
  1741. std::vector<llama_layer> layers;
  1742. llama_split_mode split_mode;
  1743. int main_gpu;
  1744. int n_gpu_layers;
  1745. // gguf metadata
  1746. std::unordered_map<std::string, std::string> gguf_kv;
  1747. // layer -> buffer type mapping
  1748. struct layer_buft {
  1749. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1750. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1751. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1752. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1753. ggml_backend_buffer_type_t buft; // everything else
  1754. };
  1755. layer_buft buft_input;
  1756. layer_buft buft_output;
  1757. std::vector<layer_buft> buft_layer;
  1758. // contexts where the model tensors metadata is stored
  1759. std::vector<struct ggml_context *> ctxs;
  1760. // the model memory buffers for the tensor data
  1761. std::vector<ggml_backend_buffer_t> bufs;
  1762. // model memory mapped file
  1763. std::unique_ptr<llama_mmap> mapping;
  1764. // objects representing data potentially being locked in memory
  1765. std::vector<std::unique_ptr<llama_mlock>> mlock_bufs;
  1766. llama_mlock mlock_mmap;
  1767. // for quantize-stats only
  1768. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1769. int64_t t_load_us = 0;
  1770. int64_t t_start_us = 0;
  1771. ~llama_model() {
  1772. for (struct ggml_context * ctx : ctxs) {
  1773. ggml_free(ctx);
  1774. }
  1775. for (ggml_backend_buffer_t buf : bufs) {
  1776. ggml_backend_buffer_free(buf);
  1777. }
  1778. }
  1779. };
  1780. struct llama_context {
  1781. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1782. ~llama_context() {
  1783. ggml_backend_sched_free(sched);
  1784. for (ggml_backend_t backend : backends) {
  1785. ggml_backend_free(backend);
  1786. }
  1787. #ifdef GGML_USE_VULKAN
  1788. ggml_vk_free_cpu_assist();
  1789. #endif
  1790. ggml_backend_buffer_free(buf_input);
  1791. ggml_free(ctx_input);
  1792. }
  1793. llama_cparams cparams;
  1794. std::vector<ggml_backend_t> backends;
  1795. #ifdef GGML_USE_METAL
  1796. ggml_backend_t backend_metal = nullptr;
  1797. #endif
  1798. ggml_backend_t backend_cpu = nullptr;
  1799. const llama_model & model;
  1800. // key + value cache for the self attention
  1801. struct llama_kv_cache kv_self;
  1802. std::mt19937 rng;
  1803. bool has_evaluated_once = false;
  1804. int64_t t_start_us;
  1805. int64_t t_load_us;
  1806. int64_t t_sample_us = 0;
  1807. int64_t t_p_eval_us = 0;
  1808. int64_t t_eval_us = 0;
  1809. int32_t n_sample = 0; // number of tokens sampled
  1810. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1811. int32_t n_eval = 0; // number of eval calls
  1812. // logits output (2-dimensional array: [n_tokens][n_vocab])
  1813. std::vector<float> logits;
  1814. #ifndef NDEBUG
  1815. // guard against access to unset logits
  1816. std::vector<bool> logits_valid;
  1817. #endif
  1818. bool logits_all = false;
  1819. // embeddings output (2-dimensional array: [n_tokens][n_embd])
  1820. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1821. std::vector<float> embd;
  1822. // sequence embeddings output (map of [n_embd] vectors)
  1823. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  1824. std::map<llama_seq_id, std::vector<float>> embd_seq;
  1825. // memory buffers used to evaluate the model
  1826. std::vector<uint8_t> buf_compute_meta;
  1827. ggml_backend_sched_t sched = nullptr;
  1828. ggml_abort_callback abort_callback = nullptr;
  1829. void * abort_callback_data = nullptr;
  1830. // input tensors
  1831. ggml_backend_buffer_t buf_input = nullptr;
  1832. ggml_context * ctx_input = nullptr;
  1833. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  1834. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  1835. struct ggml_tensor * inp_pos; // I32 [n_batch]
  1836. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  1837. struct ggml_tensor * inp_KQ_pos; // F32 [kv_size]
  1838. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  1839. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  1840. struct ggml_tensor * inp_cls; // I32 [n_batch]
  1841. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  1842. struct ggml_tensor * inp_s_mask; // F32 [kv_size]
  1843. struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch]
  1844. #ifdef GGML_USE_MPI
  1845. ggml_mpi_context * ctx_mpi = NULL;
  1846. #endif
  1847. };
  1848. //
  1849. // kv cache helpers
  1850. //
  1851. static bool llama_kv_cache_init(
  1852. struct llama_kv_cache & cache,
  1853. const llama_model & model,
  1854. ggml_type type_k,
  1855. ggml_type type_v,
  1856. uint32_t kv_size,
  1857. bool offload) {
  1858. const struct llama_hparams & hparams = model.hparams;
  1859. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  1860. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  1861. const int64_t n_layer = hparams.n_layer;
  1862. cache.has_shift = false;
  1863. // TODO: find a nicer way to add other recurrent model architectures
  1864. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  1865. // TODO: support mixed reccurent Transformer architectues
  1866. // NOTE: (!a || b) is a logical implication (a -> b)
  1867. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  1868. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  1869. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  1870. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  1871. cache.head = 0;
  1872. cache.size = kv_size;
  1873. cache.used = 0;
  1874. cache.type_k = type_k;
  1875. cache.type_v = type_v;
  1876. cache.cells.clear();
  1877. cache.cells.resize(kv_size);
  1878. if (cache.recurrent) {
  1879. // init state copy sources
  1880. for (uint32_t i = 0; i < cache.size; ++i) {
  1881. cache.cells[i].src = i;
  1882. }
  1883. }
  1884. #ifdef GGML_USE_CLBLAST
  1885. offload = false;
  1886. #endif
  1887. // count used buffer types
  1888. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  1889. if (offload) {
  1890. for (int64_t i = 0; i < n_layer; ++i) {
  1891. buft_layer_count[model.buft_layer[i].buft]++;
  1892. }
  1893. } else {
  1894. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  1895. }
  1896. // create a context for each buffer type
  1897. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1898. for (auto & it : buft_layer_count) {
  1899. int n_layers = it.second;
  1900. struct ggml_init_params params = {
  1901. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  1902. /*.mem_buffer =*/ NULL,
  1903. /*.no_alloc =*/ true,
  1904. };
  1905. ggml_context * ctx = ggml_init(params);
  1906. if (!ctx) {
  1907. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  1908. return false;
  1909. }
  1910. ctx_map[it.first] = ctx;
  1911. cache.ctxs.push_back(ctx);
  1912. }
  1913. cache.k_l.reserve(n_layer);
  1914. cache.v_l.reserve(n_layer);
  1915. for (int i = 0; i < (int) n_layer; i++) {
  1916. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  1917. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  1918. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  1919. ggml_format_name(k, "cache_k_l%d", i);
  1920. ggml_format_name(v, "cache_v_l%d", i);
  1921. cache.k_l.push_back(k);
  1922. cache.v_l.push_back(v);
  1923. }
  1924. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  1925. for (auto it : ctx_map) {
  1926. ggml_backend_buffer_type_t buft = it.first;
  1927. ggml_context * ctx = it.second;
  1928. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  1929. if (!buf) {
  1930. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  1931. return false;
  1932. }
  1933. ggml_backend_buffer_clear(buf, 0);
  1934. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  1935. cache.bufs.push_back(buf);
  1936. }
  1937. return true;
  1938. }
  1939. // find an empty slot of size "n_tokens" in the cache
  1940. // updates the cache head
  1941. // Note: On success, it's important that cache.head points
  1942. // to the first cell of the slot.
  1943. static bool llama_kv_cache_find_slot(
  1944. struct llama_kv_cache & cache,
  1945. const struct llama_batch & batch) {
  1946. const uint32_t n_ctx = cache.size;
  1947. const uint32_t n_tokens = batch.n_tokens;
  1948. if (cache.recurrent) {
  1949. // For recurrent state architectures (like Mamba),
  1950. // each KV cache cell can store the state for a whole sequence.
  1951. llama_seq_id min = cache.size - 1;
  1952. llama_seq_id max = 0;
  1953. for (uint32_t i = 0; i < n_tokens; ++i) {
  1954. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  1955. llama_seq_id seq_id = batch.seq_id[i][j];
  1956. // make sure it's a valid seq_id
  1957. if ((uint32_t) seq_id < cache.size) {
  1958. if (seq_id > max) {
  1959. max = seq_id;
  1960. }
  1961. if (seq_id < min) {
  1962. min = seq_id;
  1963. }
  1964. // Assuming the tokens are in-order
  1965. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  1966. // What should happen when the pos backtracks or skips a value?
  1967. // Clearing the state mid-batch would require special-casing which isn't done.
  1968. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  1969. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  1970. }
  1971. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  1972. cache.used += 1;
  1973. }
  1974. cache.cells[seq_id].pos = batch.pos[i];
  1975. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  1976. } else {
  1977. // too big seq_id
  1978. // TODO: would it be possible to resize the KV cache size instead?
  1979. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  1980. return false;
  1981. }
  1982. }
  1983. }
  1984. // allow getting the range of used cells, from head to head + n
  1985. cache.head = min;
  1986. cache.n = max - min + 1;
  1987. // sanity check
  1988. return max >= min;
  1989. }
  1990. // otherwise, one cell per token.
  1991. if (n_tokens > n_ctx) {
  1992. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1993. return false;
  1994. }
  1995. uint32_t n_tested = 0;
  1996. while (true) {
  1997. if (cache.head + n_tokens > n_ctx) {
  1998. n_tested += n_ctx - cache.head;
  1999. cache.head = 0;
  2000. continue;
  2001. }
  2002. bool found = true;
  2003. for (uint32_t i = 0; i < n_tokens; i++) {
  2004. if (cache.cells[cache.head + i].pos >= 0) {
  2005. found = false;
  2006. cache.head += i + 1;
  2007. n_tested += i + 1;
  2008. break;
  2009. }
  2010. }
  2011. if (found) {
  2012. break;
  2013. }
  2014. if (n_tested >= n_ctx) {
  2015. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2016. return false;
  2017. }
  2018. }
  2019. for (uint32_t i = 0; i < n_tokens; i++) {
  2020. cache.cells[cache.head + i].pos = batch.pos[i];
  2021. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2022. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2023. }
  2024. }
  2025. cache.used += n_tokens;
  2026. return true;
  2027. }
  2028. // find how many cells are currently in use
  2029. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2030. for (uint32_t i = cache.size; i > 0; --i) {
  2031. const llama_kv_cell & cell = cache.cells[i - 1];
  2032. if (cell.pos >= 0 && !cell.is_empty()) {
  2033. return i;
  2034. }
  2035. }
  2036. return 0;
  2037. }
  2038. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2039. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2040. cache.cells[i].pos = -1;
  2041. cache.cells[i].seq_id.clear();
  2042. }
  2043. cache.head = 0;
  2044. cache.used = 0;
  2045. }
  2046. static bool llama_kv_cache_seq_rm(
  2047. struct llama_kv_cache & cache,
  2048. llama_seq_id seq_id,
  2049. llama_pos p0,
  2050. llama_pos p1) {
  2051. uint32_t new_head = cache.size;
  2052. if (p0 < 0) p0 = 0;
  2053. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2054. // models like Mamba can't have a state partially erased
  2055. if (cache.recurrent) {
  2056. if (seq_id >= (int64_t) cache.size) {
  2057. // could be fatal
  2058. return false;
  2059. }
  2060. if (0 <= seq_id) {
  2061. // partial intersection is invalid
  2062. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2063. return false;
  2064. }
  2065. } else {
  2066. // seq_id is negative, then the range should include everything or nothing
  2067. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2068. return false;
  2069. }
  2070. }
  2071. }
  2072. for (uint32_t i = 0; i < cache.size; ++i) {
  2073. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2074. if (seq_id < 0) {
  2075. cache.cells[i].seq_id.clear();
  2076. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2077. cache.cells[i].seq_id.erase(seq_id);
  2078. } else {
  2079. continue;
  2080. }
  2081. if (cache.cells[i].is_empty()) {
  2082. // keep count of the number of used cells
  2083. if (cache.cells[i].pos >= 0) cache.used--;
  2084. cache.cells[i].pos = -1;
  2085. if (new_head == cache.size) new_head = i;
  2086. }
  2087. }
  2088. }
  2089. // If we freed up a slot, set head to it so searching can start there.
  2090. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2091. return true;
  2092. }
  2093. static void llama_kv_cache_seq_cp(
  2094. struct llama_kv_cache & cache,
  2095. llama_seq_id seq_id_src,
  2096. llama_seq_id seq_id_dst,
  2097. llama_pos p0,
  2098. llama_pos p1) {
  2099. if (p0 < 0) p0 = 0;
  2100. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2101. if (cache.recurrent) {
  2102. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2103. seq_id_src = cache.cells[seq_id_src].src;
  2104. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2105. // intent to "copy from"
  2106. // supports copy chains thanks to taking the source of the source
  2107. cache.cells[seq_id_dst].src = seq_id_src;
  2108. // preserve the "keep or clear" status of the copied sequence
  2109. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2110. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2111. } else {
  2112. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2113. }
  2114. cache.do_copy = true;
  2115. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2116. }
  2117. return;
  2118. }
  2119. // otherwise, this is the KV cache of a Transformer-like model
  2120. cache.head = 0;
  2121. for (uint32_t i = 0; i < cache.size; ++i) {
  2122. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2123. cache.cells[i].seq_id.insert(seq_id_dst);
  2124. }
  2125. }
  2126. }
  2127. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2128. uint32_t new_head = cache.size;
  2129. for (uint32_t i = 0; i < cache.size; ++i) {
  2130. if (!cache.cells[i].has_seq_id(seq_id)) {
  2131. if (cache.cells[i].pos >= 0) cache.used--;
  2132. cache.cells[i].pos = -1;
  2133. cache.cells[i].seq_id.clear();
  2134. if (new_head == cache.size) new_head = i;
  2135. } else {
  2136. cache.cells[i].seq_id.clear();
  2137. cache.cells[i].seq_id.insert(seq_id);
  2138. }
  2139. }
  2140. // If we freed up a slot, set head to it so searching can start there.
  2141. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2142. }
  2143. static void llama_kv_cache_seq_add(
  2144. struct llama_kv_cache & cache,
  2145. llama_seq_id seq_id,
  2146. llama_pos p0,
  2147. llama_pos p1,
  2148. llama_pos delta) {
  2149. uint32_t new_head = cache.size;
  2150. if (p0 < 0) p0 = 0;
  2151. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2152. if (cache.recurrent) {
  2153. // for Mamba-like models, only the pos needs to be shifted
  2154. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2155. llama_kv_cell & cell = cache.cells[seq_id];
  2156. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2157. cell.pos += delta;
  2158. }
  2159. }
  2160. return;
  2161. }
  2162. for (uint32_t i = 0; i < cache.size; ++i) {
  2163. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2164. cache.has_shift = true;
  2165. cache.cells[i].pos += delta;
  2166. cache.cells[i].delta += delta;
  2167. if (cache.cells[i].pos < 0) {
  2168. if (!cache.cells[i].is_empty()) {
  2169. cache.used--;
  2170. }
  2171. cache.cells[i].pos = -1;
  2172. cache.cells[i].seq_id.clear();
  2173. if (new_head == cache.size) {
  2174. new_head = i;
  2175. }
  2176. }
  2177. }
  2178. }
  2179. // If we freed up a slot, set head to it so searching can start there.
  2180. // Otherwise we just start the next search from the beginning.
  2181. cache.head = new_head != cache.size ? new_head : 0;
  2182. }
  2183. static void llama_kv_cache_seq_div(
  2184. struct llama_kv_cache & cache,
  2185. llama_seq_id seq_id,
  2186. llama_pos p0,
  2187. llama_pos p1,
  2188. int d) {
  2189. if (p0 < 0) p0 = 0;
  2190. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2191. if (cache.recurrent) {
  2192. // for Mamba-like models, only the pos needs to be changed
  2193. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2194. llama_kv_cell & cell = cache.cells[seq_id];
  2195. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2196. cell.pos /= d;
  2197. }
  2198. }
  2199. return;
  2200. }
  2201. for (uint32_t i = 0; i < cache.size; ++i) {
  2202. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2203. cache.has_shift = true;
  2204. {
  2205. llama_pos p_old = cache.cells[i].pos;
  2206. cache.cells[i].pos /= d;
  2207. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2208. }
  2209. }
  2210. }
  2211. }
  2212. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2213. llama_pos result = 0;
  2214. for (uint32_t i = 0; i < cache.size; ++i) {
  2215. if (cache.cells[i].has_seq_id(seq_id)) {
  2216. result = std::max(result, cache.cells[i].pos);
  2217. }
  2218. }
  2219. return result;
  2220. }
  2221. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2222. cache.do_defrag = true;
  2223. }
  2224. //
  2225. // model loading and saving
  2226. //
  2227. enum llama_fver {
  2228. GGUF_FILE_VERSION_V1 = 1,
  2229. GGUF_FILE_VERSION_V2 = 2,
  2230. GGUF_FILE_VERSION_V3 = 3,
  2231. };
  2232. static const char * llama_file_version_name(llama_fver version) {
  2233. switch (version) {
  2234. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2235. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2236. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2237. }
  2238. return "unknown";
  2239. }
  2240. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2241. char buf[256];
  2242. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2243. for (size_t i = 1; i < ne.size(); i++) {
  2244. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2245. }
  2246. return buf;
  2247. }
  2248. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2249. char buf[256];
  2250. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2251. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2252. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2253. }
  2254. return buf;
  2255. }
  2256. namespace GGUFMeta {
  2257. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2258. struct GKV_Base_Type {
  2259. static constexpr gguf_type gt = gt_;
  2260. static T getter(const gguf_context * ctx, const int kid) {
  2261. return gfun(ctx, kid);
  2262. }
  2263. };
  2264. template<typename T> struct GKV_Base;
  2265. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2266. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2267. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2268. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2269. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2270. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2271. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2272. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2273. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2274. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2275. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2276. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2277. template<> struct GKV_Base<std::string> {
  2278. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2279. static std::string getter(const gguf_context * ctx, const int kid) {
  2280. return gguf_get_val_str(ctx, kid);
  2281. }
  2282. };
  2283. struct ArrayInfo {
  2284. const gguf_type gt;
  2285. const size_t length;
  2286. const void * data;
  2287. };
  2288. template<> struct GKV_Base<ArrayInfo> {
  2289. public:
  2290. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2291. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2292. return ArrayInfo {
  2293. gguf_get_arr_type(ctx, k),
  2294. size_t(gguf_get_arr_n(ctx, k)),
  2295. gguf_get_arr_data(ctx, k),
  2296. };
  2297. }
  2298. };
  2299. template<typename T>
  2300. class GKV : public GKV_Base<T> {
  2301. GKV() = delete;
  2302. public:
  2303. static T get_kv(const gguf_context * ctx, const int k) {
  2304. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2305. if (kt != GKV::gt) {
  2306. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2307. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2308. }
  2309. return GKV::getter(ctx, k);
  2310. }
  2311. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2312. switch (ty) {
  2313. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2314. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2315. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2316. }
  2317. return "unknown";
  2318. }
  2319. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2320. if (!ovrd) { return false; }
  2321. if (ovrd->tag == expected_type) {
  2322. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2323. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2324. switch (ovrd->tag) {
  2325. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2326. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2327. } break;
  2328. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2329. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2330. } break;
  2331. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2332. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2333. } break;
  2334. default:
  2335. // Shouldn't be possible to end up here, but just in case...
  2336. throw std::runtime_error(
  2337. format("Unsupported attempt to override %s type for metadata key %s\n",
  2338. override_type_to_str(ovrd->tag), ovrd->key));
  2339. }
  2340. return true;
  2341. }
  2342. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2343. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2344. return false;
  2345. }
  2346. template<typename OT>
  2347. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2348. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2349. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2350. target = ovrd->bool_value;
  2351. return true;
  2352. }
  2353. return false;
  2354. }
  2355. template<typename OT>
  2356. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2357. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2358. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2359. target = ovrd->int_value;
  2360. return true;
  2361. }
  2362. return false;
  2363. }
  2364. template<typename OT>
  2365. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2366. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2367. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2368. target = ovrd->float_value;
  2369. return true;
  2370. }
  2371. return false;
  2372. }
  2373. template<typename OT>
  2374. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2375. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2376. (void)target;
  2377. (void)ovrd;
  2378. if (!ovrd) { return false; }
  2379. // Currently, we should never end up here so it would be a bug if we do.
  2380. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2381. ovrd ? ovrd->key : "NULL"));
  2382. }
  2383. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2384. if (try_override<T>(target, ovrd)) {
  2385. return true;
  2386. }
  2387. if (k < 0) { return false; }
  2388. target = get_kv(ctx, k);
  2389. return true;
  2390. }
  2391. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2392. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2393. }
  2394. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2395. return set(ctx, key.c_str(), target, ovrd);
  2396. }
  2397. };
  2398. }
  2399. struct llama_model_loader {
  2400. int n_kv = 0;
  2401. int n_tensors = 0;
  2402. int n_created = 0;
  2403. int64_t n_elements = 0;
  2404. size_t n_bytes = 0;
  2405. bool use_mmap = false;
  2406. llama_file file;
  2407. llama_ftype ftype;
  2408. llama_fver fver;
  2409. std::unique_ptr<llama_mmap> mapping;
  2410. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2411. struct gguf_context * ctx_gguf = NULL;
  2412. struct ggml_context * ctx_meta = NULL;
  2413. std::string arch_name;
  2414. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2415. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
  2416. int trace = 0;
  2417. if (getenv("LLAMA_TRACE")) {
  2418. trace = atoi(getenv("LLAMA_TRACE"));
  2419. }
  2420. struct gguf_init_params params = {
  2421. /*.no_alloc = */ true,
  2422. /*.ctx = */ &ctx_meta,
  2423. };
  2424. if (param_overrides_p != nullptr) {
  2425. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2426. kv_overrides.insert({std::string(p->key), *p});
  2427. }
  2428. }
  2429. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  2430. if (!ctx_gguf) {
  2431. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2432. }
  2433. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2434. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2435. n_kv = gguf_get_n_kv(ctx_gguf);
  2436. n_tensors = gguf_get_n_tensors(ctx_gguf);
  2437. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  2438. for (int i = 0; i < n_tensors; i++) {
  2439. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  2440. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  2441. n_elements += ggml_nelements(t);
  2442. n_bytes += ggml_nbytes(t);
  2443. }
  2444. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2445. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2446. // determine file type based on the number of tensors for each quantization and print meta data
  2447. // TODO: make optional
  2448. {
  2449. std::map<enum ggml_type, uint32_t> n_type;
  2450. uint32_t n_type_max = 0;
  2451. enum ggml_type type_max = GGML_TYPE_F32;
  2452. for (int i = 0; i < n_tensors; i++) {
  2453. enum ggml_type type = gguf_get_tensor_type(ctx_gguf, i);
  2454. n_type[type]++;
  2455. if (n_type_max < n_type[type]) {
  2456. n_type_max = n_type[type];
  2457. type_max = type;
  2458. }
  2459. if (trace > 0) {
  2460. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
  2461. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
  2462. }
  2463. }
  2464. switch (type_max) {
  2465. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2466. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2467. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2468. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2469. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2470. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2471. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2472. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2473. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2474. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2475. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2476. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2477. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2478. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2479. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2480. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2481. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2482. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2483. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2484. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2485. default:
  2486. {
  2487. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2488. ftype = LLAMA_FTYPE_ALL_F32;
  2489. } break;
  2490. }
  2491. // this is a way to mark that we have "guessed" the file type
  2492. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2493. {
  2494. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  2495. if (kid >= 0) {
  2496. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  2497. }
  2498. }
  2499. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2500. for (int i = 0; i < n_kv; i++) {
  2501. const char * name = gguf_get_key(ctx_gguf, i);
  2502. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  2503. const std::string type_name =
  2504. type == GGUF_TYPE_ARRAY
  2505. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
  2506. : gguf_type_name(type);
  2507. std::string value = gguf_kv_to_str(ctx_gguf, i);
  2508. const size_t MAX_VALUE_LEN = 40;
  2509. if (value.size() > MAX_VALUE_LEN) {
  2510. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2511. }
  2512. replace_all(value, "\n", "\\n");
  2513. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2514. }
  2515. // print type counts
  2516. for (auto & kv : n_type) {
  2517. if (kv.second == 0) {
  2518. continue;
  2519. }
  2520. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2521. }
  2522. }
  2523. if (!llama_mmap::SUPPORTED) {
  2524. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2525. use_mmap = false;
  2526. }
  2527. this->use_mmap = use_mmap;
  2528. }
  2529. ~llama_model_loader() {
  2530. if (ctx_gguf) {
  2531. gguf_free(ctx_gguf);
  2532. }
  2533. if (ctx_meta) {
  2534. ggml_free(ctx_meta);
  2535. }
  2536. }
  2537. template<typename T>
  2538. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2539. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2540. const int kid = gguf_find_key(ctx_gguf, key.c_str());
  2541. if (kid < 0) {
  2542. if (required) {
  2543. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2544. }
  2545. return false;
  2546. }
  2547. struct GGUFMeta::ArrayInfo arr_info =
  2548. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
  2549. result = arr_info.length;
  2550. return true;
  2551. }
  2552. template<typename T>
  2553. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2554. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2555. return get_arr_n(llm_kv(kid), result, required);
  2556. }
  2557. template<typename T>
  2558. bool get_key(const std::string & key, T & result, const bool required = true) {
  2559. auto it = kv_overrides.find(key);
  2560. const struct llama_model_kv_override * override =
  2561. it != kv_overrides.end() ? &it->second : nullptr;
  2562. const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
  2563. if (required && !found) {
  2564. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2565. }
  2566. return found;
  2567. }
  2568. template<typename T>
  2569. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2570. return get_key(llm_kv(kid), result, required);
  2571. }
  2572. std::string get_arch_name() const {
  2573. return arch_name;
  2574. }
  2575. enum llm_arch get_arch() const {
  2576. return llm_kv.arch;
  2577. }
  2578. const char * get_tensor_name(int i) const {
  2579. return gguf_get_tensor_name(ctx_gguf, i);
  2580. }
  2581. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2582. return ggml_get_tensor(ctx_meta, name);
  2583. }
  2584. struct ggml_tensor * get_tensor_meta(int i) const {
  2585. return get_tensor_meta(get_tensor_name(i));
  2586. }
  2587. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) {
  2588. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  2589. ggml_set_name(tensor, ggml_get_name(meta));
  2590. n_created++;
  2591. return tensor;
  2592. }
  2593. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2594. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  2595. if (cur == NULL) {
  2596. if (!required) {
  2597. return NULL;
  2598. }
  2599. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2600. }
  2601. {
  2602. bool is_ok = true;
  2603. for (size_t i = 0; i < ne.size(); ++i) {
  2604. if (ne[i] != cur->ne[i]) {
  2605. is_ok = false;
  2606. break;
  2607. }
  2608. }
  2609. if (!is_ok) {
  2610. throw std::runtime_error(
  2611. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2612. __func__, name.c_str(),
  2613. llama_format_tensor_shape(ne).c_str(),
  2614. llama_format_tensor_shape(cur).c_str()));
  2615. }
  2616. }
  2617. return create_tensor_for(ctx, cur);
  2618. }
  2619. void done_getting_tensors() const {
  2620. if (n_created != n_tensors) {
  2621. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2622. }
  2623. }
  2624. size_t file_offset(const char * name) const {
  2625. const int idx = gguf_find_tensor(ctx_gguf, name);
  2626. if (idx < 0) {
  2627. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  2628. }
  2629. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  2630. }
  2631. void init_mapping(bool prefetch = true, llama_mlock * lmlock = nullptr) {
  2632. // prefetch the whole file - all the data is needed anyway
  2633. if (use_mmap) {
  2634. mapping.reset(new llama_mmap(&file, prefetch ? -1 : 0, ggml_is_numa()));
  2635. }
  2636. // compute the total size of all tensors for progress reporting
  2637. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  2638. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
  2639. size_data += ggml_nbytes(cur);
  2640. }
  2641. if (use_mmap && mapping) {
  2642. if (lmlock) {
  2643. lmlock->init(mapping->addr);
  2644. }
  2645. mmap_used_first = mapping->size;
  2646. }
  2647. }
  2648. void get_mapping_range(size_t * first, size_t * last, ggml_context * ctx) const {
  2649. GGML_ASSERT(mapping);
  2650. *first = mapping->size;
  2651. *last = 0;
  2652. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2653. const size_t offs = file_offset(ggml_get_name(tensor));
  2654. *first = std::min(*first, offs);
  2655. *last = std::max(*last, offs + ggml_nbytes(tensor));
  2656. }
  2657. }
  2658. // for backwards compatibility, does not support ggml-backend
  2659. void load_data_for(struct ggml_tensor * cur) const {
  2660. const size_t offs = file_offset(ggml_get_name(cur));
  2661. if (use_mmap && mapping) {
  2662. if (cur->data == nullptr) {
  2663. cur->data = (uint8_t *)mapping->addr + offs;
  2664. } else {
  2665. memcpy(cur->data, (uint8_t *)mapping->addr + offs, ggml_nbytes(cur));
  2666. }
  2667. } else {
  2668. GGML_ASSERT(cur->data != nullptr);
  2669. file.seek(offs, SEEK_SET);
  2670. file.read_raw(cur->data, ggml_nbytes(cur));
  2671. }
  2672. }
  2673. size_t size_done = 0;
  2674. size_t size_data = 0;
  2675. size_t mmap_used_first = -1;
  2676. size_t mmap_used_last = 0;
  2677. // Returns false if cancelled by progress_callback
  2678. bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) {
  2679. GGML_ASSERT(size_data != 0 && "call init_mapping() first");
  2680. std::vector<no_init<uint8_t>> read_buf;
  2681. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  2682. if (progress_callback) {
  2683. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  2684. return false;
  2685. }
  2686. }
  2687. const size_t offs = file_offset(ggml_get_name(cur));
  2688. if (use_mmap && mapping) {
  2689. if (buf_mmap && cur->data == nullptr) {
  2690. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs);
  2691. if (lmlock) {
  2692. lmlock->grow_to(offs + ggml_nbytes(cur));
  2693. }
  2694. mmap_used_first = std::min(mmap_used_first, offs);
  2695. mmap_used_last = std::max(mmap_used_last, offs + ggml_nbytes(cur));
  2696. } else {
  2697. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur));
  2698. }
  2699. } else {
  2700. if (ggml_backend_buffer_is_host(cur->buffer)) {
  2701. file.seek(offs, SEEK_SET);
  2702. file.read_raw(cur->data, ggml_nbytes(cur));
  2703. } else {
  2704. read_buf.resize(ggml_nbytes(cur));
  2705. file.seek(offs, SEEK_SET);
  2706. file.read_raw(read_buf.data(), ggml_nbytes(cur));
  2707. ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur));
  2708. }
  2709. }
  2710. size_done += ggml_nbytes(cur);
  2711. }
  2712. // check if this is the last call and do final cleanup
  2713. if (size_done >= size_data) {
  2714. // unmap offloaded tensors and metadata
  2715. if (use_mmap && mapping) {
  2716. mapping->unmap_fragment(0, mmap_used_first);
  2717. if (mmap_used_last != 0) {
  2718. mapping->unmap_fragment(mmap_used_last, mapping->size);
  2719. }
  2720. }
  2721. if (progress_callback) {
  2722. // Even though the model is done loading, we still honor
  2723. // cancellation since we need to free allocations.
  2724. return progress_callback(1.0f, progress_callback_user_data);
  2725. }
  2726. }
  2727. return true;
  2728. }
  2729. };
  2730. template<>
  2731. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  2732. uint32_t tmp;
  2733. const bool found = get_key(kid, tmp, required);
  2734. if (found) {
  2735. result = (enum llama_pooling_type) tmp;
  2736. } else {
  2737. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  2738. }
  2739. return found;
  2740. }
  2741. //
  2742. // load LLaMA models
  2743. //
  2744. static const char * llama_model_arch_name(llm_arch arch) {
  2745. auto it = LLM_ARCH_NAMES.find(arch);
  2746. if (it == LLM_ARCH_NAMES.end()) {
  2747. return "unknown";
  2748. }
  2749. return it->second;
  2750. }
  2751. static std::string llama_model_ftype_name(llama_ftype ftype) {
  2752. if (ftype & LLAMA_FTYPE_GUESSED) {
  2753. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  2754. }
  2755. switch (ftype) {
  2756. case LLAMA_FTYPE_ALL_F32: return "all F32";
  2757. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  2758. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  2759. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  2760. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  2761. return "Q4_1, some F16";
  2762. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  2763. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  2764. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  2765. // K-quants
  2766. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  2767. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  2768. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  2769. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  2770. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  2771. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  2772. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  2773. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  2774. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  2775. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  2776. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  2777. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  2778. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  2779. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  2780. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  2781. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  2782. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  2783. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  2784. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  2785. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  2786. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  2787. default: return "unknown, may not work";
  2788. }
  2789. }
  2790. static const char * llama_model_type_name(e_model type) {
  2791. switch (type) {
  2792. case MODEL_22M: return "22M";
  2793. case MODEL_33M: return "33M";
  2794. case MODEL_109M: return "109M";
  2795. case MODEL_137M: return "137M";
  2796. case MODEL_0_5B: return "0.5B";
  2797. case MODEL_1B: return "1B";
  2798. case MODEL_2B: return "2B";
  2799. case MODEL_3B: return "3B";
  2800. case MODEL_7B: return "7B";
  2801. case MODEL_8B: return "8B";
  2802. case MODEL_13B: return "13B";
  2803. case MODEL_14B: return "14B";
  2804. case MODEL_15B: return "15B";
  2805. case MODEL_20B: return "20B";
  2806. case MODEL_30B: return "30B";
  2807. case MODEL_34B: return "34B";
  2808. case MODEL_40B: return "40B";
  2809. case MODEL_65B: return "65B";
  2810. case MODEL_70B: return "70B";
  2811. case MODEL_SMALL: return "0.1B";
  2812. case MODEL_MEDIUM: return "0.4B";
  2813. case MODEL_LARGE: return "0.8B";
  2814. case MODEL_XL: return "1.5B";
  2815. default: return "?B";
  2816. }
  2817. }
  2818. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  2819. switch (type) {
  2820. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  2821. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  2822. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  2823. default: return "unknown";
  2824. }
  2825. }
  2826. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  2827. model.arch = ml.get_arch();
  2828. if (model.arch == LLM_ARCH_UNKNOWN) {
  2829. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  2830. }
  2831. }
  2832. static void llm_load_hparams(
  2833. llama_model_loader & ml,
  2834. llama_model & model) {
  2835. auto & hparams = model.hparams;
  2836. const gguf_context * ctx = ml.ctx_gguf;
  2837. // get metadata as string
  2838. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  2839. enum gguf_type type = gguf_get_kv_type(ctx, i);
  2840. if (type == GGUF_TYPE_ARRAY) {
  2841. continue;
  2842. }
  2843. const char * name = gguf_get_key(ctx, i);
  2844. const std::string value = gguf_kv_to_str(ctx, i);
  2845. model.gguf_kv.emplace(name, value);
  2846. }
  2847. // get general kv
  2848. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  2849. // get hparams kv
  2850. ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  2851. ml.get_key (LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  2852. ml.get_key (LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  2853. ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  2854. ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  2855. ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
  2856. ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  2857. ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  2858. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  2859. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  2860. if (hparams.n_expert > 0) {
  2861. GGML_ASSERT(hparams.n_expert_used > 0);
  2862. } else {
  2863. GGML_ASSERT(hparams.n_expert_used == 0);
  2864. }
  2865. // n_head_kv is optional, default to n_head
  2866. hparams.n_head_kv = hparams.n_head;
  2867. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  2868. bool rope_finetuned = false;
  2869. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  2870. hparams.rope_finetuned = rope_finetuned;
  2871. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  2872. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  2873. // rope_freq_base (optional)
  2874. hparams.rope_freq_base_train = 10000.0f;
  2875. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  2876. std::string rope_scaling("linear");
  2877. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  2878. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  2879. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  2880. // rope_freq_scale (inverse of the kv) is optional
  2881. float ropescale = 0.0f;
  2882. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  2883. // try the old key name
  2884. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  2885. }
  2886. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  2887. // sanity check for n_rot (optional)
  2888. {
  2889. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  2890. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  2891. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  2892. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  2893. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  2894. }
  2895. }
  2896. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  2897. // gpt-j n_rot = rotary_dim
  2898. }
  2899. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  2900. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  2901. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  2902. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  2903. // arch-specific KVs
  2904. switch (model.arch) {
  2905. case LLM_ARCH_LLAMA:
  2906. {
  2907. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2908. switch (hparams.n_layer) {
  2909. case 22: model.type = e_model::MODEL_1B; break;
  2910. case 26: model.type = e_model::MODEL_3B; break;
  2911. case 32: model.type = e_model::MODEL_7B; break;
  2912. case 40: model.type = e_model::MODEL_13B; break;
  2913. case 48: model.type = e_model::MODEL_34B; break;
  2914. case 60: model.type = e_model::MODEL_30B; break;
  2915. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  2916. default: model.type = e_model::MODEL_UNKNOWN;
  2917. }
  2918. } break;
  2919. case LLM_ARCH_MINICPM:
  2920. {
  2921. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2922. switch (hparams.n_layer) {
  2923. case 40: model.type = e_model::MODEL_2B; break;
  2924. default: model.type = e_model::MODEL_UNKNOWN;
  2925. }
  2926. } break;
  2927. case LLM_ARCH_FALCON:
  2928. {
  2929. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2930. switch (hparams.n_layer) {
  2931. case 32: model.type = e_model::MODEL_7B; break;
  2932. case 60: model.type = e_model::MODEL_40B; break;
  2933. default: model.type = e_model::MODEL_UNKNOWN;
  2934. }
  2935. } break;
  2936. case LLM_ARCH_BAICHUAN:
  2937. {
  2938. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2939. switch (hparams.n_layer) {
  2940. case 32: model.type = e_model::MODEL_7B; break;
  2941. case 40: model.type = e_model::MODEL_13B; break;
  2942. default: model.type = e_model::MODEL_UNKNOWN;
  2943. }
  2944. if (model.type == e_model::MODEL_13B) {
  2945. // TODO: become GGUF KV parameter
  2946. hparams.f_max_alibi_bias = 8.0f;
  2947. }
  2948. } break;
  2949. case LLM_ARCH_STARCODER:
  2950. {
  2951. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2952. switch (hparams.n_layer) {
  2953. case 24: model.type = e_model::MODEL_1B; break;
  2954. case 36: model.type = e_model::MODEL_3B; break;
  2955. case 42: model.type = e_model::MODEL_7B; break;
  2956. case 40: model.type = e_model::MODEL_15B; break;
  2957. default: model.type = e_model::MODEL_UNKNOWN;
  2958. }
  2959. } break;
  2960. case LLM_ARCH_PERSIMMON:
  2961. {
  2962. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2963. switch (hparams.n_layer) {
  2964. case 36: model.type = e_model::MODEL_8B; break;
  2965. default: model.type = e_model::MODEL_UNKNOWN;
  2966. }
  2967. } break;
  2968. case LLM_ARCH_REFACT:
  2969. {
  2970. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2971. switch (hparams.n_layer) {
  2972. case 32: model.type = e_model::MODEL_1B; break;
  2973. default: model.type = e_model::MODEL_UNKNOWN;
  2974. }
  2975. // TODO: become GGUF KV parameter
  2976. hparams.f_max_alibi_bias = 8.0f;
  2977. } break;
  2978. case LLM_ARCH_BERT:
  2979. {
  2980. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2981. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  2982. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  2983. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  2984. switch (hparams.n_layer) {
  2985. case 3:
  2986. model.type = e_model::MODEL_17M; break; // bge-micro
  2987. case 6:
  2988. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  2989. case 12:
  2990. switch (hparams.n_embd) {
  2991. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  2992. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  2993. } break;
  2994. case 24:
  2995. model.type = e_model::MODEL_335M; break; // bge-large
  2996. }
  2997. } break;
  2998. case LLM_ARCH_NOMIC_BERT:
  2999. {
  3000. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3001. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3002. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3003. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3004. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3005. model.type = e_model::MODEL_137M;
  3006. }
  3007. } break;
  3008. case LLM_ARCH_BLOOM:
  3009. {
  3010. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3011. switch (hparams.n_layer) {
  3012. case 24: model.type = e_model::MODEL_1B; break;
  3013. case 30:
  3014. switch (hparams.n_embd) {
  3015. case 2560: model.type = e_model::MODEL_3B; break;
  3016. case 4096: model.type = e_model::MODEL_7B; break;
  3017. } break;
  3018. }
  3019. // TODO: become GGUF KV parameter
  3020. hparams.f_max_alibi_bias = 8.0f;
  3021. } break;
  3022. case LLM_ARCH_MPT:
  3023. {
  3024. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3025. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3026. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3027. switch (hparams.n_layer) {
  3028. case 32: model.type = e_model::MODEL_7B; break;
  3029. case 48: model.type = e_model::MODEL_30B; break;
  3030. default: model.type = e_model::MODEL_UNKNOWN;
  3031. }
  3032. } break;
  3033. case LLM_ARCH_STABLELM:
  3034. {
  3035. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3036. switch (hparams.n_layer) {
  3037. case 24: model.type = e_model::MODEL_1B; break;
  3038. case 32: model.type = e_model::MODEL_3B; break;
  3039. default: model.type = e_model::MODEL_UNKNOWN;
  3040. }
  3041. } break;
  3042. case LLM_ARCH_QWEN:
  3043. {
  3044. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3045. switch (hparams.n_layer) {
  3046. case 32: model.type = e_model::MODEL_7B; break;
  3047. case 40: model.type = e_model::MODEL_13B; break;
  3048. default: model.type = e_model::MODEL_UNKNOWN;
  3049. }
  3050. } break;
  3051. case LLM_ARCH_QWEN2:
  3052. {
  3053. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3054. switch (hparams.n_layer) {
  3055. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3056. case 32: model.type = e_model::MODEL_7B; break;
  3057. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3058. case 80: model.type = e_model::MODEL_70B; break;
  3059. default: model.type = e_model::MODEL_UNKNOWN;
  3060. }
  3061. } break;
  3062. case LLM_ARCH_PHI2:
  3063. {
  3064. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3065. switch (hparams.n_layer) {
  3066. case 24: model.type = e_model::MODEL_1B; break;
  3067. case 32: model.type = e_model::MODEL_3B; break;
  3068. default: model.type = e_model::MODEL_UNKNOWN;
  3069. }
  3070. } break;
  3071. case LLM_ARCH_PLAMO:
  3072. {
  3073. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3074. switch (hparams.n_layer) {
  3075. case 40: model.type = e_model::MODEL_13B; break;
  3076. default: model.type = e_model::MODEL_UNKNOWN;
  3077. }
  3078. } break;
  3079. case LLM_ARCH_GPT2:
  3080. {
  3081. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3082. switch (hparams.n_layer) {
  3083. case 12: model.type = e_model::MODEL_SMALL; break;
  3084. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3085. case 36: model.type = e_model::MODEL_LARGE; break;
  3086. case 48: model.type = e_model::MODEL_XL; break;
  3087. default: model.type = e_model::MODEL_UNKNOWN;
  3088. }
  3089. } break;
  3090. case LLM_ARCH_CODESHELL:
  3091. {
  3092. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3093. switch (hparams.n_layer) {
  3094. case 42: model.type = e_model::MODEL_SMALL; break;
  3095. default: model.type = e_model::MODEL_UNKNOWN;
  3096. }
  3097. } break;
  3098. case LLM_ARCH_ORION:
  3099. {
  3100. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3101. switch (hparams.n_layer) {
  3102. case 40: model.type = e_model::MODEL_14B; break;
  3103. default: model.type = e_model::MODEL_UNKNOWN;
  3104. }
  3105. } break;
  3106. case LLM_ARCH_INTERNLM2:
  3107. {
  3108. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3109. switch (hparams.n_layer) {
  3110. case 32: model.type = e_model::MODEL_7B; break;
  3111. case 48: model.type = e_model::MODEL_20B; break;
  3112. default: model.type = e_model::MODEL_UNKNOWN;
  3113. }
  3114. } break;
  3115. case LLM_ARCH_GEMMA:
  3116. {
  3117. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3118. switch (hparams.n_layer) {
  3119. case 18: model.type = e_model::MODEL_2B; break;
  3120. case 28: model.type = e_model::MODEL_7B; break;
  3121. default: model.type = e_model::MODEL_UNKNOWN;
  3122. }
  3123. } break;
  3124. case LLM_ARCH_STARCODER2:
  3125. {
  3126. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3127. switch (hparams.n_layer) {
  3128. case 30: model.type = e_model::MODEL_3B; break;
  3129. case 32: model.type = e_model::MODEL_7B; break;
  3130. case 40: model.type = e_model::MODEL_15B; break;
  3131. default: model.type = e_model::MODEL_UNKNOWN;
  3132. }
  3133. } break;
  3134. case LLM_ARCH_MAMBA:
  3135. {
  3136. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3137. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3138. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3139. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3140. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3141. switch (hparams.n_layer) {
  3142. case 24:
  3143. switch (hparams.n_embd) {
  3144. case 768: model.type = e_model::MODEL_SMALL; break;
  3145. default: model.type = e_model::MODEL_UNKNOWN;
  3146. } break;
  3147. case 48:
  3148. switch (hparams.n_embd) {
  3149. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3150. case 1536: model.type = e_model::MODEL_LARGE; break;
  3151. case 2048: model.type = e_model::MODEL_XL; break;
  3152. default: model.type = e_model::MODEL_UNKNOWN;
  3153. } break;
  3154. case 64:
  3155. switch (hparams.n_embd) {
  3156. case 2560: model.type = e_model::MODEL_3B; break;
  3157. default: model.type = e_model::MODEL_UNKNOWN;
  3158. } break;
  3159. default: model.type = e_model::MODEL_UNKNOWN;
  3160. }
  3161. } break;
  3162. default: (void)0;
  3163. }
  3164. model.ftype = ml.ftype;
  3165. if (hparams.f_max_alibi_bias > 0.0f) {
  3166. hparams.need_kq_pos = true;
  3167. }
  3168. hparams.rope_type = llama_rope_type(&model);
  3169. }
  3170. // TODO: This should probably be in llama.h
  3171. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  3172. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3173. static void llm_load_vocab(
  3174. llama_model_loader & ml,
  3175. llama_model & model) {
  3176. auto & vocab = model.vocab;
  3177. struct gguf_context * ctx = ml.ctx_gguf;
  3178. const auto kv = LLM_KV(model.arch);
  3179. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3180. if (token_idx == -1) {
  3181. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3182. }
  3183. const float * scores = nullptr;
  3184. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3185. if (score_idx != -1) {
  3186. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3187. }
  3188. const int * toktypes = nullptr;
  3189. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3190. if (toktype_idx != -1) {
  3191. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3192. }
  3193. // determine vocab type
  3194. {
  3195. std::string tokenizer_name;
  3196. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3197. if (tokenizer_name == "llama") {
  3198. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3199. // default special tokens
  3200. vocab.special_bos_id = 1;
  3201. vocab.special_eos_id = 2;
  3202. vocab.special_unk_id = 0;
  3203. vocab.special_sep_id = -1;
  3204. vocab.special_pad_id = -1;
  3205. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3206. if (add_space_prefix_keyidx != -1) {
  3207. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3208. } // The default value of add_space_prefix is true.
