ggml.c 351 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #ifdef GGML_USE_ACCELERATE
  122. #include <Accelerate/Accelerate.h>
  123. #elif GGML_USE_OPENBLAS
  124. #include <cblas.h>
  125. #endif
  126. #undef MIN
  127. #undef MAX
  128. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  129. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  130. // floating point type used to accumulate sums
  131. typedef double ggml_float;
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #ifdef __ARM_NEON
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  143. #define GGML_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_FP32_TO_FP16(x) (x)
  145. #else
  146. #ifdef __wasm_simd128__
  147. #include <wasm_simd128.h>
  148. #else
  149. #ifdef __POWER9_VECTOR__
  150. #include <altivec.h>
  151. #undef bool
  152. #define bool _Bool
  153. #else
  154. #include <immintrin.h>
  155. #endif
  156. #endif
  157. #ifdef __F16C__
  158. #ifdef _MSC_VER
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  161. #else
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  164. #endif
  165. #elif defined(__POWER9_VECTOR__)
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  168. /* the inline asm below is about 12% faster than the lookup method */
  169. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  170. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  171. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  172. register float f;
  173. register double d;
  174. __asm__(
  175. "mtfprd %0,%2\n"
  176. "xscvhpdp %0,%0\n"
  177. "frsp %1,%0\n" :
  178. /* temp */ "=d"(d),
  179. /* out */ "=f"(f):
  180. /* in */ "r"(h));
  181. return f;
  182. }
  183. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  184. register double d;
  185. register ggml_fp16_t r;
  186. __asm__( /* xscvdphp can work on double or single precision */
  187. "xscvdphp %0,%2\n"
  188. "mffprd %1,%0\n" :
  189. /* temp */ "=d"(d),
  190. /* out */ "=r"(r):
  191. /* in */ "f"(f));
  192. return r;
  193. }
  194. #else
  195. // FP16 <-> FP32
  196. // ref: https://github.com/Maratyszcza/FP16
  197. static inline float fp32_from_bits(uint32_t w) {
  198. union {
  199. uint32_t as_bits;
  200. float as_value;
  201. } fp32;
  202. fp32.as_bits = w;
  203. return fp32.as_value;
  204. }
  205. static inline uint32_t fp32_to_bits(float f) {
  206. union {
  207. float as_value;
  208. uint32_t as_bits;
  209. } fp32;
  210. fp32.as_value = f;
  211. return fp32.as_bits;
  212. }
  213. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  214. const uint32_t w = (uint32_t) h << 16;
  215. const uint32_t sign = w & UINT32_C(0x80000000);
  216. const uint32_t two_w = w + w;
  217. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  218. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  219. const float exp_scale = 0x1.0p-112f;
  220. #else
  221. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  222. #endif
  223. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  224. const uint32_t magic_mask = UINT32_C(126) << 23;
  225. const float magic_bias = 0.5f;
  226. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  227. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  228. const uint32_t result = sign |
  229. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  230. return fp32_from_bits(result);
  231. }
  232. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float scale_to_inf = 0x1.0p+112f;
  235. const float scale_to_zero = 0x1.0p-110f;
  236. #else
  237. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  238. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  239. #endif
  240. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  241. const uint32_t w = fp32_to_bits(f);
  242. const uint32_t shl1_w = w + w;
  243. const uint32_t sign = w & UINT32_C(0x80000000);
  244. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  245. if (bias < UINT32_C(0x71000000)) {
  246. bias = UINT32_C(0x71000000);
  247. }
  248. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  249. const uint32_t bits = fp32_to_bits(base);
  250. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  251. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  252. const uint32_t nonsign = exp_bits + mantissa_bits;
  253. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  254. }
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  257. #endif // __F16C__
  258. #endif // __ARM_NEON
  259. //
  260. // global data
  261. //
  262. // precomputed gelu table for f16 (128 KB)
  263. static ggml_fp16_t table_gelu_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB)
  269. static float table_f32_f16[1 << 16];
  270. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  271. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  272. // This is also true for POWER9.
  273. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  274. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  275. uint16_t s;
  276. memcpy(&s, &f, sizeof(uint16_t));
  277. return table_f32_f16[s];
  278. }
  279. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  280. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  281. #endif
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return (float) GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. //
  291. // timing
  292. //
  293. #if defined(_MSC_VER) || defined(__MINGW32__)
  294. static int64_t timer_freq;
  295. void ggml_time_init(void) {
  296. LARGE_INTEGER frequency;
  297. QueryPerformanceFrequency(&frequency);
  298. timer_freq = frequency.QuadPart;
  299. }
  300. int64_t ggml_time_ms(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000) / timer_freq;
  304. }
  305. int64_t ggml_time_us(void) {
  306. LARGE_INTEGER t;
  307. QueryPerformanceCounter(&t);
  308. return (t.QuadPart * 1000000) / timer_freq;
  309. }
  310. #else
  311. void ggml_time_init(void) {}
  312. int64_t ggml_time_ms(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  316. }
  317. int64_t ggml_time_us(void) {
  318. struct timespec ts;
  319. clock_gettime(CLOCK_MONOTONIC, &ts);
  320. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  321. }
  322. #endif
  323. int64_t ggml_cycles(void) {
  324. return clock();
  325. }
  326. int64_t ggml_cycles_per_ms(void) {
  327. return CLOCKS_PER_SEC/1000;
  328. }
  329. #ifdef GGML_PERF
  330. #define ggml_perf_time_ms() ggml_time_ms()
  331. #define ggml_perf_time_us() ggml_time_us()
  332. #define ggml_perf_cycles() ggml_cycles()
  333. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  334. #else
  335. #define ggml_perf_time_ms() 0
  336. #define ggml_perf_time_us() 0
  337. #define ggml_perf_cycles() 0
  338. #define ggml_perf_cycles_per_ms() 0
  339. #endif
  340. //
  341. // cache line
  342. //
  343. #if defined(__cpp_lib_hardware_interference_size)
  344. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  345. #else
  346. #if defined(__POWER9_VECTOR__)
  347. #define CACHE_LINE_SIZE 128
  348. #else
  349. #define CACHE_LINE_SIZE 64
  350. #endif
  351. #endif
  352. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  353. //
  354. // quantization
  355. //
  356. // AVX routines provided by GH user Const-me
  357. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  358. #if __AVX2__ || __AVX512F__
  359. // Unpack 32 4-bit fields into 32 bytes
  360. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  361. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  362. {
  363. // Load 16 bytes from memory
  364. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  365. // Expand bytes into uint16_t values
  366. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  367. // Unpack values into individual bytes
  368. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  369. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  370. __m256i low = _mm256_and_si256( lowMask, bytes );
  371. high = _mm256_slli_epi16( high, 4 );
  372. bytes = _mm256_or_si256( low, high );
  373. return bytes;
  374. }
  375. static inline __m128i packNibbles( __m256i bytes )
  376. {
  377. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  378. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  379. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  380. __m256i low = _mm256_and_si256( lowByte, bytes );
  381. high = _mm256_srli_epi16( high, 4 );
  382. bytes = _mm256_or_si256( low, high );
  383. // Compress uint16_t lanes into bytes
  384. __m128i r0 = _mm256_castsi256_si128( bytes );
  385. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  386. return _mm_packus_epi16( r0, r1 );
  387. }
  388. #elif __AVX__
  389. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  390. {
  391. // Load 8 bytes from memory
  392. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  393. // Expand bytes into uint16_t values
  394. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  395. // Unpack values into individual bytes
  396. const __m128i lowMask = _mm_set1_epi8( 0xF );
  397. __m128i high = _mm_andnot_si128( lowMask, bytes );
  398. __m128i low = _mm_and_si128( lowMask, bytes );
  399. high = _mm_slli_epi16( high, 4 );
  400. bytes = _mm_or_si128( low, high );
  401. return bytes;
  402. }
  403. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  404. {
  405. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  406. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  407. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  408. __m128i low = _mm_and_si128( lowByte, bytes1 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes1 = _mm_or_si128( low, high );
  411. high = _mm_andnot_si128( lowByte, bytes2 );
  412. low = _mm_and_si128( lowByte, bytes2 );
  413. high = _mm_srli_epi16( high, 4 );
  414. bytes2 = _mm_or_si128( low, high );
  415. return _mm_packus_epi16( bytes1, bytes2);
  416. }
  417. #endif
  418. #if __ARM_NEON
  419. #if !defined(__aarch64__)
  420. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  421. return
  422. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  423. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  424. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  425. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  426. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  427. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  428. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  429. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  430. }
  431. inline static int32_t vaddvq_s16(int16x8_t v) {
  432. return
  433. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  434. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  435. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  436. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  437. }
  438. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  439. return
  440. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  441. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  442. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  443. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  444. }
  445. inline static int32_t vaddvq_s32(int32x4_t v) {
  446. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  447. }
  448. inline static float vaddvq_f32(float32x4_t v) {
  449. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  450. }
  451. float vminvq_f32(float32x4_t v) {
  452. return
  453. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  454. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  455. }
  456. float vmaxvq_f32(float32x4_t v) {
  457. return
  458. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  459. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  460. }
  461. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  462. return vget_low_s8(vcombine_s8(a, b));
  463. }
  464. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  465. return vget_high_s8(vcombine_s8(a, b));
  466. }
  467. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  468. return vget_low_u8(vcombine_u8(a, b));
  469. }
  470. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  471. return vget_high_u8(vcombine_u8(a, b));
  472. }
  473. #endif
  474. #endif
  475. #define QK4_0 32
  476. typedef struct {
  477. float d; // delta
  478. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  479. } block_q4_0;
  480. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  481. #define QK4_1 32
  482. typedef struct {
  483. float d; // delta
  484. float m; // min
  485. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  486. } block_q4_1;
  487. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  488. #define QK8_0 32
  489. typedef struct {
  490. float d; // delta
  491. int8_t qs[QK8_0]; // quants
  492. } block_q8_0;
  493. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  494. // reference implementation for deterministic creation of model files
  495. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  496. assert(k % QK4_0 == 0);
  497. const int nb = k / QK4_0;
  498. uint8_t pp[QK4_0/2];
  499. for (int i = 0; i < nb; i++) {
  500. float amax = 0.0f; // absolute max
  501. for (int l = 0; l < QK4_0; l++) {
  502. const float v = x[i*QK4_0 + l];
  503. amax = MAX(amax, fabsf(v));
  504. }
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < QK4_0; l += 2) {
  509. const float v0 = x[i*QK4_0 + l + 0]*id;
  510. const float v1 = x[i*QK4_0 + l + 1]*id;
  511. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  512. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  513. assert(vi0 < 16);
  514. assert(vi1 < 16);
  515. pp[l/2] = vi0 | (vi1 << 4);
  516. }
  517. memcpy(y[i].qs, pp, sizeof(pp));
  518. }
  519. }
  520. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  521. assert(k % QK4_0 == 0);
  522. const int nb = k / QK4_0;
  523. block_q4_0 * restrict y = vy;
  524. #if defined(__POWER9_VECTOR__)
  525. const vector float v85 = vec_splats(8.5f);
  526. for (int i = 0; i < nb; i++) {
  527. float amax = 0.0f; // absolute max
  528. vector float srcv [8];
  529. vector float asrcv[8];
  530. vector float amaxv[8];
  531. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  532. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  533. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  534. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  535. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  536. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  537. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  538. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  539. amax = MAX(
  540. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  541. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  542. const float d = amax / ((1 << 3) - 1);
  543. const float id = d ? 1.0/d : 0.0;
  544. y[i].d = d;
  545. const vector float vid = vec_splats(id);
  546. uint8_t * restrict pb = y[i].qs;
  547. for (int l = 0; l < 8; l++) {
  548. const vector float vf = vec_madd(srcv[l], vid, v85);
  549. const vector signed int vi = vec_signed(vf);
  550. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  551. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  552. }
  553. }
  554. #elif __ARM_NEON
  555. for (int i = 0; i < nb; i++) {
  556. float32x4_t srcv [8];
  557. float32x4_t asrcv[8];
  558. float32x4_t amaxv[8];
  559. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  560. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  561. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  562. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  563. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  564. const float amax = vmaxvq_f32(amaxv[0]);
  565. const float d = amax / ((1 << 3) - 1);
  566. const float id = d ? 1.0f/d : 0.0f;
  567. y[i].d = d;
  568. for (int l = 0; l < 8; l++) {
  569. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  570. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  571. const int32x4_t vi = vcvtq_s32_f32(vf);
  572. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  573. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  574. }
  575. }
  576. #elif defined(__AVX2__)
  577. for (int i = 0; i < nb; i++) {
  578. // Load elements into 4 AVX vectors
  579. __m256 v0 = _mm256_loadu_ps( x );
  580. __m256 v1 = _mm256_loadu_ps( x + 8 );
  581. __m256 v2 = _mm256_loadu_ps( x + 16 );
  582. __m256 v3 = _mm256_loadu_ps( x + 24 );
  583. x += 32;
  584. // Compute max(abs(e)) for the block
  585. const __m256 signBit = _mm256_set1_ps( -0.0f );
  586. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  587. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  588. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  589. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  590. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  591. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  592. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  593. const float maxScalar = _mm_cvtss_f32( max4 );
  594. // Quantize these floats
  595. const float d = maxScalar / 7.0f;
  596. y[i].d = d;
  597. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  598. const __m256 mul = _mm256_set1_ps( id );
  599. // Apply the multiplier
  600. v0 = _mm256_mul_ps( v0, mul );
  601. v1 = _mm256_mul_ps( v1, mul );
  602. v2 = _mm256_mul_ps( v2, mul );
  603. v3 = _mm256_mul_ps( v3, mul );
  604. // Round to nearest integer
  605. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  606. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  607. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  608. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  609. // Convert floats to integers
  610. __m256i i0 = _mm256_cvtps_epi32( v0 );
  611. __m256i i1 = _mm256_cvtps_epi32( v1 );
  612. __m256i i2 = _mm256_cvtps_epi32( v2 );
  613. __m256i i3 = _mm256_cvtps_epi32( v3 );
  614. // Convert int32 to int16
  615. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  616. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  617. // Convert int16 to int8
  618. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  619. // We got our precious signed bytes, but the order is now wrong
  620. // These AVX2 pack instructions process 16-byte pieces independently
  621. // The following instruction is fixing the order
  622. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  623. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  624. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  625. const __m256i off = _mm256_set1_epi8( 8 );
  626. i0 = _mm256_add_epi8( i0, off );
  627. // Compress the vector into 4 bit/value, and store
  628. __m128i res = packNibbles( i0 );
  629. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  630. }
  631. #elif defined(__AVX__)
  632. for (int i = 0; i < nb; i++) {
  633. // Load elements into 4 AVX vectors
  634. __m256 v0 = _mm256_loadu_ps( x );
  635. __m256 v1 = _mm256_loadu_ps( x + 8 );
  636. __m256 v2 = _mm256_loadu_ps( x + 16 );
  637. __m256 v3 = _mm256_loadu_ps( x + 24 );
  638. x += 32;
  639. // Compute max(abs(e)) for the block
  640. const __m256 signBit = _mm256_set1_ps( -0.0f );
  641. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  642. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  643. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  644. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  645. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  646. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  647. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  648. const float maxScalar = _mm_cvtss_f32( max4 );
  649. // Quantize these floats
  650. const float d = maxScalar / 7.0f;
  651. y[i].d = d;
  652. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  653. const __m256 mul = _mm256_set1_ps( id );
  654. // Apply the multiplier
  655. v0 = _mm256_mul_ps( v0, mul );
  656. v1 = _mm256_mul_ps( v1, mul );
  657. v2 = _mm256_mul_ps( v2, mul );
  658. v3 = _mm256_mul_ps( v3, mul );
  659. // Round to nearest integer
  660. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  661. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  662. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  663. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  664. // Convert floats to integers
  665. __m256i i0 = _mm256_cvtps_epi32( v0 );
  666. __m256i i1 = _mm256_cvtps_epi32( v1 );
  667. __m256i i2 = _mm256_cvtps_epi32( v2 );
  668. __m256i i3 = _mm256_cvtps_epi32( v3 );
  669. // Since we don't have in AVX some necessary functions,
  670. // we split the registers in half and call AVX2 analogs from SSE
  671. __m128i ni0 = _mm256_castsi256_si128( i0 );
  672. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  673. __m128i ni2 = _mm256_castsi256_si128( i1 );
  674. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  675. __m128i ni4 = _mm256_castsi256_si128( i2 );
  676. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  677. __m128i ni6 = _mm256_castsi256_si128( i3 );
  678. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  679. // Convert int32 to int16
  680. ni0 = _mm_packs_epi32( ni0, ni1 );
  681. ni2 = _mm_packs_epi32( ni2, ni3 );
  682. ni4 = _mm_packs_epi32( ni4, ni5 );
  683. ni6 = _mm_packs_epi32( ni6, ni7 );
  684. // Convert int16 to int8
  685. ni0 = _mm_packs_epi16( ni0, ni2 );
  686. ni4 = _mm_packs_epi16( ni4, ni6 );
  687. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  688. const __m128i off = _mm_set1_epi8( 8);
  689. ni0 = _mm_add_epi8( ni0, off );
  690. ni4 = _mm_add_epi8( ni4, off );
  691. // Compress the vector into 4 bit/value, and store
  692. __m128i res = packNibbles( ni0, ni4 );
  693. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  694. }
  695. #elif defined(__wasm_simd128__)
  696. for (int i = 0; i < nb; i++) {
  697. float amax = 0.0f; // absolute max
  698. v128_t srcv [8];
  699. v128_t asrcv[8];
  700. v128_t amaxv[8];
  701. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  702. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  703. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  704. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  705. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  706. amax = MAX(
  707. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  708. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  709. const float d = amax / ((1 << 3) - 1);
  710. const float id = d ? 1.0/d : 0.0;
  711. y[i].d = d;
  712. for (int l = 0; l < 8; l++) {
  713. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  714. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  715. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  716. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  717. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  718. }
  719. }
  720. #else
  721. // scalar
  722. quantize_row_q4_0_reference(x, y, k);
  723. #endif
  724. }
  725. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  726. assert(k % QK4_1 == 0);
  727. const int nb = k / QK4_1;
  728. block_q4_1 * restrict y = vy;
  729. uint8_t pp[QK4_1/2];
  730. for (int i = 0; i < nb; i++) {
  731. float min = FLT_MAX;
  732. float max = -FLT_MAX;
  733. for (int l = 0; l < QK4_1; l++) {
  734. const float v = x[i*QK4_1 + l];
  735. if (v < min) min = v;
  736. if (v > max) max = v;
  737. }
  738. const float d = (max - min) / ((1 << 4) - 1);
  739. const float id = d ? 1.0f/d : 0.0f;
  740. y[i].d = d;
  741. y[i].m = min;
  742. for (int l = 0; l < QK4_1; l += 2) {
  743. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  744. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  745. const uint8_t vi0 = roundf(v0);
  746. const uint8_t vi1 = roundf(v1);
  747. assert(vi0 < 16);
  748. assert(vi1 < 16);
  749. pp[l/2] = vi0 | (vi1 << 4);
  750. }
  751. memcpy(y[i].qs, pp, sizeof(pp));
  752. }
  753. }
  754. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  755. assert(k % QK4_1 == 0);
  756. const int nb = k / QK4_1;
  757. block_q4_1 * restrict y = vy;
  758. #if defined(__AVX2__)
  759. for (int i = 0; i < nb; i++) {
  760. // Load elements into 4 AVX vectors
  761. __m256 v0 = _mm256_loadu_ps( x );
  762. __m256 v1 = _mm256_loadu_ps( x + 8 );
  763. __m256 v2 = _mm256_loadu_ps( x + 16 );
  764. __m256 v3 = _mm256_loadu_ps( x + 24 );
  765. x += 32;
  766. // Compute max for the block
  767. __m256 vmax;
  768. vmax = _mm256_max_ps( v0, v1 );
  769. vmax = _mm256_max_ps( vmax, v2 );
  770. vmax = _mm256_max_ps( vmax, v3 );
  771. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  772. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  773. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  774. const float maxScalar = _mm_cvtss_f32( max4 );
  775. // Compute min for the block
  776. __m256 vmin;
  777. vmin = _mm256_min_ps( v0, v1 );
  778. vmin = _mm256_min_ps( vmin, v2 );
  779. vmin = _mm256_min_ps( vmin, v3 );
  780. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  781. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  782. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  783. const float minScalar = _mm_cvtss_f32( min4 );
  784. // Quantize these floats
  785. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].m = minScalar;
  788. y[i].d = d;
  789. // x = (x-min)*id
  790. const __m256 mul = _mm256_set1_ps( id );
  791. const __m256 off = _mm256_set1_ps( minScalar );
  792. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  793. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  794. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  795. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  796. // Round to nearest integer
  797. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  798. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  799. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  800. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  801. // Convert floats to integers
  802. __m256i i0 = _mm256_cvtps_epi32( v0 );
  803. __m256i i1 = _mm256_cvtps_epi32( v1 );
  804. __m256i i2 = _mm256_cvtps_epi32( v2 );
  805. __m256i i3 = _mm256_cvtps_epi32( v3 );
  806. // Convert int32 to int16
  807. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  808. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  809. // Convert int16 to int8
  810. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  811. // We got our precious signed bytes, but the order is now wrong
  812. // These AVX2 pack instructions process 16-byte pieces independently
  813. // The following instruction is fixing the order
  814. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  815. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  816. // Compress the vector into 4 bit/value, and store
  817. __m128i res = packNibbles( i0 );
  818. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  819. }
  820. #elif __ARM_NEON
  821. for (int i = 0; i < nb; i++) {
  822. float32x4_t srcv[8];
  823. float32x4_t minv[8];
  824. float32x4_t maxv[8];
  825. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  826. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  827. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  828. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  829. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  830. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  831. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  832. const float min = vminvq_f32(minv[0]);
  833. const float max = vmaxvq_f32(maxv[0]);
  834. const float d = (max - min) / ((1 << 4) - 1);
  835. const float id = d ? 1.0f/d : 0.0f;
  836. y[i].d = d;
  837. y[i].m = min;
  838. const float32x4_t minv0 = vdupq_n_f32(min);
  839. for (int l = 0; l < 8; l++) {
  840. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  841. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  842. const int32x4_t vi = vcvtq_s32_f32(vf);
  843. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  844. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  845. }
  846. }
  847. #else
  848. // scalar
  849. quantize_row_q4_1_reference(x, vy, k);
  850. #endif
  851. }
  852. // reference implementation for deterministic creation of model files
  853. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  854. assert(k % QK8_0 == 0);
  855. const int nb = k / QK8_0;
  856. for (int i = 0; i < nb; i++) {
  857. float amax = 0.0f; // absolute max
  858. for (int l = 0; l < QK8_0; l++) {
  859. const float v = x[i*QK8_0 + l];
  860. amax = MAX(amax, fabsf(v));
  861. }
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = d;
  865. for (int l = 0; l < QK8_0; ++l) {
  866. const float v = x[i*QK8_0 + l]*id;
  867. y[i].qs[l] = roundf(v);
  868. }
  869. }
  870. }
  871. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  872. assert(k % QK8_0 == 0);
  873. const int nb = k / QK8_0;
  874. block_q8_0 * restrict y = vy;
  875. #if defined(__ARM_NEON)
  876. for (int i = 0; i < nb; i++) {
  877. float32x4_t srcv [8];
  878. float32x4_t asrcv[8];
  879. float32x4_t amaxv[8];
  880. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  881. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  882. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  883. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  884. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  885. const float amax = vmaxvq_f32(amaxv[0]);
  886. const float d = amax / ((1 << 7) - 1);
  887. const float id = d ? 1.0f/d : 0.0f;
  888. y[i].d = d;
  889. for (int l = 0; l < 8; l++) {
  890. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  891. const int32x4_t vi = vcvtnq_s32_f32(v);
  892. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  893. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  894. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  895. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  896. }
  897. }
  898. #elif defined(__AVX2__) || defined(__AVX__)
  899. for (int i = 0; i < nb; i++) {
  900. // Load elements into 4 AVX vectors
  901. __m256 v0 = _mm256_loadu_ps( x );
  902. __m256 v1 = _mm256_loadu_ps( x + 8 );
  903. __m256 v2 = _mm256_loadu_ps( x + 16 );
  904. __m256 v3 = _mm256_loadu_ps( x + 24 );
  905. x += 32;
  906. // Compute max(abs(e)) for the block
  907. const __m256 signBit = _mm256_set1_ps( -0.0f );
  908. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  909. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  910. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  912. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  913. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  914. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  915. const float maxScalar = _mm_cvtss_f32( max4 );
  916. // Quantize these floats
  917. const float d = maxScalar / 127.f;
  918. y[i].d = d;
  919. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  920. const __m256 mul = _mm256_set1_ps( id );
  921. // Apply the multiplier
  922. v0 = _mm256_mul_ps( v0, mul );
  923. v1 = _mm256_mul_ps( v1, mul );
  924. v2 = _mm256_mul_ps( v2, mul );
  925. v3 = _mm256_mul_ps( v3, mul );
  926. // Round to nearest integer
  927. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  928. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  929. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  930. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  931. // Convert floats to integers
  932. __m256i i0 = _mm256_cvtps_epi32( v0 );
  933. __m256i i1 = _mm256_cvtps_epi32( v1 );
  934. __m256i i2 = _mm256_cvtps_epi32( v2 );
  935. __m256i i3 = _mm256_cvtps_epi32( v3 );
  936. #if defined(__AVX2__)
  937. // Convert int32 to int16
  938. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  939. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  940. // Convert int16 to int8
  941. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  942. // We got our precious signed bytes, but the order is now wrong
  943. // These AVX2 pack instructions process 16-byte pieces independently
  944. // The following instruction is fixing the order
  945. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  946. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  947. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  948. #else
  949. // Since we don't have in AVX some necessary functions,
  950. // we split the registers in half and call AVX2 analogs from SSE
  951. __m128i ni0 = _mm256_castsi256_si128( i0 );
  952. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  953. __m128i ni2 = _mm256_castsi256_si128( i1 );
  954. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  955. __m128i ni4 = _mm256_castsi256_si128( i2 );
  956. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  957. __m128i ni6 = _mm256_castsi256_si128( i3 );
  958. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  959. // Convert int32 to int16
  960. ni0 = _mm_packs_epi32( ni0, ni1 );
  961. ni2 = _mm_packs_epi32( ni2, ni3 );
  962. ni4 = _mm_packs_epi32( ni4, ni5 );
  963. ni6 = _mm_packs_epi32( ni6, ni7 );
  964. // Convert int16 to int8
  965. ni0 = _mm_packs_epi16( ni0, ni2 );
  966. ni4 = _mm_packs_epi16( ni4, ni6 );
  967. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  968. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  969. #endif
  970. }
  971. #else
  972. // scalar
  973. quantize_row_q8_0_reference(x, y, k);
  974. #endif
  975. }
  976. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  977. assert(k % QK4_0 == 0);
  978. const int nb = k / QK4_0;
  979. const block_q4_0 * restrict x = vx;
  980. #if defined(__AVX2__)
  981. for (int i = 0; i < nb; i++) {
  982. // scale factor
  983. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  984. const uint8_t * restrict pp = x[i].qs;
  985. for (int l = 0; l < QK4_0; l += 32) {
  986. // Load 32x4-bit integers into 32x8-bit integers
  987. __m256i vx8 = bytesFromNibbles(pp+l/2);
  988. // Subtract 8 from the integers
  989. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  990. // Convert to 16-bit int
  991. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  992. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  993. // Convert to 32-bit int -> float 32
  994. const __m256 vf[4] = {
  995. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  996. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  997. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  998. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  999. };
  1000. // Scale and store
  1001. for (int j = 0; j < 4; j++) {
  1002. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1003. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1004. }
  1005. }
  1006. }
  1007. #elif defined(__ARM_NEON)
  1008. for (int i = 0; i < nb; i++) {
  1009. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1010. const uint8_t * restrict pp = x[i].qs;
  1011. for (int l = 0; l < QK4_0; l += 16) {
  1012. // Load 16x4-bit integers into 8x8-bit integers
  1013. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1014. // Expand 4-bit qs to 8-bit bytes
  1015. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1016. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1017. // Convert to signed 8-bit integers
  1018. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1019. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1020. // Subtract 8 from each byte
  1021. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1022. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1023. // Interleave and combine
  1024. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1025. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1026. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1027. // convert to 2x int16x8_t
  1028. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1029. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1030. // convert to 4x float32x4_t
  1031. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1032. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1033. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1034. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1035. // Multiply by d
  1036. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1037. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1038. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1039. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1040. // Store
  1041. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1042. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1043. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1044. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1045. }
  1046. }
  1047. #else
  1048. // scalar
  1049. for (int i = 0; i < nb; i++) {
  1050. const float d = x[i].d;
  1051. const uint8_t * restrict pp = x[i].qs;
  1052. for (int l = 0; l < QK4_0; l += 2) {
  1053. const uint8_t vi = pp[l/2];
  1054. const int8_t vi0 = vi & 0xf;
  1055. const int8_t vi1 = vi >> 4;
  1056. const float v0 = (vi0 - 8)*d;
  1057. const float v1 = (vi1 - 8)*d;
  1058. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1059. y[i*QK4_0 + l + 0] = v0;
  1060. y[i*QK4_0 + l + 1] = v1;
  1061. assert(!isnan(y[i*QK4_0 + l + 0]));
  1062. assert(!isnan(y[i*QK4_0 + l + 1]));
  1063. }
  1064. }
  1065. #endif
  1066. }
  1067. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1068. assert(k % QK4_1 == 0);
  1069. const int nb = k / QK4_1;
  1070. const block_q4_1 * restrict x = vx;
  1071. #if defined(__AVX2__)
  1072. for (int i = 0; i < nb; i++) {
  1073. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1074. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1075. const uint8_t * restrict pp = x[i].qs;
  1076. for (int l = 0; l < QK4_1; l += 32) {
  1077. // Load 32x4-bit integers into 32x8-bit integers
  1078. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1079. // Convert to 16-bit int
  1080. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1081. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1082. // Convert to 32-bit int -> float 32
  1083. const __m256 vf[4] = {
  1084. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1085. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1086. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1087. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1088. };
  1089. // Scale, add m and store
  1090. for (int j = 0; j < 4; j++) {
  1091. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1092. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1093. }
  1094. }
  1095. }
  1096. #elif defined(__ARM_NEON)
  1097. for (int i = 0; i < nb; i++) {
  1098. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1099. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1100. const uint8_t * restrict pp = x[i].qs;
  1101. for (int l = 0; l < QK4_1; l += 16) {
  1102. // Load 16x4-bit integers into 8x8-bit integers
  1103. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1104. // Expand 4-bit qs to 8-bit bytes
  1105. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1106. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1107. // Interleave and combine
  1108. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1109. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1110. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1111. // convert to 2x uint16x8_t
  1112. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1113. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1114. // convert to 4x float32x4_t
  1115. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1116. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1117. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1118. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1119. // multiply by d and add m
  1120. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1121. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1122. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1123. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1124. // Store
  1125. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1126. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1127. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1128. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1129. }
  1130. }
  1131. #else
  1132. for (int i = 0; i < nb; i++) {
  1133. const float d = x[i].d;
  1134. const float m = x[i].m;
  1135. const uint8_t * restrict pp = x[i].qs;
  1136. for (int l = 0; l < QK4_1; l += 2) {
  1137. const uint8_t vi = pp[l/2];
  1138. const int8_t vi0 = vi & 0xf;
  1139. const int8_t vi1 = vi >> 4;
  1140. const float v0 = vi0*d + m;
  1141. const float v1 = vi1*d + m;
  1142. y[i*QK4_1 + l + 0] = v0;
  1143. y[i*QK4_1 + l + 1] = v1;
  1144. assert(!isnan(y[i*QK4_1 + l + 0]));
  1145. assert(!isnan(y[i*QK4_1 + l + 1]));
  1146. }
  1147. }
  1148. #endif
  1149. }
  1150. //
  1151. // simd mappings
  1152. //
  1153. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1154. // we then implement the fundamental computation operations below using only these macros
  1155. // adding support for new architectures requires to define the corresponding SIMD macros
  1156. //
  1157. // GGML_F32_STEP / GGML_F16_STEP
  1158. // number of elements to process in a single step
  1159. //
  1160. // GGML_F32_EPR / GGML_F16_EPR
  1161. // number of elements to fit in a single register
  1162. //
  1163. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1164. #define GGML_SIMD
  1165. // F32 NEON
  1166. #define GGML_F32_STEP 16
  1167. #define GGML_F32_EPR 4
  1168. #define GGML_F32x4 float32x4_t
  1169. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1170. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1171. #define GGML_F32x4_LOAD vld1q_f32
  1172. #define GGML_F32x4_STORE vst1q_f32
  1173. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1174. #define GGML_F32x4_ADD vaddq_f32
  1175. #define GGML_F32x4_MUL vmulq_f32
  1176. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1177. #define GGML_F32x4_REDUCE(res, x) \
  1178. { \
  1179. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1180. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1181. } \
  1182. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1183. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1184. } \
  1185. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1186. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1187. } \
  1188. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1189. }
  1190. #define GGML_F32_VEC GGML_F32x4
  1191. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1192. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1193. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1194. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1195. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1196. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1197. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1198. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1199. // F16 NEON
  1200. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1201. #define GGML_F16_STEP 32
  1202. #define GGML_F16_EPR 8
  1203. #define GGML_F16x8 float16x8_t
  1204. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1205. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1206. #define GGML_F16x8_LOAD vld1q_f16
  1207. #define GGML_F16x8_STORE vst1q_f16
  1208. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1209. #define GGML_F16x8_ADD vaddq_f16
  1210. #define GGML_F16x8_MUL vmulq_f16
  1211. #define GGML_F16x8_REDUCE(res, x) \
  1212. { \
  1213. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1214. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1215. } \
  1216. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1217. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1218. } \
  1219. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1220. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1221. } \
  1222. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1223. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1224. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1225. }
  1226. #define GGML_F16_VEC GGML_F16x8
  1227. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1228. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1229. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1230. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1231. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1232. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1233. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1234. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1235. #else
  1236. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1237. // and take advantage of the vcvt_ functions to convert to/from FP16
  1238. #define GGML_F16_STEP 16
  1239. #define GGML_F16_EPR 4
  1240. #define GGML_F32Cx4 float32x4_t
  1241. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1242. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1243. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1244. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1245. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1246. #define GGML_F32Cx4_ADD vaddq_f32
  1247. #define GGML_F32Cx4_MUL vmulq_f32
  1248. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1249. #define GGML_F16_VEC GGML_F32Cx4
  1250. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1251. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1252. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1253. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1254. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1255. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1256. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1257. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1258. #endif
  1259. #elif defined(__AVX__)
  1260. #define GGML_SIMD
  1261. // F32 AVX
  1262. #define GGML_F32_STEP 32
  1263. #define GGML_F32_EPR 8
  1264. #define GGML_F32x8 __m256
  1265. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1266. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1267. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1268. #define GGML_F32x8_STORE _mm256_storeu_ps
  1269. #if defined(__FMA__)
  1270. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1271. #else
  1272. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1273. #endif
  1274. #define GGML_F32x8_ADD _mm256_add_ps
  1275. #define GGML_F32x8_MUL _mm256_mul_ps
  1276. #define GGML_F32x8_REDUCE(res, x) \
  1277. { \
  1278. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1279. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1280. } \
  1281. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1282. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1283. } \
  1284. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1285. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1286. } \
  1287. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1288. _mm256_extractf128_ps(x[0], 1)); \
  1289. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1290. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1291. }
  1292. // TODO: is this optimal ?