  3209. } else if (tokenizer_name == "gpt2") {
  3210. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3211. // read bpe merges and populate bpe ranks
  3212. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3213. if (merges_keyidx == -1) {
  3214. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3215. }
  3216. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3217. for (int i = 0; i < n_merges; i++) {
  3218. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3219. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3220. std::string first;
  3221. std::string second;
  3222. const size_t pos = word.find(' ', 1);
  3223. if (pos != std::string::npos) {
  3224. first = word.substr(0, pos);
  3225. second = word.substr(pos + 1);
  3226. }
  3227. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3228. }
  3229. // default special tokens
  3230. vocab.special_bos_id = 11;
  3231. vocab.special_eos_id = 11;
  3232. vocab.special_unk_id = -1;
  3233. vocab.special_sep_id = -1;
  3234. vocab.special_pad_id = -1;
  3235. } else if (tokenizer_name == "bert") {
  3236. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3237. // default special tokens
  3238. vocab.special_bos_id = 101;
  3239. vocab.special_eos_id = 102;
  3240. vocab.special_unk_id = 100;
  3241. vocab.special_sep_id = -1;
  3242. vocab.special_pad_id = -1;
  3243. vocab.add_space_prefix = false;
  3244. } else {
  3245. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3246. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3247. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3248. }
  3249. }
  3250. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3251. vocab.id_to_token.resize(n_vocab);
  3252. for (uint32_t i = 0; i < n_vocab; i++) {
  3253. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3254. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3255. vocab.token_to_id[word] = i;
  3256. auto & token_data = vocab.id_to_token[i];
  3257. token_data.text = std::move(word);
  3258. token_data.score = scores ? scores[i] : 0.0f;
  3259. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3260. }
  3261. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3262. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3263. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3264. try {
  3265. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3266. } catch (const std::exception & e) {
  3267. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3268. vocab.linefeed_id = vocab.special_pad_id;
  3269. }
  3270. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3271. vocab.linefeed_id = vocab.special_pad_id;
  3272. } else {
  3273. const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
  3274. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3275. vocab.linefeed_id = ids[0];
  3276. }
  3277. // special tokens
  3278. {
  3279. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3280. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3281. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3282. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3283. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3284. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3285. };
  3286. for (const auto & it : special_token_types) {
  3287. const std::string & key = kv(std::get<0>(it));
  3288. int32_t & id = std::get<1>(it);
  3289. uint32_t new_id;
  3290. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3291. continue;
  3292. }
  3293. if (new_id >= vocab.id_to_token.size()) {
  3294. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3295. __func__, key.c_str(), new_id, id);
  3296. } else {
  3297. id = new_id;
  3298. }
  3299. }
  3300. // Handle add_bos_token and add_eos_token
  3301. {
  3302. bool temp = true;
  3303. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3304. vocab.special_add_bos = int(temp);
  3305. }
  3306. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3307. vocab.special_add_eos = int(temp);
  3308. }
  3309. }
  3310. }
  3311. // build special tokens cache
  3312. {
  3313. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3314. // and will always be correctly labeled in 'added_tokens.json' etc.
  3315. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3316. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3317. // are special tokens.
  3318. // From testing, this appears to correlate 1:1 with special tokens.
  3319. //
  3320. // Counting special tokens and verifying in only one direction
  3321. // is sufficient to detect difference in those two sets.
  3322. //
  3323. uint32_t special_tokens_count_by_type = 0;
  3324. uint32_t special_tokens_count_from_verification = 0;
  3325. bool special_tokens_definition_mismatch = false;
  3326. for (const auto & t : vocab.token_to_id) {
  3327. const auto & token = t.first;
  3328. const auto & id = t.second;
  3329. // Count all non-normal tokens in the vocab while iterating
  3330. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3331. special_tokens_count_by_type++;
  3332. }
  3333. // Skip single character tokens
  3334. if (token.length() > 1) {
  3335. bool is_tokenizable = false;
  3336. // Split token string representation in two, in all possible ways
  3337. // and check if both halves can be matched to a valid token
  3338. for (unsigned i = 1; i < token.length();) {
  3339. const auto left = token.substr(0, i);
  3340. const auto right = token.substr(i);
  3341. // check if we didnt partition in the middle of a utf sequence
  3342. auto utf = utf8_len(left.at(left.length() - 1));
  3343. if (utf == 1) {
  3344. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3345. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3346. is_tokenizable = true;
  3347. break;
  3348. }
  3349. i++;
  3350. } else {
  3351. // skip over the rest of multibyte utf sequence
  3352. i += utf - 1;
  3353. }
  3354. }
  3355. if (!is_tokenizable) {
  3356. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3357. // it's faster to re-filter them here, since there are way less candidates now
  3358. // Calculate a total "utf" length of a token string representation
  3359. size_t utf8_str_len = 0;
  3360. for (unsigned i = 0; i < token.length();) {
  3361. utf8_str_len++;
  3362. i += utf8_len(token.at(i));
  3363. }
  3364. // And skip the ones which are one character
  3365. if (utf8_str_len > 1) {
  3366. // At this point what we have left are special tokens only
  3367. vocab.special_tokens_cache[token] = id;
  3368. // Count manually found special tokens
  3369. special_tokens_count_from_verification++;
  3370. // If this manually found special token is not marked as such, flag a mismatch
  3371. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3372. special_tokens_definition_mismatch = true;
  3373. }
  3374. }
  3375. }
  3376. }
  3377. }
  3378. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3379. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3380. __func__,
  3381. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3382. special_tokens_count_by_type, vocab.id_to_token.size()
  3383. );
  3384. } else {
  3385. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3386. __func__,
  3387. special_tokens_count_from_verification, vocab.id_to_token.size()
  3388. );
  3389. }
  3390. }
  3391. }
  3392. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3393. const auto & hparams = model.hparams;
  3394. const auto & vocab = model.vocab;
  3395. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3396. // hparams
  3397. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3398. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3399. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3400. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3401. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3402. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3403. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3404. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3405. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3406. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3407. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3408. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3409. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3410. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3411. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3412. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3413. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3414. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3415. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3416. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3417. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3418. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3419. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3420. LLAMA_LOG_INFO("%s: causal attm = %d\n", __func__, hparams.causal_attn);
  3421. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3422. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3423. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3424. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3425. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3426. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3427. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3428. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3429. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3430. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3431. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3432. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3433. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3434. if (ml.n_elements >= 1e12) {
  3435. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3436. } else if (ml.n_elements >= 1e9) {
  3437. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3438. } else if (ml.n_elements >= 1e6) {
  3439. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3440. } else {
  3441. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3442. }
  3443. if (ml.n_bytes < GiB) {
  3444. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3445. } else {
  3446. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3447. }
  3448. // general kv
  3449. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3450. // special tokens
  3451. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3452. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3453. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3454. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3455. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3456. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3457. }
  3458. // Returns false if cancelled by progress_callback
  3459. static bool llm_load_tensors(
  3460. llama_model_loader & ml,
  3461. llama_model & model,
  3462. int n_gpu_layers,
  3463. enum llama_split_mode split_mode,
  3464. int main_gpu,
  3465. const float * tensor_split,
  3466. bool use_mlock,
  3467. llama_progress_callback progress_callback,
  3468. void * progress_callback_user_data) {
  3469. model.t_start_us = ggml_time_us();
  3470. auto & hparams = model.hparams;
  3471. model.split_mode = split_mode;
  3472. model.main_gpu = main_gpu;
  3473. model.n_gpu_layers = n_gpu_layers;
  3474. const int64_t n_layer = hparams.n_layer;
  3475. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  3476. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  3477. model.buft_input = llama_default_buffer_type_cpu(true);
  3478. model.buft_layer.resize(n_layer);
  3479. // assign cpu layers
  3480. for (int64_t i = 0; i < i_gpu_start; ++i) {
  3481. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  3482. }
  3483. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  3484. // calculate the split points
  3485. int device_count = llama_get_device_count();
  3486. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  3487. std::vector<float> splits(device_count);
  3488. if (all_zero) {
  3489. // default split, by free memory
  3490. for (int i = 0; i < device_count; ++i) {
  3491. splits[i] = llama_get_device_memory(i);
  3492. }
  3493. } else {
  3494. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  3495. }
  3496. // sum and normalize the splits to get the split points
  3497. float split_sum = 0.0f;
  3498. for (int i = 0; i < device_count; ++i) {
  3499. split_sum += splits[i];
  3500. splits[i] = split_sum;
  3501. }
  3502. for (int i = 0; i < device_count; ++i) {
  3503. splits[i] /= split_sum;
  3504. }
  3505. // assign the repeating layers to the devices according to the splits
  3506. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  3507. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3508. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  3509. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  3510. }
  3511. // assign the output layer
  3512. if (n_gpu_layers > n_layer) {
  3513. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  3514. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  3515. } else {
  3516. model.buft_output = llama_default_buffer_type_cpu(true);
  3517. }
  3518. } else {
  3519. ggml_backend_buffer_type_t split_buft;
  3520. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  3521. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  3522. } else {
  3523. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  3524. split_buft = llama_default_buffer_type_offload(main_gpu);
  3525. }
  3526. // assign the repeating layers
  3527. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3528. model.buft_layer[i] = {
  3529. split_buft,
  3530. llama_default_buffer_type_offload(main_gpu)
  3531. };
  3532. }
  3533. // assign the output layer
  3534. if (n_gpu_layers > n_layer) {
  3535. model.buft_output = {
  3536. split_buft,
  3537. llama_default_buffer_type_offload(main_gpu)
  3538. };
  3539. } else {
  3540. model.buft_output = llama_default_buffer_type_cpu(true);
  3541. }
  3542. }
  3543. // count used buffer types
  3544. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  3545. buft_layer_count[model.buft_input.buft]++;
  3546. buft_layer_count[model.buft_input.buft_matrix]++;
  3547. buft_layer_count[model.buft_output.buft]++;
  3548. buft_layer_count[model.buft_output.buft_matrix]++;
  3549. for (int64_t i = 0; i < n_layer; ++i) {
  3550. buft_layer_count[model.buft_layer[i].buft]++;
  3551. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  3552. }
  3553. // create one context per buffer type
  3554. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  3555. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  3556. for (auto & it : buft_layer_count) {
  3557. struct ggml_init_params params = {
  3558. /*.mem_size =*/ ctx_size,
  3559. /*.mem_buffer =*/ NULL,
  3560. /*.no_alloc =*/ true,
  3561. };
  3562. ggml_context * ctx = ggml_init(params);
  3563. if (!ctx) {
  3564. throw std::runtime_error(format("failed to create context"));
  3565. }
  3566. ctx_map[it.first] = ctx;
  3567. model.ctxs.push_back(ctx);
  3568. }
  3569. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  3570. // create tensors for the weights
  3571. {
  3572. const int64_t n_embd = hparams.n_embd;
  3573. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  3574. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  3575. const int64_t n_embd_gqa = n_embd_v_gqa;
  3576. const int64_t n_vocab = hparams.n_vocab;
  3577. const int64_t n_vocab_type = hparams.n_vocab_type;
  3578. const int64_t n_ff = hparams.n_ff;
  3579. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  3580. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  3581. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  3582. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  3583. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  3584. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  3585. model.layers.resize(n_layer);
  3586. const auto tn = LLM_TN(model.arch);
  3587. switch (model.arch) {
  3588. case LLM_ARCH_LLAMA:
  3589. case LLM_ARCH_REFACT:
  3590. case LLM_ARCH_MINICPM:
  3591. {
  3592. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3593. // output
  3594. {
  3595. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3596. if (model.arch != LLM_ARCH_MINICPM){
  3597. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  3598. // if output is NULL, init from the input tok embed
  3599. if (model.output == NULL) {
  3600. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3601. ml.n_created--; // artificial tensor
  3602. ml.size_data += ggml_nbytes(model.output);
  3603. }
  3604. }
  3605. }
  3606. for (int i = 0; i < n_layer; ++i) {
  3607. ggml_context * ctx_layer = ctx_for_layer(i);
  3608. ggml_context * ctx_split = ctx_for_layer_split(i);
  3609. auto & layer = model.layers[i];
  3610. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3611. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3612. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3613. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3614. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3615. // optional bias tensors
  3616. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  3617. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  3618. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  3619. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  3620. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3621. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false);
  3622. if (layer.ffn_gate_inp == nullptr) {
  3623. GGML_ASSERT(hparams.n_expert == 0);
  3624. GGML_ASSERT(hparams.n_expert_used == 0);
  3625. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3626. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3627. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3628. } else {
  3629. GGML_ASSERT(hparams.n_expert > 0);
  3630. GGML_ASSERT(hparams.n_expert_used > 0);
  3631. // MoE branch
  3632. for (uint32_t x = 0; x < hparams.n_expert; ++x) {
  3633. layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
  3634. layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
  3635. layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
  3636. }
  3637. }
  3638. }
  3639. } break;
  3640. case LLM_ARCH_BAICHUAN:
  3641. {
  3642. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3643. {
  3644. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3645. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3646. }
  3647. for (int i = 0; i < n_layer; ++i) {
  3648. ggml_context * ctx_layer = ctx_for_layer(i);
  3649. ggml_context * ctx_split = ctx_for_layer_split(i);
  3650. auto & layer = model.layers[i];
  3651. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3652. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3653. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3654. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3655. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3656. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3657. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3658. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3659. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3660. }
  3661. } break;
  3662. case LLM_ARCH_FALCON:
  3663. {
  3664. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3665. // output
  3666. {
  3667. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3668. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3669. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
  3670. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3671. } else {
  3672. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  3673. ml.n_created--; // artificial tensor
  3674. ml.size_data += ggml_nbytes(model.output);
  3675. }
  3676. }
  3677. for (int i = 0; i < n_layer; ++i) {
  3678. ggml_context * ctx_layer = ctx_for_layer(i);
  3679. ggml_context * ctx_split = ctx_for_layer_split(i);
  3680. auto & layer = model.layers[i];
  3681. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3682. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3683. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  3684. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
  3685. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
  3686. }
  3687. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3688. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3689. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3690. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3691. }
  3692. } break;
  3693. case LLM_ARCH_STARCODER:
  3694. {
  3695. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3696. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  3697. // output
  3698. {
  3699. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3700. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3701. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3702. }
  3703. for (int i = 0; i < n_layer; ++i) {
  3704. ggml_context * ctx_layer = ctx_for_layer(i);
  3705. ggml_context * ctx_split = ctx_for_layer_split(i);
  3706. auto & layer = model.layers[i];
  3707. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3708. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3709. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3710. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3711. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3712. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3713. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3714. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3715. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3716. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3717. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3718. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3719. }
  3720. } break;
  3721. case LLM_ARCH_PERSIMMON:
  3722. {
  3723. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3724. {
  3725. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3726. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3727. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3728. }
  3729. for (int i = 0; i < n_layer; ++i) {
  3730. ggml_context * ctx_layer = ctx_for_layer(i);
  3731. ggml_context * ctx_split = ctx_for_layer_split(i);
  3732. auto & layer = model.layers[i];
  3733. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3734. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3735. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3736. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3737. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3738. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3739. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3740. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3741. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3742. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3743. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3744. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3745. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  3746. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  3747. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  3748. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  3749. }
  3750. } break;
  3751. case LLM_ARCH_BERT:
  3752. case LLM_ARCH_NOMIC_BERT:
  3753. {
  3754. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3755. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  3756. if (model.arch == LLM_ARCH_BERT) {
  3757. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  3758. }
  3759. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  3760. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  3761. for (int i = 0; i < n_layer; ++i) {
  3762. ggml_context * ctx_layer = ctx_for_layer(i);
  3763. ggml_context * ctx_split = ctx_for_layer_split(i);
  3764. auto & layer = model.layers[i];
  3765. if (model.arch == LLM_ARCH_BERT) {
  3766. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3767. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  3768. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3769. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  3770. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3771. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  3772. } else {
  3773. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3774. }
  3775. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3776. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  3777. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  3778. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3779. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3780. if (model.arch == LLM_ARCH_BERT) {
  3781. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3782. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3783. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3784. } else {
  3785. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3786. }
  3787. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  3788. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  3789. }
  3790. } break;
  3791. case LLM_ARCH_BLOOM:
  3792. {
  3793. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3794. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  3795. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  3796. // output
  3797. {
  3798. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3799. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3800. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3801. }
  3802. for (int i = 0; i < n_layer; ++i) {
  3803. ggml_context * ctx_layer = ctx_for_layer(i);
  3804. ggml_context * ctx_split = ctx_for_layer_split(i);
  3805. auto & layer = model.layers[i];
  3806. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3807. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3808. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3809. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3810. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3811. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3812. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3813. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3814. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3815. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3816. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3817. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3818. }
  3819. } break;
  3820. case LLM_ARCH_MPT:
  3821. {
  3822. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3823. // output
  3824. {
  3825. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3826. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  3827. // same as tok_embd, duplicated to allow offloading
  3828. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3829. ml.n_created--; // artificial tensor
  3830. ml.size_data += ggml_nbytes(model.output);
  3831. }
  3832. for (int i = 0; i < n_layer; ++i) {
  3833. ggml_context * ctx_layer = ctx_for_layer(i);
  3834. ggml_context * ctx_split = ctx_for_layer_split(i);
  3835. auto & layer = model.layers[i];
  3836. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3837. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  3838. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3839. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  3840. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3841. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  3842. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3843. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  3844. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3845. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  3846. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3847. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  3848. // AWQ ScaleActivation layer
  3849. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  3850. }
  3851. } break;
  3852. case LLM_ARCH_STABLELM:
  3853. {
  3854. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3855. // output
  3856. {
  3857. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3858. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3859. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3860. }
  3861. for (int i = 0; i < n_layer; ++i) {
  3862. ggml_context * ctx_layer = ctx_for_layer(i);
  3863. ggml_context * ctx_split = ctx_for_layer_split(i);
  3864. auto & layer = model.layers[i];
  3865. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3866. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3867. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3868. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3869. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3870. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3871. // optional bias tensors, present in Stable LM 2 1.6B
  3872. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  3873. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  3874. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  3875. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3876. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3877. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3878. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3879. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3880. }
  3881. } break;
  3882. case LLM_ARCH_QWEN:
  3883. {
  3884. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3885. // output
  3886. {
  3887. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3888. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3889. }
  3890. for (int i = 0; i < n_layer; ++i) {
  3891. ggml_context * ctx_layer = ctx_for_layer(i);
  3892. ggml_context * ctx_split = ctx_for_layer_split(i);
  3893. auto & layer = model.layers[i];
  3894. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3895. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  3896. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  3897. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3898. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3899. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  3900. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  3901. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  3902. }
  3903. } break;
  3904. case LLM_ARCH_QWEN2:
  3905. {
  3906. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3907. // output
  3908. {
  3909. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3910. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3911. }
  3912. for (int i = 0; i < n_layer; ++i) {
  3913. ggml_context * ctx_layer = ctx_for_layer(i);
  3914. ggml_context * ctx_split = ctx_for_layer_split(i);
  3915. auto & layer = model.layers[i];
  3916. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3917. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3918. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3919. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3920. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3921. // optional bias tensors
  3922. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  3923. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  3924. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  3925. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3926. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3927. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3928. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3929. }
  3930. } break;
  3931. case LLM_ARCH_PHI2:
  3932. {
  3933. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3934. // output
  3935. {
  3936. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3937. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3938. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3939. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  3940. }
  3941. for (int i = 0; i < n_layer; ++i) {
  3942. ggml_context * ctx_layer = ctx_for_layer(i);
  3943. ggml_context * ctx_split = ctx_for_layer_split(i);
  3944. auto & layer = model.layers[i];
  3945. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3946. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3947. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  3948. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  3949. if (layer.wqkv == nullptr) {
  3950. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3951. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  3952. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3953. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  3954. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3955. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  3956. }
  3957. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3958. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3959. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3960. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3961. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3962. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3963. }
  3964. } break;
  3965. case LLM_ARCH_PLAMO:
  3966. {
  3967. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3968. // output
  3969. {
  3970. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3971. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3972. }
  3973. for (int i = 0; i < n_layer; ++i) {
  3974. ggml_context * ctx_layer = ctx_for_layer(i);
  3975. ggml_context * ctx_split = ctx_for_layer_split(i);
  3976. auto & layer = model.layers[i];
  3977. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3978. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3979. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3980. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3981. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3982. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3983. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3984. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3985. }
  3986. } break;
  3987. case LLM_ARCH_GPT2:
  3988. {
  3989. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3990. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  3991. // output
  3992. {
  3993. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3994. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3995. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3996. }
  3997. for (int i = 0; i < n_layer; ++i) {
  3998. ggml_context * ctx_layer = ctx_for_layer(i);
  3999. ggml_context * ctx_split = ctx_for_layer_split(i);
  4000. auto & layer = model.layers[i];
  4001. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4002. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4003. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4004. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4005. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4006. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4007. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4008. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4009. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4010. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4011. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4012. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4013. }
  4014. } break;
  4015. case LLM_ARCH_CODESHELL:
  4016. {
  4017. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4018. // output
  4019. {
  4020. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4021. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4022. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4023. }
  4024. for (int i = 0; i < n_layer; ++i) {
  4025. ggml_context * ctx_layer = ctx_for_layer(i);
  4026. ggml_context * ctx_split = ctx_for_layer_split(i);
  4027. auto & layer = model.layers[i];
  4028. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4029. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4030. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4031. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4032. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4033. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4034. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4035. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4036. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4037. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4038. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4039. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4040. }
  4041. } break;
  4042. case LLM_ARCH_ORION:
  4043. {
  4044. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4045. {
  4046. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4047. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4048. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4049. }
  4050. for (int i = 0; i < n_layer; ++i) {
  4051. ggml_context * ctx_layer = ctx_for_layer(i);
  4052. ggml_context * ctx_split = ctx_for_layer_split(i);
  4053. auto & layer = model.layers[i];
  4054. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4055. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4056. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4057. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4058. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4059. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4060. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4061. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4062. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4063. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4064. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4065. }
  4066. } break;
  4067. case LLM_ARCH_INTERNLM2:
  4068. {
  4069. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4070. // output
  4071. {
  4072. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4073. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4074. }
  4075. for (int i = 0; i < n_layer; ++i) {
  4076. ggml_context * ctx_layer = ctx_for_layer(i);
  4077. ggml_context * ctx_split = ctx_for_layer_split(i);
  4078. auto & layer = model.layers[i];
  4079. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4080. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4081. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4082. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4083. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4084. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4085. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4086. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4087. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4088. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4089. }
  4090. } break;
  4091. case LLM_ARCH_GEMMA:
  4092. {
  4093. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4094. // output
  4095. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4096. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4097. ml.n_created--; // artificial tensor
  4098. ml.size_data += ggml_nbytes(model.output);
  4099. const int64_t n_ff = hparams.n_ff;
  4100. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4101. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4102. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4103. for (uint32_t i = 0; i < n_layer; ++i) {
  4104. ggml_context * ctx_layer = ctx_for_layer(i);
  4105. ggml_context * ctx_split = ctx_for_layer_split(i);
  4106. auto & layer = model.layers[i];
  4107. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4108. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4109. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4110. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4111. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4112. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4113. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4114. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4115. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4116. }
  4117. } break;
  4118. case LLM_ARCH_STARCODER2:
  4119. {
  4120. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4121. // output
  4122. {
  4123. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4124. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4125. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4126. // if output is NULL, init from the input tok embed
  4127. if (model.output == NULL) {
  4128. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4129. ml.n_created--; // artificial tensor
  4130. ml.size_data += ggml_nbytes(model.output);
  4131. }
  4132. }
  4133. for (int i = 0; i < n_layer; ++i) {
  4134. ggml_context * ctx_layer = ctx_for_layer(i);
  4135. ggml_context * ctx_split = ctx_for_layer_split(i);
  4136. auto & layer = model.layers[i];
  4137. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4138. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4139. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4140. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4141. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4142. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4143. // optional bias tensors
  4144. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4145. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4146. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4147. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4148. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4149. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4150. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4151. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4152. // optional bias tensors
  4153. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4154. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4155. }
  4156. } break;
  4157. case LLM_ARCH_MAMBA:
  4158. {
  4159. const int64_t d_conv = hparams.ssm_d_conv;
  4160. const int64_t d_inner = hparams.ssm_d_inner;
  4161. const int64_t d_state = hparams.ssm_d_state;
  4162. const int64_t dt_rank = hparams.ssm_dt_rank;
  4163. // only an expansion factor of 2 is supported for now
  4164. GGML_ASSERT(2 * n_embd == d_inner);
  4165. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4166. // output
  4167. {
  4168. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4169. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4170. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4171. if (model.output == NULL) {
  4172. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4173. ml.n_created--; // artificial tensor
  4174. ml.size_data += ggml_nbytes(model.output);
  4175. }
  4176. }
  4177. for (int i = 0; i < n_layer; ++i) {
  4178. ggml_context * ctx_layer = ctx_for_layer(i);
  4179. ggml_context * ctx_split = ctx_for_layer_split(i);
  4180. auto & layer = model.layers[i];
  4181. // norm
  4182. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4183. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4184. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4185. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4186. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4187. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4188. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4189. // no "weight" suffix for these
  4190. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4191. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4192. // out_proj
  4193. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4194. }
  4195. } break;
  4196. default:
  4197. throw std::runtime_error("unknown architecture");
  4198. }
  4199. }
  4200. ml.done_getting_tensors();
  4201. ml.init_mapping(true, use_mlock ? &model.mlock_mmap : nullptr);
  4202. // create the backend buffers
  4203. std::vector<std::pair<ggml_context *, ggml_backend_buffer_t>> ctx_bufs;
  4204. for (auto & it : ctx_map) {
  4205. ggml_backend_buffer_type_t buft = it.first;
  4206. ggml_context * ctx = it.second;
  4207. ggml_backend_buffer_t buf = nullptr;
  4208. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  4209. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  4210. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  4211. if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
  4212. size_t first, last;
  4213. ml.get_mapping_range(&first, &last, ctx);
  4214. buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
  4215. }
  4216. #ifdef GGML_USE_METAL
  4217. else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
  4218. const size_t max_size = ggml_get_max_tensor_size(ctx);
  4219. size_t first, last;
  4220. ml.get_mapping_range(&first, &last, ctx);
  4221. buf = ggml_backend_metal_buffer_from_ptr((char *) ml.mapping->addr + first, last - first, max_size);
  4222. }
  4223. #endif
  4224. else {
  4225. buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  4226. if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) {
  4227. model.mlock_bufs.emplace_back(new llama_mlock);
  4228. auto & mlock_buf = model.mlock_bufs.back();
  4229. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  4230. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  4231. }
  4232. }
  4233. if (buf == nullptr) {
  4234. throw std::runtime_error("failed to allocate buffer");
  4235. }
  4236. // indicate that this buffer contains weights
  4237. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  4238. ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  4239. model.bufs.push_back(buf);
  4240. ctx_bufs.emplace_back(ctx, buf);
  4241. }
  4242. if (llama_supports_gpu_offload()) {
  4243. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  4244. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  4245. if (n_gpu_layers > (int) hparams.n_layer) {
  4246. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  4247. }
  4248. const int max_backend_supported_layers = hparams.n_layer + 1;
  4249. const int max_offloadable_layers = hparams.n_layer + 1;
  4250. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  4251. }
  4252. // print memory requirements
  4253. for (ggml_backend_buffer_t buf : model.bufs) {
  4254. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  4255. }
  4256. // populate tensors_by_name
  4257. for (ggml_context * ctx : model.ctxs) {
  4258. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  4259. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  4260. }
  4261. }
  4262. // load tensor data
  4263. for (auto & it : ctx_bufs) {
  4264. ggml_context * ctx = it.first;
  4265. ggml_backend_buffer_t buf = it.second;
  4266. if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) {
  4267. return false;
  4268. }
  4269. }
  4270. model.mapping = std::move(ml.mapping);
  4271. // loading time will be recalculate after the first eval, so
  4272. // we take page faults deferred by mmap() into consideration
  4273. model.t_load_us = ggml_time_us() - model.t_start_us;
  4274. return true;
  4275. }
  4276. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  4277. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  4278. try {
  4279. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  4280. model.hparams.vocab_only = params.vocab_only;
  4281. try {
  4282. llm_load_arch(ml, model);
  4283. } catch(const std::exception & e) {
  4284. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  4285. }
  4286. try {
  4287. llm_load_hparams(ml, model);
  4288. } catch(const std::exception & e) {
  4289. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  4290. }
  4291. try {
  4292. llm_load_vocab(ml, model);
  4293. } catch(const std::exception & e) {
  4294. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  4295. }
  4296. llm_load_print_meta(ml, model);
  4297. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  4298. throw std::runtime_error("vocab size mismatch");
  4299. }
  4300. if (params.vocab_only) {
  4301. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  4302. return 0;
  4303. }
  4304. #ifdef GGML_USE_KOMPUTE
  4305. if (params.n_gpu_layers > 0 && (
  4306. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  4307. || !(
  4308. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  4309. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  4310. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  4311. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  4312. )
  4313. )) {
  4314. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  4315. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  4316. params.n_gpu_layers = 0;
  4317. }
  4318. #endif
  4319. if (!llm_load_tensors(
  4320. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  4321. params.progress_callback, params.progress_callback_user_data
  4322. )) {
  4323. return -2;
  4324. }
  4325. } catch (const std::exception & err) {
  4326. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  4327. return -1;
  4328. }
  4329. return 0;
  4330. }
  4331. //
  4332. // llm_build
  4333. //
  4334. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  4335. enum llm_ffn_op_type {
  4336. LLM_FFN_SILU,
  4337. LLM_FFN_GELU,
  4338. LLM_FFN_RELU,
  4339. LLM_FFN_RELU_SQR,
  4340. };
  4341. enum llm_ffn_gate_type {
  4342. LLM_FFN_SEQ,
  4343. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  4344. };
  4345. enum llm_norm_type {
  4346. LLM_NORM,
  4347. LLM_NORM_RMS,
  4348. };
  4349. static struct ggml_tensor * llm_build_inp_embd(
  4350. struct ggml_context * ctx,
  4351. const llama_hparams & hparams,
  4352. const llama_batch & batch,
  4353. struct ggml_tensor * tok_embd,
  4354. struct ggml_tensor * inp_tokens,
  4355. struct ggml_tensor * inp_embd,
  4356. const llm_build_cb & cb) {
  4357. const int64_t n_embd = hparams.n_embd;
  4358. struct ggml_tensor * inpL;
  4359. if (batch.token) {
  4360. struct ggml_tensor * inp_tokens_v = ggml_view_1d(ctx, inp_tokens, batch.n_tokens, 0);
  4361. cb(inp_tokens, "inp_tokens", -1);
  4362. inpL = ggml_get_rows(ctx, tok_embd, inp_tokens_v);
  4363. } else {
  4364. #ifdef GGML_USE_MPI
  4365. GGML_ASSERT(false && "not implemented");
  4366. #endif
  4367. inpL = ggml_view_2d(ctx, inp_embd, n_embd, batch.n_tokens, inp_embd->nb[1], 0);
  4368. }
  4369. return inpL;
  4370. }
  4371. static void llm_build_kv_store(
  4372. struct ggml_context * ctx,
  4373. const llama_hparams & hparams,
  4374. const llama_kv_cache & kv,
  4375. struct ggml_cgraph * graph,
  4376. struct ggml_tensor * k_cur,
  4377. struct ggml_tensor * v_cur,
  4378. int64_t n_ctx,
  4379. int32_t n_tokens,
  4380. int32_t kv_head,
  4381. const llm_build_cb & cb,
  4382. int64_t il) {
  4383. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4384. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4385. GGML_ASSERT(kv.size == n_ctx);
  4386. // compute the transposed [n_tokens, n_embd] V matrix
  4387. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
  4388. //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
  4389. cb(v_cur_t, "v_cur_t", il);
  4390. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  4391. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  4392. cb(k_cache_view, "k_cache_view", il);
  4393. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  4394. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  4395. (kv_head)*ggml_element_size(kv.v_l[il]));
  4396. cb(v_cache_view, "v_cache_view", il);
  4397. // important: storing RoPE-ed version of K in the KV cache!
  4398. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  4399. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  4400. }
  4401. static struct ggml_tensor * llm_build_norm(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * cur,
  4404. const llama_hparams & hparams,
  4405. struct ggml_tensor * mw,
  4406. struct ggml_tensor * mb,
  4407. llm_norm_type type,
  4408. const llm_build_cb & cb,
  4409. int il) {
  4410. switch (type) {
  4411. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  4412. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  4413. }
  4414. if (mw || mb) {
  4415. cb(cur, "norm", il);
  4416. }
  4417. if (mw) {
  4418. cur = ggml_mul(ctx, cur, mw);
  4419. if (mb) {
  4420. cb(cur, "norm_w", il);
  4421. }
  4422. }
  4423. if (mb) {
  4424. cur = ggml_add(ctx, cur, mb);
  4425. }
  4426. return cur;
  4427. }
  4428. static struct ggml_tensor * llm_build_ffn(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * cur,
  4431. struct ggml_tensor * up,
  4432. struct ggml_tensor * up_b,
  4433. struct ggml_tensor * gate,
  4434. struct ggml_tensor * gate_b,
  4435. struct ggml_tensor * down,
  4436. struct ggml_tensor * down_b,
  4437. struct ggml_tensor * act_scales,
  4438. llm_ffn_op_type type_op,
  4439. llm_ffn_gate_type type_gate,
  4440. const llm_build_cb & cb,
  4441. int il) {
  4442. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  4443. cb(tmp, "ffn_up", il);
  4444. if (up_b) {
  4445. tmp = ggml_add(ctx, tmp, up_b);
  4446. cb(tmp, "ffn_up_b", il);
  4447. }
  4448. if (gate) {
  4449. switch (type_gate) {
  4450. case LLM_FFN_SEQ:
  4451. {
  4452. cur = ggml_mul_mat(ctx, gate, tmp);
  4453. cb(cur, "ffn_gate", il);
  4454. } break;
  4455. case LLM_FFN_PAR:
  4456. {
  4457. cur = ggml_mul_mat(ctx, gate, cur);
  4458. cb(cur, "ffn_gate", il);
  4459. } break;
  4460. }
  4461. if (gate_b) {
  4462. cur = ggml_add(ctx, cur, gate_b);
  4463. cb(cur, "ffn_gate_b", il);
  4464. }
  4465. } else {
  4466. cur = tmp;
  4467. }
  4468. switch (type_op) {
  4469. case LLM_FFN_SILU:
  4470. {
  4471. cur = ggml_silu(ctx, cur);
  4472. cb(cur, "ffn_silu", il);
  4473. } break;
  4474. case LLM_FFN_GELU:
  4475. {
  4476. cur = ggml_gelu(ctx, cur);
  4477. cb(cur, "ffn_gelu", il);
  4478. if (act_scales != NULL) {
  4479. cur = ggml_div(ctx, cur, act_scales);
  4480. cb(cur, "ffn_act", il);
  4481. }
  4482. } break;
  4483. case LLM_FFN_RELU:
  4484. {
  4485. cur = ggml_relu(ctx, cur);
  4486. cb(cur, "ffn_relu", il);
  4487. } break;
  4488. case LLM_FFN_RELU_SQR:
  4489. {
  4490. cur = ggml_relu(ctx, cur);
  4491. cb(cur, "ffn_relu", il);
  4492. cur = ggml_sqr(ctx, cur);
  4493. cb(cur, "ffn_sqr(relu)", il);
  4494. } break;
  4495. }
  4496. if (type_gate == LLM_FFN_PAR) {
  4497. cur = ggml_mul(ctx, cur, tmp);
  4498. cb(cur, "ffn_gate_par", il);
  4499. }
  4500. cur = ggml_mul_mat(ctx, down, cur);
  4501. if (down_b) {
  4502. cb(cur, "ffn_down", il);
  4503. }
  4504. if (down_b) {
  4505. cur = ggml_add(ctx, cur, down_b);
  4506. }
  4507. return cur;
  4508. }
  4509. // if max_alibi_bias > 0 then apply ALiBi
  4510. static struct ggml_tensor * llm_build_kqv(
  4511. struct ggml_context * ctx,
  4512. const llama_model & model,
  4513. const llama_hparams & hparams,
  4514. const llama_kv_cache & kv,
  4515. struct ggml_cgraph * graph,
  4516. struct ggml_tensor * wo,
  4517. struct ggml_tensor * wo_b,
  4518. struct ggml_tensor * q_cur,
  4519. struct ggml_tensor * kq_mask,
  4520. struct ggml_tensor * kq_pos,
  4521. int64_t n_ctx,
  4522. int32_t n_tokens,
  4523. int32_t n_kv,
  4524. float kq_scale,
  4525. const llm_build_cb & cb,
  4526. int il) {
  4527. const int64_t n_head = hparams.n_head;
  4528. const int64_t n_head_kv = hparams.n_head_kv;
  4529. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4530. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4531. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  4532. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4533. cb(q, "q", il);
  4534. struct ggml_tensor * k =
  4535. ggml_view_3d(ctx, kv.k_l[il],
  4536. n_embd_head_k, n_kv, n_head_kv,
  4537. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  4538. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  4539. 0);
  4540. cb(k, "k", il);
  4541. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4542. cb(kq, "kq", il);
  4543. if (model.arch == LLM_ARCH_PHI2) {
  4544. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  4545. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  4546. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  4547. }
  4548. #if defined(GGML_USE_KOMPUTE)
  4549. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  4550. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  4551. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  4552. if (hparams.f_max_alibi_bias > 0.0f) {
  4553. kq = ggml_scale(ctx, kq, kq_scale);
  4554. cb(kq, "kq_scaled", il);
  4555. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  4556. cb(kq, "kq_scaled_alibi", il);
  4557. kq = ggml_add(ctx, kq, kq_mask);
  4558. cb(kq, "kq_masked", il);
  4559. kq = ggml_soft_max(ctx, kq);
  4560. cb(kq, "kq_soft_max", il);
  4561. } else
  4562. #endif
  4563. {
  4564. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  4565. cb(kq, "kq_soft_max_ext", il);
  4566. }
  4567. GGML_ASSERT(kv.size == n_ctx);
  4568. // split cached v into n_head heads
  4569. struct ggml_tensor * v =
  4570. ggml_view_3d(ctx, kv.v_l[il],
  4571. n_kv, n_embd_head_v, n_head_kv,
  4572. ggml_element_size(kv.v_l[il])*n_ctx,
  4573. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  4574. 0);
  4575. cb(v, "v", il);
  4576. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4577. cb(kqv, "kqv", il);
  4578. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4579. cb(kqv_merged, "kqv_merged", il);
  4580. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  4581. cb(cur, "kqv_merged_cont", il);
  4582. ggml_build_forward_expand(graph, cur);
  4583. cur = ggml_mul_mat(ctx, wo, cur);
  4584. if (wo_b) {
  4585. cb(cur, "kqv_wo", il);
  4586. }
  4587. if (wo_b) {
  4588. cur = ggml_add(ctx, cur, wo_b);
  4589. }
  4590. return cur;
  4591. }
  4592. static struct ggml_tensor * llm_build_kv(
  4593. struct ggml_context * ctx,
  4594. const llama_model & model,
  4595. const llama_hparams & hparams,
  4596. const llama_kv_cache & kv,
  4597. struct ggml_cgraph * graph,
  4598. struct ggml_tensor * wo,
  4599. struct ggml_tensor * wo_b,
  4600. struct ggml_tensor * k_cur,
  4601. struct ggml_tensor * v_cur,
  4602. struct ggml_tensor * q_cur,
  4603. struct ggml_tensor * kq_mask,
  4604. struct ggml_tensor * kq_pos,
  4605. int64_t n_ctx,
  4606. int32_t n_tokens,
  4607. int32_t kv_head,
  4608. int32_t n_kv,
  4609. float kq_scale,
  4610. const llm_build_cb & cb,
  4611. int il) {
  4612. // these nodes are added to the graph together so that they are not reordered
  4613. // by doing so, the number of splits in the graph is reduced
  4614. ggml_build_forward_expand(graph, q_cur);
  4615. ggml_build_forward_expand(graph, k_cur);
  4616. ggml_build_forward_expand(graph, v_cur);
  4617. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  4618. struct ggml_tensor * cur;
  4619. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  4620. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  4621. cb(cur, "kqv_out", il);
  4622. return cur;
  4623. }
  4624. struct llm_build_context {
  4625. const llama_model & model;
  4626. const llama_context & lctx;
  4627. const llama_hparams & hparams;
  4628. const llama_cparams & cparams;
  4629. const llama_batch & batch;
  4630. const llama_kv_cache & kv_self;
  4631. const int64_t n_embd;
  4632. const int64_t n_layer;
  4633. const int64_t n_rot;
  4634. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  4635. const int64_t n_head;
  4636. const int64_t n_head_kv;
  4637. const int64_t n_embd_head_k;
  4638. const int64_t n_embd_k_gqa;
  4639. const int64_t n_embd_head_v;
  4640. const int64_t n_embd_v_gqa;
  4641. const int64_t n_expert;
  4642. const int64_t n_expert_used;
  4643. const float freq_base;
  4644. const float freq_scale;
  4645. const float ext_factor;
  4646. const float attn_factor;
  4647. const float beta_fast;
  4648. const float beta_slow;
  4649. const float norm_eps;
  4650. const float norm_rms_eps;
  4651. const int32_t n_tokens;
  4652. const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx)
  4653. const int32_t kv_head; // index of where we store new KV data in the cache
  4654. const int32_t n_orig_ctx;
  4655. const enum llama_pooling_type pooling_type;
  4656. const enum llama_rope_type rope_type;
  4657. const llm_build_cb & cb;
  4658. std::vector<uint8_t> & buf_compute_meta;
  4659. struct ggml_context * ctx0 = nullptr;
  4660. // TODO: consider making the entire interface noexcept
  4661. llm_build_context(
  4662. llama_context & lctx,
  4663. const llama_batch & batch,
  4664. const llm_build_cb & cb,
  4665. bool worst_case) :
  4666. model (lctx.model),
  4667. lctx (lctx),
  4668. hparams (model.hparams),
  4669. cparams (lctx.cparams),
  4670. batch (batch),
  4671. kv_self (lctx.kv_self),
  4672. n_embd (hparams.n_embd),
  4673. n_layer (hparams.n_layer),
  4674. n_rot (hparams.n_rot),
  4675. n_ctx (cparams.n_ctx),
  4676. n_head (hparams.n_head),
  4677. n_head_kv (hparams.n_head_kv),
  4678. n_embd_head_k (hparams.n_embd_head_k),
  4679. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  4680. n_embd_head_v (hparams.n_embd_head_v),
  4681. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  4682. n_expert (hparams.n_expert),
  4683. n_expert_used (hparams.n_expert_used),
  4684. freq_base (cparams.rope_freq_base),
  4685. freq_scale (cparams.rope_freq_scale),
  4686. ext_factor (cparams.yarn_ext_factor),
  4687. attn_factor (cparams.yarn_attn_factor),
  4688. beta_fast (cparams.yarn_beta_fast),
  4689. beta_slow (cparams.yarn_beta_slow),
  4690. norm_eps (hparams.f_norm_eps),
  4691. norm_rms_eps (hparams.f_norm_rms_eps),
  4692. n_tokens (batch.n_tokens),
  4693. n_kv (worst_case ? kv_self.size : kv_self.n),
  4694. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  4695. n_orig_ctx (cparams.n_yarn_orig_ctx),
  4696. pooling_type (cparams.pooling_type),
  4697. rope_type (hparams.rope_type),
  4698. cb (cb),
  4699. buf_compute_meta (lctx.buf_compute_meta) {
  4700. // all initializations should be done in init()
  4701. }
  4702. void init() {
  4703. struct ggml_init_params params = {
  4704. /*.mem_size =*/ buf_compute_meta.size(),
  4705. /*.mem_buffer =*/ buf_compute_meta.data(),
  4706. /*.no_alloc =*/ true,
  4707. };
  4708. ctx0 = ggml_init(params);
  4709. }
  4710. void free() {
  4711. if (ctx0) {
  4712. ggml_free(ctx0);
  4713. ctx0 = nullptr;
  4714. }
  4715. }
  4716. struct ggml_cgraph * build_k_shift() {
  4717. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4718. GGML_ASSERT(kv_self.size == n_ctx);
  4719. for (int il = 0; il < n_layer; ++il) {
  4720. struct ggml_tensor * tmp =
  4721. // we rotate only the first n_rot dimensions
  4722. ggml_rope_custom_inplace(ctx0,
  4723. ggml_view_3d(ctx0, kv_self.k_l[il],
  4724. n_embd_head_k, n_head_kv, n_ctx,
  4725. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  4726. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  4727. 0),
  4728. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4729. ext_factor, attn_factor, beta_fast, beta_slow);
  4730. cb(tmp, "K_shifted", il);
  4731. ggml_build_forward_expand(gf, tmp);
  4732. }
  4733. return gf;
  4734. }
  4735. struct ggml_cgraph * build_s_copy() {
  4736. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4737. GGML_ASSERT(kv_self.recurrent);
  4738. for (int il = 0; il < n_layer; ++il) {
  4739. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  4740. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  4741. conv_states = ggml_get_rows(ctx0, conv_states, lctx.inp_s_copy);
  4742. ssm_states = ggml_get_rows(ctx0, ssm_states, lctx.inp_s_copy);
  4743. // TODO: name the intermediate tensors with cb()
  4744. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  4745. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  4746. }
  4747. return gf;
  4748. }
  4749. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  4750. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4751. for (uint32_t i = 0; i < ids.size(); ++i) {
  4752. const uint32_t id = ids[i];
  4753. if (i == id || id == ids.size()) {
  4754. continue;
  4755. }
  4756. uint32_t nm = 1;
  4757. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  4758. nm++;
  4759. }
  4760. for (int il = 0; il < n_layer; ++il) {
  4761. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  4762. n_embd_k_gqa, nm,
  4763. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  4764. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  4765. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  4766. n_embd_k_gqa, nm,
  4767. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  4768. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  4769. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  4770. nm, n_embd_v_gqa,
  4771. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  4772. ggml_row_size(kv_self.v_l[il]->type, i));
  4773. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  4774. nm, n_embd_v_gqa,
  4775. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  4776. ggml_row_size(kv_self.v_l[il]->type, id));
  4777. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  4778. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  4779. }
  4780. i += nm - 1;
  4781. }
  4782. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  4783. return gf;
  4784. }
  4785. struct ggml_cgraph * build_llama() {
  4786. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4787. const int64_t n_embd_head = hparams.n_embd_head_v;
  4788. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4789. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4790. struct ggml_tensor * cur;
  4791. struct ggml_tensor * inpL;
  4792. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4793. cb(inpL, "inp_embd", -1);
  4794. // inp_pos - contains the positions
  4795. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4796. cb(inp_pos, "inp_pos", -1);
  4797. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4798. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4799. cb(KQ_mask, "KQ_mask", -1);
  4800. for (int il = 0; il < n_layer; ++il) {
  4801. struct ggml_tensor * inpSA = inpL;
  4802. // norm
  4803. cur = llm_build_norm(ctx0, inpL, hparams,
  4804. model.layers[il].attn_norm, NULL,
  4805. LLM_NORM_RMS, cb, il);
  4806. cb(cur, "attn_norm", il);
  4807. // self-attention
  4808. {
  4809. // compute Q and K and RoPE them
  4810. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  4811. cb(Qcur, "Qcur", il);
  4812. if (model.layers[il].bq) {
  4813. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4814. cb(Qcur, "Qcur", il);
  4815. }
  4816. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  4817. cb(Kcur, "Kcur", il);
  4818. if (model.layers[il].bk) {
  4819. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4820. cb(Kcur, "Kcur", il);
  4821. }
  4822. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  4823. cb(Vcur, "Vcur", il);
  4824. if (model.layers[il].bv) {
  4825. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4826. cb(Vcur, "Vcur", il);
  4827. }
  4828. Qcur = ggml_rope_custom(
  4829. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  4830. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4831. ext_factor, attn_factor, beta_fast, beta_slow
  4832. );
  4833. cb(Qcur, "Qcur", il);
  4834. Kcur = ggml_rope_custom(
  4835. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  4836. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4837. ext_factor, attn_factor, beta_fast, beta_slow
  4838. );
  4839. cb(Kcur, "Kcur", il);
  4840. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4841. model.layers[il].wo, model.layers[il].bo,
  4842. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4843. cb(cur, "kqv_out", il);
  4844. }
  4845. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4846. cb(ffn_inp, "ffn_inp", il);
  4847. // feed-forward network
  4848. if (model.layers[il].ffn_gate_inp == nullptr) {
  4849. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4850. model.layers[il].ffn_norm, NULL,
  4851. LLM_NORM_RMS, cb, il);
  4852. cb(cur, "ffn_norm", il);
  4853. cur = llm_build_ffn(ctx0, cur,
  4854. model.layers[il].ffn_up, NULL,
  4855. model.layers[il].ffn_gate, NULL,
  4856. model.layers[il].ffn_down, NULL,
  4857. NULL,
  4858. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  4859. cb(cur, "ffn_out", il);
  4860. } else {
  4861. // MoE branch
  4862. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4863. model.layers[il].ffn_norm, NULL,
  4864. LLM_NORM_RMS, cb, il);
  4865. cb(cur, "ffn_norm", il);
  4866. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  4867. cb(logits, "ffn_moe_logits", il);
  4868. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  4869. cb(probs, "ffn_moe_probs", il);
  4870. // select experts
  4871. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  4872. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  4873. ggml_tensor * weights = ggml_get_rows(ctx0,
  4874. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  4875. cb(weights, "ffn_moe_weights", il);
  4876. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  4877. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  4878. cb(weights_sum, "ffn_moe_weights_sum", il);
  4879. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  4880. cb(weights, "ffn_moe_weights_norm", il);
  4881. // compute expert outputs
  4882. ggml_tensor * moe_out = nullptr;
  4883. for (int i = 0; i < n_expert_used; ++i) {
  4884. ggml_tensor * cur_expert;
  4885. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
  4886. cb(cur_up, "ffn_moe_up", il);
  4887. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
  4888. cb(cur_gate, "ffn_moe_gate", il);
  4889. cur_gate = ggml_silu(ctx0, cur_gate);
  4890. cb(cur_gate, "ffn_moe_silu", il);
  4891. cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
  4892. cb(cur_expert, "ffn_moe_gate_par", il);
  4893. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  4894. cb(cur_expert, "ffn_moe_down", il);
  4895. cur_expert = ggml_mul(ctx0, cur_expert,
  4896. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  4897. cb(cur_expert, "ffn_moe_weighted", il);
  4898. if (i == 0) {
  4899. moe_out = cur_expert;
  4900. } else {
  4901. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  4902. cb(moe_out, "ffn_moe_out", il);
  4903. }
  4904. }
  4905. cur = moe_out;
  4906. }
  4907. cur = ggml_add(ctx0, cur, ffn_inp);
  4908. cb(cur, "l_out", il);
  4909. // input for next layer
  4910. inpL = cur;
  4911. }
  4912. cur = inpL;
  4913. cur = llm_build_norm(ctx0, cur, hparams,
  4914. model.output_norm, NULL,
  4915. LLM_NORM_RMS, cb, -1);
  4916. cb(cur, "result_norm", -1);
  4917. // lm_head
  4918. cur = ggml_mul_mat(ctx0, model.output, cur);
  4919. cb(cur, "result_output", -1);
  4920. ggml_build_forward_expand(gf, cur);
  4921. return gf;
  4922. }
  4923. struct ggml_cgraph * build_baichuan() {
  4924. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4925. const int64_t n_embd_head = hparams.n_embd_head_v;
  4926. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4927. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4928. struct ggml_tensor * cur;
  4929. struct ggml_tensor * inpL;
  4930. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4931. cb(inpL, "inp_embd", -1);
  4932. // inp_pos - contains the positions
  4933. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4934. cb(inp_pos, "inp_pos", -1);
  4935. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4936. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4937. cb(KQ_mask, "KQ_mask", -1);
  4938. // positions of the tokens in the KV cache
  4939. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  4940. cb(KQ_pos, "KQ_pos", -1);
  4941. for (int il = 0; il < n_layer; ++il) {
  4942. struct ggml_tensor * inpSA = inpL;
  4943. cur = llm_build_norm(ctx0, inpL, hparams,
  4944. model.layers[il].attn_norm, NULL,
  4945. LLM_NORM_RMS, cb, il);
  4946. cb(cur, "attn_norm", il);
  4947. // self-attention
  4948. {
  4949. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  4950. cb(Qcur, "Qcur", il);
  4951. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  4952. cb(Kcur, "Kcur", il);
  4953. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  4954. cb(Vcur, "Vcur", il);
  4955. switch (model.type) {
  4956. case MODEL_7B:
  4957. Qcur = ggml_rope_custom(
  4958. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  4959. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4960. ext_factor, attn_factor, beta_fast, beta_slow
  4961. );
  4962. Kcur = ggml_rope_custom(
  4963. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  4964. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4965. ext_factor, attn_factor, beta_fast, beta_slow
  4966. );
  4967. break;
  4968. case MODEL_13B:
  4969. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  4970. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  4971. break;
  4972. default:
  4973. GGML_ASSERT(false);
  4974. }
  4975. cb(Qcur, "Qcur", il);
  4976. cb(Kcur, "Kcur", il);
  4977. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4978. model.layers[il].wo, NULL,
  4979. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4980. cb(cur, "kqv_out", il);
  4981. }
  4982. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4983. cb(ffn_inp, "ffn_inp", il);
  4984. // feed-forward network
  4985. {
  4986. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4987. model.layers[il].ffn_norm, NULL,
  4988. LLM_NORM_RMS, cb, il);
  4989. cb(cur, "ffn_norm", il);
  4990. cur = llm_build_ffn(ctx0, cur,
  4991. model.layers[il].ffn_up, NULL,
  4992. model.layers[il].ffn_gate, NULL,
  4993. model.layers[il].ffn_down, NULL,
  4994. NULL,
  4995. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  4996. cb(cur, "ffn_out", il);
  4997. }
  4998. cur = ggml_add(ctx0, cur, ffn_inp);
  4999. cb(cur, "l_out", il);
  5000. // input for next layer
  5001. inpL = cur;
  5002. }
  5003. cur = inpL;
  5004. cur = llm_build_norm(ctx0, cur, hparams,
  5005. model.output_norm, NULL,
  5006. LLM_NORM_RMS, cb, -1);
  5007. cb(cur, "result_norm", -1);
  5008. // lm_head
  5009. cur = ggml_mul_mat(ctx0, model.output, cur);
  5010. cb(cur, "result_output", -1);
  5011. ggml_build_forward_expand(gf, cur);
  5012. return gf;
  5013. }
  5014. struct ggml_cgraph * build_falcon() {
  5015. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5016. const int64_t n_embd_head = hparams.n_embd_head_v;
  5017. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5018. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5019. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5020. struct ggml_tensor * cur;
  5021. struct ggml_tensor * inpL;
  5022. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5023. cb(inpL, "inp_embd", -1);
  5024. // inp_pos - contains the positions
  5025. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5026. cb(inp_pos, "inp_pos", -1);
  5027. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5028. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5029. cb(KQ_mask, "KQ_mask", -1);
  5030. for (int il = 0; il < n_layer; ++il) {
  5031. struct ggml_tensor * attn_norm;
  5032. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  5033. model.layers[il].attn_norm,
  5034. model.layers[il].attn_norm_b,
  5035. LLM_NORM, cb, il);
  5036. cb(attn_norm, "attn_norm", il);
  5037. // self-attention
  5038. {
  5039. if (model.layers[il].attn_norm_2) {
  5040. // Falcon-40B
  5041. cur = llm_build_norm(ctx0, inpL, hparams,
  5042. model.layers[il].attn_norm_2,
  5043. model.layers[il].attn_norm_2_b,
  5044. LLM_NORM, cb, il);
  5045. cb(cur, "attn_norm_2", il);
  5046. } else {
  5047. cur = attn_norm;
  5048. }
  5049. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5050. cb(cur, "wqkv", il);
  5051. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5052. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5053. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5054. cb(Qcur, "Qcur", il);
  5055. cb(Kcur, "Kcur", il);
  5056. cb(Vcur, "Vcur", il);
  5057. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5058. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5059. // using mode = 2 for neox mode
  5060. Qcur = ggml_rope_custom(
  5061. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5062. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5063. );
  5064. cb(Qcur, "Qcur", il);
  5065. Kcur = ggml_rope_custom(
  5066. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5067. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5068. );
  5069. cb(Kcur, "Kcur", il);
  5070. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5071. model.layers[il].wo, NULL,
  5072. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5073. cb(cur, "kqv_out", il);
  5074. }
  5075. struct ggml_tensor * ffn_inp = cur;
  5076. // feed forward
  5077. {
  5078. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  5079. model.layers[il].ffn_up, NULL,
  5080. NULL, NULL,
  5081. model.layers[il].ffn_down, NULL,
  5082. NULL,
  5083. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5084. cb(cur, "ffn_out", il);
  5085. }
  5086. cur = ggml_add(ctx0, cur, ffn_inp);
  5087. cb(cur, "l_out", il);
  5088. cur = ggml_add(ctx0, cur, inpL);
  5089. cb(cur, "l_out", il);
  5090. // input for next layer
  5091. inpL = cur;
  5092. }
  5093. cur = inpL;
  5094. // norm
  5095. cur = llm_build_norm(ctx0, cur, hparams,
  5096. model.output_norm,
  5097. model.output_norm_b,
  5098. LLM_NORM, cb, -1);
  5099. cb(cur, "result_norm", -1);
  5100. cur = ggml_mul_mat(ctx0, model.output, cur);
  5101. cb(cur, "result_output", -1);
  5102. ggml_build_forward_expand(gf, cur);
  5103. return gf;
  5104. }
  5105. struct ggml_cgraph * build_starcoder() {
  5106. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5107. const int64_t n_embd_head = hparams.n_embd_head_v;
  5108. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5109. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5110. struct ggml_tensor * cur;
  5111. struct ggml_tensor * pos;
  5112. struct ggml_tensor * inpL;
  5113. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5114. cb(inpL, "inp_embd", -1);
  5115. // inp_pos - contains the positions
  5116. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5117. cb(inp_pos, "inp_pos", -1);
  5118. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5119. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5120. cb(KQ_mask, "KQ_mask", -1);
  5121. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5122. cb(pos, "pos_embd", -1);
  5123. inpL = ggml_add(ctx0, inpL, pos);
  5124. cb(inpL, "inpL", -1);
  5125. for (int il = 0; il < n_layer; ++il) {
  5126. cur = llm_build_norm(ctx0, inpL, hparams,
  5127. model.layers[il].attn_norm,
  5128. model.layers[il].attn_norm_b,
  5129. LLM_NORM, cb, il);
  5130. cb(cur, "attn_norm", il);
  5131. // self-attention
  5132. {
  5133. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5134. cb(cur, "wqkv", il);
  5135. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5136. cb(cur, "bqkv", il);
  5137. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5138. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5139. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5140. cb(Qcur, "Qcur", il);
  5141. cb(Kcur, "Kcur", il);
  5142. cb(Vcur, "Vcur", il);
  5143. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5144. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5145. model.layers[il].wo, model.layers[il].bo,
  5146. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5147. cb(cur, "kqv_out", il);
  5148. }
  5149. // add the input
  5150. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5151. cb(ffn_inp, "ffn_inp", il);
  5152. // FF
  5153. {
  5154. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5155. model.layers[il].ffn_norm,
  5156. model.layers[il].ffn_norm_b,
  5157. LLM_NORM, cb, il);
  5158. cb(cur, "ffn_norm", il);
  5159. cur = llm_build_ffn(ctx0, cur,
  5160. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5161. NULL, NULL,
  5162. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5163. NULL,
  5164. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5165. cb(cur, "ffn_out", il);
  5166. }
  5167. inpL = ggml_add(ctx0, cur, ffn_inp);
  5168. cb(inpL, "l_out", il);
  5169. }
  5170. cur = llm_build_norm(ctx0, inpL, hparams,
  5171. model.output_norm,
  5172. model.output_norm_b,
  5173. LLM_NORM, cb, -1);
  5174. cb(cur, "result_norm", -1);
  5175. cur = ggml_mul_mat(ctx0, model.output, cur);
  5176. cb(cur, "result_output", -1);
  5177. ggml_build_forward_expand(gf, cur);
  5178. return gf;
  5179. }
  5180. struct ggml_cgraph * build_persimmon() {
  5181. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5182. const int64_t n_embd_head = hparams.n_embd_head_v;
  5183. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5184. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  5185. struct ggml_tensor * cur;
  5186. struct ggml_tensor * inpL;
  5187. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5188. cb(inpL, "inp_embd", -1);
  5189. // inp_pos - contains the positions
  5190. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5191. cb(inp_pos, "inp_pos", -1);
  5192. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5193. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5194. cb(KQ_mask, "KQ_mask", -1);
  5195. for (int il = 0; il < n_layer; ++il) {
  5196. struct ggml_tensor * residual = inpL;
  5197. cur = llm_build_norm(ctx0, inpL, hparams,
  5198. model.layers[il].attn_norm,
  5199. model.layers[il].attn_norm_b,
  5200. LLM_NORM, cb, il);
  5201. cb(cur, "attn_norm", il);
  5202. // self attention
  5203. {
  5204. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5205. cb(cur, "wqkv", il);
  5206. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5207. cb(cur, "bqkv", il);
  5208. // split qkv
  5209. GGML_ASSERT(n_head_kv == n_head);
  5210. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  5211. cb(tmpqkv, "tmpqkv", il);
  5212. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  5213. cb(tmpqkv_perm, "tmpqkv", il);
  5214. struct ggml_tensor * tmpq = ggml_view_3d(
  5215. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  5216. ggml_element_size(tmpqkv_perm) * n_embd_head,
  5217. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  5218. 0
  5219. );
  5220. cb(tmpq, "tmpq", il);
  5221. struct ggml_tensor * tmpk = ggml_view_3d(
  5222. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  5223. ggml_element_size(tmpqkv_perm) * n_embd_head,
  5224. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  5225. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  5226. );
  5227. cb(tmpk, "tmpk", il);
  5228. // Q/K Layernorm
  5229. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  5230. model.layers[il].attn_q_norm,
  5231. model.layers[il].attn_q_norm_b,
  5232. LLM_NORM, cb, il);
  5233. cb(tmpq, "tmpq", il);
  5234. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  5235. model.layers[il].attn_k_norm,
  5236. model.layers[il].attn_k_norm_b,
  5237. LLM_NORM, cb, il);
  5238. cb(tmpk, "tmpk", il);
  5239. // RoPE the first n_rot of q/k, pass the other half, and concat.
  5240. struct ggml_tensor * qrot = ggml_view_3d(
  5241. ctx0, tmpq, n_rot, n_head, n_tokens,
  5242. ggml_element_size(tmpq) * n_embd_head,
  5243. ggml_element_size(tmpq) * n_embd_head * n_head,
  5244. 0
  5245. );
  5246. cb(qrot, "qrot", il);
  5247. struct ggml_tensor * krot = ggml_view_3d(
  5248. ctx0, tmpk, n_rot, n_head, n_tokens,
  5249. ggml_element_size(tmpk) * n_embd_head,
  5250. ggml_element_size(tmpk) * n_embd_head * n_head,
  5251. 0
  5252. );
  5253. cb(krot, "krot", il);
  5254. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  5255. struct ggml_tensor * qpass = ggml_view_3d(
  5256. ctx0, tmpq, n_rot, n_head, n_tokens,
  5257. ggml_element_size(tmpq) * n_embd_head,
  5258. ggml_element_size(tmpq) * n_embd_head * n_head,
  5259. ggml_element_size(tmpq) * n_rot
  5260. );
  5261. cb(qpass, "qpass", il);
  5262. struct ggml_tensor * kpass = ggml_view_3d(
  5263. ctx0, tmpk, n_rot, n_head, n_tokens,
  5264. ggml_element_size(tmpk) * n_embd_head,
  5265. ggml_element_size(tmpk) * n_embd_head * n_head,
  5266. ggml_element_size(tmpk) * n_rot
  5267. );
  5268. cb(kpass, "kpass", il);
  5269. struct ggml_tensor * qrotated = ggml_rope_custom(
  5270. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5271. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5272. );
  5273. cb(qrotated, "qrotated", il);
  5274. struct ggml_tensor * krotated = ggml_rope_custom(
  5275. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5276. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5277. );
  5278. cb(krotated, "krotated", il);
  5279. // ggml currently only supports concatenation on dim=2
  5280. // so we need to permute qrot, qpass, concat, then permute back.
  5281. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  5282. cb(qrotated, "qrotated", il);
  5283. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  5284. cb(krotated, "krotated", il);
  5285. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  5286. cb(qpass, "qpass", il);
  5287. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  5288. cb(kpass, "kpass", il);
  5289. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  5290. cb(Qcur, "Qcur", il);
  5291. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  5292. cb(Kcur, "Kcur", il);
  5293. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  5294. cb(Q, "Q", il);
  5295. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  5296. cb(Kcur, "Kcur", il);
  5297. struct ggml_tensor * Vcur = ggml_view_3d(
  5298. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  5299. ggml_element_size(tmpqkv_perm) * n_embd_head,
  5300. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  5301. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  5302. );
  5303. cb(Vcur, "Vcur", il);
  5304. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5305. model.layers[il].wo, model.layers[il].bo,
  5306. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5307. cb(cur, "kqv_out", il);
  5308. }
  5309. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  5310. cb(ffn_inp, "ffn_inp", il);
  5311. // feed-forward network
  5312. {
  5313. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5314. model.layers[il].ffn_norm,
  5315. model.layers[il].ffn_norm_b,
  5316. LLM_NORM, cb, il);
  5317. cb(cur, "ffn_norm", il);
  5318. cur = llm_build_ffn(ctx0, cur,
  5319. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5320. NULL, NULL,
  5321. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5322. NULL,
  5323. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  5324. cb(cur, "ffn_out", il);
  5325. }
  5326. cur = ggml_add(ctx0, cur, ffn_inp);
  5327. cb(cur, "l_out", il);
  5328. inpL = cur;
  5329. }
  5330. cur = inpL;
  5331. cur = llm_build_norm(ctx0, cur, hparams,
  5332. model.output_norm,
  5333. model.output_norm_b,
  5334. LLM_NORM, cb, -1);
  5335. cb(cur, "result_norm", -1);
  5336. cur = ggml_mul_mat(ctx0, model.output, cur);
  5337. cb(cur, "result_output", -1);
  5338. ggml_build_forward_expand(gf, cur);
  5339. return gf;
  5340. }
  5341. struct ggml_cgraph * build_refact() {
  5342. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5343. const int64_t n_embd_head = hparams.n_embd_head_v;
  5344. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5345. struct ggml_tensor * cur;
  5346. struct ggml_tensor * inpL;
  5347. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5348. cb(inpL, "inp_embd", -1);
  5349. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5350. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5351. cb(KQ_mask, "KQ_mask", -1);
  5352. // positions of the tokens in the KV cache
  5353. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  5354. cb(KQ_pos, "KQ_pos", -1);
  5355. for (int il = 0; il < n_layer; ++il) {
  5356. struct ggml_tensor * inpSA = inpL;
  5357. cur = llm_build_norm(ctx0, inpL, hparams,
  5358. model.layers[il].attn_norm, NULL,
  5359. LLM_NORM_RMS, cb, il);
  5360. cb(cur, "attn_norm", il);
  5361. // self-attention
  5362. {
  5363. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5364. cb(Qcur, "Qcur", il);
  5365. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5366. cb(Kcur, "Kcur", il);
  5367. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5368. cb(Vcur, "Vcur", il);
  5369. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5370. cb(Kcur, "Kcur", il);
  5371. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5372. cb(Qcur, "Qcur", il);
  5373. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5374. model.layers[il].wo, NULL,
  5375. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5376. cb(cur, "kqv_out", il);
  5377. }
  5378. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5379. cb(ffn_inp, "ffn_inp", il);
  5380. // feed-forward network
  5381. {
  5382. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5383. model.layers[il].ffn_norm, NULL,
  5384. LLM_NORM_RMS, cb, il);
  5385. cb(cur, "ffn_norm", il);
  5386. cur = llm_build_ffn(ctx0, cur,
  5387. model.layers[il].ffn_up, NULL,
  5388. model.layers[il].ffn_gate, NULL,
  5389. model.layers[il].ffn_down, NULL,
  5390. NULL,
  5391. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5392. cb(cur, "ffn_out", il);
  5393. }
  5394. cur = ggml_add(ctx0, cur, ffn_inp);
  5395. cb(cur, "l_out", il);
  5396. // input for next layer
  5397. inpL = cur;
  5398. }
  5399. cur = inpL;
  5400. cur = llm_build_norm(ctx0, cur, hparams,
  5401. model.output_norm, NULL,
  5402. LLM_NORM_RMS, cb, -1);
  5403. cb(cur, "result_norm", -1);
  5404. // lm_head
  5405. cur = ggml_mul_mat(ctx0, model.output, cur);
  5406. cb(cur, "result_output", -1);
  5407. ggml_build_forward_expand(gf, cur);
  5408. return gf;
  5409. }
  5410. struct ggml_cgraph * build_bert() {
  5411. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5412. const int64_t n_embd_head = hparams.n_embd_head_v;
  5413. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5414. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5415. struct ggml_tensor * cur;
  5416. struct ggml_tensor * inpL;
  5417. // get input vectors with right size
  5418. const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type);
  5419. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5420. struct ggml_tensor * inp_mean = ggml_view_2d(ctx0, lctx.inp_mean, n_tokens, n_tokens, stride1, 0);
  5421. struct ggml_tensor * inp_cls = ggml_view_1d(ctx0, lctx.inp_cls, n_tokens, 0);
  5422. // construct input embeddings (token, type, position)
  5423. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5424. // token types are hardcoded to zero ("Sentence A")
  5425. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  5426. inpL = ggml_add(ctx0, inpL, type_row0);
  5427. if (model.arch == LLM_ARCH_BERT) {
  5428. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  5429. }
  5430. cb(inpL, "inp_embd", -1);
  5431. // embed layer norm
  5432. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  5433. cb(inpL, "inp_norm", -1);
  5434. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5435. struct ggml_tensor * KQ_mask = ggml_cont(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_tokens, n_tokens, n_tokens*ggml_type_size(lctx.inp_KQ_mask->type), 0));
  5436. cb(KQ_mask, "KQ_mask", -1); // [n_tokens, n_tokens]
  5437. // iterate layers
  5438. for (int il = 0; il < n_layer; ++il) {
  5439. struct ggml_tensor * cur = inpL;
  5440. struct ggml_tensor * Qcur;
  5441. struct ggml_tensor * Kcur;
  5442. struct ggml_tensor * Vcur;
  5443. // self-attention
  5444. if (model.arch == LLM_ARCH_BERT) {
  5445. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  5446. cb(Qcur, "Qcur", il);
  5447. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  5448. cb(Kcur, "Kcur", il);
  5449. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  5450. cb(Vcur, "Vcur", il);
  5451. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5452. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5453. } else {
  5454. // compute Q and K and RoPE them
  5455. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5456. cb(cur, "wqkv", il);
  5457. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5458. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5459. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5460. cb(Qcur, "Qcur", il);
  5461. cb(Kcur, "Kcur", il);
  5462. cb(Vcur, "Vcur", il);
  5463. Qcur = ggml_rope_custom(
  5464. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5465. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5466. ext_factor, attn_factor, beta_fast, beta_slow
  5467. );
  5468. cb(Qcur, "Qcur", il);
  5469. Kcur = ggml_rope_custom(
  5470. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5471. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5472. ext_factor, attn_factor, beta_fast, beta_slow
  5473. );
  5474. cb(Kcur, "Kcur", il);
  5475. }
  5476. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  5477. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  5478. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  5479. cb(kq, "kq", il);
  5480. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  5481. cb(kq, "kq_soft_max_ext", il);
  5482. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  5483. cb(v, "v", il);
  5484. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  5485. cb(kqv, "kqv", il);
  5486. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  5487. cb(kqv_merged, "kqv_merged", il);
  5488. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  5489. cb(cur, "kqv_merged_cont", il);
  5490. ggml_build_forward_expand(gf, cur);
  5491. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  5492. if (model.layers[il].bo) {
  5493. cb(cur, "kqv_wo", il);
  5494. }
  5495. if (model.layers[il].bo) {
  5496. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  5497. }
  5498. cb(cur, "kqv_out", il);
  5499. // re-add the layer input
  5500. cur = ggml_add(ctx0, cur, inpL);
  5501. // attention layer norm
  5502. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  5503. struct ggml_tensor * ffn_inp = cur;
  5504. cb(ffn_inp, "ffn_inp", il);
  5505. // feed-forward network
  5506. if (model.arch == LLM_ARCH_BERT) {
  5507. cur = llm_build_ffn(ctx0, cur,
  5508. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5509. NULL, NULL,
  5510. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5511. NULL,
  5512. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5513. } else {
  5514. cur = llm_build_ffn(ctx0, cur,
  5515. model.layers[il].ffn_up, NULL,
  5516. model.layers[il].ffn_gate, NULL,
  5517. model.layers[il].ffn_down, NULL,
  5518. NULL,
  5519. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5520. }
  5521. cb(cur, "ffn_out", il);
  5522. // attentions bypass the intermediate layer
  5523. cur = ggml_add(ctx0, cur, ffn_inp);
  5524. // output layer norm
  5525. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  5526. // input for next layer
  5527. inpL = cur;
  5528. }
  5529. // final output
  5530. cur = inpL;
  5531. cb(cur, "result_embd", -1);
  5532. // pooling layer
  5533. switch (pooling_type) {
  5534. case LLAMA_POOLING_TYPE_NONE:
  5535. {
  5536. // nop
  5537. } break;
  5538. case LLAMA_POOLING_TYPE_MEAN:
  5539. {
  5540. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  5541. cb(cur, "result_embd_pooled", -1);
  5542. } break;
  5543. case LLAMA_POOLING_TYPE_CLS:
  5544. {
  5545. cur = ggml_get_rows(ctx0, cur, inp_cls);
  5546. cb(cur, "result_embd_pooled", -1);
  5547. } break;
  5548. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  5549. {
  5550. GGML_ASSERT(false && "Invalid pooling type");
  5551. } break;
  5552. }
  5553. ggml_build_forward_expand(gf, cur);
  5554. return gf;
  5555. }
  5556. struct ggml_cgraph * build_bloom() {
  5557. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5558. const int64_t n_embd_head = hparams.n_embd_head_v;
  5559. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5560. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5561. struct ggml_tensor * cur;
  5562. struct ggml_tensor * inpL;
  5563. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5564. cb(inpL, "inp_embd", -1);
  5565. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5566. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5567. cb(KQ_mask, "KQ_mask", -1);
  5568. // positions of the tokens in the KV cache
  5569. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  5570. cb(KQ_pos, "KQ_pos", -1);
  5571. inpL = llm_build_norm(ctx0, inpL, hparams,
  5572. model.tok_norm,
  5573. model.tok_norm_b,
  5574. LLM_NORM, cb, -1);
  5575. cb(inpL, "inp_norm", -1);
  5576. for (int il = 0; il < n_layer; ++il) {
  5577. cur = llm_build_norm(ctx0, inpL, hparams,
  5578. model.layers[il].attn_norm,
  5579. model.layers[il].attn_norm_b,
  5580. LLM_NORM, cb, il);
  5581. cb(cur, "attn_norm", il);
  5582. // self-attention
  5583. {
  5584. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5585. cb(cur, "wqkv", il);
  5586. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5587. cb(cur, "bqkv", il);
  5588. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5589. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5590. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5591. cb(Qcur, "Qcur", il);
  5592. cb(Kcur, "Kcur", il);
  5593. cb(Vcur, "Vcur", il);
  5594. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5595. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5596. model.layers[il].wo, model.layers[il].bo,
  5597. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5598. cb(cur, "kqv_out", il);
  5599. }
  5600. // Add the input
  5601. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5602. cb(ffn_inp, "ffn_inp", il);
  5603. // FF
  5604. {
  5605. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5606. model.layers[il].ffn_norm,
  5607. model.layers[il].ffn_norm_b,
  5608. LLM_NORM, cb, il);
  5609. cb(cur, "ffn_norm", il);
  5610. cur = llm_build_ffn(ctx0, cur,
  5611. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5612. NULL, NULL,
  5613. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5614. NULL,
  5615. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5616. cb(cur, "ffn_out", il);
  5617. }
  5618. inpL = ggml_add(ctx0, cur, ffn_inp);
  5619. cb(inpL, "l_out", il);
  5620. }
  5621. cur = llm_build_norm(ctx0, inpL, hparams,
  5622. model.output_norm,
  5623. model.output_norm_b,
  5624. LLM_NORM, cb, -1);
  5625. cb(cur, "result_norm", -1);
  5626. cur = ggml_mul_mat(ctx0, model.output, cur);
  5627. cb(cur, "result_output", -1);
  5628. ggml_build_forward_expand(gf, cur);
  5629. return gf;
  5630. }
  5631. struct ggml_cgraph * build_mpt() {
  5632. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5633. const int64_t n_embd_head = hparams.n_embd_head_v;
  5634. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5635. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5636. struct ggml_tensor * cur;
  5637. struct ggml_tensor * inpL;
  5638. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5639. cb(inpL, "inp_embd", -1);
  5640. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5641. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5642. cb(KQ_mask, "KQ_mask", -1);
  5643. // positions of the tokens in the KV cache