  1293. #define GGML_F32_VEC GGML_F32x8
  1294. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1295. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1296. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1297. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1298. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1299. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1300. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1301. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1302. // F16 AVX
  1303. #define GGML_F16_STEP 32
  1304. #define GGML_F16_EPR 8
  1305. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1306. #define GGML_F32Cx8 __m256
  1307. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1308. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1309. #if defined(__F16C__)
  1310. // the _mm256_cvt intrinsics require F16C
  1311. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1312. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1313. #else
  1314. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1315. float tmp[8];
  1316. for (int i = 0; i < 8; i++)
  1317. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1318. return _mm256_loadu_ps(tmp);
  1319. }
  1320. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1321. float arr[8];
  1322. _mm256_storeu_ps(arr, y);
  1323. for (int i = 0; i < 8; i++)
  1324. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1325. }
  1326. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1327. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1328. #endif
  1329. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1330. #define GGML_F32Cx8_ADD _mm256_add_ps
  1331. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1332. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1333. #define GGML_F16_VEC GGML_F32Cx8
  1334. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1335. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1336. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1337. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1338. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1339. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1340. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1341. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1342. #elif defined(__POWER9_VECTOR__)
  1343. #define GGML_SIMD
  1344. // F32 POWER9
  1345. #define GGML_F32_STEP 32
  1346. #define GGML_F32_EPR 4
  1347. #define GGML_F32x4 vector float
  1348. #define GGML_F32x4_ZERO 0.0f
  1349. #define GGML_F32x4_SET1 vec_splats
  1350. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1351. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1352. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1353. #define GGML_F32x4_ADD vec_add
  1354. #define GGML_F32x4_MUL vec_mul
  1355. #define GGML_F32x4_REDUCE(res, x) \
  1356. { \
  1357. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1358. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1359. } \
  1360. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1361. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1362. } \
  1363. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1364. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1365. } \
  1366. res = vec_extract(x[0], 0) + \
  1367. vec_extract(x[0], 1) + \
  1368. vec_extract(x[0], 2) + \
  1369. vec_extract(x[0], 3); \
  1370. }
  1371. #define GGML_F32_VEC GGML_F32x4
  1372. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1373. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1374. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1375. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1376. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1377. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1378. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1379. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1380. // F16 POWER9
  1381. #define GGML_F16_STEP GGML_F32_STEP
  1382. #define GGML_F16_EPR GGML_F32_EPR
  1383. #define GGML_F16_VEC GGML_F32x4
  1384. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1385. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1386. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1387. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1388. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1389. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1390. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1391. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1392. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1393. #define GGML_F16_VEC_STORE(p, r, i) \
  1394. if (i & 0x1) \
  1395. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1396. r[i - GGML_ENDIAN_BYTE(0)]), \
  1397. 0, p - GGML_F16_EPR)
  1398. #elif defined(__wasm_simd128__)
  1399. #define GGML_SIMD
  1400. // F32 WASM
  1401. #define GGML_F32_STEP 16
  1402. #define GGML_F32_EPR 4
  1403. #define GGML_F32x4 v128_t
  1404. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1405. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1406. #define GGML_F32x4_LOAD wasm_v128_load
  1407. #define GGML_F32x4_STORE wasm_v128_store
  1408. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1409. #define GGML_F32x4_ADD wasm_f32x4_add
  1410. #define GGML_F32x4_MUL wasm_f32x4_mul
  1411. #define GGML_F32x4_REDUCE(res, x) \
  1412. { \
  1413. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1414. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1415. } \
  1416. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1417. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1420. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1421. } \
  1422. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1423. wasm_f32x4_extract_lane(x[0], 1) + \
  1424. wasm_f32x4_extract_lane(x[0], 2) + \
  1425. wasm_f32x4_extract_lane(x[0], 3); \
  1426. }
  1427. #define GGML_F32_VEC GGML_F32x4
  1428. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1429. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1430. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1431. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1432. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1433. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1434. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1435. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1436. // F16 WASM
  1437. #define GGML_F16_STEP 16
  1438. #define GGML_F16_EPR 4
  1439. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1440. float tmp[4];
  1441. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1442. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1443. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1444. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1445. return wasm_v128_load(tmp);
  1446. }
  1447. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1448. float tmp[4];
  1449. wasm_v128_store(tmp, x);
  1450. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1451. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1452. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1453. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1454. }
  1455. #define GGML_F16x4 v128_t
  1456. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1457. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1458. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1459. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1460. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1461. #define GGML_F16x4_ADD wasm_f32x4_add
  1462. #define GGML_F16x4_MUL wasm_f32x4_mul
  1463. #define GGML_F16x4_REDUCE(res, x) \
  1464. { \
  1465. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1466. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1467. } \
  1468. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1469. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1470. } \
  1471. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1472. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1473. } \
  1474. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1475. wasm_f32x4_extract_lane(x[0], 1) + \
  1476. wasm_f32x4_extract_lane(x[0], 2) + \
  1477. wasm_f32x4_extract_lane(x[0], 3); \
  1478. }
  1479. #define GGML_F16_VEC GGML_F16x4
  1480. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1481. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1482. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1483. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1484. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1485. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1486. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1487. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1488. #elif defined(__SSE3__)
  1489. #define GGML_SIMD
  1490. // F32 SSE
  1491. #define GGML_F32_STEP 32
  1492. #define GGML_F32_EPR 4
  1493. #define GGML_F32x4 __m128
  1494. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1495. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1496. #define GGML_F32x4_LOAD _mm_loadu_ps
  1497. #define GGML_F32x4_STORE _mm_storeu_ps
  1498. #if defined(__FMA__)
  1499. // TODO: Does this work?
  1500. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1501. #else
  1502. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1503. #endif
  1504. #define GGML_F32x4_ADD _mm_add_ps
  1505. #define GGML_F32x4_MUL _mm_mul_ps
  1506. #define GGML_F32x4_REDUCE(res, x) \
  1507. { \
  1508. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1509. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1510. } \
  1511. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1512. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1513. } \
  1514. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1515. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1516. } \
  1517. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1518. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1519. }
  1520. // TODO: is this optimal ?
  1521. #define GGML_F32_VEC GGML_F32x4
  1522. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1523. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1524. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1525. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1526. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1527. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1528. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1529. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1530. // F16 SSE
  1531. #define GGML_F16_STEP 32
  1532. #define GGML_F16_EPR 4
  1533. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1534. float tmp[4];
  1535. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1536. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1537. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1538. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1539. return _mm_loadu_ps(tmp);
  1540. }
  1541. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1542. float arr[4];
  1543. _mm_storeu_ps(arr, y);
  1544. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1545. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1546. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1547. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1548. }
  1549. #define GGML_F32Cx4 __m128
  1550. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1551. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1552. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1553. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1554. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1555. #define GGML_F32Cx4_ADD _mm_add_ps
  1556. #define GGML_F32Cx4_MUL _mm_mul_ps
  1557. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1558. #define GGML_F16_VEC GGML_F32Cx4
  1559. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1560. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1561. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1562. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1563. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1564. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1565. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1566. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1567. #endif
  1568. // GGML_F32_ARR / GGML_F16_ARR
  1569. // number of registers to use per step
  1570. #ifdef GGML_SIMD
  1571. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1572. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1573. #endif
  1574. //
  1575. // fundamental operations
  1576. //
  1577. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1578. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1579. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1580. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1581. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1582. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1583. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1584. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1585. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1586. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1587. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1588. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1589. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1590. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1591. #ifdef GGML_SIMD
  1592. float sumf = 0.0f;
  1593. const int np = (n & ~(GGML_F32_STEP - 1));
  1594. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1595. GGML_F32_VEC ax[GGML_F32_ARR];
  1596. GGML_F32_VEC ay[GGML_F32_ARR];
  1597. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1598. for (int j = 0; j < GGML_F32_ARR; j++) {
  1599. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1600. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1601. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1602. }
  1603. }
  1604. // reduce sum0..sum3 to sum0
  1605. GGML_F32_VEC_REDUCE(sumf, sum);
  1606. // leftovers
  1607. for (int i = np; i < n; ++i) {
  1608. sumf += x[i]*y[i];
  1609. }
  1610. #else
  1611. // scalar
  1612. ggml_float sumf = 0.0;
  1613. for (int i = 0; i < n; ++i) {
  1614. sumf += (ggml_float)(x[i]*y[i]);
  1615. }
  1616. #endif
  1617. *s = sumf;
  1618. }
  1619. #if __AVX512F__ && QK4_0 == 32
  1620. static inline __m512 dot_q4_0_oneblock_avx512(
  1621. __m512 acc,
  1622. const block_q4_0 * restrict x,
  1623. const block_q4_0 * restrict y,
  1624. int i
  1625. ) {
  1626. // Compute combined scale for the block
  1627. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1628. __m256i bx = bytesFromNibbles( x[i].qs );
  1629. __m256i by = bytesFromNibbles( y[i].qs );
  1630. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1631. const __m256i off = _mm256_set1_epi8( 8 );
  1632. bx = _mm256_sub_epi8( bx, off );
  1633. by = _mm256_sub_epi8( by, off );
  1634. // Sign-extend 16 signed bytes into int16_t
  1635. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1636. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1637. // Compute products of int16_t integers, add pairwise
  1638. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1639. // Convert int32_t to float
  1640. __m512 p = _mm512_cvtepi32_ps( i64 );
  1641. // Apply the scale, and accumulate
  1642. return _mm512_fmadd_ps( d, p, acc );
  1643. }
  1644. #endif
  1645. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1646. ggml_float sumf = 0.0;
  1647. #if defined(GGML_SIMD)
  1648. const int np = (n & ~(GGML_F16_STEP - 1));
  1649. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1650. GGML_F16_VEC ax[GGML_F16_ARR];
  1651. GGML_F16_VEC ay[GGML_F16_ARR];
  1652. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1653. for (int j = 0; j < GGML_F16_ARR; j++) {
  1654. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1655. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1656. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1657. }
  1658. }
  1659. // reduce sum0..sum3 to sum0
  1660. GGML_F16_VEC_REDUCE(sumf, sum);
  1661. // leftovers
  1662. for (int i = np; i < n; ++i) {
  1663. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1664. }
  1665. #else
  1666. for (int i = 0; i < n; ++i) {
  1667. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1668. }
  1669. #endif
  1670. *s = sumf;
  1671. }
  1672. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1673. const int nb = n / QK4_0;
  1674. assert(n % QK4_0 == 0);
  1675. assert(nb % 2 == 0);
  1676. const block_q4_0 * restrict x = vx;
  1677. const block_q4_0 * restrict y = vy;
  1678. float sumf = 0.0;
  1679. #if defined(__ARM_NEON)
  1680. float sum0 = 0.0f;
  1681. float sum1 = 0.0f;
  1682. for (int i = 0; i < nb; i += 2) {
  1683. const block_q4_0 * restrict x0 = &x[i + 0];
  1684. const block_q4_0 * restrict y0 = &y[i + 0];
  1685. const block_q4_0 * restrict x1 = &x[i + 1];
  1686. const block_q4_0 * restrict y1 = &y[i + 1];
  1687. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1688. const int8x16_t s8b = vdupq_n_s8(0x8);
  1689. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1690. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1691. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1692. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1693. // 4-bit -> 8-bit
  1694. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1695. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1696. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1697. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1698. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1699. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1700. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1701. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1702. // sub 8
  1703. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1704. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1705. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1706. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1707. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1708. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1709. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1710. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1711. #if defined(__ARM_FEATURE_DOTPROD)
  1712. // dot product into int32x4_t
  1713. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1714. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1715. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1716. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1717. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1718. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1719. #else
  1720. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1721. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1722. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1723. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1724. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1725. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1726. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1727. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1728. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1729. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1730. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1731. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1732. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1733. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1734. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1735. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1736. #endif
  1737. }
  1738. sumf = sum0 + sum1;
  1739. #elif defined(__AVX512F__)
  1740. // Initialize accumulator with zeros
  1741. __m512 acc0 = _mm512_setzero_ps();
  1742. __m512 acc1 = _mm512_setzero_ps();
  1743. const int superblock_size = 8;
  1744. const int superblock_count = nb / superblock_size;
  1745. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1746. int i = superblock_ix * superblock_size;
  1747. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1748. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1749. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1750. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1751. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1752. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1753. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1754. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1755. }
  1756. // Remainders
  1757. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1758. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1759. }
  1760. // Horizontal sum of all lanes of the accumulator
  1761. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1762. #elif defined(__AVX2__)
  1763. // Initialize accumulator with zeros
  1764. __m256 acc = _mm256_setzero_ps();
  1765. /* Prepare the constants we will need during execution */
  1766. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1767. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1768. #define UNROLL_COUNT 8
  1769. // make sure we only unroll multiples of the block count
  1770. assert(nb % UNROLL_COUNT == 0);
  1771. // Main loop
  1772. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1773. // This loop will be unrolled by the compiler
  1774. for (int u=0;u<UNROLL_COUNT;u++) {
  1775. /* Compute combined scale for the block */
  1776. const __m256 scale = _mm256_mul_ps(
  1777. _mm256_broadcast_ss( &x[i+u].d ),
  1778. _mm256_broadcast_ss( &y[i+u].d ) );
  1779. /* get input from x
  1780. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1781. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1782. /* Load 16 bytes from memory */
  1783. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1784. /* Expand bytes into uint16_t values */
  1785. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1786. /* Unpack values into individual bytes */
  1787. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1788. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1789. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1790. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1791. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1792. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1793. /* get input from y
  1794. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1795. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1796. /* Load 16 bytes from memory */
  1797. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1798. /* Expand bytes into uint16_t values */
  1799. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1800. /* Unpack values into individual bytes */
  1801. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1802. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1803. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1804. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1805. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1806. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1807. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1808. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1809. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1810. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1811. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1812. /* Convert to vectore of 8 int32_t to 8 floats */
  1813. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1814. /* Multiply q with scale and accumulate */
  1815. acc = _mm256_fmadd_ps( scale, q, acc );
  1816. }
  1817. }
  1818. // Return horizontal sum of the acc vector
  1819. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1820. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1821. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1822. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1823. sumf = _mm_cvtss_f32( res );
  1824. #elif defined(__AVX__)
  1825. // Initialize accumulator with zeros
  1826. __m256 acc = _mm256_setzero_ps();
  1827. // Main loop
  1828. for (int i = 0; i < nb; ++i) {
  1829. // Compute combined scale for the block
  1830. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1831. __m128i i32[2];
  1832. for (int j = 0; j < 2; ++j) {
  1833. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1834. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1835. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1836. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1837. const __m128i off = _mm_set1_epi8( 8 );
  1838. bx = _mm_sub_epi8( bx, off );
  1839. by = _mm_sub_epi8( by, off );
  1840. // Get absolute values of x vectors
  1841. const __m128i ax = _mm_sign_epi8(bx, bx);
  1842. // Sign the values of the y vectors
  1843. const __m128i sy = _mm_sign_epi8(by, bx);
  1844. // Perform multiplication and create 16-bit values
  1845. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1846. const __m128i ones = _mm_set1_epi16(1);
  1847. i32[j] = _mm_madd_epi16(ones, dot);
  1848. }
  1849. // Convert int32_t to float
  1850. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1851. // Apply the scale, and accumulate
  1852. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1853. }
  1854. // Return horizontal sum of the acc vector
  1855. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1856. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1857. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1858. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1859. sumf = _mm_cvtss_f32( res );
  1860. #elif defined(__wasm_simd128__)
  1861. // wasm simd
  1862. float sum0 = 0.0f;
  1863. float sum1 = 0.0f;
  1864. for (int i = 0; i < nb; i += 2) {
  1865. const block_q4_0 * restrict x0 = &x[i + 0];
  1866. const block_q4_0 * restrict y0 = &y[i + 0];
  1867. const block_q4_0 * restrict x1 = &x[i + 1];
  1868. const block_q4_0 * restrict y1 = &y[i + 1];
  1869. const v128_t m4b = wasm_u8x16_splat(0xf);
  1870. const v128_t s8b = wasm_i8x16_splat(0x8);
  1871. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1872. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1873. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1874. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1875. // 4-bit -> 8-bit
  1876. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1877. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1878. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1879. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1880. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1881. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1882. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1883. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1884. // sub 8
  1885. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1886. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1887. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1888. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1889. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1890. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1891. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1892. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1893. // dot product into int16x8_t
  1894. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1895. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1896. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1897. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1898. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1899. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1900. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1901. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1902. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1903. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1904. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1905. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1906. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1907. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1908. sum0 += x0->d * y0->d * (
  1909. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1910. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1911. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1912. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1913. sum1 += x1->d * y1->d * (
  1914. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1915. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1916. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1917. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1918. }
  1919. sumf = sum0 + sum1;
  1920. #else
  1921. // scalar
  1922. for (int i = 0; i < nb; i++) {
  1923. const float d0 = x[i].d;
  1924. const float d1 = y[i].d;
  1925. const uint8_t * restrict p0 = x[i].qs;
  1926. const uint8_t * restrict p1 = y[i].qs;
  1927. int sumi = 0;
  1928. for (int j = 0; j < QK4_0/2; j++) {
  1929. const uint8_t v0 = p0[j];
  1930. const uint8_t v1 = p1[j];
  1931. const int i0 = (v0 & 0xf) - 8;
  1932. const int i1 = (v0 >> 4) - 8;
  1933. const int i2 = (v1 & 0xf) - 8;
  1934. const int i3 = (v1 >> 4) - 8;
  1935. sumi += i0*i2 + i1*i3;
  1936. }
  1937. sumf += d0 * d1 * sumi;
  1938. }
  1939. #endif
  1940. *s = sumf;
  1941. }
  1942. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1943. const int nb = n / QK4_1;
  1944. const block_q4_1 * restrict x = vx;
  1945. const block_q4_1 * restrict y = vy;
  1946. float sumf = 0.0;
  1947. #if defined(__AVX2__)
  1948. // Initialize accumulator with zeros
  1949. __m256 acc = _mm256_setzero_ps();
  1950. // Accumulator for constant offsets
  1951. float acc_offset = 0.0f;
  1952. // Main loop
  1953. for (int i = 0; i < nb; ++i) {
  1954. const float * d0 = &x[i].d;
  1955. const float * d1 = &y[i].d;
  1956. const float * m0 = &x[i].m;
  1957. const float * m1 = &y[i].m;
  1958. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1959. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1960. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1961. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1962. // Compute combined scale for the block
  1963. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1964. // Compute cross scales for the block
  1965. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1966. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1967. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1968. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1969. __m256i bx = bytesFromNibbles( x[i].qs );
  1970. __m256i by = bytesFromNibbles( y[i].qs );
  1971. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1972. // Sign-extend first 16 signed bytes into int16_t
  1973. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1974. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1975. // Compute products of int16_t integers, add pairwise
  1976. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1977. // Sign-extend last 16 signed bytes into int16_t vectors
  1978. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1979. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1980. // Accumulate products of int16_t integers
  1981. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1982. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1983. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1984. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1985. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1986. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1987. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1988. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1989. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1990. // Convert int32_t to float
  1991. __m256 p = _mm256_cvtepi32_ps( i32 );
  1992. // Apply the scale, and accumulate
  1993. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1994. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1995. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1996. // acc_offset += m0*m1 (for each entry in the block)
  1997. acc_offset += (*m0)*(*m1);
  1998. }
  1999. // Return horizontal sum of the acc vector
  2000. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2001. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2002. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2003. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2004. sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
  2005. #elif defined(__ARM_NEON)
  2006. float sum00 = 0.0f;
  2007. float sum01 = 0.0f;
  2008. float sum10 = 0.0f;
  2009. float sum11 = 0.0f;
  2010. for (int i = 0; i < nb; i += 2) {
  2011. const block_q4_1 * restrict x0 = &x[i + 0];
  2012. const block_q4_1 * restrict y0 = &y[i + 0];
  2013. const block_q4_1 * restrict x1 = &x[i + 1];
  2014. const block_q4_1 * restrict y1 = &y[i + 1];
  2015. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2016. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2017. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  2018. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2019. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  2020. // 4-bit -> 8-bit
  2021. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  2022. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  2023. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  2024. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  2025. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  2026. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  2027. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  2028. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  2029. sum00 += x0->m*y0->m;
  2030. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  2031. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  2032. sum00 += x1->m*y1->m;
  2033. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  2034. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  2035. #if defined(__ARM_FEATURE_DOTPROD)
  2036. // dot product into int32x4_t
  2037. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  2038. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  2039. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  2040. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  2041. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  2042. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  2043. #else
  2044. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  2045. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  2046. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  2047. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  2048. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  2049. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  2050. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  2051. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  2052. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  2053. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  2054. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  2055. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  2056. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  2057. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  2058. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  2059. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  2060. #endif
  2061. }
  2062. sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
  2063. #else
  2064. // scalar
  2065. for (int i = 0; i < nb; i++) {
  2066. const float d0 = x[i].d;
  2067. const float d1 = y[i].d;
  2068. const float m0 = x[i].m;
  2069. const float m1 = y[i].m;
  2070. const uint8_t * restrict p0 = x[i].qs;
  2071. const uint8_t * restrict p1 = y[i].qs;
  2072. for (int j = 0; j < QK4_1/2; j++) {
  2073. const uint8_t v0 = p0[j];
  2074. const uint8_t v1 = p1[j];
  2075. const float f0 = d0*(v0 & 0xf) + m0;
  2076. const float f1 = d0*(v0 >> 4) + m0;
  2077. const float f2 = d1*(v1 & 0xf) + m1;
  2078. const float f3 = d1*(v1 >> 4) + m1;
  2079. sumf += f0*f2 + f1*f3;
  2080. }
  2081. }
  2082. #endif
  2083. *s = sumf;
  2084. }
  2085. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2086. const int nb = n / QK8_0;
  2087. assert(n % QK8_0 == 0);
  2088. assert(nb % 2 == 0);
  2089. const block_q4_0 * restrict x = vx;
  2090. const block_q8_0 * restrict y = vy;
  2091. float sumf = 0.0;
  2092. #if defined(__ARM_NEON)
  2093. float sum0 = 0.0f;
  2094. float sum1 = 0.0f;
  2095. for (int i = 0; i < nb; i += 2) {
  2096. const block_q4_0 * restrict x0 = &x[i + 0];
  2097. const block_q4_0 * restrict x1 = &x[i + 1];
  2098. const block_q8_0 * restrict y0 = &y[i + 0];
  2099. const block_q8_0 * restrict y1 = &y[i + 1];
  2100. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2101. const int8x16_t s8b = vdupq_n_s8(0x8);
  2102. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2103. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2104. // 4-bit -> 8-bit
  2105. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2106. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2107. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2108. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2109. // sub 8
  2110. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2111. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2112. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2113. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2114. // load y
  2115. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2116. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2117. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2118. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2119. // interleave
  2120. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2121. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2122. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2123. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2124. #if defined(__ARM_FEATURE_DOTPROD)
  2125. // dot product into int32x4_t
  2126. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  2127. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  2128. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  2129. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  2130. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  2131. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  2132. #else
  2133. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2134. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2135. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2136. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2137. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2138. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2139. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2140. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2141. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  2142. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  2143. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  2144. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  2145. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  2146. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  2147. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  2148. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  2149. #endif
  2150. }
  2151. sumf = sum0 + sum1;
  2152. #elif defined(__AVX2__)
  2153. // Initialize accumulator with zeros
  2154. __m256 acc = _mm256_setzero_ps();
  2155. // Main loop
  2156. for (int i = 0; i < nb; ++i) {
  2157. /* Compute combined scale for the block */
  2158. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2159. __m256i bx = bytesFromNibbles(x[i].qs);
  2160. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2161. const __m256i off = _mm256_set1_epi8( 8 );
  2162. bx = _mm256_sub_epi8( bx, off );
  2163. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2164. // Get absolute values of x vectors
  2165. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2166. // Sign the values of the y vectors
  2167. const __m256i sy = _mm256_sign_epi8(by, bx);
  2168. // Perform multiplication and create 16-bit values
  2169. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2170. const __m256i ones = _mm256_set1_epi16(1);
  2171. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2172. /* Convert to vectore of 8 int32_t to 8 floats */
  2173. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2174. /* Multiply q with scale and accumulate */
  2175. acc = _mm256_fmadd_ps( d, q, acc );
  2176. }
  2177. // Return horizontal sum of the acc vector
  2178. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2179. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2180. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2181. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2182. sumf = _mm_cvtss_f32( res );
  2183. #elif defined(__AVX__)
  2184. // Initialize accumulator with zeros
  2185. __m256 acc = _mm256_setzero_ps();
  2186. // Main loop
  2187. for (int i = 0; i < nb; ++i) {
  2188. // Compute combined scale for the block
  2189. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2190. __m128i i32[2];
  2191. for (int j = 0; j < 2; ++j) {
  2192. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2193. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2194. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2195. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2196. const __m128i off = _mm_set1_epi8( 8 );
  2197. bx = _mm_sub_epi8( bx, off );
  2198. // Get absolute values of x vectors
  2199. const __m128i ax = _mm_sign_epi8(bx, bx);
  2200. // Sign the values of the y vectors
  2201. const __m128i sy = _mm_sign_epi8(by, bx);
  2202. // Perform multiplication and create 16-bit values
  2203. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2204. const __m128i ones = _mm_set1_epi16(1);
  2205. i32[j] = _mm_madd_epi16(ones, dot);
  2206. }
  2207. // Convert int32_t to float
  2208. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2209. // Apply the scale, and accumulate
  2210. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2211. }
  2212. // Return horizontal sum of the acc vector
  2213. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2214. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2215. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2216. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2217. sumf = _mm_cvtss_f32( res );
  2218. #else
  2219. // scalar
  2220. for (int i = 0; i < nb; i++) {
  2221. const float d0 = x[i].d;
  2222. const float d1 = y[i].d;
  2223. const uint8_t * restrict p0 = x[i].qs;
  2224. const int8_t * restrict p1 = y[i].qs;
  2225. int sumi = 0;
  2226. for (int j = 0; j < QK8_0/2; j++) {
  2227. const uint8_t v0 = p0[j];
  2228. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2229. const int i1 = (int8_t) (v0 >> 4) - 8;
  2230. const int i2 = p1[2*j + 0];
  2231. const int i3 = p1[2*j + 1];
  2232. sumi += i0*i2 + i1*i3;
  2233. }
  2234. sumf += d0*d1*sumi;
  2235. }
  2236. #endif
  2237. *s = sumf;
  2238. }
  2239. // compute GGML_VEC_DOT_UNROLL dot products at once
  2240. // xs - x row stride in bytes
  2241. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2242. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2243. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2244. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2245. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2246. }
  2247. #if defined(GGML_SIMD)
  2248. const int np = (n & ~(GGML_F16_STEP - 1));
  2249. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2250. GGML_F16_VEC ax[GGML_F16_ARR];
  2251. GGML_F16_VEC ay[GGML_F16_ARR];
  2252. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2253. for (int j = 0; j < GGML_F16_ARR; j++) {
  2254. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2255. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2256. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2257. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2258. }
  2259. }
  2260. }
  2261. // reduce sum0..sum3 to sum0
  2262. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2263. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2264. }
  2265. // leftovers
  2266. for (int i = np; i < n; ++i) {
  2267. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2268. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2269. }
  2270. }
  2271. #else
  2272. for (int i = 0; i < n; ++i) {
  2273. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2274. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2275. }
  2276. }
  2277. #endif
  2278. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2279. s[i] = sumf[i];
  2280. }
  2281. }
  2282. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2283. #if defined(GGML_SIMD)
  2284. const int np = (n & ~(GGML_F32_STEP - 1));
  2285. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2286. GGML_F32_VEC ax[GGML_F32_ARR];
  2287. GGML_F32_VEC ay[GGML_F32_ARR];
  2288. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2289. for (int j = 0; j < GGML_F32_ARR; j++) {
  2290. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2291. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2292. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2293. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2294. }
  2295. }
  2296. // leftovers
  2297. for (int i = np; i < n; ++i) {
  2298. y[i] += x[i]*v;
  2299. }
  2300. #else
  2301. // scalar
  2302. for (int i = 0; i < n; ++i) {
  2303. y[i] += x[i]*v;
  2304. }
  2305. #endif
  2306. }
  2307. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2308. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2309. #if defined(GGML_SIMD)
  2310. const int np = (n & ~(GGML_F32_STEP - 1));
  2311. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2312. GGML_F32_VEC ay[GGML_F32_ARR];
  2313. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2314. for (int j = 0; j < GGML_F32_ARR; j++) {
  2315. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2316. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2317. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2318. }
  2319. }
  2320. // leftovers
  2321. for (int i = np; i < n; ++i) {
  2322. y[i] *= v;
  2323. }
  2324. #else
  2325. // scalar
  2326. for (int i = 0; i < n; ++i) {
  2327. y[i] *= v;
  2328. }
  2329. #endif
  2330. }
  2331. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2332. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2333. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2334. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2335. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2336. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2337. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2338. static const float GELU_COEF_A = 0.044715f;
  2339. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2340. inline static float ggml_gelu_f32(float x) {
  2341. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2342. }
  2343. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2344. const uint16_t * i16 = (const uint16_t *) x;
  2345. for (int i = 0; i < n; ++i) {
  2346. y[i] = table_gelu_f16[i16[i]];
  2347. }
  2348. }
  2349. #ifdef GGML_GELU_FP16
  2350. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2351. uint16_t t;
  2352. for (int i = 0; i < n; ++i) {
  2353. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2354. memcpy(&t, &fp16, sizeof(uint16_t));
  2355. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2356. }
  2357. }
  2358. #else
  2359. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2360. for (int i = 0; i < n; ++i) {
  2361. y[i] = ggml_gelu_f32(x[i]);
  2362. }
  2363. }
  2364. #endif
  2365. // Sigmoid Linear Unit (SiLU) function
  2366. inline static float ggml_silu_f32(float x) {
  2367. return x/(1.0f + expf(-x));
  2368. }
  2369. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2370. const uint16_t * i16 = (const uint16_t *) x;
  2371. for (int i = 0; i < n; ++i) {
  2372. y[i] = table_silu_f16[i16[i]];
  2373. }
  2374. }
  2375. #ifdef GGML_SILU_FP16
  2376. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2377. uint16_t t;
  2378. for (int i = 0; i < n; ++i) {
  2379. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2380. memcpy(&t, &fp16, sizeof(uint16_t));
  2381. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2382. }
  2383. }
  2384. #else
  2385. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2386. for (int i = 0; i < n; ++i) {
  2387. y[i] = ggml_silu_f32(x[i]);
  2388. }
  2389. }
  2390. #endif
  2391. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2392. #ifndef GGML_USE_ACCELERATE
  2393. ggml_float sum = 0.0;
  2394. for (int i = 0; i < n; ++i) {
  2395. sum += (ggml_float)x[i];
  2396. }
  2397. *s = sum;
  2398. #else
  2399. vDSP_sve(x, 1, s, n);
  2400. #endif
  2401. }
  2402. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2403. #ifndef GGML_USE_ACCELERATE
  2404. float max = -INFINITY;
  2405. for (int i = 0; i < n; ++i) {
  2406. max = MAX(max, x[i]);
  2407. }
  2408. *s = max;
  2409. #else
  2410. vDSP_maxv(x, 1, s, n);
  2411. #endif
  2412. }
  2413. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2414. ggml_vec_norm_f32(n, s, x);
  2415. *s = 1.f/(*s);
  2416. }
  2417. //
  2418. // logging
  2419. //
  2420. #if (GGML_DEBUG >= 1)
  2421. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2422. #else
  2423. #define GGML_PRINT_DEBUG(...)
  2424. #endif
  2425. #if (GGML_DEBUG >= 5)
  2426. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2427. #else
  2428. #define GGML_PRINT_DEBUG_5(...)
  2429. #endif
  2430. #if (GGML_DEBUG >= 10)
  2431. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2432. #else
  2433. #define GGML_PRINT_DEBUG_10(...)