  5644. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  5645. cb(KQ_pos, "KQ_pos", -1);
  5646. for (int il = 0; il < n_layer; ++il) {
  5647. struct ggml_tensor * attn_norm;
  5648. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  5649. model.layers[il].attn_norm,
  5650. model.layers[il].attn_norm_b,
  5651. LLM_NORM, cb, il);
  5652. cb(attn_norm, "attn_norm", il);
  5653. // self-attention
  5654. {
  5655. cur = attn_norm;
  5656. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5657. cb(cur, "wqkv", il);
  5658. if (model.layers[il].bqkv){
  5659. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5660. cb(cur, "bqkv", il);
  5661. }
  5662. if (hparams.f_clamp_kqv > 0.0f) {
  5663. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  5664. cb(cur, "wqkv_clamped", il);
  5665. }
  5666. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5667. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5668. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5669. cb(Qcur, "Qcur", il);
  5670. cb(Kcur, "Kcur", il);
  5671. cb(Vcur, "Vcur", il);
  5672. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5673. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5674. model.layers[il].wo, model.layers[il].bo,
  5675. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5676. cb(cur, "kqv_out", il);
  5677. }
  5678. // Add the input
  5679. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5680. cb(ffn_inp, "ffn_inp", il);
  5681. // feed forward
  5682. {
  5683. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5684. model.layers[il].ffn_norm,
  5685. model.layers[il].ffn_norm_b,
  5686. LLM_NORM, cb, il);
  5687. cb(cur, "ffn_norm", il);
  5688. cur = llm_build_ffn(ctx0, cur,
  5689. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5690. NULL, NULL,
  5691. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5692. model.layers[il].ffn_act,
  5693. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5694. cb(cur, "ffn_out", il);
  5695. }
  5696. cur = ggml_add(ctx0, cur, ffn_inp);
  5697. cb(cur, "l_out", il);
  5698. // input for next layer
  5699. inpL = cur;
  5700. }
  5701. cur = inpL;
  5702. cur = llm_build_norm(ctx0, cur, hparams,
  5703. model.output_norm,
  5704. model.output_norm_b,
  5705. LLM_NORM, cb, -1);
  5706. cb(cur, "result_norm", -1);
  5707. cur = ggml_mul_mat(ctx0, model.output, cur);
  5708. cb(cur, "result_output", -1);
  5709. ggml_build_forward_expand(gf, cur);
  5710. return gf;
  5711. }
  5712. struct ggml_cgraph * build_stablelm() {
  5713. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  5714. const int64_t n_embd_head = hparams.n_embd_head_v;
  5715. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5716. struct ggml_tensor * cur;
  5717. struct ggml_tensor * inpL;
  5718. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5719. cb(inpL, "inp_embd", -1);
  5720. // inp_pos - contains the positions
  5721. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5722. cb(inp_pos, "inp_pos", -1);
  5723. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5724. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5725. cb(KQ_mask, "KQ_mask", -1);
  5726. for (int il = 0; il < n_layer; ++il) {
  5727. struct ggml_tensor * inpSA = inpL;
  5728. // norm
  5729. cur = llm_build_norm(ctx0, inpL, hparams,
  5730. model.layers[il].attn_norm,
  5731. model.layers[il].attn_norm_b,
  5732. LLM_NORM, cb, il);
  5733. cb(cur, "attn_norm", il);
  5734. // self-attention
  5735. {
  5736. // compute Q and K and RoPE them
  5737. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5738. cb(Qcur, "Qcur", il);
  5739. if (model.layers[il].bq) {
  5740. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5741. cb(Qcur, "Qcur", il);
  5742. }
  5743. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5744. cb(Kcur, "Kcur", il);
  5745. if (model.layers[il].bk) {
  5746. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5747. cb(Kcur, "Kcur", il);
  5748. }
  5749. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5750. cb(Vcur, "Vcur", il);
  5751. if (model.layers[il].bv) {
  5752. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5753. cb(Vcur, "Vcur", il);
  5754. }
  5755. Qcur = ggml_rope_custom(
  5756. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5757. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5758. ext_factor, attn_factor, beta_fast, beta_slow
  5759. );
  5760. cb(Qcur, "Qcur", il);
  5761. Kcur = ggml_rope_custom(
  5762. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5763. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5764. ext_factor, attn_factor, beta_fast, beta_slow
  5765. );
  5766. cb(Kcur, "Kcur", il);
  5767. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5768. model.layers[il].wo, NULL,
  5769. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5770. cb(cur, "kqv_out", il);
  5771. }
  5772. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5773. cb(ffn_inp, "ffn_inp", il);
  5774. // feed-forward network
  5775. {
  5776. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5777. model.layers[il].ffn_norm,
  5778. model.layers[il].ffn_norm_b,
  5779. LLM_NORM, cb, il);
  5780. cb(cur, "ffn_norm", il);
  5781. cur = llm_build_ffn(ctx0, cur,
  5782. model.layers[il].ffn_up, NULL,
  5783. model.layers[il].ffn_gate, NULL,
  5784. model.layers[il].ffn_down, NULL,
  5785. NULL,
  5786. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5787. cb(cur, "ffn_out", il);
  5788. }
  5789. cur = ggml_add(ctx0, cur, ffn_inp);
  5790. cb(cur, "l_out", il);
  5791. // input for next layer
  5792. inpL = cur;
  5793. }
  5794. cur = inpL;
  5795. cur = llm_build_norm(ctx0, cur, hparams,
  5796. model.output_norm,
  5797. model.output_norm_b,
  5798. LLM_NORM, cb, -1);
  5799. cb(cur, "result_norm", -1);
  5800. // lm_head
  5801. cur = ggml_mul_mat(ctx0, model.output, cur);
  5802. cb(cur, "result_output", -1);
  5803. ggml_build_forward_expand(gf, cur);
  5804. return gf;
  5805. }
  5806. struct ggml_cgraph * build_qwen() {
  5807. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5808. const int64_t n_embd_head = hparams.n_embd_head_v;
  5809. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5810. struct ggml_tensor * cur;
  5811. struct ggml_tensor * inpL;
  5812. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5813. cb(inpL, "inp_embd", -1);
  5814. // inp_pos - contains the positions
  5815. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5816. cb(inp_pos, "inp_pos", -1);
  5817. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5818. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5819. cb(KQ_mask, "KQ_mask", -1);
  5820. for (int il = 0; il < n_layer; ++il) {
  5821. struct ggml_tensor * inpSA = inpL;
  5822. cur = llm_build_norm(ctx0, inpL, hparams,
  5823. model.layers[il].attn_norm, NULL,
  5824. LLM_NORM_RMS, cb, il);
  5825. cb(cur, "attn_norm", il);
  5826. // self-attention
  5827. {
  5828. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5829. cb(cur, "wqkv", il);
  5830. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5831. cb(cur, "bqkv", il);
  5832. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5833. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5834. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5835. cb(Qcur, "Qcur", il);
  5836. cb(Kcur, "Kcur", il);
  5837. cb(Vcur, "Vcur", il);
  5838. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5839. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5840. // using mode = 2 for neox mode
  5841. Qcur = ggml_rope_custom(
  5842. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5843. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5844. );
  5845. cb(Qcur, "Qcur", il);
  5846. Kcur = ggml_rope_custom(
  5847. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5848. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5849. );
  5850. cb(Kcur, "Kcur", il);
  5851. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5852. model.layers[il].wo, NULL,
  5853. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5854. cb(cur, "kqv_out", il);
  5855. }
  5856. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5857. cb(ffn_inp, "ffn_inp", il);
  5858. // feed-forward forward
  5859. {
  5860. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5861. model.layers[il].ffn_norm, NULL,
  5862. LLM_NORM_RMS, cb, il);
  5863. cb(cur, "ffn_norm", il);
  5864. cur = llm_build_ffn(ctx0, cur,
  5865. model.layers[il].ffn_up, NULL,
  5866. model.layers[il].ffn_gate, NULL,
  5867. model.layers[il].ffn_down, NULL,
  5868. NULL,
  5869. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5870. cb(cur, "ffn_out", il);
  5871. }
  5872. cur = ggml_add(ctx0, cur, ffn_inp);
  5873. cb(cur, "l_out", il);
  5874. // input for next layer
  5875. inpL = cur;
  5876. }
  5877. cur = inpL;
  5878. cur = llm_build_norm(ctx0, cur, hparams,
  5879. model.output_norm, NULL,
  5880. LLM_NORM_RMS, cb, -1);
  5881. cb(cur, "result_norm", -1);
  5882. // lm_head
  5883. cur = ggml_mul_mat(ctx0, model.output, cur);
  5884. cb(cur, "result_output", -1);
  5885. ggml_build_forward_expand(gf, cur);
  5886. return gf;
  5887. }
  5888. struct ggml_cgraph * build_qwen2() {
  5889. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5890. const int64_t n_embd_head = hparams.n_embd_head_v;
  5891. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5892. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5893. struct ggml_tensor * cur;
  5894. struct ggml_tensor * inpL;
  5895. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5896. cb(inpL, "inp_embd", -1);
  5897. // inp_pos - contains the positions
  5898. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5899. cb(inp_pos, "inp_pos", -1);
  5900. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5901. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5902. cb(KQ_mask, "KQ_mask", -1);
  5903. for (int il = 0; il < n_layer; ++il) {
  5904. struct ggml_tensor * inpSA = inpL;
  5905. // norm
  5906. cur = llm_build_norm(ctx0, inpL, hparams,
  5907. model.layers[il].attn_norm, NULL,
  5908. LLM_NORM_RMS, cb, il);
  5909. cb(cur, "attn_norm", il);
  5910. // self-attention
  5911. {
  5912. // compute Q and K and RoPE them
  5913. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5914. cb(Qcur, "Qcur", il);
  5915. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5916. cb(Qcur, "Qcur", il);
  5917. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5918. cb(Kcur, "Kcur", il);
  5919. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5920. cb(Kcur, "Kcur", il);
  5921. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5922. cb(Vcur, "Vcur", il);
  5923. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5924. cb(Vcur, "Vcur", il);
  5925. // these nodes are added to the graph together so that they are not reordered
  5926. // by doing so, the number of splits in the graph is reduced
  5927. ggml_build_forward_expand(gf, Qcur);
  5928. ggml_build_forward_expand(gf, Kcur);
  5929. ggml_build_forward_expand(gf, Vcur);
  5930. Qcur = ggml_rope_custom(
  5931. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5932. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5933. ext_factor, attn_factor, beta_fast, beta_slow
  5934. );
  5935. cb(Qcur, "Qcur", il);
  5936. Kcur = ggml_rope_custom(
  5937. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5938. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5939. ext_factor, attn_factor, beta_fast, beta_slow
  5940. );
  5941. cb(Kcur, "Kcur", il);
  5942. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5943. model.layers[il].wo, model.layers[il].bo,
  5944. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5945. cb(cur, "kqv_out", il);
  5946. }
  5947. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5948. cb(ffn_inp, "ffn_inp", il);
  5949. // feed-forward network
  5950. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5951. model.layers[il].ffn_norm, NULL,
  5952. LLM_NORM_RMS, cb, il);
  5953. cb(cur, "ffn_norm", il);
  5954. cur = llm_build_ffn(ctx0, cur,
  5955. model.layers[il].ffn_up, NULL,
  5956. model.layers[il].ffn_gate, NULL,
  5957. model.layers[il].ffn_down, NULL,
  5958. NULL,
  5959. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5960. cb(cur, "ffn_out", il);
  5961. cur = ggml_add(ctx0, cur, ffn_inp);
  5962. cb(cur, "l_out", il);
  5963. // input for next layer
  5964. inpL = cur;
  5965. }
  5966. cur = inpL;
  5967. cur = llm_build_norm(ctx0, cur, hparams,
  5968. model.output_norm, NULL,
  5969. LLM_NORM_RMS, cb, -1);
  5970. cb(cur, "result_norm", -1);
  5971. // lm_head
  5972. cur = ggml_mul_mat(ctx0, model.output, cur);
  5973. cb(cur, "result_output", -1);
  5974. ggml_build_forward_expand(gf, cur);
  5975. return gf;
  5976. }
  5977. struct ggml_cgraph * build_phi2() {
  5978. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5979. const int64_t n_embd_head = hparams.n_embd_head_v;
  5980. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5981. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5982. struct ggml_tensor * cur;
  5983. struct ggml_tensor * attn_norm_output;
  5984. struct ggml_tensor * ffn_output;
  5985. struct ggml_tensor * inpL;
  5986. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5987. cb(inpL, "inp_embd", -1);
  5988. // inp_pos - contains the positions
  5989. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5990. cb(inp_pos, "inp_pos", -1);
  5991. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5992. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5993. cb(KQ_mask, "KQ_mask", -1);
  5994. for (int il = 0; il < n_layer; ++il) {
  5995. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  5996. model.layers[il].attn_norm,
  5997. model.layers[il].attn_norm_b,
  5998. LLM_NORM, cb, il);
  5999. cb(attn_norm_output, "attn_norm", il);
  6000. // self-attention
  6001. {
  6002. struct ggml_tensor * Qcur = nullptr;
  6003. struct ggml_tensor * Kcur = nullptr;
  6004. struct ggml_tensor * Vcur = nullptr;
  6005. if (model.layers[il].wqkv) {
  6006. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  6007. cb(cur, "wqkv", il);
  6008. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6009. cb(cur, "bqkv", il);
  6010. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6011. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6012. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6013. } else {
  6014. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  6015. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  6016. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  6017. }
  6018. cb(Qcur, "Qcur", il);
  6019. cb(Kcur, "Kcur", il);
  6020. cb(Vcur, "Vcur", il);
  6021. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6022. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6023. Qcur = ggml_rope_custom(
  6024. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6025. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6026. );
  6027. cb(Qcur, "Qcur", il);
  6028. // with phi2, we scale the Q to avoid precision issues
  6029. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  6030. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  6031. cb(Qcur, "Qcur", il);
  6032. Kcur = ggml_rope_custom(
  6033. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6034. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6035. );
  6036. cb(Kcur, "Kcur", il);
  6037. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6038. model.layers[il].wo, model.layers[il].bo,
  6039. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6040. cb(cur, "kqv_out", il);
  6041. }
  6042. // FF
  6043. {
  6044. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  6045. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6046. NULL, NULL,
  6047. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6048. NULL,
  6049. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6050. cb(ffn_output, "ffn_out", il);
  6051. }
  6052. cur = ggml_add(ctx0, cur, ffn_output);
  6053. cb(cur, "l_out", il);
  6054. cur = ggml_add(ctx0, cur, inpL);
  6055. cb(cur, "l_out", il);
  6056. inpL = cur;
  6057. }
  6058. cur = llm_build_norm(ctx0, inpL, hparams,
  6059. model.output_norm,
  6060. model.output_norm_b,
  6061. LLM_NORM, cb, -1);
  6062. cb(cur, "result_norm", -1);
  6063. cur = ggml_mul_mat(ctx0, model.output, cur);
  6064. cb(cur, "result_output_no_bias", -1);
  6065. cur = ggml_add(ctx0, cur, model.output_b);
  6066. cb(cur, "result_output", -1);
  6067. ggml_build_forward_expand(gf, cur);
  6068. return gf;
  6069. }
  6070. struct ggml_cgraph * build_plamo() {
  6071. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6072. const int64_t n_embd_head = hparams.n_embd_head_v;
  6073. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6074. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6075. struct ggml_tensor * cur;
  6076. struct ggml_tensor * inpL;
  6077. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6078. cb(inpL, "inp_embd", -1);
  6079. // inp_pos - contains the positions
  6080. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6081. cb(inp_pos, "inp_pos", -1);
  6082. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6083. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6084. cb(KQ_mask, "KQ_mask", -1);
  6085. for (int il = 0; il < n_layer; ++il) {
  6086. // norm
  6087. cur = llm_build_norm(ctx0, inpL, hparams,
  6088. model.layers[il].attn_norm, NULL,
  6089. LLM_NORM_RMS, cb, il);
  6090. cb(cur, "attn_norm", il);
  6091. struct ggml_tensor * attention_norm = cur;
  6092. // self-attention
  6093. {
  6094. // compute Q and K and RoPE them
  6095. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6096. cb(Qcur, "Qcur", il);
  6097. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6098. cb(Kcur, "Kcur", il);
  6099. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6100. cb(Vcur, "Vcur", il);
  6101. Qcur = ggml_rope_custom(
  6102. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  6103. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6104. ext_factor, attn_factor, beta_fast, beta_slow);
  6105. cb(Qcur, "Qcur", il);
  6106. Kcur = ggml_rope_custom(
  6107. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  6108. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6109. ext_factor, attn_factor, beta_fast, beta_slow);
  6110. cb(Kcur, "Kcur", il);
  6111. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6112. model.layers[il].wo, NULL,
  6113. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6114. cb(cur, "kqv_out", il);
  6115. }
  6116. struct ggml_tensor * sa_out = cur;
  6117. cur = attention_norm;
  6118. // feed-forward network
  6119. {
  6120. cur = llm_build_ffn(ctx0, cur,
  6121. model.layers[il].ffn_up, NULL,
  6122. model.layers[il].ffn_gate, NULL,
  6123. model.layers[il].ffn_down, NULL,
  6124. NULL,
  6125. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6126. cb(cur, "ffn_out", il);
  6127. }
  6128. cur = ggml_add(ctx0, cur, sa_out);
  6129. cb(cur, "l_out", il);
  6130. cur = ggml_add(ctx0, cur, inpL);
  6131. cb(cur, "l_out", il);
  6132. // input for next layer
  6133. inpL = cur;
  6134. }
  6135. cur = inpL;
  6136. cur = llm_build_norm(ctx0, cur, hparams,
  6137. model.output_norm, NULL,
  6138. LLM_NORM_RMS, cb, -1);
  6139. cb(cur, "result_norm", -1);
  6140. // lm_head
  6141. cur = ggml_mul_mat(ctx0, model.output, cur);
  6142. cb(cur, "result_output", -1);
  6143. ggml_build_forward_expand(gf, cur);
  6144. return gf;
  6145. }
  6146. struct ggml_cgraph * build_gpt2() {
  6147. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6148. const int64_t n_embd_head = hparams.n_embd_head_v;
  6149. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6150. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6151. struct ggml_tensor * cur;
  6152. struct ggml_tensor * pos;
  6153. struct ggml_tensor * inpL;
  6154. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6155. cb(inpL, "inp_embd", -1);
  6156. // inp_pos - contains the positions
  6157. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6158. cb(inp_pos, "inp_pos", -1);
  6159. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6160. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6161. cb(KQ_mask, "KQ_mask", -1);
  6162. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6163. cb(pos, "pos_embd", -1);
  6164. inpL = ggml_add(ctx0, inpL, pos);
  6165. cb(inpL, "inpL", -1);
  6166. for (int il = 0; il < n_layer; ++il) {
  6167. cur = llm_build_norm(ctx0, inpL, hparams,
  6168. model.layers[il].attn_norm,
  6169. model.layers[il].attn_norm_b,
  6170. LLM_NORM, cb, il);
  6171. cb(cur, "attn_norm", il);
  6172. // self-attention
  6173. {
  6174. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6175. cb(cur, "wqkv", il);
  6176. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6177. cb(cur, "bqkv", il);
  6178. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6179. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6180. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6181. cb(Qcur, "Qcur", il);
  6182. cb(Kcur, "Kcur", il);
  6183. cb(Vcur, "Vcur", il);
  6184. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6185. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6186. model.layers[il].wo, model.layers[il].bo,
  6187. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6188. cb(cur, "kqv_out", il);
  6189. }
  6190. // add the input
  6191. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6192. cb(ffn_inp, "ffn_inp", il);
  6193. // FF
  6194. {
  6195. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6196. model.layers[il].ffn_norm,
  6197. model.layers[il].ffn_norm_b,
  6198. LLM_NORM, cb, il);
  6199. cb(cur, "ffn_norm", il);
  6200. cur = llm_build_ffn(ctx0, cur,
  6201. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6202. NULL, NULL,
  6203. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6204. NULL,
  6205. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6206. cb(cur, "ffn_out", il);
  6207. }
  6208. inpL = ggml_add(ctx0, cur, ffn_inp);
  6209. cb(inpL, "l_out", il);
  6210. }
  6211. cur = llm_build_norm(ctx0, inpL, hparams,
  6212. model.output_norm,
  6213. model.output_norm_b,
  6214. LLM_NORM, cb, -1);
  6215. cb(cur, "result_norm", -1);
  6216. cur = ggml_mul_mat(ctx0, model.output, cur);
  6217. cb(cur, "result_output", -1);
  6218. ggml_build_forward_expand(gf, cur);
  6219. return gf;
  6220. }
  6221. struct ggml_cgraph * build_codeshell() {
  6222. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6223. const int64_t n_embd_head = hparams.n_embd_head_v;
  6224. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6225. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6226. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6227. struct ggml_tensor * cur;
  6228. struct ggml_tensor * inpL;
  6229. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6230. cb(inpL, "inp_embd", -1);
  6231. // inp_pos - contains the positions
  6232. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6233. cb(inp_pos, "inp_pos", -1);
  6234. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6235. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6236. cb(KQ_mask, "KQ_mask", -1);
  6237. for (int il = 0; il < n_layer; ++il) {
  6238. cur = llm_build_norm(ctx0, inpL, hparams,
  6239. model.layers[il].attn_norm,
  6240. model.layers[il].attn_norm_b,
  6241. LLM_NORM, cb, il);
  6242. cb(cur, "attn_norm", il);
  6243. // self-attention
  6244. {
  6245. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6246. cb(cur, "wqkv", il);
  6247. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6248. cb(cur, "bqkv", il);
  6249. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6250. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6251. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6252. cb(tmpq, "tmpq", il);
  6253. cb(tmpk, "tmpk", il);
  6254. cb(Vcur, "Vcur", il);
  6255. struct ggml_tensor * Qcur = ggml_rope_custom(
  6256. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  6257. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6258. ext_factor, attn_factor, beta_fast, beta_slow
  6259. );
  6260. cb(Qcur, "Qcur", il);
  6261. struct ggml_tensor * Kcur = ggml_rope_custom(
  6262. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6263. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6264. ext_factor, attn_factor, beta_fast, beta_slow
  6265. );
  6266. cb(Kcur, "Kcur", il);
  6267. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6268. model.layers[il].wo, model.layers[il].bo,
  6269. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6270. cb(cur, "kqv_out", il);
  6271. }
  6272. // add the input
  6273. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6274. cb(ffn_inp, "ffn_inp", il);
  6275. // FF
  6276. {
  6277. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6278. model.layers[il].ffn_norm,
  6279. model.layers[il].ffn_norm_b,
  6280. LLM_NORM, cb, il);
  6281. cb(cur, "ffn_norm", il);
  6282. cur = llm_build_ffn(ctx0, cur,
  6283. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6284. NULL, NULL,
  6285. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6286. NULL,
  6287. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6288. cb(cur, "ffn_out", il);
  6289. }
  6290. inpL = ggml_add(ctx0, cur, ffn_inp);
  6291. cb(inpL, "l_out", il);
  6292. }
  6293. cur = llm_build_norm(ctx0, inpL, hparams,
  6294. model.output_norm,
  6295. model.output_norm_b,
  6296. LLM_NORM, cb, -1);
  6297. cb(cur, "result_norm", -1);
  6298. cur = ggml_mul_mat(ctx0, model.output, cur);
  6299. cb(cur, "result_output", -1);
  6300. ggml_build_forward_expand(gf, cur);
  6301. return gf;
  6302. }
  6303. struct ggml_cgraph * build_orion() {
  6304. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6305. const int64_t n_embd_head = hparams.n_embd_head_v;
  6306. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6307. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6308. struct ggml_tensor * cur;
  6309. struct ggml_tensor * inpL;
  6310. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6311. cb(inpL, "inp_embd", -1);
  6312. // inp_pos - contains the positions
  6313. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6314. cb(inp_pos, "inp_pos", -1);
  6315. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6316. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6317. cb(KQ_mask, "KQ_mask", -1);
  6318. for (int il = 0; il < n_layer; ++il) {
  6319. struct ggml_tensor * inpSA = inpL;
  6320. // norm
  6321. cur = llm_build_norm(ctx0, inpL, hparams,
  6322. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6323. LLM_NORM, cb, il);
  6324. cb(cur, "attn_norm", il);
  6325. // self-attention
  6326. {
  6327. // compute Q and K and RoPE them
  6328. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6329. cb(Qcur, "Qcur", il);
  6330. // if (model.layers[il].bq) {
  6331. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6332. // cb(Qcur, "Qcur", il);
  6333. // }
  6334. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6335. cb(Kcur, "Kcur", il);
  6336. // if (model.layers[il].bk) {
  6337. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6338. // cb(Kcur, "Kcur", il);
  6339. // }
  6340. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6341. cb(Vcur, "Vcur", il);
  6342. // if (model.layers[il].bv) {
  6343. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6344. // cb(Vcur, "Vcur", il);
  6345. // }
  6346. Qcur = ggml_rope_custom(
  6347. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6348. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6349. ext_factor, attn_factor, beta_fast, beta_slow
  6350. );
  6351. cb(Qcur, "Qcur", il);
  6352. Kcur = ggml_rope_custom(
  6353. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6354. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6355. ext_factor, attn_factor, beta_fast, beta_slow
  6356. );
  6357. cb(Kcur, "Kcur", il);
  6358. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6359. model.layers[il].wo, NULL,
  6360. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6361. cb(cur, "kqv_out", il);
  6362. }
  6363. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6364. cb(ffn_inp, "ffn_inp", il);
  6365. // feed-forward network
  6366. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6367. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6368. LLM_NORM, cb, il);
  6369. cb(cur, "ffn_norm", il);
  6370. cur = llm_build_ffn(ctx0, cur,
  6371. model.layers[il].ffn_up, NULL,
  6372. model.layers[il].ffn_gate, NULL,
  6373. model.layers[il].ffn_down, NULL,
  6374. NULL,
  6375. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6376. cb(cur, "ffn_out", il);
  6377. cur = ggml_add(ctx0, cur, ffn_inp);
  6378. cb(cur, "l_out", il);
  6379. // input for next layer
  6380. inpL = cur;
  6381. }
  6382. cur = inpL;
  6383. cur = llm_build_norm(ctx0, cur, hparams,
  6384. model.output_norm, model.output_norm_b,
  6385. LLM_NORM, cb, -1);
  6386. cb(cur, "result_norm", -1);
  6387. // lm_head
  6388. cur = ggml_mul_mat(ctx0, model.output, cur);
  6389. cb(cur, "result_output", -1);
  6390. ggml_build_forward_expand(gf, cur);
  6391. return gf;
  6392. }
  6393. struct ggml_cgraph * build_internlm2() {
  6394. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6395. const int64_t n_embd_head = hparams.n_embd_head_v;
  6396. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6397. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6398. struct ggml_tensor * cur;
  6399. struct ggml_tensor * inpL;
  6400. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6401. cb(inpL, "inp_embd", -1);
  6402. // inp_pos - contains the positions
  6403. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6404. cb(inp_pos, "inp_pos", -1);
  6405. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6406. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6407. cb(KQ_mask, "KQ_mask", -1);
  6408. for (int il = 0; il < n_layer; ++il) {
  6409. struct ggml_tensor * inpSA = inpL;
  6410. // norm
  6411. cur = llm_build_norm(ctx0, inpL, hparams,
  6412. model.layers[il].attn_norm, NULL,
  6413. LLM_NORM_RMS, cb, il);
  6414. cb(cur, "attn_norm", il);
  6415. // self-attention
  6416. {
  6417. // compute Q and K and RoPE them
  6418. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6419. cb(Qcur, "Qcur", il);
  6420. if (model.layers[il].bq) {
  6421. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6422. cb(Qcur, "Qcur", il);
  6423. }
  6424. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6425. cb(Kcur, "Kcur", il);
  6426. if (model.layers[il].bk) {
  6427. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6428. cb(Kcur, "Kcur", il);
  6429. }
  6430. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6431. cb(Vcur, "Vcur", il);
  6432. if (model.layers[il].bv) {
  6433. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6434. cb(Vcur, "Vcur", il);
  6435. }
  6436. Qcur = ggml_rope_custom(
  6437. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6438. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6439. ext_factor, attn_factor, beta_fast, beta_slow
  6440. );
  6441. cb(Qcur, "Qcur", il);
  6442. Kcur = ggml_rope_custom(
  6443. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6444. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6445. ext_factor, attn_factor, beta_fast, beta_slow
  6446. );
  6447. cb(Kcur, "Kcur", il);
  6448. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6449. model.layers[il].wo, model.layers[il].bo,
  6450. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6451. cb(cur, "kqv_out", il);
  6452. }
  6453. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6454. cb(ffn_inp, "ffn_inp", il);
  6455. // feed-forward network
  6456. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6457. model.layers[il].ffn_norm, NULL,
  6458. LLM_NORM_RMS, cb, il);
  6459. cb(cur, "ffn_norm", il);
  6460. cur = llm_build_ffn(ctx0, cur,
  6461. model.layers[il].ffn_up, NULL,
  6462. model.layers[il].ffn_gate, NULL,
  6463. model.layers[il].ffn_down, NULL,
  6464. NULL,
  6465. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6466. cb(cur, "ffn_out", il);
  6467. cur = ggml_add(ctx0, cur, ffn_inp);
  6468. cb(cur, "l_out", il);
  6469. // input for next layer
  6470. inpL = cur;
  6471. }
  6472. cur = inpL;
  6473. cur = llm_build_norm(ctx0, cur, hparams,
  6474. model.output_norm, NULL,
  6475. LLM_NORM_RMS, cb, -1);
  6476. cb(cur, "result_norm", -1);
  6477. // lm_head
  6478. cur = ggml_mul_mat(ctx0, model.output, cur);
  6479. cb(cur, "result_output", -1);
  6480. ggml_build_forward_expand(gf, cur);
  6481. return gf;
  6482. }
  6483. // ref: https://arxiv.org/abs/2203.03466
  6484. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  6485. // based on the original build_llama() function
  6486. struct ggml_cgraph * build_minicpm() {
  6487. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6488. const int64_t n_embd_head = hparams.n_embd_head_v;
  6489. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6490. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6491. const int64_t n_embd = hparams.n_embd;
  6492. //TODO: if the model varies, these parameters need to be read from the model
  6493. const int64_t n_embd_base = 256;
  6494. const float scale_embd = 12.0f;
  6495. const float scale_depth = 1.4f;
  6496. struct ggml_tensor * cur;
  6497. struct ggml_tensor * inpL;
  6498. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6499. cb(inpL, "inp_embd", -1);
  6500. // scale the input embeddings
  6501. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6502. cb(inpL, "inp_scaled", -1);
  6503. // inp_pos - contains the positions
  6504. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6505. cb(inp_pos, "inp_pos", -1);
  6506. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6507. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6508. cb(KQ_mask, "KQ_mask", -1);
  6509. for (int il = 0; il < n_layer; ++il) {
  6510. struct ggml_tensor * inpSA = inpL;
  6511. // norm
  6512. cur = llm_build_norm(ctx0, inpL, hparams,
  6513. model.layers[il].attn_norm, NULL,
  6514. LLM_NORM_RMS, cb, il);
  6515. cb(cur, "attn_norm", il);
  6516. // self-attention
  6517. {
  6518. // compute Q and K and RoPE them
  6519. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6520. cb(Qcur, "Qcur", il);
  6521. if (model.layers[il].bq) {
  6522. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6523. cb(Qcur, "Qcur", il);
  6524. }
  6525. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6526. cb(Kcur, "Kcur", il);
  6527. if (model.layers[il].bk) {
  6528. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6529. cb(Kcur, "Kcur", il);
  6530. }
  6531. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6532. cb(Vcur, "Vcur", il);
  6533. if (model.layers[il].bv) {
  6534. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6535. cb(Vcur, "Vcur", il);
  6536. }
  6537. Qcur = ggml_rope_custom(
  6538. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6539. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6540. ext_factor, attn_factor, beta_fast, beta_slow
  6541. );
  6542. cb(Qcur, "Qcur", il);
  6543. Kcur = ggml_rope_custom(
  6544. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6545. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6546. ext_factor, attn_factor, beta_fast, beta_slow
  6547. );
  6548. cb(Kcur, "Kcur", il);
  6549. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6550. model.layers[il].wo, model.layers[il].bo,
  6551. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6552. cb(cur, "kqv_out", il);
  6553. }
  6554. // scale_res - scale the hidden states for residual connection
  6555. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6556. cur = ggml_scale(ctx0, cur, scale_res);
  6557. cb(cur, "hidden_scaled", -1);
  6558. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6559. cb(ffn_inp, "ffn_inp", il);
  6560. // feed-forward network
  6561. {
  6562. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6563. model.layers[il].ffn_norm, NULL,
  6564. LLM_NORM_RMS, cb, il);
  6565. cb(cur, "ffn_norm", il);
  6566. cur = llm_build_ffn(ctx0, cur,
  6567. model.layers[il].ffn_up, NULL,
  6568. model.layers[il].ffn_gate, NULL,
  6569. model.layers[il].ffn_down, NULL,
  6570. NULL,
  6571. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6572. cb(cur, "ffn_out", il);
  6573. }
  6574. // scale the hidden states for residual connection
  6575. cur = ggml_scale(ctx0, cur, scale_res);
  6576. cb(cur, "hidden_scaled_ffn", -1);
  6577. cur = ggml_add(ctx0, cur, ffn_inp);
  6578. cb(cur, "l_out", il);
  6579. // input for next layer
  6580. inpL = cur;
  6581. }
  6582. cur = inpL;
  6583. cur = llm_build_norm(ctx0, cur, hparams,
  6584. model.output_norm, NULL,
  6585. LLM_NORM_RMS, cb, -1);
  6586. cb(cur, "result_norm", -1);
  6587. // lm_head scaling
  6588. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6589. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6590. cb(cur, "lmhead_scaling", -1);
  6591. // lm_head
  6592. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  6593. cb(cur, "result_output", -1);
  6594. ggml_build_forward_expand(gf, cur);
  6595. return gf;
  6596. }
  6597. struct ggml_cgraph * build_gemma() {
  6598. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6599. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6600. struct ggml_tensor * cur;
  6601. struct ggml_tensor * inpL;
  6602. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6603. cb(inpL, "inp_embd", -1);
  6604. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6605. cb(inpL, "inp_scaled", -1);
  6606. // inp_pos - contains the positions
  6607. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6608. cb(inp_pos, "inp_pos", -1);
  6609. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6610. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6611. cb(KQ_mask, "KQ_mask", -1);
  6612. for (int il = 0; il < n_layer; ++il) {
  6613. // norm
  6614. cur = llm_build_norm(ctx0, inpL, hparams,
  6615. model.layers[il].attn_norm, NULL,
  6616. LLM_NORM_RMS, cb, il);
  6617. cb(cur, "attn_norm", il);
  6618. // self-attention
  6619. {
  6620. // compute Q and K and RoPE them
  6621. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6622. cb(Qcur, "Qcur", il);
  6623. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6624. cb(Kcur, "Kcur", il);
  6625. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6626. cb(Vcur, "Vcur", il);
  6627. Qcur = ggml_rope_custom(
  6628. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  6629. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6630. ext_factor, attn_factor, beta_fast, beta_slow);
  6631. cb(Qcur, "Qcur", il);
  6632. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  6633. cb(Qcur, "Qcur_scaled", il);
  6634. Kcur = ggml_rope_custom(
  6635. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  6636. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6637. ext_factor, attn_factor, beta_fast, beta_slow);
  6638. cb(Kcur, "Kcur", il);
  6639. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6640. model.layers[il].wo, NULL,
  6641. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6642. cb(cur, "kqv_out", il);
  6643. }
  6644. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6645. cb(sa_out, "sa_out", il);
  6646. cur = llm_build_norm(ctx0, sa_out, hparams,
  6647. model.layers[il].ffn_norm, NULL,
  6648. LLM_NORM_RMS, cb, il);
  6649. cb(cur, "ffn_norm", il);
  6650. // feed-forward network
  6651. {
  6652. cur = llm_build_ffn(ctx0, cur,
  6653. model.layers[il].ffn_up, NULL,
  6654. model.layers[il].ffn_gate, NULL,
  6655. model.layers[il].ffn_down, NULL,
  6656. NULL,
  6657. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  6658. cb(cur, "ffn_out", il);
  6659. }
  6660. cur = ggml_add(ctx0, cur, sa_out);
  6661. cb(cur, "l_out", il);
  6662. // input for next layer
  6663. inpL = cur;
  6664. }
  6665. cur = inpL;
  6666. cur = llm_build_norm(ctx0, cur, hparams,
  6667. model.output_norm, NULL,
  6668. LLM_NORM_RMS, cb, -1);
  6669. cb(cur, "result_norm", -1);
  6670. // lm_head
  6671. cur = ggml_mul_mat(ctx0, model.output, cur);
  6672. cb(cur, "result_output", -1);
  6673. ggml_build_forward_expand(gf, cur);
  6674. return gf;
  6675. }
  6676. struct ggml_cgraph * build_starcoder2() {
  6677. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6678. const int64_t n_embd_head = hparams.n_embd_head_v;
  6679. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6680. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6681. struct ggml_tensor * cur;
  6682. struct ggml_tensor * inpL;
  6683. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6684. cb(inpL, "inp_embd", -1);
  6685. // inp_pos - contains the positions
  6686. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6687. cb(inp_pos, "inp_pos", -1);
  6688. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6689. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6690. cb(KQ_mask, "KQ_mask", -1);
  6691. for (int il = 0; il < n_layer; ++il) {
  6692. struct ggml_tensor * inpSA = inpL;
  6693. // norm
  6694. cur = llm_build_norm(ctx0, inpL, hparams,
  6695. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6696. LLM_NORM, cb, il);
  6697. cb(cur, "attn_norm", il);
  6698. // self-attention
  6699. {
  6700. // compute Q and K and RoPE them
  6701. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6702. cb(Qcur, "Qcur", il);
  6703. if (model.layers[il].bq) {
  6704. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6705. cb(Qcur, "Qcur", il);
  6706. }
  6707. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6708. cb(Kcur, "Kcur", il);
  6709. if (model.layers[il].bk) {
  6710. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6711. cb(Kcur, "Kcur", il);
  6712. }
  6713. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6714. cb(Vcur, "Vcur", il);
  6715. if (model.layers[il].bv) {
  6716. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6717. cb(Vcur, "Vcur", il);
  6718. }
  6719. Qcur = ggml_rope_custom(
  6720. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6721. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6722. ext_factor, attn_factor, beta_fast, beta_slow
  6723. );
  6724. cb(Qcur, "Qcur", il);
  6725. Kcur = ggml_rope_custom(
  6726. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6727. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6728. ext_factor, attn_factor, beta_fast, beta_slow
  6729. );
  6730. cb(Kcur, "Kcur", il);
  6731. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6732. model.layers[il].wo, model.layers[il].bo,
  6733. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6734. cb(cur, "kqv_out", il);
  6735. }
  6736. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6737. cb(ffn_inp, "ffn_inp", il);
  6738. // feed-forward network
  6739. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6740. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6741. LLM_NORM, cb, il);
  6742. cb(cur, "ffn_norm", il);
  6743. cur = llm_build_ffn(ctx0, cur,
  6744. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6745. NULL, NULL,
  6746. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6747. NULL,
  6748. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6749. cb(cur, "ffn_out", il);
  6750. cur = ggml_add(ctx0, cur, ffn_inp);
  6751. cb(cur, "l_out", il);
  6752. // input for next layer
  6753. inpL = cur;
  6754. }
  6755. cur = inpL;
  6756. cur = llm_build_norm(ctx0, cur, hparams,
  6757. model.output_norm, model.output_norm_b,
  6758. LLM_NORM, cb, -1);
  6759. cb(cur, "result_norm", -1);
  6760. // lm_head
  6761. cur = ggml_mul_mat(ctx0, model.output, cur);
  6762. cb(cur, "result_output", -1);
  6763. ggml_build_forward_expand(gf, cur);
  6764. return gf;
  6765. }
  6766. struct ggml_cgraph * build_mamba() {
  6767. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6768. const int64_t d_model = n_embd;
  6769. const int64_t d_conv = hparams.ssm_d_conv;
  6770. const int64_t d_inner = hparams.ssm_d_inner;
  6771. GGML_ASSERT(2 * d_model == d_inner);
  6772. const int64_t d_state = hparams.ssm_d_state;
  6773. const int64_t dt_rank = hparams.ssm_dt_rank;
  6774. struct ggml_tensor * cur;
  6775. struct ggml_tensor * inpL;
  6776. // {n_embd, n_tokens}
  6777. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6778. cb(inpL, "inp_embd", -1);
  6779. struct ggml_tensor * state_mask = ggml_view_2d(ctx0, lctx.inp_s_mask, 1, n_kv, lctx.inp_s_mask->nb[0], 0);
  6780. struct ggml_tensor * state_seq = ggml_view_2d(ctx0, lctx.inp_s_seq, n_kv, n_tokens, n_kv*ggml_element_size(lctx.inp_s_seq), 0);
  6781. for (int il = 0; il < n_layer; ++il) {
  6782. // (ab)using the KV cache to store the states
  6783. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6784. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6785. // clear states of sequences which are starting at the beginning of this batch
  6786. {
  6787. conv_states = ggml_mul(ctx0,
  6788. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  6789. state_mask);
  6790. ssm_states = ggml_mul(ctx0,
  6791. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  6792. state_mask);
  6793. }
  6794. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  6795. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  6796. // norm
  6797. cur = llm_build_norm(ctx0, inpL, hparams,
  6798. model.layers[il].attn_norm, NULL,
  6799. LLM_NORM_RMS, cb, il);
  6800. cb(cur, "attn_norm", il);
  6801. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  6802. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  6803. // split the above in two
  6804. // => {d_inner, n_tokens}
  6805. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  6806. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  6807. // conv
  6808. {
  6809. // Custom operator which is needed only to ease simultaneous sequence processing.
  6810. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  6811. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  6812. // then element-wise multiply that with the conv1d weigth,
  6813. // then sum the elements of each row,
  6814. // (the last two steps are a dot product over rows (also doable with mul_mat))
  6815. // then permute away the ne[0] dimension,
  6816. // and then you're left with the resulting x tensor.
  6817. // The new conv_states is the last (d_conv - 1) columns
  6818. // of the last 3rd dimensional "layer" of the self-overlapping view.
  6819. // For simultaneous sequences, it's more complicated.
  6820. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  6821. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  6822. ggml_build_forward_expand(gf,
  6823. ggml_cpy(ctx0,
  6824. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  6825. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_self.head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  6826. // extract x from x_conv
  6827. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  6828. // bias
  6829. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  6830. x = ggml_silu(ctx0, x);
  6831. }
  6832. // ssm
  6833. {
  6834. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  6835. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  6836. // split
  6837. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  6838. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  6839. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  6840. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  6841. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  6842. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  6843. // Custom operator to optimize the parallel associative scan
  6844. // as described in the Annex D of the Mamba paper.
  6845. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  6846. // because only a single tensor can be returned.