  2434. #endif
  2435. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2436. //
  2437. // data types
  2438. //
  2439. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2440. [GGML_TYPE_F32] = 1,
  2441. [GGML_TYPE_F16] = 1,
  2442. [GGML_TYPE_Q4_0] = QK4_0,
  2443. [GGML_TYPE_Q4_1] = QK4_1,
  2444. [GGML_TYPE_Q8_0] = QK8_0,
  2445. [GGML_TYPE_I8] = 1,
  2446. [GGML_TYPE_I16] = 1,
  2447. [GGML_TYPE_I32] = 1,
  2448. };
  2449. static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated");
  2450. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2451. [GGML_TYPE_F32] = sizeof(float),
  2452. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2453. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2454. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2455. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2456. [GGML_TYPE_I8] = sizeof(int8_t),
  2457. [GGML_TYPE_I16] = sizeof(int16_t),
  2458. [GGML_TYPE_I32] = sizeof(int32_t),
  2459. };
  2460. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated");
  2461. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2462. [GGML_TYPE_F32] = "f32",
  2463. [GGML_TYPE_F16] = "f16",
  2464. [GGML_TYPE_Q4_0] = "q4_0",
  2465. [GGML_TYPE_Q4_1] = "q4_1",
  2466. [GGML_TYPE_Q8_0] = "q8_0",
  2467. [GGML_TYPE_I8] = "i8",
  2468. [GGML_TYPE_I16] = "i16",
  2469. [GGML_TYPE_I32] = "i32",
  2470. };
  2471. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated");
  2472. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2473. "NONE",
  2474. "DUP",
  2475. "ADD",
  2476. "SUB",
  2477. "MUL",
  2478. "DIV",
  2479. "SQR",
  2480. "SQRT",
  2481. "SUM",
  2482. "MEAN",
  2483. "REPEAT",
  2484. "ABS",
  2485. "SGN",
  2486. "NEG",
  2487. "STEP",
  2488. "RELU",
  2489. "GELU",
  2490. "SILU",
  2491. "NORM",
  2492. "RMS_NORM",
  2493. "MUL_MAT",
  2494. "SCALE",
  2495. "CPY",
  2496. "CONT",
  2497. "RESHAPE",
  2498. "VIEW",
  2499. "PERMUTE",
  2500. "TRANSPOSE",
  2501. "GET_ROWS",
  2502. "DIAG_MASK_INF",
  2503. "SOFT_MAX",
  2504. "ROPE",
  2505. "CONV_1D_1S",
  2506. "CONV_1D_2S",
  2507. "FLASH_ATTN",
  2508. "FLASH_FF",
  2509. "MAP_UNARY",
  2510. "MAP_BINARY",
  2511. };
  2512. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2513. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2514. "none",
  2515. "x",
  2516. "x+y",
  2517. "x-y",
  2518. "x*y",
  2519. "x/y",
  2520. "x^2",
  2521. "√x",
  2522. "Σx",
  2523. "Σx/n",
  2524. "repeat(x)",
  2525. "abs(x)",
  2526. "sgn(x)",
  2527. "-x",
  2528. "step(x)",
  2529. "relu(x)",
  2530. "gelu(x)",
  2531. "silu(x)",
  2532. "norm(x)",
  2533. "rms_norm(x)",
  2534. "X*Y",
  2535. "x*v",
  2536. "x-\\>y",
  2537. "cont(x)",
  2538. "reshape(x)",
  2539. "view(x)",
  2540. "permute(x)",
  2541. "transpose(x)",
  2542. "get_rows(x)",
  2543. "diag_mask_inf(x)",
  2544. "soft_max(x)",
  2545. "rope(x)",
  2546. "conv_1d_1s(x)",
  2547. "conv_1d_2s(x)",
  2548. "flash_attn(x)",
  2549. "flash_ff(x)",
  2550. "f(x)",
  2551. "f(x,y)",
  2552. };
  2553. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2554. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2555. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2556. //
  2557. // ggml context
  2558. //
  2559. struct ggml_context {
  2560. size_t mem_size;
  2561. void * mem_buffer;
  2562. bool mem_buffer_owned;
  2563. bool no_alloc;
  2564. int n_objects;
  2565. struct ggml_object * objects_begin;
  2566. struct ggml_object * objects_end;
  2567. struct ggml_scratch scratch;
  2568. struct ggml_scratch scratch_save;
  2569. };
  2570. struct ggml_context_container {
  2571. bool used;
  2572. struct ggml_context context;
  2573. };
  2574. //
  2575. // compute types
  2576. //
  2577. enum ggml_task_type {
  2578. GGML_TASK_INIT = 0,
  2579. GGML_TASK_COMPUTE,
  2580. GGML_TASK_FINALIZE,
  2581. };
  2582. struct ggml_compute_params {
  2583. enum ggml_task_type type;
  2584. int ith, nth;
  2585. // work buffer for all threads
  2586. size_t wsize;
  2587. void * wdata;
  2588. };
  2589. //
  2590. // ggml state
  2591. //
  2592. struct ggml_state {
  2593. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2594. };
  2595. // global state
  2596. static struct ggml_state g_state;
  2597. static atomic_int g_state_barrier = 0;
  2598. // barrier via spin lock
  2599. inline static void ggml_critical_section_start(void) {
  2600. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2601. while (processing > 0) {
  2602. // wait for other threads to finish
  2603. atomic_fetch_sub(&g_state_barrier, 1);
  2604. sched_yield(); // TODO: reconsider this
  2605. processing = atomic_fetch_add(&g_state_barrier, 1);
  2606. }
  2607. }
  2608. // TODO: make this somehow automatically executed
  2609. // some sort of "sentry" mechanism
  2610. inline static void ggml_critical_section_end(void) {
  2611. atomic_fetch_sub(&g_state_barrier, 1);
  2612. }
  2613. ////////////////////////////////////////////////////////////////////////////////
  2614. void ggml_print_object(const struct ggml_object * obj) {
  2615. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2616. obj->offs, obj->size, (const void *) obj->next);
  2617. }
  2618. void ggml_print_objects(const struct ggml_context * ctx) {
  2619. struct ggml_object * obj = ctx->objects_begin;
  2620. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2621. while (obj != NULL) {
  2622. ggml_print_object(obj);
  2623. obj = obj->next;
  2624. }
  2625. GGML_PRINT("%s: --- end ---\n", __func__);
  2626. }
  2627. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2628. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2629. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2630. }
  2631. int ggml_nrows(const struct ggml_tensor * tensor) {
  2632. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2633. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2634. }
  2635. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2636. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2637. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2638. }
  2639. int ggml_blck_size(enum ggml_type type) {
  2640. return GGML_BLCK_SIZE[type];
  2641. }
  2642. size_t ggml_type_size(enum ggml_type type) {
  2643. return GGML_TYPE_SIZE[type];
  2644. }
  2645. float ggml_type_sizef(enum ggml_type type) {
  2646. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2647. }
  2648. const char * ggml_type_name(enum ggml_type type) {
  2649. return GGML_TYPE_NAME[type];
  2650. }
  2651. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2652. return GGML_TYPE_SIZE[tensor->type];
  2653. }
  2654. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2655. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2656. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2657. }
  2658. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2659. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2660. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2661. }
  2662. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2663. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2664. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2665. }
  2666. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2667. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2668. return
  2669. (t0->ne[0] == t1->ne[0]) &&
  2670. (t0->ne[2] == t1->ne[2]) &&
  2671. (t0->ne[3] == t1->ne[3]);
  2672. }
  2673. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2674. return tensor->nb[0] > tensor->nb[1];
  2675. }
  2676. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2677. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2678. return
  2679. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2680. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2681. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2682. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2683. }
  2684. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2685. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2686. return
  2687. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2688. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2689. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2690. }
  2691. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2692. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2693. return
  2694. (t0->ne[0] == t1->ne[0] ) &&
  2695. (t0->ne[1] == t1->ne[1] ) &&
  2696. (t0->ne[2] == t1->ne[2] ) &&
  2697. (t0->ne[3] == t1->ne[3] );
  2698. }
  2699. // check if t1 can be represented as a repeatition of t0
  2700. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2701. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2702. return
  2703. (t1->ne[0]%t0->ne[0] == 0) &&
  2704. (t1->ne[1]%t0->ne[1] == 0) &&
  2705. (t1->ne[2]%t0->ne[2] == 0) &&
  2706. (t1->ne[3]%t0->ne[3] == 0);
  2707. }
  2708. static inline int ggml_up32(int n) {
  2709. return (n + 31) & ~31;
  2710. }
  2711. static inline int ggml_up64(int n) {
  2712. return (n + 63) & ~63;
  2713. }
  2714. static inline int ggml_up(int n, int m) {
  2715. // assert m is a power of 2
  2716. GGML_ASSERT((m & (m - 1)) == 0);
  2717. return (n + m - 1) & ~(m - 1);
  2718. }
  2719. // assert that pointer is aligned to GGML_MEM_ALIGN
  2720. #define ggml_assert_aligned(ptr) \
  2721. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2722. ////////////////////////////////////////////////////////////////////////////////
  2723. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2724. // make this function thread safe
  2725. ggml_critical_section_start();
  2726. static bool is_first_call = true;
  2727. if (is_first_call) {
  2728. // initialize time system (required on Windows)
  2729. ggml_time_init();
  2730. // initialize GELU, SILU and EXP F32 tables
  2731. {
  2732. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2733. ggml_fp16_t ii;
  2734. for (int i = 0; i < (1 << 16); ++i) {
  2735. uint16_t ui = i;
  2736. memcpy(&ii, &ui, sizeof(ii));
  2737. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2738. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2739. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2740. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2741. }
  2742. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2743. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2744. }
  2745. // initialize g_state
  2746. {
  2747. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2748. g_state = (struct ggml_state) {
  2749. /*.contexts =*/ { { 0 } },
  2750. };
  2751. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2752. g_state.contexts[i].used = false;
  2753. }
  2754. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2755. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2756. }
  2757. is_first_call = false;
  2758. }
  2759. // find non-used context in g_state
  2760. struct ggml_context * ctx = NULL;
  2761. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2762. if (!g_state.contexts[i].used) {
  2763. g_state.contexts[i].used = true;
  2764. ctx = &g_state.contexts[i].context;
  2765. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2766. break;
  2767. }
  2768. }
  2769. if (ctx == NULL) {
  2770. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2771. ggml_critical_section_end();
  2772. return NULL;
  2773. }
  2774. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2775. *ctx = (struct ggml_context) {
  2776. /*.mem_size =*/ mem_size,
  2777. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2778. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2779. /*.no_alloc =*/ params.no_alloc,
  2780. /*.n_objects =*/ 0,
  2781. /*.objects_begin =*/ NULL,
  2782. /*.objects_end =*/ NULL,
  2783. /*.scratch =*/ { 0, 0, NULL, },
  2784. /*.scratch_save =*/ { 0, 0, NULL, },
  2785. };
  2786. GGML_ASSERT(ctx->mem_buffer != NULL);
  2787. ggml_assert_aligned(ctx->mem_buffer);
  2788. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2789. ggml_critical_section_end();
  2790. return ctx;
  2791. }
  2792. void ggml_free(struct ggml_context * ctx) {
  2793. // make this function thread safe
  2794. ggml_critical_section_start();
  2795. bool found = false;
  2796. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2797. if (&g_state.contexts[i].context == ctx) {
  2798. g_state.contexts[i].used = false;
  2799. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2800. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2801. if (ctx->mem_buffer_owned) {
  2802. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2803. }
  2804. found = true;
  2805. break;
  2806. }
  2807. }
  2808. if (!found) {
  2809. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2810. }
  2811. ggml_critical_section_end();
  2812. }
  2813. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2814. return ctx->objects_end->offs + ctx->objects_end->size;
  2815. }
  2816. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2817. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2818. ctx->scratch = scratch;
  2819. return result;
  2820. }
  2821. ////////////////////////////////////////////////////////////////////////////////
  2822. struct ggml_tensor * ggml_new_tensor_impl(
  2823. struct ggml_context * ctx,
  2824. enum ggml_type type,
  2825. int n_dims,
  2826. const int64_t* ne,
  2827. void* data) {
  2828. // always insert objects at the end of the context's memory pool
  2829. struct ggml_object * obj_cur = ctx->objects_end;
  2830. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2831. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2832. const size_t cur_end = cur_offs + cur_size;
  2833. size_t size_needed = 0;
  2834. if (data == NULL && !ctx->no_alloc) {
  2835. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2836. for (int i = 1; i < n_dims; i++) {
  2837. size_needed *= ne[i];
  2838. }
  2839. // align to GGML_MEM_ALIGN
  2840. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2841. }
  2842. char * const mem_buffer = ctx->mem_buffer;
  2843. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2844. if (ctx->scratch.data == NULL || data != NULL) {
  2845. size_needed += sizeof(struct ggml_tensor);
  2846. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2847. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2848. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2849. assert(false);
  2850. return NULL;
  2851. }
  2852. *obj_new = (struct ggml_object) {
  2853. .offs = cur_end + GGML_OBJECT_SIZE,
  2854. .size = size_needed,
  2855. .next = NULL,
  2856. };
  2857. } else {
  2858. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2859. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2860. assert(false);
  2861. return NULL;
  2862. }
  2863. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2864. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2865. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2866. assert(false);
  2867. return NULL;
  2868. }
  2869. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2870. *obj_new = (struct ggml_object) {
  2871. .offs = cur_end + GGML_OBJECT_SIZE,
  2872. .size = sizeof(struct ggml_tensor),
  2873. .next = NULL,
  2874. };
  2875. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2876. ctx->scratch.offs += size_needed;
  2877. }
  2878. if (obj_cur != NULL) {
  2879. obj_cur->next = obj_new;
  2880. } else {
  2881. // this is the first object in this context
  2882. ctx->objects_begin = obj_new;
  2883. }
  2884. ctx->objects_end = obj_new;
  2885. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2886. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2887. ggml_assert_aligned(result);
  2888. *result = (struct ggml_tensor) {
  2889. /*.type =*/ type,
  2890. /*.n_dims =*/ n_dims,
  2891. /*.ne =*/ { 1, 1, 1, 1 },
  2892. /*.nb =*/ { 0, 0, 0, 0 },
  2893. /*.op =*/ GGML_OP_NONE,
  2894. /*.is_param =*/ false,
  2895. /*.grad =*/ NULL,
  2896. /*.src0 =*/ NULL,
  2897. /*.src1 =*/ NULL,
  2898. /*.opt =*/ { NULL },
  2899. /*.n_tasks =*/ 0,
  2900. /*.perf_runs =*/ 0,
  2901. /*.perf_cycles =*/ 0,
  2902. /*.perf_time_us =*/ 0,
  2903. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2904. /*.pad =*/ { 0 },
  2905. };
  2906. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2907. //ggml_assert_aligned(result->data);
  2908. for (int i = 0; i < n_dims; i++) {
  2909. result->ne[i] = ne[i];
  2910. }
  2911. result->nb[0] = GGML_TYPE_SIZE[type];
  2912. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2913. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2914. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2915. }
  2916. ctx->n_objects++;
  2917. return result;
  2918. }
  2919. struct ggml_tensor * ggml_new_tensor(
  2920. struct ggml_context * ctx,
  2921. enum ggml_type type,
  2922. int n_dims,
  2923. const int64_t * ne) {
  2924. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2925. }
  2926. struct ggml_tensor * ggml_new_tensor_1d(
  2927. struct ggml_context * ctx,
  2928. enum ggml_type type,
  2929. int64_t ne0) {
  2930. return ggml_new_tensor(ctx, type, 1, &ne0);
  2931. }
  2932. struct ggml_tensor * ggml_new_tensor_2d(
  2933. struct ggml_context * ctx,
  2934. enum ggml_type type,
  2935. int64_t ne0,
  2936. int64_t ne1) {
  2937. const int64_t ne[2] = { ne0, ne1 };
  2938. return ggml_new_tensor(ctx, type, 2, ne);
  2939. }
  2940. struct ggml_tensor * ggml_new_tensor_3d(
  2941. struct ggml_context * ctx,
  2942. enum ggml_type type,
  2943. int64_t ne0,
  2944. int64_t ne1,
  2945. int64_t ne2) {
  2946. const int64_t ne[3] = { ne0, ne1, ne2 };
  2947. return ggml_new_tensor(ctx, type, 3, ne);
  2948. }
  2949. struct ggml_tensor * ggml_new_tensor_4d(
  2950. struct ggml_context * ctx,
  2951. enum ggml_type type,
  2952. int64_t ne0,
  2953. int64_t ne1,
  2954. int64_t ne2,
  2955. int64_t ne3) {
  2956. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2957. return ggml_new_tensor(ctx, type, 4, ne);
  2958. }
  2959. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2960. ctx->scratch_save = ctx->scratch;
  2961. ctx->scratch.data = NULL;
  2962. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2963. ctx->scratch = ctx->scratch_save;
  2964. ggml_set_i32(result, value);
  2965. return result;
  2966. }
  2967. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2968. ctx->scratch_save = ctx->scratch;
  2969. ctx->scratch.data = NULL;
  2970. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2971. ctx->scratch = ctx->scratch_save;
  2972. ggml_set_f32(result, value);
  2973. return result;
  2974. }
  2975. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2976. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2977. }
  2978. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2979. memset(tensor->data, 0, ggml_nbytes(tensor));
  2980. return tensor;
  2981. }
  2982. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2983. const int n = ggml_nrows(tensor);
  2984. const int nc = tensor->ne[0];
  2985. const size_t n1 = tensor->nb[1];
  2986. char * const data = tensor->data;
  2987. switch (tensor->type) {
  2988. case GGML_TYPE_I8:
  2989. {
  2990. assert(tensor->nb[0] == sizeof(int8_t));
  2991. for (int i = 0; i < n; i++) {
  2992. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2993. }
  2994. } break;
  2995. case GGML_TYPE_I16:
  2996. {
  2997. assert(tensor->nb[0] == sizeof(int16_t));
  2998. for (int i = 0; i < n; i++) {
  2999. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3000. }
  3001. } break;
  3002. case GGML_TYPE_I32:
  3003. {
  3004. assert(tensor->nb[0] == sizeof(int32_t));
  3005. for (int i = 0; i < n; i++) {
  3006. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3007. }
  3008. } break;
  3009. case GGML_TYPE_F16:
  3010. {
  3011. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3012. for (int i = 0; i < n; i++) {
  3013. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3014. }
  3015. } break;
  3016. case GGML_TYPE_F32:
  3017. {
  3018. assert(tensor->nb[0] == sizeof(float));
  3019. for (int i = 0; i < n; i++) {
  3020. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3021. }
  3022. } break;
  3023. default:
  3024. {
  3025. GGML_ASSERT(false);
  3026. } break;
  3027. }
  3028. return tensor;
  3029. }
  3030. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3031. const int n = ggml_nrows(tensor);
  3032. const int nc = tensor->ne[0];
  3033. const size_t n1 = tensor->nb[1];
  3034. char * const data = tensor->data;
  3035. switch (tensor->type) {
  3036. case GGML_TYPE_I8:
  3037. {
  3038. assert(tensor->nb[0] == sizeof(int8_t));
  3039. for (int i = 0; i < n; i++) {
  3040. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3041. }
  3042. } break;
  3043. case GGML_TYPE_I16:
  3044. {
  3045. assert(tensor->nb[0] == sizeof(int16_t));
  3046. for (int i = 0; i < n; i++) {
  3047. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3048. }
  3049. } break;
  3050. case GGML_TYPE_I32:
  3051. {
  3052. assert(tensor->nb[0] == sizeof(int32_t));
  3053. for (int i = 0; i < n; i++) {
  3054. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3055. }
  3056. } break;
  3057. case GGML_TYPE_F16:
  3058. {
  3059. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3060. for (int i = 0; i < n; i++) {
  3061. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3062. }
  3063. } break;
  3064. case GGML_TYPE_F32:
  3065. {
  3066. assert(tensor->nb[0] == sizeof(float));
  3067. for (int i = 0; i < n; i++) {
  3068. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3069. }
  3070. } break;
  3071. default:
  3072. {
  3073. GGML_ASSERT(false);
  3074. } break;
  3075. }
  3076. return tensor;
  3077. }
  3078. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3079. switch (tensor->type) {
  3080. case GGML_TYPE_I8:
  3081. {
  3082. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3083. return ((int8_t *)(tensor->data))[i];
  3084. } break;
  3085. case GGML_TYPE_I16:
  3086. {
  3087. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3088. return ((int16_t *)(tensor->data))[i];
  3089. } break;
  3090. case GGML_TYPE_I32:
  3091. {
  3092. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3093. return ((int32_t *)(tensor->data))[i];
  3094. } break;
  3095. case GGML_TYPE_F16:
  3096. {
  3097. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3098. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3099. } break;
  3100. case GGML_TYPE_F32:
  3101. {
  3102. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3103. return ((float *)(tensor->data))[i];
  3104. } break;
  3105. default:
  3106. {
  3107. GGML_ASSERT(false);
  3108. } break;
  3109. }
  3110. return 0.0f;
  3111. }
  3112. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3113. switch (tensor->type) {
  3114. case GGML_TYPE_I8:
  3115. {
  3116. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3117. ((int8_t *)(tensor->data))[i] = value;
  3118. } break;
  3119. case GGML_TYPE_I16:
  3120. {
  3121. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3122. ((int16_t *)(tensor->data))[i] = value;
  3123. } break;
  3124. case GGML_TYPE_I32:
  3125. {
  3126. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3127. ((int32_t *)(tensor->data))[i] = value;
  3128. } break;
  3129. case GGML_TYPE_F16:
  3130. {
  3131. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3132. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3133. } break;
  3134. case GGML_TYPE_F32:
  3135. {
  3136. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3137. ((float *)(tensor->data))[i] = value;
  3138. } break;
  3139. default:
  3140. {
  3141. GGML_ASSERT(false);
  3142. } break;
  3143. }
  3144. }
  3145. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3146. switch (tensor->type) {
  3147. case GGML_TYPE_I8:
  3148. {
  3149. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3150. return ((int8_t *)(tensor->data))[i];
  3151. } break;
  3152. case GGML_TYPE_I16:
  3153. {
  3154. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3155. return ((int16_t *)(tensor->data))[i];
  3156. } break;
  3157. case GGML_TYPE_I32:
  3158. {
  3159. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3160. return ((int32_t *)(tensor->data))[i];
  3161. } break;
  3162. case GGML_TYPE_F16:
  3163. {
  3164. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3165. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3166. } break;
  3167. case GGML_TYPE_F32:
  3168. {
  3169. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3170. return ((float *)(tensor->data))[i];
  3171. } break;
  3172. default:
  3173. {
  3174. GGML_ASSERT(false);
  3175. } break;
  3176. }
  3177. return 0.0f;
  3178. }
  3179. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3180. switch (tensor->type) {
  3181. case GGML_TYPE_I8:
  3182. {
  3183. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3184. ((int8_t *)(tensor->data))[i] = value;
  3185. } break;
  3186. case GGML_TYPE_I16:
  3187. {
  3188. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3189. ((int16_t *)(tensor->data))[i] = value;
  3190. } break;
  3191. case GGML_TYPE_I32:
  3192. {
  3193. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3194. ((int32_t *)(tensor->data))[i] = value;
  3195. } break;
  3196. case GGML_TYPE_F16:
  3197. {
  3198. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3199. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3200. } break;
  3201. case GGML_TYPE_F32:
  3202. {
  3203. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3204. ((float *)(tensor->data))[i] = value;
  3205. } break;
  3206. default:
  3207. {
  3208. GGML_ASSERT(false);
  3209. } break;
  3210. }
  3211. }
  3212. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3213. return tensor->data;
  3214. }
  3215. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3216. assert(tensor->type == GGML_TYPE_F32);
  3217. return (float *)(tensor->data);
  3218. }
  3219. struct ggml_tensor * ggml_view_tensor(
  3220. struct ggml_context * ctx,
  3221. const struct ggml_tensor * src) {
  3222. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3223. result->nb[0] = src->nb[0];
  3224. result->nb[1] = src->nb[1];
  3225. result->nb[2] = src->nb[2];
  3226. result->nb[3] = src->nb[3];
  3227. return result;
  3228. }
  3229. ////////////////////////////////////////////////////////////////////////////////
  3230. // ggml_dup
  3231. struct ggml_tensor * ggml_dup_impl(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a,
  3234. bool inplace) {
  3235. bool is_node = false;
  3236. if (!inplace && (a->grad)) {
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3240. result->op = GGML_OP_DUP;
  3241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3242. result->src0 = a;
  3243. result->src1 = NULL;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_dup(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_dup_impl(ctx, a, false);
  3250. }
  3251. struct ggml_tensor * ggml_dup_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_dup_impl(ctx, a, true);
  3255. }
  3256. // ggml_add
  3257. struct ggml_tensor * ggml_add_impl(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. struct ggml_tensor * b,
  3261. bool inplace) {
  3262. GGML_ASSERT(ggml_are_same_shape(a, b));
  3263. bool is_node = false;
  3264. if (!inplace && (a->grad || b->grad)) {
  3265. is_node = true;
  3266. }
  3267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3268. result->op = GGML_OP_ADD;
  3269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3270. result->src0 = a;
  3271. result->src1 = b;
  3272. return result;
  3273. }
  3274. struct ggml_tensor * ggml_add(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a,
  3277. struct ggml_tensor * b) {
  3278. return ggml_add_impl(ctx, a, b, false);
  3279. }
  3280. struct ggml_tensor * ggml_add_inplace(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a,
  3283. struct ggml_tensor * b) {
  3284. return ggml_add_impl(ctx, a, b, true);
  3285. }
  3286. // ggml_sub
  3287. struct ggml_tensor * ggml_sub_impl(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. struct ggml_tensor * b,
  3291. bool inplace) {
  3292. GGML_ASSERT(ggml_are_same_shape(a, b));
  3293. bool is_node = false;
  3294. if (!inplace && (a->grad || b->grad)) {
  3295. is_node = true;
  3296. }
  3297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3298. result->op = GGML_OP_SUB;
  3299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3300. result->src0 = a;
  3301. result->src1 = b;
  3302. return result;
  3303. }
  3304. struct ggml_tensor * ggml_sub(
  3305. struct ggml_context * ctx,
  3306. struct ggml_tensor * a,
  3307. struct ggml_tensor * b) {
  3308. return ggml_sub_impl(ctx, a, b, false);
  3309. }
  3310. struct ggml_tensor * ggml_sub_inplace(
  3311. struct ggml_context * ctx,
  3312. struct ggml_tensor * a,
  3313. struct ggml_tensor * b) {
  3314. return ggml_sub_impl(ctx, a, b, true);
  3315. }
  3316. // ggml_mul
  3317. struct ggml_tensor * ggml_mul_impl(
  3318. struct ggml_context * ctx,
  3319. struct ggml_tensor * a,
  3320. struct ggml_tensor * b,
  3321. bool inplace) {
  3322. GGML_ASSERT(ggml_are_same_shape(a, b));
  3323. bool is_node = false;
  3324. if (!inplace && (a->grad || b->grad)) {
  3325. is_node = true;
  3326. }
  3327. if (inplace) {
  3328. GGML_ASSERT(is_node == false);
  3329. }
  3330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3331. result->op = GGML_OP_MUL;
  3332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3333. result->src0 = a;
  3334. result->src1 = b;
  3335. return result;
  3336. }
  3337. struct ggml_tensor * ggml_mul(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. struct ggml_tensor * b) {
  3341. return ggml_mul_impl(ctx, a, b, false);
  3342. }
  3343. struct ggml_tensor * ggml_mul_inplace(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. struct ggml_tensor * b) {
  3347. return ggml_mul_impl(ctx, a, b, true);
  3348. }
  3349. // ggml_div
  3350. struct ggml_tensor * ggml_div_impl(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b,
  3354. bool inplace) {
  3355. GGML_ASSERT(ggml_are_same_shape(a, b));
  3356. bool is_node = false;
  3357. if (!inplace && (a->grad || b->grad)) {
  3358. is_node = true;
  3359. }
  3360. if (inplace) {
  3361. GGML_ASSERT(is_node == false);
  3362. }
  3363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3364. result->op = GGML_OP_DIV;
  3365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3366. result->src0 = a;
  3367. result->src1 = b;
  3368. return result;
  3369. }
  3370. struct ggml_tensor * ggml_div(
  3371. struct ggml_context * ctx,
  3372. struct ggml_tensor * a,
  3373. struct ggml_tensor * b) {
  3374. return ggml_div_impl(ctx, a, b, false);
  3375. }
  3376. struct ggml_tensor * ggml_div_inplace(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * a,
  3379. struct ggml_tensor * b) {
  3380. return ggml_div_impl(ctx, a, b, true);
  3381. }
  3382. // ggml_sqr
  3383. struct ggml_tensor * ggml_sqr_impl(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. bool inplace) {
  3387. bool is_node = false;
  3388. if (!inplace && (a->grad)) {
  3389. is_node = true;
  3390. }
  3391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3392. result->op = GGML_OP_SQR;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = a;
  3395. result->src1 = NULL;
  3396. return result;
  3397. }
  3398. struct ggml_tensor * ggml_sqr(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. return ggml_sqr_impl(ctx, a, false);
  3402. }
  3403. struct ggml_tensor * ggml_sqr_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. return ggml_sqr_impl(ctx, a, true);
  3407. }
  3408. // ggml_sqrt
  3409. struct ggml_tensor * ggml_sqrt_impl(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. bool inplace) {
  3413. bool is_node = false;
  3414. if (!inplace && (a->grad)) {
  3415. is_node = true;
  3416. }
  3417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3418. result->op = GGML_OP_SQRT;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src0 = a;
  3421. result->src1 = NULL;
  3422. return result;
  3423. }
  3424. struct ggml_tensor * ggml_sqrt(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a) {
  3427. return ggml_sqrt_impl(ctx, a, false);
  3428. }
  3429. struct ggml_tensor * ggml_sqrt_inplace(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a) {
  3432. return ggml_sqrt_impl(ctx, a, true);
  3433. }
  3434. // ggml_sum
  3435. struct ggml_tensor * ggml_sum(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a) {
  3438. bool is_node = false;
  3439. if (a->grad) {
  3440. is_node = true;
  3441. }
  3442. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3443. result->op = GGML_OP_SUM;
  3444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3445. result->src0 = a;
  3446. result->src1 = NULL;
  3447. return result;
  3448. }
  3449. // ggml_mean
  3450. struct ggml_tensor * ggml_mean(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a) {
  3453. bool is_node = false;
  3454. if (a->grad) {
  3455. GGML_ASSERT(false); // TODO: implement
  3456. is_node = true;
  3457. }
  3458. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3459. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3460. result->op = GGML_OP_MEAN;
  3461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3462. result->src0 = a;
  3463. result->src1 = NULL;
  3464. return result;
  3465. }
  3466. // ggml_repeat
  3467. struct ggml_tensor * ggml_repeat(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. struct ggml_tensor * b) {
  3471. GGML_ASSERT(ggml_can_repeat(a, b));
  3472. bool is_node = false;
  3473. if (a->grad) {
  3474. is_node = true;
  3475. }
  3476. if (ggml_are_same_shape(a, b) && !is_node) {
  3477. return a;
  3478. }
  3479. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3480. result->op = GGML_OP_REPEAT;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src0 = a;
  3483. result->src1 = b;
  3484. return result;
  3485. }
  3486. // ggml_abs
  3487. struct ggml_tensor * ggml_abs_impl(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. bool inplace) {
  3491. bool is_node = false;
  3492. if (!inplace && (a->grad)) {
  3493. is_node = true;
  3494. }
  3495. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3496. result->op = GGML_OP_ABS;
  3497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3498. result->src0 = a;
  3499. result->src1 = NULL;
  3500. return result;
  3501. }
  3502. struct ggml_tensor * ggml_abs(
  3503. struct ggml_context * ctx,
  3504. struct ggml_tensor * a) {
  3505. return ggml_abs_impl(ctx, a, false);
  3506. }
  3507. struct ggml_tensor * ggml_abs_inplace(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a) {
  3510. return ggml_abs_impl(ctx, a, true);
  3511. }
  3512. // ggml_sgn
  3513. struct ggml_tensor * ggml_sgn_impl(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. bool inplace) {
  3517. bool is_node = false;
  3518. if (!inplace && (a->grad)) {
  3519. is_node = true;
  3520. }
  3521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3522. result->op = GGML_OP_SGN;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src0 = a;
  3525. result->src1 = NULL;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_sgn(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a) {
  3531. return ggml_sgn_impl(ctx, a, false);
  3532. }
  3533. struct ggml_tensor * ggml_sgn_inplace(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a) {
  3536. return ggml_sgn_impl(ctx, a, true);
  3537. }
  3538. // ggml_neg
  3539. struct ggml_tensor * ggml_neg_impl(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. bool inplace) {
  3543. bool is_node = false;
  3544. if (!inplace && (a->grad)) {
  3545. is_node = true;
  3546. }
  3547. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3548. result->op = GGML_OP_NEG;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src0 = a;
  3551. result->src1 = NULL;
  3552. return result;
  3553. }
  3554. struct ggml_tensor * ggml_neg(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a) {
  3557. return ggml_neg_impl(ctx, a, false);
  3558. }
  3559. struct ggml_tensor * ggml_neg_inplace(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a) {
  3562. return ggml_neg_impl(ctx, a, true);
  3563. }
  3564. // ggml_step
  3565. struct ggml_tensor * ggml_step_impl(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a,
  3568. bool inplace) {
  3569. bool is_node = false;
  3570. if (!inplace && (a->grad)) {
  3571. is_node = true;
  3572. }
  3573. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3574. result->op = GGML_OP_STEP;
  3575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3576. result->src0 = a;
  3577. result->src1 = NULL;
  3578. return result;
  3579. }
  3580. struct ggml_tensor * ggml_step(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a) {
  3583. return ggml_step_impl(ctx, a, false);
  3584. }
  3585. struct ggml_tensor * ggml_step_inplace(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. return ggml_step_impl(ctx, a, true);
  3589. }
  3590. // ggml_relu
  3591. struct ggml_tensor * ggml_relu_impl(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. bool inplace) {
  3595. bool is_node = false;
  3596. if (!inplace && (a->grad)) {
  3597. is_node = true;
  3598. }
  3599. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3600. result->op = GGML_OP_RELU;
  3601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3602. result->src0 = a;
  3603. result->src1 = NULL;
  3604. return result;
  3605. }
  3606. struct ggml_tensor * ggml_relu(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a) {
  3609. return ggml_relu_impl(ctx, a, false);
  3610. }
  3611. struct ggml_tensor * ggml_relu_inplace(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a) {
  3614. return ggml_relu_impl(ctx, a, true);
  3615. }
  3616. // ggml_gelu
  3617. struct ggml_tensor * ggml_gelu_impl(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a,
  3620. bool inplace) {
  3621. bool is_node = false;
  3622. if (!inplace && (a->grad)) {
  3623. is_node = true;
  3624. }
  3625. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3626. result->op = GGML_OP_GELU;
  3627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3628. result->src0 = a;
  3629. result->src1 = NULL;
  3630. return result;
  3631. }
  3632. struct ggml_tensor * ggml_gelu(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * a) {
  3635. return ggml_gelu_impl(ctx, a, false);
  3636. }
  3637. struct ggml_tensor * ggml_gelu_inplace(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a) {
  3640. return ggml_gelu_impl(ctx, a, true);
  3641. }
  3642. // ggml_silu
  3643. struct ggml_tensor * ggml_silu_impl(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. bool inplace) {
  3647. bool is_node = false;
  3648. if (!inplace && (a->grad)) {
  3649. is_node = true;
  3650. }
  3651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3652. result->op = GGML_OP_SILU;
  3653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3654. result->src0 = a;
  3655. result->src1 = NULL;
  3656. return result;
  3657. }
  3658. struct ggml_tensor * ggml_silu(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a) {
  3661. return ggml_silu_impl(ctx, a, false);
  3662. }
  3663. struct ggml_tensor * ggml_silu_inplace(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a) {
  3666. return ggml_silu_impl(ctx, a, true);
  3667. }
  3668. // ggml_norm
  3669. struct ggml_tensor * ggml_norm_impl(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a,
  3672. bool inplace) {
  3673. bool is_node = false;
  3674. if (!inplace && (a->grad)) {
  3675. GGML_ASSERT(false); // TODO: implement backward
  3676. is_node = true;
  3677. }
  3678. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3679. result->op = GGML_OP_NORM;
  3680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3681. result->src0 = a;
  3682. result->src1 = NULL; // TODO: maybe store epsilon here?
  3683. return result;
  3684. }
  3685. struct ggml_tensor * ggml_norm(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a) {
  3688. return ggml_norm_impl(ctx, a, false);
  3689. }
  3690. struct ggml_tensor * ggml_norm_inplace(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a) {
  3693. return ggml_norm_impl(ctx, a, true);
  3694. }
  3695. struct ggml_tensor * ggml_rms_norm_impl(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. bool inplace) {
  3699. bool is_node = false;
  3700. if (!inplace && (a->grad)) {
  3701. GGML_ASSERT(false); // TODO: implement backward
  3702. is_node = true;
  3703. }
  3704. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3705. result->op = GGML_OP_RMS_NORM;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src0 = a;
  3708. result->src1 = NULL; // TODO: maybe store epsilon here?
  3709. return result;
  3710. }
  3711. struct ggml_tensor * ggml_rms_norm(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a) {
  3714. return ggml_rms_norm_impl(ctx, a, false);
  3715. }
  3716. struct ggml_tensor * ggml_rms_norm_inplace(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a) {
  3719. return ggml_rms_norm_impl(ctx, a, true);
  3720. }
  3721. // ggml_mul_mat
  3722. struct ggml_tensor * ggml_mul_mat(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. struct ggml_tensor * b) {
  3726. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3727. GGML_ASSERT(!ggml_is_transposed(a));
  3728. bool is_node = false;
  3729. if (a->grad || b->grad) {
  3730. is_node = true;
  3731. }
  3732. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3733. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3734. result->op = GGML_OP_MUL_MAT;
  3735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3736. result->src0 = a;
  3737. result->src1 = b;
  3738. return result;
  3739. }
  3740. // ggml_scale
  3741. struct ggml_tensor * ggml_scale_impl(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b,
  3745. bool inplace) {
  3746. GGML_ASSERT(ggml_is_scalar(b));
  3747. GGML_ASSERT(ggml_is_padded_1d(a));
  3748. bool is_node = false;
  3749. if (!inplace && (a->grad || b->grad)) {
  3750. GGML_ASSERT(false); // TODO: implement backward
  3751. is_node = true;
  3752. }
  3753. // TODO: when implement backward, fix this:
  3754. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3755. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3756. result->op = GGML_OP_SCALE;
  3757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3758. result->src0 = a;
  3759. result->src1 = b;
  3760. return result;
  3761. }
  3762. struct ggml_tensor * ggml_scale(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b) {
  3766. return ggml_scale_impl(ctx, a, b, false);
  3767. }
  3768. struct ggml_tensor * ggml_scale_inplace(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a,
  3771. struct ggml_tensor * b) {
  3772. return ggml_scale_impl(ctx, a, b, true);
  3773. }
  3774. // ggml_cpy
  3775. struct ggml_tensor * ggml_cpy_impl(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. struct ggml_tensor * b,
  3779. bool inplace) {
  3780. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3781. bool is_node = false;
  3782. if (!inplace && (a->grad || b->grad)) {
  3783. GGML_ASSERT(false); // TODO: implement backward
  3784. is_node = true;
  3785. }
  3786. // make a view of the destination
  3787. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3788. result->op = GGML_OP_CPY;
  3789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3790. result->src0 = a;
  3791. result->src1 = b;
  3792. return result;
  3793. }
  3794. struct ggml_tensor * ggml_cpy(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. struct ggml_tensor * b) {
  3798. return ggml_cpy_impl(ctx, a, b, false);
  3799. }
  3800. struct ggml_tensor * ggml_cpy_inplace(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a,
  3803. struct ggml_tensor * b) {
  3804. return ggml_cpy_impl(ctx, a, b, true);
  3805. }
  3806. // ggml_cont
  3807. struct ggml_tensor * ggml_cont_impl(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. bool inplace) {
  3811. bool is_node = false;
  3812. if (!inplace && a->grad) {
  3813. GGML_ASSERT(false); // TODO: implement backward
  3814. is_node = true;
  3815. }
  3816. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3817. result->op = GGML_OP_CONT;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src0 = a;
  3820. result->src1 = NULL;
  3821. return result;
  3822. }
  3823. struct ggml_tensor * ggml_cont(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a) {
  3826. return ggml_cont_impl(ctx, a, false);
  3827. }
  3828. struct ggml_tensor * ggml_cont_inplace(
  3829. struct ggml_context * ctx,
  3830. struct ggml_tensor * a) {
  3831. return ggml_cont_impl(ctx, a, true);
  3832. }
  3833. // ggml_reshape
  3834. struct ggml_tensor * ggml_reshape(
  3835. struct ggml_context * ctx,
  3836. struct ggml_tensor * a,
  3837. struct ggml_tensor * b) {
  3838. GGML_ASSERT(ggml_is_contiguous(a));
  3839. GGML_ASSERT(ggml_is_contiguous(b));
  3840. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3841. bool is_node = false;
  3842. if (a->grad || b->grad) {
  3843. GGML_ASSERT(false); // TODO: implement backward
  3844. is_node = true;
  3845. }
  3846. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3847. result->op = GGML_OP_RESHAPE;
  3848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3849. result->src0 = a;
  3850. result->src1 = NULL;
  3851. return result;
  3852. }
  3853. struct ggml_tensor * ggml_reshape_2d(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a,
  3856. int64_t ne0,
  3857. int64_t ne1) {
  3858. GGML_ASSERT(ggml_is_contiguous(a));
  3859. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3860. bool is_node = false;
  3861. if (a->grad) {
  3862. GGML_ASSERT(false); // TODO: implement backward
  3863. is_node = true;
  3864. }
  3865. const int64_t ne[2] = { ne0, ne1 };
  3866. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3867. result->op = GGML_OP_RESHAPE;
  3868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3869. result->src0 = a;
  3870. result->src1 = NULL;
  3871. return result;
  3872. }
  3873. struct ggml_tensor * ggml_reshape_3d(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. int64_t ne0,
  3877. int64_t ne1,
  3878. int64_t ne2) {
  3879. GGML_ASSERT(ggml_is_contiguous(a));
  3880. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3881. bool is_node = false;
  3882. if (a->grad) {
  3883. GGML_ASSERT(false); // TODO: implement backward
  3884. is_node = true;
  3885. }
  3886. const int64_t ne[3] = { ne0, ne1, ne2 };
  3887. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3888. result->op = GGML_OP_RESHAPE;
  3889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3890. result->src0 = a;
  3891. result->src1 = NULL;
  3892. return result;
  3893. }
  3894. // ggml_view_1d
  3895. struct ggml_tensor * ggml_view_1d(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. int64_t ne0,
  3899. size_t offset) {
  3900. if (a->grad) {
  3901. GGML_ASSERT(false); // gradient propagation is not supported
  3902. }
  3903. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3904. result->op = GGML_OP_VIEW;
  3905. result->grad = NULL;
  3906. result->src0 = a;
  3907. result->src1 = NULL; // TODO: maybe store the offset here?
  3908. return result;
  3909. }
  3910. // ggml_view_2d
  3911. struct ggml_tensor * ggml_view_2d(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. int64_t ne0,
  3915. int64_t ne1,
  3916. size_t nb1,
  3917. size_t offset) {
  3918. if (a->grad) {
  3919. GGML_ASSERT(false); // gradient propagation is not supported
  3920. }
  3921. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3922. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3923. result->nb[1] = nb1;
  3924. result->nb[2] = result->nb[1]*ne1;
  3925. result->nb[3] = result->nb[2];
  3926. result->op = GGML_OP_VIEW;
  3927. result->grad = NULL;
  3928. result->src0 = a;
  3929. result->src1 = NULL; // TODO: maybe store the offset here?
  3930. return result;
  3931. }
  3932. // ggml_view_3d
  3933. struct ggml_tensor * ggml_view_3d(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. int64_t ne0,
  3937. int64_t ne1,
  3938. int64_t ne2,
  3939. size_t nb1,
  3940. size_t nb2,
  3941. size_t offset) {
  3942. if (a->grad) {
  3943. GGML_ASSERT(false); // gradient propagation is not supported
  3944. }
  3945. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3946. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3947. result->nb[1] = nb1;
  3948. result->nb[2] = nb2;
  3949. result->nb[3] = result->nb[2]*ne2;
  3950. result->op = GGML_OP_VIEW;
  3951. result->grad = NULL;
  3952. result->src0 = a;
  3953. result->src1 = NULL; // TODO: maybe store the offset here?
  3954. return result;
  3955. }
  3956. // ggml_permute
  3957. struct ggml_tensor * ggml_permute(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. int axis0,
  3961. int axis1,
  3962. int axis2,
  3963. int axis3) {
  3964. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3965. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3966. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3967. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3968. GGML_ASSERT(axis0 != axis1);
  3969. GGML_ASSERT(axis0 != axis2);
  3970. GGML_ASSERT(axis0 != axis3);
  3971. GGML_ASSERT(axis1 != axis2);
  3972. GGML_ASSERT(axis1 != axis3);
  3973. GGML_ASSERT(axis2 != axis3);
  3974. bool is_node = false;
  3975. if (a->grad) {
  3976. GGML_ASSERT(false); // TODO: implement backward
  3977. is_node = true;
  3978. }
  3979. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3980. int ne[GGML_MAX_DIMS];
  3981. int nb[GGML_MAX_DIMS];
  3982. ne[axis0] = a->ne[0];
  3983. ne[axis1] = a->ne[1];
  3984. ne[axis2] = a->ne[2];
  3985. ne[axis3] = a->ne[3];
  3986. nb[axis0] = a->nb[0];
  3987. nb[axis1] = a->nb[1];
  3988. nb[axis2] = a->nb[2];
  3989. nb[axis3] = a->nb[3];
  3990. result->ne[0] = ne[0];
  3991. result->ne[1] = ne[1];
  3992. result->ne[2] = ne[2];
  3993. result->ne[3] = ne[3];
  3994. result->nb[0] = nb[0];
  3995. result->nb[1] = nb[1];
  3996. result->nb[2] = nb[2];
  3997. result->nb[3] = nb[3];
  3998. result->op = GGML_OP_PERMUTE;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src0 = a;
  4001. result->src1 = NULL; // TODO: maybe store the permutation here?
  4002. return result;
  4003. }
  4004. // ggml_transpose
  4005. struct ggml_tensor * ggml_transpose(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a) {
  4008. bool is_node = false;
  4009. if (a->grad) {
  4010. GGML_ASSERT(false); // TODO: implement backward
  4011. is_node = true;
  4012. }
  4013. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4014. result->ne[0] = a->ne[1];
  4015. result->ne[1] = a->ne[0];
  4016. result->nb[0] = a->nb[1];
  4017. result->nb[1] = a->nb[0];
  4018. result->op = GGML_OP_TRANSPOSE;
  4019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4020. result->src0 = a;
  4021. result->src1 = NULL;
  4022. return result;
  4023. }
  4024. // ggml_get_rows
  4025. struct ggml_tensor * ggml_get_rows(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. struct ggml_tensor * b) {
  4029. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4030. bool is_node = false;
  4031. if (a->grad || b->grad) {
  4032. GGML_ASSERT(false); // TODO: implement backward
  4033. is_node = true;
  4034. }
  4035. // TODO: implement non F32 return
  4036. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4037. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4038. result->op = GGML_OP_GET_ROWS;
  4039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4040. result->src0 = a;
  4041. result->src1 = b;
  4042. return result;
  4043. }
  4044. // ggml_diag_mask_inf
  4045. struct ggml_tensor * ggml_diag_mask_inf(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. int n_past) {
  4049. bool is_node = false;
  4050. if (a->grad) {
  4051. GGML_ASSERT(false); // TODO: implement backward
  4052. is_node = true;
  4053. }
  4054. // TODO: when implement backward, fix this:
  4055. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4057. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4058. result->op = GGML_OP_DIAG_MASK_INF;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src0 = a;
  4061. result->src1 = b;
  4062. return result;
  4063. }
  4064. // ggml_soft_max
  4065. struct ggml_tensor * ggml_soft_max(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a) {
  4068. bool is_node = false;
  4069. if (a->grad) {
  4070. GGML_ASSERT(false); // TODO: implement backward
  4071. is_node = true;
  4072. }
  4073. // TODO: when implement backward, fix this:
  4074. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4075. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4076. result->op = GGML_OP_SOFT_MAX;
  4077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4078. result->src0 = a;
  4079. result->src1 = NULL;
  4080. return result;
  4081. }
  4082. // ggml_rope
  4083. struct ggml_tensor * ggml_rope(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a,
  4086. int n_past,
  4087. int n_dims,
  4088. int mode) {
  4089. GGML_ASSERT(n_past >= 0);
  4090. bool is_node = false;
  4091. if (a->grad) {
  4092. GGML_ASSERT(false); // TODO: implement backward
  4093. is_node = true;
  4094. }
  4095. // TODO: when implement backward, fix this:
  4096. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4097. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4098. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4099. ((int32_t *) b->data)[0] = n_past;
  4100. ((int32_t *) b->data)[1] = n_dims;
  4101. ((int32_t *) b->data)[2] = mode;
  4102. result->op = GGML_OP_ROPE;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src0 = a;
  4105. result->src1 = b;
  4106. return result;
  4107. }
  4108. // ggml_conv_1d_1s
  4109. struct ggml_tensor * ggml_conv_1d_1s(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. struct ggml_tensor * b) {
  4113. GGML_ASSERT(ggml_is_matrix(b));
  4114. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4115. GGML_ASSERT(a->ne[3] == 1);
  4116. bool is_node = false;
  4117. if (a->grad || b->grad) {
  4118. GGML_ASSERT(false); // TODO: implement backward
  4119. is_node = true;
  4120. }
  4121. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4122. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4123. result->op = GGML_OP_CONV_1D_1S;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src0 = a;
  4126. result->src1 = b;
  4127. return result;
  4128. }
  4129. // ggml_conv_1d_2s
  4130. struct ggml_tensor * ggml_conv_1d_2s(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. struct ggml_tensor * b) {
  4134. GGML_ASSERT(ggml_is_matrix(b));
  4135. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4136. GGML_ASSERT(a->ne[3] == 1);
  4137. bool is_node = false;
  4138. if (a->grad || b->grad) {
  4139. GGML_ASSERT(false); // TODO: implement backward
  4140. is_node = true;
  4141. }
  4142. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4143. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4144. result->op = GGML_OP_CONV_1D_2S;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src0 = a;
  4147. result->src1 = b;
  4148. return result;
  4149. }
  4150. // ggml_flash_attn
  4151. struct ggml_tensor * ggml_flash_attn(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * q,
  4154. struct ggml_tensor * k,
  4155. struct ggml_tensor * v,
  4156. bool masked) {
  4157. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4158. // TODO: check if vT can be multiplied by (k*qT)
  4159. bool is_node = false;
  4160. if (q->grad || k->grad || v->grad) {
  4161. GGML_ASSERT(false); // TODO: implement backward
  4162. is_node = true;
  4163. }
  4164. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4165. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4166. result->op = GGML_OP_FLASH_ATTN;
  4167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4168. result->src0 = q;
  4169. result->src1 = k;
  4170. result->opt[0] = v;
  4171. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4172. return result;
  4173. }
  4174. // ggml_flash_ff
  4175. struct ggml_tensor * ggml_flash_ff(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b0,
  4179. struct ggml_tensor * b1,
  4180. struct ggml_tensor * c0,
  4181. struct ggml_tensor * c1) {
  4182. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4183. // TODO: more checks
  4184. bool is_node = false;
  4185. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4186. GGML_ASSERT(false); // TODO: implement backward
  4187. is_node = true;
  4188. }
  4189. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4190. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4191. result->op = GGML_OP_FLASH_FF;
  4192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4193. result->src0 = a;
  4194. result->src1 = b0;
  4195. result->opt[0] = b1;
  4196. result->opt[1] = c0;
  4197. result->opt[2] = c1;
  4198. return result;
  4199. }
  4200. // ggml_map_unary
  4201. struct ggml_tensor * ggml_map_unary_impl_f32(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. const ggml_unary_op_f32_t fun,
  4205. bool inplace) {
  4206. bool is_node = false;
  4207. if (!inplace && a->grad) {
  4208. is_node = true;
  4209. }
  4210. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4211. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4212. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4213. result->op = GGML_OP_MAP_UNARY;
  4214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4215. result->src0 = a;
  4216. result->opt[0] = addr_tensor;
  4217. return result;
  4218. }
  4219. struct ggml_tensor * ggml_map_unary_f32(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. const ggml_unary_op_f32_t fun) {
  4223. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4224. }
  4225. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. const ggml_unary_op_f32_t fun) {
  4229. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4230. }
  4231. // ggml_map_binary
  4232. struct ggml_tensor * ggml_map_binary_impl_f32(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a,
  4235. struct ggml_tensor * b,
  4236. const ggml_binary_op_f32_t fun,
  4237. bool inplace) {
  4238. GGML_ASSERT(ggml_are_same_shape(a, b));
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad || b->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4244. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4245. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4246. result->op = GGML_OP_MAP_BINARY;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src0 = a;
  4249. result->src1 = b;
  4250. result->opt[0] = addr_tensor;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_map_binary_f32(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. const ggml_binary_op_f32_t fun) {
  4258. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4259. }
  4260. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a,
  4263. struct ggml_tensor * b,
  4264. const ggml_binary_op_f32_t fun) {
  4265. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4266. }
  4267. ////////////////////////////////////////////////////////////////////////////////
  4268. void ggml_set_param(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * tensor) {
  4271. tensor->is_param = true;
  4272. GGML_ASSERT(tensor->grad == NULL);
  4273. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4274. }
  4275. // ggml_compute_forward_dup
  4276. static void ggml_compute_forward_dup_f16(
  4277. const struct ggml_compute_params * params,
  4278. const struct ggml_tensor * src0,
  4279. struct ggml_tensor * dst) {
  4280. GGML_ASSERT(params->ith == 0);
  4281. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4283. return;
  4284. }
  4285. const int64_t ne00 = src0->ne[0];
  4286. const int64_t ne01 = src0->ne[1];
  4287. const int64_t ne02 = src0->ne[2];
  4288. const int64_t ne03 = src0->ne[3];
  4289. const size_t nb00 = src0->nb[0];
  4290. const size_t nb01 = src0->nb[1];
  4291. const size_t nb02 = src0->nb[2];
  4292. const size_t nb03 = src0->nb[3];
  4293. const size_t nb0 = dst->nb[0];
  4294. const size_t nb1 = dst->nb[1];
  4295. const size_t nb2 = dst->nb[2];
  4296. const size_t nb3 = dst->nb[3];
  4297. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4298. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4299. return;
  4300. }
  4301. if (src0->type == dst->type &&
  4302. src0->ne[0] == dst->ne[0] &&
  4303. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4304. // copy by rows
  4305. const size_t rs = ne00*nb00;
  4306. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4307. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4308. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4309. memcpy(
  4310. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4311. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4312. rs);
  4313. }
  4314. }
  4315. }
  4316. return;
  4317. }
  4318. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4319. if (ggml_is_contiguous(dst)) {
  4320. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  4321. if (dst->type == GGML_TYPE_F16) {
  4322. size_t id = 0;
  4323. const size_t rs = ne00*nb00;
  4324. for (int i03 = 0; i03 < ne03; i03++) {
  4325. for (int i02 = 0; i02 < ne02; i02++) {
  4326. for (int i01 = 0; i01 < ne01; i01++) {
  4327. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4328. char * dst_ptr = (char *) dst->data + id*rs;
  4329. memcpy(dst_ptr, src0_ptr, rs);
  4330. id++;
  4331. }
  4332. }
  4333. }
  4334. } else if (dst->type == GGML_TYPE_F32) {
  4335. size_t id = 0;
  4336. float * dst_ptr = (float *) dst->data;
  4337. for (int i03 = 0; i03 < ne03; i03++) {
  4338. for (int i02 = 0; i02 < ne02; i02++) {
  4339. for (int i01 = 0; i01 < ne01; i01++) {
  4340. for (int i00 = 0; i00 < ne00; i00++) {
  4341. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4342. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4343. id++;
  4344. }
  4345. }
  4346. }
  4347. }
  4348. } else {
  4349. GGML_ASSERT(false); // TODO: implement
  4350. }
  4351. } else {
  4352. //printf("%s: this is not optimal - fix me\n", __func__);
  4353. if (dst->type == GGML_TYPE_F32) {
  4354. size_t id = 0;
  4355. float * dst_ptr = (float *) dst->data;
  4356. for (int i03 = 0; i03 < ne03; i03++) {
  4357. for (int i02 = 0; i02 < ne02; i02++) {
  4358. for (int i01 = 0; i01 < ne01; i01++) {
  4359. for (int i00 = 0; i00 < ne00; i00++) {
  4360. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4361. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4362. id++;
  4363. }
  4364. }
  4365. }
  4366. }
  4367. } else if (dst->type == GGML_TYPE_F16) {
  4368. size_t id = 0;
  4369. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4370. for (int i03 = 0; i03 < ne03; i03++) {
  4371. for (int i02 = 0; i02 < ne02; i02++) {
  4372. for (int i01 = 0; i01 < ne01; i01++) {
  4373. for (int i00 = 0; i00 < ne00; i00++) {
  4374. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4375. dst_ptr[id] = *src0_ptr;
  4376. id++;
  4377. }
  4378. }
  4379. }
  4380. }
  4381. } else {
  4382. GGML_ASSERT(false); // TODO: implement
  4383. }
  4384. }
  4385. return;
  4386. }
  4387. // dst counters
  4388. int64_t i10 = 0;
  4389. int64_t i11 = 0;
  4390. int64_t i12 = 0;
  4391. int64_t i13 = 0;
  4392. if (dst->type == GGML_TYPE_F16) {
  4393. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4394. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4395. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4396. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4397. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4398. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4399. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4400. if (++i10 == ne00) {
  4401. i10 = 0;
  4402. if (++i11 == ne01) {
  4403. i11 = 0;
  4404. if (++i12 == ne02) {
  4405. i12 = 0;
  4406. if (++i13 == ne03) {
  4407. i13 = 0;
  4408. }
  4409. }
  4410. }
  4411. }
  4412. }
  4413. }
  4414. }
  4415. }
  4416. } else if (dst->type == GGML_TYPE_F32) {
  4417. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4418. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4419. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4420. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4421. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4422. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4423. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4424. if (++i10 == ne00) {
  4425. i10 = 0;
  4426. if (++i11 == ne01) {
  4427. i11 = 0;
  4428. if (++i12 == ne02) {
  4429. i12 = 0;
  4430. if (++i13 == ne03) {
  4431. i13 = 0;
  4432. }
  4433. }
  4434. }
  4435. }
  4436. }
  4437. }
  4438. }
  4439. }
  4440. } else {
  4441. GGML_ASSERT(false); // TODO: implement
  4442. }
  4443. }
  4444. static void ggml_compute_forward_dup_f32(
  4445. const struct ggml_compute_params * params,
  4446. const struct ggml_tensor * src0,
  4447. struct ggml_tensor * dst) {
  4448. GGML_ASSERT(params->ith == 0);
  4449. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4451. return;
  4452. }
  4453. const int64_t ne00 = src0->ne[0];
  4454. const int64_t ne01 = src0->ne[1];
  4455. const int64_t ne02 = src0->ne[2];
  4456. const int64_t ne03 = src0->ne[3];
  4457. const size_t nb00 = src0->nb[0];
  4458. const size_t nb01 = src0->nb[1];
  4459. const size_t nb02 = src0->nb[2];
  4460. const size_t nb03 = src0->nb[3];
  4461. const size_t nb0 = dst->nb[0];
  4462. const size_t nb1 = dst->nb[1];
  4463. const size_t nb2 = dst->nb[2];
  4464. const size_t nb3 = dst->nb[3];
  4465. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4466. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4467. return;
  4468. }
  4469. if (src0->type == dst->type &&
  4470. src0->ne[0] == dst->ne[0] &&
  4471. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4472. // copy by rows
  4473. const size_t rs = ne00*nb00;
  4474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4476. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4477. memcpy(
  4478. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4479. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4480. rs);
  4481. }
  4482. }
  4483. }
  4484. return;
  4485. }
  4486. if (ggml_is_contiguous(dst)) {
  4487. // TODO: simplify
  4488. if (src0->nb[0] == sizeof(float)) {
  4489. if (dst->type == GGML_TYPE_F32) {
  4490. size_t id = 0;
  4491. const size_t rs = ne00*nb00;
  4492. for (int i03 = 0; i03 < ne03; i03++) {
  4493. for (int i02 = 0; i02 < ne02; i02++) {
  4494. for (int i01 = 0; i01 < ne01; i01++) {
  4495. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4496. char * dst_ptr = (char *) dst->data + id*rs;
  4497. memcpy(dst_ptr, src0_ptr, rs);
  4498. id++;
  4499. }
  4500. }
  4501. }
  4502. } else if (dst->type == GGML_TYPE_F16) {
  4503. size_t id = 0;
  4504. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4505. for (int i03 = 0; i03 < ne03; i03++) {
  4506. for (int i02 = 0; i02 < ne02; i02++) {
  4507. for (int i01 = 0; i01 < ne01; i01++) {
  4508. for (int i00 = 0; i00 < ne00; i00++) {
  4509. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4510. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4511. id++;
  4512. }
  4513. }
  4514. }
  4515. }
  4516. } else {
  4517. GGML_ASSERT(false); // TODO: implement
  4518. }
  4519. } else {
  4520. //printf("%s: this is not optimal - fix me\n", __func__);
  4521. if (dst->type == GGML_TYPE_F32) {
  4522. size_t id = 0;
  4523. float * dst_ptr = (float *) dst->data;
  4524. for (int i03 = 0; i03 < ne03; i03++) {
  4525. for (int i02 = 0; i02 < ne02; i02++) {
  4526. for (int i01 = 0; i01 < ne01; i01++) {
  4527. for (int i00 = 0; i00 < ne00; i00++) {
  4528. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4529. dst_ptr[id] = *src0_ptr;
  4530. id++;
  4531. }
  4532. }
  4533. }
  4534. }
  4535. } else if (dst->type == GGML_TYPE_F16) {
  4536. size_t id = 0;
  4537. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4538. for (int i03 = 0; i03 < ne03; i03++) {
  4539. for (int i02 = 0; i02 < ne02; i02++) {
  4540. for (int i01 = 0; i01 < ne01; i01++) {
  4541. for (int i00 = 0; i00 < ne00; i00++) {
  4542. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4543. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4544. id++;
  4545. }
  4546. }
  4547. }
  4548. }
  4549. } else {
  4550. GGML_ASSERT(false); // TODO: implement
  4551. }
  4552. }
  4553. return;
  4554. }
  4555. // dst counters
  4556. int64_t i10 = 0;
  4557. int64_t i11 = 0;
  4558. int64_t i12 = 0;
  4559. int64_t i13 = 0;
  4560. if (dst->type == GGML_TYPE_F32) {
  4561. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4562. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4563. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4564. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4565. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4566. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4567. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4568. if (++i10 == dst->ne[0]) {
  4569. i10 = 0;
  4570. if (++i11 == dst->ne[1]) {
  4571. i11 = 0;
  4572. if (++i12 == dst->ne[2]) {
  4573. i12 = 0;
  4574. if (++i13 == dst->ne[3]) {
  4575. i13 = 0;
  4576. }
  4577. }
  4578. }
  4579. }
  4580. }
  4581. }
  4582. }
  4583. }
  4584. } else if (dst->type == GGML_TYPE_F16) {
  4585. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4586. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4587. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4588. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4589. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4590. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4591. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4592. if (++i10 == dst->ne[0]) {
  4593. i10 = 0;
  4594. if (++i11 == dst->ne[1]) {
  4595. i11 = 0;
  4596. if (++i12 == dst->ne[2]) {
  4597. i12 = 0;
  4598. if (++i13 == dst->ne[3]) {
  4599. i13 = 0;
  4600. }
  4601. }
  4602. }
  4603. }
  4604. }
  4605. }
  4606. }
  4607. }
  4608. } else {
  4609. GGML_ASSERT(false); // TODO: implement
  4610. }
  4611. }
  4612. static void ggml_compute_forward_dup(
  4613. const struct ggml_compute_params * params,
  4614. const struct ggml_tensor * src0,
  4615. struct ggml_tensor * dst) {
  4616. switch (src0->type) {
  4617. case GGML_TYPE_F16:
  4618. {
  4619. ggml_compute_forward_dup_f16(params, src0, dst);
  4620. } break;
  4621. case GGML_TYPE_F32:
  4622. {
  4623. ggml_compute_forward_dup_f32(params, src0, dst);
  4624. } break;
  4625. default:
  4626. {
  4627. GGML_ASSERT(false);
  4628. } break;
  4629. }
  4630. }
  4631. // ggml_compute_forward_add
  4632. static void ggml_compute_forward_add_f32(
  4633. const struct ggml_compute_params * params,
  4634. const struct ggml_tensor * src0,
  4635. const struct ggml_tensor * src1,
  4636. struct ggml_tensor * dst) {
  4637. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4639. return;
  4640. }
  4641. const int ith = params->ith;
  4642. const int nth = params->nth;
  4643. const int n = ggml_nrows(src0);
  4644. const int nc = src0->ne[0];
  4645. const size_t nb00 = src0->nb[0];
  4646. const size_t nb01 = src0->nb[1];
  4647. const size_t nb10 = src1->nb[0];
  4648. const size_t nb11 = src1->nb[1];
  4649. const size_t nb0 = dst->nb[0];
  4650. const size_t nb1 = dst->nb[1];
  4651. GGML_ASSERT( nb0 == sizeof(float));
  4652. GGML_ASSERT(nb00 == sizeof(float));
  4653. if (nb10 == sizeof(float)) {
  4654. for (int j = ith; j < n; j += nth) {
  4655. #ifdef GGML_USE_ACCELERATE
  4656. vDSP_vadd(
  4657. (float *) ((char *) src0->data + j*nb01), 1,
  4658. (float *) ((char *) src1->data + j*nb11), 1,
  4659. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4660. #else
  4661. ggml_vec_add_f32(nc,
  4662. (float *) ((char *) dst->data + j*nb1),
  4663. (float *) ((char *) src0->data + j*nb01),
  4664. (float *) ((char *) src1->data + j*nb11));
  4665. #endif
  4666. }
  4667. } else {
  4668. // src1 is not contiguous
  4669. for (int j = ith; j < n; j += nth) {
  4670. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4671. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4672. for (int i = 0; i < nc; i++) {
  4673. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4674. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4675. }
  4676. }
  4677. }
  4678. }
  4679. static void ggml_compute_forward_add(
  4680. const struct ggml_compute_params * params,
  4681. const struct ggml_tensor * src0,
  4682. const struct ggml_tensor * src1,
  4683. struct ggml_tensor * dst) {
  4684. switch (src0->type) {
  4685. case GGML_TYPE_F32:
  4686. {
  4687. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4688. } break;
  4689. default:
  4690. {
  4691. GGML_ASSERT(false);
  4692. } break;
  4693. }
  4694. }
  4695. // ggml_compute_forward_sub
  4696. static void ggml_compute_forward_sub_f32(
  4697. const struct ggml_compute_params * params,
  4698. const struct ggml_tensor * src0,
  4699. const struct ggml_tensor * src1,
  4700. struct ggml_tensor * dst) {
  4701. assert(params->ith == 0);
  4702. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4704. return;
  4705. }
  4706. const int n = ggml_nrows(src0);
  4707. const int nc = src0->ne[0];
  4708. assert( dst->nb[0] == sizeof(float));
  4709. assert(src0->nb[0] == sizeof(float));
  4710. assert(src1->nb[0] == sizeof(float));
  4711. for (int i = 0; i < n; i++) {
  4712. ggml_vec_sub_f32(nc,
  4713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4714. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4715. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4716. }
  4717. }
  4718. static void ggml_compute_forward_sub(
  4719. const struct ggml_compute_params * params,
  4720. const struct ggml_tensor * src0,
  4721. const struct ggml_tensor * src1,
  4722. struct ggml_tensor * dst) {
  4723. switch (src0->type) {
  4724. case GGML_TYPE_F32:
  4725. {
  4726. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4727. } break;
  4728. default:
  4729. {
  4730. GGML_ASSERT(false);
  4731. } break;
  4732. }
  4733. }
  4734. // ggml_compute_forward_mul
  4735. static void ggml_compute_forward_mul_f32(
  4736. const struct ggml_compute_params * params,
  4737. const struct ggml_tensor * src0,
  4738. const struct ggml_tensor * src1,
  4739. struct ggml_tensor * dst) {
  4740. assert(params->ith == 0);
  4741. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4743. return;
  4744. }
  4745. const int n = ggml_nrows(src0);
  4746. const int nc = src0->ne[0];
  4747. assert( dst->nb[0] == sizeof(float));
  4748. assert(src0->nb[0] == sizeof(float));
  4749. assert(src1->nb[0] == sizeof(float));
  4750. for (int i = 0; i < n; i++) {
  4751. ggml_vec_mul_f32(nc,
  4752. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4753. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4754. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4755. }
  4756. }
  4757. static void ggml_compute_forward_mul(
  4758. const struct ggml_compute_params * params,
  4759. const struct ggml_tensor * src0,
  4760. const struct ggml_tensor * src1,
  4761. struct ggml_tensor * dst) {
  4762. switch (src0->type) {
  4763. case GGML_TYPE_F32:
  4764. {
  4765. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4766. } break;
  4767. default:
  4768. {
  4769. GGML_ASSERT(false);
  4770. } break;
  4771. }
  4772. }
  4773. // ggml_compute_forward_div
  4774. static void ggml_compute_forward_div_f32(
  4775. const struct ggml_compute_params * params,
  4776. const struct ggml_tensor * src0,
  4777. const struct ggml_tensor * src1,
  4778. struct ggml_tensor * dst) {
  4779. assert(params->ith == 0);
  4780. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4782. return;
  4783. }
  4784. const int n = ggml_nrows(src0);
  4785. const int nc = src0->ne[0];
  4786. assert( dst->nb[0] == sizeof(float));
  4787. assert(src0->nb[0] == sizeof(float));
  4788. assert(src1->nb[0] == sizeof(float));
  4789. for (int i = 0; i < n; i++) {
  4790. ggml_vec_div_f32(nc,
  4791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4792. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4793. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4794. }
  4795. }
  4796. static void ggml_compute_forward_div(
  4797. const struct ggml_compute_params * params,
  4798. const struct ggml_tensor * src0,
  4799. const struct ggml_tensor * src1,
  4800. struct ggml_tensor * dst) {
  4801. switch (src0->type) {
  4802. case GGML_TYPE_F32:
  4803. {
  4804. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4805. } break;
  4806. default:
  4807. {
  4808. GGML_ASSERT(false);
  4809. } break;
  4810. }
  4811. }
  4812. // ggml_compute_forward_sqr
  4813. static void ggml_compute_forward_sqr_f32(
  4814. const struct ggml_compute_params * params,
  4815. const struct ggml_tensor * src0,
  4816. struct ggml_tensor * dst) {
  4817. assert(params->ith == 0);
  4818. assert(ggml_are_same_shape(src0, dst));
  4819. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4820. return;
  4821. }
  4822. const int n = ggml_nrows(src0);
  4823. const int nc = src0->ne[0];
  4824. assert( dst->nb[0] == sizeof(float));
  4825. assert(src0->nb[0] == sizeof(float));
  4826. for (int i = 0; i < n; i++) {
  4827. ggml_vec_sqr_f32(nc,
  4828. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4829. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4830. }
  4831. }
  4832. static void ggml_compute_forward_sqr(
  4833. const struct ggml_compute_params * params,
  4834. const struct ggml_tensor * src0,
  4835. struct ggml_tensor * dst) {
  4836. switch (src0->type) {
  4837. case GGML_TYPE_F32:
  4838. {
  4839. ggml_compute_forward_sqr_f32(params, src0, dst);
  4840. } break;
  4841. default:
  4842. {
  4843. GGML_ASSERT(false);
  4844. } break;
  4845. }
  4846. }
  4847. // ggml_compute_forward_sqrt
  4848. static void ggml_compute_forward_sqrt_f32(
  4849. const struct ggml_compute_params * params,
  4850. const struct ggml_tensor * src0,
  4851. struct ggml_tensor * dst) {
  4852. assert(params->ith == 0);
  4853. assert(ggml_are_same_shape(src0, dst));
  4854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4855. return;
  4856. }
  4857. const int n = ggml_nrows(src0);
  4858. const int nc = src0->ne[0];
  4859. assert( dst->nb[0] == sizeof(float));
  4860. assert(src0->nb[0] == sizeof(float));
  4861. for (int i = 0; i < n; i++) {
  4862. ggml_vec_sqrt_f32(nc,
  4863. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4864. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4865. }
  4866. }
  4867. static void ggml_compute_forward_sqrt(
  4868. const struct ggml_compute_params * params,
  4869. const struct ggml_tensor * src0,
  4870. struct ggml_tensor * dst) {
  4871. switch (src0->type) {
  4872. case GGML_TYPE_F32:
  4873. {
  4874. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4875. } break;
  4876. default:
  4877. {
  4878. GGML_ASSERT(false);
  4879. } break;
  4880. }
  4881. }
  4882. // ggml_compute_forward_sum
  4883. static void ggml_compute_forward_sum_f32(
  4884. const struct ggml_compute_params * params,
  4885. const struct ggml_tensor * src0,
  4886. struct ggml_tensor * dst) {
  4887. assert(params->ith == 0);
  4888. assert(ggml_is_scalar(dst));
  4889. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4890. return;
  4891. }
  4892. assert(ggml_is_scalar(dst));
  4893. assert(src0->nb[0] == sizeof(float));
  4894. const int64_t ne00 = src0->ne[0];
  4895. const int64_t ne01 = src0->ne[1];
  4896. const int64_t ne02 = src0->ne[2];
  4897. const int64_t ne03 = src0->ne[3];
  4898. const size_t nb01 = src0->nb[1];
  4899. const size_t nb02 = src0->nb[2];
  4900. const size_t nb03 = src0->nb[3];
  4901. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4902. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4903. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4904. ggml_vec_sum_f32(ne00,
  4905. (float *) (dst->data),
  4906. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4907. }
  4908. }
  4909. }
  4910. }
  4911. static void ggml_compute_forward_sum(
  4912. const struct ggml_compute_params * params,
  4913. const struct ggml_tensor * src0,
  4914. struct ggml_tensor * dst) {
  4915. switch (src0->type) {
  4916. case GGML_TYPE_F32:
  4917. {
  4918. ggml_compute_forward_sum_f32(params, src0, dst);
  4919. } break;
  4920. default:
  4921. {
  4922. GGML_ASSERT(false);
  4923. } break;
  4924. }
  4925. }
  4926. // ggml_compute_forward_mean
  4927. static void ggml_compute_forward_mean_f32(
  4928. const struct ggml_compute_params * params,
  4929. const struct ggml_tensor * src0,
  4930. struct ggml_tensor * dst) {
  4931. assert(params->ith == 0);
  4932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4933. return;
  4934. }
  4935. assert(src0->nb[0] == sizeof(float));
  4936. const int64_t ne00 = src0->ne[0];
  4937. const int64_t ne01 = src0->ne[1];
  4938. const int64_t ne02 = src0->ne[2];
  4939. const int64_t ne03 = src0->ne[3];
  4940. const size_t nb01 = src0->nb[1];
  4941. const size_t nb02 = src0->nb[2];
  4942. const size_t nb03 = src0->nb[3];
  4943. const int64_t ne0 = dst->ne[0];
  4944. const int64_t ne1 = dst->ne[1];
  4945. const int64_t ne2 = dst->ne[2];
  4946. const int64_t ne3 = dst->ne[3];
  4947. assert(ne0 == 1);
  4948. assert(ne1 == ne01);
  4949. assert(ne2 == ne02);
  4950. assert(ne3 == ne03);
  4951. UNUSED(ne0);
  4952. UNUSED(ne1);
  4953. UNUSED(ne2);
  4954. UNUSED(ne3);
  4955. const size_t nb1 = dst->nb[1];
  4956. const size_t nb2 = dst->nb[2];
  4957. const size_t nb3 = dst->nb[3];
  4958. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4960. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4961. ggml_vec_sum_f32(ne00,
  4962. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4963. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4964. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4965. }
  4966. }
  4967. }
  4968. }
  4969. static void ggml_compute_forward_mean(
  4970. const struct ggml_compute_params * params,
  4971. const struct ggml_tensor * src0,
  4972. struct ggml_tensor * dst) {
  4973. switch (src0->type) {
  4974. case GGML_TYPE_F32:
  4975. {
  4976. ggml_compute_forward_mean_f32(params, src0, dst);
  4977. } break;
  4978. default:
  4979. {
  4980. GGML_ASSERT(false);
  4981. } break;
  4982. }
  4983. }
  4984. // ggml_compute_forward_repeat
  4985. static void ggml_compute_forward_repeat_f32(
  4986. const struct ggml_compute_params * params,
  4987. const struct ggml_tensor * src0,
  4988. struct ggml_tensor * dst) {
  4989. assert(params->ith == 0);
  4990. assert(ggml_can_repeat(src0, dst));
  4991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4992. return;
  4993. }
  4994. // TODO: implement support for rank > 2 tensors
  4995. assert(src0->ne[2] == 1);
  4996. assert(src0->ne[3] == 1);
  4997. assert( dst->ne[2] == 1);
  4998. assert( dst->ne[3] == 1);
  4999. const int nc = dst->ne[0];
  5000. const int nr = dst->ne[1];
  5001. const int nc0 = src0->ne[0];
  5002. const int nr0 = src0->ne[1];
  5003. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5004. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5005. // TODO: support for transposed / permuted tensors
  5006. assert( dst->nb[0] == sizeof(float));
  5007. assert(src0->nb[0] == sizeof(float));
  5008. // TODO: maybe this is not optimal?