  6847. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  6848. // store last states (the second part of y_ssm_states)
  6849. ggml_build_forward_expand(gf,
  6850. ggml_cpy(ctx0,
  6851. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  6852. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_self.head*d_state*d_inner*ggml_element_size(ssm_states))));
  6853. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  6854. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  6855. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  6856. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  6857. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  6858. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  6859. }
  6860. // residual
  6861. cur = ggml_add(ctx0, cur, inpL);
  6862. cb(cur, "l_out", il);
  6863. // input for next layer
  6864. inpL = cur;
  6865. }
  6866. // final rmsnorm
  6867. cur = llm_build_norm(ctx0, inpL, hparams,
  6868. model.output_norm, NULL,
  6869. LLM_NORM_RMS, cb, -1);
  6870. cb(cur, "result_norm", -1);
  6871. // lm_head
  6872. cur = ggml_mul_mat(ctx0, model.output, cur);
  6873. cb(cur, "result_output", -1);
  6874. ggml_build_forward_expand(gf, cur);
  6875. return gf;
  6876. }
  6877. };
  6878. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  6879. llama_batch dummy;
  6880. dummy.n_tokens = 0;
  6881. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  6882. struct llm_build_context llm(lctx, dummy, cb, false);
  6883. llm.init();
  6884. struct ggml_cgraph * result = llm.build_defrag(ids);
  6885. llm.free();
  6886. return result;
  6887. }
  6888. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  6889. llama_batch dummy;
  6890. dummy.n_tokens = 0;
  6891. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  6892. struct llm_build_context llm(lctx, dummy, cb, false);
  6893. llm.init();
  6894. struct ggml_cgraph * result = llm.build_k_shift();
  6895. llm.free();
  6896. return result;
  6897. }
  6898. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  6899. llama_batch dummy;
  6900. dummy.n_tokens = 0;
  6901. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  6902. struct llm_build_context llm(lctx, dummy, cb, false);
  6903. llm.init();
  6904. struct ggml_cgraph * result = llm.build_s_copy();
  6905. llm.free();
  6906. return result;
  6907. }
  6908. static struct ggml_cgraph * llama_build_graph(
  6909. llama_context & lctx,
  6910. const llama_batch & batch,
  6911. bool worst_case) {
  6912. const auto & model = lctx.model;
  6913. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  6914. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  6915. if (il >= 0) {
  6916. ggml_format_name(cur, "%s-%d", name, il);
  6917. } else {
  6918. ggml_set_name(cur, name);
  6919. }
  6920. if (!lctx.cparams.offload_kqv) {
  6921. if (strcmp(name, "kqv_merged_cont") == 0) {
  6922. // all nodes between the KV store and the attention output are run on the CPU
  6923. ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu);
  6924. }
  6925. }
  6926. };
  6927. struct ggml_cgraph * result = NULL;
  6928. struct llm_build_context llm(lctx, batch, cb, worst_case);
  6929. llm.init();
  6930. switch (model.arch) {
  6931. case LLM_ARCH_LLAMA:
  6932. {
  6933. result = llm.build_llama();
  6934. } break;
  6935. case LLM_ARCH_BAICHUAN:
  6936. {
  6937. result = llm.build_baichuan();
  6938. } break;
  6939. case LLM_ARCH_FALCON:
  6940. {
  6941. result = llm.build_falcon();
  6942. } break;
  6943. case LLM_ARCH_STARCODER:
  6944. {
  6945. result = llm.build_starcoder();
  6946. } break;
  6947. case LLM_ARCH_PERSIMMON:
  6948. {
  6949. result = llm.build_persimmon();
  6950. } break;
  6951. case LLM_ARCH_REFACT:
  6952. {
  6953. result = llm.build_refact();
  6954. } break;
  6955. case LLM_ARCH_BERT:
  6956. case LLM_ARCH_NOMIC_BERT:
  6957. {
  6958. result = llm.build_bert();
  6959. } break;
  6960. case LLM_ARCH_BLOOM:
  6961. {
  6962. result = llm.build_bloom();
  6963. } break;
  6964. case LLM_ARCH_MPT:
  6965. {
  6966. result = llm.build_mpt();
  6967. } break;
  6968. case LLM_ARCH_STABLELM:
  6969. {
  6970. result = llm.build_stablelm();
  6971. } break;
  6972. case LLM_ARCH_QWEN:
  6973. {
  6974. result = llm.build_qwen();
  6975. } break;
  6976. case LLM_ARCH_QWEN2:
  6977. {
  6978. result = llm.build_qwen2();
  6979. } break;
  6980. case LLM_ARCH_PHI2:
  6981. {
  6982. result = llm.build_phi2();
  6983. } break;
  6984. case LLM_ARCH_PLAMO:
  6985. {
  6986. result = llm.build_plamo();
  6987. } break;
  6988. case LLM_ARCH_GPT2:
  6989. {
  6990. result = llm.build_gpt2();
  6991. } break;
  6992. case LLM_ARCH_CODESHELL:
  6993. {
  6994. result = llm.build_codeshell();
  6995. } break;
  6996. case LLM_ARCH_ORION:
  6997. {
  6998. result = llm.build_orion();
  6999. } break;
  7000. case LLM_ARCH_INTERNLM2:
  7001. {
  7002. result = llm.build_internlm2();
  7003. } break;
  7004. case LLM_ARCH_MINICPM:
  7005. {
  7006. result = llm.build_minicpm();
  7007. } break;
  7008. case LLM_ARCH_GEMMA:
  7009. {
  7010. result = llm.build_gemma();
  7011. } break;
  7012. case LLM_ARCH_STARCODER2:
  7013. {
  7014. result = llm.build_starcoder2();
  7015. } break;
  7016. case LLM_ARCH_MAMBA:
  7017. {
  7018. result = llm.build_mamba();
  7019. } break;
  7020. default:
  7021. GGML_ASSERT(false);
  7022. }
  7023. llm.free();
  7024. return result;
  7025. }
  7026. static void llama_set_k_shift(llama_context & lctx) {
  7027. const int64_t kv_size = lctx.kv_self.size;
  7028. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  7029. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  7030. for (int i = 0; i < kv_size; ++i) {
  7031. data[i] = lctx.kv_self.cells[i].delta;
  7032. }
  7033. }
  7034. static void llama_set_s_copy(llama_context & lctx) {
  7035. const int64_t kv_size = lctx.kv_self.size;
  7036. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  7037. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  7038. for (int i = 0; i < kv_size; ++i) {
  7039. data[i] = lctx.kv_self.cells[i].src;
  7040. }
  7041. }
  7042. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  7043. //
  7044. // set input data
  7045. //
  7046. const auto & hparams = lctx.model.hparams;
  7047. const auto & cparams = lctx.cparams;
  7048. const auto & kv_self = lctx.kv_self;
  7049. if (batch.token) {
  7050. const int64_t n_tokens = batch.n_tokens;
  7051. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  7052. }
  7053. if (batch.embd) {
  7054. const int64_t n_embd = hparams.n_embd;
  7055. const int64_t n_tokens = batch.n_tokens;
  7056. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  7057. }
  7058. if (batch.pos) {
  7059. const int64_t n_tokens = batch.n_tokens;
  7060. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  7061. }
  7062. GGML_ASSERT(
  7063. (hparams.causal_attn || !cparams.causal_attn) &&
  7064. "non-causal attention with generative models is not supported"
  7065. );
  7066. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  7067. if (cparams.causal_attn) {
  7068. const int64_t n_kv = kv_self.n;
  7069. const int64_t n_tokens = batch.n_tokens;
  7070. assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  7071. float * data = (float *) lctx.inp_KQ_mask->data;
  7072. // For causal attention, use only the previous KV cells
  7073. // of the correct sequence for each token of the batch.
  7074. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  7075. for (int h = 0; h < 1; ++h) {
  7076. for (int j = 0; j < n_tokens; ++j) {
  7077. const llama_pos pos = batch.pos[j];
  7078. const llama_seq_id seq_id = batch.seq_id[j][0];
  7079. for (int i = 0; i < n_kv; ++i) {
  7080. float f;
  7081. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  7082. f = -INFINITY;
  7083. } else {
  7084. f = 0.0f;
  7085. }
  7086. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  7087. }
  7088. }
  7089. }
  7090. } else {
  7091. // when using kv cache, the mask needs to match the kv cache size
  7092. const int64_t n_tokens = batch.n_tokens;
  7093. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  7094. assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  7095. float * data = (float *) lctx.inp_KQ_mask->data;
  7096. for (int h = 0; h < 1; ++h) {
  7097. for (int j = 0; j < n_tokens; ++j) {
  7098. const llama_seq_id seq_id = batch.seq_id[j][0];
  7099. for (int i = 0; i < n_tokens; ++i) {
  7100. float f = -INFINITY;
  7101. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  7102. if (batch.seq_id[i][s] == seq_id) {
  7103. f = 0.0f;
  7104. break;
  7105. }
  7106. }
  7107. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  7108. }
  7109. for (int i = n_tokens; i < n_stride; ++i) {
  7110. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  7111. }
  7112. }
  7113. }
  7114. }
  7115. if (hparams.need_kq_pos) {
  7116. const int64_t n_kv = kv_self.n;
  7117. assert(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  7118. float * data = (float *) lctx.inp_KQ_pos->data;
  7119. for (int i = 0; i < n_kv; ++i) {
  7120. data[i] = float(lctx.kv_self.cells[i].pos);
  7121. }
  7122. }
  7123. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  7124. const int64_t n_tokens = batch.n_tokens;
  7125. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  7126. float * data = (float *) lctx.inp_mean->data;
  7127. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  7128. std::vector<uint64_t> sum(n_tokens, 0);
  7129. for (int i = 0; i < n_tokens; ++i) {
  7130. const llama_seq_id seq_id = batch.seq_id[i][0];
  7131. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  7132. sum[seq_id] += 1;
  7133. }
  7134. std::vector<float> div(n_tokens, 0.0f);
  7135. for (int i = 0; i < n_tokens; ++i) {
  7136. const uint64_t s = sum[i];
  7137. if (s > 0) {
  7138. div[i] = 1.0f/float(s);
  7139. }
  7140. }
  7141. for (int i = 0; i < n_tokens; ++i) {
  7142. const llama_seq_id seq_id = batch.seq_id[i][0];
  7143. data[seq_id*n_tokens + i] = div[seq_id];
  7144. }
  7145. }
  7146. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  7147. const int64_t n_tokens = batch.n_tokens;
  7148. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  7149. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  7150. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  7151. for (int i = 0; i < n_tokens; ++i) {
  7152. const llama_seq_id seq_id = batch.seq_id[i][0];
  7153. const llama_pos pos = batch.pos[i];
  7154. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  7155. if (pos == 0) {
  7156. data[seq_id] = i;
  7157. }
  7158. }
  7159. }
  7160. if (kv_self.recurrent) {
  7161. const int64_t n_kv = kv_self.n;
  7162. {
  7163. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  7164. float * data = (float *) lctx.inp_s_mask->data;
  7165. // states which are not affected by the current batch are left untouched
  7166. for (int i = 0; i < n_kv; ++i) {
  7167. llama_seq_id seq_id = i + lctx.kv_self.head;
  7168. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  7169. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  7170. data[i] = (float) has_self_seq;
  7171. // ensure current sequences will be kept
  7172. if (!has_self_seq && kv_cell.pos >= 0) {
  7173. kv_cell.seq_id.insert(seq_id);
  7174. }
  7175. }
  7176. }
  7177. // For Mamba (and other recurrent architectures),
  7178. // update the correct state(s)/sequence(s) for each token of the batch.
  7179. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  7180. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  7181. {
  7182. const int64_t n_tokens = batch.n_tokens;
  7183. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  7184. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  7185. for (int j = 0; j < n_tokens; ++j) {
  7186. const int32_t n_seq = batch.n_seq_id[j];
  7187. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  7188. for (int i = 0; i < n_kv; ++i) {
  7189. if (i < n_seq) {
  7190. // for this type of model, the head is the minimum seq_id of the batch
  7191. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  7192. } else {
  7193. data[j*n_kv + i] = -1;
  7194. }
  7195. }
  7196. }
  7197. }
  7198. }
  7199. }
  7200. static void llama_graph_compute(
  7201. llama_context & lctx,
  7202. ggml_cgraph * gf,
  7203. int n_threads) {
  7204. #ifdef GGML_USE_MPI
  7205. const int64_t n_layer = lctx.model.hparams.n_layer;
  7206. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  7207. #endif
  7208. #ifdef GGML_USE_METAL
  7209. if (ggml_backend_is_metal(lctx.backend_metal)) {
  7210. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  7211. }
  7212. #endif
  7213. if (lctx.backend_cpu != nullptr) {
  7214. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  7215. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  7216. }
  7217. ggml_backend_sched_graph_compute(lctx.sched, gf);
  7218. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  7219. #ifdef GGML_USE_MPI
  7220. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  7221. #endif
  7222. }
  7223. // decode a batch of tokens by evaluating the transformer
  7224. //
  7225. // - lctx: llama context
  7226. // - batch: batch to evaluate
  7227. //
  7228. // return 0 on success
  7229. // return positive int on warning
  7230. // return negative int on error
  7231. //
  7232. static int llama_decode_internal(
  7233. llama_context & lctx,
  7234. llama_batch batch) {
  7235. const uint32_t n_tokens = batch.n_tokens;
  7236. if (n_tokens == 0) {
  7237. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  7238. return -1;
  7239. }
  7240. const auto & model = lctx.model;
  7241. const auto & hparams = model.hparams;
  7242. const auto & cparams = lctx.cparams;
  7243. const auto n_batch = cparams.n_batch;
  7244. GGML_ASSERT(n_tokens <= n_batch);
  7245. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  7246. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  7247. const int64_t t_start_us = ggml_time_us();
  7248. #ifdef GGML_USE_MPI
  7249. // TODO: needs fix after #3228
  7250. GGML_ASSERT(false && "not implemented");
  7251. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  7252. #endif
  7253. GGML_ASSERT(n_threads > 0);
  7254. auto & kv_self = lctx.kv_self;
  7255. const int64_t n_embd = hparams.n_embd;
  7256. const int64_t n_vocab = hparams.n_vocab;
  7257. // helpers for smoother batch API transition
  7258. // after deprecating the llama_eval calls, these will be removed
  7259. std::vector<llama_pos> pos;
  7260. std::vector<int32_t> n_seq_id;
  7261. std::vector<llama_seq_id *> seq_id_arr;
  7262. std::vector<std::vector<llama_seq_id>> seq_id;
  7263. if (batch.pos == nullptr) {
  7264. pos.resize(n_tokens);
  7265. for (uint32_t i = 0; i < n_tokens; i++) {
  7266. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  7267. }
  7268. batch.pos = pos.data();
  7269. }
  7270. if (batch.seq_id == nullptr) {
  7271. n_seq_id.resize(n_tokens);
  7272. seq_id.resize(n_tokens);
  7273. seq_id_arr.resize(n_tokens);
  7274. for (uint32_t i = 0; i < n_tokens; i++) {
  7275. n_seq_id[i] = 1;
  7276. seq_id[i].resize(1);
  7277. seq_id[i][0] = batch.all_seq_id;
  7278. seq_id_arr[i] = seq_id[i].data();
  7279. }
  7280. batch.n_seq_id = n_seq_id.data();
  7281. batch.seq_id = seq_id_arr.data();
  7282. }
  7283. // non-causal masks do not use the KV cache
  7284. if (hparams.causal_attn) {
  7285. llama_kv_cache_update(&lctx);
  7286. // if we have enough unused cells before the current head ->
  7287. // better to start searching from the beginning of the cache, hoping to fill it
  7288. if (kv_self.head > kv_self.used + 2*n_tokens) {
  7289. kv_self.head = 0;
  7290. }
  7291. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  7292. return 1;
  7293. }
  7294. if (!kv_self.recurrent) {
  7295. // a heuristic, to avoid attending the full cache if it is not yet utilized
  7296. // after enough generations, the benefit from this heuristic disappears
  7297. // if we start defragmenting the cache, the benefit from this will be more important
  7298. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  7299. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  7300. }
  7301. }
  7302. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  7303. ggml_backend_sched_reset(lctx.sched);
  7304. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  7305. ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
  7306. // the output is always the last tensor in the graph
  7307. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  7308. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  7309. if (!hparams.causal_attn) {
  7310. res = nullptr; // do not extract logits for embedding models such as BERT
  7311. // token or sequence embeddings
  7312. embd = gf->nodes[gf->n_nodes - 1];
  7313. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  7314. } else {
  7315. if (strcmp(res->name, "result_output") == 0) {
  7316. // the token embeddings could be the second to last tensor, or the third to last tensor
  7317. if (strcmp(embd->name, "result_norm") != 0) {
  7318. embd = gf->nodes[gf->n_nodes - 3];
  7319. GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
  7320. }
  7321. } else {
  7322. GGML_ASSERT(false && "missing result_output tensor");
  7323. }
  7324. }
  7325. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  7326. // for big prompts, if BLAS is enabled, it is better to use only one thread
  7327. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  7328. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  7329. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  7330. // with the BLAS calls. need a better solution
  7331. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  7332. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  7333. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  7334. n_threads = std::min(4, n_threads);
  7335. }
  7336. llama_set_inputs(lctx, batch);
  7337. llama_graph_compute(lctx, gf, n_threads);
  7338. // update the kv ring buffer
  7339. {
  7340. kv_self.head += n_tokens;
  7341. // Ensure kv cache head points to a valid index.
  7342. if (kv_self.head >= kv_self.size) {
  7343. kv_self.head = 0;
  7344. }
  7345. }
  7346. // decide if we need to defrag the kv cache
  7347. if (cparams.defrag_thold >= 0.0f) {
  7348. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens)/float(kv_self.n) : 0.0f;
  7349. // queue defragmentation for next llama_kv_cache_update
  7350. if (fragmentation > cparams.defrag_thold) {
  7351. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  7352. llama_kv_cache_defrag(kv_self);
  7353. }
  7354. }
  7355. #ifdef GGML_PERF
  7356. // print timing information per ggml operation (for debugging purposes)
  7357. // requires GGML_PERF to be defined
  7358. ggml_graph_print(gf);
  7359. #endif
  7360. // plot the computation graph in dot format (for debugging purposes)
  7361. //if (n_past%100 == 0) {
  7362. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  7363. //}
  7364. // extract logits
  7365. // TODO: do not compute and extract logits if only embeddings are needed
  7366. // need to update the graphs to skip "result_output"
  7367. if (res) {
  7368. auto & logits_out = lctx.logits;
  7369. #ifndef NDEBUG
  7370. auto & logits_valid = lctx.logits_valid;
  7371. logits_valid.clear();
  7372. logits_valid.resize(n_tokens);
  7373. logits_out.clear();
  7374. #endif
  7375. ggml_backend_t backend_res = ggml_backend_sched_get_node_backend(lctx.sched, res);
  7376. GGML_ASSERT(backend_res != nullptr);
  7377. if (batch.logits) {
  7378. logits_out.resize(n_vocab * n_tokens);
  7379. int32_t i_first = -1;
  7380. for (uint32_t i = 0; i < n_tokens; i++) {
  7381. if (batch.logits[i] && i_first == -1) {
  7382. i_first = (int32_t) i;
  7383. }
  7384. if (batch.logits[i] == 0 || i == n_tokens - 1) {
  7385. if (i_first != -1) {
  7386. int i_last = batch.logits[i] == 0 ? i : i + 1;
  7387. // extract logits for the range [i_first, i_last)
  7388. // group the requests to minimize the number of calls to the backend
  7389. ggml_backend_tensor_get_async(backend_res, res,
  7390. logits_out.data() + (n_vocab*i_first),
  7391. (n_vocab*i_first)*sizeof(float),
  7392. (i_last - i_first)*n_vocab*sizeof(float));
  7393. i_first = -1;
  7394. }
  7395. }
  7396. #ifndef NDEBUG
  7397. logits_valid[i] = batch.logits[i] != 0;
  7398. #endif
  7399. }
  7400. } else if (lctx.logits_all) {
  7401. logits_out.resize(n_vocab*n_tokens);
  7402. ggml_backend_tensor_get_async(backend_res, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float));
  7403. #ifndef NDEBUG
  7404. std::fill(logits_valid.begin(), logits_valid.end(), true);
  7405. #endif
  7406. } else {
  7407. logits_out.resize(n_vocab);
  7408. ggml_backend_tensor_get_async(backend_res, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float));
  7409. #ifndef NDEBUG
  7410. logits_valid[0] = true;
  7411. #endif
  7412. }
  7413. ggml_backend_synchronize(backend_res);
  7414. }
  7415. // extract embeddings
  7416. if (cparams.embeddings && embd) {
  7417. ggml_backend_t backend_embd = ggml_backend_sched_get_node_backend(lctx.sched, embd);
  7418. GGML_ASSERT(backend_embd != nullptr);
  7419. switch (cparams.pooling_type) {
  7420. case LLAMA_POOLING_TYPE_NONE:
  7421. {
  7422. // extract token embeddings
  7423. auto & embd_out = lctx.embd;
  7424. if (batch.logits) {
  7425. embd_out.resize(n_embd * n_tokens);
  7426. for (uint32_t i = 0; i < n_tokens; i++) {
  7427. if (batch.logits[i] == 0) {
  7428. continue;
  7429. }
  7430. ggml_backend_tensor_get_async(backend_embd, embd, embd_out.data() + (n_embd*i), (n_embd*i)*sizeof(float), n_embd*sizeof(float));
  7431. }
  7432. }
  7433. } break;
  7434. case LLAMA_POOLING_TYPE_CLS:
  7435. case LLAMA_POOLING_TYPE_MEAN:
  7436. {
  7437. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  7438. // extract sequence embeddings
  7439. auto & embd_seq_out = lctx.embd_seq;
  7440. embd_seq_out.clear();
  7441. for (uint32_t i = 0; i < n_tokens; i++) {
  7442. const llama_seq_id seq_id = batch.seq_id[i][0];
  7443. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  7444. continue;
  7445. }
  7446. embd_seq_out[seq_id].resize(n_embd);
  7447. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  7448. }
  7449. } break;
  7450. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7451. {
  7452. GGML_ASSERT(false && "unknown pooling type");
  7453. } break;
  7454. }
  7455. ggml_backend_synchronize(backend_embd);
  7456. }
  7457. // measure the performance only for the single-token evals
  7458. if (n_tokens == 1) {
  7459. lctx.t_eval_us += ggml_time_us() - t_start_us;
  7460. lctx.n_eval++;
  7461. }
  7462. else if (n_tokens > 1) {
  7463. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  7464. lctx.n_p_eval += n_tokens;
  7465. }
  7466. // get a more accurate load time, upon first eval
  7467. // TODO: fix this
  7468. if (!lctx.has_evaluated_once) {
  7469. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  7470. lctx.has_evaluated_once = true;
  7471. }
  7472. return 0;
  7473. }
  7474. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  7475. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  7476. auto & kv_self = lctx.kv_self;
  7477. const auto & hparams = lctx.model.hparams;
  7478. const uint32_t n_layer = hparams.n_layer;
  7479. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  7480. const uint32_t n_used = kv_self.used;
  7481. assert(n_used <= n_kv);
  7482. //const int64_t t_start = ggml_time_us();
  7483. // number of cells moved
  7484. uint32_t n_moves = 0;
  7485. // determine which KV cells to move where
  7486. //
  7487. // cell i moves to ids[i]
  7488. //
  7489. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  7490. //
  7491. std::vector<uint32_t> ids(n_kv, n_kv);
  7492. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  7493. const auto & cell0 = kv_self.cells[i0];
  7494. if (!cell0.is_empty()) {
  7495. ids[i0] = i0;
  7496. continue;
  7497. }
  7498. // found a hole - fill it with data from the end of the cache
  7499. uint32_t nh = 1;
  7500. // determine the size of the hole
  7501. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  7502. nh++;
  7503. }
  7504. // each move requires 6*n_layer tensors (see build_defrag)
  7505. // - source view, destination view, copy operation
  7506. // - x2 for keys and values
  7507. //
  7508. if (6*(n_moves + nh)*n_layer >= LLAMA_MAX_NODES) {
  7509. // the graph is too big, we cannot move more cells
  7510. break;
  7511. }
  7512. uint32_t nf = 0;
  7513. uint32_t is = n_kv - 1;
  7514. // starting from the end, find nh non-empty cells
  7515. for (; is > i0; --is) {
  7516. const auto & cell1 = kv_self.cells[is];
  7517. if (cell1.is_empty() || ids[is] != n_kv) {
  7518. continue;
  7519. }
  7520. // non-empty cell which is not yet moved
  7521. nf++;
  7522. if (nf == nh) {
  7523. break;
  7524. }
  7525. }
  7526. // this can only happen if `n_used` is not accurate, which would be a bug
  7527. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  7528. nf = 0;
  7529. uint32_t i1 = is;
  7530. // are we moving a continuous block of memory?
  7531. bool cont = false;
  7532. // go back and move the nf cells to the hole
  7533. for (; i1 < n_kv; ++i1) {
  7534. auto & cell1 = kv_self.cells[i1];
  7535. if (cell1.is_empty() || ids[i1] != n_kv) {
  7536. cont = false;
  7537. continue;
  7538. }
  7539. // this cell goes to (i0 + nf)
  7540. ids[i1] = i0 + nf;
  7541. // move the cell meta data
  7542. kv_self.cells[i0 + nf] = cell1;
  7543. // clear the old cell and move the head there
  7544. cell1 = llama_kv_cell();
  7545. kv_self.head = n_used;
  7546. if (!cont) {
  7547. n_moves++;
  7548. cont = true;
  7549. }
  7550. nf++;
  7551. if (nf == nh) {
  7552. break;
  7553. }
  7554. }
  7555. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  7556. i0 += nh - 1;
  7557. }
  7558. if (n_moves == 0) {
  7559. return;
  7560. }
  7561. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  7562. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  7563. #if 0
  7564. // CPU defrag
  7565. //
  7566. // TODO: optimizations are possible:
  7567. // - multiple threads
  7568. // - avoid copying to the host memory when already there
  7569. //
  7570. // likely not worth the effort, as we have ggml_graph based defrag
  7571. //
  7572. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  7573. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  7574. const uint32_t kv_size = kv_self.size;
  7575. std::vector<uint8_t> buf_k;
  7576. std::vector<uint8_t> buf_v;
  7577. for (uint32_t il = 0; il < n_layer; ++il) {
  7578. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  7579. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  7580. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  7581. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  7582. buf_k.resize(k_size);
  7583. buf_v.resize(v_size);
  7584. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  7585. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  7586. // batch move [i, i+nm) to [id, id+nm)
  7587. // note: cells can move only to a lower index
  7588. for (uint32_t i = 0; i < n_kv; ++i) {
  7589. const uint32_t id = ids[i];
  7590. if (i == id || id == n_kv) {
  7591. continue;
  7592. }
  7593. uint32_t nm = 1;
  7594. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  7595. nm++;
  7596. }
  7597. // move keys
  7598. {
  7599. const int64_t os = i*k_size_row;
  7600. const int64_t od = id*k_size_row;
  7601. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  7602. }
  7603. // move values (note: they are transposed)
  7604. {
  7605. const int64_t os = i;
  7606. const int64_t od = id;
  7607. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  7608. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  7609. }
  7610. }
  7611. i += nm - 1;
  7612. }
  7613. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  7614. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  7615. }
  7616. #else
  7617. // ggml_graph defrag
  7618. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  7619. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  7620. #endif
  7621. //const int64_t t_end = ggml_time_us();
  7622. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  7623. }
  7624. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  7625. // apply K-shift if needed
  7626. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  7627. llama_set_k_shift(lctx);
  7628. {
  7629. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  7630. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  7631. }
  7632. {
  7633. auto & kv_self = lctx.kv_self;
  7634. kv_self.has_shift = false;
  7635. for (uint32_t i = 0; i < kv_self.size; ++i) {
  7636. kv_self.cells[i].delta = 0;
  7637. }
  7638. }
  7639. }
  7640. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  7641. llama_set_s_copy(lctx);
  7642. {
  7643. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  7644. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  7645. }
  7646. {
  7647. auto & kv_self = lctx.kv_self;
  7648. kv_self.do_copy = false;
  7649. for (uint32_t i = 0; i < kv_self.size; ++i) {
  7650. kv_self.cells[i].src = i;
  7651. }
  7652. }
  7653. }
  7654. // defragment the KV cache if needed
  7655. if (lctx.kv_self.do_defrag) {
  7656. llama_kv_cache_defrag_internal(lctx);
  7657. lctx.kv_self.do_defrag = false;
  7658. }
  7659. }
  7660. //
  7661. // tokenizer
  7662. //
  7663. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  7664. return vocab.type;
  7665. }
  7666. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  7667. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  7668. }
  7669. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  7670. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  7671. }
  7672. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  7673. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  7674. }
  7675. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  7676. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  7677. }
  7678. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  7679. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  7680. }
  7681. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  7682. GGML_ASSERT(llama_is_byte_token(vocab, id));
  7683. const auto& token_data = vocab.id_to_token.at(id);
  7684. switch (llama_vocab_get_type(vocab)) {
  7685. case LLAMA_VOCAB_TYPE_SPM: {
  7686. auto buf = token_data.text.substr(3, 2);
  7687. return strtol(buf.c_str(), NULL, 16);
  7688. }
  7689. case LLAMA_VOCAB_TYPE_BPE: {
  7690. GGML_ASSERT(false);
  7691. return unicode_utf8_to_byte(token_data.text);
  7692. }
  7693. case LLAMA_VOCAB_TYPE_WPM: {
  7694. GGML_ASSERT(false);
  7695. }
  7696. default:
  7697. GGML_ASSERT(false);
  7698. }
  7699. }
  7700. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  7701. static const char * hex = "0123456789ABCDEF";
  7702. switch (llama_vocab_get_type(vocab)) {
  7703. case LLAMA_VOCAB_TYPE_SPM: {
  7704. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  7705. auto token = vocab.token_to_id.find(buf);
  7706. if (token != vocab.token_to_id.end()) {
  7707. return (*token).second;
  7708. }
  7709. // Try to fall back to just the byte as a string
  7710. const char buf2[2] = { (char)ch, 0 };
  7711. return vocab.token_to_id.at(buf2);
  7712. }
  7713. case LLAMA_VOCAB_TYPE_WPM:
  7714. case LLAMA_VOCAB_TYPE_BPE: {
  7715. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  7716. }
  7717. default:
  7718. GGML_ASSERT(false);
  7719. }
  7720. }
  7721. static void llama_escape_whitespace(std::string & text) {
  7722. replace_all(text, " ", "\xe2\x96\x81");
  7723. }
  7724. static void llama_unescape_whitespace(std::string & word) {
  7725. replace_all(word, "\xe2\x96\x81", " ");
  7726. }
  7727. struct llm_symbol {
  7728. using index = int;
  7729. index prev;
  7730. index next;
  7731. const char * text;
  7732. size_t n;
  7733. };
  7734. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  7735. // SPM tokenizer
  7736. // original implementation:
  7737. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  7738. struct llm_bigram_spm {
  7739. struct comparator {
  7740. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  7741. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  7742. }
  7743. };
  7744. using queue_storage = std::vector<llm_bigram_spm>;
  7745. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  7746. llm_symbol::index left;
  7747. llm_symbol::index right;
  7748. float score;
  7749. size_t size;
  7750. };
  7751. struct llm_tokenizer_spm {
  7752. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  7753. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  7754. // split string into utf8 chars
  7755. int index = 0;
  7756. size_t offs = 0;
  7757. while (offs < text.size()) {
  7758. llm_symbol sym;
  7759. size_t len = utf8_len(text[offs]);
  7760. sym.text = text.c_str() + offs;
  7761. sym.n = std::min(len, text.size() - offs);
  7762. offs += sym.n;
  7763. sym.prev = index - 1;
  7764. sym.next = offs == text.size() ? -1 : index + 1;
  7765. index++;
  7766. symbols.emplace_back(sym);
  7767. }
  7768. // seed the work queue with all possible 2-character tokens.
  7769. for (size_t i = 1; i < symbols.size(); ++i) {
  7770. try_add_bigram(i - 1, i);
  7771. }
  7772. // keep substituting the highest frequency pairs for as long as we can.
  7773. while (!work_queue.empty()) {
  7774. auto bigram = work_queue.top();
  7775. work_queue.pop();
  7776. auto & left_sym = symbols[bigram.left];
  7777. auto & right_sym = symbols[bigram.right];
  7778. // if one of the symbols already got merged, skip it.
  7779. if (left_sym.n == 0 || right_sym.n == 0 ||
  7780. left_sym.n + right_sym.n != bigram.size) {
  7781. continue;
  7782. }
  7783. // merge the right sym into the left one
  7784. left_sym.n += right_sym.n;
  7785. right_sym.n = 0;
  7786. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  7787. // remove the right sym from the chain
  7788. left_sym.next = right_sym.next;
  7789. if (right_sym.next >= 0) {
  7790. symbols[right_sym.next].prev = bigram.left;
  7791. }
  7792. // find more substitutions
  7793. try_add_bigram(left_sym.prev, bigram.left);
  7794. try_add_bigram(bigram.left, left_sym.next);
  7795. }
  7796. for (int i = 0; i != -1; i = symbols[i].next) {
  7797. auto & symbol = symbols[i];
  7798. resegment(symbol, output);
  7799. }
  7800. }
  7801. private:
  7802. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  7803. auto text = std::string(symbol.text, symbol.n);
  7804. auto token = vocab.token_to_id.find(text);
  7805. // Do we need to support is_unused?
  7806. if (token != vocab.token_to_id.end()) {
  7807. output.push_back((*token).second);
  7808. return;
  7809. }
  7810. const auto p = rev_merge.find(text);
  7811. if (p == rev_merge.end()) {
  7812. // output any symbols that did not form tokens as bytes.
  7813. output.reserve(output.size() + symbol.n);
  7814. for (int j = 0; j < (int)symbol.n; ++j) {
  7815. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  7816. output.push_back(token_id);
  7817. }
  7818. return;
  7819. }
  7820. resegment(symbols[p->second.first], output);
  7821. resegment(symbols[p->second.second], output);
  7822. }
  7823. void try_add_bigram(int left, int right) {
  7824. if (left == -1 || right == -1) {
  7825. return;
  7826. }
  7827. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  7828. auto token = vocab.token_to_id.find(text);
  7829. if (token == vocab.token_to_id.end()) {
  7830. return;
  7831. }
  7832. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  7833. return;
  7834. }
  7835. const auto & tok_data = vocab.id_to_token[(*token).second];
  7836. llm_bigram_spm bigram;
  7837. bigram.left = left;
  7838. bigram.right = right;
  7839. bigram.score = tok_data.score;
  7840. bigram.size = text.size();
  7841. work_queue.push(bigram);
  7842. // Do we need to support is_unused?
  7843. rev_merge[text] = std::make_pair(left, right);
  7844. }
  7845. const llama_vocab & vocab;
  7846. std::vector<llm_symbol> symbols;
  7847. llm_bigram_spm::queue work_queue;
  7848. std::map<std::string, std::pair<int, int>> rev_merge;
  7849. };
  7850. // BPE tokenizer
  7851. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  7852. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  7853. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  7854. struct llm_bigram_bpe {
  7855. struct comparator {
  7856. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  7857. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  7858. }
  7859. };
  7860. using queue_storage = std::vector<llm_bigram_bpe>;
  7861. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  7862. llm_symbol::index left;
  7863. llm_symbol::index right;
  7864. std::string text;
  7865. int rank;
  7866. size_t size;
  7867. };
  7868. struct llm_tokenizer_bpe {
  7869. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  7870. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  7871. int final_prev_index = -1;
  7872. auto word_collection = bpe_gpt2_preprocess(text);
  7873. symbols_final.clear();
  7874. for (auto & word : word_collection) {
  7875. work_queue = llm_bigram_bpe::queue();
  7876. symbols.clear();
  7877. int index = 0;
  7878. size_t offset = 0;
  7879. while (offset < word.size()) {
  7880. llm_symbol sym;
  7881. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  7882. sym.text = word.c_str() + offset;
  7883. sym.n = char_len;
  7884. offset += sym.n;
  7885. sym.prev = index - 1;
  7886. sym.next = offset == word.size() ? -1 : index + 1;
  7887. index++;
  7888. symbols.emplace_back(sym);
  7889. }
  7890. for (size_t i = 1; i < symbols.size(); ++i) {
  7891. add_new_bigram(i - 1, i);
  7892. }
  7893. // build token(s)
  7894. while (!work_queue.empty()) {
  7895. auto bigram = work_queue.top();
  7896. work_queue.pop();
  7897. auto & left_symbol = symbols[bigram.left];
  7898. auto & right_symbol = symbols[bigram.right];
  7899. if (left_symbol.n == 0 || right_symbol.n == 0) {
  7900. continue;
  7901. }
  7902. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  7903. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  7904. if (left_token + right_token != bigram.text) {
  7905. continue; // Skip this bigram if it's outdated
  7906. }
  7907. // merge the right sym into the left one
  7908. left_symbol.n += right_symbol.n;
  7909. right_symbol.n = 0;
  7910. // remove the right sym from the chain
  7911. left_symbol.next = right_symbol.next;
  7912. if (right_symbol.next >= 0) {
  7913. symbols[right_symbol.next].prev = bigram.left;
  7914. }
  7915. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  7916. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  7917. }
  7918. // add the fnished tokens to the final list keeping correct order for next and prev
  7919. for (auto & sym : symbols) {
  7920. if (sym.n > 0) {
  7921. sym.prev = final_prev_index;
  7922. sym.next = -1;
  7923. if (final_prev_index != -1) {
  7924. symbols_final[final_prev_index].next = symbols_final.size();
  7925. }
  7926. symbols_final.emplace_back(sym);
  7927. final_prev_index = symbols_final.size() - 1;
  7928. }
  7929. }
  7930. }
  7931. symbols = symbols_final;
  7932. if (!symbols.empty()) {
  7933. for (int i = 0; i != -1; i = symbols[i].next) {
  7934. auto & symbol = symbols[i];
  7935. if (symbol.n == 0) {
  7936. continue;
  7937. }
  7938. const std::string str = std::string(symbol.text, symbol.n);
  7939. const auto token = vocab.token_to_id.find(str);
  7940. if (token == vocab.token_to_id.end()) {
  7941. for (auto j = str.begin(); j != str.end(); ++j) {
  7942. std::string byte_str(1, *j);
  7943. auto token_multibyte = vocab.token_to_id.find(byte_str);
  7944. if (token_multibyte == vocab.token_to_id.end()) {
  7945. throw std::runtime_error("ERROR: byte not found in vocab");
  7946. }
  7947. output.push_back((*token_multibyte).second);
  7948. }
  7949. } else {
  7950. output.push_back((*token).second);
  7951. }
  7952. }
  7953. }
  7954. }
  7955. private:
  7956. void add_new_bigram(int left, int right) {
  7957. if (left == -1 || right == -1) {
  7958. return;
  7959. }
  7960. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  7961. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  7962. int rank_found = -1;
  7963. rank_found = vocab.find_bpe_rank(left_token, right_token);
  7964. if (rank_found < 0) {
  7965. return;
  7966. }
  7967. llm_bigram_bpe bigram;
  7968. bigram.left = left;
  7969. bigram.right = right;
  7970. bigram.text = left_token + right_token;
  7971. bigram.size = left_token.size() + right_token.size();
  7972. bigram.rank = rank_found;
  7973. work_queue.push(bigram);
  7974. }
  7975. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  7976. std::vector<std::string> bpe_words;
  7977. std::vector<std::string> bpe_encoded_words;
  7978. std::string token = "";
  7979. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  7980. bool collecting_numeric = false;
  7981. bool collecting_letter = false;
  7982. bool collecting_special = false;
  7983. bool collecting_whitespace_lookahead = false;
  7984. bool collecting = false;
  7985. std::vector<std::string> text_utf;
  7986. text_utf.reserve(text.size());
  7987. bpe_words.reserve(text.size());
  7988. bpe_encoded_words.reserve(text.size());
  7989. const auto cpts = unicode_cpts_from_utf8(text);
  7990. for (size_t i = 0; i < cpts.size(); ++i)
  7991. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  7992. for (int i = 0; i < (int)text_utf.size(); i++) {
  7993. const std::string & utf_char = text_utf[i];
  7994. bool split_condition = false;
  7995. int bytes_remain = text_utf.size() - i;
  7996. // forward backward lookups
  7997. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  7998. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  7999. // handling contractions
  8000. if (!split_condition && bytes_remain >= 2) {
  8001. // 's|'t|'m|'d
  8002. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  8003. split_condition = true;
  8004. }
  8005. if (split_condition) {
  8006. if (token.size()) {
  8007. bpe_words.emplace_back(token); // push previous content as token
  8008. }
  8009. token = utf_char + utf_char_next;
  8010. bpe_words.emplace_back(token);
  8011. token = "";
  8012. i++;
  8013. continue;
  8014. }
  8015. }
  8016. if (!split_condition && bytes_remain >= 3) {
  8017. // 're|'ve|'ll
  8018. if (utf_char == "\'" && (
  8019. (utf_char_next == "r" && utf_char_next_next == "e") ||
  8020. (utf_char_next == "v" && utf_char_next_next == "e") ||
  8021. (utf_char_next == "l" && utf_char_next_next == "l"))
  8022. ) {
  8023. split_condition = true;
  8024. }
  8025. if (split_condition) {
  8026. // current token + next token can be defined
  8027. if (token.size()) {
  8028. bpe_words.emplace_back(token); // push previous content as token
  8029. }
  8030. token = utf_char + utf_char_next + utf_char_next_next;
  8031. bpe_words.emplace_back(token); // the contraction
  8032. token = "";
  8033. i += 2;
  8034. continue;
  8035. }
  8036. }
  8037. if (!split_condition && !collecting) {
  8038. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  8039. collecting_letter = true;
  8040. collecting = true;
  8041. }
  8042. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  8043. collecting_numeric = true;
  8044. collecting = true;
  8045. }
  8046. else if (
  8047. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  8048. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  8049. ) {
  8050. collecting_special = true;
  8051. collecting = true;
  8052. }
  8053. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  8054. collecting_whitespace_lookahead = true;
  8055. collecting = true;
  8056. }
  8057. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  8058. split_condition = true;
  8059. }
  8060. }
  8061. else if (!split_condition && collecting) {
  8062. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  8063. split_condition = true;
  8064. }
  8065. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  8066. split_condition = true;
  8067. }
  8068. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  8069. split_condition = true;
  8070. }
  8071. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  8072. split_condition = true;
  8073. }
  8074. }
  8075. if (utf_char_next == "") {
  8076. split_condition = true; // final
  8077. token += utf_char;
  8078. }
  8079. if (split_condition) {
  8080. if (token.size()) {
  8081. bpe_words.emplace_back(token);
  8082. }
  8083. token = utf_char;
  8084. collecting = false;
  8085. collecting_letter = false;
  8086. collecting_numeric = false;
  8087. collecting_special = false;
  8088. collecting_whitespace_lookahead = false;
  8089. }
  8090. else {
  8091. token += utf_char;
  8092. }
  8093. }
  8094. for (std::string & word : bpe_words) {
  8095. std::string encoded_token = "";
  8096. for (char & c : word) {
  8097. encoded_token += unicode_byte_to_utf8(c);
  8098. }
  8099. bpe_encoded_words.emplace_back(encoded_token);
  8100. }
  8101. return bpe_encoded_words;
  8102. }
  8103. const llama_vocab & vocab;
  8104. std::vector<llm_symbol> symbols;
  8105. std::vector<llm_symbol> symbols_final;
  8106. llm_bigram_bpe::queue work_queue;
  8107. };
  8108. struct llm_tokenizer_wpm {
  8109. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  8110. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  8111. auto * token_map = &vocab.token_to_id;
  8112. // normalize and split by whitespace
  8113. std::vector<std::string> words = preprocess(text);
  8114. // bos token prepended already
  8115. // find the longest tokens that form the words
  8116. for (const std::string &word : words) {
  8117. // skip empty words
  8118. if (word.size() == 0) {
  8119. continue;
  8120. }
  8121. // prepend phantom space
  8122. std::string word1 = "\xe2\x96\x81" + word;
  8123. int n = word1.size();
  8124. // we're at the start of a new word
  8125. int i = 0;
  8126. bool match_any = false;
  8127. // move through character position in word
  8128. while (i < n) {
  8129. // loop through possible match length
  8130. bool match = false;
  8131. for (int j = n; j > i; j--) {
  8132. auto it = token_map->find(word1.substr(i, j - i));
  8133. if (it != token_map->end()) {
  8134. output.push_back(it->second);
  8135. match = true;
  8136. match_any = true;
  8137. i = j;
  8138. break;
  8139. }
  8140. }
  8141. // must be an unknown character
  8142. if (!match) {
  8143. i++;
  8144. }
  8145. }
  8146. // we didn't find any matches for this word
  8147. if (!match_any) {
  8148. output.push_back(vocab.special_unk_id);
  8149. }
  8150. }
  8151. // append eos token
  8152. output.push_back(vocab.special_eos_id);
  8153. }
  8154. std::vector<std::string> preprocess(const std::string & text) {
  8155. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  8156. // strip accents, strip control, uniformize whitespace,
  8157. // to lowercase, pad chinese characters, pad punctuation
  8158. std::string new_str = "";
  8159. for (uint32_t code : cpts_nfd) {
  8160. int type = unicode_cpt_type(code);
  8161. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  8162. continue;
  8163. }
  8164. code = to_lower(code);
  8165. if (type == CODEPOINT_TYPE_WHITESPACE) {
  8166. code = ' ';
  8167. }
  8168. std::string s = unicode_cpt_to_utf8(code);
  8169. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  8170. new_str += " ";
  8171. new_str += s;
  8172. new_str += " ";
  8173. } else {
  8174. new_str += s;
  8175. }
  8176. }
  8177. // split by whitespace
  8178. uint64_t l = 0;
  8179. uint64_t r = 0;
  8180. std::vector<std::string> words;
  8181. while (r < new_str.size()) {
  8182. // if is whitespace
  8183. if (isspace(new_str[r])) {
  8184. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  8185. l = r + 1;
  8186. r = l;
  8187. } else {
  8188. r += 1;
  8189. }
  8190. }
  8191. if (r > l) {
  8192. words.push_back(new_str.substr(l, (r - l)));
  8193. }
  8194. return words;
  8195. }
  8196. uint32_t to_lower(uint32_t code) {
  8197. static const std::locale locale("en_US.UTF-8");
  8198. #if defined(_WIN32)
  8199. if (code > 0xFFFF) {
  8200. return code;
  8201. }
  8202. #endif
  8203. return std::tolower(wchar_t(code), locale);
  8204. }
  8205. bool is_ascii_punct(uint32_t code) {
  8206. return code < 256 && ispunct(code);
  8207. }
  8208. bool is_chinese_char(uint32_t cpt) {
  8209. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  8210. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  8211. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  8212. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  8213. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  8214. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  8215. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  8216. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  8217. (cpt >= 0x3000 && cpt <= 0x303F) ||
  8218. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  8219. return true; // NOLINT
  8220. }
  8221. return false;
  8222. }
  8223. const llama_vocab & vocab;
  8224. };
  8225. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  8226. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  8227. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  8228. } FRAGMENT_BUFFER_VARIANT_TYPE;
  8229. struct fragment_buffer_variant {
  8230. fragment_buffer_variant(llama_vocab::id _token)
  8231. :
  8232. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  8233. token(_token),
  8234. raw_text(_dummy),
  8235. offset(0),
  8236. length(0) {}
  8237. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  8238. :
  8239. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  8240. token((llama_vocab::id) - 1),
  8241. raw_text(_raw_text),
  8242. offset(_offset),
  8243. length(_length){
  8244. GGML_ASSERT(_offset >= 0);
  8245. GGML_ASSERT(_length >= 1);
  8246. GGML_ASSERT(offset + length <= raw_text.length());
  8247. }
  8248. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  8249. const llama_vocab::id token;
  8250. const std::string _dummy;
  8251. const std::string & raw_text;
  8252. const uint64_t offset;
  8253. const uint64_t length;
  8254. };
  8255. // #define PRETOKENIZERDEBUG
  8256. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  8257. // for each special token
  8258. for (const auto & st: vocab.special_tokens_cache) {
  8259. const auto & special_token = st.first;
  8260. const auto & special_id = st.second;
  8261. // for each text fragment
  8262. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  8263. while (it != buffer.end()) {
  8264. auto & fragment = (*it);
  8265. // if a fragment is text ( not yet processed )
  8266. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  8267. auto * raw_text = &(fragment.raw_text);
  8268. auto raw_text_base_offset = fragment.offset;
  8269. auto raw_text_base_length = fragment.length;
  8270. // loop over the text
  8271. while (true) {
  8272. // find the first occurrence of a given special token in this fragment
  8273. // passing offset argument only limit the "search area" but match coordinates
  8274. // are still relative to the source full raw_text
  8275. auto match = raw_text->find(special_token, raw_text_base_offset);
  8276. // no occurrences found, stop processing this fragment for a given special token
  8277. if (match == std::string::npos) break;
  8278. // check if match is within bounds of offset <-> length
  8279. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  8280. #ifdef PRETOKENIZERDEBUG
  8281. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  8282. #endif
  8283. auto source = std::distance(buffer.begin(), it);
  8284. // if match is further than base offset
  8285. // then we have some text to the left of it
  8286. if (match > raw_text_base_offset) {
  8287. // left
  8288. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  8289. const int64_t left_reminder_length = match - raw_text_base_offset;
  8290. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  8291. #ifdef PRETOKENIZERDEBUG
  8292. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  8293. #endif
  8294. it++;
  8295. }
  8296. // special token
  8297. buffer.emplace_after(it, special_id);
  8298. it++;
  8299. // right
  8300. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  8301. const int64_t right_reminder_offset = match + special_token.length();
  8302. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  8303. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  8304. #ifdef PRETOKENIZERDEBUG
  8305. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  8306. #endif
  8307. it++;
  8308. if (source == 0) {
  8309. buffer.erase_after(buffer.before_begin());
  8310. } else {
  8311. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  8312. }
  8313. // repeat for the right side
  8314. raw_text_base_offset = right_reminder_offset;
  8315. raw_text_base_length = right_reminder_length;
  8316. #ifdef PRETOKENIZERDEBUG
  8317. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  8318. #endif
  8319. } else {
  8320. if (source == 0) {
  8321. buffer.erase_after(buffer.before_begin());
  8322. } else {
  8323. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  8324. }
  8325. break;
  8326. }
  8327. }
  8328. }
  8329. it++;
  8330. }
  8331. }
  8332. }
  8333. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  8334. std::vector<llama_vocab::id> output;
  8335. // OG tokenizer behavior:
  8336. //
  8337. // tokenizer.encode('', add_bos=True) returns [1]
  8338. // tokenizer.encode('', add_bos=False) returns []
  8339. if (bos && vocab.special_bos_id != -1) {
  8340. output.push_back(vocab.special_bos_id);
  8341. }
  8342. if (raw_text.empty()) {
  8343. return output;
  8344. }
  8345. std::forward_list<fragment_buffer_variant> fragment_buffer;
  8346. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  8347. if (special) tokenizer_st_partition(vocab, fragment_buffer);
  8348. switch (vocab.type) {
  8349. case LLAMA_VOCAB_TYPE_SPM:
  8350. {
  8351. for (const auto & fragment : fragment_buffer) {
  8352. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  8353. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  8354. // TODO: It's likely possible to get rid of this string copy entirely
  8355. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  8356. // and passing 'add space prefix' as bool argument
  8357. //
  8358. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  8359. if (&fragment == &fragment_buffer.front()) {
  8360. if (vocab.add_space_prefix) {
  8361. raw_text = " " + raw_text; // prefix with space if the first token is not special
  8362. }
  8363. }
  8364. #ifdef PRETOKENIZERDEBUG
  8365. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  8366. #endif
  8367. llm_tokenizer_spm tokenizer(vocab);
  8368. llama_escape_whitespace(raw_text);
  8369. tokenizer.tokenize(raw_text, output);
  8370. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  8371. output.push_back(fragment.token);
  8372. }
  8373. }
  8374. } break;
  8375. case LLAMA_VOCAB_TYPE_BPE:
  8376. {
  8377. for (const auto & fragment : fragment_buffer) {
  8378. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  8379. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  8380. #ifdef PRETOKENIZERDEBUG
  8381. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  8382. #endif
  8383. llm_tokenizer_bpe tokenizer(vocab);
  8384. tokenizer.tokenize(raw_text, output);
  8385. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  8386. output.push_back(fragment.token);
  8387. }
  8388. }
  8389. } break;
  8390. case LLAMA_VOCAB_TYPE_WPM:
  8391. {
  8392. for (const auto & fragment : fragment_buffer) {
  8393. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  8394. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  8395. #ifdef PRETOKENIZERDEBUG
  8396. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  8397. #endif
  8398. llm_tokenizer_wpm tokenizer(vocab);
  8399. tokenizer.tokenize(raw_text, output);
  8400. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  8401. output.push_back(fragment.token);
  8402. }
  8403. }
  8404. } break;
  8405. }
  8406. return output;
  8407. }
  8408. //
  8409. // grammar - internal
  8410. //
  8411. struct llama_partial_utf8 {
  8412. uint32_t value; // bit value so far (unshifted)
  8413. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  8414. };
  8415. struct llama_grammar {
  8416. const std::vector<std::vector<llama_grammar_element>> rules;
  8417. std::vector<std::vector<const llama_grammar_element *>> stacks;
  8418. // buffer for partially generated UTF-8 sequence from accepted tokens
  8419. llama_partial_utf8 partial_utf8;
  8420. };
  8421. struct llama_grammar_candidate {
  8422. size_t index;
  8423. const uint32_t * code_points;
  8424. llama_partial_utf8 partial_utf8;
  8425. };
  8426. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  8427. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  8428. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  8429. const std::string & src,
  8430. llama_partial_utf8 partial_start) {
  8431. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  8432. const char * pos = src.c_str();
  8433. std::vector<uint32_t> code_points;
  8434. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  8435. code_points.reserve(src.size() + 1);
  8436. uint32_t value = partial_start.value;
  8437. int n_remain = partial_start.n_remain;
  8438. // continue previous decode, if applicable
  8439. while (*pos != 0 && n_remain > 0) {
  8440. uint8_t next_byte = static_cast<uint8_t>(*pos);
  8441. if ((next_byte >> 6) != 2) {
  8442. // invalid sequence, abort
  8443. code_points.push_back(0);
  8444. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  8445. }
  8446. value = (value << 6) + (next_byte & 0x3F);
  8447. ++pos;
  8448. --n_remain;
  8449. }
  8450. if (partial_start.n_remain > 0 && n_remain == 0) {
  8451. code_points.push_back(value);
  8452. }
  8453. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  8454. while (*pos != 0) {
  8455. uint8_t first_byte = static_cast<uint8_t>(*pos);
  8456. uint8_t highbits = first_byte >> 4;
  8457. n_remain = lookup[highbits] - 1;
  8458. if (n_remain < 0) {
  8459. // invalid sequence, abort
  8460. code_points.clear();
  8461. code_points.push_back(0);
  8462. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  8463. }
  8464. uint8_t mask = (1 << (7 - n_remain)) - 1;
  8465. value = first_byte & mask;
  8466. ++pos;
  8467. while (*pos != 0 && n_remain > 0) {
  8468. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  8469. ++pos;
  8470. --n_remain;
  8471. }
  8472. if (n_remain == 0) {
  8473. code_points.push_back(value);
  8474. }
  8475. }
  8476. code_points.push_back(0);
  8477. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  8478. }
  8479. // returns true iff pos points to the end of one of the definitions of a rule
  8480. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  8481. switch (pos->type) {
  8482. case LLAMA_GRETYPE_END: return true; // NOLINT
  8483. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  8484. default: return false;
  8485. }
  8486. }
  8487. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  8488. // asserts that pos is pointing to a char range element
  8489. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  8490. const llama_grammar_element * pos,
  8491. const uint32_t chr) {
  8492. bool found = false;
  8493. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  8494. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  8495. do {
  8496. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  8497. // inclusive range, e.g. [a-z]
  8498. found = found || (pos->value <= chr && chr <= pos[1].value);
  8499. pos += 2;
  8500. } else {
  8501. // exact char match, e.g. [a] or "a"
  8502. found = found || pos->value == chr;
  8503. pos += 1;
  8504. }
  8505. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  8506. return std::make_pair(found == is_positive_char, pos);
  8507. }
  8508. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  8509. // range at pos (regular or inverse range)
  8510. // asserts that pos is pointing to a char range element
  8511. static bool llama_grammar_match_partial_char(
  8512. const llama_grammar_element * pos,
  8513. const llama_partial_utf8 partial_utf8) {
  8514. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  8515. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  8516. uint32_t partial_value = partial_utf8.value;
  8517. int n_remain = partial_utf8.n_remain;
  8518. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  8519. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  8520. return false;
  8521. }
  8522. // range of possible code points this partial UTF-8 sequence could complete to
  8523. uint32_t low = partial_value << (n_remain * 6);
  8524. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  8525. if (low == 0) {
  8526. if (n_remain == 2) {
  8527. low = 1 << 11;
  8528. } else if (n_remain == 3) {
  8529. low = 1 << 16;
  8530. }
  8531. }
  8532. do {
  8533. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  8534. // inclusive range, e.g. [a-z]
  8535. if (pos->value <= high && low <= pos[1].value) {
  8536. return is_positive_char;
  8537. }
  8538. pos += 2;
  8539. } else {
  8540. // exact char match, e.g. [a] or "a"
  8541. if (low <= pos->value && pos->value <= high) {
  8542. return is_positive_char;
  8543. }
  8544. pos += 1;
  8545. }
  8546. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  8547. return !is_positive_char;
  8548. }
  8549. // transforms a grammar pushdown stack into N possible stacks, all ending
  8550. // at a character range (terminal element)
  8551. static void llama_grammar_advance_stack(
  8552. const std::vector<std::vector<llama_grammar_element>> & rules,
  8553. const std::vector<const llama_grammar_element *> & stack,
  8554. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  8555. if (stack.empty()) {
  8556. new_stacks.emplace_back(stack);
  8557. return;
  8558. }
  8559. const llama_grammar_element * pos = stack.back();
  8560. switch (pos->type) {
  8561. case LLAMA_GRETYPE_RULE_REF: {
  8562. const size_t rule_id = static_cast<size_t>(pos->value);
  8563. const llama_grammar_element * subpos = rules[rule_id].data();
  8564. do {
  8565. // init new stack without the top (pos)
  8566. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  8567. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  8568. // if this rule ref is followed by another element, add that to stack
  8569. new_stack.push_back(pos + 1);
  8570. }
  8571. if (!llama_grammar_is_end_of_sequence(subpos)) {
  8572. // if alternate is nonempty, add to stack
  8573. new_stack.push_back(subpos);
  8574. }
  8575. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  8576. while (!llama_grammar_is_end_of_sequence(subpos)) {
  8577. // scan to end of alternate def
  8578. subpos++;
  8579. }
  8580. if (subpos->type == LLAMA_GRETYPE_ALT) {
  8581. // there's another alternate def of this rule to process
  8582. subpos++;
  8583. } else {
  8584. break;
  8585. }
  8586. } while (true);
  8587. break;
  8588. }
  8589. case LLAMA_GRETYPE_CHAR:
  8590. case LLAMA_GRETYPE_CHAR_NOT:
  8591. new_stacks.emplace_back(stack);
  8592. break;
  8593. default:
  8594. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  8595. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  8596. // those
  8597. GGML_ASSERT(false);
  8598. }
  8599. }
  8600. // takes a set of possible pushdown stacks on a grammar, which are required to
  8601. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  8602. // produces the N possible stacks if the given char is accepted at those
  8603. // positions
  8604. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  8605. const std::vector<std::vector<llama_grammar_element>> & rules,
  8606. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  8607. const uint32_t chr) {
  8608. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  8609. for (const auto & stack : stacks) {
  8610. if (stack.empty()) {
  8611. continue;
  8612. }
  8613. auto match = llama_grammar_match_char(stack.back(), chr);
  8614. if (match.first) {
  8615. const llama_grammar_element * pos = match.second;
  8616. // update top of stack to next element, if any
  8617. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  8618. if (!llama_grammar_is_end_of_sequence(pos)) {
  8619. new_stack.push_back(pos);
  8620. }
  8621. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  8622. }
  8623. }
  8624. return new_stacks;
  8625. }
  8626. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  8627. const std::vector<std::vector<llama_grammar_element>> & rules,
  8628. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  8629. const std::vector<llama_grammar_candidate> & candidates);
  8630. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  8631. const std::vector<std::vector<llama_grammar_element>> & rules,
  8632. const std::vector<const llama_grammar_element *> & stack,
  8633. const std::vector<llama_grammar_candidate> & candidates) {
  8634. std::vector<llama_grammar_candidate> rejects;
  8635. if (stack.empty()) {
  8636. for (const auto & tok : candidates) {
  8637. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  8638. rejects.push_back(tok);
  8639. }
  8640. }
  8641. return rejects;
  8642. }
  8643. const llama_grammar_element * stack_pos = stack.back();
  8644. std::vector<llama_grammar_candidate> next_candidates;
  8645. for (const auto & tok : candidates) {
  8646. if (*tok.code_points == 0) {
  8647. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  8648. // that cannot satisfy this position in grammar
  8649. if (tok.partial_utf8.n_remain != 0 &&
  8650. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  8651. rejects.push_back(tok);
  8652. }
  8653. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  8654. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  8655. } else {
  8656. rejects.push_back(tok);
  8657. }
  8658. }
  8659. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  8660. // update top of stack to next element, if any
  8661. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  8662. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  8663. stack_after.push_back(stack_pos_after);
  8664. }
  8665. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  8666. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  8667. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  8668. for (const auto & tok : next_rejects) {
  8669. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  8670. }
  8671. return rejects;
  8672. }
  8673. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  8674. const std::vector<std::vector<llama_grammar_element>> & rules,
  8675. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  8676. const std::vector<llama_grammar_candidate> & candidates) {
  8677. GGML_ASSERT(!stacks.empty()); // REVIEW
  8678. if (candidates.empty()) {
  8679. return std::vector<llama_grammar_candidate>();
  8680. }
  8681. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  8682. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  8683. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  8684. }
  8685. return rejects;
  8686. }
  8687. //
  8688. // grammar - external
  8689. //
  8690. struct llama_grammar * llama_grammar_init(
  8691. const llama_grammar_element ** rules,
  8692. size_t n_rules,
  8693. size_t start_rule_index) {
  8694. const llama_grammar_element * pos;
  8695. // copy rule definitions into vectors
  8696. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  8697. for (size_t i = 0; i < n_rules; i++) {
  8698. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  8699. vec_rules[i].push_back(*pos);
  8700. }
  8701. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  8702. }
  8703. // loop over alternates of start rule to build initial stacks
  8704. std::vector<std::vector<const llama_grammar_element *>> stacks;
  8705. pos = vec_rules[start_rule_index].data();
  8706. do {
  8707. std::vector<const llama_grammar_element *> stack;
  8708. if (!llama_grammar_is_end_of_sequence(pos)) {
  8709. // if alternate is nonempty, add to stack
  8710. stack.push_back(pos);
  8711. }
  8712. llama_grammar_advance_stack(vec_rules, stack, stacks);
  8713. while (!llama_grammar_is_end_of_sequence(pos)) {
  8714. // scan to end of alternate def
  8715. pos++;
  8716. }
  8717. if (pos->type == LLAMA_GRETYPE_ALT) {
  8718. // there's another alternate def of this rule to process
  8719. pos++;
  8720. } else {
  8721. break;
  8722. }
  8723. } while (true);
  8724. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  8725. }
  8726. void llama_grammar_free(struct llama_grammar * grammar) {
  8727. delete grammar;
  8728. }
  8729. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  8730. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  8731. // redirect elements in stacks to point to new rules
  8732. for (size_t is = 0; is < result->stacks.size(); is++) {
  8733. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  8734. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  8735. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  8736. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  8737. result->stacks[is][ie] = &result->rules[ir0][ir1];
  8738. }
  8739. }
  8740. }
  8741. }
  8742. }
  8743. return result;
  8744. }
  8745. //
  8746. // sampling
  8747. //
  8748. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  8749. if (seed == LLAMA_DEFAULT_SEED) {
  8750. seed = time(NULL);
  8751. }
  8752. ctx->rng.seed(seed);
  8753. }
  8754. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  8755. GGML_ASSERT(candidates->size > 0);
  8756. const int64_t t_start_sample_us = ggml_time_us();
  8757. // Sort the logits in descending order
  8758. if (!candidates->sorted) {
  8759. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  8760. return a.logit > b.logit;
  8761. });
  8762. candidates->sorted = true;
  8763. }
  8764. float max_l = candidates->data[0].logit;
  8765. float cum_sum = 0.0f;
  8766. for (size_t i = 0; i < candidates->size; ++i) {
  8767. float p = expf(candidates->data[i].logit - max_l);
  8768. candidates->data[i].p = p;
  8769. cum_sum += p;
  8770. }
  8771. for (size_t i = 0; i < candidates->size; ++i) {
  8772. candidates->data[i].p /= cum_sum;
  8773. }
  8774. if (ctx) {
  8775. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8776. }
  8777. }
  8778. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  8779. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  8780. // if (k >= (int32_t)candidates->size) {
  8781. // return;
  8782. // }
  8783. const int64_t t_start_sample_us = ggml_time_us();
  8784. if (k <= 0) {
  8785. k = candidates->size;
  8786. }
  8787. k = std::max(k, (int) min_keep);
  8788. k = std::min(k, (int) candidates->size);
  8789. // Sort scores in descending order
  8790. if (!candidates->sorted) {
  8791. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  8792. return a.logit > b.logit;
  8793. };
  8794. if (k <= 128) {
  8795. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  8796. } else {
  8797. constexpr int nbuckets = 128;
  8798. constexpr float bucket_low = -10.0f;
  8799. constexpr float bucket_high = 10.0f;
  8800. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  8801. constexpr float bucker_inter = -bucket_low * bucket_scale;
  8802. std::vector<int> bucket_idx(candidates->size);
  8803. std::vector<int> histo(nbuckets, 0);
  8804. for (int i = 0; i < (int)candidates->size; ++i) {
  8805. const float val = candidates->data[i].logit;
  8806. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  8807. ib = std::max(0, std::min(nbuckets-1, ib));
  8808. bucket_idx[i] = ib;
  8809. ++histo[ib];
  8810. }
  8811. int nhave = 0;
  8812. int ib = nbuckets - 1;
  8813. for ( ; ib >= 0; --ib) {
  8814. nhave += histo[ib];
  8815. if (nhave >= k) break;
  8816. }
  8817. std::vector<llama_token_data> tmp_tokens(nhave);
  8818. auto ptr = tmp_tokens.data();
  8819. std::vector<llama_token_data*> bucket_ptrs;
  8820. bucket_ptrs.reserve(nbuckets - ib);
  8821. for (int j = nbuckets - 1; j >= ib; --j) {
  8822. bucket_ptrs.push_back(ptr);
  8823. ptr += histo[j];
  8824. }
  8825. for (int i = 0; i < (int)candidates->size; ++i) {
  8826. int j = bucket_idx[i];
  8827. if (j >= ib) {
  8828. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  8829. }
  8830. }
  8831. ptr = tmp_tokens.data();
  8832. int ndone = 0;
  8833. for (int j = nbuckets-1; j > ib; --j) {
  8834. std::sort(ptr, ptr + histo[j], comp);
  8835. ptr += histo[j];
  8836. ndone += histo[j];
  8837. }
  8838. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  8839. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  8840. }
  8841. candidates->sorted = true;
  8842. }
  8843. candidates->size = k;
  8844. if (ctx) {
  8845. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8846. }
  8847. }
  8848. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  8849. if (p >= 1.0f) {
  8850. return;
  8851. }
  8852. llama_sample_softmax(ctx, candidates);
  8853. const int64_t t_start_sample_us = ggml_time_us();
  8854. // Compute the cumulative probabilities
  8855. float cum_sum = 0.0f;
  8856. size_t last_idx = candidates->size;
  8857. for (size_t i = 0; i < candidates->size; ++i) {
  8858. cum_sum += candidates->data[i].p;
  8859. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  8860. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  8861. if (cum_sum >= p && i + 1 >= min_keep) {
  8862. last_idx = i + 1;
  8863. break;
  8864. }
  8865. }
  8866. // Resize the output vector to keep only the top-p tokens
  8867. candidates->size = last_idx;
  8868. if (ctx) {
  8869. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8870. }
  8871. }
  8872. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  8873. if (p <= 0.0f || !candidates->size) {
  8874. return;
  8875. }
  8876. const int64_t t_start_sample_us = ggml_time_us();
  8877. bool min_p_applied = false;
  8878. // if the candidates aren't sorted, try the unsorted implementation first
  8879. if (!candidates->sorted) {
  8880. std::vector<llama_token_data> filtered_tokens;
  8881. float max_logit = -FLT_MAX;
  8882. for (size_t i = 0; i < candidates->size; ++i) {
  8883. max_logit = std::max(max_logit, candidates->data[i].logit);
  8884. }
  8885. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  8886. for (size_t i = 0; i < candidates->size; ++i) {
  8887. if (candidates->data[i].logit >= min_logit) {
  8888. filtered_tokens.push_back(candidates->data[i]);
  8889. }
  8890. }
  8891. // if we have enough values the operation was a success
  8892. if (filtered_tokens.size() >= min_keep) {
  8893. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  8894. candidates->size = filtered_tokens.size();
  8895. min_p_applied = true;
  8896. }
  8897. }
  8898. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  8899. if (!min_p_applied) {
  8900. // Sort the logits in descending order
  8901. if (!candidates->sorted) {
  8902. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  8903. return a.logit > b.logit;
  8904. });
  8905. candidates->sorted = true;
  8906. }
  8907. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  8908. size_t i = 1; // first token always matches
  8909. for (; i < candidates->size; ++i) {
  8910. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  8911. break; // prob too small
  8912. }
  8913. }
  8914. // Resize the output vector to keep only the matching tokens
  8915. candidates->size = i;
  8916. }
  8917. if (ctx) {
  8918. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8919. }
  8920. }
  8921. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  8922. if (z >= 1.0f || candidates->size <= 2) {
  8923. return;
  8924. }
  8925. llama_sample_softmax(nullptr, candidates);
  8926. const int64_t t_start_sample_us = ggml_time_us();
  8927. // Compute the first and second derivatives
  8928. std::vector<float> first_derivatives(candidates->size - 1);
  8929. std::vector<float> second_derivatives(candidates->size - 2);
  8930. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  8931. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  8932. }
  8933. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  8934. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  8935. }
  8936. // Calculate absolute value of second derivatives
  8937. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  8938. second_derivatives[i] = std::abs(second_derivatives[i]);
  8939. }
  8940. // Normalize the second derivatives
  8941. {
  8942. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  8943. if (second_derivatives_sum > 1e-6f) {
  8944. for (float & value : second_derivatives) {
  8945. value /= second_derivatives_sum;
  8946. }
  8947. } else {
  8948. for (float & value : second_derivatives) {
  8949. value = 1.0f / second_derivatives.size();
  8950. }
  8951. }
  8952. }
  8953. float cum_sum = 0.0f;
  8954. size_t last_idx = candidates->size;
  8955. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  8956. cum_sum += second_derivatives[i];
  8957. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  8958. if (cum_sum > z && i >= min_keep) {
  8959. last_idx = i;
  8960. break;
  8961. }
  8962. }
  8963. // Resize the output vector to keep only the tokens above the tail location
  8964. candidates->size = last_idx;
  8965. if (ctx) {
  8966. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8967. }
  8968. }
  8969. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  8970. // Reference implementation:
  8971. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  8972. if (p >= 1.0f) {
  8973. return;
  8974. }
  8975. // Compute the softmax of logits and calculate entropy
  8976. llama_sample_softmax(nullptr, candidates);
  8977. const int64_t t_start_sample_us = ggml_time_us();
  8978. float entropy = 0.0f;
  8979. for (size_t i = 0; i < candidates->size; ++i) {
  8980. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  8981. }
  8982. // Compute the absolute difference between negative log probability and entropy for each candidate
  8983. std::vector<float> shifted_scores;
  8984. for (size_t i = 0; i < candidates->size; ++i) {
  8985. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  8986. shifted_scores.push_back(shifted_score);
  8987. }
  8988. // Sort tokens based on the shifted_scores and their corresponding indices
  8989. std::vector<size_t> indices(candidates->size);
  8990. std::iota(indices.begin(), indices.end(), 0);
  8991. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  8992. return shifted_scores[a] < shifted_scores[b];
  8993. });
  8994. // Compute the cumulative probabilities
  8995. float cum_sum = 0.0f;
  8996. size_t last_idx = indices.size();
  8997. for (size_t i = 0; i < indices.size(); ++i) {
  8998. size_t idx = indices[i];
  8999. cum_sum += candidates->data[idx].p;
  9000. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  9001. if (cum_sum > p && i >= min_keep - 1) {
  9002. last_idx = i + 1;
  9003. break;
  9004. }
  9005. }
  9006. // Resize the output vector to keep only the locally typical tokens
  9007. std::vector<llama_token_data> new_candidates;
  9008. for (size_t i = 0; i < last_idx; ++i) {
  9009. size_t idx = indices[i];
  9010. new_candidates.push_back(candidates->data[idx]);
  9011. }
  9012. // Replace the data in candidates with the new_candidates data
  9013. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  9014. candidates->size = new_candidates.size();
  9015. candidates->sorted = false;
  9016. if (ctx) {
  9017. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9018. }
  9019. }
  9020. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  9021. const int64_t t_start_sample_us = ggml_time_us();
  9022. // no need to do anything if there is only one (or zero) candidates
  9023. if(candidates_p->size <= 1) {
  9024. return;
  9025. }
  9026. // Calculate maximum possible entropy
  9027. float max_entropy = -logf(1.0f / candidates_p->size);
  9028. llama_sample_softmax(nullptr, candidates_p);
  9029. // Calculate entropy of the softmax probabilities
  9030. float entropy = 0.0f;
  9031. for (size_t i = 0; i < candidates_p->size; ++i) {
  9032. float prob = candidates_p->data[i].p;
  9033. if (prob > 0.0f) { // Ensure no log(0)
  9034. entropy -= prob * logf(prob);
  9035. }
  9036. }
  9037. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  9038. float normalized_entropy = entropy / max_entropy;
  9039. // Map the normalized entropy to the desired temperature range using the power function
  9040. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  9041. #ifdef DEBUG
  9042. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  9043. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  9044. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  9045. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  9046. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  9047. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  9048. #endif
  9049. // Apply the dynamically calculated temperature scaling
  9050. for (size_t i = 0; i < candidates_p->size; ++i) {
  9051. candidates_p->data[i].logit /= dyn_temp;
  9052. }
  9053. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  9054. double max_l_double = candidates_p->data[0].logit;
  9055. double cum_sum_double = 0.0;
  9056. for (size_t i = 0; i < candidates_p->size; ++i) {
  9057. double p = exp(candidates_p->data[i].logit - max_l_double);
  9058. candidates_p->data[i].p = p; // Store the scaled probability
  9059. cum_sum_double += p;
  9060. }
  9061. for (size_t i = 0; i < candidates_p->size; ++i) {
  9062. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  9063. }
  9064. #ifdef DEBUG
  9065. // Print the updated top 25 probabilities after temperature scaling
  9066. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  9067. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  9068. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  9069. }
  9070. #endif
  9071. if (ctx) {
  9072. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9073. }
  9074. }
  9075. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  9076. const int64_t t_start_sample_us = ggml_time_us();
  9077. for (size_t i = 0; i < candidates_p->size; ++i) {
  9078. candidates_p->data[i].logit /= temp;
  9079. }
  9080. if (ctx) {
  9081. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9082. }
  9083. }
  9084. void llama_sample_repetition_penalties(
  9085. struct llama_context * ctx,
  9086. llama_token_data_array * candidates,
  9087. const llama_token * last_tokens,
  9088. size_t penalty_last_n,
  9089. float penalty_repeat,
  9090. float penalty_freq,
  9091. float penalty_present) {
  9092. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  9093. return;
  9094. }
  9095. const int64_t t_start_sample_us = ggml_time_us();
  9096. // Create a frequency map to count occurrences of each token in last_tokens
  9097. std::unordered_map<llama_token, int> token_count;
  9098. for (size_t i = 0; i < penalty_last_n; ++i) {
  9099. token_count[last_tokens[i]]++;
  9100. }
  9101. // Apply frequency and presence penalties to the candidates
  9102. for (size_t i = 0; i < candidates->size; ++i) {
  9103. const auto token_iter = token_count.find(candidates->data[i].id);
  9104. if (token_iter == token_count.end()) {
  9105. continue;
  9106. }
  9107. const int count = token_iter->second;
  9108. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  9109. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  9110. if (candidates->data[i].logit <= 0) {
  9111. candidates->data[i].logit *= penalty_repeat;
  9112. } else {
  9113. candidates->data[i].logit /= penalty_repeat;
  9114. }
  9115. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  9116. }
  9117. candidates->sorted = false;
  9118. if (ctx) {
  9119. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9120. }
  9121. }
  9122. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  9123. GGML_ASSERT(ctx);
  9124. const int64_t t_start_sample_us = ggml_time_us();
  9125. bool allow_eos = false;
  9126. for (const auto & stack : grammar->stacks) {
  9127. if (stack.empty()) {
  9128. allow_eos = true;
  9129. break;
  9130. }
  9131. }
  9132. const llama_token eos = llama_token_eos(&ctx->model);
  9133. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  9134. candidates_decoded.reserve(candidates->size);
  9135. std::vector<llama_grammar_candidate> candidates_grammar;
  9136. candidates_grammar.reserve(candidates->size);
  9137. for (size_t i = 0; i < candidates->size; ++i) {
  9138. const llama_token id = candidates->data[i].id;
  9139. const std::string piece = llama_token_to_piece(ctx, id);
  9140. if (id == eos) {
  9141. if (!allow_eos) {
  9142. candidates->data[i].logit = -INFINITY;
  9143. }
  9144. } else if (piece.empty() || piece[0] == 0) {
  9145. candidates->data[i].logit = -INFINITY;
  9146. } else {
  9147. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  9148. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  9149. }
  9150. }
  9151. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  9152. for (const auto & reject : rejects) {
  9153. candidates->data[reject.index].logit = -INFINITY;
  9154. }
  9155. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9156. }
  9157. static void llama_log_softmax(float * array, size_t size) {
  9158. float max_l = *std::max_element(array, array + size);
  9159. float sum = 0.f;
  9160. for (size_t i = 0; i < size; ++i) {
  9161. float p = expf(array[i] - max_l);
  9162. sum += p;
  9163. array[i] = p;
  9164. }
  9165. for (size_t i = 0; i < size; ++i) {
  9166. array[i] = logf(array[i] / sum);
  9167. }
  9168. }
  9169. void llama_sample_apply_guidance(
  9170. struct llama_context * ctx,
  9171. float * logits,
  9172. float * logits_guidance,
  9173. float scale) {
  9174. GGML_ASSERT(ctx);
  9175. const auto t_start_sample_us = ggml_time_us();
  9176. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  9177. llama_log_softmax(logits, n_vocab);
  9178. llama_log_softmax(logits_guidance, n_vocab);
  9179. for (int i = 0; i < n_vocab; ++i) {
  9180. auto & l = logits[i];
  9181. const auto & g = logits_guidance[i];
  9182. l = scale * (l - g) + g;
  9183. }
  9184. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9185. }
  9186. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  9187. GGML_ASSERT(ctx);
  9188. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  9189. int64_t t_start_sample_us;
  9190. t_start_sample_us = ggml_time_us();
  9191. llama_sample_softmax(nullptr, candidates);
  9192. // Estimate s_hat using the most probable m tokens
  9193. float s_hat = 0.0;
  9194. float sum_ti_bi = 0.0;
  9195. float sum_ti_sq = 0.0;
  9196. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  9197. float t_i = logf(float(i + 2) / float(i + 1));
  9198. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  9199. sum_ti_bi += t_i * b_i;
  9200. sum_ti_sq += t_i * t_i;
  9201. }
  9202. s_hat = sum_ti_bi / sum_ti_sq;
  9203. // Compute k from the estimated s_hat and target surprise value
  9204. float epsilon_hat = s_hat - 1;
  9205. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  9206. // Sample the next word X using top-k sampling
  9207. llama_sample_top_k(nullptr, candidates, int(k), 1);
  9208. if (ctx) {
  9209. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9210. }
  9211. llama_token X = llama_sample_token(ctx, candidates);
  9212. t_start_sample_us = ggml_time_us();
  9213. // Compute error as the difference between observed surprise and target surprise value
  9214. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  9215. return candidate.id == X;
  9216. }));
  9217. float observed_surprise = -log2f(candidates->data[X_idx].p);
  9218. float e = observed_surprise - tau;
  9219. // Update mu using the learning rate and error
  9220. *mu = *mu - eta * e;
  9221. if (ctx) {
  9222. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9223. }
  9224. return X;
  9225. }
  9226. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  9227. int64_t t_start_sample_us;
  9228. t_start_sample_us = ggml_time_us();
  9229. llama_sample_softmax(ctx, candidates);
  9230. // Truncate the words with surprise values greater than mu
  9231. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  9232. return -log2f(candidate.p) > *mu;
  9233. }));
  9234. if (candidates->size == 0) {
  9235. candidates->size = 1;
  9236. }
  9237. if (ctx) {
  9238. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9239. }
  9240. // Normalize the probabilities of the remaining words
  9241. llama_sample_softmax(ctx, candidates);
  9242. // Sample the next word X from the remaining words
  9243. llama_token X = llama_sample_token(ctx, candidates);
  9244. t_start_sample_us = ggml_time_us();
  9245. // Compute error as the difference between observed surprise and target surprise value
  9246. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  9247. return candidate.id == X;
  9248. }));
  9249. float observed_surprise = -log2f(candidates->data[X_idx].p);
  9250. float e = observed_surprise - tau;
  9251. // Update mu using the learning rate and error
  9252. *mu = *mu - eta * e;
  9253. if (ctx) {
  9254. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9255. }
  9256. return X;
  9257. }
  9258. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  9259. const int64_t t_start_sample_us = ggml_time_us();
  9260. // Find max element
  9261. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  9262. return a.logit < b.logit;
  9263. });
  9264. llama_token result = max_iter->id;
  9265. if (ctx) {
  9266. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9267. ctx->n_sample++;
  9268. }
  9269. return result;
  9270. }
  9271. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  9272. GGML_ASSERT(ctx);
  9273. const int64_t t_start_sample_us = ggml_time_us();
  9274. llama_sample_softmax(nullptr, candidates);
  9275. std::vector<float> probs;
  9276. probs.reserve(candidates->size);
  9277. for (size_t i = 0; i < candidates->size; ++i) {
  9278. probs.push_back(candidates->data[i].p);
  9279. }
  9280. std::discrete_distribution<> dist(probs.begin(), probs.end());
  9281. auto & rng = ctx->rng;
  9282. int idx = dist(rng);
  9283. llama_token result = candidates->data[idx].id;
  9284. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9285. ctx->n_sample++;
  9286. return result;
  9287. }
  9288. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  9289. const int64_t t_start_sample_us = ggml_time_us();
  9290. if (token == llama_token_eos(&ctx->model)) {
  9291. for (const auto & stack : grammar->stacks) {
  9292. if (stack.empty()) {
  9293. return;
  9294. }
  9295. }
  9296. GGML_ASSERT(false);
  9297. }
  9298. const std::string piece = llama_token_to_piece(ctx, token);
  9299. // Note terminating 0 in decoded string
  9300. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  9301. const auto & code_points = decoded.first;
  9302. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  9303. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  9304. }
  9305. grammar->partial_utf8 = decoded.second;
  9306. GGML_ASSERT(!grammar->stacks.empty());
  9307. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9308. }
  9309. //
  9310. // Beam search
  9311. //
  9312. struct llama_beam {
  9313. std::vector<llama_token> tokens;
  9314. float p; // Cumulative beam probability (renormalized relative to all beams)
  9315. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  9316. // Sort beams by probability. In case of ties, prefer beams at eob.
  9317. bool operator<(const llama_beam & rhs) const {
  9318. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  9319. }
  9320. // Shift off first n tokens and discard them.
  9321. void shift_tokens(const size_t n) {
  9322. if (n) {
  9323. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  9324. tokens.resize(tokens.size() - n);
  9325. }
  9326. }
  9327. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  9328. };
  9329. // A struct for calculating logit-related info.
  9330. struct llama_logit_info {
  9331. const float * const logits;
  9332. const int n_vocab;
  9333. const float max_l;
  9334. const float normalizer;
  9335. struct sum_exp {
  9336. float max_l;
  9337. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  9338. };
  9339. llama_logit_info(llama_context * ctx)
  9340. : logits(llama_get_logits(ctx))
  9341. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  9342. , max_l(*std::max_element(logits, logits + n_vocab))
  9343. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  9344. { }
  9345. llama_token_data get_token_data(const llama_token token_id) const {
  9346. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  9347. return {token_id, logits[token_id], p};
  9348. }
  9349. // Return top k token_data by logit.
  9350. std::vector<llama_token_data> top_k(size_t k) {
  9351. std::vector<llama_token_data> min_heap; // min-heap by logit
  9352. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  9353. min_heap.reserve(k_min);
  9354. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  9355. min_heap.push_back(get_token_data(token_id));
  9356. }
  9357. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  9358. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  9359. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  9360. if (min_heap.front().logit < logits[token_id]) {
  9361. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  9362. min_heap.back().id = token_id;
  9363. min_heap.back().logit = logits[token_id];
  9364. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  9365. }
  9366. }
  9367. return min_heap;
  9368. }
  9369. float probability_from_logit(float logit) const {
  9370. return normalizer * std::exp(logit - max_l);
  9371. }
  9372. };
  9373. struct llama_beam_search_data {
  9374. llama_context * ctx;
  9375. size_t n_beams;
  9376. int n_past;
  9377. int n_predict;
  9378. std::vector<llama_beam> beams;
  9379. std::vector<llama_beam> next_beams;
  9380. // Re-calculated on each loop iteration
  9381. size_t common_prefix_length;
  9382. // Used to communicate to/from callback on beams state.