  5009. for (int i = 0; i < nrr; i++) {
  5010. for (int j = 0; j < ncr; j++) {
  5011. for (int k = 0; k < nr0; k++) {
  5012. ggml_vec_cpy_f32(nc0,
  5013. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5014. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5015. }
  5016. }
  5017. }
  5018. }
  5019. static void ggml_compute_forward_repeat(
  5020. const struct ggml_compute_params * params,
  5021. const struct ggml_tensor * src0,
  5022. struct ggml_tensor * dst) {
  5023. switch (src0->type) {
  5024. case GGML_TYPE_F32:
  5025. {
  5026. ggml_compute_forward_repeat_f32(params, src0, dst);
  5027. } break;
  5028. default:
  5029. {
  5030. GGML_ASSERT(false);
  5031. } break;
  5032. }
  5033. }
  5034. // ggml_compute_forward_abs
  5035. static void ggml_compute_forward_abs_f32(
  5036. const struct ggml_compute_params * params,
  5037. const struct ggml_tensor * src0,
  5038. struct ggml_tensor * dst) {
  5039. assert(params->ith == 0);
  5040. assert(ggml_are_same_shape(src0, dst));
  5041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5042. return;
  5043. }
  5044. const int n = ggml_nrows(src0);
  5045. const int nc = src0->ne[0];
  5046. assert(dst->nb[0] == sizeof(float));
  5047. assert(src0->nb[0] == sizeof(float));
  5048. for (int i = 0; i < n; i++) {
  5049. ggml_vec_abs_f32(nc,
  5050. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5051. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5052. }
  5053. }
  5054. static void ggml_compute_forward_abs(
  5055. const struct ggml_compute_params * params,
  5056. const struct ggml_tensor * src0,
  5057. struct ggml_tensor * dst) {
  5058. switch (src0->type) {
  5059. case GGML_TYPE_F32:
  5060. {
  5061. ggml_compute_forward_abs_f32(params, src0, dst);
  5062. } break;
  5063. default:
  5064. {
  5065. GGML_ASSERT(false);
  5066. } break;
  5067. }
  5068. }
  5069. // ggml_compute_forward_sgn
  5070. static void ggml_compute_forward_sgn_f32(
  5071. const struct ggml_compute_params * params,
  5072. const struct ggml_tensor * src0,
  5073. struct ggml_tensor * dst) {
  5074. assert(params->ith == 0);
  5075. assert(ggml_are_same_shape(src0, dst));
  5076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5077. return;
  5078. }
  5079. const int n = ggml_nrows(src0);
  5080. const int nc = src0->ne[0];
  5081. assert(dst->nb[0] == sizeof(float));
  5082. assert(src0->nb[0] == sizeof(float));
  5083. for (int i = 0; i < n; i++) {
  5084. ggml_vec_sgn_f32(nc,
  5085. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5086. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5087. }
  5088. }
  5089. static void ggml_compute_forward_sgn(
  5090. const struct ggml_compute_params * params,
  5091. const struct ggml_tensor * src0,
  5092. struct ggml_tensor * dst) {
  5093. switch (src0->type) {
  5094. case GGML_TYPE_F32:
  5095. {
  5096. ggml_compute_forward_sgn_f32(params, src0, dst);
  5097. } break;
  5098. default:
  5099. {
  5100. GGML_ASSERT(false);
  5101. } break;
  5102. }
  5103. }
  5104. // ggml_compute_forward_neg
  5105. static void ggml_compute_forward_neg_f32(
  5106. const struct ggml_compute_params * params,
  5107. const struct ggml_tensor * src0,
  5108. struct ggml_tensor * dst) {
  5109. assert(params->ith == 0);
  5110. assert(ggml_are_same_shape(src0, dst));
  5111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5112. return;
  5113. }
  5114. const int n = ggml_nrows(src0);
  5115. const int nc = src0->ne[0];
  5116. assert(dst->nb[0] == sizeof(float));
  5117. assert(src0->nb[0] == sizeof(float));
  5118. for (int i = 0; i < n; i++) {
  5119. ggml_vec_neg_f32(nc,
  5120. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5121. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5122. }
  5123. }
  5124. static void ggml_compute_forward_neg(
  5125. const struct ggml_compute_params * params,
  5126. const struct ggml_tensor * src0,
  5127. struct ggml_tensor * dst) {
  5128. switch (src0->type) {
  5129. case GGML_TYPE_F32:
  5130. {
  5131. ggml_compute_forward_neg_f32(params, src0, dst);
  5132. } break;
  5133. default:
  5134. {
  5135. GGML_ASSERT(false);
  5136. } break;
  5137. }
  5138. }
  5139. // ggml_compute_forward_step
  5140. static void ggml_compute_forward_step_f32(
  5141. const struct ggml_compute_params * params,
  5142. const struct ggml_tensor * src0,
  5143. struct ggml_tensor * dst) {
  5144. assert(params->ith == 0);
  5145. assert(ggml_are_same_shape(src0, dst));
  5146. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5147. return;
  5148. }
  5149. const int n = ggml_nrows(src0);
  5150. const int nc = src0->ne[0];
  5151. assert(dst->nb[0] == sizeof(float));
  5152. assert(src0->nb[0] == sizeof(float));
  5153. for (int i = 0; i < n; i++) {
  5154. ggml_vec_step_f32(nc,
  5155. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5156. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5157. }
  5158. }
  5159. static void ggml_compute_forward_step(
  5160. const struct ggml_compute_params * params,
  5161. const struct ggml_tensor * src0,
  5162. struct ggml_tensor * dst) {
  5163. switch (src0->type) {
  5164. case GGML_TYPE_F32:
  5165. {
  5166. ggml_compute_forward_step_f32(params, src0, dst);
  5167. } break;
  5168. default:
  5169. {
  5170. GGML_ASSERT(false);
  5171. } break;
  5172. }
  5173. }
  5174. // ggml_compute_forward_relu
  5175. static void ggml_compute_forward_relu_f32(
  5176. const struct ggml_compute_params * params,
  5177. const struct ggml_tensor * src0,
  5178. struct ggml_tensor * dst) {
  5179. assert(params->ith == 0);
  5180. assert(ggml_are_same_shape(src0, dst));
  5181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5182. return;
  5183. }
  5184. const int n = ggml_nrows(src0);
  5185. const int nc = src0->ne[0];
  5186. assert(dst->nb[0] == sizeof(float));
  5187. assert(src0->nb[0] == sizeof(float));
  5188. for (int i = 0; i < n; i++) {
  5189. ggml_vec_relu_f32(nc,
  5190. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5191. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5192. }
  5193. }
  5194. static void ggml_compute_forward_relu(
  5195. const struct ggml_compute_params * params,
  5196. const struct ggml_tensor * src0,
  5197. struct ggml_tensor * dst) {
  5198. switch (src0->type) {
  5199. case GGML_TYPE_F32:
  5200. {
  5201. ggml_compute_forward_relu_f32(params, src0, dst);
  5202. } break;
  5203. default:
  5204. {
  5205. GGML_ASSERT(false);
  5206. } break;
  5207. }
  5208. }
  5209. // ggml_compute_forward_gelu
  5210. static void ggml_compute_forward_gelu_f32(
  5211. const struct ggml_compute_params * params,
  5212. const struct ggml_tensor * src0,
  5213. struct ggml_tensor * dst) {
  5214. GGML_ASSERT(ggml_is_contiguous(src0));
  5215. GGML_ASSERT(ggml_is_contiguous(dst));
  5216. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5218. return;
  5219. }
  5220. const int ith = params->ith;
  5221. const int nth = params->nth;
  5222. const int nc = src0->ne[0];
  5223. const int nr = ggml_nrows(src0);
  5224. // rows per thread
  5225. const int dr = (nr + nth - 1)/nth;
  5226. // row range for this thread
  5227. const int ir0 = dr*ith;
  5228. const int ir1 = MIN(ir0 + dr, nr);
  5229. for (int i1 = ir0; i1 < ir1; i1++) {
  5230. ggml_vec_gelu_f32(nc,
  5231. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5232. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5233. #ifndef NDEBUG
  5234. for (int k = 0; k < nc; k++) {
  5235. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5236. UNUSED(x);
  5237. assert(!isnan(x));
  5238. assert(!isinf(x));
  5239. }
  5240. #endif
  5241. }
  5242. }
  5243. static void ggml_compute_forward_gelu(
  5244. const struct ggml_compute_params * params,
  5245. const struct ggml_tensor * src0,
  5246. struct ggml_tensor * dst) {
  5247. switch (src0->type) {
  5248. case GGML_TYPE_F32:
  5249. {
  5250. ggml_compute_forward_gelu_f32(params, src0, dst);
  5251. } break;
  5252. default:
  5253. {
  5254. GGML_ASSERT(false);
  5255. } break;
  5256. }
  5257. //printf("XXXXXXXX gelu\n");
  5258. }
  5259. // ggml_compute_forward_silu
  5260. static void ggml_compute_forward_silu_f32(
  5261. const struct ggml_compute_params * params,
  5262. const struct ggml_tensor * src0,
  5263. struct ggml_tensor * dst) {
  5264. GGML_ASSERT(ggml_is_contiguous(src0));
  5265. GGML_ASSERT(ggml_is_contiguous(dst));
  5266. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5268. return;
  5269. }
  5270. const int ith = params->ith;
  5271. const int nth = params->nth;
  5272. const int nc = src0->ne[0];
  5273. const int nr = ggml_nrows(src0);
  5274. // rows per thread
  5275. const int dr = (nr + nth - 1)/nth;
  5276. // row range for this thread
  5277. const int ir0 = dr*ith;
  5278. const int ir1 = MIN(ir0 + dr, nr);
  5279. for (int i1 = ir0; i1 < ir1; i1++) {
  5280. ggml_vec_silu_f32(nc,
  5281. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5282. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5283. #ifndef NDEBUG
  5284. for (int k = 0; k < nc; k++) {
  5285. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5286. UNUSED(x);
  5287. assert(!isnan(x));
  5288. assert(!isinf(x));
  5289. }
  5290. #endif
  5291. }
  5292. }
  5293. static void ggml_compute_forward_silu(
  5294. const struct ggml_compute_params * params,
  5295. const struct ggml_tensor * src0,
  5296. struct ggml_tensor * dst) {
  5297. switch (src0->type) {
  5298. case GGML_TYPE_F32:
  5299. {
  5300. ggml_compute_forward_silu_f32(params, src0, dst);
  5301. } break;
  5302. default:
  5303. {
  5304. GGML_ASSERT(false);
  5305. } break;
  5306. }
  5307. }
  5308. // ggml_compute_forward_norm
  5309. static void ggml_compute_forward_norm_f32(
  5310. const struct ggml_compute_params * params,
  5311. const struct ggml_tensor * src0,
  5312. struct ggml_tensor * dst) {
  5313. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5315. return;
  5316. }
  5317. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5318. const int ith = params->ith;
  5319. const int nth = params->nth;
  5320. const int64_t ne00 = src0->ne[0];
  5321. const int64_t ne01 = src0->ne[1];
  5322. const int64_t ne02 = src0->ne[2];
  5323. const int64_t ne03 = src0->ne[3];
  5324. const size_t nb01 = src0->nb[1];
  5325. const size_t nb02 = src0->nb[2];
  5326. const size_t nb03 = src0->nb[3];
  5327. const size_t nb1 = dst->nb[1];
  5328. const size_t nb2 = dst->nb[2];
  5329. const size_t nb3 = dst->nb[3];
  5330. const float eps = 1e-5f; // TODO: make this a parameter
  5331. // TODO: optimize
  5332. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5333. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5334. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5335. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5336. ggml_float sum = 0.0;
  5337. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5338. sum += (ggml_float)x[i00];
  5339. }
  5340. float mean = sum/ne00;
  5341. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5342. ggml_float sum2 = 0.0;
  5343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5344. float v = x[i00] - mean;
  5345. y[i00] = v;
  5346. sum2 += (ggml_float)(v*v);
  5347. }
  5348. float variance = sum2/ne00;
  5349. const float scale = 1.0f/sqrtf(variance + eps);
  5350. ggml_vec_scale_f32(ne00, y, scale);
  5351. }
  5352. }
  5353. }
  5354. }
  5355. static void ggml_compute_forward_norm(
  5356. const struct ggml_compute_params * params,
  5357. const struct ggml_tensor * src0,
  5358. struct ggml_tensor * dst) {
  5359. switch (src0->type) {
  5360. case GGML_TYPE_F32:
  5361. {
  5362. ggml_compute_forward_norm_f32(params, src0, dst);
  5363. } break;
  5364. default:
  5365. {
  5366. GGML_ASSERT(false);
  5367. } break;
  5368. }
  5369. }
  5370. static void ggml_compute_forward_rms_norm_f32(
  5371. const struct ggml_compute_params * params,
  5372. const struct ggml_tensor * src0,
  5373. struct ggml_tensor * dst) {
  5374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5376. return;
  5377. }
  5378. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5379. const int ith = params->ith;
  5380. const int nth = params->nth;
  5381. const int64_t ne00 = src0->ne[0];
  5382. const int64_t ne01 = src0->ne[1];
  5383. const int64_t ne02 = src0->ne[2];
  5384. const int64_t ne03 = src0->ne[3];
  5385. const size_t nb01 = src0->nb[1];
  5386. const size_t nb02 = src0->nb[2];
  5387. const size_t nb03 = src0->nb[3];
  5388. const size_t nb1 = dst->nb[1];
  5389. const size_t nb2 = dst->nb[2];
  5390. const size_t nb3 = dst->nb[3];
  5391. const float eps = 1e-6f; // TODO: make this a parameter
  5392. // TODO: optimize
  5393. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5394. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5395. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5396. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5397. ggml_float sum = 0.0;
  5398. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5399. sum += (ggml_float)(x[i00] * x[i00]);
  5400. }
  5401. float mean = sum/ne00;
  5402. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5403. memcpy(y, x, ne00 * sizeof(float));
  5404. // for (int i00 = 0; i00 < ne00; i00++) {
  5405. // y[i00] = x[i00];
  5406. // }
  5407. const float scale = 1.0f/sqrtf(mean + eps);
  5408. ggml_vec_scale_f32(ne00, y, scale);
  5409. }
  5410. }
  5411. }
  5412. }
  5413. static void ggml_compute_forward_rms_norm(
  5414. const struct ggml_compute_params * params,
  5415. const struct ggml_tensor * src0,
  5416. struct ggml_tensor * dst) {
  5417. switch (src0->type) {
  5418. case GGML_TYPE_F32:
  5419. {
  5420. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5421. } break;
  5422. default:
  5423. {
  5424. GGML_ASSERT(false);
  5425. } break;
  5426. }
  5427. }
  5428. // ggml_compute_forward_mul_mat
  5429. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5430. // helper function to determine if it is better to use BLAS or not
  5431. // for large matrices, BLAS is faster
  5432. static bool ggml_compute_forward_mul_mat_use_blas(
  5433. const struct ggml_tensor * src0,
  5434. const struct ggml_tensor * src1,
  5435. struct ggml_tensor * dst) {
  5436. //const int64_t ne00 = src0->ne[0];
  5437. //const int64_t ne01 = src0->ne[1];
  5438. const int64_t ne10 = src1->ne[0];
  5439. const int64_t ne0 = dst->ne[0];
  5440. const int64_t ne1 = dst->ne[1];
  5441. // TODO: find the optimal values for these
  5442. if (ggml_is_contiguous(src0) &&
  5443. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5444. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5445. return true;
  5446. }
  5447. return false;
  5448. }
  5449. #endif
  5450. static void ggml_compute_forward_mul_mat_f32(
  5451. const struct ggml_compute_params * params,
  5452. const struct ggml_tensor * src0,
  5453. const struct ggml_tensor * src1,
  5454. struct ggml_tensor * dst) {
  5455. int64_t t0 = ggml_perf_time_us();
  5456. UNUSED(t0);
  5457. const int64_t ne00 = src0->ne[0];
  5458. const int64_t ne01 = src0->ne[1];
  5459. const int64_t ne02 = src0->ne[2];
  5460. const int64_t ne03 = src0->ne[3];
  5461. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5462. const int64_t ne10 = src1->ne[0];
  5463. #endif
  5464. const int64_t ne11 = src1->ne[1];
  5465. #ifndef NDEBUG
  5466. const int64_t ne12 = src1->ne[2];
  5467. const int64_t ne13 = src1->ne[3];
  5468. const int64_t ne0 = dst->ne[0];
  5469. const int64_t ne1 = dst->ne[1];
  5470. const int64_t ne2 = dst->ne[2];
  5471. const int64_t ne3 = dst->ne[3];
  5472. const int nb00 = src0->nb[0];
  5473. #endif
  5474. const int nb01 = src0->nb[1];
  5475. const int nb02 = src0->nb[2];
  5476. const int nb03 = src0->nb[3];
  5477. #ifndef NDEBUG
  5478. const int nb10 = src1->nb[0];
  5479. #endif
  5480. const int nb11 = src1->nb[1];
  5481. const int nb12 = src1->nb[2];
  5482. const int nb13 = src1->nb[3];
  5483. const int nb0 = dst->nb[0];
  5484. const int nb1 = dst->nb[1];
  5485. const int nb2 = dst->nb[2];
  5486. const int nb3 = dst->nb[3];
  5487. const int ith = params->ith;
  5488. const int nth = params->nth;
  5489. assert(ne02 == ne12);
  5490. assert(ne03 == ne13);
  5491. assert(ne2 == ne12);
  5492. assert(ne3 == ne13);
  5493. // we don't support permuted src0 or src1
  5494. assert(nb00 == sizeof(float));
  5495. assert(nb10 == sizeof(float));
  5496. // dst cannot be transposed or permuted
  5497. assert(nb0 == sizeof(float));
  5498. assert(nb0 <= nb1);
  5499. assert(nb1 <= nb2);
  5500. assert(nb2 <= nb3);
  5501. assert(ne0 == ne01);
  5502. assert(ne1 == ne11);
  5503. assert(ne2 == ne02);
  5504. assert(ne3 == ne03);
  5505. // nb01 >= nb00 - src0 is not transposed
  5506. // compute by src0 rows
  5507. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5508. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5509. if (params->ith != 0) {
  5510. return;
  5511. }
  5512. if (params->type == GGML_TASK_INIT) {
  5513. return;
  5514. }
  5515. if (params->type == GGML_TASK_FINALIZE) {
  5516. return;
  5517. }
  5518. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5520. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5521. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5522. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5523. // zT = y * xT
  5524. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5525. ne11, ne01, ne10,
  5526. 1.0f, y, ne10,
  5527. x, ne00,
  5528. 0.0f, d, ne01);
  5529. }
  5530. }
  5531. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5532. return;
  5533. }
  5534. #endif
  5535. if (params->type == GGML_TASK_INIT) {
  5536. return;
  5537. }
  5538. if (params->type == GGML_TASK_FINALIZE) {
  5539. return;
  5540. }
  5541. // parallelize by src0 rows using ggml_vec_dot_f32
  5542. // total rows in src0
  5543. const int nr = ne01*ne02*ne03;
  5544. // rows per thread
  5545. const int dr = (nr + nth - 1)/nth;
  5546. // row range for this thread
  5547. const int ir0 = dr*ith;
  5548. const int ir1 = MIN(ir0 + dr, nr);
  5549. for (int ir = ir0; ir < ir1; ++ir) {
  5550. // src0 indices
  5551. const int i03 = ir/(ne02*ne01);
  5552. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5553. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5554. for (int64_t ic = 0; ic < ne11; ++ic) {
  5555. // src1 indices
  5556. const int i13 = i03;
  5557. const int i12 = i02;
  5558. const int i11 = ic;
  5559. // dst indices
  5560. const int i0 = i01;
  5561. const int i1 = i11;
  5562. const int i2 = i02;
  5563. const int i3 = i03;
  5564. ggml_vec_dot_f32(ne00,
  5565. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5566. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5567. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5568. }
  5569. }
  5570. //int64_t t1 = ggml_perf_time_us();
  5571. //static int64_t acc = 0;
  5572. //acc += t1 - t0;
  5573. //if (t1 - t0 > 10) {
  5574. // printf("\n");
  5575. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5576. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5577. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5578. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5579. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5580. //}
  5581. }
  5582. static void ggml_compute_forward_mul_mat_f16_f32(
  5583. const struct ggml_compute_params * params,
  5584. const struct ggml_tensor * src0,
  5585. const struct ggml_tensor * src1,
  5586. struct ggml_tensor * dst) {
  5587. int64_t t0 = ggml_perf_time_us();
  5588. UNUSED(t0);
  5589. const int64_t ne00 = src0->ne[0];
  5590. const int64_t ne01 = src0->ne[1];
  5591. const int64_t ne02 = src0->ne[2];
  5592. const int64_t ne03 = src0->ne[3];
  5593. const int64_t ne10 = src1->ne[0];
  5594. const int64_t ne11 = src1->ne[1];
  5595. const int64_t ne12 = src1->ne[2];
  5596. const int64_t ne13 = src1->ne[3];
  5597. const int64_t ne0 = dst->ne[0];
  5598. const int64_t ne1 = dst->ne[1];
  5599. const int64_t ne2 = dst->ne[2];
  5600. const int64_t ne3 = dst->ne[3];
  5601. //const int64_t ne = ne0*ne1*ne2*ne3;
  5602. const int nb00 = src0->nb[0];
  5603. const int nb01 = src0->nb[1];
  5604. const int nb02 = src0->nb[2];
  5605. const int nb03 = src0->nb[3];
  5606. const int nb10 = src1->nb[0];
  5607. const int nb11 = src1->nb[1];
  5608. const int nb12 = src1->nb[2];
  5609. const int nb13 = src1->nb[3];
  5610. const int nb0 = dst->nb[0];
  5611. const int nb1 = dst->nb[1];
  5612. const int nb2 = dst->nb[2];
  5613. const int nb3 = dst->nb[3];
  5614. const int ith = params->ith;
  5615. const int nth = params->nth;
  5616. GGML_ASSERT(ne02 == ne12);
  5617. GGML_ASSERT(ne03 == ne13);
  5618. GGML_ASSERT(ne2 == ne12);
  5619. GGML_ASSERT(ne3 == ne13);
  5620. // TODO: we don't support permuted src0
  5621. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5622. // dst cannot be transposed or permuted
  5623. GGML_ASSERT(nb0 == sizeof(float));
  5624. GGML_ASSERT(nb0 <= nb1);
  5625. GGML_ASSERT(nb1 <= nb2);
  5626. GGML_ASSERT(nb2 <= nb3);
  5627. GGML_ASSERT(ne0 == ne01);
  5628. GGML_ASSERT(ne1 == ne11);
  5629. GGML_ASSERT(ne2 == ne02);
  5630. GGML_ASSERT(ne3 == ne03);
  5631. // nb01 >= nb00 - src0 is not transposed
  5632. // compute by src0 rows
  5633. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5634. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5635. GGML_ASSERT(nb10 == sizeof(float));
  5636. if (params->ith != 0) {
  5637. return;
  5638. }
  5639. if (params->type == GGML_TASK_INIT) {
  5640. return;
  5641. }
  5642. if (params->type == GGML_TASK_FINALIZE) {
  5643. return;
  5644. }
  5645. float * const wdata = params->wdata;
  5646. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5647. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5648. {
  5649. size_t id = 0;
  5650. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5651. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5652. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5653. }
  5654. }
  5655. }
  5656. const float * x = wdata;
  5657. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5658. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5659. // zT = y * xT
  5660. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5661. ne11, ne01, ne10,
  5662. 1.0f, y, ne10,
  5663. x, ne00,
  5664. 0.0f, d, ne01);
  5665. }
  5666. }
  5667. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5668. return;
  5669. }
  5670. #endif
  5671. if (params->type == GGML_TASK_INIT) {
  5672. ggml_fp16_t * const wdata = params->wdata;
  5673. size_t id = 0;
  5674. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5675. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5676. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5677. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5678. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5679. }
  5680. }
  5681. }
  5682. }
  5683. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5684. return;
  5685. }
  5686. if (params->type == GGML_TASK_FINALIZE) {
  5687. return;
  5688. }
  5689. // fp16 -> half the size, so divide by 2
  5690. // TODO: do not support transposed src1
  5691. assert(nb10/2 == sizeof(ggml_fp16_t));
  5692. // parallelize by src0 rows using ggml_vec_dot_f16
  5693. // total rows in src0
  5694. const int nr = ne01*ne02*ne03;
  5695. // rows per thread
  5696. const int dr = (nr + nth - 1)/nth;
  5697. // row range for this thread
  5698. const int ir0 = dr*ith;
  5699. const int ir1 = MIN(ir0 + dr, nr);
  5700. ggml_fp16_t * wdata = params->wdata;
  5701. for (int ir = ir0; ir < ir1; ++ir) {
  5702. // src0 indices
  5703. const int i03 = ir/(ne02*ne01);
  5704. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5705. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5706. const int i13 = i03;
  5707. const int i12 = i02;
  5708. const int i0 = i01;
  5709. const int i2 = i02;
  5710. const int i3 = i03;
  5711. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5712. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5713. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5714. for (int64_t ic = 0; ic < ne11; ++ic) {
  5715. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5716. }
  5717. }
  5718. //int64_t t1 = ggml_time_us();
  5719. //static int64_t acc = 0;
  5720. //acc += t1 - t0;
  5721. //if (t1 - t0 > 10) {
  5722. // printf("\n");
  5723. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5724. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5725. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5726. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5727. //}
  5728. }
  5729. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5730. [GGML_TYPE_Q4_0] = {
  5731. .dequantize_row_q = dequantize_row_q4_0,
  5732. .quantize_row_q = quantize_row_q4_0,
  5733. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5734. .quantize_row_q_dot = quantize_row_q8_0,
  5735. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  5736. },
  5737. [GGML_TYPE_Q4_1] = {
  5738. .dequantize_row_q = dequantize_row_q4_1,
  5739. .quantize_row_q = quantize_row_q4_1,
  5740. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5741. .quantize_row_q_dot = quantize_row_q4_1,
  5742. .vec_dot_q = ggml_vec_dot_q4_1,
  5743. },
  5744. // TODO: GGML_TYPE_Q8_0
  5745. };
  5746. // For internal test use
  5747. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5748. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5749. return quantize_fns[i];
  5750. }
  5751. static void ggml_compute_forward_mul_mat_q_f32(
  5752. const struct ggml_compute_params * params,
  5753. const struct ggml_tensor * src0,
  5754. const struct ggml_tensor * src1,
  5755. struct ggml_tensor * dst) {
  5756. int64_t t0 = ggml_perf_time_us();
  5757. UNUSED(t0);
  5758. const int64_t ne00 = src0->ne[0];
  5759. const int64_t ne01 = src0->ne[1];
  5760. const int64_t ne02 = src0->ne[2];
  5761. const int64_t ne03 = src0->ne[3];
  5762. const int64_t ne10 = src1->ne[0];
  5763. const int64_t ne11 = src1->ne[1];
  5764. const int64_t ne12 = src1->ne[2];
  5765. const int64_t ne13 = src1->ne[3];
  5766. const int64_t ne0 = dst->ne[0];
  5767. const int64_t ne1 = dst->ne[1];
  5768. const int64_t ne2 = dst->ne[2];
  5769. const int64_t ne3 = dst->ne[3];
  5770. const int nb00 = src0->nb[0];
  5771. const int nb01 = src0->nb[1];
  5772. const int nb02 = src0->nb[2];
  5773. const int nb03 = src0->nb[3];
  5774. const int nb10 = src1->nb[0];
  5775. const int nb11 = src1->nb[1];
  5776. const int nb12 = src1->nb[2];
  5777. const int nb13 = src1->nb[3];
  5778. const int nb0 = dst->nb[0];
  5779. const int nb1 = dst->nb[1];
  5780. const int nb2 = dst->nb[2];
  5781. const int nb3 = dst->nb[3];
  5782. const int ith = params->ith;
  5783. const int nth = params->nth;
  5784. GGML_ASSERT(ne02 == ne12);
  5785. GGML_ASSERT(ne03 == ne13);
  5786. GGML_ASSERT(ne2 == ne12);
  5787. GGML_ASSERT(ne3 == ne13);
  5788. const enum ggml_type type = src0->type;
  5789. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  5790. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5791. // we don't support permuted src0 or src1
  5792. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5793. GGML_ASSERT(nb10 == sizeof(float));
  5794. // dst cannot be transposed or permuted
  5795. GGML_ASSERT(nb0 == sizeof(float));
  5796. GGML_ASSERT(nb0 <= nb1);
  5797. GGML_ASSERT(nb1 <= nb2);
  5798. GGML_ASSERT(nb2 <= nb3);
  5799. GGML_ASSERT(ne0 == ne01);
  5800. GGML_ASSERT(ne1 == ne11);
  5801. GGML_ASSERT(ne2 == ne02);
  5802. GGML_ASSERT(ne3 == ne03);
  5803. // nb01 >= nb00 - src0 is not transposed
  5804. // compute by src0 rows
  5805. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5806. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5807. if (params->ith != 0) {
  5808. return;
  5809. }
  5810. if (params->type == GGML_TASK_INIT) {
  5811. return;
  5812. }
  5813. if (params->type == GGML_TASK_FINALIZE) {
  5814. return;
  5815. }
  5816. float * const wdata = params->wdata;
  5817. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5820. {
  5821. size_t id = 0;
  5822. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5823. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5824. id += ne00;
  5825. }
  5826. }
  5827. const float * x = wdata;
  5828. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5829. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5830. // zT = y * xT
  5831. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5832. ne11, ne01, ne10,
  5833. 1.0f, y, ne10,
  5834. x, ne00,
  5835. 0.0f, d, ne01);
  5836. }
  5837. }
  5838. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5839. return;
  5840. }
  5841. #endif
  5842. if (params->type == GGML_TASK_INIT) {
  5843. char * wdata = params->wdata;
  5844. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  5845. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5846. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5847. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5848. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5849. wdata += row_size;
  5850. }
  5851. }
  5852. }
  5853. return;
  5854. }
  5855. if (params->type == GGML_TASK_FINALIZE) {
  5856. return;
  5857. }
  5858. // parallelize by src0 rows using ggml_vec_dot_q
  5859. // total rows in src0
  5860. const int nr = ne01*ne02*ne03;
  5861. // rows per thread
  5862. const int dr = (nr + nth - 1)/nth;
  5863. // row range for this thread
  5864. const int ir0 = dr*ith;
  5865. const int ir1 = MIN(ir0 + dr, nr);
  5866. void * wdata = params->wdata;
  5867. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  5868. for (int ir = ir0; ir < ir1; ++ir) {
  5869. // src0 indices
  5870. const int i03 = ir/(ne02*ne01);
  5871. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5872. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5873. const int i13 = i03;
  5874. const int i12 = i02;
  5875. const int i0 = i01;
  5876. const int i2 = i02;
  5877. const int i3 = i03;
  5878. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5879. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5880. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5881. assert(ne00 % 32 == 0);
  5882. for (int64_t ic = 0; ic < ne11; ++ic) {
  5883. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5884. }
  5885. }
  5886. //int64_t t1 = ggml_time_us();
  5887. //static int64_t acc = 0;
  5888. //acc += t1 - t0;
  5889. //if (t1 - t0 > 10) {
  5890. // printf("\n");
  5891. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5892. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5893. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5894. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5895. //}
  5896. }
  5897. static void ggml_compute_forward_mul_mat(
  5898. const struct ggml_compute_params * params,
  5899. const struct ggml_tensor * src0,
  5900. const struct ggml_tensor * src1,
  5901. struct ggml_tensor * dst) {
  5902. switch (src0->type) {
  5903. case GGML_TYPE_Q4_0:
  5904. case GGML_TYPE_Q4_1:
  5905. case GGML_TYPE_Q8_0:
  5906. {
  5907. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5908. } break;
  5909. case GGML_TYPE_F16:
  5910. {
  5911. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5912. } break;
  5913. case GGML_TYPE_F32:
  5914. {
  5915. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5916. } break;
  5917. default:
  5918. {
  5919. GGML_ASSERT(false);
  5920. } break;
  5921. }
  5922. #if 0
  5923. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5924. static int first = 8;
  5925. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5926. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5927. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5928. if (first) {
  5929. --first;
  5930. } else {
  5931. for (int k = 0; k < dst->ne[1]; ++k) {
  5932. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5933. for (int i = 0; i < 16; ++i) {
  5934. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5935. }
  5936. printf("\n");
  5937. }
  5938. printf("\n");
  5939. }
  5940. printf("\n");
  5941. exit(0);
  5942. }
  5943. } else {
  5944. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5945. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5946. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5947. }
  5948. #endif
  5949. }
  5950. // ggml_compute_forward_scale
  5951. static void ggml_compute_forward_scale_f32(
  5952. const struct ggml_compute_params * params,
  5953. const struct ggml_tensor * src0,
  5954. const struct ggml_tensor * src1,
  5955. struct ggml_tensor * dst) {
  5956. GGML_ASSERT(ggml_is_contiguous(src0));
  5957. GGML_ASSERT(ggml_is_contiguous(dst));
  5958. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5959. GGML_ASSERT(ggml_is_scalar(src1));
  5960. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5961. return;
  5962. }
  5963. // scale factor
  5964. const float v = *(float *) src1->data;
  5965. const int ith = params->ith;
  5966. const int nth = params->nth;
  5967. const int nc = src0->ne[0];
  5968. const int nr = ggml_nrows(src0);
  5969. // rows per thread
  5970. const int dr = (nr + nth - 1)/nth;
  5971. // row range for this thread
  5972. const int ir0 = dr*ith;
  5973. const int ir1 = MIN(ir0 + dr, nr);
  5974. for (int i1 = ir0; i1 < ir1; i1++) {
  5975. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5976. }
  5977. }
  5978. static void ggml_compute_forward_scale(
  5979. const struct ggml_compute_params * params,
  5980. const struct ggml_tensor * src0,
  5981. const struct ggml_tensor * src1,
  5982. struct ggml_tensor * dst) {
  5983. switch (src0->type) {
  5984. case GGML_TYPE_F32:
  5985. {
  5986. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5987. } break;
  5988. default:
  5989. {
  5990. GGML_ASSERT(false);
  5991. } break;
  5992. }
  5993. }
  5994. // ggml_compute_forward_cpy
  5995. static void ggml_compute_forward_cpy(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. struct ggml_tensor * dst) {
  5999. ggml_compute_forward_dup(params, src0, dst);
  6000. }
  6001. // ggml_compute_forward_cont
  6002. static void ggml_compute_forward_cont(
  6003. const struct ggml_compute_params * params,
  6004. const struct ggml_tensor * src0,
  6005. struct ggml_tensor * dst) {
  6006. ggml_compute_forward_dup(params, src0, dst);
  6007. }
  6008. // ggml_compute_forward_reshape
  6009. static void ggml_compute_forward_reshape(
  6010. const struct ggml_compute_params * params,
  6011. const struct ggml_tensor * src0,
  6012. struct ggml_tensor * dst) {
  6013. // NOP
  6014. UNUSED(params);
  6015. UNUSED(src0);
  6016. UNUSED(dst);
  6017. }
  6018. // ggml_compute_forward_view
  6019. static void ggml_compute_forward_view(
  6020. const struct ggml_compute_params * params,
  6021. const struct ggml_tensor * src0) {
  6022. // NOP
  6023. UNUSED(params);
  6024. UNUSED(src0);
  6025. }
  6026. // ggml_compute_forward_permute
  6027. static void ggml_compute_forward_permute(
  6028. const struct ggml_compute_params * params,
  6029. const struct ggml_tensor * src0) {
  6030. // NOP
  6031. UNUSED(params);
  6032. UNUSED(src0);
  6033. }
  6034. // ggml_compute_forward_transpose
  6035. static void ggml_compute_forward_transpose(
  6036. const struct ggml_compute_params * params,
  6037. const struct ggml_tensor * src0) {
  6038. // NOP
  6039. UNUSED(params);
  6040. UNUSED(src0);
  6041. }
  6042. // ggml_compute_forward_get_rows
  6043. static void ggml_compute_forward_get_rows_q(
  6044. const struct ggml_compute_params * params,
  6045. const struct ggml_tensor * src0,