  9383. std::vector<llama_beam_view> beam_views;
  9384. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  9385. : ctx(ctx)
  9386. , n_beams(n_beams)
  9387. , n_past(n_past)
  9388. , n_predict(n_predict)
  9389. , beam_views(n_beams) {
  9390. beams.reserve(n_beams);
  9391. next_beams.reserve(n_beams);
  9392. }
  9393. // Collapse beams to a single beam given by index.
  9394. void collapse_beams(const size_t beam_idx) {
  9395. if (0u < beam_idx) {
  9396. std::swap(beams[0], beams[beam_idx]);
  9397. }
  9398. beams.resize(1);
  9399. }
  9400. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  9401. // The repetitive patterns below reflect the 2 stages of heaps:
  9402. // * Gather elements until the vector is full, then call std::make_heap() on it.
  9403. // * If the heap is full and a new element is found that should be included, pop the
  9404. // least element to the back(), replace it with the new, then push it into the heap.
  9405. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  9406. // Min-heaps use a greater-than comparator.
  9407. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  9408. if (beam.eob) {
  9409. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  9410. if (next_beams.size() < n_beams) {
  9411. next_beams.push_back(std::move(beam));
  9412. if (next_beams.size() == n_beams) {
  9413. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  9414. }
  9415. } else if (next_beams.front().p < beam.p) {
  9416. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  9417. next_beams.back() = std::move(beam);
  9418. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  9419. }
  9420. } else {
  9421. // beam is not at end-of-sentence, so branch with next top_k tokens.
  9422. if (!beam.tokens.empty()) {
  9423. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  9424. }
  9425. llama_logit_info logit_info(ctx);
  9426. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  9427. size_t i=0;
  9428. if (next_beams.size() < n_beams) {
  9429. for (; next_beams.size() < n_beams ; ++i) {
  9430. llama_beam next_beam = beam;
  9431. next_beam.tokens.push_back(next_tokens[i].id);
  9432. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  9433. next_beams.push_back(std::move(next_beam));
  9434. }
  9435. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  9436. } else {
  9437. for (; next_beams.front().p == 0.0f ; ++i) {
  9438. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  9439. next_beams.back() = beam;
  9440. next_beams.back().tokens.push_back(next_tokens[i].id);
  9441. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  9442. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  9443. }
  9444. }
  9445. for (; i < n_beams ; ++i) {
  9446. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  9447. if (next_beams.front().p < next_p) {
  9448. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  9449. next_beams.back() = beam;
  9450. next_beams.back().tokens.push_back(next_tokens[i].id);
  9451. next_beams.back().p = next_p;
  9452. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  9453. }
  9454. }
  9455. }
  9456. }
  9457. // Find common_prefix_length based on beams.
  9458. // Requires beams is not empty.
  9459. size_t find_common_prefix_length() {
  9460. size_t common_prefix_length = beams[0].tokens.size();
  9461. for (size_t i = 1 ; i < beams.size() ; ++i) {
  9462. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  9463. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  9464. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  9465. common_prefix_length = j;
  9466. break;
  9467. }
  9468. }
  9469. }
  9470. return common_prefix_length;
  9471. }
  9472. // Construct beams_state to send back to caller via the callback function.
  9473. // Side effect: set common_prefix_length = find_common_prefix_length();
  9474. llama_beams_state get_beams_state(const bool last_call) {
  9475. for (size_t i = 0 ; i < beams.size() ; ++i) {
  9476. beam_views[i] = beams[i].view();
  9477. }
  9478. common_prefix_length = find_common_prefix_length();
  9479. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  9480. }
  9481. // Loop:
  9482. // * while i < n_predict, AND
  9483. // * any of the beams have not yet reached end-of-beam (eob), AND
  9484. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  9485. // (since all other beam probabilities can only decrease)
  9486. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  9487. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  9488. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  9489. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  9490. !beams[top_beam_index()].eob ; ++i) {
  9491. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  9492. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  9493. if (common_prefix_length) {
  9494. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  9495. n_past += common_prefix_length;
  9496. }
  9497. // Zero-out next_beam probabilities to place them last in following min-heap.
  9498. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  9499. for (llama_beam & beam : beams) {
  9500. beam.shift_tokens(common_prefix_length);
  9501. fill_next_beams_by_top_probabilities(beam);
  9502. }
  9503. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  9504. beams.swap(next_beams);
  9505. renormalize_beam_probabilities(beams);
  9506. }
  9507. collapse_beams(top_beam_index());
  9508. callback(callback_data, get_beams_state(true));
  9509. }
  9510. // As beams grow, the cumulative probabilities decrease.
  9511. // Renormalize them to avoid floating point underflow.
  9512. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  9513. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  9514. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  9515. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  9516. }
  9517. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  9518. size_t top_beam_index() {
  9519. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  9520. }
  9521. // Copy (p,eob) for each beam which may have been changed by the callback.
  9522. void update_beams_from_beam_views() {
  9523. for (size_t i = 0 ; i < beams.size() ; ++i) {
  9524. beams[i].p = beam_views[i].p;
  9525. beams[i].eob = beam_views[i].eob;
  9526. }
  9527. }
  9528. };
  9529. void llama_beam_search(llama_context * ctx,
  9530. llama_beam_search_callback_fn_t callback, void * callback_data,
  9531. size_t n_beams, int n_past, int n_predict) {
  9532. assert(ctx);
  9533. const int64_t t_start_sample_us = ggml_time_us();
  9534. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  9535. beam_search_data.loop(callback, callback_data);
  9536. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9537. ctx->n_sample++;
  9538. }
  9539. //
  9540. // quantization
  9541. //
  9542. struct quantize_state_internal {
  9543. const llama_model & model;
  9544. const llama_model_quantize_params * params;
  9545. int n_attention_wv = 0;
  9546. int n_ffn_down = 0;
  9547. int n_ffn_gate = 0;
  9548. int n_ffn_up = 0;
  9549. int i_attention_wv = 0;
  9550. int i_ffn_down = 0;
  9551. int i_ffn_gate = 0;
  9552. int i_ffn_up = 0;
  9553. int n_k_quantized = 0;
  9554. int n_fallback = 0;
  9555. bool has_imatrix = false;
  9556. // used to figure out if a model shares tok_embd with the output weight
  9557. bool has_output = false;
  9558. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  9559. : model(model)
  9560. , params(params)
  9561. {}
  9562. };
  9563. static void llama_tensor_dequantize_internal(
  9564. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  9565. const size_t nelements, const int nthread
  9566. ) {
  9567. if (output.size() < nelements) {
  9568. output.resize(nelements);
  9569. }
  9570. float * f32_output = (float *) output.data();
  9571. ggml_type_traits_t qtype;
  9572. if (ggml_is_quantized(tensor->type)) {
  9573. qtype = ggml_internal_get_type_traits(tensor->type);
  9574. if (qtype.to_float == NULL) {
  9575. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  9576. }
  9577. } else if (tensor->type != GGML_TYPE_F16) {
  9578. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  9579. }
  9580. if (nthread < 2) {
  9581. if (tensor->type == GGML_TYPE_F16) {
  9582. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  9583. } else if (ggml_is_quantized(tensor->type)) {
  9584. qtype.to_float(tensor->data, f32_output, nelements);
  9585. } else {
  9586. GGML_ASSERT(false); // unreachable
  9587. }
  9588. return;
  9589. }
  9590. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  9591. size_t block_size_bytes = ggml_type_size(tensor->type);
  9592. GGML_ASSERT(nelements % block_size == 0);
  9593. size_t nblocks = nelements / block_size;
  9594. size_t blocks_per_thread = nblocks / nthread;
  9595. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  9596. size_t in_buff_offs = 0;
  9597. size_t out_buff_offs = 0;
  9598. for (int tnum = 0; tnum < nthread; tnum++) {
  9599. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  9600. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  9601. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  9602. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  9603. if (typ == GGML_TYPE_F16) {
  9604. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  9605. } else {
  9606. qtype.to_float(inbuf, outbuf, nels);
  9607. }
  9608. };
  9609. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  9610. in_buff_offs += thr_block_bytes;
  9611. out_buff_offs += thr_elems;
  9612. }
  9613. for (auto & w : workers) { w.join(); }
  9614. workers.clear();
  9615. }
  9616. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  9617. const std::string name = ggml_get_name(tensor);
  9618. // TODO: avoid hardcoded tensor names - use the TN_* constants
  9619. const llm_arch arch = qs.model.arch;
  9620. const auto tn = LLM_TN(arch);
  9621. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  9622. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  9623. };
  9624. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  9625. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  9626. if (n_expert > 1) {
  9627. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  9628. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  9629. // for getting the current layer as I initially thought, and we need to resort to parsing the
  9630. // tensor name.
  9631. n_layer /= n_expert;
  9632. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  9633. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  9634. }
  9635. if (i_layer < 0 || i_layer >= n_layer) {
  9636. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  9637. }
  9638. }
  9639. return std::make_pair(i_layer, n_layer);
  9640. };
  9641. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  9642. // with the quantization of the output tensor
  9643. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  9644. int nx = tensor->ne[0];
  9645. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  9646. new_type = GGML_TYPE_Q8_0;
  9647. }
  9648. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  9649. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  9650. new_type = GGML_TYPE_Q5_K;
  9651. }
  9652. else if (new_type != GGML_TYPE_Q8_0) {
  9653. new_type = GGML_TYPE_Q6_K;
  9654. }
  9655. } else if (name == "token_embd.weight") {
  9656. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  9657. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
  9658. new_type = GGML_TYPE_Q2_K;
  9659. }
  9660. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  9661. new_type = GGML_TYPE_IQ3_S;
  9662. }
  9663. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  9664. new_type = GGML_TYPE_IQ3_S;
  9665. }
  9666. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  9667. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  9668. if (name.find("attn_v.weight") != std::string::npos) {
  9669. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  9670. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  9671. ++qs.i_attention_wv;
  9672. }
  9673. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  9674. new_type = GGML_TYPE_Q4_K;
  9675. }
  9676. else if (name.find("ffn_down") != std::string::npos) {
  9677. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  9678. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  9679. }
  9680. ++qs.i_ffn_down;
  9681. }
  9682. else if (name.find("attn_output.weight") != std::string::npos) {
  9683. if (qs.model.hparams.n_expert == 8) {
  9684. new_type = GGML_TYPE_Q5_K;
  9685. } else {
  9686. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
  9687. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  9688. }
  9689. }
  9690. } else if (name.find("attn_v.weight") != std::string::npos) {
  9691. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  9692. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  9693. }
  9694. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  9695. new_type = GGML_TYPE_Q4_K;
  9696. }
  9697. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  9698. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  9699. }
  9700. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
  9701. new_type = GGML_TYPE_Q4_K;
  9702. }
  9703. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  9704. new_type = GGML_TYPE_Q4_K;
  9705. }
  9706. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
  9707. new_type = GGML_TYPE_Q4_K;
  9708. }
  9709. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  9710. new_type = GGML_TYPE_Q4_K;
  9711. }
  9712. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  9713. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  9714. }
  9715. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  9716. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  9717. new_type = GGML_TYPE_Q5_K;
  9718. }
  9719. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  9720. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  9721. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  9722. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  9723. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  9724. if (qs.model.type == MODEL_70B) {
  9725. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  9726. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  9727. // nearly negligible increase in model size by quantizing this tensor with more bits:
  9728. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  9729. }
  9730. if (qs.model.hparams.n_expert == 8) {
  9731. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  9732. // TODO: explore better strategies
  9733. new_type = GGML_TYPE_Q8_0;
  9734. }
  9735. ++qs.i_attention_wv;
  9736. } else if (name.find("attn_k.weight") != std::string::npos) {
  9737. if (qs.model.hparams.n_expert == 8) {
  9738. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  9739. // TODO: explore better strategies
  9740. new_type = GGML_TYPE_Q8_0;
  9741. }
  9742. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  9743. new_type = GGML_TYPE_IQ3_XXS;
  9744. }
  9745. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  9746. new_type = GGML_TYPE_IQ2_S;
  9747. }
  9748. } else if (name.find("attn_q.weight") != std::string::npos) {
  9749. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  9750. new_type = GGML_TYPE_IQ3_XXS;
  9751. }
  9752. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  9753. new_type = GGML_TYPE_IQ2_S;
  9754. }
  9755. } else if (name.find("ffn_down") != std::string::npos) {
  9756. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  9757. int i_layer = info.first, n_layer = info.second;
  9758. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  9759. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  9760. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  9761. }
  9762. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  9763. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  9764. }
  9765. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  9766. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  9767. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  9768. : GGML_TYPE_Q3_K;
  9769. }
  9770. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  9771. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  9772. new_type = GGML_TYPE_Q4_K;
  9773. }
  9774. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  9775. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  9776. }
  9777. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  9778. if (arch == LLM_ARCH_FALCON) {
  9779. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  9780. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  9781. } else {
  9782. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  9783. }
  9784. }
  9785. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  9786. new_type = GGML_TYPE_Q5_K;
  9787. }
  9788. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  9789. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  9790. new_type = GGML_TYPE_Q5_K;
  9791. }
  9792. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  9793. && qs.has_imatrix && i_layer < n_layer/8) {
  9794. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  9795. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  9796. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  9797. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  9798. }
  9799. ++qs.i_ffn_down;
  9800. } else if (name.find("attn_output.weight") != std::string::npos) {
  9801. if (arch != LLM_ARCH_FALCON) {
  9802. if (qs.model.hparams.n_expert == 8) {
  9803. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  9804. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  9805. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  9806. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  9807. new_type = GGML_TYPE_Q5_K;
  9808. }
  9809. } else {
  9810. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  9811. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  9812. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  9813. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  9814. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  9815. }
  9816. } else {
  9817. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  9818. }
  9819. }
  9820. else if (name.find("attn_qkv.weight") != std::string::npos) {
  9821. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  9822. new_type = GGML_TYPE_Q4_K;
  9823. }
  9824. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  9825. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  9826. }
  9827. else if (name.find("ffn_gate") != std::string::npos) {
  9828. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  9829. int i_layer = info.first, n_layer = info.second;
  9830. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  9831. new_type = GGML_TYPE_IQ3_XXS;
  9832. }
  9833. ++qs.i_ffn_gate;
  9834. }
  9835. else if (name.find("ffn_up") != std::string::npos) {
  9836. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  9837. int i_layer = info.first, n_layer = info.second;
  9838. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  9839. new_type = GGML_TYPE_IQ3_XXS;
  9840. }
  9841. ++qs.i_ffn_up;
  9842. }
  9843. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  9844. //}
  9845. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  9846. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  9847. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  9848. //}
  9849. // This can be used to reduce the size of the Q5_K_S model.
  9850. // The associated PPL increase is fully in line with the size reduction
  9851. //else {
  9852. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  9853. //}
  9854. bool convert_incompatible_tensor = false;
  9855. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  9856. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  9857. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  9858. new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) {
  9859. int nx = tensor->ne[0];
  9860. int ny = tensor->ne[1];
  9861. if (nx % QK_K != 0) {
  9862. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  9863. convert_incompatible_tensor = true;
  9864. } else {
  9865. ++qs.n_k_quantized;
  9866. }
  9867. }
  9868. if (convert_incompatible_tensor) {
  9869. switch (new_type) {
  9870. case GGML_TYPE_IQ2_XXS:
  9871. case GGML_TYPE_IQ2_XS:
  9872. case GGML_TYPE_IQ2_S:
  9873. case GGML_TYPE_IQ3_XXS:
  9874. case GGML_TYPE_IQ3_S:
  9875. case GGML_TYPE_IQ1_S:
  9876. case GGML_TYPE_Q2_K:
  9877. case GGML_TYPE_Q3_K:
  9878. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  9879. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  9880. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  9881. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  9882. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  9883. }
  9884. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  9885. ++qs.n_fallback;
  9886. }
  9887. return new_type;
  9888. }
  9889. static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  9890. std::mutex mutex;
  9891. int counter = 0;
  9892. size_t new_size = 0;
  9893. if (nthread < 2) {
  9894. // single-thread
  9895. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  9896. }
  9897. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  9898. nrows, n_per_row, imatrix]() {
  9899. const int nrows_per_chunk = chunk_size / n_per_row;
  9900. size_t local_size = 0;
  9901. while (true) {
  9902. std::unique_lock<std::mutex> lock(mutex);
  9903. int first_row = counter; counter += nrows_per_chunk;
  9904. if (first_row >= nrows) {
  9905. if (local_size > 0) {
  9906. new_size += local_size;
  9907. }
  9908. break;
  9909. }
  9910. lock.unlock();
  9911. const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  9912. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  9913. }
  9914. };
  9915. for (int it = 0; it < nthread - 1; ++it) {
  9916. workers.emplace_back(compute);
  9917. }
  9918. compute();
  9919. for (auto & w : workers) { w.join(); }
  9920. workers.clear();
  9921. return new_size;
  9922. }
  9923. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  9924. ggml_type default_type;
  9925. llama_ftype ftype = params->ftype;
  9926. switch (params->ftype) {
  9927. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  9928. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  9929. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  9930. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  9931. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  9932. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  9933. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  9934. // K-quants
  9935. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  9936. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  9937. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  9938. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  9939. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  9940. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  9941. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  9942. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  9943. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  9944. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  9945. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  9946. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  9947. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  9948. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  9949. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  9950. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  9951. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  9952. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  9953. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  9954. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  9955. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  9956. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  9957. }
  9958. int nthread = params->nthread;
  9959. if (nthread <= 0) {
  9960. nthread = std::thread::hardware_concurrency();
  9961. }
  9962. // mmap consistently increases speed Linux, and also increases speed on Windows with
  9963. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  9964. #if defined(__linux__) || defined(_WIN32)
  9965. constexpr bool use_mmap = true;
  9966. #else
  9967. constexpr bool use_mmap = false;
  9968. #endif
  9969. llama_model_loader ml(fname_inp, use_mmap, NULL);
  9970. ml.init_mapping(false); // no prefetching?
  9971. llama_model model;
  9972. llm_load_arch(ml, model);
  9973. llm_load_hparams(ml, model);
  9974. struct quantize_state_internal qs(model, params);
  9975. if (params->only_copy) {
  9976. ftype = model.ftype;
  9977. }
  9978. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  9979. if (params->imatrix) {
  9980. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  9981. if (imatrix_data) {
  9982. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  9983. qs.has_imatrix = true;
  9984. }
  9985. }
  9986. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  9987. struct gguf_context * ctx_out = gguf_init_empty();
  9988. // copy the KV pairs from the input file
  9989. gguf_set_kv (ctx_out, ml.ctx_gguf);
  9990. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  9991. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  9992. for (int i = 0; i < ml.n_tensors; ++i) {
  9993. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  9994. const std::string name = ggml_get_name(meta);
  9995. // TODO: avoid hardcoded tensor names - use the TN_* constants
  9996. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  9997. ++qs.n_attention_wv;
  9998. }
  9999. else if (name.find("ffn_down") != std::string::npos) {
  10000. ++qs.n_ffn_down;
  10001. }
  10002. else if (name.find("ffn_gate") != std::string::npos) {
  10003. ++qs.n_ffn_gate;
  10004. }
  10005. else if (name.find("ffn_up") != std::string::npos) {
  10006. ++qs.n_ffn_up;
  10007. }
  10008. else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  10009. qs.has_output = true;
  10010. }
  10011. }
  10012. if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
  10013. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
  10014. __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
  10015. }
  10016. size_t total_size_org = 0;
  10017. size_t total_size_new = 0;
  10018. std::vector<std::thread> workers;
  10019. workers.reserve(nthread);
  10020. int idx = 0;
  10021. std::vector<no_init<uint8_t>> read_data;
  10022. std::vector<no_init<uint8_t>> work;
  10023. std::vector<no_init<float>> f32_conv_buf;
  10024. // populate the original tensors so we get an initial meta data
  10025. for (int i = 0; i < ml.n_tensors; ++i) {
  10026. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  10027. gguf_add_tensor(ctx_out, meta);
  10028. }
  10029. std::ofstream fout(fname_out, std::ios::binary);
  10030. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  10031. const size_t meta_size = gguf_get_meta_size(ctx_out);
  10032. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  10033. // placeholder for the meta data
  10034. ::zeros(fout, meta_size);
  10035. for (int i = 0; i < ml.n_tensors; ++i) {
  10036. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  10037. const std::string name = ggml_get_name(tensor);
  10038. if (!ml.use_mmap) {
  10039. if (read_data.size() < ggml_nbytes(tensor)) {
  10040. read_data.resize(ggml_nbytes(tensor));
  10041. }
  10042. tensor->data = read_data.data();
  10043. }
  10044. ml.load_data_for(tensor);
  10045. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  10046. ++idx, ml.n_tensors,
  10047. ggml_get_name(tensor),
  10048. llama_format_tensor_shape(tensor).c_str(),
  10049. ggml_type_name(tensor->type));
  10050. // This used to be a regex, but <regex> has an extreme cost to compile times.
  10051. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  10052. // quantize only 2D tensors
  10053. quantize &= (ggml_n_dims(tensor) == 2);
  10054. quantize &= params->quantize_output_tensor || name != "output.weight";
  10055. quantize &= !params->only_copy;
  10056. // do not quantize expert gating tensors
  10057. // NOTE: can't use LLM_TN here because the layer number is not known
  10058. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  10059. // do not quantize positional embeddings and token types (BERT)
  10060. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  10061. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  10062. // do not quantize Mamba's small yet 2D weights
  10063. // NOTE: can't use LLM_TN here because the layer number is not known
  10064. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  10065. quantize &= name.find("ssm_x.weight") == std::string::npos;
  10066. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  10067. enum ggml_type new_type;
  10068. void * new_data;
  10069. size_t new_size;
  10070. if (quantize) {
  10071. new_type = default_type;
  10072. // get more optimal quantization type based on the tensor shape, layer, etc.
  10073. if (!params->pure && ggml_is_quantized(default_type)) {
  10074. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  10075. }
  10076. // If we've decided to quantize to the same type the tensor is already
  10077. // in then there's nothing to do.
  10078. quantize = tensor->type != new_type;
  10079. }
  10080. if (!quantize) {
  10081. new_type = tensor->type;
  10082. new_data = tensor->data;
  10083. new_size = ggml_nbytes(tensor);
  10084. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  10085. } else {
  10086. const size_t nelements = ggml_nelements(tensor);
  10087. const float * imatrix = nullptr;
  10088. if (imatrix_data) {
  10089. auto it = imatrix_data->find(tensor->name);
  10090. if (it == imatrix_data->end()) {
  10091. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  10092. } else {
  10093. if (it->second.size() == (size_t)tensor->ne[0]) {
  10094. imatrix = it->second.data();
  10095. } else {
  10096. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  10097. int(it->second.size()), int(tensor->ne[0]), tensor->name);
  10098. }
  10099. }
  10100. }
  10101. if ((new_type == GGML_TYPE_IQ2_XXS ||
  10102. new_type == GGML_TYPE_IQ2_XS ||
  10103. new_type == GGML_TYPE_IQ2_S ||
  10104. new_type == GGML_TYPE_IQ1_S ||
  10105. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  10106. LLAMA_LOG_ERROR("\n\n============================================================\n");
  10107. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  10108. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  10109. LLAMA_LOG_ERROR("============================================================\n\n");
  10110. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  10111. }
  10112. float * f32_data;
  10113. if (tensor->type == GGML_TYPE_F32) {
  10114. f32_data = (float *) tensor->data;
  10115. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  10116. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  10117. } else {
  10118. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  10119. f32_data = (float *) f32_conv_buf.data();
  10120. }
  10121. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  10122. fflush(stdout);
  10123. if (work.size() < nelements * 4) {
  10124. work.resize(nelements * 4); // upper bound on size
  10125. }
  10126. new_data = work.data();
  10127. const int n_per_row = tensor->ne[0];
  10128. const int nrows = nelements / n_per_row;
  10129. static const int min_chunk_size = 32 * 512;
  10130. const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  10131. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  10132. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  10133. new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix, workers, nthread_use);
  10134. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  10135. }
  10136. total_size_org += ggml_nbytes(tensor);
  10137. total_size_new += new_size;
  10138. // update the gguf meta data as we go
  10139. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  10140. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  10141. // write tensor data + padding
  10142. fout.write((const char *) new_data, new_size);
  10143. zeros(fout, GGML_PAD(new_size, align) - new_size);
  10144. }
  10145. // go back to beginning of file and write the updated meta data
  10146. {
  10147. fout.seekp(0);
  10148. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  10149. gguf_get_meta_data(ctx_out, data.data());
  10150. fout.write((const char *) data.data(), data.size());
  10151. }
  10152. fout.close();
  10153. gguf_free(ctx_out);
  10154. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  10155. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  10156. if (qs.n_fallback > 0) {
  10157. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  10158. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  10159. }
  10160. }
  10161. static int llama_apply_lora_from_file_internal(
  10162. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  10163. ) {
  10164. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  10165. const int64_t t_start_lora_us = ggml_time_us();
  10166. llama_file fin(path_lora, "rb");
  10167. // verify magic and version
  10168. {
  10169. uint32_t magic = fin.read_u32();
  10170. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  10171. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  10172. return 1;
  10173. }
  10174. uint32_t format_version = fin.read_u32();
  10175. if (format_version != 1) {
  10176. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  10177. return 1;
  10178. }
  10179. }
  10180. int32_t lora_r = fin.read_u32();
  10181. int32_t lora_alpha = fin.read_u32();
  10182. float scaling = scale * (float)lora_alpha / (float)lora_r;
  10183. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  10184. // load base model
  10185. std::unique_ptr<llama_model_loader> ml;
  10186. if (path_base_model) {
  10187. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  10188. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  10189. ml->init_mapping(/*prefetch*/ false); // no prefetching
  10190. }
  10191. struct tensor_meta {
  10192. std::string name;
  10193. ggml_type type;
  10194. int32_t ne[2];
  10195. size_t offset;
  10196. };
  10197. std::map<std::string, tensor_meta> tensor_meta_map;
  10198. // load all tensor meta
  10199. while (true) {
  10200. if (fin.tell() == fin.size) {
  10201. // eof
  10202. break;
  10203. }
  10204. int32_t n_dims;
  10205. int32_t name_len;
  10206. int32_t ftype;
  10207. fin.read_raw(&n_dims, sizeof(n_dims));
  10208. fin.read_raw(&name_len, sizeof(name_len));
  10209. fin.read_raw(&ftype, sizeof(ftype));
  10210. if (n_dims != 1 && n_dims != 2) {
  10211. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  10212. return 1;
  10213. }
  10214. int32_t ne[2] = { 1, 1 };
  10215. for (int i = 0; i < n_dims; ++i) {
  10216. fin.read_raw(&ne[i], sizeof(ne[i]));
  10217. }
  10218. std::string name;
  10219. {
  10220. GGML_ASSERT(name_len < GGML_MAX_NAME);
  10221. char buf[GGML_MAX_NAME];
  10222. fin.read_raw(buf, name_len);
  10223. name = std::string(buf, name_len);
  10224. }
  10225. // check for lora suffix
  10226. std::string lora_suffix;
  10227. if (name.length() > 6) {
  10228. lora_suffix = name.substr(name.length() - 6);
  10229. }
  10230. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  10231. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  10232. return 1;
  10233. }
  10234. // tensor type
  10235. ggml_type wtype;
  10236. switch (ftype) {
  10237. case 0: wtype = GGML_TYPE_F32; break;
  10238. case 1: wtype = GGML_TYPE_F16; break;
  10239. default:
  10240. {
  10241. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  10242. __func__, ftype);
  10243. return 1;
  10244. }
  10245. }
  10246. // data offset
  10247. size_t offset = fin.tell();
  10248. offset = (offset + 31) & -32;
  10249. // skip tensor data
  10250. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  10251. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  10252. }
  10253. bool warned = false;
  10254. int n_tensors = 0;
  10255. // apply
  10256. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  10257. if (backend_cpu == nullptr) {
  10258. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  10259. return 1;
  10260. }
  10261. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  10262. std::vector<no_init<uint8_t>> read_buf;
  10263. for (const auto & it : model.tensors_by_name) {
  10264. const std::string & base_name = it.first;
  10265. ggml_tensor * model_t = it.second;
  10266. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  10267. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  10268. continue;
  10269. }
  10270. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  10271. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  10272. ggml_init_params lora_init_params = {
  10273. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  10274. /* .mem_buffer */ nullptr,
  10275. /* .no_alloc */ true,
  10276. };
  10277. ggml_context * lora_ctx = ggml_init(lora_init_params);
  10278. if (lora_ctx == nullptr) {
  10279. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  10280. ggml_backend_free(backend_cpu);
  10281. return 1;
  10282. }
  10283. // create tensors
  10284. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  10285. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  10286. ggml_set_name(loraA, metaA.name.c_str());
  10287. ggml_set_name(loraB, metaB.name.c_str());
  10288. ggml_tensor * base_t;
  10289. if (ml) {
  10290. if (gguf_find_tensor(ml->ctx_gguf, base_name.c_str()) < 0) {
  10291. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  10292. return 1;
  10293. }
  10294. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  10295. } else {
  10296. base_t = ggml_dup_tensor(lora_ctx, model_t);
  10297. }
  10298. ggml_set_name(base_t, base_name.c_str());
  10299. // allocate in backend buffer
  10300. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  10301. if (lora_buf == nullptr) {
  10302. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  10303. return 1;
  10304. }
  10305. // load tensor data
  10306. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  10307. read_buf.resize(ggml_nbytes(tensor));
  10308. fin.seek(tensor_meta.offset, SEEK_SET);
  10309. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  10310. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  10311. };
  10312. load_tensor(metaA, loraA);
  10313. load_tensor(metaB, loraB);
  10314. // load base model tensor data
  10315. if (ml) {
  10316. ml->load_data_for(base_t);
  10317. } else {
  10318. ggml_backend_tensor_copy(model_t, base_t);
  10319. }
  10320. if (ggml_is_quantized(base_t->type) && !warned) {
  10321. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  10322. "use a f16 or f32 base model with --lora-base\n", __func__);
  10323. warned = true;
  10324. }
  10325. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  10326. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  10327. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  10328. ggml_free(lora_ctx);
  10329. ggml_backend_buffer_free(lora_buf);
  10330. ggml_backend_free(backend_cpu);
  10331. return 1;
  10332. }
  10333. auto build_lora_graph = [&]() {
  10334. // w = w + BA*s
  10335. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  10336. ggml_set_name(BA, "BA");
  10337. if (scaling != 1.0f) {
  10338. BA = ggml_scale(lora_ctx, BA, scaling);
  10339. ggml_set_name(BA, "BA_scaled");
  10340. }
  10341. ggml_tensor * r;
  10342. r = ggml_add_inplace(lora_ctx, base_t, BA);
  10343. ggml_set_name(r, "r_add");
  10344. if (base_t->type != model_t->type) {
  10345. // convert the result to the model type
  10346. r = ggml_cast(lora_ctx, r, model_t->type);
  10347. ggml_set_name(r, "r_cast");
  10348. }
  10349. return r;
  10350. };
  10351. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  10352. ggml_tensor * r = build_lora_graph();
  10353. ggml_build_forward_expand(gf, r);
  10354. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  10355. if (graph_buf == nullptr) {
  10356. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  10357. ggml_free(lora_ctx);
  10358. ggml_backend_buffer_free(lora_buf);
  10359. ggml_backend_free(backend_cpu);
  10360. return 1;
  10361. }
  10362. ggml_backend_graph_compute(backend_cpu, gf);
  10363. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  10364. #if 0
  10365. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  10366. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  10367. // sched compute
  10368. ggml_build_forward_expand(gf, build_graph());
  10369. ggml_backend_sched_init_measure(sched, gf);
  10370. // create the graph again, since the previous one was destroyed by the measure
  10371. ggml_graph_clear(gf);
  10372. ggml_build_forward_expand(gf, build_graph());
  10373. ggml_backend_sched_graph_compute(sched, gf);
  10374. ggml_backend_sched_free(sched);
  10375. #endif
  10376. ggml_backend_buffer_free(lora_buf);
  10377. ggml_backend_buffer_free(graph_buf);
  10378. ggml_free(lora_ctx);
  10379. n_tensors++;
  10380. if (n_tensors % 4 == 0) {
  10381. LLAMA_LOG_INFO(".");
  10382. }
  10383. }
  10384. ggml_backend_free(backend_cpu);
  10385. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  10386. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  10387. return 0;
  10388. }
  10389. //
  10390. // interface implementation
  10391. //
  10392. struct llama_model_params llama_model_default_params() {
  10393. struct llama_model_params result = {
  10394. /*.n_gpu_layers =*/ 0,
  10395. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10396. /*.main_gpu =*/ 0,
  10397. /*.tensor_split =*/ nullptr,
  10398. /*.progress_callback =*/ nullptr,
  10399. /*.progress_callback_user_data =*/ nullptr,
  10400. /*.kv_overrides =*/ nullptr,
  10401. /*.vocab_only =*/ false,
  10402. /*.use_mmap =*/ true,
  10403. /*.use_mlock =*/ false,
  10404. };
  10405. #ifdef GGML_USE_METAL
  10406. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10407. result.n_gpu_layers = 999;
  10408. #endif
  10409. return result;
  10410. }
  10411. struct llama_context_params llama_context_default_params() {
  10412. struct llama_context_params result = {
  10413. /*.seed =*/ LLAMA_DEFAULT_SEED,
  10414. /*.n_ctx =*/ 512,
  10415. /*.n_batch =*/ 512,
  10416. /*.n_seq_max =*/ 1,
  10417. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  10418. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  10419. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  10420. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  10421. /*.rope_freq_base =*/ 0.0f,
  10422. /*.rope_freq_scale =*/ 0.0f,
  10423. /*.yarn_ext_factor =*/ -1.0f,
  10424. /*.yarn_attn_factor =*/ 1.0f,
  10425. /*.yarn_beta_fast =*/ 32.0f,
  10426. /*.yarn_beta_slow =*/ 1.0f,
  10427. /*.yarn_orig_ctx =*/ 0,
  10428. /*.defrag_thold =*/ -1.0f,
  10429. /*.cb_eval =*/ nullptr,
  10430. /*.cb_eval_user_data =*/ nullptr,
  10431. /*.type_k =*/ GGML_TYPE_F16,
  10432. /*.type_v =*/ GGML_TYPE_F16,
  10433. /*.logits_all =*/ false,
  10434. /*.embeddings =*/ false,
  10435. /*.offload_kqv =*/ true,
  10436. /*.abort_callback =*/ nullptr,
  10437. /*.abort_callback_data =*/ nullptr,
  10438. };
  10439. return result;
  10440. }
  10441. struct llama_model_quantize_params llama_model_quantize_default_params() {
  10442. struct llama_model_quantize_params result = {
  10443. /*.nthread =*/ 0,
  10444. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  10445. /*.allow_requantize =*/ false,
  10446. /*.quantize_output_tensor =*/ true,
  10447. /*.only_copy =*/ false,
  10448. /*.pure =*/ false,
  10449. /*.imatrix =*/ nullptr,
  10450. };
  10451. return result;
  10452. }
  10453. size_t llama_max_devices(void) {
  10454. #if defined(GGML_USE_METAL)
  10455. return 1;
  10456. #elif defined(GGML_USE_CUBLAS)
  10457. return GGML_CUDA_MAX_DEVICES;
  10458. #elif defined(GGML_USE_SYCL)
  10459. return GGML_SYCL_MAX_DEVICES;
  10460. #elif defined(GGML_USE_VULKAN)
  10461. return GGML_VK_MAX_DEVICES;
  10462. #else
  10463. return 1;
  10464. #endif
  10465. }
  10466. bool llama_supports_mmap(void) {
  10467. return llama_mmap::SUPPORTED;
  10468. }
  10469. bool llama_supports_mlock(void) {
  10470. return llama_mlock::SUPPORTED;
  10471. }
  10472. bool llama_supports_gpu_offload(void) {
  10473. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  10474. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  10475. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  10476. return true;
  10477. #else
  10478. return false;
  10479. #endif
  10480. }
  10481. void llama_backend_init(void) {
  10482. ggml_time_init();
  10483. // needed to initialize f16 tables
  10484. {
  10485. struct ggml_init_params params = { 0, NULL, false };
  10486. struct ggml_context * ctx = ggml_init(params);
  10487. ggml_free(ctx);
  10488. }
  10489. #ifdef GGML_USE_MPI
  10490. ggml_mpi_backend_init();
  10491. #endif
  10492. }
  10493. void llama_numa_init(enum ggml_numa_strategy numa) {
  10494. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  10495. ggml_numa_init(numa);
  10496. }
  10497. }
  10498. void llama_backend_free(void) {
  10499. #ifdef GGML_USE_MPI
  10500. ggml_mpi_backend_free();
  10501. #endif
  10502. ggml_quantize_free();
  10503. }
  10504. int64_t llama_time_us(void) {
  10505. return ggml_time_us();
  10506. }
  10507. struct llama_model * llama_load_model_from_file(
  10508. const char * path_model,
  10509. struct llama_model_params params) {
  10510. ggml_time_init();
  10511. llama_model * model = new llama_model;
  10512. unsigned cur_percentage = 0;
  10513. if (params.progress_callback == NULL) {
  10514. params.progress_callback_user_data = &cur_percentage;
  10515. params.progress_callback = [](float progress, void * ctx) {
  10516. unsigned * cur_percentage_p = (unsigned *) ctx;
  10517. unsigned percentage = (unsigned) (100 * progress);
  10518. while (percentage > *cur_percentage_p) {
  10519. *cur_percentage_p = percentage;
  10520. LLAMA_LOG_INFO(".");
  10521. if (percentage >= 100) {
  10522. LLAMA_LOG_INFO("\n");
  10523. }
  10524. }
  10525. return true;
  10526. };
  10527. }
  10528. int status = llama_model_load(path_model, *model, params);
  10529. GGML_ASSERT(status <= 0);
  10530. if (status < 0) {
  10531. if (status == -1) {
  10532. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  10533. } else if (status == -2) {
  10534. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  10535. }
  10536. delete model;
  10537. return nullptr;
  10538. }
  10539. return model;
  10540. }
  10541. void llama_free_model(struct llama_model * model) {
  10542. delete model;
  10543. }
  10544. struct llama_context * llama_new_context_with_model(
  10545. struct llama_model * model,
  10546. struct llama_context_params params) {
  10547. if (!model) {
  10548. return nullptr;
  10549. }
  10550. llama_context * ctx = new llama_context(*model);
  10551. const auto & hparams = model->hparams;
  10552. auto & cparams = ctx->cparams;
  10553. cparams.n_batch = params.n_batch;
  10554. // TODO: maybe add n_seq_max here too
  10555. cparams.n_threads = params.n_threads;
  10556. cparams.n_threads_batch = params.n_threads_batch;
  10557. cparams.yarn_ext_factor = params.yarn_ext_factor;
  10558. cparams.yarn_attn_factor = params.yarn_attn_factor;
  10559. cparams.yarn_beta_fast = params.yarn_beta_fast;
  10560. cparams.yarn_beta_slow = params.yarn_beta_slow;
  10561. cparams.defrag_thold = params.defrag_thold;
  10562. cparams.embeddings = params.embeddings;
  10563. cparams.offload_kqv = params.offload_kqv;
  10564. cparams.pooling_type = params.pooling_type;
  10565. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  10566. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  10567. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  10568. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  10569. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  10570. hparams.n_ctx_train;
  10571. cparams.cb_eval = params.cb_eval;
  10572. cparams.cb_eval_user_data = params.cb_eval_user_data;
  10573. auto rope_scaling_type = params.rope_scaling_type;
  10574. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  10575. rope_scaling_type = hparams.rope_scaling_type_train;
  10576. }
  10577. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  10578. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  10579. }
  10580. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  10581. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  10582. }
  10583. cparams.causal_attn = hparams.causal_attn;
  10584. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  10585. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  10586. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  10587. } else {
  10588. cparams.pooling_type = hparams.pooling_type;
  10589. }
  10590. }
  10591. if (params.seed == LLAMA_DEFAULT_SEED) {
  10592. params.seed = time(NULL);
  10593. }
  10594. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  10595. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  10596. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  10597. ctx->abort_callback = params.abort_callback;
  10598. ctx->abort_callback_data = params.abort_callback_data;
  10599. ctx->rng = std::mt19937(params.seed);
  10600. ctx->logits_all = params.logits_all;
  10601. uint32_t kv_size = cparams.n_ctx;
  10602. ggml_type type_k = params.type_k;
  10603. ggml_type type_v = params.type_v;
  10604. // Mamba only needs a constant number of KV cache cells per sequence
  10605. if (model->arch == LLM_ARCH_MAMBA) {
  10606. // Mamba needs at least as many KV cells as there are sequences kept at any time
  10607. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  10608. // it's probably best to keep as much precision as possible for the states
  10609. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  10610. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  10611. }
  10612. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  10613. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  10614. if (!hparams.vocab_only) {
  10615. // initialize backends
  10616. #ifdef GGML_USE_METAL
  10617. if (model->n_gpu_layers > 0) {
  10618. ctx->backend_metal = ggml_backend_metal_init();
  10619. if (ctx->backend_metal == nullptr) {
  10620. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  10621. llama_free(ctx);
  10622. return nullptr;
  10623. }
  10624. ctx->backends.push_back(ctx->backend_metal);
  10625. }
  10626. #elif defined(GGML_USE_CUBLAS)
  10627. if (model->n_gpu_layers > 0) {
  10628. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  10629. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  10630. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  10631. if (backend == nullptr) {