  6046. const struct ggml_tensor * src1,
  6047. struct ggml_tensor * dst) {
  6048. assert(params->ith == 0);
  6049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6050. return;
  6051. }
  6052. const int nc = src0->ne[0];
  6053. const int nr = ggml_nelements(src1);
  6054. const enum ggml_type type = src0->type;
  6055. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6056. assert( dst->ne[0] == nc);
  6057. assert( dst->ne[1] == nr);
  6058. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6059. for (int i = 0; i < nr; ++i) {
  6060. const int r = ((int32_t *) src1->data)[i];
  6061. dequantize_row_q(
  6062. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6063. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6064. }
  6065. }
  6066. static void ggml_compute_forward_get_rows_f16(
  6067. const struct ggml_compute_params * params,
  6068. const struct ggml_tensor * src0,
  6069. const struct ggml_tensor * src1,
  6070. struct ggml_tensor * dst) {
  6071. assert(params->ith == 0);
  6072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6073. return;
  6074. }
  6075. const int nc = src0->ne[0];
  6076. const int nr = ggml_nelements(src1);
  6077. assert( dst->ne[0] == nc);
  6078. assert( dst->ne[1] == nr);
  6079. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6080. for (int i = 0; i < nr; ++i) {
  6081. const int r = ((int32_t *) src1->data)[i];
  6082. for (int j = 0; j < nc; ++j) {
  6083. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6084. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6085. }
  6086. }
  6087. }
  6088. static void ggml_compute_forward_get_rows_f32(
  6089. const struct ggml_compute_params * params,
  6090. const struct ggml_tensor * src0,
  6091. const struct ggml_tensor * src1,
  6092. struct ggml_tensor * dst) {
  6093. assert(params->ith == 0);
  6094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6095. return;
  6096. }
  6097. const int nc = src0->ne[0];
  6098. const int nr = ggml_nelements(src1);
  6099. assert( dst->ne[0] == nc);
  6100. assert( dst->ne[1] == nr);
  6101. assert(src0->nb[0] == sizeof(float));
  6102. for (int i = 0; i < nr; ++i) {
  6103. const int r = ((int32_t *) src1->data)[i];
  6104. ggml_vec_cpy_f32(nc,
  6105. (float *) ((char *) dst->data + i*dst->nb[1]),
  6106. (float *) ((char *) src0->data + r*src0->nb[1]));
  6107. }
  6108. }
  6109. static void ggml_compute_forward_get_rows(
  6110. const struct ggml_compute_params * params,
  6111. const struct ggml_tensor * src0,
  6112. const struct ggml_tensor * src1,
  6113. struct ggml_tensor * dst) {
  6114. switch (src0->type) {
  6115. case GGML_TYPE_Q4_0:
  6116. case GGML_TYPE_Q4_1:
  6117. case GGML_TYPE_Q8_0:
  6118. {
  6119. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6120. } break;
  6121. case GGML_TYPE_F16:
  6122. {
  6123. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6124. } break;
  6125. case GGML_TYPE_F32:
  6126. {
  6127. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6128. } break;
  6129. default:
  6130. {
  6131. GGML_ASSERT(false);
  6132. } break;
  6133. }
  6134. //static bool first = true;
  6135. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6136. //if (first) {
  6137. // first = false;
  6138. //} else {
  6139. // for (int k = 0; k < dst->ne[1]; ++k) {
  6140. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6141. // for (int i = 0; i < 16; ++i) {
  6142. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6143. // }
  6144. // printf("\n");
  6145. // }
  6146. // printf("\n");
  6147. // }
  6148. // printf("\n");
  6149. // exit(0);
  6150. //}
  6151. }
  6152. // ggml_compute_forward_diag_mask_inf
  6153. static void ggml_compute_forward_diag_mask_inf_f32(
  6154. const struct ggml_compute_params * params,
  6155. const struct ggml_tensor * src0,
  6156. const struct ggml_tensor * src1,
  6157. struct ggml_tensor * dst) {
  6158. assert(params->ith == 0);
  6159. assert(src1->type == GGML_TYPE_I32);
  6160. assert(ggml_nelements(src1) == 1);
  6161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6162. return;
  6163. }
  6164. const int n_past = ((int32_t *) src1->data)[0];
  6165. // TODO: handle transposed/permuted matrices
  6166. const int n = ggml_nrows(src0);
  6167. const int nc = src0->ne[0];
  6168. const int nr = src0->ne[1];
  6169. const int nz = n/nr;
  6170. assert( dst->nb[0] == sizeof(float));
  6171. assert(src0->nb[0] == sizeof(float));
  6172. for (int k = 0; k < nz; k++) {
  6173. for (int j = 0; j < nr; j++) {
  6174. for (int i = n_past; i < nc; i++) {
  6175. if (i > n_past + j) {
  6176. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6177. }
  6178. }
  6179. }
  6180. }
  6181. }
  6182. static void ggml_compute_forward_diag_mask_inf(
  6183. const struct ggml_compute_params * params,
  6184. const struct ggml_tensor * src0,
  6185. const struct ggml_tensor * src1,
  6186. struct ggml_tensor * dst) {
  6187. switch (src0->type) {
  6188. case GGML_TYPE_F32:
  6189. {
  6190. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6191. } break;
  6192. default:
  6193. {
  6194. GGML_ASSERT(false);
  6195. } break;
  6196. }
  6197. }
  6198. // ggml_compute_forward_soft_max
  6199. static void ggml_compute_forward_soft_max_f32(
  6200. const struct ggml_compute_params * params,
  6201. const struct ggml_tensor * src0,
  6202. struct ggml_tensor * dst) {
  6203. GGML_ASSERT(ggml_is_contiguous(src0));
  6204. GGML_ASSERT(ggml_is_contiguous(dst));
  6205. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6207. return;
  6208. }
  6209. // TODO: handle transposed/permuted matrices
  6210. const int ith = params->ith;
  6211. const int nth = params->nth;
  6212. const int nc = src0->ne[0];
  6213. const int nr = ggml_nrows(src0);
  6214. // rows per thread
  6215. const int dr = (nr + nth - 1)/nth;
  6216. // row range for this thread
  6217. const int ir0 = dr*ith;
  6218. const int ir1 = MIN(ir0 + dr, nr);
  6219. for (int i1 = ir0; i1 < ir1; i1++) {
  6220. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6221. #ifndef NDEBUG
  6222. for (int i = 0; i < nc; ++i) {
  6223. //printf("p[%d] = %f\n", i, p[i]);
  6224. assert(!isnan(p[i]));
  6225. }
  6226. #endif
  6227. float max = -INFINITY;
  6228. ggml_vec_max_f32(nc, &max, p);
  6229. ggml_float sum = 0.0;
  6230. uint16_t scvt;
  6231. for (int i = 0; i < nc; i++) {
  6232. if (p[i] == -INFINITY) {
  6233. p[i] = 0.0f;
  6234. } else {
  6235. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6236. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6237. memcpy(&scvt, &s, sizeof(scvt));
  6238. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6239. sum += (ggml_float)val;
  6240. p[i] = val;
  6241. }
  6242. }
  6243. assert(sum > 0.0);
  6244. sum = 1.0/sum;
  6245. ggml_vec_scale_f32(nc, p, sum);
  6246. #ifndef NDEBUG
  6247. for (int i = 0; i < nc; ++i) {
  6248. assert(!isnan(p[i]));
  6249. assert(!isinf(p[i]));
  6250. }
  6251. #endif
  6252. }
  6253. }
  6254. static void ggml_compute_forward_soft_max(
  6255. const struct ggml_compute_params * params,
  6256. const struct ggml_tensor * src0,
  6257. struct ggml_tensor * dst) {
  6258. switch (src0->type) {
  6259. case GGML_TYPE_F32:
  6260. {
  6261. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6262. } break;
  6263. default:
  6264. {
  6265. GGML_ASSERT(false);
  6266. } break;
  6267. }
  6268. }
  6269. // ggml_compute_forward_rope
  6270. static void ggml_compute_forward_rope_f32(
  6271. const struct ggml_compute_params * params,
  6272. const struct ggml_tensor * src0,
  6273. const struct ggml_tensor * src1,
  6274. struct ggml_tensor * dst) {
  6275. assert(src1->type == GGML_TYPE_I32);
  6276. assert(ggml_nelements(src1) == 3);
  6277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6278. return;
  6279. }
  6280. const int n_past = ((int32_t *) src1->data)[0];
  6281. const int n_dims = ((int32_t *) src1->data)[1];
  6282. const int mode = ((int32_t *) src1->data)[2];
  6283. //const int64_t ne0 = src0->ne[0];
  6284. const int64_t ne1 = src0->ne[1];
  6285. const int64_t ne2 = src0->ne[2];
  6286. const int64_t ne3 = src0->ne[3];
  6287. const int nb0 = src0->nb[0];
  6288. const int nb1 = src0->nb[1];
  6289. const int nb2 = src0->nb[2];
  6290. const int nb3 = src0->nb[3];
  6291. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6292. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6293. assert(nb0 == sizeof(float));
  6294. const int ith = params->ith;
  6295. const int nth = params->nth;
  6296. const int nr = ggml_nrows(src0);
  6297. // rows per thread
  6298. const int dr = (nr + nth - 1)/nth;
  6299. // row range for this thread
  6300. const int ir0 = dr*ith;
  6301. const int ir1 = MIN(ir0 + dr, nr);
  6302. // row index used to determine which thread to use
  6303. int ir = 0;
  6304. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6305. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6306. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6307. const int p = (mode == 0 ? n_past + i2 : i2);
  6308. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6309. if (ir++ < ir0) continue;
  6310. if (ir > ir1) break;
  6311. float theta = (float)p;
  6312. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6313. const float cos_theta = cosf(theta);
  6314. const float sin_theta = sinf(theta);
  6315. theta *= theta_scale;
  6316. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6317. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6318. const float x0 = src[0];
  6319. const float x1 = src[1];
  6320. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6321. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6322. }
  6323. }
  6324. }
  6325. }
  6326. }
  6327. static void ggml_compute_forward_rope_f16(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. const struct ggml_tensor * src1,
  6331. struct ggml_tensor * dst) {
  6332. assert(src1->type == GGML_TYPE_I32);
  6333. assert(ggml_nelements(src1) == 3);
  6334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6335. return;
  6336. }
  6337. const int n_past = ((int32_t *) src1->data)[0];
  6338. const int n_dims = ((int32_t *) src1->data)[1];
  6339. const int mode = ((int32_t *) src1->data)[2];
  6340. //const int64_t ne0 = src0->ne[0];
  6341. const int64_t ne1 = src0->ne[1];
  6342. const int64_t ne2 = src0->ne[2];
  6343. const int64_t ne3 = src0->ne[3];
  6344. const int nb0 = src0->nb[0];
  6345. const int nb1 = src0->nb[1];
  6346. const int nb2 = src0->nb[2];
  6347. const int nb3 = src0->nb[3];
  6348. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6349. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6350. assert(nb0 == sizeof(ggml_fp16_t));
  6351. const int ith = params->ith;
  6352. const int nth = params->nth;
  6353. const int nr = ggml_nrows(src0);
  6354. // rows per thread
  6355. const int dr = (nr + nth - 1)/nth;
  6356. // row range for this thread
  6357. const int ir0 = dr*ith;
  6358. const int ir1 = MIN(ir0 + dr, nr);
  6359. // row index used to determine which thread to use
  6360. int ir = 0;
  6361. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6362. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6363. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6364. const int p = (mode == 0 ? n_past + i2 : i2);
  6365. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6366. if (ir++ < ir0) continue;
  6367. if (ir > ir1) break;
  6368. float theta = (float)p;
  6369. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6370. const float cos_theta = cosf(theta);
  6371. const float sin_theta = sinf(theta);
  6372. theta *= theta_scale;
  6373. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6374. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6375. const float x0 = ggml_fp16_to_fp32(src[0]);
  6376. const float x1 = ggml_fp16_to_fp32(src[1]);
  6377. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6378. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6379. }
  6380. }
  6381. }
  6382. }
  6383. }
  6384. static void ggml_compute_forward_rope(
  6385. const struct ggml_compute_params * params,
  6386. const struct ggml_tensor * src0,
  6387. const struct ggml_tensor * src1,
  6388. struct ggml_tensor * dst) {
  6389. switch (src0->type) {
  6390. case GGML_TYPE_F16:
  6391. {
  6392. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6393. } break;
  6394. case GGML_TYPE_F32:
  6395. {
  6396. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6397. } break;
  6398. default:
  6399. {
  6400. GGML_ASSERT(false);
  6401. } break;
  6402. }
  6403. }
  6404. // ggml_compute_forward_conv_1d_1s
  6405. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. const struct ggml_tensor * src1,
  6409. struct ggml_tensor * dst) {
  6410. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6411. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6412. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6413. int64_t t0 = ggml_perf_time_us();
  6414. UNUSED(t0);
  6415. const int64_t ne00 = src0->ne[0];
  6416. const int64_t ne01 = src0->ne[1];
  6417. const int64_t ne02 = src0->ne[2];
  6418. //const int64_t ne03 = src0->ne[3];
  6419. const int64_t ne10 = src1->ne[0];
  6420. const int64_t ne11 = src1->ne[1];
  6421. //const int64_t ne12 = src1->ne[2];
  6422. //const int64_t ne13 = src1->ne[3];
  6423. //const int64_t ne0 = dst->ne[0];
  6424. //const int64_t ne1 = dst->ne[1];
  6425. //const int64_t ne2 = dst->ne[2];
  6426. //const int64_t ne3 = dst->ne[3];
  6427. //const int64_t ne = ne0*ne1*ne2*ne3;
  6428. const int nb00 = src0->nb[0];
  6429. const int nb01 = src0->nb[1];
  6430. const int nb02 = src0->nb[2];
  6431. //const int nb03 = src0->nb[3];
  6432. const int nb10 = src1->nb[0];
  6433. const int nb11 = src1->nb[1];
  6434. //const int nb12 = src1->nb[2];
  6435. //const int nb13 = src1->nb[3];
  6436. //const int nb0 = dst->nb[0];
  6437. const int nb1 = dst->nb[1];
  6438. //const int nb2 = dst->nb[2];
  6439. //const int nb3 = dst->nb[3];
  6440. const int ith = params->ith;
  6441. const int nth = params->nth;
  6442. const int nk = ne00;
  6443. const int nh = nk/2;
  6444. const int ew0 = ggml_up32(ne01);
  6445. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6446. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6447. GGML_ASSERT(nb10 == sizeof(float));
  6448. if (params->type == GGML_TASK_INIT) {
  6449. // TODO: fix this memset (wsize is overestimated)
  6450. memset(params->wdata, 0, params->wsize);
  6451. // prepare kernel data (src0)
  6452. {
  6453. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6454. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6455. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6456. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6457. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6459. dst_data[i00*ew0 + i01] = src[i00];
  6460. }
  6461. }
  6462. }
  6463. }
  6464. // prepare source data (src1)
  6465. {
  6466. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6467. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6468. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6469. ggml_fp16_t * dst_data = wdata;
  6470. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6471. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6472. }
  6473. }
  6474. }
  6475. return;
  6476. }
  6477. if (params->type == GGML_TASK_FINALIZE) {
  6478. return;
  6479. }
  6480. // total rows in dst
  6481. const int nr = ne02;
  6482. // rows per thread
  6483. const int dr = (nr + nth - 1)/nth;
  6484. // row range for this thread
  6485. const int ir0 = dr*ith;
  6486. const int ir1 = MIN(ir0 + dr, nr);
  6487. for (int i1 = ir0; i1 < ir1; i1++) {
  6488. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6489. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6490. dst_data[i0] = 0;
  6491. for (int k = -nh; k <= nh; k++) {
  6492. float v = 0.0f;
  6493. ggml_vec_dot_f16(ew0, &v,
  6494. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6495. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6496. dst_data[i0] += v;
  6497. }
  6498. }
  6499. }
  6500. }
  6501. static void ggml_compute_forward_conv_1d_1s_f32(
  6502. const struct ggml_compute_params * params,
  6503. const struct ggml_tensor * src0,
  6504. const struct ggml_tensor * src1,
  6505. struct ggml_tensor * dst) {
  6506. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6507. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6508. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6509. int64_t t0 = ggml_perf_time_us();
  6510. UNUSED(t0);
  6511. const int64_t ne00 = src0->ne[0];
  6512. const int64_t ne01 = src0->ne[1];
  6513. const int64_t ne02 = src0->ne[2];
  6514. //const int64_t ne03 = src0->ne[3];
  6515. const int64_t ne10 = src1->ne[0];
  6516. const int64_t ne11 = src1->ne[1];
  6517. //const int64_t ne12 = src1->ne[2];
  6518. //const int64_t ne13 = src1->ne[3];
  6519. //const int64_t ne0 = dst->ne[0];
  6520. //const int64_t ne1 = dst->ne[1];
  6521. //const int64_t ne2 = dst->ne[2];
  6522. //const int64_t ne3 = dst->ne[3];
  6523. //const int64_t ne = ne0*ne1*ne2*ne3;
  6524. const int nb00 = src0->nb[0];
  6525. const int nb01 = src0->nb[1];
  6526. const int nb02 = src0->nb[2];
  6527. //const int nb03 = src0->nb[3];
  6528. const int nb10 = src1->nb[0];
  6529. const int nb11 = src1->nb[1];
  6530. //const int nb12 = src1->nb[2];
  6531. //const int nb13 = src1->nb[3];
  6532. //const int nb0 = dst->nb[0];
  6533. const int nb1 = dst->nb[1];
  6534. //const int nb2 = dst->nb[2];
  6535. //const int nb3 = dst->nb[3];
  6536. const int ith = params->ith;
  6537. const int nth = params->nth;
  6538. const int nk = ne00;
  6539. const int nh = nk/2;
  6540. const int ew0 = ggml_up32(ne01);
  6541. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6542. GGML_ASSERT(nb00 == sizeof(float));
  6543. GGML_ASSERT(nb10 == sizeof(float));
  6544. if (params->type == GGML_TASK_INIT) {
  6545. // TODO: fix this memset (wsize is overestimated)
  6546. memset(params->wdata, 0, params->wsize);
  6547. // prepare kernel data (src0)
  6548. {
  6549. float * const wdata = (float *) params->wdata + 0;
  6550. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6551. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6552. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6553. float * dst_data = wdata + i02*ew0*ne00;
  6554. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6555. dst_data[i00*ew0 + i01] = src[i00];
  6556. }
  6557. }
  6558. }
  6559. }
  6560. // prepare source data (src1)
  6561. {
  6562. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6563. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6564. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6565. float * dst_data = wdata;
  6566. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6567. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6568. }
  6569. }
  6570. }
  6571. return;
  6572. }
  6573. if (params->type == GGML_TASK_FINALIZE) {
  6574. return;
  6575. }
  6576. // total rows in dst
  6577. const int nr = ne02;
  6578. // rows per thread
  6579. const int dr = (nr + nth - 1)/nth;
  6580. // row range for this thread
  6581. const int ir0 = dr*ith;
  6582. const int ir1 = MIN(ir0 + dr, nr);
  6583. for (int i1 = ir0; i1 < ir1; i1++) {
  6584. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6585. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6586. dst_data[i0] = 0;
  6587. for (int k = -nh; k <= nh; k++) {
  6588. float v = 0.0f;
  6589. ggml_vec_dot_f32(ew0, &v,
  6590. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6591. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6592. dst_data[i0] += v;
  6593. }
  6594. }
  6595. }
  6596. }
  6597. static void ggml_compute_forward_conv_1d_1s(
  6598. const struct ggml_compute_params * params,
  6599. const struct ggml_tensor * src0,
  6600. const struct ggml_tensor * src1,
  6601. struct ggml_tensor * dst) {
  6602. switch (src0->type) {
  6603. case GGML_TYPE_F16:
  6604. {
  6605. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6606. } break;
  6607. case GGML_TYPE_F32:
  6608. {
  6609. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6610. } break;
  6611. default:
  6612. {
  6613. GGML_ASSERT(false);
  6614. } break;
  6615. }
  6616. }
  6617. // ggml_compute_forward_conv_1d_2s
  6618. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6619. const struct ggml_compute_params * params,
  6620. const struct ggml_tensor * src0,
  6621. const struct ggml_tensor * src1,
  6622. struct ggml_tensor * dst) {
  6623. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6624. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6625. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6626. int64_t t0 = ggml_perf_time_us();
  6627. UNUSED(t0);
  6628. const int64_t ne00 = src0->ne[0];
  6629. const int64_t ne01 = src0->ne[1];
  6630. const int64_t ne02 = src0->ne[2];
  6631. //const int64_t ne03 = src0->ne[3];
  6632. const int64_t ne10 = src1->ne[0];
  6633. const int64_t ne11 = src1->ne[1];
  6634. //const int64_t ne12 = src1->ne[2];
  6635. //const int64_t ne13 = src1->ne[3];
  6636. //const int64_t ne0 = dst->ne[0];
  6637. //const int64_t ne1 = dst->ne[1];
  6638. //const int64_t ne2 = dst->ne[2];
  6639. //const int64_t ne3 = dst->ne[3];
  6640. //const int64_t ne = ne0*ne1*ne2*ne3;
  6641. const int nb00 = src0->nb[0];
  6642. const int nb01 = src0->nb[1];
  6643. const int nb02 = src0->nb[2];
  6644. //const int nb03 = src0->nb[3];
  6645. const int nb10 = src1->nb[0];
  6646. const int nb11 = src1->nb[1];
  6647. //const int nb12 = src1->nb[2];
  6648. //const int nb13 = src1->nb[3];
  6649. //const int nb0 = dst->nb[0];
  6650. const int nb1 = dst->nb[1];
  6651. //const int nb2 = dst->nb[2];
  6652. //const int nb3 = dst->nb[3];
  6653. const int ith = params->ith;
  6654. const int nth = params->nth;
  6655. const int nk = ne00;
  6656. const int nh = nk/2;
  6657. const int ew0 = ggml_up32(ne01);
  6658. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6659. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6660. GGML_ASSERT(nb10 == sizeof(float));
  6661. if (params->type == GGML_TASK_INIT) {
  6662. // TODO: fix this memset (wsize is overestimated)
  6663. memset(params->wdata, 0, params->wsize);
  6664. // prepare kernel data (src0)
  6665. {
  6666. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6667. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6668. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6669. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6670. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6671. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6672. dst_data[i00*ew0 + i01] = src[i00];
  6673. }
  6674. }
  6675. }
  6676. }
  6677. // prepare source data (src1)
  6678. {
  6679. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6680. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6681. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6682. ggml_fp16_t * dst_data = wdata;
  6683. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6684. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6685. }
  6686. }
  6687. }
  6688. return;
  6689. }
  6690. if (params->type == GGML_TASK_FINALIZE) {
  6691. return;
  6692. }
  6693. // total rows in dst
  6694. const int nr = ne02;
  6695. // rows per thread
  6696. const int dr = (nr + nth - 1)/nth;
  6697. // row range for this thread
  6698. const int ir0 = dr*ith;
  6699. const int ir1 = MIN(ir0 + dr, nr);
  6700. for (int i1 = ir0; i1 < ir1; i1++) {
  6701. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6702. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6703. dst_data[i0/2] = 0;
  6704. for (int k = -nh; k <= nh; k++) {
  6705. float v = 0.0f;
  6706. ggml_vec_dot_f16(ew0, &v,
  6707. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6708. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6709. dst_data[i0/2] += v;
  6710. }
  6711. }
  6712. }
  6713. }
  6714. static void ggml_compute_forward_conv_1d_2s_f32(
  6715. const struct ggml_compute_params * params,
  6716. const struct ggml_tensor * src0,
  6717. const struct ggml_tensor * src1,
  6718. struct ggml_tensor * dst) {
  6719. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6720. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6721. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6722. int64_t t0 = ggml_perf_time_us();
  6723. UNUSED(t0);
  6724. const int64_t ne00 = src0->ne[0];
  6725. const int64_t ne01 = src0->ne[1];
  6726. const int64_t ne02 = src0->ne[2];
  6727. //const int64_t ne03 = src0->ne[3];
  6728. const int64_t ne10 = src1->ne[0];
  6729. const int64_t ne11 = src1->ne[1];
  6730. //const int64_t ne12 = src1->ne[2];
  6731. //const int64_t ne13 = src1->ne[3];
  6732. //const int64_t ne0 = dst->ne[0];
  6733. //const int64_t ne1 = dst->ne[1];
  6734. //const int64_t ne2 = dst->ne[2];
  6735. //const int64_t ne3 = dst->ne[3];
  6736. //const int64_t ne = ne0*ne1*ne2*ne3;
  6737. const int nb00 = src0->nb[0];
  6738. const int nb01 = src0->nb[1];
  6739. const int nb02 = src0->nb[2];
  6740. //const int nb03 = src0->nb[3];
  6741. const int nb10 = src1->nb[0];
  6742. const int nb11 = src1->nb[1];
  6743. //const int nb12 = src1->nb[2];
  6744. //const int nb13 = src1->nb[3];
  6745. //const int nb0 = dst->nb[0];
  6746. const int nb1 = dst->nb[1];
  6747. //const int nb2 = dst->nb[2];
  6748. //const int nb3 = dst->nb[3];
  6749. const int ith = params->ith;
  6750. const int nth = params->nth;
  6751. const int nk = ne00;
  6752. const int nh = nk/2;
  6753. const int ew0 = ggml_up32(ne01);
  6754. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6755. GGML_ASSERT(nb00 == sizeof(float));
  6756. GGML_ASSERT(nb10 == sizeof(float));
  6757. if (params->type == GGML_TASK_INIT) {
  6758. // TODO: fix this memset (wsize is overestimated)
  6759. memset(params->wdata, 0, params->wsize);
  6760. // prepare kernel data (src0)
  6761. {
  6762. float * const wdata = (float *) params->wdata + 0;
  6763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6764. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6765. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6766. float * dst_data = wdata + i02*ew0*ne00;
  6767. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6768. dst_data[i00*ew0 + i01] = src[i00];
  6769. }
  6770. }
  6771. }
  6772. }
  6773. // prepare source data (src1)
  6774. {
  6775. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6776. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6777. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6778. float * dst_data = wdata;
  6779. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6780. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6781. }
  6782. }
  6783. }
  6784. return;
  6785. }
  6786. if (params->type == GGML_TASK_FINALIZE) {
  6787. return;
  6788. }
  6789. // total rows in dst
  6790. const int nr = ne02;
  6791. // rows per thread
  6792. const int dr = (nr + nth - 1)/nth;
  6793. // row range for this thread
  6794. const int ir0 = dr*ith;
  6795. const int ir1 = MIN(ir0 + dr, nr);
  6796. for (int i1 = ir0; i1 < ir1; i1++) {
  6797. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6798. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6799. dst_data[i0/2] = 0;
  6800. for (int k = -nh; k <= nh; k++) {
  6801. float v = 0.0f;
  6802. ggml_vec_dot_f32(ew0, &v,
  6803. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6804. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6805. dst_data[i0/2] += v;
  6806. }
  6807. }
  6808. }
  6809. }
  6810. static void ggml_compute_forward_conv_1d_2s(
  6811. const struct ggml_compute_params * params,
  6812. const struct ggml_tensor * src0,
  6813. const struct ggml_tensor * src1,
  6814. struct ggml_tensor * dst) {
  6815. switch (src0->type) {
  6816. case GGML_TYPE_F16:
  6817. {
  6818. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6819. } break;
  6820. case GGML_TYPE_F32:
  6821. {
  6822. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6823. } break;
  6824. default:
  6825. {
  6826. GGML_ASSERT(false);
  6827. } break;
  6828. }
  6829. }
  6830. // ggml_compute_forward_flash_attn
  6831. static void ggml_compute_forward_flash_attn_f32(
  6832. const struct ggml_compute_params * params,
  6833. const struct ggml_tensor * q,
  6834. const struct ggml_tensor * k,
  6835. const struct ggml_tensor * v,
  6836. const bool masked,
  6837. struct ggml_tensor * dst) {
  6838. int64_t t0 = ggml_perf_time_us();
  6839. UNUSED(t0);
  6840. const int64_t neq0 = q->ne[0];
  6841. const int64_t neq1 = q->ne[1];
  6842. const int64_t neq2 = q->ne[2];
  6843. const int64_t neq3 = q->ne[3];
  6844. const int64_t nek0 = k->ne[0];
  6845. const int64_t nek1 = k->ne[1];
  6846. //const int64_t nek2 = k->ne[2];
  6847. //const int64_t nek3 = k->ne[3];
  6848. //const int64_t nev0 = v->ne[0];
  6849. const int64_t nev1 = v->ne[1];
  6850. //const int64_t nev2 = v->ne[2];
  6851. //const int64_t nev3 = v->ne[3];
  6852. const int64_t ne0 = dst->ne[0];
  6853. const int64_t ne1 = dst->ne[1];
  6854. //const int64_t ne2 = dst->ne[2];
  6855. //const int64_t ne3 = dst->ne[3];
  6856. const int nbk0 = k->nb[0];
  6857. const int nbk1 = k->nb[1];
  6858. const int nbk2 = k->nb[2];
  6859. const int nbk3 = k->nb[3];
  6860. const int nbq0 = q->nb[0];
  6861. const int nbq1 = q->nb[1];
  6862. const int nbq2 = q->nb[2];
  6863. const int nbq3 = q->nb[3];
  6864. const int nbv0 = v->nb[0];
  6865. const int nbv1 = v->nb[1];
  6866. const int nbv2 = v->nb[2];
  6867. const int nbv3 = v->nb[3];
  6868. const int nb0 = dst->nb[0];
  6869. const int nb1 = dst->nb[1];
  6870. const int nb2 = dst->nb[2];
  6871. const int nb3 = dst->nb[3];
  6872. const int ith = params->ith;
  6873. const int nth = params->nth;
  6874. const int64_t D = neq0;
  6875. const int64_t N = neq1;
  6876. const int64_t P = nek1 - N;
  6877. const int64_t M = P + N;
  6878. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6879. GGML_ASSERT(ne0 == D);
  6880. GGML_ASSERT(ne1 == N);
  6881. GGML_ASSERT(P >= 0);
  6882. GGML_ASSERT(nbq0 == sizeof(float));
  6883. GGML_ASSERT(nbk0 == sizeof(float));
  6884. GGML_ASSERT(nbv0 == sizeof(float));
  6885. GGML_ASSERT(neq0 == D);
  6886. GGML_ASSERT(nek0 == D);
  6887. GGML_ASSERT(nev1 == D);
  6888. GGML_ASSERT(neq1 == N);
  6889. GGML_ASSERT(nek1 == N + P);
  6890. GGML_ASSERT(nev1 == D);
  6891. // dst cannot be transposed or permuted
  6892. GGML_ASSERT(nb0 == sizeof(float));
  6893. GGML_ASSERT(nb0 <= nb1);
  6894. GGML_ASSERT(nb1 <= nb2);
  6895. GGML_ASSERT(nb2 <= nb3);
  6896. if (params->type == GGML_TASK_INIT) {
  6897. return;
  6898. }
  6899. if (params->type == GGML_TASK_FINALIZE) {
  6900. return;
  6901. }
  6902. // parallelize by q rows using ggml_vec_dot_f32
  6903. // total rows in q
  6904. const int nr = neq1*neq2*neq3;
  6905. // rows per thread
  6906. const int dr = (nr + nth - 1)/nth;
  6907. // row range for this thread
  6908. const int ir0 = dr*ith;
  6909. const int ir1 = MIN(ir0 + dr, nr);
  6910. const float scale = 1.0f/sqrtf(D);
  6911. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6912. for (int ir = ir0; ir < ir1; ++ir) {
  6913. // q indices
  6914. const int iq3 = ir/(neq2*neq1);
  6915. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6916. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6917. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6918. for (int i = M; i < Mup; ++i) {
  6919. S[i] = -INFINITY;
  6920. }
  6921. for (int64_t ic = 0; ic < nek1; ++ic) {
  6922. // k indices
  6923. const int ik3 = iq3;
  6924. const int ik2 = iq2;
  6925. const int ik1 = ic;
  6926. // S indices
  6927. const int i1 = ik1;
  6928. ggml_vec_dot_f32(neq0,
  6929. S + i1,
  6930. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6931. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6932. }
  6933. // scale
  6934. ggml_vec_scale_f32(nek1, S, scale);
  6935. if (masked) {
  6936. for (int64_t i = P; i < M; i++) {
  6937. if (i > P + iq1) {
  6938. S[i] = -INFINITY;
  6939. }
  6940. }
  6941. }
  6942. // softmax
  6943. {
  6944. float max = -INFINITY;
  6945. ggml_vec_max_f32(M, &max, S);
  6946. ggml_float sum = 0.0;
  6947. {
  6948. #ifdef GGML_SOFT_MAX_ACCELERATE
  6949. max = -max;
  6950. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6951. vvexpf(S, S, &Mup);
  6952. ggml_vec_sum_f32(Mup, &sum, S);
  6953. #else
  6954. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6955. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6956. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6957. float * SS = S + i;
  6958. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6959. if (SS[j] == -INFINITY) {
  6960. SS[j] = 0.0f;
  6961. } else {
  6962. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6963. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6964. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6965. sump[j] += (ggml_float)val;
  6966. SS[j] = val;
  6967. }
  6968. }
  6969. }
  6970. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6971. sum += sump[i];
  6972. }
  6973. #endif
  6974. }
  6975. assert(sum > 0.0);
  6976. sum = 1.0/sum;
  6977. ggml_vec_scale_f32(M, S, sum);
  6978. #ifndef NDEBUG
  6979. for (int i = 0; i < M; ++i) {
  6980. assert(!isnan(S[i]));
  6981. assert(!isinf(S[i]));
  6982. }
  6983. #endif
  6984. }
  6985. for (int64_t ic = 0; ic < nev1; ++ic) {
  6986. // dst indices
  6987. const int i1 = iq1;
  6988. const int i2 = iq2;
  6989. const int i3 = iq3;
  6990. ggml_vec_dot_f32(nek1,
  6991. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6992. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6993. S);
  6994. }
  6995. }
  6996. }
  6997. static void ggml_compute_forward_flash_attn_f16(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * q,
  7000. const struct ggml_tensor * k,
  7001. const struct ggml_tensor * v,
  7002. const bool masked,
  7003. struct ggml_tensor * dst) {
  7004. int64_t t0 = ggml_perf_time_us();
  7005. UNUSED(t0);
  7006. const int64_t neq0 = q->ne[0];
  7007. const int64_t neq1 = q->ne[1];
  7008. const int64_t neq2 = q->ne[2];
  7009. const int64_t neq3 = q->ne[3];
  7010. const int64_t nek0 = k->ne[0];
  7011. const int64_t nek1 = k->ne[1];
  7012. //const int64_t nek2 = k->ne[2];
  7013. //const int64_t nek3 = k->ne[3];
  7014. //const int64_t nev0 = v->ne[0];
  7015. const int64_t nev1 = v->ne[1];
  7016. //const int64_t nev2 = v->ne[2];
  7017. //const int64_t nev3 = v->ne[3];
  7018. const int64_t ne0 = dst->ne[0];
  7019. const int64_t ne1 = dst->ne[1];
  7020. //const int64_t ne2 = dst->ne[2];
  7021. //const int64_t ne3 = dst->ne[3];
  7022. const int nbk0 = k->nb[0];
  7023. const int nbk1 = k->nb[1];
  7024. const int nbk2 = k->nb[2];
  7025. const int nbk3 = k->nb[3];
  7026. const int nbq0 = q->nb[0];
  7027. const int nbq1 = q->nb[1];
  7028. const int nbq2 = q->nb[2];
  7029. const int nbq3 = q->nb[3];
  7030. const int nbv0 = v->nb[0];
  7031. const int nbv1 = v->nb[1];
  7032. const int nbv2 = v->nb[2];
  7033. const int nbv3 = v->nb[3];
  7034. const int nb0 = dst->nb[0];
  7035. const int nb1 = dst->nb[1];
  7036. const int nb2 = dst->nb[2];
  7037. const int nb3 = dst->nb[3];
  7038. const int ith = params->ith;
  7039. const int nth = params->nth;
  7040. const int64_t D = neq0;
  7041. const int64_t N = neq1;
  7042. const int64_t P = nek1 - N;
  7043. const int64_t M = P + N;
  7044. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7045. GGML_ASSERT(ne0 == D);
  7046. GGML_ASSERT(ne1 == N);
  7047. GGML_ASSERT(P >= 0);