  10632. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  10633. llama_free(ctx);
  10634. return nullptr;
  10635. }
  10636. ctx->backends.push_back(backend);
  10637. } else {
  10638. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  10639. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  10640. ggml_backend_t backend = ggml_backend_cuda_init(device);
  10641. if (backend == nullptr) {
  10642. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  10643. llama_free(ctx);
  10644. return nullptr;
  10645. }
  10646. ctx->backends.push_back(backend);
  10647. }
  10648. }
  10649. }
  10650. #elif defined(GGML_USE_VULKAN)
  10651. if (model->n_gpu_layers > 0) {
  10652. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  10653. ggml_backend_t backend = ggml_backend_vk_init(device);
  10654. if (backend == nullptr) {
  10655. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  10656. llama_free(ctx);
  10657. return nullptr;
  10658. }
  10659. ctx->backends.push_back(backend);
  10660. }
  10661. }
  10662. #elif defined(GGML_USE_SYCL)
  10663. if (model->n_gpu_layers > 0) {
  10664. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  10665. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  10666. int main_gpu_index = ggml_backend_sycl_get_device_index(model->main_gpu);
  10667. ggml_backend_t backend = ggml_backend_sycl_init(main_gpu_index);
  10668. if (backend == nullptr) {
  10669. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, model->main_gpu, main_gpu_index);
  10670. llama_free(ctx);
  10671. return nullptr;
  10672. }
  10673. ctx->backends.push_back(backend);
  10674. } else {
  10675. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  10676. int id_list[GGML_SYCL_MAX_DEVICES];
  10677. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  10678. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  10679. int device_id = id_list[i];
  10680. ggml_backend_t backend = ggml_backend_sycl_init(i);
  10681. if (backend == nullptr) {
  10682. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d)backend\n", __func__, device_id, i);
  10683. llama_free(ctx);
  10684. return nullptr;
  10685. }
  10686. ctx->backends.push_back(backend);
  10687. }
  10688. }
  10689. }
  10690. #elif defined(GGML_USE_KOMPUTE)
  10691. if (model->n_gpu_layers > 0) {
  10692. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  10693. if (backend == nullptr) {
  10694. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  10695. llama_free(ctx);
  10696. return nullptr;
  10697. }
  10698. ctx->backends.push_back(backend);
  10699. }
  10700. #endif
  10701. ctx->backend_cpu = ggml_backend_cpu_init();
  10702. if (ctx->backend_cpu == nullptr) {
  10703. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  10704. llama_free(ctx);
  10705. return nullptr;
  10706. }
  10707. ctx->backends.push_back(ctx->backend_cpu);
  10708. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  10709. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  10710. llama_free(ctx);
  10711. return nullptr;
  10712. }
  10713. {
  10714. size_t memory_size_k = 0;
  10715. size_t memory_size_v = 0;
  10716. for (auto & k : ctx->kv_self.k_l) {
  10717. memory_size_k += ggml_nbytes(k);
  10718. }
  10719. for (auto & v : ctx->kv_self.v_l) {
  10720. memory_size_v += ggml_nbytes(v);
  10721. }
  10722. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  10723. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  10724. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  10725. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  10726. }
  10727. // resized during inference, reserve maximum
  10728. ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
  10729. if (params.embeddings) {
  10730. ctx->embd.reserve(hparams.n_embd*cparams.n_batch);
  10731. }
  10732. // graph inputs
  10733. {
  10734. ggml_init_params init_params = {
  10735. /* .mem_size */ ggml_tensor_overhead()*(8 + 3*(ctx->kv_self.recurrent)),
  10736. /* .mem_buffer */ nullptr,
  10737. /* .no_alloc */ true,
  10738. };
  10739. ctx->ctx_input = ggml_init(init_params);
  10740. ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
  10741. ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch);
  10742. ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
  10743. ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, kv_size, cparams.n_batch);
  10744. ctx->inp_KQ_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, kv_size);
  10745. ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, kv_size);
  10746. ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
  10747. ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
  10748. if (ctx->kv_self.recurrent) {
  10749. ctx->inp_s_copy = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, kv_size);
  10750. ctx->inp_s_mask = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, kv_size);
  10751. ctx->inp_s_seq = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_I32, kv_size, cparams.n_batch);
  10752. }
  10753. ggml_set_name(ctx->inp_tokens, "inp_tokens");
  10754. ggml_set_name(ctx->inp_embd, "inp_embd");
  10755. ggml_set_name(ctx->inp_pos, "inp_pos");
  10756. ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask");
  10757. ggml_set_name(ctx->inp_KQ_pos, "inp_KQ_pos");
  10758. ggml_set_name(ctx->inp_K_shift, "inp_K_shift");
  10759. ggml_set_name(ctx->inp_mean, "inp_mean");
  10760. ggml_set_name(ctx->inp_cls, "inp_cls");
  10761. if (ctx->kv_self.recurrent) {
  10762. ggml_set_name(ctx->inp_s_copy, "inp_s_copy");
  10763. ggml_set_name(ctx->inp_s_mask, "inp_s_mask");
  10764. ggml_set_name(ctx->inp_s_seq, "inp_s_seq");
  10765. }
  10766. ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true));
  10767. LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__,
  10768. ggml_backend_buffer_name(ctx->buf_input),
  10769. ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0);
  10770. }
  10771. // scheduler and compute buffers
  10772. {
  10773. // buffer types used for the compute buffer of each backend
  10774. std::vector<ggml_backend_buffer_type_t> backend_buft;
  10775. for (auto * backend : ctx->backends) {
  10776. if (ggml_backend_is_cpu(backend)) {
  10777. // use host buffers for the CPU backend compute buffer
  10778. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  10779. } else {
  10780. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  10781. }
  10782. }
  10783. // buffer used to store the computation graph and the tensor meta data
  10784. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  10785. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES);
  10786. // build worst-case graph
  10787. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  10788. int n_past = cparams.n_ctx - n_tokens;
  10789. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10790. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10791. // initialize scheduler with the worst-case graph
  10792. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  10793. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10794. llama_free(ctx);
  10795. return nullptr;
  10796. }
  10797. for (size_t i = 0; i < ctx->backends.size(); i++) {
  10798. ggml_backend_t backend = ctx->backends[i];
  10799. ggml_backend_buffer_type_t buft = backend_buft[i];
  10800. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  10801. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  10802. ggml_backend_buft_name(buft),
  10803. size / 1024.0 / 1024.0);
  10804. }
  10805. // note: the number of splits during measure is higher than during inference due to the kv shift
  10806. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  10807. LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits);
  10808. }
  10809. }
  10810. #ifdef GGML_USE_MPI
  10811. ctx->ctx_mpi = ggml_mpi_init();
  10812. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  10813. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  10814. // TODO: needs fix after #3228
  10815. GGML_ASSERT(false && "not implemented");
  10816. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  10817. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  10818. llama_backend_free();
  10819. exit(1);
  10820. }
  10821. #endif
  10822. return ctx;
  10823. }
  10824. void llama_free(struct llama_context * ctx) {
  10825. delete ctx;
  10826. }
  10827. const llama_model * llama_get_model(const struct llama_context * ctx) {
  10828. return &ctx->model;
  10829. }
  10830. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  10831. return ctx->cparams.n_ctx;
  10832. }
  10833. uint32_t llama_n_batch(const struct llama_context * ctx) {
  10834. return ctx->cparams.n_batch;
  10835. }
  10836. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  10837. return ctx->kv_self.size;
  10838. }
  10839. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  10840. return model->vocab.type;
  10841. }
  10842. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  10843. switch (model->arch) {
  10844. // these models do not use RoPE
  10845. case LLM_ARCH_GPT2:
  10846. case LLM_ARCH_GPTJ:
  10847. case LLM_ARCH_GPTNEOX:
  10848. case LLM_ARCH_MPT:
  10849. case LLM_ARCH_REFACT:
  10850. case LLM_ARCH_BLOOM:
  10851. case LLM_ARCH_MAMBA:
  10852. return LLAMA_ROPE_TYPE_NONE;
  10853. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10854. case LLM_ARCH_LLAMA:
  10855. case LLM_ARCH_BAICHUAN:
  10856. case LLM_ARCH_STARCODER:
  10857. case LLM_ARCH_PLAMO:
  10858. case LLM_ARCH_CODESHELL:
  10859. case LLM_ARCH_ORION:
  10860. case LLM_ARCH_INTERNLM2:
  10861. case LLM_ARCH_MINICPM:
  10862. return LLAMA_ROPE_TYPE_NORM;
  10863. // the pairs of head values are offset by n_rot/2
  10864. case LLM_ARCH_FALCON:
  10865. case LLM_ARCH_PERSIMMON:
  10866. case LLM_ARCH_BERT:
  10867. case LLM_ARCH_NOMIC_BERT:
  10868. case LLM_ARCH_STABLELM:
  10869. case LLM_ARCH_QWEN:
  10870. case LLM_ARCH_QWEN2:
  10871. case LLM_ARCH_PHI2:
  10872. case LLM_ARCH_GEMMA:
  10873. case LLM_ARCH_STARCODER2:
  10874. return LLAMA_ROPE_TYPE_NEOX;
  10875. // all model arches should be listed explicitly here
  10876. case LLM_ARCH_UNKNOWN:
  10877. GGML_ASSERT(false && "unknown architecture");
  10878. break;
  10879. }
  10880. return LLAMA_ROPE_TYPE_NONE;
  10881. }
  10882. int32_t llama_n_vocab(const struct llama_model * model) {
  10883. return model->vocab.id_to_token.size();
  10884. }
  10885. int32_t llama_n_ctx_train(const struct llama_model * model) {
  10886. return model->hparams.n_ctx_train;
  10887. }
  10888. int32_t llama_n_embd(const struct llama_model * model) {
  10889. return model->hparams.n_embd;
  10890. }
  10891. float llama_rope_freq_scale_train(const struct llama_model * model) {
  10892. return model->hparams.rope_freq_scale_train;
  10893. }
  10894. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  10895. const auto & it = model->gguf_kv.find(key);
  10896. if (it == model->gguf_kv.end()) {
  10897. if (buf_size > 0) {
  10898. buf[0] = '\0';
  10899. }
  10900. return -1;
  10901. }
  10902. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10903. }
  10904. int32_t llama_model_meta_count(const struct llama_model * model) {
  10905. return (int)model->gguf_kv.size();
  10906. }
  10907. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  10908. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10909. if (buf_size > 0) {
  10910. buf[0] = '\0';
  10911. }
  10912. return -1;
  10913. }
  10914. auto it = model->gguf_kv.begin();
  10915. std::advance(it, i);
  10916. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10917. }
  10918. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10919. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10920. if (buf_size > 0) {
  10921. buf[0] = '\0';
  10922. }
  10923. return -1;
  10924. }
  10925. auto it = model->gguf_kv.begin();
  10926. std::advance(it, i);
  10927. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10928. }
  10929. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  10930. return snprintf(buf, buf_size, "%s %s %s",
  10931. llama_model_arch_name(model->arch),
  10932. llama_model_type_name(model->type),
  10933. llama_model_ftype_name(model->ftype).c_str());
  10934. }
  10935. uint64_t llama_model_size(const struct llama_model * model) {
  10936. uint64_t size = 0;
  10937. for (const auto & it : model->tensors_by_name) {
  10938. size += ggml_nbytes(it.second);
  10939. }
  10940. return size;
  10941. }
  10942. uint64_t llama_model_n_params(const struct llama_model * model) {
  10943. uint64_t nparams = 0;
  10944. for (const auto & it : model->tensors_by_name) {
  10945. nparams += ggml_nelements(it.second);
  10946. }
  10947. return nparams;
  10948. }
  10949. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  10950. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  10951. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  10952. return it.first == name;
  10953. });
  10954. if (it == model->tensors_by_name.end()) {
  10955. return nullptr;
  10956. }
  10957. return it->second;
  10958. }
  10959. uint32_t llama_model_quantize(
  10960. const char * fname_inp,
  10961. const char * fname_out,
  10962. const llama_model_quantize_params * params) {
  10963. try {
  10964. llama_model_quantize_internal(fname_inp, fname_out, params);
  10965. return 0;
  10966. } catch (const std::exception & err) {
  10967. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  10968. return 1;
  10969. }
  10970. }
  10971. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  10972. try {
  10973. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  10974. } catch (const std::exception & err) {
  10975. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  10976. return 1;
  10977. }
  10978. }
  10979. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  10980. struct llama_kv_cache_view result = {
  10981. /*.n_cells = */ 0,
  10982. /*.n_seq_max = */ n_seq_max,
  10983. /*.token_count = */ 0,
  10984. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  10985. /*.max_contiguous = */ 0,
  10986. /*.max_contiguous_idx = */ -1,
  10987. /*.cells = */ nullptr,
  10988. /*.cells_sequences = */ nullptr,
  10989. };
  10990. return result;
  10991. }
  10992. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  10993. if (view->cells != nullptr) {
  10994. free(view->cells);
  10995. view->cells = nullptr;
  10996. }
  10997. if (view->cells_sequences != nullptr) {
  10998. free(view->cells_sequences);
  10999. view->cells_sequences = nullptr;
  11000. }
  11001. }
  11002. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  11003. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  11004. view->n_cells = int32_t(ctx->kv_self.size);
  11005. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  11006. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  11007. view->cells = (struct llama_kv_cache_view_cell *)p;
  11008. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  11009. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  11010. view->cells_sequences = (llama_seq_id *)p;
  11011. }
  11012. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  11013. llama_kv_cache_view_cell * c_curr = view->cells;
  11014. llama_seq_id * cs_curr = view->cells_sequences;
  11015. int32_t used_cells = 0;
  11016. int32_t token_count = 0;
  11017. int32_t curr_contig_idx = -1;
  11018. uint32_t max_contig = 0;
  11019. int32_t max_contig_idx = -1;
  11020. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  11021. const size_t curr_size = kv_cells[i].seq_id.size();
  11022. token_count += curr_size;
  11023. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  11024. if (curr_size > 0) {
  11025. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  11026. max_contig = i - curr_contig_idx;
  11027. max_contig_idx = curr_contig_idx;
  11028. }
  11029. curr_contig_idx = -1;
  11030. } else if (curr_contig_idx < 0) {
  11031. curr_contig_idx = i;
  11032. }
  11033. int seq_idx = 0;
  11034. for (const llama_seq_id it : kv_cells[i].seq_id) {
  11035. if (seq_idx >= view->n_seq_max) {
  11036. break;
  11037. }
  11038. cs_curr[seq_idx] = it;
  11039. seq_idx++;
  11040. }
  11041. if (seq_idx != 0) {
  11042. used_cells++;
  11043. }
  11044. for (; seq_idx < view->n_seq_max; seq_idx++) {
  11045. cs_curr[seq_idx] = -1;
  11046. }
  11047. }
  11048. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  11049. max_contig_idx = curr_contig_idx;
  11050. max_contig = kv_cells.size() - curr_contig_idx;
  11051. }
  11052. view->max_contiguous = max_contig;
  11053. view->max_contiguous_idx = max_contig_idx;
  11054. view->token_count = token_count;
  11055. view->used_cells = used_cells;
  11056. if (uint32_t(used_cells) != ctx->kv_self.used) {
  11057. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  11058. __func__, ctx->kv_self.used, used_cells);
  11059. }
  11060. }
  11061. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  11062. int result = 0;
  11063. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  11064. result += ctx->kv_self.cells[i].seq_id.size();
  11065. }
  11066. return result;
  11067. }
  11068. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  11069. return ctx->kv_self.used;
  11070. }
  11071. void llama_kv_cache_clear(struct llama_context * ctx) {
  11072. llama_kv_cache_clear(ctx->kv_self);
  11073. }
  11074. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  11075. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  11076. }
  11077. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  11078. if (seq_id_src == seq_id_dst) {
  11079. return;
  11080. }
  11081. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  11082. }
  11083. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  11084. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  11085. }
  11086. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  11087. if (delta == 0) {
  11088. return;
  11089. }
  11090. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  11091. }
  11092. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  11093. if (d == 1) {
  11094. return;
  11095. }
  11096. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  11097. }
  11098. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  11099. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  11100. }
  11101. void llama_kv_cache_defrag(struct llama_context * ctx) {
  11102. llama_kv_cache_defrag(ctx->kv_self);
  11103. }
  11104. void llama_kv_cache_update(struct llama_context * ctx) {
  11105. llama_kv_cache_update_internal(*ctx);
  11106. }
  11107. // Returns the *maximum* size of the state
  11108. size_t llama_get_state_size(const struct llama_context * ctx) {
  11109. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  11110. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  11111. const size_t s_rng_size = sizeof(size_t);
  11112. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  11113. const size_t s_logits_size = sizeof(size_t);
  11114. // assume worst case for logits although only currently set ones are serialized
  11115. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  11116. const size_t s_embedding_size = sizeof(size_t);
  11117. const size_t s_embedding = ctx->embd.capacity() * sizeof(float);
  11118. const size_t s_kv_buf_size = sizeof(size_t);
  11119. const size_t s_kv_head = sizeof(uint32_t);
  11120. const size_t s_kv_size = sizeof(uint32_t);
  11121. const size_t s_kv_used = sizeof(uint32_t);
  11122. const size_t s_kv = ctx->kv_self.total_size();
  11123. // TODO: assume the max is more than 1 seq_id per KV cell
  11124. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + sizeof(llama_seq_id);
  11125. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  11126. const size_t s_total = (
  11127. + s_rng_size
  11128. + s_rng
  11129. + s_logits_size
  11130. + s_logits
  11131. + s_embedding_size
  11132. + s_embedding
  11133. + s_kv_buf_size
  11134. + s_kv_head
  11135. + s_kv_size
  11136. + s_kv_used
  11137. + s_kv
  11138. + s_kv_cells
  11139. );
  11140. return s_total;
  11141. }
  11142. // llama_context_data
  11143. struct llama_data_context {
  11144. virtual void write(const void * src, size_t size) = 0;
  11145. virtual size_t get_size_written() = 0;
  11146. virtual ~llama_data_context() = default;
  11147. };
  11148. struct llama_data_buffer_context : llama_data_context {
  11149. uint8_t * ptr;
  11150. size_t size_written = 0;
  11151. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  11152. void write(const void * src, size_t size) override {
  11153. memcpy(ptr, src, size);
  11154. ptr += size;
  11155. size_written += size;
  11156. }
  11157. size_t get_size_written() override {
  11158. return size_written;
  11159. }
  11160. };
  11161. struct llama_data_file_context : llama_data_context {
  11162. llama_file * file;
  11163. size_t size_written = 0;
  11164. llama_data_file_context(llama_file * f) : file(f) {}
  11165. void write(const void * src, size_t size) override {
  11166. file->write_raw(src, size);
  11167. size_written += size;
  11168. }
  11169. size_t get_size_written() override {
  11170. return size_written;
  11171. }
  11172. };
  11173. /** copy state data into either a buffer or file depending on the passed in context
  11174. *
  11175. * file context:
  11176. * llama_file file("/path", "wb");
  11177. * llama_data_file_context data_ctx(&file);
  11178. * llama_copy_state_data(ctx, &data_ctx);
  11179. *
  11180. * buffer context:
  11181. * std::vector<uint8_t> buf(max_size, 0);
  11182. * llama_data_buffer_context data_ctx(&buf.data());
  11183. * llama_copy_state_data(ctx, &data_ctx);
  11184. *
  11185. */
  11186. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  11187. // copy rng
  11188. {
  11189. std::ostringstream rng_ss;
  11190. rng_ss << ctx->rng;
  11191. const std::string & rng_str = rng_ss.str();
  11192. const size_t rng_size = rng_str.size();
  11193. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  11194. data_ctx->write(&rng_size, sizeof(rng_size));
  11195. data_ctx->write(rng_str.data(), rng_size);
  11196. }
  11197. // copy logits
  11198. {
  11199. const size_t logits_size = ctx->logits.size();
  11200. data_ctx->write(&logits_size, sizeof(logits_size));
  11201. if (logits_size) {
  11202. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  11203. }
  11204. }
  11205. // copy embeddings
  11206. {
  11207. const size_t embeddings_size = ctx->embd.size();
  11208. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  11209. if (embeddings_size) {
  11210. data_ctx->write(ctx->embd.data(), embeddings_size * sizeof(float));
  11211. }
  11212. }
  11213. // copy kv cache
  11214. {
  11215. const auto & kv_self = ctx->kv_self;
  11216. const auto & hparams = ctx->model.hparams;
  11217. const uint32_t n_layer = hparams.n_layer;
  11218. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  11219. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  11220. const size_t kv_buf_size = kv_self.total_size();
  11221. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  11222. const uint32_t kv_size = kv_self.size;
  11223. const uint32_t kv_used = kv_self.used;
  11224. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  11225. data_ctx->write(&kv_head, sizeof(kv_head));
  11226. data_ctx->write(&kv_size, sizeof(kv_size));
  11227. data_ctx->write(&kv_used, sizeof(kv_used));
  11228. if (kv_buf_size) {
  11229. std::vector<uint8_t> tmp_buf;
  11230. for (int il = 0; il < (int) n_layer; ++il) {
  11231. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  11232. tmp_buf.resize(k_size);
  11233. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  11234. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  11235. if (kv_self.recurrent) {
  11236. // v is contiguous for recurrent models
  11237. // TODO: use other tensors for state models than k and v
  11238. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  11239. tmp_buf.resize(v_size);
  11240. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  11241. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  11242. continue;
  11243. }
  11244. // v is not contiguous, copy row by row
  11245. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  11246. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  11247. tmp_buf.resize(v_row_size);
  11248. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  11249. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  11250. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  11251. }
  11252. }
  11253. }
  11254. for (uint32_t i = 0; i < kv_head; ++i) {
  11255. const auto & cell = kv_self.cells[i];
  11256. const llama_pos pos = cell.pos;
  11257. const size_t seq_id_size = cell.seq_id.size();
  11258. data_ctx->write(&pos, sizeof(pos));
  11259. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  11260. for (auto seq_id : cell.seq_id) {
  11261. data_ctx->write(&seq_id, sizeof(seq_id));
  11262. }
  11263. }
  11264. }
  11265. }
  11266. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  11267. llama_data_buffer_context data_ctx(dst);
  11268. llama_copy_state_data_internal(ctx, &data_ctx);
  11269. return data_ctx.get_size_written();
  11270. }
  11271. // Sets the state reading from the specified source address
  11272. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  11273. const uint8_t * inp = src;
  11274. // set rng
  11275. {
  11276. size_t rng_size;
  11277. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  11278. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  11279. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  11280. std::istringstream rng_ss(rng_str);
  11281. rng_ss >> ctx->rng;
  11282. GGML_ASSERT(!rng_ss.fail());
  11283. }
  11284. // set logits
  11285. {
  11286. size_t logits_size;
  11287. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  11288. GGML_ASSERT(ctx->logits.capacity() >= logits_size);
  11289. if (logits_size) {
  11290. ctx->logits.resize(logits_size);
  11291. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  11292. inp += logits_size * sizeof(float);
  11293. }
  11294. }
  11295. // set embeddings
  11296. {
  11297. size_t embeddings_size;
  11298. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  11299. GGML_ASSERT(ctx->embd.capacity() == embeddings_size);
  11300. if (embeddings_size) {
  11301. ctx->embd.resize(embeddings_size);
  11302. memcpy(ctx->embd.data(), inp, embeddings_size * sizeof(float));
  11303. inp += embeddings_size * sizeof(float);
  11304. }
  11305. }
  11306. // set kv cache
  11307. {
  11308. const auto & kv_self = ctx->kv_self;
  11309. const auto & hparams = ctx->model.hparams;
  11310. const uint32_t n_layer = hparams.n_layer;
  11311. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  11312. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  11313. size_t kv_buf_size;
  11314. uint32_t kv_head;
  11315. uint32_t kv_size;
  11316. uint32_t kv_used;
  11317. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  11318. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  11319. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  11320. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  11321. if (kv_buf_size) {
  11322. GGML_ASSERT(kv_self.total_size() == kv_buf_size);
  11323. for (int il = 0; il < (int) n_layer; ++il) {
  11324. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  11325. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  11326. inp += k_size;
  11327. if (kv_self.recurrent) {
  11328. // v is contiguous for recurrent models
  11329. // TODO: use other tensors for state models than k and v
  11330. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  11331. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  11332. inp += v_size;
  11333. continue;
  11334. }
  11335. // v is not contiguous, copy row by row
  11336. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  11337. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  11338. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  11339. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  11340. inp += v_row_size;
  11341. }
  11342. }
  11343. }
  11344. GGML_ASSERT(kv_self.size == kv_size);
  11345. ctx->kv_self.head = kv_head;
  11346. ctx->kv_self.size = kv_size;
  11347. ctx->kv_self.used = kv_used;
  11348. ctx->kv_self.cells.resize(kv_size);
  11349. for (uint32_t i = 0; i < kv_head; ++i) {
  11350. llama_pos pos;
  11351. size_t seq_id_size;
  11352. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  11353. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  11354. ctx->kv_self.cells[i].pos = pos;
  11355. llama_seq_id seq_id;
  11356. for (size_t j = 0; j < seq_id_size; ++j) {
  11357. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  11358. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  11359. }
  11360. }
  11361. for (uint32_t i = kv_head; i < kv_size; ++i) {
  11362. ctx->kv_self.cells[i].pos = -1;
  11363. ctx->kv_self.cells[i].seq_id.clear();
  11364. }
  11365. }
  11366. const size_t nread = inp - src;
  11367. const size_t max_size = llama_get_state_size(ctx);
  11368. GGML_ASSERT(nread <= max_size);
  11369. return nread;
  11370. }
  11371. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  11372. llama_file file(path_session, "rb");
  11373. // sanity checks
  11374. {
  11375. const uint32_t magic = file.read_u32();
  11376. const uint32_t version = file.read_u32();
  11377. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  11378. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  11379. return false;
  11380. }
  11381. llama_hparams session_hparams;
  11382. file.read_raw(&session_hparams, sizeof(llama_hparams));
  11383. if (session_hparams != ctx->model.hparams) {
  11384. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  11385. return false;
  11386. }
  11387. }
  11388. // load the prompt
  11389. {
  11390. const uint32_t n_token_count = file.read_u32();
  11391. if (n_token_count > n_token_capacity) {
  11392. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  11393. return false;
  11394. }
  11395. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  11396. *n_token_count_out = n_token_count;
  11397. }
  11398. // restore the context state
  11399. {
  11400. const size_t n_state_size_cur = file.size - file.tell();
  11401. const size_t n_state_size_max = llama_get_state_size(ctx);
  11402. if (n_state_size_cur > n_state_size_max) {
  11403. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  11404. return false;
  11405. }
  11406. std::vector<uint8_t> state_data(n_state_size_max);
  11407. file.read_raw(state_data.data(), n_state_size_cur);
  11408. llama_set_state_data(ctx, state_data.data());
  11409. }
  11410. return true;
  11411. }
  11412. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  11413. try {
  11414. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  11415. } catch (const std::exception & err) {
  11416. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  11417. return false;
  11418. }
  11419. }
  11420. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  11421. llama_file file(path_session, "wb");
  11422. file.write_u32(LLAMA_SESSION_MAGIC);
  11423. file.write_u32(LLAMA_SESSION_VERSION);
  11424. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  11425. // save the prompt
  11426. file.write_u32((uint32_t) n_token_count);
  11427. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  11428. // save the context state using stream saving
  11429. llama_data_file_context data_ctx(&file);
  11430. llama_copy_state_data_internal(ctx, &data_ctx);
  11431. return true;
  11432. }
  11433. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  11434. ctx->cparams.n_threads = n_threads;
  11435. ctx->cparams.n_threads_batch = n_threads_batch;
  11436. }
  11437. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  11438. ctx->abort_callback = abort_callback;
  11439. ctx->abort_callback_data = abort_callback_data;
  11440. }
  11441. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  11442. ctx->cparams.causal_attn = causal_attn;
  11443. }
  11444. struct llama_batch llama_batch_get_one(
  11445. llama_token * tokens,
  11446. int32_t n_tokens,
  11447. llama_pos pos_0,
  11448. llama_seq_id seq_id) {
  11449. return {
  11450. /*n_tokens =*/ n_tokens,
  11451. /*tokens =*/ tokens,
  11452. /*embd =*/ nullptr,
  11453. /*pos =*/ nullptr,
  11454. /*n_seq_id =*/ nullptr,
  11455. /*seq_id =*/ nullptr,
  11456. /*logits =*/ nullptr,
  11457. /*all_pos_0 =*/ pos_0,
  11458. /*all_pos_1 =*/ 1,
  11459. /*all_seq_id =*/ seq_id,
  11460. };
  11461. }
  11462. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  11463. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  11464. if (embd) {
  11465. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  11466. } else {
  11467. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  11468. }
  11469. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  11470. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  11471. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  11472. for (int i = 0; i < n_tokens_alloc; ++i) {
  11473. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  11474. }
  11475. batch.seq_id[n_tokens_alloc] = nullptr;
  11476. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  11477. return batch;
  11478. }
  11479. void llama_batch_free(struct llama_batch batch) {
  11480. if (batch.token) free(batch.token);
  11481. if (batch.embd) free(batch.embd);
  11482. if (batch.pos) free(batch.pos);
  11483. if (batch.n_seq_id) free(batch.n_seq_id);
  11484. if (batch.seq_id) {
  11485. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  11486. free(batch.seq_id[i]);
  11487. }
  11488. free(batch.seq_id);
  11489. }
  11490. if (batch.logits) free(batch.logits);
  11491. }
  11492. int32_t llama_decode(
  11493. struct llama_context * ctx,
  11494. struct llama_batch batch) {
  11495. const int ret = llama_decode_internal(*ctx, batch);
  11496. if (ret < 0) {
  11497. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  11498. }
  11499. return ret;
  11500. }
  11501. float * llama_get_logits(struct llama_context * ctx) {
  11502. return ctx->logits.data();
  11503. }
  11504. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  11505. assert(ctx->logits_valid.at(i));
  11506. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  11507. }
  11508. float * llama_get_embeddings(struct llama_context * ctx) {
  11509. return ctx->embd.data();
  11510. }
  11511. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  11512. return ctx->embd.data() + i*ctx->model.hparams.n_embd;
  11513. }
  11514. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  11515. auto it = ctx->embd_seq.find(seq_id);
  11516. if (it == ctx->embd_seq.end()) {
  11517. return nullptr;
  11518. }
  11519. return it->second.data();
  11520. }
  11521. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  11522. return model->vocab.id_to_token[token].text.c_str();
  11523. }
  11524. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  11525. return model->vocab.id_to_token[token].score;
  11526. }
  11527. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  11528. return model->vocab.id_to_token[token].type;
  11529. }
  11530. llama_token llama_token_bos(const struct llama_model * model) {
  11531. return model->vocab.special_bos_id;
  11532. }
  11533. llama_token llama_token_eos(const struct llama_model * model) {
  11534. return model->vocab.special_eos_id;
  11535. }
  11536. llama_token llama_token_nl(const struct llama_model * model) {
  11537. return model->vocab.linefeed_id;
  11538. }
  11539. int32_t llama_add_bos_token(const struct llama_model * model) {
  11540. return model->vocab.special_add_bos;
  11541. }
  11542. int32_t llama_add_eos_token(const struct llama_model * model) {
  11543. return model->vocab.special_add_eos;
  11544. }
  11545. llama_token llama_token_prefix(const struct llama_model * model) {
  11546. return model->vocab.special_prefix_id;
  11547. }
  11548. llama_token llama_token_middle(const struct llama_model * model) {
  11549. return model->vocab.special_middle_id;
  11550. }
  11551. llama_token llama_token_suffix(const struct llama_model * model) {
  11552. return model->vocab.special_suffix_id;
  11553. }
  11554. llama_token llama_token_eot(const struct llama_model * model) {
  11555. return model->vocab.special_eot_id;
  11556. }
  11557. int32_t llama_tokenize(
  11558. const struct llama_model * model,
  11559. const char * text,
  11560. int32_t text_len,
  11561. llama_token * tokens,
  11562. int32_t n_tokens_max,
  11563. bool add_bos,
  11564. bool special) {
  11565. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  11566. if (n_tokens_max < (int) res.size()) {
  11567. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  11568. return -((int) res.size());
  11569. }
  11570. for (size_t i = 0; i < res.size(); i++) {
  11571. tokens[i] = res[i];
  11572. }
  11573. return res.size();
  11574. }
  11575. static std::string llama_decode_text(const std::string & text) {
  11576. std::string decoded_text;
  11577. auto unicode_sequences = unicode_cpts_from_utf8(text);
  11578. for (auto & unicode_sequence : unicode_sequences) {
  11579. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  11580. }
  11581. return decoded_text;
  11582. }
  11583. // does not write null-terminator to buf
  11584. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
  11585. if (0 <= token && token < llama_n_vocab(model)) {
  11586. switch (llama_vocab_get_type(model->vocab)) {
  11587. case LLAMA_VOCAB_TYPE_WPM:
  11588. case LLAMA_VOCAB_TYPE_SPM: {
  11589. // NOTE: we accept all unsupported token types,
  11590. // suppressing them like CONTROL tokens.
  11591. if (llama_is_normal_token(model->vocab, token)) {
  11592. std::string result = model->vocab.id_to_token[token].text;
  11593. llama_unescape_whitespace(result);
  11594. if (length < (int) result.length()) {
  11595. return -(int) result.length();
  11596. }
  11597. memcpy(buf, result.c_str(), result.length());
  11598. return result.length();
  11599. } else if (llama_is_user_defined_token(model->vocab, token)) {
  11600. std::string result = model->vocab.id_to_token[token].text;
  11601. if (length < (int) result.length()) {
  11602. return -(int) result.length();
  11603. }
  11604. memcpy(buf, result.c_str(), result.length());
  11605. return result.length();
  11606. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  11607. if (length < 3) {
  11608. return -3;
  11609. }
  11610. memcpy(buf, "\xe2\x96\x85", 3);
  11611. return 3;
  11612. } else if (llama_is_control_token(model->vocab, token)) {
  11613. ;
  11614. } else if (llama_is_byte_token(model->vocab, token)) {
  11615. if (length < 1) {
  11616. return -1;
  11617. }
  11618. buf[0] = llama_token_to_byte(model->vocab, token);
  11619. return 1;
  11620. }
  11621. break;
  11622. }
  11623. case LLAMA_VOCAB_TYPE_BPE: {
  11624. // NOTE: we accept all unsupported token types,
  11625. // suppressing them like CONTROL tokens.
  11626. if (llama_is_normal_token(model->vocab, token)) {
  11627. std::string result = model->vocab.id_to_token[token].text;
  11628. result = llama_decode_text(result);
  11629. if (length < (int) result.length()) {
  11630. return -(int) result.length();
  11631. }
  11632. memcpy(buf, result.c_str(), result.length());
  11633. return result.length();
  11634. } else if (llama_is_user_defined_token(model->vocab, token)) {
  11635. std::string result = model->vocab.id_to_token[token].text;
  11636. if (length < (int) result.length()) {
  11637. return -(int) result.length();
  11638. }
  11639. memcpy(buf, result.c_str(), result.length());
  11640. return result.length();
  11641. } else if (llama_is_control_token(model->vocab, token)) {
  11642. ;
  11643. }
  11644. break;
  11645. }
  11646. default:
  11647. GGML_ASSERT(false);
  11648. }
  11649. }
  11650. return 0;
  11651. }
  11652. // trim whitespace from the beginning and end of a string
  11653. static std::string trim(const std::string & str) {
  11654. size_t start = 0;
  11655. size_t end = str.size();
  11656. while (start < end && isspace(str[start])) {
  11657. start += 1;
  11658. }
  11659. while (end > start && isspace(str[end - 1])) {
  11660. end -= 1;
  11661. }
  11662. return str.substr(start, end - start);
  11663. }
  11664. // Simple version of "llama_apply_chat_template" that only works with strings
  11665. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  11666. static int32_t llama_chat_apply_template_internal(
  11667. const std::string & tmpl,
  11668. const std::vector<const llama_chat_message *> & chat,
  11669. std::string & dest, bool add_ass) {
  11670. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  11671. std::stringstream ss;
  11672. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  11673. // chatml template
  11674. for (auto message : chat) {
  11675. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  11676. }
  11677. if (add_ass) {
  11678. ss << "<|im_start|>assistant\n";
  11679. }
  11680. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  11681. // llama2 template and its variants
  11682. // [variant] support system message
  11683. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  11684. // [variant] space before + after response
  11685. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  11686. // [variant] add BOS inside history
  11687. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  11688. // [variant] trim spaces from the input message
  11689. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  11690. // construct the prompt
  11691. bool is_inside_turn = true; // skip BOS at the beginning
  11692. ss << "[INST] ";
  11693. for (auto message : chat) {
  11694. std::string content = strip_message ? trim(message->content) : message->content;
  11695. std::string role(message->role);
  11696. if (!is_inside_turn) {
  11697. is_inside_turn = true;
  11698. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  11699. }
  11700. if (role == "system") {
  11701. if (support_system_message) {
  11702. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  11703. } else {
  11704. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  11705. ss << content << "\n";
  11706. }
  11707. } else if (role == "user") {
  11708. ss << content << " [/INST]";
  11709. } else {
  11710. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  11711. is_inside_turn = false;
  11712. }
  11713. }
  11714. // llama2 templates seem to not care about "add_generation_prompt"
  11715. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  11716. // zephyr template
  11717. for (auto message : chat) {
  11718. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  11719. }
  11720. if (add_ass) {
  11721. ss << "<|assistant|>\n";
  11722. }
  11723. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  11724. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  11725. for (auto message : chat) {
  11726. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  11727. ss << bos << message->role << "\n" << message->content << "</s>\n";
  11728. }
  11729. if (add_ass) {
  11730. ss << "<s>assistant\n";
  11731. }
  11732. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  11733. // google/gemma-7b-it
  11734. std::string system_prompt = "";
  11735. for (auto message : chat) {
  11736. std::string role(message->role);
  11737. if (role == "system") {
  11738. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  11739. system_prompt = trim(message->content);
  11740. continue;
  11741. }
  11742. // in gemma, "assistant" is "model"
  11743. role = role == "assistant" ? "model" : message->role;
  11744. ss << "<start_of_turn>" << role << "\n";
  11745. if (!system_prompt.empty() && role != "model") {
  11746. ss << system_prompt << "\n\n";
  11747. system_prompt = "";
  11748. }
  11749. ss << trim(message->content) << "<end_of_turn>\n";
  11750. }
  11751. if (add_ass) {
  11752. ss << "<start_of_turn>model\n";
  11753. }
  11754. } else {
  11755. // template not supported
  11756. return -1;
  11757. }
  11758. dest = ss.str();
  11759. return dest.size();
  11760. }
  11761. LLAMA_API int32_t llama_chat_apply_template(
  11762. const struct llama_model * model,
  11763. const char * tmpl,
  11764. const struct llama_chat_message * chat,
  11765. size_t n_msg,
  11766. bool add_ass,
  11767. char * buf,
  11768. int32_t length) {
  11769. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  11770. if (tmpl == nullptr) {
  11771. GGML_ASSERT(model != nullptr);
  11772. // load template from model
  11773. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  11774. std::string template_key = "tokenizer.chat_template";
  11775. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  11776. if (res < 0) {
  11777. // worst case: there is no information about template, we will use chatml by default
  11778. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  11779. } else {
  11780. curr_tmpl = std::string(model_template.data(), model_template.size());
  11781. }
  11782. }
  11783. // format the chat to string
  11784. std::vector<const llama_chat_message *> chat_vec;
  11785. chat_vec.resize(n_msg);
  11786. for (size_t i = 0; i < n_msg; i++) {
  11787. chat_vec[i] = &chat[i];
  11788. }
  11789. std::string formatted_chat;
  11790. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  11791. if (res < 0) {
  11792. return res;
  11793. }
  11794. if (buf && length > 0) {
  11795. strncpy(buf, formatted_chat.c_str(), length);
  11796. }
  11797. return res;
  11798. }
  11799. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  11800. struct llama_timings result = {
  11801. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  11802. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  11803. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  11804. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  11805. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  11806. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  11807. /*.n_sample =*/ std::max(1, ctx->n_sample),
  11808. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  11809. /*.n_eval =*/ std::max(1, ctx->n_eval),
  11810. };
  11811. return result;
  11812. }
  11813. void llama_print_timings(struct llama_context * ctx) {
  11814. const llama_timings timings = llama_get_timings(ctx);
  11815. LLAMA_LOG_INFO("\n");
  11816. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  11817. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  11818. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  11819. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  11820. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  11821. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  11822. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  11823. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  11824. }
  11825. void llama_reset_timings(struct llama_context * ctx) {
  11826. ctx->t_start_us = ggml_time_us();
  11827. ctx->t_sample_us = ctx->n_sample = 0;
  11828. ctx->t_eval_us = ctx->n_eval = 0;
  11829. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  11830. }
  11831. const char * llama_print_system_info(void) {
  11832. static std::string s;
  11833. s = "";
  11834. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  11835. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  11836. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  11837. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  11838. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  11839. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  11840. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  11841. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  11842. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  11843. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  11844. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  11845. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  11846. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  11847. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  11848. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  11849. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  11850. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  11851. return s.c_str();
  11852. }
  11853. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  11854. fprintf(stream, "\n");
  11855. fprintf(stream, "###########\n");
  11856. fprintf(stream, "# Timings #\n");
  11857. fprintf(stream, "###########\n");
  11858. fprintf(stream, "\n");
  11859. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  11860. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  11861. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  11862. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  11863. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  11864. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  11865. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  11866. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  11867. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  11868. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  11869. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  11870. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  11871. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  11872. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  11873. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  11874. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  11875. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  11876. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  11877. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  11878. }
  11879. // For internal test use
  11880. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  11881. struct llama_context * ctx
  11882. ) {
  11883. return ctx->model.tensors_by_name;
  11884. }
  11885. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  11886. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  11887. g_state.log_callback_user_data = user_data;
  11888. #ifdef GGML_USE_METAL
  11889. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  11890. #endif
  11891. }
  11892. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  11893. va_list args_copy;
  11894. va_copy(args_copy, args);
  11895. char buffer[128];
  11896. int len = vsnprintf(buffer, 128, format, args);
  11897. if (len < 128) {
  11898. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  11899. } else {
  11900. char* buffer2 = new char[len+1];
  11901. vsnprintf(buffer2, len+1, format, args_copy);
  11902. buffer2[len] = 0;
  11903. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  11904. delete[] buffer2;
  11905. }
  11906. va_end(args_copy);
  11907. }
  11908. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  11909. va_list args;
  11910. va_start(args, format);
  11911. llama_log_internal_v(level, format, args);
  11912. va_end(args);
  11913. }
  11914. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  11915. (void) level;
  11916. (void) user_data;
  11917. fputs(text, stderr);
  11918. fflush(stderr);
  11919. }