  7048. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7049. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7050. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7051. GGML_ASSERT(neq0 == D);
  7052. GGML_ASSERT(nek0 == D);
  7053. GGML_ASSERT(nev1 == D);
  7054. GGML_ASSERT(neq1 == N);
  7055. GGML_ASSERT(nek1 == N + P);
  7056. GGML_ASSERT(nev1 == D);
  7057. // dst cannot be transposed or permuted
  7058. GGML_ASSERT(nb0 == sizeof(float));
  7059. GGML_ASSERT(nb0 <= nb1);
  7060. GGML_ASSERT(nb1 <= nb2);
  7061. GGML_ASSERT(nb2 <= nb3);
  7062. if (params->type == GGML_TASK_INIT) {
  7063. return;
  7064. }
  7065. if (params->type == GGML_TASK_FINALIZE) {
  7066. return;
  7067. }
  7068. // parallelize by q rows using ggml_vec_dot_f32
  7069. // total rows in q
  7070. const int nr = neq1*neq2*neq3;
  7071. // rows per thread
  7072. const int dr = (nr + nth - 1)/nth;
  7073. // row range for this thread
  7074. const int ir0 = dr*ith;
  7075. const int ir1 = MIN(ir0 + dr, nr);
  7076. const float scale = 1.0f/sqrtf(D);
  7077. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7078. for (int ir = ir0; ir < ir1; ++ir) {
  7079. // q indices
  7080. const int iq3 = ir/(neq2*neq1);
  7081. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7082. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7083. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7084. for (int i = M; i < Mup; ++i) {
  7085. S[i] = -INFINITY;
  7086. }
  7087. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7088. for (int64_t ic = 0; ic < nek1; ++ic) {
  7089. // k indices
  7090. const int ik3 = iq3;
  7091. const int ik2 = iq2;
  7092. const int ik1 = ic;
  7093. // S indices
  7094. const int i1 = ik1;
  7095. ggml_vec_dot_f16(neq0,
  7096. S + i1,
  7097. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7098. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7099. }
  7100. } else {
  7101. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7102. // k indices
  7103. const int ik3 = iq3;
  7104. const int ik2 = iq2;
  7105. const int ik1 = ic;
  7106. // S indices
  7107. const int i1 = ik1;
  7108. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7109. S + i1,
  7110. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7111. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7112. }
  7113. }
  7114. // scale
  7115. ggml_vec_scale_f32(nek1, S, scale);
  7116. if (masked) {
  7117. for (int64_t i = P; i < M; i++) {
  7118. if (i > P + iq1) {
  7119. S[i] = -INFINITY;
  7120. }
  7121. }
  7122. }
  7123. // softmax
  7124. {
  7125. float max = -INFINITY;
  7126. ggml_vec_max_f32(M, &max, S);
  7127. ggml_float sum = 0.0;
  7128. {
  7129. #ifdef GGML_SOFT_MAX_ACCELERATE
  7130. max = -max;
  7131. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7132. vvexpf(S, S, &Mup);
  7133. ggml_vec_sum_f32(Mup, &sum, S);
  7134. #else
  7135. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7136. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7137. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7138. float * SS = S + i;
  7139. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7140. if (SS[j] == -INFINITY) {
  7141. SS[j] = 0.0f;
  7142. } else {
  7143. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7144. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7145. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7146. sump[j] += (ggml_float)val;
  7147. SS[j] = val;
  7148. }
  7149. }
  7150. }
  7151. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7152. sum += sump[i];
  7153. }
  7154. #endif
  7155. }
  7156. assert(sum > 0.0);
  7157. sum = 1.0/sum;
  7158. ggml_vec_scale_f32(M, S, sum);
  7159. #ifndef NDEBUG
  7160. for (int i = 0; i < M; ++i) {
  7161. assert(!isnan(S[i]));
  7162. assert(!isinf(S[i]));
  7163. }
  7164. #endif
  7165. }
  7166. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7167. for (int64_t i = 0; i < M; i++) {
  7168. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7169. }
  7170. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7171. for (int64_t ic = 0; ic < nev1; ++ic) {
  7172. // dst indices
  7173. const int i1 = iq1;
  7174. const int i2 = iq2;
  7175. const int i3 = iq3;
  7176. ggml_vec_dot_f16(nek1,
  7177. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7178. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7179. S16);
  7180. }
  7181. } else {
  7182. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7183. // dst indices
  7184. const int i1 = iq1;
  7185. const int i2 = iq2;
  7186. const int i3 = iq3;
  7187. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7188. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7189. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7190. S16);
  7191. }
  7192. }
  7193. }
  7194. }
  7195. static void ggml_compute_forward_flash_attn(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * q,
  7198. const struct ggml_tensor * k,
  7199. const struct ggml_tensor * v,
  7200. const bool masked,
  7201. struct ggml_tensor * dst) {
  7202. switch (q->type) {
  7203. case GGML_TYPE_F16:
  7204. {
  7205. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7206. } break;
  7207. case GGML_TYPE_F32:
  7208. {
  7209. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7210. } break;
  7211. default:
  7212. {
  7213. GGML_ASSERT(false);
  7214. } break;
  7215. }
  7216. }
  7217. // ggml_compute_forward_flash_ff
  7218. static void ggml_compute_forward_flash_ff_f16(
  7219. const struct ggml_compute_params * params,
  7220. const struct ggml_tensor * a, // F16
  7221. const struct ggml_tensor * b0, // F16 fc_w
  7222. const struct ggml_tensor * b1, // F32 fc_b
  7223. const struct ggml_tensor * c0, // F16 proj_w
  7224. const struct ggml_tensor * c1, // F32 proj_b
  7225. struct ggml_tensor * dst) {
  7226. int64_t t0 = ggml_perf_time_us();
  7227. UNUSED(t0);
  7228. const int64_t nea0 = a->ne[0];
  7229. const int64_t nea1 = a->ne[1];
  7230. const int64_t nea2 = a->ne[2];
  7231. const int64_t nea3 = a->ne[3];
  7232. const int64_t neb00 = b0->ne[0];
  7233. const int64_t neb01 = b0->ne[1];
  7234. //const int64_t neb02 = b0->ne[2];
  7235. //const int64_t neb03 = b0->ne[3];
  7236. const int64_t neb10 = b1->ne[0];
  7237. const int64_t neb11 = b1->ne[1];
  7238. //const int64_t neb12 = b1->ne[2];
  7239. //const int64_t neb13 = b1->ne[3];
  7240. const int64_t nec00 = c0->ne[0];
  7241. const int64_t nec01 = c0->ne[1];
  7242. //const int64_t nec02 = c0->ne[2];
  7243. //const int64_t nec03 = c0->ne[3];
  7244. const int64_t nec10 = c1->ne[0];
  7245. const int64_t nec11 = c1->ne[1];
  7246. //const int64_t nec12 = c1->ne[2];
  7247. //const int64_t nec13 = c1->ne[3];
  7248. const int64_t ne0 = dst->ne[0];
  7249. const int64_t ne1 = dst->ne[1];
  7250. const int64_t ne2 = dst->ne[2];
  7251. //const int64_t ne3 = dst->ne[3];
  7252. const int nba0 = a->nb[0];
  7253. const int nba1 = a->nb[1];
  7254. const int nba2 = a->nb[2];
  7255. const int nba3 = a->nb[3];
  7256. const int nbb00 = b0->nb[0];
  7257. const int nbb01 = b0->nb[1];
  7258. const int nbb02 = b0->nb[2];
  7259. const int nbb03 = b0->nb[3];
  7260. const int nbb10 = b1->nb[0];
  7261. //const int nbb11 = b1->nb[1];
  7262. //const int nbb12 = b1->nb[2];
  7263. //const int nbb13 = b1->nb[3];
  7264. const int nbc00 = c0->nb[0];
  7265. const int nbc01 = c0->nb[1];
  7266. const int nbc02 = c0->nb[2];
  7267. const int nbc03 = c0->nb[3];
  7268. const int nbc10 = c1->nb[0];
  7269. //const int nbc11 = c1->nb[1];
  7270. //const int nbc12 = c1->nb[2];
  7271. //const int nbc13 = c1->nb[3];
  7272. const int nb0 = dst->nb[0];
  7273. const int nb1 = dst->nb[1];
  7274. const int nb2 = dst->nb[2];
  7275. const int nb3 = dst->nb[3];
  7276. const int ith = params->ith;
  7277. const int nth = params->nth;
  7278. const int64_t D = nea0;
  7279. //const int64_t N = nea1;
  7280. const int64_t M = neb01;
  7281. GGML_ASSERT(ne0 == nea0);
  7282. GGML_ASSERT(ne1 == nea1);
  7283. GGML_ASSERT(ne2 == nea2);
  7284. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7285. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7286. GGML_ASSERT(nbb10 == sizeof(float));
  7287. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7288. GGML_ASSERT(nbc10 == sizeof(float));
  7289. GGML_ASSERT(neb00 == D);
  7290. GGML_ASSERT(neb01 == M);
  7291. GGML_ASSERT(neb10 == M);
  7292. GGML_ASSERT(neb11 == 1);
  7293. GGML_ASSERT(nec00 == M);
  7294. GGML_ASSERT(nec01 == D);
  7295. GGML_ASSERT(nec10 == D);
  7296. GGML_ASSERT(nec11 == 1);
  7297. // dst cannot be transposed or permuted
  7298. GGML_ASSERT(nb0 == sizeof(float));
  7299. GGML_ASSERT(nb0 <= nb1);
  7300. GGML_ASSERT(nb1 <= nb2);
  7301. GGML_ASSERT(nb2 <= nb3);
  7302. if (params->type == GGML_TASK_INIT) {
  7303. return;
  7304. }
  7305. if (params->type == GGML_TASK_FINALIZE) {
  7306. return;
  7307. }
  7308. // parallelize by a rows using ggml_vec_dot_f32
  7309. // total rows in a
  7310. const int nr = nea1*nea2*nea3;
  7311. // rows per thread
  7312. const int dr = (nr + nth - 1)/nth;
  7313. // row range for this thread
  7314. const int ir0 = dr*ith;
  7315. const int ir1 = MIN(ir0 + dr, nr);
  7316. for (int ir = ir0; ir < ir1; ++ir) {
  7317. // a indices
  7318. const int ia3 = ir/(nea2*nea1);
  7319. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7320. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7321. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7322. for (int64_t ic = 0; ic < neb01; ++ic) {
  7323. // b0 indices
  7324. const int ib03 = ia3;
  7325. const int ib02 = ia2;
  7326. const int ib01 = ic;
  7327. // S indices
  7328. const int i1 = ib01;
  7329. ggml_vec_dot_f16(nea0,
  7330. S + i1,
  7331. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7332. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7333. }
  7334. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7335. //ggml_vec_gelu_f32(neb01, S, S);
  7336. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7337. for (int64_t i = 0; i < M; i++) {
  7338. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7339. }
  7340. ggml_vec_gelu_f16(neb01, S16, S16);
  7341. {
  7342. // dst indices
  7343. const int i1 = ia1;
  7344. const int i2 = ia2;
  7345. const int i3 = ia3;
  7346. for (int64_t ic = 0; ic < nec01; ++ic) {
  7347. ggml_vec_dot_f16(neb01,
  7348. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7349. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7350. S16);
  7351. }
  7352. ggml_vec_add_f32(nec01,
  7353. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7354. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7355. (float *) c1->data);
  7356. }
  7357. }
  7358. }
  7359. static void ggml_compute_forward_flash_ff(
  7360. const struct ggml_compute_params * params,
  7361. const struct ggml_tensor * a,
  7362. const struct ggml_tensor * b0,
  7363. const struct ggml_tensor * b1,
  7364. const struct ggml_tensor * c0,
  7365. const struct ggml_tensor * c1,
  7366. struct ggml_tensor * dst) {
  7367. switch (b0->type) {
  7368. case GGML_TYPE_F16:
  7369. {
  7370. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7371. } break;
  7372. case GGML_TYPE_F32:
  7373. {
  7374. GGML_ASSERT(false); // TODO
  7375. } break;
  7376. default:
  7377. {
  7378. GGML_ASSERT(false);
  7379. } break;
  7380. }
  7381. }
  7382. // ggml_compute_forward_map_unary
  7383. static void ggml_compute_forward_map_unary_f32(
  7384. const struct ggml_compute_params * params,
  7385. const struct ggml_tensor * src0,
  7386. struct ggml_tensor * dst,
  7387. const ggml_unary_op_f32_t fun) {
  7388. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7390. return;
  7391. }
  7392. const int n = ggml_nrows(src0);
  7393. const int nc = src0->ne[0];
  7394. assert( dst->nb[0] == sizeof(float));
  7395. assert(src0->nb[0] == sizeof(float));
  7396. for (int i = 0; i < n; i++) {
  7397. fun(nc,
  7398. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7399. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7400. }
  7401. }
  7402. static void ggml_compute_forward_map_unary(
  7403. const struct ggml_compute_params * params,
  7404. const struct ggml_tensor * src0,
  7405. struct ggml_tensor * dst,
  7406. const ggml_unary_op_f32_t fun) {
  7407. switch (src0->type) {
  7408. case GGML_TYPE_F32:
  7409. {
  7410. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7411. } break;
  7412. default:
  7413. {
  7414. GGML_ASSERT(false);
  7415. } break;
  7416. }
  7417. }
  7418. // ggml_compute_forward_map_binary
  7419. static void ggml_compute_forward_map_binary_f32(
  7420. const struct ggml_compute_params * params,
  7421. const struct ggml_tensor * src0,
  7422. const struct ggml_tensor * src1,
  7423. struct ggml_tensor * dst,
  7424. const ggml_binary_op_f32_t fun) {
  7425. assert(params->ith == 0);
  7426. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7428. return;
  7429. }
  7430. const int n = ggml_nrows(src0);
  7431. const int nc = src0->ne[0];
  7432. assert( dst->nb[0] == sizeof(float));
  7433. assert(src0->nb[0] == sizeof(float));
  7434. assert(src1->nb[0] == sizeof(float));
  7435. for (int i = 0; i < n; i++) {
  7436. fun(nc,
  7437. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7438. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7439. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7440. }
  7441. }
  7442. static void ggml_compute_forward_map_binary(
  7443. const struct ggml_compute_params * params,
  7444. const struct ggml_tensor * src0,
  7445. const struct ggml_tensor * src1,
  7446. struct ggml_tensor * dst,
  7447. const ggml_binary_op_f32_t fun) {
  7448. switch (src0->type) {
  7449. case GGML_TYPE_F32:
  7450. {
  7451. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7452. } break;
  7453. default:
  7454. {
  7455. GGML_ASSERT(false);
  7456. } break;
  7457. }
  7458. }
  7459. /////////////////////////////////
  7460. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7461. GGML_ASSERT(params);
  7462. switch (tensor->op) {
  7463. case GGML_OP_DUP:
  7464. {
  7465. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7466. } break;
  7467. case GGML_OP_ADD:
  7468. {
  7469. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7470. } break;
  7471. case GGML_OP_SUB:
  7472. {
  7473. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7474. } break;
  7475. case GGML_OP_MUL:
  7476. {
  7477. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7478. } break;
  7479. case GGML_OP_DIV:
  7480. {
  7481. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7482. } break;
  7483. case GGML_OP_SQR:
  7484. {
  7485. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7486. } break;
  7487. case GGML_OP_SQRT:
  7488. {
  7489. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7490. } break;
  7491. case GGML_OP_SUM:
  7492. {
  7493. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7494. } break;
  7495. case GGML_OP_MEAN:
  7496. {
  7497. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7498. } break;
  7499. case GGML_OP_REPEAT:
  7500. {
  7501. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7502. } break;
  7503. case GGML_OP_ABS:
  7504. {
  7505. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7506. } break;
  7507. case GGML_OP_SGN:
  7508. {
  7509. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7510. } break;
  7511. case GGML_OP_NEG:
  7512. {
  7513. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7514. } break;
  7515. case GGML_OP_STEP:
  7516. {
  7517. ggml_compute_forward_step(params, tensor->src0, tensor);
  7518. } break;
  7519. case GGML_OP_RELU:
  7520. {
  7521. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7522. } break;
  7523. case GGML_OP_GELU:
  7524. {
  7525. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7526. } break;
  7527. case GGML_OP_SILU:
  7528. {
  7529. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7530. } break;
  7531. case GGML_OP_NORM:
  7532. {
  7533. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7534. } break;
  7535. case GGML_OP_RMS_NORM:
  7536. {
  7537. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7538. } break;
  7539. case GGML_OP_MUL_MAT:
  7540. {
  7541. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7542. } break;
  7543. case GGML_OP_SCALE:
  7544. {
  7545. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7546. } break;
  7547. case GGML_OP_CPY:
  7548. {
  7549. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7550. } break;
  7551. case GGML_OP_CONT:
  7552. {
  7553. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7554. } break;
  7555. case GGML_OP_RESHAPE:
  7556. {
  7557. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7558. } break;
  7559. case GGML_OP_VIEW:
  7560. {
  7561. ggml_compute_forward_view(params, tensor->src0);
  7562. } break;
  7563. case GGML_OP_PERMUTE:
  7564. {
  7565. ggml_compute_forward_permute(params, tensor->src0);
  7566. } break;
  7567. case GGML_OP_TRANSPOSE:
  7568. {
  7569. ggml_compute_forward_transpose(params, tensor->src0);
  7570. } break;
  7571. case GGML_OP_GET_ROWS:
  7572. {
  7573. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7574. } break;
  7575. case GGML_OP_DIAG_MASK_INF:
  7576. {
  7577. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7578. } break;
  7579. case GGML_OP_SOFT_MAX:
  7580. {
  7581. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7582. } break;
  7583. case GGML_OP_ROPE:
  7584. {
  7585. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7586. } break;
  7587. case GGML_OP_CONV_1D_1S:
  7588. {
  7589. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7590. } break;
  7591. case GGML_OP_CONV_1D_2S:
  7592. {
  7593. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7594. } break;
  7595. case GGML_OP_FLASH_ATTN:
  7596. {
  7597. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7598. GGML_ASSERT(t == 0 || t == 1);
  7599. bool masked = t != 0;
  7600. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7601. } break;
  7602. case GGML_OP_FLASH_FF:
  7603. {
  7604. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7605. } break;
  7606. case GGML_OP_MAP_UNARY:
  7607. {
  7608. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  7609. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  7610. }
  7611. break;
  7612. case GGML_OP_MAP_BINARY:
  7613. {
  7614. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  7615. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  7616. }
  7617. break;
  7618. case GGML_OP_NONE:
  7619. {
  7620. // nop
  7621. } break;
  7622. case GGML_OP_COUNT:
  7623. {
  7624. GGML_ASSERT(false);
  7625. } break;
  7626. }
  7627. }
  7628. ////////////////////////////////////////////////////////////////////////////////
  7629. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7630. struct ggml_tensor * src0 = tensor->src0;
  7631. struct ggml_tensor * src1 = tensor->src1;
  7632. switch (tensor->op) {
  7633. case GGML_OP_DUP:
  7634. {
  7635. if (src0->grad) {
  7636. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7637. }
  7638. } break;
  7639. case GGML_OP_ADD:
  7640. {
  7641. if (src0->grad) {
  7642. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7643. }
  7644. if (src1->grad) {
  7645. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7646. }
  7647. } break;
  7648. case GGML_OP_SUB:
  7649. {
  7650. if (src0->grad) {
  7651. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7652. }
  7653. if (src1->grad) {
  7654. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7655. }
  7656. } break;
  7657. case GGML_OP_MUL:
  7658. {
  7659. if (src0->grad) {
  7660. src0->grad =
  7661. ggml_add_impl(ctx,
  7662. src0->grad,
  7663. ggml_mul(ctx, src1, tensor->grad),
  7664. inplace);
  7665. }
  7666. if (src1->grad) {
  7667. src1->grad =
  7668. ggml_add_impl(ctx,
  7669. src1->grad,
  7670. ggml_mul(ctx, src0, tensor->grad),
  7671. inplace);
  7672. }
  7673. } break;
  7674. case GGML_OP_DIV:
  7675. {
  7676. if (src0->grad) {
  7677. src0->grad =
  7678. ggml_add_impl(ctx,
  7679. src0->grad,
  7680. ggml_div(ctx, tensor->grad, src1),
  7681. inplace);
  7682. }
  7683. if (src1->grad) {
  7684. src1->grad =
  7685. ggml_sub_impl(ctx,
  7686. src1->grad,
  7687. ggml_mul(ctx,
  7688. tensor->grad,
  7689. ggml_div(ctx, tensor, src1)),
  7690. inplace);
  7691. }
  7692. } break;
  7693. case GGML_OP_SQR:
  7694. {
  7695. if (src0->grad) {
  7696. src0->grad =
  7697. ggml_add_impl(ctx,
  7698. src0->grad,
  7699. ggml_mul(ctx,
  7700. ggml_mul(ctx, src0, tensor->grad),
  7701. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7702. inplace);
  7703. }
  7704. } break;
  7705. case GGML_OP_SQRT:
  7706. {
  7707. if (src0->grad) {
  7708. src0->grad =
  7709. ggml_add_impl(ctx,
  7710. src0->grad,
  7711. ggml_div(ctx,
  7712. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7713. tensor),
  7714. inplace);
  7715. }
  7716. } break;
  7717. case GGML_OP_SUM:
  7718. {
  7719. if (src0->grad) {
  7720. src0->grad =
  7721. ggml_add_impl(ctx,
  7722. src0->grad,
  7723. ggml_repeat(ctx, tensor->grad, src0->grad),
  7724. inplace);
  7725. }
  7726. } break;
  7727. case GGML_OP_MEAN:
  7728. {
  7729. GGML_ASSERT(false); // TODO: implement
  7730. } break;
  7731. case GGML_OP_REPEAT:
  7732. {
  7733. if (src0->grad) {
  7734. src0->grad =
  7735. ggml_add_impl(ctx,
  7736. src0->grad,
  7737. ggml_sum(ctx, tensor->grad),
  7738. inplace);
  7739. }
  7740. } break;
  7741. case GGML_OP_ABS:
  7742. {
  7743. if (src0->grad) {
  7744. src0->grad =
  7745. ggml_add_impl(ctx,
  7746. src0->grad,
  7747. ggml_mul(ctx,
  7748. ggml_sgn(ctx, src0),
  7749. tensor->grad),
  7750. inplace);
  7751. }
  7752. } break;
  7753. case GGML_OP_SGN:
  7754. {
  7755. if (src0->grad) {
  7756. // noop
  7757. }
  7758. } break;
  7759. case GGML_OP_NEG:
  7760. {
  7761. if (src0->grad) {
  7762. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7763. }
  7764. } break;
  7765. case GGML_OP_STEP:
  7766. {
  7767. if (src0->grad) {
  7768. // noop
  7769. }
  7770. } break;
  7771. case GGML_OP_RELU:
  7772. {
  7773. if (src0->grad) {
  7774. src0->grad = ggml_sub_impl(ctx,
  7775. src0->grad,
  7776. ggml_mul(ctx,
  7777. ggml_step(ctx, src0),
  7778. tensor->grad),
  7779. inplace);
  7780. }
  7781. } break;
  7782. case GGML_OP_GELU:
  7783. {
  7784. GGML_ASSERT(false); // TODO: not implemented
  7785. } break;
  7786. case GGML_OP_SILU:
  7787. {
  7788. GGML_ASSERT(false); // TODO: not implemented
  7789. } break;
  7790. case GGML_OP_NORM:
  7791. {
  7792. GGML_ASSERT(false); // TODO: not implemented
  7793. } break;
  7794. case GGML_OP_RMS_NORM:
  7795. {
  7796. GGML_ASSERT(false); // TODO: not implemented
  7797. } break;
  7798. case GGML_OP_MUL_MAT:
  7799. {
  7800. if (src0->grad) {
  7801. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7802. GGML_ASSERT(false);
  7803. }
  7804. if (src1->grad) {
  7805. src1->grad =
  7806. ggml_add_impl(ctx,
  7807. src1->grad,
  7808. ggml_mul_mat(ctx,
  7809. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7810. tensor->grad),
  7811. inplace);
  7812. }
  7813. } break;
  7814. case GGML_OP_SCALE:
  7815. {
  7816. GGML_ASSERT(false); // TODO: not implemented
  7817. } break;
  7818. case GGML_OP_CPY:
  7819. {
  7820. GGML_ASSERT(false); // TODO: not implemented
  7821. } break;
  7822. case GGML_OP_CONT:
  7823. {
  7824. GGML_ASSERT(false); // TODO: not implemented
  7825. } break;
  7826. case GGML_OP_RESHAPE:
  7827. {
  7828. GGML_ASSERT(false); // TODO: not implemented
  7829. } break;
  7830. case GGML_OP_VIEW:
  7831. {
  7832. GGML_ASSERT(false); // not supported
  7833. } break;
  7834. case GGML_OP_PERMUTE:
  7835. {
  7836. GGML_ASSERT(false); // TODO: not implemented
  7837. } break;
  7838. case GGML_OP_TRANSPOSE:
  7839. {
  7840. GGML_ASSERT(false); // TODO: not implemented
  7841. } break;
  7842. case GGML_OP_GET_ROWS:
  7843. {
  7844. GGML_ASSERT(false); // TODO: not implemented
  7845. } break;
  7846. case GGML_OP_DIAG_MASK_INF:
  7847. {
  7848. GGML_ASSERT(false); // TODO: not implemented
  7849. } break;
  7850. case GGML_OP_SOFT_MAX:
  7851. {
  7852. GGML_ASSERT(false); // TODO: not implemented
  7853. } break;
  7854. case GGML_OP_ROPE:
  7855. {
  7856. GGML_ASSERT(false); // TODO: not implemented
  7857. } break;
  7858. case GGML_OP_CONV_1D_1S:
  7859. {
  7860. GGML_ASSERT(false); // TODO: not implemented
  7861. } break;
  7862. case GGML_OP_CONV_1D_2S:
  7863. {
  7864. GGML_ASSERT(false); // TODO: not implemented
  7865. } break;
  7866. case GGML_OP_FLASH_ATTN:
  7867. {
  7868. GGML_ASSERT(false); // not supported
  7869. } break;
  7870. case GGML_OP_FLASH_FF:
  7871. {
  7872. GGML_ASSERT(false); // not supported
  7873. } break;
  7874. case GGML_OP_MAP_UNARY:
  7875. case GGML_OP_MAP_BINARY:
  7876. {
  7877. GGML_ASSERT(false); // not supported
  7878. } break;
  7879. case GGML_OP_NONE:
  7880. {
  7881. // nop
  7882. } break;
  7883. case GGML_OP_COUNT:
  7884. {
  7885. GGML_ASSERT(false);
  7886. } break;
  7887. }
  7888. }
  7889. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7890. if (node->grad == NULL) {
  7891. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7892. // it can also happen during forward pass, if the user performs computations with constants
  7893. if (node->op != GGML_OP_NONE) {
  7894. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7895. }
  7896. }
  7897. // check if already visited
  7898. for (int i = 0; i < cgraph->n_nodes; i++) {
  7899. if (cgraph->nodes[i] == node) {
  7900. return;
  7901. }
  7902. }
  7903. for (int i = 0; i < cgraph->n_leafs; i++) {
  7904. if (cgraph->leafs[i] == node) {
  7905. return;
  7906. }
  7907. }
  7908. if (node->src0) {
  7909. ggml_visit_parents(cgraph, node->src0);
  7910. }
  7911. if (node->src1) {
  7912. ggml_visit_parents(cgraph, node->src1);
  7913. }
  7914. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7915. if (node->opt[i]) {
  7916. ggml_visit_parents(cgraph, node->opt[i]);
  7917. }
  7918. }
  7919. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7920. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7921. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7922. cgraph->leafs[cgraph->n_leafs] = node;
  7923. cgraph->n_leafs++;
  7924. } else {
  7925. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7926. cgraph->nodes[cgraph->n_nodes] = node;
  7927. cgraph->grads[cgraph->n_nodes] = node->grad;
  7928. cgraph->n_nodes++;
  7929. }
  7930. }
  7931. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7932. if (!expand) {
  7933. cgraph->n_nodes = 0;
  7934. cgraph->n_leafs = 0;
  7935. }
  7936. const int n0 = cgraph->n_nodes;
  7937. UNUSED(n0);
  7938. ggml_visit_parents(cgraph, tensor);
  7939. const int n_new = cgraph->n_nodes - n0;
  7940. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7941. if (n_new > 0) {
  7942. // the last added node should always be starting point
  7943. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7944. }
  7945. }
  7946. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7947. ggml_build_forward_impl(cgraph, tensor, true);
  7948. }
  7949. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7950. struct ggml_cgraph result = {
  7951. /*.n_nodes =*/ 0,
  7952. /*.n_leafs =*/ 0,
  7953. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  7954. /*.work_size =*/ 0,
  7955. /*.work =*/ NULL,
  7956. /*.nodes =*/ { NULL },
  7957. /*.grads =*/ { NULL },
  7958. /*.leafs =*/ { NULL },
  7959. /*.perf_runs =*/ 0,
  7960. /*.perf_cycles =*/ 0,
  7961. /*.perf_time_us =*/ 0,
  7962. };
  7963. ggml_build_forward_impl(&result, tensor, false);
  7964. return result;
  7965. }
  7966. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7967. struct ggml_cgraph result = *gf;
  7968. GGML_ASSERT(gf->n_nodes > 0);
  7969. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7970. if (keep) {
  7971. for (int i = 0; i < gf->n_nodes; i++) {
  7972. struct ggml_tensor * node = gf->nodes[i];
  7973. if (node->grad) {
  7974. node->grad = ggml_dup_tensor(ctx, node);
  7975. gf->grads[i] = node->grad;
  7976. }
  7977. }
  7978. }
  7979. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7980. struct ggml_tensor * node = gf->nodes[i];
  7981. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7982. if (node->grad) {
  7983. ggml_compute_backward(ctx, node, keep);
  7984. }
  7985. }
  7986. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7987. struct ggml_tensor * node = gf->nodes[i];
  7988. if (node->is_param) {
  7989. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7990. ggml_build_forward_impl(&result, node->grad, true);
  7991. }
  7992. }
  7993. return result;
  7994. }
  7995. //
  7996. // thread data
  7997. //
  7998. // synchronization is done via busy loops
  7999. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8000. //
  8001. #ifdef __APPLE__
  8002. //#include <os/lock.h>
  8003. //
  8004. //typedef os_unfair_lock ggml_lock_t;
  8005. //
  8006. //#define ggml_lock_init(x) UNUSED(x)
  8007. //#define ggml_lock_destroy(x) UNUSED(x)
  8008. //#define ggml_lock_lock os_unfair_lock_lock
  8009. //#define ggml_lock_unlock os_unfair_lock_unlock
  8010. //
  8011. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8012. typedef int ggml_lock_t;
  8013. #define ggml_lock_init(x) UNUSED(x)
  8014. #define ggml_lock_destroy(x) UNUSED(x)
  8015. #define ggml_lock_lock(x) UNUSED(x)
  8016. #define ggml_lock_unlock(x) UNUSED(x)
  8017. #define GGML_LOCK_INITIALIZER 0
  8018. typedef pthread_t ggml_thread_t;
  8019. #define ggml_thread_create pthread_create
  8020. #define ggml_thread_join pthread_join
  8021. #else
  8022. //typedef pthread_spinlock_t ggml_lock_t;
  8023. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8024. //#define ggml_lock_destroy pthread_spin_destroy
  8025. //#define ggml_lock_lock pthread_spin_lock
  8026. //#define ggml_lock_unlock pthread_spin_unlock
  8027. typedef int ggml_lock_t;
  8028. #define ggml_lock_init(x) UNUSED(x)
  8029. #define ggml_lock_destroy(x) UNUSED(x)
  8030. #define ggml_lock_lock(x) UNUSED(x)
  8031. #define ggml_lock_unlock(x) UNUSED(x)
  8032. #define GGML_LOCK_INITIALIZER 0
  8033. typedef pthread_t ggml_thread_t;
  8034. #define ggml_thread_create pthread_create
  8035. #define ggml_thread_join pthread_join
  8036. #endif
  8037. struct ggml_compute_state_shared {
  8038. ggml_lock_t spin;
  8039. int n_threads;
  8040. // synchronization primitives
  8041. atomic_int n_ready;
  8042. atomic_bool has_work;
  8043. atomic_bool stop; // stop all threads
  8044. };
  8045. struct ggml_compute_state {
  8046. ggml_thread_t thrd;
  8047. struct ggml_compute_params params;
  8048. struct ggml_tensor * node;
  8049. struct ggml_compute_state_shared * shared;
  8050. };
  8051. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8052. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8053. const int n_threads = state->shared->n_threads;
  8054. while (true) {
  8055. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8056. atomic_store(&state->shared->has_work, false);
  8057. } else {
  8058. while (atomic_load(&state->shared->has_work)) {
  8059. if (atomic_load(&state->shared->stop)) {
  8060. return 0;
  8061. }
  8062. ggml_lock_lock (&state->shared->spin);
  8063. ggml_lock_unlock(&state->shared->spin);
  8064. }
  8065. }
  8066. atomic_fetch_sub(&state->shared->n_ready, 1);
  8067. // wait for work
  8068. while (!atomic_load(&state->shared->has_work)) {
  8069. if (atomic_load(&state->shared->stop)) {
  8070. return 0;
  8071. }
  8072. ggml_lock_lock (&state->shared->spin);
  8073. ggml_lock_unlock(&state->shared->spin);
  8074. }
  8075. // check if we should stop
  8076. if (atomic_load(&state->shared->stop)) {
  8077. break;
  8078. }
  8079. if (state->node) {
  8080. if (state->params.ith < state->params.nth) {
  8081. ggml_compute_forward(&state->params, state->node);
  8082. }
  8083. state->node = NULL;
  8084. } else {
  8085. break;
  8086. }
  8087. }
  8088. return 0;
  8089. }
  8090. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8091. const int n_threads = cgraph->n_threads;
  8092. struct ggml_compute_state_shared state_shared = {
  8093. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8094. /*.n_threads =*/ n_threads,
  8095. /*.n_ready =*/ 0,
  8096. /*.has_work =*/ false,
  8097. /*.stop =*/ false,
  8098. };
  8099. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8100. // create thread pool
  8101. if (n_threads > 1) {
  8102. ggml_lock_init(&state_shared.spin);
  8103. atomic_store(&state_shared.has_work, true);
  8104. for (int j = 0; j < n_threads - 1; j++) {
  8105. workers[j] = (struct ggml_compute_state) {
  8106. .thrd = 0,
  8107. .params = {
  8108. .type = GGML_TASK_COMPUTE,
  8109. .ith = j + 1,
  8110. .nth = n_threads,
  8111. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8112. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8113. },
  8114. .node = NULL,
  8115. .shared = &state_shared,
  8116. };
  8117. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8118. GGML_ASSERT(rc == 0);
  8119. UNUSED(rc);
  8120. }
  8121. }
  8122. // initialize tasks + work buffer
  8123. {
  8124. size_t work_size = 0;
  8125. // thread scheduling for the different operations
  8126. for (int i = 0; i < cgraph->n_nodes; i++) {
  8127. struct ggml_tensor * node = cgraph->nodes[i];
  8128. switch (node->op) {
  8129. case GGML_OP_DUP:
  8130. {
  8131. node->n_tasks = 1;
  8132. } break;
  8133. case GGML_OP_ADD:
  8134. {
  8135. node->n_tasks = n_threads;
  8136. } break;
  8137. case GGML_OP_SUB:
  8138. case GGML_OP_MUL:
  8139. case GGML_OP_DIV:
  8140. case GGML_OP_SQR:
  8141. case GGML_OP_SQRT:
  8142. case GGML_OP_SUM:
  8143. case GGML_OP_MEAN:
  8144. case GGML_OP_REPEAT:
  8145. case GGML_OP_ABS:
  8146. case GGML_OP_SGN:
  8147. case GGML_OP_NEG:
  8148. case GGML_OP_STEP:
  8149. case GGML_OP_RELU:
  8150. {
  8151. node->n_tasks = 1;
  8152. } break;
  8153. case GGML_OP_GELU:
  8154. {
  8155. node->n_tasks = n_threads;
  8156. } break;
  8157. case GGML_OP_SILU:
  8158. {
  8159. node->n_tasks = n_threads;
  8160. } break;
  8161. case GGML_OP_NORM:
  8162. case GGML_OP_RMS_NORM:
  8163. {
  8164. node->n_tasks = n_threads;
  8165. } break;
  8166. case GGML_OP_MUL_MAT:
  8167. {
  8168. node->n_tasks = n_threads;
  8169. // TODO: use different scheduling for different matrix sizes
  8170. //const int nr0 = ggml_nrows(node->src0);
  8171. //const int nr1 = ggml_nrows(node->src1);
  8172. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8173. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8174. size_t cur = 0;
  8175. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8176. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8177. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8178. node->n_tasks = 1; // TODO: this actually is doing nothing
  8179. // the threads are still spinning
  8180. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8181. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8182. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8183. //printf("cur = %zu\n", cur);
  8184. } else {
  8185. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8186. }
  8187. #else
  8188. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8189. #endif
  8190. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8191. cur = 0;
  8192. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  8193. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8194. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8195. node->n_tasks = 1;
  8196. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8197. } else
  8198. #endif
  8199. {
  8200. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8201. }
  8202. } else {
  8203. GGML_ASSERT(false);
  8204. }
  8205. work_size = MAX(work_size, cur);
  8206. } break;
  8207. case GGML_OP_SCALE:
  8208. {
  8209. node->n_tasks = n_threads;
  8210. } break;
  8211. case GGML_OP_CPY:
  8212. case GGML_OP_CONT:
  8213. case GGML_OP_RESHAPE:
  8214. case GGML_OP_VIEW:
  8215. case GGML_OP_PERMUTE:
  8216. case GGML_OP_TRANSPOSE:
  8217. case GGML_OP_GET_ROWS:
  8218. case GGML_OP_DIAG_MASK_INF:
  8219. {
  8220. node->n_tasks = 1;
  8221. } break;
  8222. case GGML_OP_SOFT_MAX:
  8223. {
  8224. node->n_tasks = n_threads;
  8225. } break;
  8226. case GGML_OP_ROPE:
  8227. {
  8228. node->n_tasks = n_threads;
  8229. } break;
  8230. case GGML_OP_CONV_1D_1S:
  8231. case GGML_OP_CONV_1D_2S:
  8232. {
  8233. node->n_tasks = n_threads;
  8234. GGML_ASSERT(node->src0->ne[3] == 1);
  8235. GGML_ASSERT(node->src1->ne[2] == 1);
  8236. GGML_ASSERT(node->src1->ne[3] == 1);
  8237. size_t cur = 0;
  8238. const int nk = node->src0->ne[0];
  8239. if (node->src0->type == GGML_TYPE_F16 &&
  8240. node->src1->type == GGML_TYPE_F32) {
  8241. cur = sizeof(ggml_fp16_t)*(
  8242. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8243. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8244. );
  8245. } else if (node->src0->type == GGML_TYPE_F32 &&
  8246. node->src1->type == GGML_TYPE_F32) {
  8247. cur = sizeof(float)*(
  8248. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8249. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8250. );
  8251. } else {
  8252. GGML_ASSERT(false);
  8253. }
  8254. work_size = MAX(work_size, cur);
  8255. } break;
  8256. case GGML_OP_FLASH_ATTN:
  8257. {
  8258. node->n_tasks = n_threads;
  8259. size_t cur = 0;
  8260. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8261. if (node->src1->type == GGML_TYPE_F32) {
  8262. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8263. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8264. }
  8265. if (node->src1->type == GGML_TYPE_F16) {
  8266. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8267. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8268. }
  8269. work_size = MAX(work_size, cur);
  8270. } break;
  8271. case GGML_OP_FLASH_FF:
  8272. {
  8273. node->n_tasks = n_threads;
  8274. size_t cur = 0;
  8275. if (node->src1->type == GGML_TYPE_F32) {
  8276. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8277. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8278. }
  8279. if (node->src1->type == GGML_TYPE_F16) {
  8280. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8281. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8282. }
  8283. work_size = MAX(work_size, cur);
  8284. } break;
  8285. case GGML_OP_MAP_UNARY:
  8286. case GGML_OP_MAP_BINARY:
  8287. {
  8288. node->n_tasks = 1;
  8289. } break;
  8290. case GGML_OP_NONE:
  8291. {
  8292. node->n_tasks = 1;
  8293. } break;
  8294. case GGML_OP_COUNT:
  8295. {
  8296. GGML_ASSERT(false);
  8297. } break;
  8298. }
  8299. }
  8300. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8301. GGML_ASSERT(false); // TODO: better handling
  8302. }
  8303. if (work_size > 0 && cgraph->work == NULL) {
  8304. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8305. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8306. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8307. }
  8308. }
  8309. const int64_t perf_start_cycles = ggml_perf_cycles();
  8310. const int64_t perf_start_time_us = ggml_perf_time_us();
  8311. for (int i = 0; i < cgraph->n_nodes; i++) {
  8312. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8313. struct ggml_tensor * node = cgraph->nodes[i];
  8314. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8315. //if (node->grad == NULL && node->perf_runs > 0) {
  8316. // continue;
  8317. //}
  8318. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8319. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8320. // INIT
  8321. struct ggml_compute_params params = {
  8322. /*.type =*/ GGML_TASK_INIT,
  8323. /*.ith =*/ 0,
  8324. /*.nth =*/ node->n_tasks,
  8325. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8326. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8327. };
  8328. ggml_compute_forward(&params, node);
  8329. // COMPUTE
  8330. if (node->n_tasks > 1) {
  8331. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8332. atomic_store(&state_shared.has_work, false);
  8333. }
  8334. while (atomic_load(&state_shared.has_work)) {
  8335. ggml_lock_lock (&state_shared.spin);
  8336. ggml_lock_unlock(&state_shared.spin);
  8337. }
  8338. // launch thread pool
  8339. for (int j = 0; j < n_threads - 1; j++) {
  8340. workers[j].params = (struct ggml_compute_params) {
  8341. .type = GGML_TASK_COMPUTE,
  8342. .ith = j + 1,
  8343. .nth = node->n_tasks,
  8344. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8345. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8346. };
  8347. workers[j].node = node;
  8348. }
  8349. atomic_fetch_sub(&state_shared.n_ready, 1);
  8350. while (atomic_load(&state_shared.n_ready) > 0) {
  8351. ggml_lock_lock (&state_shared.spin);
  8352. ggml_lock_unlock(&state_shared.spin);
  8353. }
  8354. atomic_store(&state_shared.has_work, true);
  8355. }
  8356. params.type = GGML_TASK_COMPUTE;
  8357. ggml_compute_forward(&params, node);
  8358. // wait for thread pool
  8359. if (node->n_tasks > 1) {
  8360. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8361. atomic_store(&state_shared.has_work, false);
  8362. }
  8363. while (atomic_load(&state_shared.has_work)) {
  8364. ggml_lock_lock (&state_shared.spin);
  8365. ggml_lock_unlock(&state_shared.spin);
  8366. }
  8367. atomic_fetch_sub(&state_shared.n_ready, 1);
  8368. while (atomic_load(&state_shared.n_ready) != 0) {
  8369. ggml_lock_lock (&state_shared.spin);
  8370. ggml_lock_unlock(&state_shared.spin);
  8371. }
  8372. }
  8373. // FINALIZE
  8374. if (node->n_tasks > 1) {
  8375. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8376. atomic_store(&state_shared.has_work, false);
  8377. }
  8378. while (atomic_load(&state_shared.has_work)) {
  8379. ggml_lock_lock (&state_shared.spin);
  8380. ggml_lock_unlock(&state_shared.spin);
  8381. }
  8382. // launch thread pool
  8383. for (int j = 0; j < n_threads - 1; j++) {
  8384. workers[j].params = (struct ggml_compute_params) {
  8385. .type = GGML_TASK_FINALIZE,
  8386. .ith = j + 1,
  8387. .nth = node->n_tasks,
  8388. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8389. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8390. };
  8391. workers[j].node = node;
  8392. }
  8393. atomic_fetch_sub(&state_shared.n_ready, 1);
  8394. while (atomic_load(&state_shared.n_ready) > 0) {
  8395. ggml_lock_lock (&state_shared.spin);
  8396. ggml_lock_unlock(&state_shared.spin);
  8397. }
  8398. atomic_store(&state_shared.has_work, true);
  8399. }
  8400. params.type = GGML_TASK_FINALIZE;
  8401. ggml_compute_forward(&params, node);
  8402. // wait for thread pool
  8403. if (node->n_tasks > 1) {
  8404. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8405. atomic_store(&state_shared.has_work, false);
  8406. }
  8407. while (atomic_load(&state_shared.has_work)) {
  8408. ggml_lock_lock (&state_shared.spin);
  8409. ggml_lock_unlock(&state_shared.spin);
  8410. }
  8411. atomic_fetch_sub(&state_shared.n_ready, 1);
  8412. while (atomic_load(&state_shared.n_ready) != 0) {
  8413. ggml_lock_lock (&state_shared.spin);
  8414. ggml_lock_unlock(&state_shared.spin);
  8415. }
  8416. }
  8417. // performance stats (node)
  8418. {
  8419. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8420. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8421. node->perf_runs++;
  8422. node->perf_cycles += perf_cycles_cur;
  8423. node->perf_time_us += perf_time_us_cur;
  8424. }
  8425. }
  8426. // join thread pool
  8427. if (n_threads > 1) {
  8428. atomic_store(&state_shared.stop, true);
  8429. atomic_store(&state_shared.has_work, true);
  8430. for (int j = 0; j < n_threads - 1; j++) {
  8431. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8432. GGML_ASSERT(rc == 0);
  8433. UNUSED(rc);
  8434. }
  8435. ggml_lock_destroy(&state_shared.spin);
  8436. }
  8437. // performance stats (graph)
  8438. {
  8439. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8440. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8441. cgraph->perf_runs++;
  8442. cgraph->perf_cycles += perf_cycles_cur;
  8443. cgraph->perf_time_us += perf_time_us_cur;
  8444. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8445. __func__, cgraph->perf_runs,
  8446. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8447. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8448. (double) perf_time_us_cur / 1000.0,
  8449. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8450. }
  8451. }
  8452. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8453. for (int i = 0; i < cgraph->n_nodes; i++) {
  8454. struct ggml_tensor * grad = cgraph->grads[i];
  8455. if (grad) {
  8456. ggml_set_zero(grad);
  8457. }
  8458. }
  8459. }
  8460. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8461. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8462. GGML_PRINT("=== GRAPH ===\n");
  8463. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8464. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8465. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8466. for (int i = 0; i < cgraph->n_nodes; i++) {
  8467. struct ggml_tensor * node = cgraph->nodes[i];
  8468. perf_total_per_op_us[node->op] += node->perf_time_us;
  8469. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8470. i,
  8471. node->ne[0], node->ne[1], node->ne[2],
  8472. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8473. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8474. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8475. (double) node->perf_time_us / 1000.0,
  8476. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8477. }
  8478. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8479. for (int i = 0; i < cgraph->n_leafs; i++) {
  8480. struct ggml_tensor * node = cgraph->leafs[i];
  8481. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8482. i,
  8483. node->ne[0], node->ne[1],
  8484. GGML_OP_LABEL[node->op]);
  8485. }
  8486. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8487. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8488. }
  8489. GGML_PRINT("========================================\n");
  8490. }
  8491. // check if node is part of the graph
  8492. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8493. if (cgraph == NULL) {
  8494. return true;
  8495. }
  8496. for (int i = 0; i < cgraph->n_nodes; i++) {
  8497. if (cgraph->nodes[i] == node) {
  8498. return true;
  8499. }
  8500. }
  8501. return false;
  8502. }
  8503. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8504. for (int i = 0; i < cgraph->n_nodes; i++) {
  8505. struct ggml_tensor * parent = cgraph->nodes[i];
  8506. if (parent->grad == node) {
  8507. return parent;
  8508. }
  8509. }
  8510. return NULL;
  8511. }
  8512. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8513. char color[16];
  8514. FILE * fp = fopen(filename, "w");
  8515. GGML_ASSERT(fp);
  8516. fprintf(fp, "digraph G {\n");
  8517. fprintf(fp, " newrank = true;\n");
  8518. fprintf(fp, " rankdir = LR;\n");
  8519. for (int i = 0; i < gb->n_nodes; i++) {
  8520. struct ggml_tensor * node = gb->nodes[i];
  8521. if (ggml_graph_get_parent(gb, node) != NULL) {
  8522. continue;
  8523. }
  8524. if (node->is_param) {
  8525. snprintf(color, sizeof(color), "yellow");
  8526. } else if (node->grad) {
  8527. if (ggml_graph_find(gf, node)) {
  8528. snprintf(color, sizeof(color), "green");
  8529. } else {
  8530. snprintf(color, sizeof(color), "lightblue");
  8531. }
  8532. } else {
  8533. snprintf(color, sizeof(color), "white");
  8534. }
  8535. fprintf(fp, " \"%p\" [ \
  8536. style = filled; fillcolor = %s; shape = record; \
  8537. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8538. (void *) node, color,
  8539. i, node->ne[0], node->ne[1],
  8540. GGML_OP_SYMBOL[node->op]);
  8541. if (node->grad) {
  8542. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8543. } else {
  8544. fprintf(fp, "\"; ]\n");
  8545. }
  8546. }
  8547. for (int i = 0; i < gb->n_leafs; i++) {
  8548. struct ggml_tensor * node = gb->leafs[i];
  8549. snprintf(color, sizeof(color), "pink");
  8550. if (ggml_nelements(node) == 1) {
  8551. fprintf(fp, " \"%p\" [ \
  8552. style = filled; fillcolor = %s; shape = record; \
  8553. label=\"<x>%.1e\"; ]\n",
  8554. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8555. } else {
  8556. fprintf(fp, " \"%p\" [ \
  8557. style = filled; fillcolor = %s; shape = record; \
  8558. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8559. (void *) node, color,
  8560. i, node->ne[0], node->ne[1]);
  8561. }
  8562. }
  8563. for (int i = 0; i < gb->n_nodes; i++) {
  8564. struct ggml_tensor * node = gb->nodes[i];
  8565. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8566. if (node->src0) {
  8567. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8568. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8569. parent0 ? (void *) parent0 : (void *) node->src0,
  8570. parent0 ? "g" : "x",
  8571. parent ? (void *) parent : (void *) node,
  8572. parent ? "g" : "x",
  8573. parent ? "empty" : "vee",
  8574. parent ? "dashed" : "solid");
  8575. }
  8576. if (node->src1) {
  8577. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8578. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8579. parent1 ? (void *) parent1 : (void *) node->src1,
  8580. parent1 ? "g" : "x",
  8581. parent ? (void *) parent : (void *) node,
  8582. parent ? "g" : "x",
  8583. parent ? "empty" : "vee",
  8584. parent ? "dashed" : "solid");
  8585. }
  8586. }
  8587. for (int i = 0; i < gb->n_leafs; i++) {
  8588. struct ggml_tensor * node = gb->leafs[i];
  8589. if (node->src0) {
  8590. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8591. (void *) node->src0, "x",
  8592. (void *) node, "x");
  8593. }
  8594. if (node->src1) {
  8595. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8596. (void *) node->src1, "x",
  8597. (void *) node, "x");
  8598. }
  8599. }
  8600. fprintf(fp, "}\n");
  8601. fclose(fp);
  8602. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8603. }
  8604. ////////////////////////////////////////////////////////////////////////////////
  8605. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8606. int i = 0;
  8607. for (int p = 0; p < np; ++p) {
  8608. const int64_t ne = ggml_nelements(ps[p]) ;
  8609. // TODO: add function to set tensor from array
  8610. for (int64_t j = 0; j < ne; ++j) {
  8611. ggml_set_f32_1d(ps[p], j, x[i++]);
  8612. }
  8613. }
  8614. }
  8615. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8616. int i = 0;
  8617. for (int p = 0; p < np; ++p) {
  8618. const int64_t ne = ggml_nelements(ps[p]) ;
  8619. // TODO: add function to get all elements at once
  8620. for (int64_t j = 0; j < ne; ++j) {
  8621. x[i++] = ggml_get_f32_1d(ps[p], j);
  8622. }
  8623. }
  8624. }
  8625. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8626. int i = 0;
  8627. for (int p = 0; p < np; ++p) {
  8628. const int64_t ne = ggml_nelements(ps[p]) ;
  8629. // TODO: add function to get all elements at once
  8630. for (int64_t j = 0; j < ne; ++j) {
  8631. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8632. }
  8633. }
  8634. }
  8635. //
  8636. // ADAM
  8637. //
  8638. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8639. //
  8640. static enum ggml_opt_result ggml_opt_adam(
  8641. struct ggml_context * ctx,
  8642. struct ggml_opt_params params,
  8643. struct ggml_tensor * f,
  8644. struct ggml_cgraph * gf,
  8645. struct ggml_cgraph * gb) {
  8646. GGML_ASSERT(ggml_is_scalar(f));
  8647. gf->n_threads = params.n_threads;
  8648. gb->n_threads = params.n_threads;
  8649. // these will store the parameters we want to optimize
  8650. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8651. int np = 0;
  8652. int nx = 0;
  8653. for (int i = 0; i < gf->n_nodes; ++i) {
  8654. if (gf->nodes[i]->is_param) {
  8655. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8656. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8657. ps[np++] = gf->nodes[i];
  8658. nx += ggml_nelements(gf->nodes[i]);
  8659. }
  8660. }
  8661. // constants
  8662. const float alpha = params.adam.alpha;
  8663. const float beta1 = params.adam.beta1;
  8664. const float beta2 = params.adam.beta2;
  8665. const float eps = params.adam.eps;
  8666. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8667. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8668. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8669. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8670. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8671. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8672. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8673. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8674. // initialize
  8675. ggml_vec_set_f32(nx, m, 0.0f);
  8676. ggml_vec_set_f32(nx, v, 0.0f);
  8677. // update view
  8678. ggml_opt_get_params(np, ps, x);
  8679. // compute the function value
  8680. ggml_graph_reset (gf);
  8681. ggml_set_f32 (f->grad, 1.0f);
  8682. ggml_graph_compute(ctx, gb);
  8683. float fx_prev = ggml_get_f32_1d(f, 0);
  8684. if (pf) {
  8685. pf[0] = fx_prev;
  8686. }
  8687. int n_no_improvement = 0;
  8688. float fx_best = fx_prev;
  8689. // run the optimizer
  8690. for (int t = 0; t < params.adam.n_iter; ++t) {
  8691. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8692. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8693. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8694. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8695. for (int i = 0; i < np; ++i) {
  8696. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8697. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8698. }
  8699. const int64_t t_start_wall = ggml_time_us();
  8700. const int64_t t_start_cpu = ggml_cycles();
  8701. UNUSED(t_start_wall);
  8702. UNUSED(t_start_cpu);
  8703. {
  8704. // update the gradient
  8705. ggml_opt_get_grad(np, ps, g1);
  8706. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8707. ggml_vec_scale_f32(nx, m, beta1);
  8708. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8709. // g2 = g1^2
  8710. ggml_vec_sqr_f32 (nx, g2, g1);
  8711. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8712. ggml_vec_scale_f32(nx, v, beta2);
  8713. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8714. // m^hat = m_t / (1 - beta1^t)
  8715. // v^hat = v_t / (1 - beta2^t)
  8716. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8717. ggml_vec_cpy_f32 (nx, mh, m);
  8718. ggml_vec_cpy_f32 (nx, vh, v);
  8719. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8720. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8721. ggml_vec_sqrt_f32 (nx, vh, vh);
  8722. ggml_vec_acc1_f32 (nx, vh, eps);
  8723. ggml_vec_div_f32 (nx, mh, mh, vh);
  8724. ggml_vec_sub_f32 (nx, x, x, mh);
  8725. // update the parameters
  8726. ggml_opt_set_params(np, ps, x);
  8727. }
  8728. ggml_graph_reset (gf);
  8729. ggml_set_f32 (f->grad, 1.0f);
  8730. ggml_graph_compute(ctx, gb);
  8731. const float fx = ggml_get_f32_1d(f, 0);
  8732. // check convergence
  8733. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8734. GGML_PRINT_DEBUG("converged\n");
  8735. return GGML_OPT_OK;
  8736. }
  8737. // delta-based convergence test
  8738. if (pf != NULL) {
  8739. // need at least params.past iterations to start checking for convergence
  8740. if (params.past <= t) {
  8741. const float rate = (pf[t%params.past] - fx)/fx;
  8742. if (fabsf(rate) < params.delta) {
  8743. return GGML_OPT_OK;
  8744. }
  8745. }
  8746. pf[t%params.past] = fx;
  8747. }
  8748. // check for improvement
  8749. if (params.max_no_improvement > 0) {
  8750. if (fx_best > fx) {
  8751. fx_best = fx;
  8752. n_no_improvement = 0;
  8753. } else {
  8754. ++n_no_improvement;
  8755. if (n_no_improvement >= params.max_no_improvement) {
  8756. return GGML_OPT_OK;
  8757. }
  8758. }
  8759. }
  8760. fx_prev = fx;
  8761. {
  8762. const int64_t t_end_cpu = ggml_cycles();
  8763. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8764. UNUSED(t_end_cpu);
  8765. const int64_t t_end_wall = ggml_time_us();
  8766. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8767. UNUSED(t_end_wall);
  8768. }
  8769. }
  8770. return GGML_OPT_DID_NOT_CONVERGE;
  8771. }
  8772. //
  8773. // L-BFGS
  8774. //
  8775. // the L-BFGS implementation below is based on the following implementation:
  8776. //
  8777. // https://github.com/chokkan/liblbfgs
  8778. //
  8779. struct ggml_lbfgs_iteration_data {
  8780. float alpha;
  8781. float ys;
  8782. float * s;
  8783. float * y;
  8784. };
  8785. static enum ggml_opt_result linesearch_backtracking(
  8786. struct ggml_context * ctx,
  8787. const struct ggml_opt_params * params,
  8788. int nx,
  8789. float * x,
  8790. float * fx,
  8791. float * g,
  8792. float * d,
  8793. float * step,
  8794. const float * xp,
  8795. struct ggml_tensor * f,
  8796. struct ggml_cgraph * gf,
  8797. struct ggml_cgraph * gb,
  8798. const int np,
  8799. struct ggml_tensor * ps[]) {
  8800. int count = 0;
  8801. float width = 0.0f;
  8802. float dg = 0.0f;
  8803. float finit = 0.0f;
  8804. float dginit = 0.0f;
  8805. float dgtest = 0.0f;
  8806. const float dec = 0.5f;
  8807. const float inc = 2.1f;
  8808. if (*step <= 0.f) {
  8809. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8810. }
  8811. // compute the initial gradient in the search direction
  8812. ggml_vec_dot_f32(nx, &dginit, g, d);
  8813. // make sure that d points to a descent direction
  8814. if (0 < dginit) {
  8815. return GGML_LINESEARCH_FAIL;
  8816. }
  8817. // initialize local variables
  8818. finit = *fx;
  8819. dgtest = params->lbfgs.ftol*dginit;
  8820. while (true) {
  8821. ggml_vec_cpy_f32(nx, x, xp);
  8822. ggml_vec_mad_f32(nx, x, d, *step);
  8823. // evaluate the function and gradient values
  8824. {
  8825. ggml_opt_set_params(np, ps, x);
  8826. ggml_graph_reset (gf);
  8827. ggml_set_f32 (f->grad, 1.0f);
  8828. ggml_graph_compute(ctx, gb);
  8829. ggml_opt_get_grad(np, ps, g);
  8830. *fx = ggml_get_f32_1d(f, 0);
  8831. }
  8832. ++count;
  8833. if (*fx > finit + (*step)*dgtest) {
  8834. width = dec;
  8835. } else {
  8836. // Armijo condition is satisfied
  8837. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8838. return count;
  8839. }
  8840. ggml_vec_dot_f32(nx, &dg, g, d);
  8841. // check the Wolfe condition
  8842. if (dg < params->lbfgs.wolfe * dginit) {
  8843. width = inc;
  8844. } else {
  8845. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8846. // regular Wolfe conditions
  8847. return count;
  8848. }
  8849. if(dg > -params->lbfgs.wolfe*dginit) {
  8850. width = dec;
  8851. } else {
  8852. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8853. return count;
  8854. }
  8855. return count;
  8856. }
  8857. }
  8858. if (*step < params->lbfgs.min_step) {
  8859. return GGML_LINESEARCH_MINIMUM_STEP;
  8860. }
  8861. if (*step > params->lbfgs.max_step) {
  8862. return GGML_LINESEARCH_MAXIMUM_STEP;
  8863. }
  8864. if (params->lbfgs.max_linesearch <= count) {
  8865. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8866. }
  8867. (*step) *= width;
  8868. }
  8869. return GGML_LINESEARCH_FAIL;
  8870. }
  8871. static enum ggml_opt_result ggml_opt_lbfgs(
  8872. struct ggml_context * ctx,
  8873. struct ggml_opt_params params,
  8874. struct ggml_tensor * f,
  8875. struct ggml_cgraph * gf,
  8876. struct ggml_cgraph * gb) {
  8877. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8878. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8879. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8880. return GGML_OPT_INVALID_WOLFE;
  8881. }
  8882. }
  8883. gf->n_threads = params.n_threads;
  8884. gb->n_threads = params.n_threads;
  8885. const int m = params.lbfgs.m;
  8886. // these will store the parameters we want to optimize
  8887. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8888. int np = 0;
  8889. int nx = 0;
  8890. for (int i = 0; i < gf->n_nodes; ++i) {
  8891. if (gf->nodes[i]->is_param) {
  8892. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8893. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8894. ps[np++] = gf->nodes[i];
  8895. nx += ggml_nelements(gf->nodes[i]);
  8896. }
  8897. }
  8898. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8899. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8900. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8901. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8902. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8903. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8904. float fx = 0.0f; // cost function value
  8905. float xnorm = 0.0f; // ||x||
  8906. float gnorm = 0.0f; // ||g||
  8907. float step = 0.0f;
  8908. // initialize x from the graph nodes
  8909. ggml_opt_get_params(np, ps, x);
  8910. // the L-BFGS memory
  8911. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8912. for (int i = 0; i < m; ++i) {
  8913. lm[i].alpha = 0.0f;
  8914. lm[i].ys = 0.0f;
  8915. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8916. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8917. }
  8918. // evaluate the function value and its gradient
  8919. {
  8920. ggml_opt_set_params(np, ps, x);
  8921. ggml_graph_reset (gf);
  8922. ggml_set_f32 (f->grad, 1.0f);
  8923. ggml_graph_compute(ctx, gb);
  8924. ggml_opt_get_grad(np, ps, g);
  8925. fx = ggml_get_f32_1d(f, 0);
  8926. }
  8927. if (pf) {
  8928. pf[0] = fx;
  8929. }
  8930. float fx_best = fx;
  8931. // search direction = -gradient
  8932. ggml_vec_neg_f32(nx, d, g);
  8933. // ||x||, ||g||
  8934. ggml_vec_norm_f32(nx, &xnorm, x);
  8935. ggml_vec_norm_f32(nx, &gnorm, g);
  8936. if (xnorm < 1.0f) {
  8937. xnorm = 1.0f;
  8938. }
  8939. // already optimized
  8940. if (gnorm/xnorm <= params.lbfgs.eps) {
  8941. return GGML_OPT_OK;
  8942. }
  8943. // initial step
  8944. ggml_vec_norm_inv_f32(nx, &step, d);
  8945. int j = 0;
  8946. int k = 1;
  8947. int ls = 0;
  8948. int end = 0;
  8949. int bound = 0;
  8950. int n_no_improvement = 0;
  8951. float ys = 0.0f;
  8952. float yy = 0.0f;
  8953. float beta = 0.0f;
  8954. while (true) {
  8955. // store the current position and gradient vectors
  8956. ggml_vec_cpy_f32(nx, xp, x);
  8957. ggml_vec_cpy_f32(nx, gp, g);
  8958. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8959. if (ls < 0) {
  8960. // linesearch failed - go back to the previous point and return
  8961. ggml_vec_cpy_f32(nx, x, xp);
  8962. ggml_vec_cpy_f32(nx, g, gp);
  8963. return ls;
  8964. }
  8965. ggml_vec_norm_f32(nx, &xnorm, x);
  8966. ggml_vec_norm_f32(nx, &gnorm, g);
  8967. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8968. if (xnorm < 1.0f) {
  8969. xnorm = 1.0f;
  8970. }
  8971. if (gnorm/xnorm <= params.lbfgs.eps) {
  8972. // converged
  8973. return GGML_OPT_OK;
  8974. }
  8975. // delta-based convergence test
  8976. if (pf != NULL) {
  8977. // need at least params.past iterations to start checking for convergence
  8978. if (params.past <= k) {
  8979. const float rate = (pf[k%params.past] - fx)/fx;
  8980. if (fabsf(rate) < params.delta) {
  8981. return GGML_OPT_OK;
  8982. }
  8983. }
  8984. pf[k%params.past] = fx;
  8985. }
  8986. // check for improvement
  8987. if (params.max_no_improvement > 0) {
  8988. if (fx < fx_best) {
  8989. fx_best = fx;
  8990. n_no_improvement = 0;
  8991. } else {
  8992. n_no_improvement++;
  8993. if (n_no_improvement >= params.max_no_improvement) {
  8994. return GGML_OPT_OK;
  8995. }
  8996. }
  8997. }
  8998. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8999. // reached the maximum number of iterations
  9000. return GGML_OPT_DID_NOT_CONVERGE;
  9001. }
  9002. // update vectors s and y:
  9003. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9004. // y_{k+1} = g_{k+1} - g_{k}.
  9005. //
  9006. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9007. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9008. // compute scalars ys and yy:
  9009. // ys = y^t \cdot s -> 1 / \rho.
  9010. // yy = y^t \cdot y.
  9011. //
  9012. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9013. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9014. lm[end].ys = ys;
  9015. // find new search direction
  9016. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9017. bound = (m <= k) ? m : k;
  9018. k++;
  9019. end = (end + 1)%m;
  9020. // initialize search direction with -g
  9021. ggml_vec_neg_f32(nx, d, g);
  9022. j = end;
  9023. for (int i = 0; i < bound; ++i) {
  9024. j = (j + m - 1) % m;
  9025. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9026. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9027. lm[j].alpha /= lm[j].ys;
  9028. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9029. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9030. }
  9031. ggml_vec_scale_f32(nx, d, ys/yy);
  9032. for (int i = 0; i < bound; ++i) {
  9033. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9034. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9035. beta /= lm[j].ys;
  9036. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9037. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9038. j = (j + 1)%m;
  9039. }
  9040. step = 1.0;
  9041. }
  9042. return GGML_OPT_DID_NOT_CONVERGE;
  9043. }
  9044. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9045. struct ggml_opt_params result;
  9046. switch (type) {
  9047. case GGML_OPT_ADAM:
  9048. {
  9049. result = (struct ggml_opt_params) {
  9050. .type = GGML_OPT_ADAM,
  9051. .n_threads = 1,
  9052. .past = 0,
  9053. .delta = 1e-5f,
  9054. .max_no_improvement = 100,
  9055. .print_forward_graph = true,
  9056. .print_backward_graph = true,
  9057. .adam = {
  9058. .n_iter = 10000,
  9059. .alpha = 0.001f,
  9060. .beta1 = 0.9f,
  9061. .beta2 = 0.999f,
  9062. .eps = 1e-8f,
  9063. .eps_f = 1e-5f,
  9064. .eps_g = 1e-3f,
  9065. },
  9066. };
  9067. } break;
  9068. case GGML_OPT_LBFGS:
  9069. {
  9070. result = (struct ggml_opt_params) {
  9071. .type = GGML_OPT_LBFGS,
  9072. .n_threads = 1,
  9073. .past = 0,
  9074. .delta = 1e-5f,
  9075. .max_no_improvement = 0,
  9076. .print_forward_graph = true,
  9077. .print_backward_graph = true,
  9078. .lbfgs = {
  9079. .m = 6,
  9080. .n_iter = 100,
  9081. .max_linesearch = 20,
  9082. .eps = 1e-5f,
  9083. .ftol = 1e-4f,
  9084. .wolfe = 0.9f,
  9085. .min_step = 1e-20f,
  9086. .max_step = 1e+20f,
  9087. .linesearch = GGML_LINESEARCH_DEFAULT,
  9088. },
  9089. };
  9090. } break;
  9091. }
  9092. return result;
  9093. }
  9094. enum ggml_opt_result ggml_opt(
  9095. struct ggml_context * ctx,
  9096. struct ggml_opt_params params,
  9097. struct ggml_tensor * f) {
  9098. bool free_ctx = false;
  9099. if (ctx == NULL) {
  9100. struct ggml_init_params params_ctx = {
  9101. .mem_size = 16*1024*1024,
  9102. .mem_buffer = NULL,
  9103. .no_alloc = false,
  9104. };
  9105. ctx = ggml_init(params_ctx);
  9106. if (ctx == NULL) {
  9107. return GGML_OPT_NO_CONTEXT;
  9108. }
  9109. free_ctx = true;
  9110. }
  9111. enum ggml_opt_result result = GGML_OPT_OK;
  9112. // build forward + backward compute graphs
  9113. struct ggml_cgraph gf = ggml_build_forward (f);
  9114. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9115. switch (params.type) {
  9116. case GGML_OPT_ADAM:
  9117. {
  9118. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9119. } break;
  9120. case GGML_OPT_LBFGS:
  9121. {
  9122. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9123. } break;
  9124. }
  9125. if (params.print_forward_graph) {
  9126. ggml_graph_print (&gf);
  9127. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9128. }
  9129. if (params.print_backward_graph) {
  9130. ggml_graph_print (&gb);
  9131. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9132. }
  9133. if (free_ctx) {
  9134. ggml_free(ctx);
  9135. }
  9136. return result;
  9137. }
  9138. ////////////////////////////////////////////////////////////////////////////////
  9139. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9140. assert(k % QK4_0 == 0);
  9141. const int nb = k / QK4_0;
  9142. for (int j = 0; j < n; j += k) {
  9143. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9144. quantize_row_q4_0_reference(src + j, y, k);
  9145. for (int i = 0; i < nb; i++) {
  9146. for (int l = 0; l < QK4_0; l += 2) {
  9147. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9148. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9149. hist[vi0]++;
  9150. hist[vi1]++;
  9151. }
  9152. }
  9153. }
  9154. return (n/QK4_0*sizeof(block_q4_0));
  9155. }
  9156. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9157. assert(k % QK4_1 == 0);
  9158. const int nb = k / QK4_1;
  9159. for (int j = 0; j < n; j += k) {
  9160. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9161. quantize_row_q4_1_reference(src + j, y, k);
  9162. for (int i = 0; i < nb; i++) {
  9163. for (int l = 0; l < QK4_1; l += 2) {
  9164. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9165. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9166. hist[vi0]++;
  9167. hist[vi1]++;
  9168. }
  9169. }
  9170. }
  9171. return (n/QK4_1*sizeof(block_q4_1));
  9172. }
  9173. ////////////////////////////////////////////////////////////////////////////////
  9174. int ggml_cpu_has_avx(void) {
  9175. #if defined(__AVX__)
  9176. return 1;
  9177. #else
  9178. return 0;
  9179. #endif
  9180. }
  9181. int ggml_cpu_has_avx2(void) {
  9182. #if defined(__AVX2__)
  9183. return 1;
  9184. #else
  9185. return 0;
  9186. #endif
  9187. }
  9188. int ggml_cpu_has_avx512(void) {
  9189. #if defined(__AVX512F__)
  9190. return 1;
  9191. #else
  9192. return 0;
  9193. #endif
  9194. }
  9195. int ggml_cpu_has_fma(void) {
  9196. #if defined(__FMA__)
  9197. return 1;
  9198. #else
  9199. return 0;
  9200. #endif
  9201. }
  9202. int ggml_cpu_has_neon(void) {
  9203. #if defined(__ARM_NEON)
  9204. return 1;
  9205. #else
  9206. return 0;
  9207. #endif
  9208. }
  9209. int ggml_cpu_has_arm_fma(void) {
  9210. #if defined(__ARM_FEATURE_FMA)
  9211. return 1;
  9212. #else
  9213. return 0;
  9214. #endif
  9215. }
  9216. int ggml_cpu_has_f16c(void) {
  9217. #if defined(__F16C__)
  9218. return 1;
  9219. #else
  9220. return 0;
  9221. #endif
  9222. }
  9223. int ggml_cpu_has_fp16_va(void) {
  9224. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9225. return 1;
  9226. #else
  9227. return 0;
  9228. #endif
  9229. }
  9230. int ggml_cpu_has_wasm_simd(void) {
  9231. #if defined(__wasm_simd128__)
  9232. return 1;
  9233. #else
  9234. return 0;
  9235. #endif
  9236. }
  9237. int ggml_cpu_has_blas(void) {
  9238. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9239. return 1;
  9240. #else
  9241. return 0;
  9242. #endif
  9243. }
  9244. int ggml_cpu_has_sse3(void) {
  9245. #if defined(__SSE3__)
  9246. return 1;
  9247. #else
  9248. return 0;
  9249. #endif
  9250. }
  9251. int ggml_cpu_has_vsx(void) {
  9252. #if defined(__POWER9_VECTOR__)
  9253. return 1;
  9254. #else
  9255. return 0;
  9256. #endif
  9257. }
  9258. ////////////////////////////////////////////////////////////////////////////////